xref: /openbmc/linux/net/sunrpc/sched.c (revision 1a1d92c10dd24bbdc28b3d6e2d03ec199dd3a65b)
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY		RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID	0xf00baa
28 static int			rpc_task_id;
29 #endif
30 
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE	(2048)
35 #define RPC_BUFFER_POOLSIZE	(8)
36 #define RPC_TASK_POOLSIZE	(8)
37 static kmem_cache_t	*rpc_task_slabp __read_mostly;
38 static kmem_cache_t	*rpc_buffer_slabp __read_mostly;
39 static mempool_t	*rpc_task_mempool __read_mostly;
40 static mempool_t	*rpc_buffer_mempool __read_mostly;
41 
42 static void			__rpc_default_timer(struct rpc_task *task);
43 static void			rpciod_killall(void);
44 static void			rpc_async_schedule(void *);
45 
46 /*
47  * RPC tasks sit here while waiting for conditions to improve.
48  */
49 static RPC_WAITQ(delay_queue, "delayq");
50 
51 /*
52  * All RPC tasks are linked into this list
53  */
54 static LIST_HEAD(all_tasks);
55 
56 /*
57  * rpciod-related stuff
58  */
59 static DEFINE_MUTEX(rpciod_mutex);
60 static unsigned int		rpciod_users;
61 struct workqueue_struct *rpciod_workqueue;
62 
63 /*
64  * Spinlock for other critical sections of code.
65  */
66 static DEFINE_SPINLOCK(rpc_sched_lock);
67 
68 /*
69  * Disable the timer for a given RPC task. Should be called with
70  * queue->lock and bh_disabled in order to avoid races within
71  * rpc_run_timer().
72  */
73 static inline void
74 __rpc_disable_timer(struct rpc_task *task)
75 {
76 	dprintk("RPC: %4d disabling timer\n", task->tk_pid);
77 	task->tk_timeout_fn = NULL;
78 	task->tk_timeout = 0;
79 }
80 
81 /*
82  * Run a timeout function.
83  * We use the callback in order to allow __rpc_wake_up_task()
84  * and friends to disable the timer synchronously on SMP systems
85  * without calling del_timer_sync(). The latter could cause a
86  * deadlock if called while we're holding spinlocks...
87  */
88 static void rpc_run_timer(struct rpc_task *task)
89 {
90 	void (*callback)(struct rpc_task *);
91 
92 	callback = task->tk_timeout_fn;
93 	task->tk_timeout_fn = NULL;
94 	if (callback && RPC_IS_QUEUED(task)) {
95 		dprintk("RPC: %4d running timer\n", task->tk_pid);
96 		callback(task);
97 	}
98 	smp_mb__before_clear_bit();
99 	clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
100 	smp_mb__after_clear_bit();
101 }
102 
103 /*
104  * Set up a timer for the current task.
105  */
106 static inline void
107 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
108 {
109 	if (!task->tk_timeout)
110 		return;
111 
112 	dprintk("RPC: %4d setting alarm for %lu ms\n",
113 			task->tk_pid, task->tk_timeout * 1000 / HZ);
114 
115 	if (timer)
116 		task->tk_timeout_fn = timer;
117 	else
118 		task->tk_timeout_fn = __rpc_default_timer;
119 	set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
120 	mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
121 }
122 
123 /*
124  * Delete any timer for the current task. Because we use del_timer_sync(),
125  * this function should never be called while holding queue->lock.
126  */
127 static void
128 rpc_delete_timer(struct rpc_task *task)
129 {
130 	if (RPC_IS_QUEUED(task))
131 		return;
132 	if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
133 		del_singleshot_timer_sync(&task->tk_timer);
134 		dprintk("RPC: %4d deleting timer\n", task->tk_pid);
135 	}
136 }
137 
138 /*
139  * Add new request to a priority queue.
140  */
141 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
142 {
143 	struct list_head *q;
144 	struct rpc_task *t;
145 
146 	INIT_LIST_HEAD(&task->u.tk_wait.links);
147 	q = &queue->tasks[task->tk_priority];
148 	if (unlikely(task->tk_priority > queue->maxpriority))
149 		q = &queue->tasks[queue->maxpriority];
150 	list_for_each_entry(t, q, u.tk_wait.list) {
151 		if (t->tk_cookie == task->tk_cookie) {
152 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153 			return;
154 		}
155 	}
156 	list_add_tail(&task->u.tk_wait.list, q);
157 }
158 
159 /*
160  * Add new request to wait queue.
