xref: /openbmc/linux/net/sunrpc/sched.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 
22 #include <linux/sunrpc/clnt.h>
23 #include <linux/sunrpc/xprt.h>
24 
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY		RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID	0xf00baa
28 static int			rpc_task_id;
29 #endif
30 
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE	(2048)
35 #define RPC_BUFFER_POOLSIZE	(8)
36 #define RPC_TASK_POOLSIZE	(8)
37 static kmem_cache_t	*rpc_task_slabp;
38 static kmem_cache_t	*rpc_buffer_slabp;
39 static mempool_t	*rpc_task_mempool;
40 static mempool_t	*rpc_buffer_mempool;
41 
42 static void			__rpc_default_timer(struct rpc_task *task);
43 static void			rpciod_killall(void);
44 static void			rpc_free(struct rpc_task *task);
45 
46 static void			rpc_async_schedule(void *);
47 
48 /*
49  * RPC tasks that create another task (e.g. for contacting the portmapper)
50  * will wait on this queue for their child's completion
51  */
52 static RPC_WAITQ(childq, "childq");
53 
54 /*
55  * RPC tasks sit here while waiting for conditions to improve.
56  */
57 static RPC_WAITQ(delay_queue, "delayq");
58 
59 /*
60  * All RPC tasks are linked into this list
61  */
62 static LIST_HEAD(all_tasks);
63 
64 /*
65  * rpciod-related stuff
66  */
67 static DECLARE_MUTEX(rpciod_sema);
68 static unsigned int		rpciod_users;
69 static struct workqueue_struct *rpciod_workqueue;
70 
71 /*
72  * Spinlock for other critical sections of code.
73  */
74 static DEFINE_SPINLOCK(rpc_sched_lock);
75 
76 /*
77  * Disable the timer for a given RPC task. Should be called with
78  * queue->lock and bh_disabled in order to avoid races within
79  * rpc_run_timer().
80  */
81 static inline void
82 __rpc_disable_timer(struct rpc_task *task)
83 {
84 	dprintk("RPC: %4d disabling timer\n", task->tk_pid);
85 	task->tk_timeout_fn = NULL;
86 	task->tk_timeout = 0;
87 }
88 
89 /*
90  * Run a timeout function.
91  * We use the callback in order to allow __rpc_wake_up_task()
92  * and friends to disable the timer synchronously on SMP systems
93  * without calling del_timer_sync(). The latter could cause a
94  * deadlock if called while we're holding spinlocks...
95  */
96 static void rpc_run_timer(struct rpc_task *task)
97 {
98 	void (*callback)(struct rpc_task *);
99 
100 	callback = task->tk_timeout_fn;
101 	task->tk_timeout_fn = NULL;
102 	if (callback && RPC_IS_QUEUED(task)) {
103 		dprintk("RPC: %4d running timer\n", task->tk_pid);
104 		callback(task);
105 	}
106 	smp_mb__before_clear_bit();
107 	clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
108 	smp_mb__after_clear_bit();
109 }
110 
111 /*
112  * Set up a timer for the current task.
113  */
114 static inline void
115 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
116 {
117 	if (!task->tk_timeout)
118 		return;
119 
120 	dprintk("RPC: %4d setting alarm for %lu ms\n",
121 			task->tk_pid, task->tk_timeout * 1000 / HZ);
122 
123 	if (timer)
124 		task->tk_timeout_fn = timer;
125 	else
126 		task->tk_timeout_fn = __rpc_default_timer;
127 	set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
128 	mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
129 }
130 
131 /*
132  * Delete any timer for the current task. Because we use del_timer_sync(),
133  * this function should never be called while holding queue->lock.
134  */
135 static void
136 rpc_delete_timer(struct rpc_task *task)
137 {
138 	if (RPC_IS_QUEUED(task))
139 		return;
140 	if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
141 		del_singleshot_timer_sync(&task->tk_timer);
142 		dprintk("RPC: %4d deleting timer\n", task->tk_pid);
143 	}
144 }
145 
146 /*
147  * Add new request to a priority queue.
