1 /* 2 * linux/net/sunrpc/sched.c 3 * 4 * Scheduling for synchronous and asynchronous RPC requests. 5 * 6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> 7 * 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 */ 11 12 #include <linux/module.h> 13 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/slab.h> 17 #include <linux/mempool.h> 18 #include <linux/smp.h> 19 #include <linux/smp_lock.h> 20 #include <linux/spinlock.h> 21 #include <linux/mutex.h> 22 23 #include <linux/sunrpc/clnt.h> 24 25 #ifdef RPC_DEBUG 26 #define RPCDBG_FACILITY RPCDBG_SCHED 27 #define RPC_TASK_MAGIC_ID 0xf00baa 28 static int rpc_task_id; 29 #endif 30 31 /* 32 * RPC slabs and memory pools 33 */ 34 #define RPC_BUFFER_MAXSIZE (2048) 35 #define RPC_BUFFER_POOLSIZE (8) 36 #define RPC_TASK_POOLSIZE (8) 37 static kmem_cache_t *rpc_task_slabp __read_mostly; 38 static kmem_cache_t *rpc_buffer_slabp __read_mostly; 39 static mempool_t *rpc_task_mempool __read_mostly; 40 static mempool_t *rpc_buffer_mempool __read_mostly; 41 42 static void __rpc_default_timer(struct rpc_task *task); 43 static void rpciod_killall(void); 44 static void rpc_async_schedule(void *); 45 46 /* 47 * RPC tasks sit here while waiting for conditions to improve. 48 */ 49 static RPC_WAITQ(delay_queue, "delayq"); 50 51 /* 52 * All RPC tasks are linked into this list 53 */ 54 static LIST_HEAD(all_tasks); 55 56 /* 57 * rpciod-related stuff 58 */ 59 static DEFINE_MUTEX(rpciod_mutex); 60 static unsigned int rpciod_users; 61 struct workqueue_struct *rpciod_workqueue; 62 63 /* 64 * Spinlock for other critical sections of code. 65 */ 66 static DEFINE_SPINLOCK(rpc_sched_lock); 67 68 /* 69 * Disable the timer for a given RPC task. Should be called with 70 * queue->lock and bh_disabled in order to avoid races within 71 * rpc_run_timer(). 72 */ 73 static inline void 74 __rpc_disable_timer(struct rpc_task *task) 75 { 76 dprintk("RPC: %4d disabling timer\n", task->tk_pid); 77 task->tk_timeout_fn = NULL; 78 task->tk_timeout = 0; 79 } 80 81 /* 82 * Run a timeout function. 83 * We use the callback in order to allow __rpc_wake_up_task() 84 * and friends to disable the timer synchronously on SMP systems 85 * without calling del_timer_sync(). The latter could cause a 86 * deadlock if called while we're holding spinlocks... 87 */ 88 static void rpc_run_timer(struct rpc_task *task) 89 { 90 void (*callback)(struct rpc_task *); 91 92 callback = task->tk_timeout_fn; 93 task->tk_timeout_fn = NULL; 94 if (callback && RPC_IS_QUEUED(task)) { 95 dprintk("RPC: %4d running timer\n", task->tk_pid); 96 callback(task); 97 } 98 smp_mb__before_clear_bit(); 99 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 100 smp_mb__after_clear_bit(); 101 } 102 103 /* 104 * Set up a timer for the current task. 105 */ 106 static inline void 107 __rpc_add_timer(struct rpc_task *task, rpc_action timer) 108 { 109 if (!task->tk_timeout) 110 return; 111 112 dprintk("RPC: %4d setting alarm for %lu ms\n", 113 task->tk_pid, task->tk_timeout * 1000 / HZ); 114 115 if (timer) 116 task->tk_timeout_fn = timer; 117 else 118 task->tk_timeout_fn = __rpc_default_timer; 119 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate); 120 mod_timer(&task->tk_timer, jiffies + task->tk_timeout); 121 } 122 123 /* 124 * Delete any timer for the current task. Because we use del_timer_sync(), 125 * this function should never be called while holding queue->lock. 126 */ 127 static void 128 rpc_delete_timer(struct rpc_task *task) 129 { 130 if (RPC_IS_QUEUED(task)) 131 return; 132 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) { 133 del_singleshot_timer_sync(&task->tk_timer); 134 dprintk("RPC: %4d deleting timer\n", task->tk_pid); 135 } 136 } 137 138 /* 139 * Add new request to a priority queue. 