161  *
162  * Swapper tasks always get inserted at the head of the queue.
163  * This should avoid many nasty memory deadlocks and hopefully
164  * improve overall performance.
165  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166  */
167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
168 {
169 	BUG_ON (RPC_IS_QUEUED(task));
170 
171 	if (RPC_IS_PRIORITY(queue))
172 		__rpc_add_wait_queue_priority(queue, task);
173 	else if (RPC_IS_SWAPPER(task))
174 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
175 	else
176 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
177 	task->u.tk_wait.rpc_waitq = queue;
178 	queue->qlen++;
179 	rpc_set_queued(task);
180 
181 	dprintk("RPC: %4d added to queue %p \"%s\"\n",
182 				task->tk_pid, queue, rpc_qname(queue));
183 }
184 
185 /*
186  * Remove request from a priority queue.
187  */
188 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
189 {
190 	struct rpc_task *t;
191 
192 	if (!list_empty(&task->u.tk_wait.links)) {
193 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
194 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
195 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
196 	}
197 	list_del(&task->u.tk_wait.list);
198 }
199 
200 /*
201  * Remove request from queue.
202  * Note: must be called with spin lock held.
203  */
204 static void __rpc_remove_wait_queue(struct rpc_task *task)
205 {
206 	struct rpc_wait_queue *queue;
207 	queue = task->u.tk_wait.rpc_waitq;
208 
209 	if (RPC_IS_PRIORITY(queue))
210 		__rpc_remove_wait_queue_priority(task);
211 	else
212 		list_del(&task->u.tk_wait.list);
213 	queue->qlen--;
214 	dprintk("RPC: %4d removed from queue %p \"%s\"\n",
215 				task->tk_pid, queue, rpc_qname(queue));
216 }
217 
218 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
219 {
220 	queue->priority = priority;
221 	queue->count = 1 << (priority * 2);
222 }
223 
224 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
225 {
226 	queue->cookie = cookie;
227 	queue->nr = RPC_BATCH_COUNT;
228 }
229 
230 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
231 {
232 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
233 	rpc_set_waitqueue_cookie(queue, 0);
234 }
235 
236 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
237 {
238 	int i;
239 
240 	spin_lock_init(&queue->lock);
241 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
242 		INIT_LIST_HEAD(&queue->tasks[i]);
243 	queue->maxpriority = maxprio;
244 	rpc_reset_waitqueue_priority(queue);
245 #ifdef RPC_DEBUG
246 	queue->name = qname;
247 #endif
248 }
249 
250 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
251 {
252 	__rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
253 }
254 
255 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
256 {
257 	__rpc_init_priority_wait_queue(queue, qname, 0);
258 }
259 EXPORT_SYMBOL(rpc_init_wait_queue);
260 
261 static int rpc_wait_bit_interruptible(void *word)
262 {
263 	if (signal_pending(current))
264 		return -ERESTARTSYS;
265 	schedule();
266 	return 0;
267 }
268 
269 /*
270  * Mark an RPC call as having completed by clearing the 'active' bit
271  */
272 static inline void rpc_mark_complete_task(struct rpc_task *task)
273 {
274 	rpc_clear_active(task);
275 	wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
276 }
277 
278 /*
279  * Allow callers to wait for completion of an RPC call
280  */
281 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
282 {
283 	if (action == NULL)
284 		action = rpc_wait_bit_interruptible;
285 	return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
286 			action, TASK_INTERRUPTIBLE);
287 }
288 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
289 
290 /*
291  * Make an RPC task runnable.
292  *
293  * Note: If the task is ASYNC, this must be called with
294  * the spinlock held to protect the wait queue operation.