148  */
149 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
150 {
151 	struct list_head *q;
152 	struct rpc_task *t;
153 
154 	INIT_LIST_HEAD(&task->u.tk_wait.links);
155 	q = &queue->tasks[task->tk_priority];
156 	if (unlikely(task->tk_priority > queue->maxpriority))
157 		q = &queue->tasks[queue->maxpriority];
158 	list_for_each_entry(t, q, u.tk_wait.list) {
159 		if (t->tk_cookie == task->tk_cookie) {
160 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
161 			return;
162 		}
163 	}
164 	list_add_tail(&task->u.tk_wait.list, q);
165 }
166 
167 /*
168  * Add new request to wait queue.
169  *
170  * Swapper tasks always get inserted at the head of the queue.
171  * This should avoid many nasty memory deadlocks and hopefully
172  * improve overall performance.
173  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
174  */
175 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
176 {
177 	BUG_ON (RPC_IS_QUEUED(task));
178 
179 	if (RPC_IS_PRIORITY(queue))
180 		__rpc_add_wait_queue_priority(queue, task);
181 	else if (RPC_IS_SWAPPER(task))
182 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
183 	else
184 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
185 	task->u.tk_wait.rpc_waitq = queue;
186 	rpc_set_queued(task);
187 
188 	dprintk("RPC: %4d added to queue %p \"%s\"\n",
189 				task->tk_pid, queue, rpc_qname(queue));
190 }
191 
192 /*
193  * Remove request from a priority queue.
194  */
195 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196 {
197 	struct rpc_task *t;
198 
199 	if (!list_empty(&task->u.tk_wait.links)) {
200 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203 	}
204 	list_del(&task->u.tk_wait.list);
205 }
206 
207 /*
208  * Remove request from queue.
209  * Note: must be called with spin lock held.
210  */
211 static void __rpc_remove_wait_queue(struct rpc_task *task)
212 {
213 	struct rpc_wait_queue *queue;
214 	queue = task->u.tk_wait.rpc_waitq;
215 
216 	if (RPC_IS_PRIORITY(queue))
217 		__rpc_remove_wait_queue_priority(task);
218 	else
219 		list_del(&task->u.tk_wait.list);
220 	dprintk("RPC: %4d removed from queue %p \"%s\"\n",
221 				task->tk_pid, queue, rpc_qname(queue));
222 }
223 
224 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
225 {
226 	queue->priority = priority;
227 	queue->count = 1 << (priority * 2);
228 }
229 
230 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
231 {
232 	queue->cookie = cookie;
233 	queue->nr = RPC_BATCH_COUNT;
234 }
235 
236 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
237 {
238 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
239 	rpc_set_waitqueue_cookie(queue, 0);
240 }
241 
242 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
243 {
244 	int i;
245 
246 	spin_lock_init(&queue->lock);
247 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
248 		INIT_LIST_HEAD(&queue->tasks[i]);
249 	queue->maxpriority = maxprio;
250 	rpc_reset_waitqueue_priority(queue);
251 #ifdef RPC_DEBUG
252 	queue->name = qname;
253 #endif
254 }
255 
256 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
257 {
258 	__rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
259 }
260 
261 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
262 {
263 	__rpc_init_priority_wait_queue(queue, qname, 0);
264 }
265 EXPORT_SYMBOL(rpc_init_wait_queue);
266 
267 /*
268  * Make an RPC task runnable.
269  *
270  * Note: If the task is ASYNC, this must be called with
271  * the spinlock held to protect the wait queue operation.
272  */
273 static void rpc_make_runnable(struct rpc_task *task)
274 {
275 	int do_ret;
276 
277 	BUG_ON(task->tk_timeout_fn);
278 	do_ret = rpc_test_and_set_running(task);
279 	rpc_clear_queued(task);
280 	if (do_ret)
281 		return;
282 	if (RPC_IS_ASYNC(task)) {
283 		int status;
284 
285 		INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
286 		status = queue_work(task->tk_workqueue, &task->u.tk_work);
287 		if (status < 0) {
288 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
289 			task->tk_status = status;
290 			return;
291 		}
292 	} else
293 		wake_up(&task->u.tk_wait.waitq);
294 }
295 
296 /*
297  * Place a newly initialized task on the workqueue.
298  */
299 static inline void
300 rpc_schedule_run(struct rpc_task *task)
301 {
302 	/* Don't run a child twice! */
303 	if (RPC_IS_ACTIVATED(task))
304 		return;
305 	task->tk_active = 1;
306 	rpc_make_runnable(task);
307 }
308 
309 /*
310  * Prepare for sleeping on a wait queue.
