xref: /openbmc/linux/net/sunrpc/cache.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 
35 #define	 RPCDBG_FACILITY RPCDBG_CACHE
36 
37 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39 
40 static void cache_init(struct cache_head *h)
41 {
42 	time_t now = get_seconds();
43 	h->next = NULL;
44 	h->flags = 0;
45 	kref_init(&h->ref);
46 	h->expiry_time = now + CACHE_NEW_EXPIRY;
47 	h->last_refresh = now;
48 }
49 
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51 				       struct cache_head *key, int hash)
52 {
53 	struct cache_head **head,  **hp;
54 	struct cache_head *new = NULL;
55 
56 	head = &detail->hash_table[hash];
57 
58 	read_lock(&detail->hash_lock);
59 
60 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61 		struct cache_head *tmp = *hp;
62 		if (detail->match(tmp, key)) {
63 			cache_get(tmp);
64 			read_unlock(&detail->hash_lock);
65 			return tmp;
66 		}
67 	}
68 	read_unlock(&detail->hash_lock);
69 	/* Didn't find anything, insert an empty entry */
70 
71 	new = detail->alloc();
72 	if (!new)
73 		return NULL;
74 	/* must fully initialise 'new', else
75 	 * we might get lose if we need to
76 	 * cache_put it soon.
77 	 */
78 	cache_init(new);
79 	detail->init(new, key);
80 
81 	write_lock(&detail->hash_lock);
82 
83 	/* check if entry appeared while we slept */
84 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85 		struct cache_head *tmp = *hp;
86 		if (detail->match(tmp, key)) {
87 			cache_get(tmp);
88 			write_unlock(&detail->hash_lock);
89 			cache_put(new, detail);
90 			return tmp;
91 		}
92 	}
93 	new->next = *head;
94 	*head = new;
95 	detail->entries++;
96 	cache_get(new);
97 	write_unlock(&detail->hash_lock);
98 
99 	return new;
100 }
101 EXPORT_SYMBOL(sunrpc_cache_lookup);
102 
103 
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
105 
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
107 {
108 	head->expiry_time = expiry;
109 	head->last_refresh = get_seconds();
110 	return !test_and_set_bit(CACHE_VALID, &head->flags);
111 }
112 
113 static void cache_fresh_unlocked(struct cache_head *head,
114 			struct cache_detail *detail, int new)
115 {
116 	if (new)
117 		cache_revisit_request(head);
118 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119 		cache_revisit_request(head);
120 		queue_loose(detail, head);
121 	}
122 }
123 
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125 				       struct cache_head *new, struct cache_head *old, int hash)
126 {
127 	/* The 'old' entry is to be replaced by 'new'.
128 	 * If 'old' is not VALID, we update it directly,
129 	 * otherwise we need to replace it
130 	 */
131 	struct cache_head **head;
132 	struct cache_head *tmp;
133 	int is_new;
134 
135 	if (!test_bit(CACHE_VALID, &old->flags)) {
136 		write_lock(&detail->hash_lock);
137 		if (!test_bit(CACHE_VALID, &old->flags)) {
138 			if (test_bit(CACHE_NEGATIVE, &new->flags))
139 				set_bit(CACHE_NEGATIVE, &old->flags);
140 			else
141 				detail->update(old, new);
142 			is_new = cache_fresh_locked(old, new->expiry_time);
143 			write_unlock(&detail->hash_lock);
144 			cache_fresh_unlocked(old, detail, is_new);
145 			return old;
146 		}
147 		write_unlock(&detail->hash_lock);
148 	}
149 	/* We need to insert a new entry */
150 	tmp = detail->alloc();
151 	if (!tmp) {
152 		cache_put(old, detail);
153 		return NULL;
154 	}
155 	cache_init(tmp);
156 	detail->init(tmp, old);
157 	head = &detail->hash_table[hash];
158 
159 	write_lock(&detail->hash_lock);
160 	if (test_bit(CACHE_NEGATIVE, &new->flags))
161 		set_bit(CACHE_NEGATIVE, &tmp->flags);
162 	else
163 		detail->update(tmp, new);
164 	tmp->next = *head;
165 	*head = tmp;
166 	detail->entries++;
167 	cache_get(tmp);
168 	is_new = cache_fresh_locked(tmp, new->expiry_time);
169 	cache_fresh_locked(old, 0);
170 	write_unlock(&detail->hash_lock);
171 	cache_fresh_unlocked(tmp, detail, is_new);
172 	cache_fresh_unlocked(old, detail, 0);
173 	cache_put(old, detail);
174 	return tmp;
175 }
176 EXPORT_SYMBOL(sunrpc_cache_update);
177 
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
179 /*
180  * This is the generic cache management routine for all
181  * the authentication caches.
182  * It checks the currency of a cache item and will (later)
183  * initiate an upcall to fill it if needed.