295  */
296 static void rpc_make_runnable(struct rpc_task *task)
297 {
298 	int do_ret;
299 
300 	BUG_ON(task->tk_timeout_fn);
301 	do_ret = rpc_test_and_set_running(task);
302 	rpc_clear_queued(task);
303 	if (do_ret)
304 		return;
305 	if (RPC_IS_ASYNC(task)) {
306 		int status;
307 
308 		INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
309 		status = queue_work(task->tk_workqueue, &task->u.tk_work);
310 		if (status < 0) {
311 			printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
312 			task->tk_status = status;
313 			return;
314 		}
315 	} else
316 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
317 }
318 
319 /*
320  * Prepare for sleeping on a wait queue.
321  * By always appending tasks to the list we ensure FIFO behavior.
322  * NB: An RPC task will only receive interrupt-driven events as long
323  * as it's on a wait queue.
324  */
325 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
326 			rpc_action action, rpc_action timer)
327 {
328 	dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
329 				rpc_qname(q), jiffies);
330 
331 	if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
332 		printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
333 		return;
334 	}
335 
336 	/* Mark the task as being activated if so needed */
337 	rpc_set_active(task);
338 
339 	__rpc_add_wait_queue(q, task);
340 
341 	BUG_ON(task->tk_callback != NULL);
342 	task->tk_callback = action;
343 	__rpc_add_timer(task, timer);
344 }
345 
346 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
347 				rpc_action action, rpc_action timer)
348 {
349 	/*
350 	 * Protect the queue operations.
351 	 */
352 	spin_lock_bh(&q->lock);
353 	__rpc_sleep_on(q, task, action, timer);
354 	spin_unlock_bh(&q->lock);
355 }
356 
357 /**
358  * __rpc_do_wake_up_task - wake up a single rpc_task
359  * @task: task to be woken up
360  *
361  * Caller must hold queue->lock, and have cleared the task queued flag.
362  */
363 static void __rpc_do_wake_up_task(struct rpc_task *task)
364 {
365 	dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
366 
367 #ifdef RPC_DEBUG
368 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
369 #endif
370 	/* Has the task been executed yet? If not, we cannot wake it up! */
371 	if (!RPC_IS_ACTIVATED(task)) {
372 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
373 		return;
374 	}
375 
376 	__rpc_disable_timer(task);
377 	__rpc_remove_wait_queue(task);
378 
379 	rpc_make_runnable(task);
380 
381 	dprintk("RPC:      __rpc_wake_up_task done\n");
382 }
383 
384 /*
385  * Wake up the specified task
386  */
387 static void __rpc_wake_up_task(struct rpc_task *task)
388 {
389 	if (rpc_start_wakeup(task)) {
390 		if (RPC_IS_QUEUED(task))
391 			__rpc_do_wake_up_task(task);
392 		rpc_finish_wakeup(task);
393 	}
394 }
395 
396 /*
397  * Default timeout handler if none specified by user
398  */
399 static void
400 __rpc_default_timer(struct rpc_task *task)
401 {
402 	dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
403 	task->tk_status = -ETIMEDOUT;
404 	rpc_wake_up_task(task);
405 }
406 
407 /*
408  * Wake up the specified task
409  */
410 void rpc_wake_up_task(struct rpc_task *task)
411 {
412 	if (rpc_start_wakeup(task)) {
413 		if (RPC_IS_QUEUED(task)) {
414 			struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
415 
416 			spin_lock_bh(&queue->lock);
417 			__rpc_do_wake_up_task(task);
418 			spin_unlock_bh(&queue->lock);
419 		}
420 		rpc_finish_wakeup(task);
421 	}
422 }
423 
424 /*
425  * Wake up the next task on a priority queue.
426  */
427 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
428 {
429 	struct list_head *q;
430 	struct rpc_task *task;
431 
432 	/*
433 	 * Service a batch of tasks from a single cookie.
434 	 */
435 	q = &queue->tasks[queue->priority];
436 	if (!list_empty(q)) {
437 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
438 		if (queue->cookie == task->tk_cookie) {
439 			if (--queue->nr)
440 				goto out;
441 			list_move_tail(&task->u.tk_wait.list, q);
442 		}
443 		/*
444 		 * Check if we need to switch queues.
445 		 */
446 		if (--queue->count)
447 			goto new_cookie;
448 	}
449 
450 	/*
451 	 * Service the next queue.