311  * By always appending tasks to the list we ensure FIFO behavior.
312  * NB: An RPC task will only receive interrupt-driven events as long
313  * as it's on a wait queue.
314  */
315 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
316 			rpc_action action, rpc_action timer)
317 {
318 	dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
319 				rpc_qname(q), jiffies);
320 
321 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
322 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
323 		return;
324 	}
325 
326 	/* Mark the task as being activated if so needed */
327 	if (!RPC_IS_ACTIVATED(task))
328 		task->tk_active = 1;
329 
330 	__rpc_add_wait_queue(q, task);
331 
332 	BUG_ON(task->tk_callback != NULL);
333 	task->tk_callback = action;
334 	__rpc_add_timer(task, timer);
335 }
336 
337 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
338 				rpc_action action, rpc_action timer)
339 {
340 	/*
341 	 * Protect the queue operations.
342 	 */
343 	spin_lock_bh(&q->lock);
344 	__rpc_sleep_on(q, task, action, timer);
345 	spin_unlock_bh(&q->lock);
346 }
347 
348 /**
349  * __rpc_do_wake_up_task - wake up a single rpc_task
350  * @task: task to be woken up
351  *
352  * Caller must hold queue->lock, and have cleared the task queued flag.
353  */
354 static void __rpc_do_wake_up_task(struct rpc_task *task)
355 {
356 	dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
357 
358 #ifdef RPC_DEBUG
359 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
360 #endif
361 	/* Has the task been executed yet? If not, we cannot wake it up! */
362 	if (!RPC_IS_ACTIVATED(task)) {
363 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
364 		return;
365 	}
366 
367 	__rpc_disable_timer(task);
368 	__rpc_remove_wait_queue(task);
369 
370 	rpc_make_runnable(task);
371 
372 	dprintk("RPC:      __rpc_wake_up_task done\n");
373 }
374 
375 /*
376  * Wake up the specified task
377  */
378 static void __rpc_wake_up_task(struct rpc_task *task)
379 {
380 	if (rpc_start_wakeup(task)) {
381 		if (RPC_IS_QUEUED(task))
382 			__rpc_do_wake_up_task(task);
383 		rpc_finish_wakeup(task);
384 	}
385 }
386 
387 /*
388  * Default timeout handler if none specified by user
389  */
390 static void
391 __rpc_default_timer(struct rpc_task *task)
392 {
393 	dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
394 	task->tk_status = -ETIMEDOUT;
395 	rpc_wake_up_task(task);
396 }
397 
398 /*
399  * Wake up the specified task
400  */
401 void rpc_wake_up_task(struct rpc_task *task)
402 {
403 	if (rpc_start_wakeup(task)) {
404 		if (RPC_IS_QUEUED(task)) {
405 			struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
406 
407 			spin_lock_bh(&queue->lock);
408 			__rpc_do_wake_up_task(task);
409 			spin_unlock_bh(&queue->lock);
410 		}
411 		rpc_finish_wakeup(task);
412 	}
413 }
414 
415 /*
416  * Wake up the next task on a priority queue.
417  */
418 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
419 {
420 	struct list_head *q;
421 	struct rpc_task *task;
422 
423 	/*
424 	 * Service a batch of tasks from a single cookie.
425 	 */
426 	q = &queue->tasks[queue->priority];
427 	if (!list_empty(q)) {
428 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
429 		if (queue->cookie == task->tk_cookie) {
430 			if (--queue->nr)
431 				goto out;
432 			list_move_tail(&task->u.tk_wait.list, q);
433 		}
434 		/*
435 		 * Check if we need to switch queues.
436 		 */
437 		if (--queue->count)
438 			goto new_cookie;
439 	}
440 
441 	/*
442 	 * Service the next queue.
443 	 */
444 	do {
445 		if (q == &queue->tasks[0])
446 			q = &queue->tasks[queue->maxpriority];
447 		else
448 			q = q - 1;
449 		if (!list_empty(q)) {
450 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
451 			goto new_queue;
452 		}
453 	} while (q != &queue->tasks[queue->priority]);
454 
455 	rpc_reset_waitqueue_priority(queue);
456 	return NULL;
457 
458 new_queue:
459 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
460 new_cookie:
461 	rpc_set_waitqueue_cookie(queue, task->tk_cookie);
462 out:
463 	__rpc_wake_up_task(task);
464 	return task;
465 }
466 
467 /*
468  * Wake up the next task on the wait queue.