140 */ 141 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task) 142 { 143 struct list_head *q; 144 struct rpc_task *t; 145 146 INIT_LIST_HEAD(&task->u.tk_wait.links); 147 q = &queue->tasks[task->tk_priority]; 148 if (unlikely(task->tk_priority > queue->maxpriority)) 149 q = &queue->tasks[queue->maxpriority]; 150 list_for_each_entry(t, q, u.tk_wait.list) { 151 if (t->tk_cookie == task->tk_cookie) { 152 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); 153 return; 154 } 155 } 156 list_add_tail(&task->u.tk_wait.list, q); 157 } 158 159 /* 160 * Add new request to wait queue. 161 * 162 * Swapper tasks always get inserted at the head of the queue. 163 * This should avoid many nasty memory deadlocks and hopefully 164 * improve overall performance. 165 * Everyone else gets appended to the queue to ensure proper FIFO behavior. 166 */ 167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) 168 { 169 BUG_ON (RPC_IS_QUEUED(task)); 170 171 if (RPC_IS_PRIORITY(queue)) 172 __rpc_add_wait_queue_priority(queue, task); 173 else if (RPC_IS_SWAPPER(task)) 174 list_add(&task->u.tk_wait.list, &queue->tasks[0]); 175 else 176 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); 177 task->u.tk_wait.rpc_waitq = queue; 178 queue->qlen++; 179 rpc_set_queued(task); 180 181 dprintk("RPC: %4d added to queue %p \"%s\"\n", 182 task->tk_pid, queue, rpc_qname(queue)); 183 } 184 185 /* 186 * Remove request from a priority queue. 187 */ 188 static void __rpc_remove_wait_queue_priority(struct rpc_task *task) 189 { 190 struct rpc_task *t; 191 192 if (!list_empty(&task->u.tk_wait.links)) { 193 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); 194 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); 195 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); 196 } 197 list_del(&task->u.tk_wait.list); 198 } 199 200 /* 201 * Remove request from queue. 202 * Note: must be called with spin lock held. 203 */ 204 static void __rpc_remove_wait_queue(struct rpc_task *task) 205 { 206 struct rpc_wait_queue *queue; 207 queue = task->u.tk_wait.rpc_waitq; 208 209 if (RPC_IS_PRIORITY(queue)) 210 __rpc_remove_wait_queue_priority(task); 211 else 212 list_del(&task->u.tk_wait.list); 213 queue->qlen--; 214 dprintk("RPC: %4d removed from queue %p \"%s\"\n", 215 task->tk_pid, queue, rpc_qname(queue)); 216 } 217 218 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) 219 { 220 queue->priority = priority; 221 queue->count = 1 << (priority * 2); 222 } 223 224 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie) 225 { 226 queue->cookie = cookie; 227 queue->nr = RPC_BATCH_COUNT; 228 } 229 230 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) 231 { 232 rpc_set_waitqueue_priority(queue, queue->maxpriority); 233 rpc_set_waitqueue_cookie(queue, 0); 234 } 235 236 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio) 237 { 238 int i; 239 240 spin_lock_init(&queue->lock); 241 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) 242 INIT_LIST_HEAD(&queue->tasks[i]); 243 queue->maxpriority = maxprio; 244 rpc_reset_waitqueue_priority(queue); 245 #ifdef RPC_DEBUG 246 queue->name = qname; 247 #endif 248 } 249 250 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) 251 { 252 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH); 253 } 254 255 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) 256 { 257 __rpc_init_priority_wait_queue(queue, qname, 0); 258 } 259 EXPORT_SYMBOL(rpc_init_wait_queue); 260 261 static int rpc_wait_bit_interruptible(void *word) 262 { 263 if (signal_pending(current)) 264 return -ERESTARTSYS; 265 schedule(); 266 return 0; 267 } 268 269 /* 270 * Mark an RPC call as having completed by clearing the 'active' bit 271 */ 272 static inline void rpc_mark_complete_task(struct rpc_task *task) 273 { 274 rpc_clear_active(task); 275 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE); 276 } 277 278 /* 279 * Allow callers to wait for completion of an RPC call 280 */ 281 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *)) 282 { 283 if (action == NULL) 284 action = rpc_wait_bit_interruptible; 285 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, 286 action, TASK_INTERRUPTIBLE); 287 } 288 EXPORT_SYMBOL(__rpc_wait_for_completion_task); 289 290 /* 291 * Make an RPC task runnable. 292 * 293 * Note: If the task is ASYNC, this must be called with 294 * the spinlock held to protect the wait queue operation. 295 */ 296 static void rpc_make_runnable(struct rpc_task *task) 297 { 298 int do_ret; 299 300 BUG_ON(task->tk_timeout_fn); 301 do_ret = rpc_test_and_set_running(task); 302 rpc_clear_queued(task); 303 if (do_ret) 304 return; 305 if (RPC_IS_ASYNC(task)) { 306 int status; 307 308 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task); 309 status = queue_work(task->tk_workqueue, &task->u.tk_work); 310 if (status < 0) { 311 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status); 312 task->tk_status = status; 313 return; 314 } 315 } else 316 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); 317 } 318 319 /* 320 * Prepare for sleeping on a wait queue. 321 * By always appending tasks to the list we ensure FIFO behavior. 322 * NB: An RPC task will only receive interrupt-driven events as long 323 * as it's on a wait queue. 324 */ 325 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 326 rpc_action action, rpc_action timer) 327 { 328 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid, 329 rpc_qname(q), jiffies); 330 331 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) { 332 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n"); 333 return; 334 } 335 336 /* Mark the task as being activated if so needed */ 337 rpc_set_active(task); 338 339 __rpc_add_wait_queue(q, task); 340 341 BUG_ON(task->tk_callback != NULL); 342 task->tk_callback = action; 343 __rpc_add_timer(task, timer); 344 } 345 346 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, 347 rpc_action action, rpc_action timer) 348 { 349 /* 350 * Protect the queue operations. 351 */ 352 spin_lock_bh(&q->lock); 353 __rpc_sleep_on(q, task, action, timer); 354 spin_unlock_bh(&q->lock); 355 } 356 357 /** 358 * __rpc_do_wake_up_task - wake up a single rpc_task 359 * @task: task to be woken up 360 * 361 * Caller must hold queue->lock, and have cleared the task queued flag. 362 */ 363 static void __rpc_do_wake_up_task(struct rpc_task *task) 364 { 365 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies); 366 367 #ifdef RPC_DEBUG 368 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 369 #endif 370 /* Has the task been executed yet? If not, we cannot wake it up! */ 371 if (!RPC_IS_ACTIVATED(task)) { 372 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); 373 return; 374 } 375 376 __rpc_disable_timer(task); 377 __rpc_remove_wait_queue(task); 378 379 rpc_make_runnable(task); 380 381 dprintk("RPC: __rpc_wake_up_task done\n"); 382 } 383 384 /* 385 * Wake up the specified task 386 */ 387 static void __rpc_wake_up_task(struct rpc_task *task) 388 { 389 if (rpc_start_wakeup(task)) { 390 if (RPC_IS_QUEUED(task)) 391 __rpc_do_wake_up_task(task); 392 rpc_finish_wakeup(task); 393 } 394 } 395 396 /* 397 * Default timeout handler if none specified by user 398 */ 399 static void 400 __rpc_default_timer(struct rpc_task *task) 401 { 402 dprintk("RPC: %d timeout (default timer)\n", task->tk_pid); 403 task->tk_status = -ETIMEDOUT; 404 rpc_wake_up_task(task); 405 } 406 407 /* 408 * Wake up the specified task 409 */ 410 void rpc_wake_up_task(struct rpc_task *task) 411 { 412 if (rpc_start_wakeup(task)) { 413 if (RPC_IS_QUEUED(task)) { 414 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq; 415 416 spin_lock_bh(&queue->lock); 417 __rpc_do_wake_up_task(task); 418 spin_unlock_bh(&queue->lock); 419 } 420 rpc_finish_wakeup(task); 421 } 422 } 423 424 /* 425 * Wake up the next task on a priority queue. 426 */ 427 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue) 428 { 429 struct list_head *q; 430 struct rpc_task *task; 431 432 /* 433 * Service a batch of tasks from a single cookie. 434 */ 435 q = &queue->tasks[queue->priority]; 436 if (!list_empty(q)) { 437 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 438 if (queue->cookie == task->tk_cookie) { 439 if (--queue->nr) 440 goto out; 441 list_move_tail(&task->u.tk_wait.list, q); 442 } 443 /* 444 * Check if we need to switch queues. 445 */ 446 if (--queue->count) 447 goto new_cookie; 448 } 449 450 /* 451 * Service the next queue. 452 */ 453 do { 454 if (q == &queue->tasks[0]) 455 q = &queue->tasks[queue->maxpriority]; 456 else 457 q = q - 1; 458 if (!list_empty(q)) { 459 task = list_entry(q->next, struct rpc_task, u.tk_wait.list); 460 goto new_queue; 461 } 462 } while (q != &queue->tasks[queue->priority]); 463 464 rpc_reset_waitqueue_priority(queue); 465 return NULL; 466 467 new_queue: 468 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); 469 new_cookie: 470 rpc_set_waitqueue_cookie(queue, task->tk_cookie); 471 out: 472 __rpc_wake_up_task(task); 473 return task; 474 } 475 476 /* 477 * Wake up the next task on the wait queue. 478 */ 479 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue) 480 { 481 struct rpc_task *task = NULL; 482 483 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue)); 484 spin_lock_bh(&queue->lock); 485 if (RPC_IS_PRIORITY(queue)) 486 task = __rpc_wake_up_next_priority(queue); 487 else { 488 task_for_first(task, &queue->tasks[0]) 489 __rpc_wake_up_task(task); 490 } 491 spin_unlock_bh(&queue->lock); 492 493 return task; 494 } 495 496 /** 497 * rpc_wake_up - wake up all rpc_tasks 498 * @queue: rpc_wait_queue on which the tasks are sleeping 499 * 500 * Grabs queue->lock 501 */ 502 void rpc_wake_up(struct rpc_wait_queue *queue) 503 { 504 struct rpc_task *task, *next; 505 struct list_head *head; 506 507 spin_lock_bh(&queue->lock); 508 head = &queue->tasks[queue->maxpriority]; 509 for (;;) { 510 list_for_each_entry_safe(task, next, head, u.tk_wait.list) 511 __rpc_wake_up_task(task); 512 if (head == &queue->tasks[0]) 513 break; 514 head--; 515 } 516 spin_unlock_bh(&queue->lock); 517 } 518 519 /** 520 * rpc_wake_up_status - wake up all rpc_tasks and set their status value. 521 * @queue: rpc_wait_queue on which the tasks are sleeping 522 * @status: status value to set 523 * 524 * Grabs queue->lock 525 */ 526 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) 527 { 528 struct rpc_task *task, *next; 529 struct list_head *head; 530 531 spin_lock_bh(&queue->lock); 532 head = &queue->tasks[queue->maxpriority]; 533 for (;;) { 534 list_for_each_entry_safe(task, next, head, u.tk_wait.list) { 535 task->tk_status = status; 536 __rpc_wake_up_task(task); 537 } 538 if (head == &queue->tasks[0]) 539 break; 540 head--; 541 } 542 spin_unlock_bh(&queue->lock); 543 } 544 545 static