184  *
185  *
186  * Returns 0 if the cache_head can be used, or cache_puts it and returns
187  * -EAGAIN if upcall is pending,
188  * -ETIMEDOUT if upcall failed and should be retried,
189  * -ENOENT if cache entry was negative
190  */
191 int cache_check(struct cache_detail *detail,
192 		    struct cache_head *h, struct cache_req *rqstp)
193 {
194 	int rv;
195 	long refresh_age, age;
196 
197 	/* First decide return status as best we can */
198 	if (!test_bit(CACHE_VALID, &h->flags) ||
199 	    h->expiry_time < get_seconds())
200 		rv = -EAGAIN;
201 	else if (detail->flush_time > h->last_refresh)
202 		rv = -EAGAIN;
203 	else {
204 		/* entry is valid */
205 		if (test_bit(CACHE_NEGATIVE, &h->flags))
206 			rv = -ENOENT;
207 		else rv = 0;
208 	}
209 
210 	/* now see if we want to start an upcall */
211 	refresh_age = (h->expiry_time - h->last_refresh);
212 	age = get_seconds() - h->last_refresh;
213 
214 	if (rqstp == NULL) {
215 		if (rv == -EAGAIN)
216 			rv = -ENOENT;
217 	} else if (rv == -EAGAIN || age > refresh_age/2) {
218 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
219 				refresh_age, age);
220 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221 			switch (cache_make_upcall(detail, h)) {
222 			case -EINVAL:
223 				clear_bit(CACHE_PENDING, &h->flags);
224 				if (rv == -EAGAIN) {
225 					set_bit(CACHE_NEGATIVE, &h->flags);
226 					cache_fresh_unlocked(h, detail,
227 					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228 					rv = -ENOENT;
229 				}
230 				break;
231 
232 			case -EAGAIN:
233 				clear_bit(CACHE_PENDING, &h->flags);
234 				cache_revisit_request(h);
235 				break;
236 			}
237 		}
238 	}
239 
240 	if (rv == -EAGAIN)
241 		if (cache_defer_req(rqstp, h) != 0)
242 			rv = -ETIMEDOUT;
243 
244 	if (rv)
245 		cache_put(h, detail);
246 	return rv;
247 }
248 
249 /*
250  * caches need to be periodically cleaned.
251  * For this we maintain a list of cache_detail and
252  * a current pointer into that list and into the table
253  * for that entry.
254  *
255  * Each time clean_cache is called it finds the next non-empty entry
256  * in the current table and walks the list in that entry
257  * looking for entries that can be removed.
258  *
259  * An entry gets removed if:
260  * - The expiry is before current time
261  * - The last_refresh time is before the flush_time for that cache
262  *
263  * later we might drop old entries with non-NEVER expiry if that table
264  * is getting 'full' for some definition of 'full'
265  *
266  * The question of "how often to scan a table" is an interesting one
267  * and is answered in part by the use of the "nextcheck" field in the
268  * cache_detail.
269  * When a scan of a table begins, the nextcheck field is set to a time
270  * that is well into the future.
271  * While scanning, if an expiry time is found that is earlier than the
272  * current nextcheck time, nextcheck is set to that expiry time.
273  * If the flush_time is ever set to a time earlier than the nextcheck
274  * time, the nextcheck time is then set to that flush_time.
275  *
276  * A table is then only scanned if the current time is at least
277  * the nextcheck time.
278  *
279  */
280 
281 static LIST_HEAD(cache_list);
282 static DEFINE_SPINLOCK(cache_list_lock);
283 static struct cache_detail *current_detail;
284 static int current_index;
285 
286 static const struct file_operations cache_file_operations;
287 static const struct file_operations content_file_operations;
288 static const struct file_operations cache_flush_operations;
289 
290 static void do_cache_clean(struct work_struct *work);
291 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
292 
293 void cache_register(struct cache_detail *cd)
294 {
295 	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
296 	if (cd->proc_ent) {
297 		struct proc_dir_entry *p;
298 		cd->proc_ent->owner = cd->owner;
299 		cd->channel_ent = cd->content_ent = NULL;
300 
301 		p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
302 				      cd->proc_ent);
303 		cd->flush_ent =  p;
304 		if (p) {
305 			p->proc_fops = &cache_flush_operations;
306 			p->owner = cd->owner;
307 			p->data = cd;
308 		}
309 
310 		if (cd->cache_request || cd->cache_parse) {
311 			p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
312 					      cd->proc_ent);
313 			cd->channel_ent = p;
314 			if (p) {