469  */
470 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
471 {
472 	struct rpc_task	*task = NULL;
473 
474 	dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
475 	spin_lock_bh(&queue->lock);
476 	if (RPC_IS_PRIORITY(queue))
477 		task = __rpc_wake_up_next_priority(queue);
478 	else {
479 		task_for_first(task, &queue->tasks[0])
480 			__rpc_wake_up_task(task);
481 	}
482 	spin_unlock_bh(&queue->lock);
483 
484 	return task;
485 }
486 
487 /**
488  * rpc_wake_up - wake up all rpc_tasks
489  * @queue: rpc_wait_queue on which the tasks are sleeping
490  *
491  * Grabs queue->lock
492  */
493 void rpc_wake_up(struct rpc_wait_queue *queue)
494 {
495 	struct rpc_task *task;
496 
497 	struct list_head *head;
498 	spin_lock_bh(&queue->lock);
499 	head = &queue->tasks[queue->maxpriority];
500 	for (;;) {
501 		while (!list_empty(head)) {
502 			task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
503 			__rpc_wake_up_task(task);
504 		}
505 		if (head == &queue->tasks[0])
506 			break;
507 		head--;
508 	}
509 	spin_unlock_bh(&queue->lock);
510 }
511 
512 /**
513  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
514  * @queue: rpc_wait_queue on which the tasks are sleeping
515  * @status: status value to set
516  *
517  * Grabs queue->lock
518  */
519 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
520 {
521 	struct list_head *head;
522 	struct rpc_task *task;
523 
524 	spin_lock_bh(&queue->lock);
525 	head = &queue->tasks[queue->maxpriority];
526 	for (;;) {
527 		while (!list_empty(head)) {
528 			task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
529 			task->tk_status = status;
530 			__rpc_wake_up_task(task);
531 		}
532 		if (head == &queue->tasks[0])
533 			break;
534 		head--;
535 	}
536 	spin_unlock_bh(&queue->lock);
537 }
538 
539 /*
540  * Run a task at a later time
541  */
542 static void	__rpc_atrun(struct rpc_task *);
543 void
544 rpc_delay(struct rpc_task *task, unsigned long delay)
545 {
546 	task->tk_timeout = delay;
547 	rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
548 }
549 
550 static void
551 __rpc_atrun(struct rpc_task *task)
552 {
553 	task->tk_status = 0;
554 	rpc_wake_up_task(task);
555 }
556 
557 /*
558  * This is the RPC `scheduler' (or rather, the finite state machine).
559  */
560 static int __rpc_execute(struct rpc_task *task)
561 {
562 	int		status = 0;
563 
564 	dprintk("RPC: %4d rpc_execute flgs %x\n",
565 				task->tk_pid, task->tk_flags);
566 
567 	BUG_ON(RPC_IS_QUEUED(task));
568 
569  restarted:
570 	while (1) {
571 		/*
572 		 * Garbage collection of pending timers...
573 		 */
574 		rpc_delete_timer(task);
575 
576 		/*
577 		 * Execute any pending callback.
578 		 */
579 		if (RPC_DO_CALLBACK(task)) {
580 			/* Define a callback save pointer */
581 			void (*save_callback)(struct rpc_task *);
582 
583 			/*
584 			 * If a callback exists, save it, reset it,
585 			 * call it.
586 			 * The save is needed to stop from resetting
587 			 * another callback set within the callback handler
588 			 * - Dave
589 			 */
590 			save_callback=task->tk_callback;
591 			task->tk_callback=NULL;
592 			lock_kernel();
593 			save_callback(task);
594 			unlock_kernel();
595 		}
596 
597 		/*
598 		 * Perform the next FSM step.
599 		 * tk_action may be NULL when the task has been killed
600 		 * by someone else.
601 		 */
602 		if (!RPC_IS_QUEUED(task)) {
603 			if (!task->tk_action)
604 				break;
605 			lock_kernel();
606 			task->tk_action(task);
607 			unlock_kernel();
608 		}
609 
610 		/*
611 		 * Lockless check for whether task is sleeping or not.