452 	 */
453 	do {
454 		if (q == &queue->tasks[0])
455 			q = &queue->tasks[queue->maxpriority];
456 		else
457 			q = q - 1;
458 		if (!list_empty(q)) {
459 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
460 			goto new_queue;
461 		}
462 	} while (q != &queue->tasks[queue->priority]);
463 
464 	rpc_reset_waitqueue_priority(queue);
465 	return NULL;
466 
467 new_queue:
468 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
469 new_cookie:
470 	rpc_set_waitqueue_cookie(queue, task->tk_cookie);
471 out:
472 	__rpc_wake_up_task(task);
473 	return task;
474 }
475 
476 /*
477  * Wake up the next task on the wait queue.
478  */
479 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
480 {
481 	struct rpc_task	*task = NULL;
482 
483 	dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
484 	spin_lock_bh(&queue->lock);
485 	if (RPC_IS_PRIORITY(queue))
486 		task = __rpc_wake_up_next_priority(queue);
487 	else {
488 		task_for_first(task, &queue->tasks[0])
489 			__rpc_wake_up_task(task);
490 	}
491 	spin_unlock_bh(&queue->lock);
492 
493 	return task;
494 }
495 
496 /**
497  * rpc_wake_up - wake up all rpc_tasks
498  * @queue: rpc_wait_queue on which the tasks are sleeping
499  *
500  * Grabs queue->lock
501  */
502 void rpc_wake_up(struct rpc_wait_queue *queue)
503 {
504 	struct rpc_task *task, *next;
505 	struct list_head *head;
506 
507 	spin_lock_bh(&queue->lock);
508 	head = &queue->tasks[queue->maxpriority];
509 	for (;;) {
510 		list_for_each_entry_safe(task, next, head, u.tk_wait.list)
511 			__rpc_wake_up_task(task);
512 		if (head == &queue->tasks[0])
513 			break;
514 		head--;
515 	}
516 	spin_unlock_bh(&queue->lock);
517 }
518 
519 /**
520  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
521  * @queue: rpc_wait_queue on which the tasks are sleeping
522  * @status: status value to set
523  *
524  * Grabs queue->lock
525  */
526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
527 {
528 	struct rpc_task *task, *next;
529 	struct list_head *head;
530 
531 	spin_lock_bh(&queue->lock);
532 	head = &queue->tasks[queue->maxpriority];
533 	for (;;) {
534 		list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
535 			task->tk_status = status;
536 			__rpc_wake_up_task(task);
537 		}
538 		if (head == &queue->tasks[0])
539 			break;
540 		head--;
541 	}
542 	spin_unlock_bh(&queue->lock);
543 }
544 
545 static void __rpc_atrun(struct rpc_task *task)
546 {
547 	rpc_wake_up_task(task);
548 }
549 
550 /*
551  * Run a task at a later time
552  */
553 void rpc_delay(struct rpc_task *task, unsigned long delay)
554 {
555 	task->tk_timeout = delay;
556 	rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
557 }
558 
559 /*
560  * Helper to call task->tk_ops->rpc_call_prepare
561  */
562 static void rpc_prepare_task(struct rpc_task *task)
563 {
564 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
565 }
566 
567 /*
568  * Helper that calls task->tk_ops->rpc_call_done if it exists
569  */
570 void rpc_exit_task(struct rpc_task *task)
571 {
572 	task->tk_action = NULL;
573 	if (task->tk_ops->rpc_call_done != NULL) {
574 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
575 		if (task->tk_action != NULL) {
576 			WARN_ON(RPC_ASSASSINATED(task));
577 			/* Always release the RPC slot and buffer memory */
578 			xprt_release(task);
579 		}
580 	}
581 }
582 EXPORT_SYMBOL(rpc_exit_task);
583 
584 /*
585  * This is the RPC `scheduler' (or rather, the finite state machine).
586  */
587 static int __rpc_execute(struct rpc_task *task)
588 {
589 	int		status = 0;
590 
591 	dprintk("RPC: %4d rpc_execute flgs %x\n",
592 				task->tk_pid, task->tk_flags);
593 
594 	BUG_ON(RPC_IS_QUEUED(task));
595 
596 	for (;;) {
597 		/*
598 		 * Garbage collection of pending timers...