315 				p->proc_fops = &cache_file_operations;
316 				p->owner = cd->owner;
317 				p->data = cd;
318 			}
319 		}
320 		if (cd->cache_show) {
321 			p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
322 					      cd->proc_ent);
323 			cd->content_ent = p;
324 			if (p) {
325 				p->proc_fops = &content_file_operations;
326 				p->owner = cd->owner;
327 				p->data = cd;
328 			}
329 		}
330 	}
331 	rwlock_init(&cd->hash_lock);
332 	INIT_LIST_HEAD(&cd->queue);
333 	spin_lock(&cache_list_lock);
334 	cd->nextcheck = 0;
335 	cd->entries = 0;
336 	atomic_set(&cd->readers, 0);
337 	cd->last_close = 0;
338 	cd->last_warn = -1;
339 	list_add(&cd->others, &cache_list);
340 	spin_unlock(&cache_list_lock);
341 
342 	/* start the cleaning process */
343 	schedule_delayed_work(&cache_cleaner, 0);
344 }
345 
346 int cache_unregister(struct cache_detail *cd)
347 {
348 	cache_purge(cd);
349 	spin_lock(&cache_list_lock);
350 	write_lock(&cd->hash_lock);
351 	if (cd->entries || atomic_read(&cd->inuse)) {
352 		write_unlock(&cd->hash_lock);
353 		spin_unlock(&cache_list_lock);
354 		return -EBUSY;
355 	}
356 	if (current_detail == cd)
357 		current_detail = NULL;
358 	list_del_init(&cd->others);
359 	write_unlock(&cd->hash_lock);
360 	spin_unlock(&cache_list_lock);
361 	if (cd->proc_ent) {
362 		if (cd->flush_ent)
363 			remove_proc_entry("flush", cd->proc_ent);
364 		if (cd->channel_ent)
365 			remove_proc_entry("channel", cd->proc_ent);
366 		if (cd->content_ent)
367 			remove_proc_entry("content", cd->proc_ent);
368 
369 		cd->proc_ent = NULL;
370 		remove_proc_entry(cd->name, proc_net_rpc);
371 	}
372 	if (list_empty(&cache_list)) {
373 		/* module must be being unloaded so its safe to kill the worker */
374 		cancel_delayed_work_sync(&cache_cleaner);
375 	}
376 	return 0;
377 }
378 
379 /* clean cache tries to find something to clean
380  * and cleans it.
381  * It returns 1 if it cleaned something,
382  *            0 if it didn't find anything this time
383  *           -1 if it fell off the end of the list.
384  */
385 static int cache_clean(void)
386 {
387 	int rv = 0;
388 	struct list_head *next;
389 
390 	spin_lock(&cache_list_lock);
391 
392 	/* find a suitable table if we don't already have one */
393 	while (current_detail == NULL ||
394 	    current_index >= current_detail->hash_size) {
395 		if (current_detail)
396 			next = current_detail->others.next;
397 		else
398 			next = cache_list.next;
399 		if (next == &cache_list) {
400 			current_detail = NULL;
401 			spin_unlock(&cache_list_lock);
402 			return -1;
403 		}
404 		current_detail = list_entry(next, struct cache_detail, others);
405 		if (current_detail->nextcheck > get_seconds())
406 			current_index = current_detail->hash_size;
407 		else {
408 			current_index = 0;
409 			current_detail->nextcheck = get_seconds()+30*60;
410 		}
411 	}
412 
413 	/* find a non-empty bucket in the table */
414 	while (current_detail &&
415 	       current_index < current_detail->hash_size &&
416 	       current_detail->hash_table[current_index] == NULL)
417 		current_index++;
418 
419 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
420 
421 	if (current_detail && current_index < current_detail->hash_size) {
422 		struct cache_head *ch, **cp;
423 		struct cache_detail *d;
424 
425 		write_lock(&current_detail->hash_lock);
426 
427 		/* Ok, now to clean this strand */
428 
429 		cp = & current_detail->hash_table[current_index];
430 		ch = *cp;
431 		for (; ch; cp= & ch->next, ch= *cp) {
432 			if (current_detail->nextcheck > ch->expiry_time)
433 				current_detail->nextcheck = ch->expiry_time+1;
434 			if (ch->expiry_time >= get_seconds()
435 			    && ch->last_refresh >= current_detail->flush_time
436 				)
437 				continue;
438 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
439 				queue_loose(current_detail, ch);
440 
441 			if (atomic_read(&ch->ref.refcount) == 1)
442 				break;
443 		}
444 		if (ch) {
445 			*cp = ch->next;
446 			ch->next = NULL;
447 			current_detail->entries--;
448 			rv = 1;
449 		}
450 		write_unlock(&current_detail->hash_lock);
451 		d = current_detail;
452 		if (!ch)
453 			current_index ++;
454 		spin_unlock(&cache_list_lock);
455 		if (ch)
456 			cache_put(ch, d);
457 	} else
458 		spin_unlock(&cache_list_lock);
459 
460 	return rv;
461 }
462 
463 /*
464  * We want to regularly clean the cache, so we need to schedule some work ...