612 		 */
613 		if (!RPC_IS_QUEUED(task))
614 			continue;
615 		rpc_clear_running(task);
616 		if (RPC_IS_ASYNC(task)) {
617 			/* Careful! we may have raced... */
618 			if (RPC_IS_QUEUED(task))
619 				return 0;
620 			if (rpc_test_and_set_running(task))
621 				return 0;
622 			continue;
623 		}
624 
625 		/* sync task: sleep here */
626 		dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
627 		if (RPC_TASK_UNINTERRUPTIBLE(task)) {
628 			__wait_event(task->u.tk_wait.waitq, !RPC_IS_QUEUED(task));
629 		} else {
630 			__wait_event_interruptible(task->u.tk_wait.waitq, !RPC_IS_QUEUED(task), status);
631 			/*
632 			 * When a sync task receives a signal, it exits with
633 			 * -ERESTARTSYS. In order to catch any callbacks that
634 			 * clean up after sleeping on some queue, we don't
635 			 * break the loop here, but go around once more.
636 			 */
637 			if (status == -ERESTARTSYS) {
638 				dprintk("RPC: %4d got signal\n", task->tk_pid);
639 				task->tk_flags |= RPC_TASK_KILLED;
640 				rpc_exit(task, -ERESTARTSYS);
641 				rpc_wake_up_task(task);
642 			}
643 		}
644 		rpc_set_running(task);
645 		dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
646 	}
647 
648 	if (task->tk_exit) {
649 		lock_kernel();
650 		task->tk_exit(task);
651 		unlock_kernel();
652 		/* If tk_action is non-null, the user wants us to restart */
653 		if (task->tk_action) {
654 			if (!RPC_ASSASSINATED(task)) {
655 				/* Release RPC slot and buffer memory */
656 				if (task->tk_rqstp)
657 					xprt_release(task);
658 				rpc_free(task);
659 				goto restarted;
660 			}
661 			printk(KERN_ERR "RPC: dead task tries to walk away.\n");
662 		}
663 	}
664 
665 	dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status);
666 	status = task->tk_status;
667 
668 	/* Release all resources associated with the task */
669 	rpc_release_task(task);
670 	return status;
671 }
672 
673 /*
674  * User-visible entry point to the scheduler.
675  *
676  * This may be called recursively if e.g. an async NFS task updates
677  * the attributes and finds that dirty pages must be flushed.
678  * NOTE: Upon exit of this function the task is guaranteed to be
679  *	 released. In particular note that tk_release() will have
680  *	 been called, so your task memory may have been freed.
681  */
682 int
683 rpc_execute(struct rpc_task *task)
684 {
685 	BUG_ON(task->tk_active);
686 
687 	task->tk_active = 1;
688 	rpc_set_running(task);
689 	return __rpc_execute(task);
690 }
691 
692 static void rpc_async_schedule(void *arg)
693 {
694 	__rpc_execute((struct rpc_task *)arg);
695 }
696 
697 /*
698  * Allocate memory for RPC purposes.
699  *
700  * We try to ensure that some NFS reads and writes can always proceed
701  * by using a mempool when allocating 'small' buffers.