void __rpc_atrun(struct rpc_task *task) 546 { 547 rpc_wake_up_task(task); 548 } 549 550 /* 551 * Run a task at a later time 552 */ 553 void rpc_delay(struct rpc_task *task, unsigned long delay) 554 { 555 task->tk_timeout = delay; 556 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun); 557 } 558 559 /* 560 * Helper to call task->tk_ops->rpc_call_prepare 561 */ 562 static void rpc_prepare_task(struct rpc_task *task) 563 { 564 task->tk_ops->rpc_call_prepare(task, task->tk_calldata); 565 } 566 567 /* 568 * Helper that calls task->tk_ops->rpc_call_done if it exists 569 */ 570 void rpc_exit_task(struct rpc_task *task) 571 { 572 task->tk_action = NULL; 573 if (task->tk_ops->rpc_call_done != NULL) { 574 task->tk_ops->rpc_call_done(task, task->tk_calldata); 575 if (task->tk_action != NULL) { 576 WARN_ON(RPC_ASSASSINATED(task)); 577 /* Always release the RPC slot and buffer memory */ 578 xprt_release(task); 579 } 580 } 581 } 582 EXPORT_SYMBOL(rpc_exit_task); 583 584 /* 585 * This is the RPC `scheduler' (or rather, the finite state machine). 586 */ 587 static int __rpc_execute(struct rpc_task *task) 588 { 589 int status = 0; 590 591 dprintk("RPC: %4d rpc_execute flgs %x\n", 592 task->tk_pid, task->tk_flags); 593 594 BUG_ON(RPC_IS_QUEUED(task)); 595 596 for (;;) { 597 /* 598 * Garbage collection of pending timers... 599 */ 600 rpc_delete_timer(task); 601 602 /* 603 * Execute any pending callback. 604 */ 605 if (RPC_DO_CALLBACK(task)) { 606 /* Define a callback save pointer */ 607 void (*save_callback)(struct rpc_task *); 608 609 /* 610 * If a callback exists, save it, reset it, 611 * call it. 612 * The save is needed to stop from resetting 613 * another callback set within the callback handler 614 * - Dave 615 */ 616 save_callback=task->tk_callback; 617 task->tk_callback=NULL; 618 lock_kernel(); 619 save_callback(task); 620 unlock_kernel(); 621 } 622 623 /* 624 * Perform the next FSM step. 625 * tk_action may be NULL when the task has been killed 626 * by someone else. 627 */ 628 if (!RPC_IS_QUEUED(task)) { 629 if (task->tk_action == NULL) 630 break; 631 lock_kernel(); 632 task->tk_action(task); 633 unlock_kernel(); 634 } 635 636 /* 637 * Lockless check for whether task is sleeping or not. 638 */ 639 if (!RPC_IS_QUEUED(task)) 640 continue; 641 rpc_clear_running(task); 642 if (RPC_IS_ASYNC(task)) { 643 /* Careful! we may have raced... */ 644 if (RPC_IS_QUEUED(task)) 645 return 0; 646 if (rpc_test_and_set_running(task)) 647 return 0; 648 continue; 649 } 650 651 /* sync task: sleep here */ 652 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid); 653 /* Note: Caller should be using rpc_clnt_sigmask() */ 654 status = out_of_line_wait_on_bit(&task->tk_runstate, 655 RPC_TASK_QUEUED, rpc_wait_bit_interruptible, 656 TASK_INTERRUPTIBLE); 657 if (status == -ERESTARTSYS) { 658 /* 659 * When a sync task receives a signal, it exits with 660 * -ERESTARTSYS. In order to catch any callbacks that 661 * clean up after sleeping on some queue, we don't 662 * break the loop here, but go around once more. 663 */ 664 dprintk("RPC: %4d got signal\n", task->tk_pid); 665 task->tk_flags |= RPC_TASK_KILLED; 666 rpc_exit(task, -ERESTARTSYS); 667 rpc_wake_up_task(task); 668 } 669 rpc_set_running(task); 670 dprintk("RPC: %4d sync task resuming\n", task->tk_pid); 671 } 672 673 dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status); 674 /* Wake up anyone who is waiting for task completion */ 675 rpc_mark_complete_task(task); 676 /* Release all resources associated with the task */ 677 rpc_release_task(task); 678 return status; 679 } 680 681 /* 682 * User-visible entry point to the scheduler. 