599 		 */
600 		rpc_delete_timer(task);
601 
602 		/*
603 		 * Execute any pending callback.
604 		 */
605 		if (RPC_DO_CALLBACK(task)) {
606 			/* Define a callback save pointer */
607 			void (*save_callback)(struct rpc_task *);
608 
609 			/*
610 			 * If a callback exists, save it, reset it,
611 			 * call it.
612 			 * The save is needed to stop from resetting
613 			 * another callback set within the callback handler
614 			 * - Dave
615 			 */
616 			save_callback=task->tk_callback;
617 			task->tk_callback=NULL;
618 			lock_kernel();
619 			save_callback(task);
620 			unlock_kernel();
621 		}
622 
623 		/*
624 		 * Perform the next FSM step.
625 		 * tk_action may be NULL when the task has been killed
626 		 * by someone else.
627 		 */
628 		if (!RPC_IS_QUEUED(task)) {
629 			if (task->tk_action == NULL)
630 				break;
631 			lock_kernel();
632 			task->tk_action(task);
633 			unlock_kernel();
634 		}
635 
636 		/*
637 		 * Lockless check for whether task is sleeping or not.
638 		 */
639 		if (!RPC_IS_QUEUED(task))
640 			continue;
641 		rpc_clear_running(task);
642 		if (RPC_IS_ASYNC(task)) {
643 			/* Careful! we may have raced... */
644 			if (RPC_IS_QUEUED(task))
645 				return 0;
646 			if (rpc_test_and_set_running(task))
647 				return 0;
648 			continue;
649 		}
650 
651 		/* sync task: sleep here */
652 		dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
653 		/* Note: Caller should be using rpc_clnt_sigmask() */
654 		status = out_of_line_wait_on_bit(&task->tk_runstate,
655 				RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
656 				TASK_INTERRUPTIBLE);
657 		if (status == -ERESTARTSYS) {
658 			/*
659 			 * When a sync task receives a signal, it exits with
660 			 * -ERESTARTSYS. In order to catch any callbacks that
661 			 * clean up after sleeping on some queue, we don't
662 			 * break the loop here, but go around once more.
663 			 */
664 			dprintk("RPC: %4d got signal\n", task->tk_pid);
665 			task->tk_flags |= RPC_TASK_KILLED;
666 			rpc_exit(task, -ERESTARTSYS);
667 			rpc_wake_up_task(task);
668 		}
669 		rpc_set_running(task);
670 		dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
671 	}
672 
673 	dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
674 	/* Wake up anyone who is waiting for task completion */
675 	rpc_mark_complete_task(task);
676 	/* Release all resources associated with the task */
677 	rpc_release_task(task);
678 	return status;
679 }
680 
681 /*
682  * User-visible entry point to the scheduler.
683  *
684  * This may be called recursively if e.g. an async NFS task updates
685  * the attributes and finds that dirty pages must be flushed.
686  * NOTE: Upon exit of this function the task is guaranteed to be
687  *	 released. In particular note that tk_release() will have
688  *	 been called, so your task memory may have been freed.
689  */
690 int
691 rpc_execute(struct rpc_task *task)
692 {
693 	rpc_set_active(task);
694 	rpc_set_running(task);
695 	return __rpc_execute(task);
696 }
697 
698 static void rpc_async_schedule(void *arg)
699 {
700 	__rpc_execute((struct rpc_task *)arg);
701 }
702 
703 /**
704  * rpc_malloc - allocate an RPC buffer
705  * @task: RPC task that will use this buffer
706  * @size: requested byte size
707  *
708  * We try to ensure that some NFS reads and writes can always proceed
709  * by using a mempool when allocating 'small' buffers.