702  * In order to avoid memory starvation triggering more writebacks of
703  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
704  */
705 void *
706 rpc_malloc(struct rpc_task *task, size_t size)
707 {
708 	int	gfp;
709 
710 	if (task->tk_flags & RPC_TASK_SWAPPER)
711 		gfp = GFP_ATOMIC;
712 	else
713 		gfp = GFP_NOFS;
714 
715 	if (size > RPC_BUFFER_MAXSIZE) {
716 		task->tk_buffer =  kmalloc(size, gfp);
717 		if (task->tk_buffer)
718 			task->tk_bufsize = size;
719 	} else {
720 		task->tk_buffer =  mempool_alloc(rpc_buffer_mempool, gfp);
721 		if (task->tk_buffer)
722 			task->tk_bufsize = RPC_BUFFER_MAXSIZE;
723 	}
724 	return task->tk_buffer;
725 }
726 
727 static void
728 rpc_free(struct rpc_task *task)
729 {
730 	if (task->tk_buffer) {
731 		if (task->tk_bufsize == RPC_BUFFER_MAXSIZE)
732 			mempool_free(task->tk_buffer, rpc_buffer_mempool);
733 		else
734 			kfree(task->tk_buffer);
735 		task->tk_buffer = NULL;
736 		task->tk_bufsize = 0;
737 	}
738 }
739 
740 /*
741  * Creation and deletion of RPC task structures
742  */
743 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, rpc_action callback, int flags)
744 {
745 	memset(task, 0, sizeof(*task));
746 	init_timer(&task->tk_timer);
747 	task->tk_timer.data     = (unsigned long) task;
748 	task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
749 	task->tk_client = clnt;
750 	task->tk_flags  = flags;
751 	task->tk_exit   = callback;
752 
753 	/* Initialize retry counters */
754 	task->tk_garb_retry = 2;
755 	task->tk_cred_retry = 2;
756 
757 	task->tk_priority = RPC_PRIORITY_NORMAL;
758 	task->tk_cookie = (unsigned long)current;
759 
760 	/* Initialize workqueue for async tasks */
761 	task->tk_workqueue = rpciod_workqueue;
762 	if (!RPC_IS_ASYNC(task))
763 		init_waitqueue_head(&task->u.tk_wait.waitq);
764 
765 	if (clnt) {
766 		atomic_inc(&clnt->cl_users);
767 		if (clnt->cl_softrtry)
768 			task->tk_flags |= RPC_TASK_SOFT;
769 		if (!clnt->cl_intr)
770 			task->tk_flags |= RPC_TASK_NOINTR;
771 	}
772 
773 #ifdef RPC_DEBUG
774 	task->tk_magic = RPC_TASK_MAGIC_ID;
775 	task->tk_pid = rpc_task_id++;
776 #endif
777 	/* Add to global list of all tasks */
778 	spin_lock(&rpc_sched_lock);
779 	list_add_tail(&task->tk_task, &all_tasks);
780 	spin_unlock(&rpc_sched_lock);
781 
782 	dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
783 				current->pid);
784 }
785 
786 static struct rpc_task *
787 rpc_alloc_task(void)
788 {
789 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
790 }
791 
792 static void
793 rpc_default_free_task(struct rpc_task *task)
794 {
795 	dprintk("RPC: %4d freeing task\n", task->tk_pid);
796 	mempool_free(task, rpc_task_mempool);
797 }
798 
799 /*
800  * Create a new task for the specified client.  We have to
801  * clean up after an allocation failure, as the client may
802  * have specified "oneshot".
803  */
804 struct rpc_task *
805 rpc_new_task(struct rpc_clnt *clnt, rpc_action callback, int flags)
806 {
807 	struct rpc_task	*task;
808 
809 	task = rpc_alloc_task();
810 	if (!task)
811 		goto cleanup;
812 
813 	rpc_init_task(task, clnt, callback, flags);
814 
815 	/* Replace tk_release */
816 	task->tk_release = rpc_default_free_task;
817 
818 	dprintk("RPC: %4d allocated task\n", task->tk_pid);
819 	task->tk_flags |= RPC_TASK_DYNAMIC;
820 out:
821 	return task;
822 
823 cleanup:
824 	/* Check whether to release the client */
825 	if (clnt) {
826 		printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
827 			atomic_read(&clnt->cl_users), clnt->cl_oneshot);
828 		atomic_inc(&clnt->cl_users); /* pretend we were used ... */
829 		rpc_release_client(clnt);
830 	}
831 	goto out;
832 }
833 
834 void rpc_release_task(struct rpc_task *task)
835 {
836 	dprintk("RPC: %4d release task\n", task->tk_pid);
837 
838 #ifdef RPC_DEBUG
839 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
840 #endif
841 
842 	/* Remove from global task list */
843 	spin_lock(&rpc_sched_lock);
844 	list_del(&task->tk_task);
845 	spin_unlock(&rpc_sched_lock);
846 
847 	BUG_ON (RPC_IS_QUEUED(task));
848 	task->tk_active = 0;
849 
850 	/* Synchronously delete any running timer */
851 	rpc_delete_timer(task);
852 
853 	/* Release resources */
854 	if (task->tk_rqstp)
855 		xprt_release(task);
856 	if (task->tk_msg.rpc_cred)
857 		rpcauth_unbindcred(task);
858 	rpc_free(task);
859 	if (task->tk_client) {
860 		rpc_release_client(task->tk_client);
861 		task->tk_client = NULL;
862 	}
863 
864 #ifdef RPC_DEBUG
865 	task->tk_magic = 0;
866 #endif
867 	if (task->tk_release)
868 		task->tk_release(task);
869 }
870 
871 /**
872  * rpc_find_parent - find the parent of a child task.