465  */
466 static void do_cache_clean(struct work_struct *work)
467 {
468 	int delay = 5;
469 	if (cache_clean() == -1)
470 		delay = 30*HZ;
471 
472 	if (list_empty(&cache_list))
473 		delay = 0;
474 
475 	if (delay)
476 		schedule_delayed_work(&cache_cleaner, delay);
477 }
478 
479 
480 /*
481  * Clean all caches promptly.  This just calls cache_clean
482  * repeatedly until we are sure that every cache has had a chance to
483  * be fully cleaned
484  */
485 void cache_flush(void)
486 {
487 	while (cache_clean() != -1)
488 		cond_resched();
489 	while (cache_clean() != -1)
490 		cond_resched();
491 }
492 
493 void cache_purge(struct cache_detail *detail)
494 {
495 	detail->flush_time = LONG_MAX;
496 	detail->nextcheck = get_seconds();
497 	cache_flush();
498 	detail->flush_time = 1;
499 }
500 
501 
502 
503 /*
504  * Deferral and Revisiting of Requests.
505  *
506  * If a cache lookup finds a pending entry, we
507  * need to defer the request and revisit it later.
508  * All deferred requests are stored in a hash table,
509  * indexed by "struct cache_head *".
510  * As it may be wasteful to store a whole request
511  * structure, we allow the request to provide a
512  * deferred form, which must contain a
513  * 'struct cache_deferred_req'
514  * This cache_deferred_req contains a method to allow
515  * it to be revisited when cache info is available
516  */
517 
518 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
519 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
520 
521 #define	DFR_MAX	300	/* ??? */
522 
523 static DEFINE_SPINLOCK(cache_defer_lock);
524 static LIST_HEAD(cache_defer_list);
525 static struct list_head cache_defer_hash[DFR_HASHSIZE];
526 static int cache_defer_cnt;
527 
528 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
529 {
530 	struct cache_deferred_req *dreq;
531 	int hash = DFR_HASH(item);
532 
533 	if (cache_defer_cnt >= DFR_MAX) {
534 		/* too much in the cache, randomly drop this one,
535 		 * or continue and drop the oldest below
536 		 */
537 		if (net_random()&1)
538 			return -ETIMEDOUT;
539 	}
540 	dreq = req->defer(req);
541 	if (dreq == NULL)
542 		return -ETIMEDOUT;
543 
544 	dreq->item = item;
545 	dreq->recv_time = get_seconds();
546 
547 	spin_lock(&cache_defer_lock);
548 
549 	list_add(&dreq->recent, &cache_defer_list);
550 
551 	if (cache_defer_hash[hash].next == NULL)
552 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
553 	list_add(&dreq->hash, &cache_defer_hash[hash]);
554 
555 	/* it is in, now maybe clean up */
556 	dreq = NULL;
557 	if (++cache_defer_cnt > DFR_MAX) {
558 		dreq = list_entry(cache_defer_list.prev,
559 				  struct cache_deferred_req, recent);
560 		list_del(&dreq->recent);
561 		list_del(&dreq->hash);
562 		cache_defer_cnt--;
563 	}
564 	spin_unlock(&cache_defer_lock);
565 
566 	if (dreq) {
567 		/* there was one too many */
568 		dreq->revisit(dreq, 1);
569 	}
570 	if (!test_bit(CACHE_PENDING, &item->flags)) {
571 		/* must have just been validated... */
572 		cache_revisit_request(item);
573 	}
574 	return 0;
575 }
576 
577 static void cache_revisit_request(struct cache_head *item)
578 {
579 	struct cache_deferred_req *dreq;
580 	struct list_head pending;
581 
582 	struct list_head *lp;
583 	int hash = DFR_HASH(item);
584 
585 	INIT_LIST_HEAD(&pending);
586 	spin_lock(&cache_defer_lock);
587 
588 	lp = cache_defer_hash[hash].next;
589 	if (lp) {
590 		while (lp != &cache_defer_hash[hash]) {
591 			dreq = list_entry(lp, struct cache_deferred_req, hash);
592 			lp = lp->next;
593 			if (dreq->item == item) {
594 				list_del(&dreq->hash);
595 				list_move(&dreq->recent, &pending);
596 				cache_defer_cnt--;
597 			}
598 		}
599 	}
600 	spin_unlock(&cache_defer_lock);
601 
602 	while (!list_empty(&pending)) {
603 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
604 		list_del_init(&dreq->recent);
605 		dreq->revisit(dreq, 0);
606 	}
607 }
608 
609 void cache_clean_deferred(void *owner)
610 {
611 	struct cache_deferred_req *dreq, *tmp;
612 	struct list_head pending;
613 
614 
615 	INIT_LIST_HEAD(&pending);
616 	spin_lock(&cache_defer_lock);
617 
618 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
619 		if (dreq->owner == owner) {
620 			list_del(&dreq->hash);
621 			list_move(&dreq->recent, &pending);
622 			cache_defer_cnt--;
623 		}
624 	}
625 	spin_unlock(&cache_defer_lock);
626 
627 	while (!list_empty(&pending)) {
628 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
629 		list_del_init(&dreq->recent);
630 		dreq->revisit(dreq, 1);
631 	}
632 }
633 
634 /*
635  * communicate with user-space
636  *
637  * We have a magic /proc file - /proc/sunrpc/cache
638  * On read, you get a full request, or block
639  * On write, an update request is processed
640  * Poll works if anything to read, and always allows write
641  *
642  * Implemented by linked list of requests.  Each open file has
643  * a ->private that also exists in this list.  New request are added
644  * to the end and may wakeup and preceding readers.