683 * 684 * This may be called recursively if e.g. an async NFS task updates 685 * the attributes and finds that dirty pages must be flushed. 686 * NOTE: Upon exit of this function the task is guaranteed to be 687 * released. In particular note that tk_release() will have 688 * been called, so your task memory may have been freed. 689 */ 690 int 691 rpc_execute(struct rpc_task *task) 692 { 693 rpc_set_active(task); 694 rpc_set_running(task); 695 return __rpc_execute(task); 696 } 697 698 static void rpc_async_schedule(void *arg) 699 { 700 __rpc_execute((struct rpc_task *)arg); 701 } 702 703 /** 704 * rpc_malloc - allocate an RPC buffer 705 * @task: RPC task that will use this buffer 706 * @size: requested byte size 707 * 708 * We try to ensure that some NFS reads and writes can always proceed 709 * by using a mempool when allocating 'small' buffers. 710 * In order to avoid memory starvation triggering more writebacks of 711 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL. 712 */ 713 void * rpc_malloc(struct rpc_task *task, size_t size) 714 { 715 struct rpc_rqst *req = task->tk_rqstp; 716 gfp_t gfp; 717 718 if (task->tk_flags & RPC_TASK_SWAPPER) 719 gfp = GFP_ATOMIC; 720 else 721 gfp = GFP_NOFS; 722 723 if (size > RPC_BUFFER_MAXSIZE) { 724 req->rq_buffer = kmalloc(size, gfp); 725 if (req->rq_buffer) 726 req->rq_bufsize = size; 727 } else { 728 req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp); 729 if (req->rq_buffer) 730 req->rq_bufsize = RPC_BUFFER_MAXSIZE; 731 } 732 return req->rq_buffer; 733 } 734 735 /** 736 * rpc_free - free buffer allocated via rpc_malloc 737 * @task: RPC task with a buffer to be freed 738 * 739 */ 740 void rpc_free(struct rpc_task *task) 741 { 742 struct rpc_rqst *req = task->tk_rqstp; 743 744 if (req->rq_buffer) { 745 if (req->rq_bufsize == RPC_BUFFER_MAXSIZE) 746 mempool_free(req->rq_buffer, rpc_buffer_mempool); 747 else 748 kfree(req->rq_buffer); 749 req->rq_buffer = NULL; 750 req->rq_bufsize = 0; 751 } 752 } 753 754 /* 755 * Creation and deletion of RPC task structures 756 */ 757 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 758 { 759 memset(task, 0, sizeof(*task)); 760 init_timer(&task->tk_timer); 761 task->tk_timer.data = (unsigned long) task; 762 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer; 763 atomic_set(&task->tk_count, 1); 764 task->tk_client = clnt; 765 task->tk_flags = flags; 766 task->tk_ops = tk_ops; 767 if (tk_ops->rpc_call_prepare != NULL) 768 task->tk_action = rpc_prepare_task; 769 task->tk_calldata = calldata; 770 771 /* Initialize retry counters */ 772 task->tk_garb_retry = 2; 773 task->tk_cred_retry = 2; 774 775 task->tk_priority = RPC_PRIORITY_NORMAL; 776 task->tk_cookie = (unsigned long)current; 777 778 /* Initialize workqueue for async tasks */ 779 task->tk_workqueue = rpciod_workqueue; 780 781 if (clnt) { 782 atomic_inc(&clnt->cl_users); 783 if (clnt->cl_softrtry) 784 task->tk_flags |= RPC_TASK_SOFT; 785 if (!clnt->cl_intr) 786 task->tk_flags |= RPC_TASK_NOINTR; 787 } 788 789 #ifdef RPC_DEBUG 790 task->tk_magic = RPC_TASK_MAGIC_ID; 791 task->tk_pid = rpc_task_id++; 792 #endif 793 /* Add to global list of all tasks */ 794 spin_lock(&rpc_sched_lock); 795 list_add_tail(&task->tk_task, &all_tasks); 796 spin_unlock(&rpc_sched_lock); 797 798 BUG_ON(task->tk_ops == NULL); 799 800 /* starting timestamp */ 801 task->tk_start = jiffies; 802 803 dprintk("RPC: %4d new task procpid %d\n", task->tk_pid, 804 current->pid); 805 } 806 807 static struct rpc_task * 808 rpc_alloc_task(void) 809 { 810 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS); 811 } 812 813 static void rpc_free_task(struct rpc_task *task) 814 { 815 dprintk("RPC: %4d freeing task\n", task->tk_pid); 816 mempool_free(task, rpc_task_mempool); 817 } 818 819 /* 820 * Create a new task for the specified client. We have to 821 * clean up after an allocation failure, as the client may 822 * have specified "oneshot". 