873  * @child: child task
874  *
875  * Checks that the parent task is still sleeping on the
876  * queue 'childq'. If so returns a pointer to the parent.
877  * Upon failure returns NULL.
878  *
879  * Caller must hold childq.lock
880  */
881 static inline struct rpc_task *rpc_find_parent(struct rpc_task *child)
882 {
883 	struct rpc_task	*task, *parent;
884 	struct list_head *le;
885 
886 	parent = (struct rpc_task *) child->tk_calldata;
887 	task_for_each(task, le, &childq.tasks[0])
888 		if (task == parent)
889 			return parent;
890 
891 	return NULL;
892 }
893 
894 static void rpc_child_exit(struct rpc_task *child)
895 {
896 	struct rpc_task	*parent;
897 
898 	spin_lock_bh(&childq.lock);
899 	if ((parent = rpc_find_parent(child)) != NULL) {
900 		parent->tk_status = child->tk_status;
901 		__rpc_wake_up_task(parent);
902 	}
903 	spin_unlock_bh(&childq.lock);
904 }
905 
906 /*
907  * Note: rpc_new_task releases the client after a failure.
908  */
909 struct rpc_task *
910 rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent)
911 {
912 	struct rpc_task	*task;
913 
914 	task = rpc_new_task(clnt, NULL, RPC_TASK_ASYNC | RPC_TASK_CHILD);
915 	if (!task)
916 		goto fail;
917 	task->tk_exit = rpc_child_exit;
918 	task->tk_calldata = parent;
919 	return task;
920 
921 fail:
922 	parent->tk_status = -ENOMEM;
923 	return NULL;
924 }
925 
926 void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func)
927 {
928 	spin_lock_bh(&childq.lock);
929 	/* N.B. Is it possible for the child to have already finished? */
930 	__rpc_sleep_on(&childq, task, func, NULL);
931 	rpc_schedule_run(child);
932 	spin_unlock_bh(&childq.lock);
933 }
934 
935 /*
936  * Kill all tasks for the given client.
937  * XXX: kill their descendants as well?
938  */
939 void rpc_killall_tasks(struct rpc_clnt *clnt)
940 {
941 	struct rpc_task	*rovr;
942 	struct list_head *le;
943 
944 	dprintk("RPC:      killing all tasks for client %p\n", clnt);
945 
946 	/*
947 	 * Spin lock all_tasks to prevent changes...
948 	 */
949 	spin_lock(&rpc_sched_lock);
950 	alltask_for_each(rovr, le, &all_tasks) {
951 		if (! RPC_IS_ACTIVATED(rovr))
952 			continue;
953 		if (!clnt || rovr->tk_client == clnt) {
954 			rovr->tk_flags |= RPC_TASK_KILLED;
955 			rpc_exit(rovr, -EIO);
956 			rpc_wake_up_task(rovr);
957 		}
958 	}
959 	spin_unlock(&rpc_sched_lock);
960 }
961 
962 static DECLARE_MUTEX_LOCKED(rpciod_running);
963 
964 static void rpciod_killall(void)
965 {
966 	unsigned long flags;
967 
968 	while (!list_empty(&all_tasks)) {
969 		clear_thread_flag(TIF_SIGPENDING);
970 		rpc_killall_tasks(NULL);
971 		flush_workqueue(rpciod_workqueue);
972 		if (!list_empty(&all_tasks)) {
973 			dprintk("rpciod_killall: waiting for tasks to exit\n");
974 			yield();
975 		}
976 	}
977 
978 	spin_lock_irqsave(&current->sighand->siglock, flags);
979 	recalc_sigpending();
980 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
981 }
982 
983 /*
984  * Start up the rpciod process if it's not already running.
985  */
986 int
987 rpciod_up(void)
988 {
989 	struct workqueue_struct *wq;
990 	int error = 0;
991 
992 	down(&rpciod_sema);
993 	dprintk("rpciod_up: users %d\n", rpciod_users);
994 	rpciod_users++;
995 	if (rpciod_workqueue)
996 		goto out;
997 	/*
998 	 * If there's no pid, we should be the first user.