645  * New readers are added to the head.  If, on read, an item is found with
646  * CACHE_UPCALLING clear, we free it from the list.
647  *
648  */
649 
650 static DEFINE_SPINLOCK(queue_lock);
651 static DEFINE_MUTEX(queue_io_mutex);
652 
653 struct cache_queue {
654 	struct list_head	list;
655 	int			reader;	/* if 0, then request */
656 };
657 struct cache_request {
658 	struct cache_queue	q;
659 	struct cache_head	*item;
660 	char			* buf;
661 	int			len;
662 	int			readers;
663 };
664 struct cache_reader {
665 	struct cache_queue	q;
666 	int			offset;	/* if non-0, we have a refcnt on next request */
667 };
668 
669 static ssize_t
670 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
671 {
672 	struct cache_reader *rp = filp->private_data;
673 	struct cache_request *rq;
674 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
675 	int err;
676 
677 	if (count == 0)
678 		return 0;
679 
680 	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
681 			      * readers on this file */
682  again:
683 	spin_lock(&queue_lock);
684 	/* need to find next request */
685 	while (rp->q.list.next != &cd->queue &&
686 	       list_entry(rp->q.list.next, struct cache_queue, list)
687 	       ->reader) {
688 		struct list_head *next = rp->q.list.next;
689 		list_move(&rp->q.list, next);
690 	}
691 	if (rp->q.list.next == &cd->queue) {
692 		spin_unlock(&queue_lock);
693 		mutex_unlock(&queue_io_mutex);
694 		BUG_ON(rp->offset);
695 		return 0;
696 	}
697 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
698 	BUG_ON(rq->q.reader);
699 	if (rp->offset == 0)
700 		rq->readers++;
701 	spin_unlock(&queue_lock);
702 
703 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
704 		err = -EAGAIN;
705 		spin_lock(&queue_lock);
706 		list_move(&rp->q.list, &rq->q.list);
707 		spin_unlock(&queue_lock);
708 	} else {
709 		if (rp->offset + count > rq->len)
710 			count = rq->len - rp->offset;
711 		err = -EFAULT;
712 		if (copy_to_user(buf, rq->buf + rp->offset, count))
713 			goto out;
714 		rp->offset += count;
715 		if (rp->offset >= rq->len) {
716 			rp->offset = 0;
717 			spin_lock(&queue_lock);
718 			list_move(&rp->q.list, &rq->q.list);
719 			spin_unlock(&queue_lock);
720 		}
721 		err = 0;
722 	}
723  out:
724 	if (rp->offset == 0) {
725 		/* need to release rq */
726 		spin_lock(&queue_lock);
727 		rq->readers--;
728 		if (rq->readers == 0 &&
729 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
730 			list_del(&rq->q.list);
731 			spin_unlock(&queue_lock);
732 			cache_put(rq->item, cd);
733 			kfree(rq->buf);
734 			kfree(rq);
735 		} else
736 			spin_unlock(&queue_lock);
737 	}
738 	if (err == -EAGAIN)
739 		goto again;
740 	mutex_unlock(&queue_io_mutex);
741 	return err ? err :  count;
742 }
743 
744 static char write_buf[8192]; /* protected by queue_io_mutex */
745 
746 static ssize_t
747 cache_write(struct file *filp, const char __user *buf, size_t count,
748 	    loff_t *ppos)
749 {
750 	int err;
751 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
752 
753 	if (count == 0)
754 		return 0;
755 	if (count >= sizeof(write_buf))
756 		return -EINVAL;
757 
758 	mutex_lock(&queue_io_mutex);
759 
760 	if (copy_from_user(write_buf, buf, count)) {
761 		mutex_unlock(&queue_io_mutex);
762 		return -EFAULT;
763 	}
764 	write_buf[count] = '\0';
765 	if (cd->cache_parse)
766 		err = cd->cache_parse(cd, write_buf, count);
767 	else
768 		err = -EINVAL;
769 
770 	mutex_unlock(&queue_io_mutex);
771 	return err ? err : count;
772 }
773 
774 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
775 
776 static unsigned int
777 cache_poll(struct file *filp, poll_table *wait)
778 {
779 	unsigned int mask;
780 	struct cache_reader *rp = filp->private_data;
781 	struct cache_queue *cq;
782 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
783 