823 */ 824 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata) 825 { 826 struct rpc_task *task; 827 828 task = rpc_alloc_task(); 829 if (!task) 830 goto cleanup; 831 832 rpc_init_task(task, clnt, flags, tk_ops, calldata); 833 834 dprintk("RPC: %4d allocated task\n", task->tk_pid); 835 task->tk_flags |= RPC_TASK_DYNAMIC; 836 out: 837 return task; 838 839 cleanup: 840 /* Check whether to release the client */ 841 if (clnt) { 842 printk("rpc_new_task: failed, users=%d, oneshot=%d\n", 843 atomic_read(&clnt->cl_users), clnt->cl_oneshot); 844 atomic_inc(&clnt->cl_users); /* pretend we were used ... */ 845 rpc_release_client(clnt); 846 } 847 goto out; 848 } 849 850 void rpc_release_task(struct rpc_task *task) 851 { 852 const struct rpc_call_ops *tk_ops = task->tk_ops; 853 void *calldata = task->tk_calldata; 854 855 #ifdef RPC_DEBUG 856 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID); 857 #endif 858 if (!atomic_dec_and_test(&task->tk_count)) 859 return; 860 dprintk("RPC: %4d release task\n", task->tk_pid); 861 862 /* Remove from global task list */ 863 spin_lock(&rpc_sched_lock); 864 list_del(&task->tk_task); 865 spin_unlock(&rpc_sched_lock); 866 867 BUG_ON (RPC_IS_QUEUED(task)); 868 869 /* Synchronously delete any running timer */ 870 rpc_delete_timer(task); 871 872 /* Release resources */ 873 if (task->tk_rqstp) 874 xprt_release(task); 875 if (task->tk_msg.rpc_cred) 876 rpcauth_unbindcred(task); 877 if (task->tk_client) { 878 rpc_release_client(task->tk_client); 879 task->tk_client = NULL; 880 } 881 882 #ifdef RPC_DEBUG 883 task->tk_magic = 0; 884 #endif 885 if (task->tk_flags & RPC_TASK_DYNAMIC) 886 rpc_free_task(task); 887 if (tk_ops->rpc_release) 888 tk_ops->rpc_release(calldata); 889 } 890 891 /** 892 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it 893 * @clnt: pointer to RPC client 894 * @flags: RPC flags 895 * @ops: RPC call ops 896 * @data: user call data 897 */ 898 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags, 899 const struct rpc_call_ops *ops, 900 void *data) 901 { 902 struct rpc_task *task; 903 task = rpc_new_task(clnt, flags, ops, data); 904 if (task == NULL) { 905 if (ops->rpc_release != NULL) 906 ops->rpc_release(data); 907 return ERR_PTR(-ENOMEM); 908 } 909 atomic_inc(&task->tk_count); 910 rpc_execute(task); 911 return task; 912 } 913 EXPORT_SYMBOL(rpc_run_task); 914 915 /* 916 * Kill all tasks for the given client. 917 * XXX: kill their descendants as well? 918 */ 919 void rpc_killall_tasks(struct rpc_clnt *clnt) 920 { 921 struct rpc_task *rovr; 922 struct list_head *le; 923 924 dprintk("RPC: killing all tasks for client %p\n", clnt); 925 926 /* 927 * Spin lock all_tasks to prevent changes... 928 */ 929 spin_lock(&rpc_sched_lock); 930 alltask_for_each(rovr, le, &all_tasks) { 931 if (! RPC_IS_ACTIVATED(rovr)) 932 continue; 933 if (!clnt || rovr->tk_client == clnt) { 934 rovr->tk_flags |= RPC_TASK_KILLED; 935 rpc_exit(rovr, -EIO); 936 rpc_wake_up_task(rovr); 937 } 938 } 939 spin_unlock(&rpc_sched_lock); 940 } 941 942 static DECLARE_MUTEX_LOCKED(rpciod_running); 943 944 static void rpciod_killall(void) 945 { 946 unsigned long flags; 947 948 while (!list_empty(&all_tasks)) { 949 clear_thread_flag(TIF_SIGPENDING); 950 rpc_killall_tasks(NULL); 951 flush_workqueue(rpciod_workqueue); 952 if (!list_empty(&all_tasks)) { 953 dprintk("rpciod_killall: waiting for tasks to exit\n"); 954 yield(); 955 } 956 } 957 958 spin_lock_irqsave(¤t->sighand->siglock, flags); 959 recalc_sigpending(); 960 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 961 } 962 963 /* 964 * Start up the rpciod process if it's not already running. 