710  * In order to avoid memory starvation triggering more writebacks of
711  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
712  */
713 void * rpc_malloc(struct rpc_task *task, size_t size)
714 {
715 	struct rpc_rqst *req = task->tk_rqstp;
716 	gfp_t	gfp;
717 
718 	if (task->tk_flags & RPC_TASK_SWAPPER)
719 		gfp = GFP_ATOMIC;
720 	else
721 		gfp = GFP_NOFS;
722 
723 	if (size > RPC_BUFFER_MAXSIZE) {
724 		req->rq_buffer = kmalloc(size, gfp);
725 		if (req->rq_buffer)
726 			req->rq_bufsize = size;
727 	} else {
728 		req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
729 		if (req->rq_buffer)
730 			req->rq_bufsize = RPC_BUFFER_MAXSIZE;
731 	}
732 	return req->rq_buffer;
733 }
734 
735 /**
736  * rpc_free - free buffer allocated via rpc_malloc
737  * @task: RPC task with a buffer to be freed
738  *
739  */
740 void rpc_free(struct rpc_task *task)
741 {
742 	struct rpc_rqst *req = task->tk_rqstp;
743 
744 	if (req->rq_buffer) {
745 		if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
746 			mempool_free(req->rq_buffer, rpc_buffer_mempool);
747 		else
748 			kfree(req->rq_buffer);
749 		req->rq_buffer = NULL;
750 		req->rq_bufsize = 0;
751 	}
752 }
753 
754 /*
755  * Creation and deletion of RPC task structures
756  */
757 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
758 {
759 	memset(task, 0, sizeof(*task));
760 	init_timer(&task->tk_timer);
761 	task->tk_timer.data     = (unsigned long) task;
762 	task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
763 	atomic_set(&task->tk_count, 1);
764 	task->tk_client = clnt;
765 	task->tk_flags  = flags;
766 	task->tk_ops = tk_ops;
767 	if (tk_ops->rpc_call_prepare != NULL)
768 		task->tk_action = rpc_prepare_task;
769 	task->tk_calldata = calldata;
770 
771 	/* Initialize retry counters */
772 	task->tk_garb_retry = 2;
773 	task->tk_cred_retry = 2;
774 
775 	task->tk_priority = RPC_PRIORITY_NORMAL;
776 	task->tk_cookie = (unsigned long)current;
777 
778 	/* Initialize workqueue for async tasks */
779 	task->tk_workqueue = rpciod_workqueue;
780 
781 	if (clnt) {
782 		atomic_inc(&clnt->cl_users);
783 		if (clnt->cl_softrtry)
784 			task->tk_flags |= RPC_TASK_SOFT;
785 		if (!clnt->cl_intr)
786 			task->tk_flags |= RPC_TASK_NOINTR;
787 	}
788 
789 #ifdef RPC_DEBUG
790 	task->tk_magic = RPC_TASK_MAGIC_ID;
791 	task->tk_pid = rpc_task_id++;
792 #endif
793 	/* Add to global list of all tasks */
794 	spin_lock(&rpc_sched_lock);
795 	list_add_tail(&task->tk_task, &all_tasks);
796 	spin_unlock(&rpc_sched_lock);
797 
798 	BUG_ON(task->tk_ops == NULL);
799 
800 	/* starting timestamp */
801 	task->tk_start = jiffies;
802 
803 	dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
804 				current->pid);
805 }
806 
807 static struct rpc_task *
808 rpc_alloc_task(void)
809 {
810 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
811 }
812 
813 static void rpc_free_task(struct rpc_task *task)
814 {
815 	dprintk("RPC: %4d freeing task\n", task->tk_pid);
816 	mempool_free(task, rpc_task_mempool);
817 }
818 
819 /*
820  * Create a new task for the specified client.  We have to
821  * clean up after an allocation failure, as the client may
822  * have specified "oneshot".