784 	poll_wait(filp, &queue_wait, wait);
785 
786 	/* alway allow write */
787 	mask = POLL_OUT | POLLWRNORM;
788 
789 	if (!rp)
790 		return mask;
791 
792 	spin_lock(&queue_lock);
793 
794 	for (cq= &rp->q; &cq->list != &cd->queue;
795 	     cq = list_entry(cq->list.next, struct cache_queue, list))
796 		if (!cq->reader) {
797 			mask |= POLLIN | POLLRDNORM;
798 			break;
799 		}
800 	spin_unlock(&queue_lock);
801 	return mask;
802 }
803 
804 static int
805 cache_ioctl(struct inode *ino, struct file *filp,
806 	    unsigned int cmd, unsigned long arg)
807 {
808 	int len = 0;
809 	struct cache_reader *rp = filp->private_data;
810 	struct cache_queue *cq;
811 	struct cache_detail *cd = PDE(ino)->data;
812 
813 	if (cmd != FIONREAD || !rp)
814 		return -EINVAL;
815 
816 	spin_lock(&queue_lock);
817 
818 	/* only find the length remaining in current request,
819 	 * or the length of the next request
820 	 */
821 	for (cq= &rp->q; &cq->list != &cd->queue;
822 	     cq = list_entry(cq->list.next, struct cache_queue, list))
823 		if (!cq->reader) {
824 			struct cache_request *cr =
825 				container_of(cq, struct cache_request, q);
826 			len = cr->len - rp->offset;
827 			break;
828 		}
829 	spin_unlock(&queue_lock);
830 
831 	return put_user(len, (int __user *)arg);
832 }
833 
834 static int
835 cache_open(struct inode *inode, struct file *filp)
836 {
837 	struct cache_reader *rp = NULL;
838 
839 	nonseekable_open(inode, filp);
840 	if (filp->f_mode & FMODE_READ) {
841 		struct cache_detail *cd = PDE(inode)->data;
842 
843 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
844 		if (!rp)
845 			return -ENOMEM;
846 		rp->offset = 0;
847 		rp->q.reader = 1;
848 		atomic_inc(&cd->readers);
849 		spin_lock(&queue_lock);
850 		list_add(&rp->q.list, &cd->queue);
851 		spin_unlock(&queue_lock);
852 	}
853 	filp->private_data = rp;
854 	return 0;
855 }
856 
857 static int
858 cache_release(struct inode *inode, struct file *filp)
859 {
860 	struct cache_reader *rp = filp->private_data;
861 	struct cache_detail *cd = PDE(inode)->data;
862 
863 	if (rp) {
864 		spin_lock(&queue_lock);
865 		if (rp->offset) {
866 			struct cache_queue *cq;
867 			for (cq= &rp->q; &cq->list != &cd->queue;
868 			     cq = list_entry(cq->list.next, struct cache_queue, list))
869 				if (!cq->reader) {
870 					container_of(cq, struct cache_request, q)
871 						->readers--;
872 					break;
873 				}
874 			rp->offset = 0;
875 		}
876 		list_del(&rp->q.list);
877 		spin_unlock(&queue_lock);
878 
879 		filp->private_data = NULL;
880 		kfree(rp);
881 
882 		cd->last_close = get_seconds();
883 		atomic_dec(&cd->readers);
884 	}
885 	return 0;
886 }
887 
888 
889 
890 static const struct file_operations cache_file_operations = {
891 	.owner		= THIS_MODULE,
892 	.llseek		= no_llseek,
893 	.read		= cache_read,
894 	.write		= cache_write,
895 	.poll		= cache_poll,
896 	.ioctl		= cache_ioctl, /* for FIONREAD */
897 	.open		= cache_open,
898 	.release	= cache_release,
899 };
900 
901 
902 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
903 {
904 	struct cache_queue *cq;
905 	spin_lock(&queue_lock);
906 	list_for_each_entry(cq, &detail->queue, list)
907 		if (!cq->reader) {
908 			struct cache_request *cr = container_of(cq, struct cache_request, q);
909 			if (cr->item != ch)
910 				continue;
911 			if (cr->readers != 0)
912 				continue;
913 			list_del(&cr->q.list);
914 			spin_unlock(&queue_lock);
915 			cache_put(cr->item, detail);
916 			kfree(cr->buf);
917 			kfree(cr);
918 			return;
919 		}
920 	spin_unlock(&queue_lock);
921 }
922 
923 /*
924  * Support routines for text-based upcalls.
925  * Fields are separated by spaces.
926  * Fields are either mangled to quote space tab newline slosh with slosh
927  * or a hexified with a leading \x
928  * Record is terminated with newline.