965 */ 966 int 967 rpciod_up(void) 968 { 969 struct workqueue_struct *wq; 970 int error = 0; 971 972 mutex_lock(&rpciod_mutex); 973 dprintk("rpciod_up: users %d\n", rpciod_users); 974 rpciod_users++; 975 if (rpciod_workqueue) 976 goto out; 977 /* 978 * If there's no pid, we should be the first user. 979 */ 980 if (rpciod_users > 1) 981 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users); 982 /* 983 * Create the rpciod thread and wait for it to start. 984 */ 985 error = -ENOMEM; 986 wq = create_workqueue("rpciod"); 987 if (wq == NULL) { 988 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error); 989 rpciod_users--; 990 goto out; 991 } 992 rpciod_workqueue = wq; 993 error = 0; 994 out: 995 mutex_unlock(&rpciod_mutex); 996 return error; 997 } 998 999 void 1000 rpciod_down(void) 1001 { 1002 mutex_lock(&rpciod_mutex); 1003 dprintk("rpciod_down sema %d\n", rpciod_users); 1004 if (rpciod_users) { 1005 if (--rpciod_users) 1006 goto out; 1007 } else 1008 printk(KERN_WARNING "rpciod_down: no users??\n"); 1009 1010 if (!rpciod_workqueue) { 1011 dprintk("rpciod_down: Nothing to do!\n"); 1012 goto out; 1013 } 1014 rpciod_killall(); 1015 1016 destroy_workqueue(rpciod_workqueue); 1017 rpciod_workqueue = NULL; 1018 out: 1019 mutex_unlock(&rpciod_mutex); 1020 } 1021 1022 #ifdef RPC_DEBUG 1023 void rpc_show_tasks(void) 1024 { 1025 struct list_head *le; 1026 struct rpc_task *t; 1027 1028 spin_lock(&rpc_sched_lock); 1029 if (list_empty(&all_tasks)) { 1030 spin_unlock(&rpc_sched_lock); 1031 return; 1032 } 1033 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout " 1034 "-rpcwait -action- ---ops--\n"); 1035 alltask_for_each(t, le, &all_tasks) { 1036 const char *rpc_waitq = "none"; 1037 1038 if (RPC_IS_QUEUED(t)) 1039 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq); 1040 1041 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n", 1042 t->tk_pid, 1043 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1), 1044 t->tk_flags, t->tk_status, 1045 t->tk_client, 1046 (t->tk_client ? t->tk_client->cl_prog : 0), 1047 t->tk_rqstp, t->tk_timeout, 1048 rpc_waitq, 1049 t->tk_action, t->tk_ops); 1050 } 1051 spin_unlock(&rpc_sched_lock); 1052 } 1053 #endif 1054 1055 void 1056 rpc_destroy_mempool(void) 1057 { 1058 if (rpc_buffer_mempool) 1059 mempool_destroy(rpc_buffer_mempool); 1060 if (rpc_task_mempool) 1061 mempool_destroy(rpc_task_mempool); 1062 if (rpc_task_slabp) 1063 kmem_cache_destroy(rpc_task_slabp); 1064 if (rpc_buffer_slabp) 1065 kmem_cache_destroy(rpc_buffer_slabp); 1066 } 1067 1068 int 1069 rpc_init_mempool(void) 1070 { 1071 rpc_task_slabp = kmem_cache_create("rpc_tasks", 1072 sizeof(struct rpc_task), 1073 0, SLAB_HWCACHE_ALIGN, 1074 NULL, NULL); 1075 if (!rpc_task_slabp) 1076 goto err_nomem; 1077 rpc_buffer_slabp = kmem_cache_create("rpc_buffers", 1078 RPC_BUFFER_MAXSIZE, 1079 0, SLAB_HWCACHE_ALIGN, 1080 NULL, NULL); 1081 if (!rpc_buffer_slabp) 1082 goto err_nomem; 1083 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, 1084 rpc_task_slabp); 1085 if (!rpc_task_mempool) 1086 goto err_nomem; 1087 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, 1088 rpc_buffer_slabp); 1089 if (!rpc_buffer_mempool) 1090 goto err_nomem; 1091 return 0; 1092 err_nomem: 1093 rpc_destroy_mempool(); 1094 return -ENOMEM; 1095 } 1096