823  */
824 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
825 {
826 	struct rpc_task	*task;
827 
828 	task = rpc_alloc_task();
829 	if (!task)
830 		goto cleanup;
831 
832 	rpc_init_task(task, clnt, flags, tk_ops, calldata);
833 
834 	dprintk("RPC: %4d allocated task\n", task->tk_pid);
835 	task->tk_flags |= RPC_TASK_DYNAMIC;
836 out:
837 	return task;
838 
839 cleanup:
840 	/* Check whether to release the client */
841 	if (clnt) {
842 		printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
843 			atomic_read(&clnt->cl_users), clnt->cl_oneshot);
844 		atomic_inc(&clnt->cl_users); /* pretend we were used ... */
845 		rpc_release_client(clnt);
846 	}
847 	goto out;
848 }
849 
850 void rpc_release_task(struct rpc_task *task)
851 {
852 	const struct rpc_call_ops *tk_ops = task->tk_ops;
853 	void *calldata = task->tk_calldata;
854 
855 #ifdef RPC_DEBUG
856 	BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
857 #endif
858 	if (!atomic_dec_and_test(&task->tk_count))
859 		return;
860 	dprintk("RPC: %4d release task\n", task->tk_pid);
861 
862 	/* Remove from global task list */
863 	spin_lock(&rpc_sched_lock);
864 	list_del(&task->tk_task);
865 	spin_unlock(&rpc_sched_lock);
866 
867 	BUG_ON (RPC_IS_QUEUED(task));
868 
869 	/* Synchronously delete any running timer */
870 	rpc_delete_timer(task);
871 
872 	/* Release resources */
873 	if (task->tk_rqstp)
874 		xprt_release(task);
875 	if (task->tk_msg.rpc_cred)
876 		rpcauth_unbindcred(task);
877 	if (task->tk_client) {
878 		rpc_release_client(task->tk_client);
879 		task->tk_client = NULL;
880 	}
881 
882 #ifdef RPC_DEBUG
883 	task->tk_magic = 0;
884 #endif
885 	if (task->tk_flags & RPC_TASK_DYNAMIC)
886 		rpc_free_task(task);
887 	if (tk_ops->rpc_release)
888 		tk_ops->rpc_release(calldata);
889 }
890 
891 /**
892  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
893  * @clnt: pointer to RPC client
894  * @flags: RPC flags
895  * @ops: RPC call ops
896  * @data: user call data
897  */
898 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
899 					const struct rpc_call_ops *ops,
900 					void *data)
901 {
902 	struct rpc_task *task;
903 	task = rpc_new_task(clnt, flags, ops, data);
904 	if (task == NULL) {
905 		if (ops->rpc_release != NULL)
906 			ops->rpc_release(data);
907 		return ERR_PTR(-ENOMEM);
908 	}
909 	atomic_inc(&task->tk_count);
910 	rpc_execute(task);
911 	return task;
912 }
913 EXPORT_SYMBOL(rpc_run_task);
914 
915 /*
916  * Kill all tasks for the given client.
917  * XXX: kill their descendants as well?
918  */
919 void rpc_killall_tasks(struct rpc_clnt *clnt)
920 {
921 	struct rpc_task	*rovr;
922 	struct list_head *le;
923 
924 	dprintk("RPC:      killing all tasks for client %p\n", clnt);
925 
926 	/*
927 	 * Spin lock all_tasks to prevent changes...
928 	 */
929 	spin_lock(&rpc_sched_lock);
930 	alltask_for_each(rovr, le, &all_tasks) {
931 		if (! RPC_IS_ACTIVATED(rovr))
932 			continue;
933 		if (!clnt || rovr->tk_client == clnt) {
934 			rovr->tk_flags |= RPC_TASK_KILLED;
935 			rpc_exit(rovr, -EIO);
936 			rpc_wake_up_task(rovr);
937 		}
938 	}
939 	spin_unlock(&rpc_sched_lock);
940 }
941 
942 static DECLARE_MUTEX_LOCKED(rpciod_running);
943 
944 static void rpciod_killall(void)
945 {
946 	unsigned long flags;
947 
948 	while (!list_empty(&all_tasks)) {
949 		clear_thread_flag(TIF_SIGPENDING);
950 		rpc_killall_tasks(NULL);
951 		flush_workqueue(rpciod_workqueue);
952 		if (!list_empty(&all_tasks)) {
953 			dprintk("rpciod_killall: waiting for tasks to exit\n");
954 			yield();
955 		}
956 	}
957 
958 	spin_lock_irqsave(&current->sighand->siglock, flags);
959 	recalc_sigpending();
960 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
961 }
962 
963 /*
964  * Start up the rpciod process if it's not already running.