929  *
930  */
931 
932 void qword_add(char **bpp, int *lp, char *str)
933 {
934 	char *bp = *bpp;
935 	int len = *lp;
936 	char c;
937 
938 	if (len < 0) return;
939 
940 	while ((c=*str++) && len)
941 		switch(c) {
942 		case ' ':
943 		case '\t':
944 		case '\n':
945 		case '\\':
946 			if (len >= 4) {
947 				*bp++ = '\\';
948 				*bp++ = '0' + ((c & 0300)>>6);
949 				*bp++ = '0' + ((c & 0070)>>3);
950 				*bp++ = '0' + ((c & 0007)>>0);
951 			}
952 			len -= 4;
953 			break;
954 		default:
955 			*bp++ = c;
956 			len--;
957 		}
958 	if (c || len <1) len = -1;
959 	else {
960 		*bp++ = ' ';
961 		len--;
962 	}
963 	*bpp = bp;
964 	*lp = len;
965 }
966 
967 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
968 {
969 	char *bp = *bpp;
970 	int len = *lp;
971 
972 	if (len < 0) return;
973 
974 	if (len > 2) {
975 		*bp++ = '\\';
976 		*bp++ = 'x';
977 		len -= 2;
978 		while (blen && len >= 2) {
979 			unsigned char c = *buf++;
980 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
981 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
982 			len -= 2;
983 			blen--;
984 		}
985 	}
986 	if (blen || len<1) len = -1;
987 	else {
988 		*bp++ = ' ';
989 		len--;
990 	}
991 	*bpp = bp;
992 	*lp = len;
993 }
994 
995 static void warn_no_listener(struct cache_detail *detail)
996 {
997 	if (detail->last_warn != detail->last_close) {
998 		detail->last_warn = detail->last_close;
999 		if (detail->warn_no_listener)
1000 			detail->warn_no_listener(detail);
1001 	}
1002 }
1003 
1004 /*
1005  * register an upcall request to user-space.
1006  * Each request is at most one page long.
1007  */
1008 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1009 {
1010 
1011 	char *buf;
1012 	struct cache_request *crq;
1013 	char *bp;
1014 	int len;
1015 
1016 	if (detail->cache_request == NULL)
1017 		return -EINVAL;
1018 
1019 	if (atomic_read(&detail->readers) == 0 &&
1020 	    detail->last_close < get_seconds() - 30) {
1021 			warn_no_listener(detail);
1022 			return -EINVAL;
1023 	}
1024 
1025 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1026 	if (!buf)
1027 		return -EAGAIN;
1028 
1029 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1030 	if (!crq) {
1031 		kfree(buf);
1032 		return -EAGAIN;
1033 	}
1034 
1035 	bp = buf; len = PAGE_SIZE;
1036 
1037 	detail->cache_request(detail, h, &bp, &len);
1038 
1039 	if (len < 0) {
1040 		kfree(buf);
1041 		kfree(crq);
1042 		return -EAGAIN;
1043 	}
1044 	crq->q.reader = 0;
1045 	crq->item = cache_get(h);
1046 	crq->buf = buf;
1047 	crq->len = PAGE_SIZE - len;
1048 	crq->readers = 0;
1049 	spin_lock(&queue_lock);
1050 	list_add_tail(&crq->q.list, &detail->queue);
1051 	spin_unlock(&queue_lock);
1052 	wake_up(&queue_wait);
1053 	return 0;
1054 }
1055 
1056 /*
1057  * parse a message from user-space and pass it
1058  * to an appropriate cache
1059  * Messages are, like requests, separated into fields by
1060  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1061  *
1062  * Message is
1063  *   reply cachename expiry key ... content....
1064  *
1065  * key and content are both parsed by cache
1066  */
1067 
1068 #define isodigit(c) (isdigit(c) && c <= '7')
1069 int qword_get(char **bpp, char *dest, int bufsize)
1070 {
1071 	/* return bytes copied, or -1 on error */
1072 	char *bp = *bpp;
1073 	int len = 0;
1074 
1075 	while (*bp == ' ') bp++;
1076 
1077 	if (bp[0] == '\\' && bp[1] == 'x') {
1078 		/* HEX STRING */
1079 		bp += 2;
1080 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1081 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1082 			bp++;
1083 			byte <<= 4;
1084 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1085 			*dest++ = byte;
1086 			bp++;
1087 			len++;
1088 		}
1089 	} else {
1090 		/* text with \nnn octal quoting */
1091 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1092 			if (*bp == '\\' &&
1093 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1094 			    isodigit(bp[2]) &&
1095 			    isodigit(bp[3])) {
1096 				int byte = (*++bp -'0');
1097 				bp++;
1098 				byte = (byte << 3) | (*bp++ - '0');
1099 				byte = (byte << 3) | (*bp++ - '0');
1100 				*dest++ = byte;
1101 				len++;
1102 			} else {
1103 				*dest++ = *bp++;
1104 				len++;
1105 			}
1106 		}
1107 	}
1108 
1109 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1110 		return -1;
1111 	while (*bp == ' ') bp++;
1112 	*bpp = bp;
1113 	*dest = '\0';
1114 	return len;
1115 }
1116 
1117 
1118 /*
1119  * support /proc/sunrpc/cache/$CACHENAME/content
1120  * as a seqfile.