999 	 */
1000 	if (rpciod_users > 1)
1001 		printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1002 	/*
1003 	 * Create the rpciod thread and wait for it to start.
1004 	 */
1005 	error = -ENOMEM;
1006 	wq = create_workqueue("rpciod");
1007 	if (wq == NULL) {
1008 		printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1009 		rpciod_users--;
1010 		goto out;
1011 	}
1012 	rpciod_workqueue = wq;
1013 	error = 0;
1014 out:
1015 	up(&rpciod_sema);
1016 	return error;
1017 }
1018 
1019 void
1020 rpciod_down(void)
1021 {
1022 	down(&rpciod_sema);
1023 	dprintk("rpciod_down sema %d\n", rpciod_users);
1024 	if (rpciod_users) {
1025 		if (--rpciod_users)
1026 			goto out;
1027 	} else
1028 		printk(KERN_WARNING "rpciod_down: no users??\n");
1029 
1030 	if (!rpciod_workqueue) {
1031 		dprintk("rpciod_down: Nothing to do!\n");
1032 		goto out;
1033 	}
1034 	rpciod_killall();
1035 
1036 	destroy_workqueue(rpciod_workqueue);
1037 	rpciod_workqueue = NULL;
1038  out:
1039 	up(&rpciod_sema);
1040 }
1041 
1042 #ifdef RPC_DEBUG
1043 void rpc_show_tasks(void)
1044 {
1045 	struct list_head *le;
1046 	struct rpc_task *t;
1047 
1048 	spin_lock(&rpc_sched_lock);
1049 	if (list_empty(&all_tasks)) {
1050 		spin_unlock(&rpc_sched_lock);
1051 		return;
1052 	}
1053 	printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1054 		"-rpcwait -action- --exit--\n");
1055 	alltask_for_each(t, le, &all_tasks) {
1056 		const char *rpc_waitq = "none";
1057 
1058 		if (RPC_IS_QUEUED(t))
1059 			rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1060 
1061 		printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1062 			t->tk_pid,
1063 			(t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1064 			t->tk_flags, t->tk_status,
1065 			t->tk_client,
1066 			(t->tk_client ? t->tk_client->cl_prog : 0),
1067 			t->tk_rqstp, t->tk_timeout,
1068 			rpc_waitq,
1069 			t->tk_action, t->tk_exit);
1070 	}
1071 	spin_unlock(&rpc_sched_lock);
1072 }
1073 #endif
1074 
1075 void
1076 rpc_destroy_mempool(void)
1077 {
1078 	if (rpc_buffer_mempool)
1079 		mempool_destroy(rpc_buffer_mempool);
1080 	if (rpc_task_mempool)
1081 		mempool_destroy(rpc_task_mempool);
1082 	if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp))
1083 		printk(KERN_INFO "rpc_task: not all structures were freed\n");
1084 	if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp))
1085 		printk(KERN_INFO "rpc_buffers: not all structures were freed\n");
1086 }
1087 
1088 int
1089 rpc_init_mempool(void)
1090 {
1091 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1092 					     sizeof(struct rpc_task),
1093 					     0, SLAB_HWCACHE_ALIGN,
1094 					     NULL, NULL);
1095 	if (!rpc_task_slabp)
1096 		goto err_nomem;
1097 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1098 					     RPC_BUFFER_MAXSIZE,
1099 					     0, SLAB_HWCACHE_ALIGN,
1100 					     NULL, NULL);
1101 	if (!rpc_buffer_slabp)
1102 		goto err_nomem;
1103 	rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE,
1104 					    mempool_alloc_slab,
1105 					    mempool_free_slab,
1106 					    rpc_task_slabp);
1107 	if (!rpc_task_mempool)
1108 		goto err_nomem;
1109 	rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE,
1110 					    mempool_alloc_slab,
1111 					    mempool_free_slab,
1112 					    rpc_buffer_slabp);
1113 	if (!rpc_buffer_mempool)
1114 		goto err_nomem;
1115 	return 0;
1116 err_nomem:
1117 	rpc_destroy_mempool();
1118 	return -ENOMEM;
1119 }
1120