965  */
966 int
967 rpciod_up(void)
968 {
969 	struct workqueue_struct *wq;
970 	int error = 0;
971 
972 	mutex_lock(&rpciod_mutex);
973 	dprintk("rpciod_up: users %d\n", rpciod_users);
974 	rpciod_users++;
975 	if (rpciod_workqueue)
976 		goto out;
977 	/*
978 	 * If there's no pid, we should be the first user.
979 	 */
980 	if (rpciod_users > 1)
981 		printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
982 	/*
983 	 * Create the rpciod thread and wait for it to start.
984 	 */
985 	error = -ENOMEM;
986 	wq = create_workqueue("rpciod");
987 	if (wq == NULL) {
988 		printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
989 		rpciod_users--;
990 		goto out;
991 	}
992 	rpciod_workqueue = wq;
993 	error = 0;
994 out:
995 	mutex_unlock(&rpciod_mutex);
996 	return error;
997 }
998 
999 void
1000 rpciod_down(void)
1001 {
1002 	mutex_lock(&rpciod_mutex);
1003 	dprintk("rpciod_down sema %d\n", rpciod_users);
1004 	if (rpciod_users) {
1005 		if (--rpciod_users)
1006 			goto out;
1007 	} else
1008 		printk(KERN_WARNING "rpciod_down: no users??\n");
1009 
1010 	if (!rpciod_workqueue) {
1011 		dprintk("rpciod_down: Nothing to do!\n");
1012 		goto out;
1013 	}
1014 	rpciod_killall();
1015 
1016 	destroy_workqueue(rpciod_workqueue);
1017 	rpciod_workqueue = NULL;
1018  out:
1019 	mutex_unlock(&rpciod_mutex);
1020 }
1021 
1022 #ifdef RPC_DEBUG
1023 void rpc_show_tasks(void)
1024 {
1025 	struct list_head *le;
1026 	struct rpc_task *t;
1027 
1028 	spin_lock(&rpc_sched_lock);
1029 	if (list_empty(&all_tasks)) {
1030 		spin_unlock(&rpc_sched_lock);
1031 		return;
1032 	}
1033 	printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1034 		"-rpcwait -action- ---ops--\n");
1035 	alltask_for_each(t, le, &all_tasks) {
1036 		const char *rpc_waitq = "none";
1037 
1038 		if (RPC_IS_QUEUED(t))
1039 			rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1040 
1041 		printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1042 			t->tk_pid,
1043 			(t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1044 			t->tk_flags, t->tk_status,
1045 			t->tk_client,
1046 			(t->tk_client ? t->tk_client->cl_prog : 0),
1047 			t->tk_rqstp, t->tk_timeout,
1048 			rpc_waitq,
1049 			t->tk_action, t->tk_ops);
1050 	}
1051 	spin_unlock(&rpc_sched_lock);
1052 }
1053 #endif
1054 
1055 void
1056 rpc_destroy_mempool(void)
1057 {
1058 	if (rpc_buffer_mempool)
1059 		mempool_destroy(rpc_buffer_mempool);
1060 	if (rpc_task_mempool)
1061 		mempool_destroy(rpc_task_mempool);
1062 	if (rpc_task_slabp)
1063 		kmem_cache_destroy(rpc_task_slabp);
1064 	if (rpc_buffer_slabp)
1065 		kmem_cache_destroy(rpc_buffer_slabp);
1066 }
1067 
1068 int
1069 rpc_init_mempool(void)
1070 {
1071 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1072 					     sizeof(struct rpc_task),
1073 					     0, SLAB_HWCACHE_ALIGN,
1074 					     NULL, NULL);
1075 	if (!rpc_task_slabp)
1076 		goto err_nomem;
1077 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1078 					     RPC_BUFFER_MAXSIZE,
1079 					     0, SLAB_HWCACHE_ALIGN,
1080 					     NULL, NULL);
1081 	if (!rpc_buffer_slabp)
1082 		goto err_nomem;
1083 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1084 						    rpc_task_slabp);
1085 	if (!rpc_task_mempool)
1086 		goto err_nomem;
1087 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1088 						      rpc_buffer_slabp);
1089 	if (!rpc_buffer_mempool)
1090 		goto err_nomem;
1091 	return 0;
1092 err_nomem:
1093 	rpc_destroy_mempool();
1094 	return -ENOMEM;
1095 }
1096