1121  * We call ->cache_show passing NULL for the item to
1122  * get a header, then pass each real item in the cache
1123  */
1124 
1125 struct handle {
1126 	struct cache_detail *cd;
1127 };
1128 
1129 static void *c_start(struct seq_file *m, loff_t *pos)
1130 {
1131 	loff_t n = *pos;
1132 	unsigned hash, entry;
1133 	struct cache_head *ch;
1134 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1135 
1136 
1137 	read_lock(&cd->hash_lock);
1138 	if (!n--)
1139 		return SEQ_START_TOKEN;
1140 	hash = n >> 32;
1141 	entry = n & ((1LL<<32) - 1);
1142 
1143 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1144 		if (!entry--)
1145 			return ch;
1146 	n &= ~((1LL<<32) - 1);
1147 	do {
1148 		hash++;
1149 		n += 1LL<<32;
1150 	} while(hash < cd->hash_size &&
1151 		cd->hash_table[hash]==NULL);
1152 	if (hash >= cd->hash_size)
1153 		return NULL;
1154 	*pos = n+1;
1155 	return cd->hash_table[hash];
1156 }
1157 
1158 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1159 {
1160 	struct cache_head *ch = p;
1161 	int hash = (*pos >> 32);
1162 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1163 
1164 	if (p == SEQ_START_TOKEN)
1165 		hash = 0;
1166 	else if (ch->next == NULL) {
1167 		hash++;
1168 		*pos += 1LL<<32;
1169 	} else {
1170 		++*pos;
1171 		return ch->next;
1172 	}
1173 	*pos &= ~((1LL<<32) - 1);
1174 	while (hash < cd->hash_size &&
1175 	       cd->hash_table[hash] == NULL) {
1176 		hash++;
1177 		*pos += 1LL<<32;
1178 	}
1179 	if (hash >= cd->hash_size)
1180 		return NULL;
1181 	++*pos;
1182 	return cd->hash_table[hash];
1183 }
1184 
1185 static void c_stop(struct seq_file *m, void *p)
1186 {
1187 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1188 	read_unlock(&cd->hash_lock);
1189 }
1190 
1191 static int c_show(struct seq_file *m, void *p)
1192 {
1193 	struct cache_head *cp = p;
1194 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1195 
1196 	if (p == SEQ_START_TOKEN)
1197 		return cd->cache_show(m, cd, NULL);
1198 
1199 	ifdebug(CACHE)
1200 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1201 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1202 	cache_get(cp);
1203 	if (cache_check(cd, cp, NULL))
1204 		/* cache_check does a cache_put on failure */
1205 		seq_printf(m, "# ");
1206 	else
1207 		cache_put(cp, cd);
1208 
1209 	return cd->cache_show(m, cd, cp);
1210 }
1211 
1212 static const struct seq_operations cache_content_op = {
1213 	.start	= c_start,
1214 	.next	= c_next,
1215 	.stop	= c_stop,
1216 	.show	= c_show,
1217 };
1218 
1219 static int content_open(struct inode *inode, struct file *file)
1220 {
1221 	struct handle *han;
1222 	struct cache_detail *cd = PDE(inode)->data;
1223 
1224 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1225 	if (han == NULL)
1226 		return -ENOMEM;
1227 
1228 	han->cd = cd;
1229 	return 0;
1230 }
1231 
1232 static const struct file_operations content_file_operations = {
1233 	.open		= content_open,
1234 	.read		= seq_read,
1235 	.llseek		= seq_lseek,
1236 	.release	= seq_release_private,
1237 };
1238 
1239 static ssize_t read_flush(struct file *file, char __user *buf,
1240 			    size_t count, loff_t *ppos)
1241 {
1242 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1243 	char tbuf[20];
1244 	unsigned long p = *ppos;
1245 	int len;
1246 
1247 	sprintf(tbuf, "%lu\n", cd->flush_time);
1248 	len = strlen(tbuf);
1249 	if (p >= len)
1250 		return 0;
1251 	len -= p;
1252 	if (len > count) len = count;
1253 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1254 		len = -EFAULT;
1255 	else
1256 		*ppos += len;
1257 	return len;
1258 }
1259 
1260 static ssize_t write_flush(struct file * file, const char __user * buf,
1261 			     size_t count, loff_t *ppos)
1262 {
1263 	struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1264 	char tbuf[20];
1265 	char *ep;
1266 	long flushtime;
1267 	if (*ppos || count > sizeof(tbuf)-1)
1268 		return -EINVAL;
1269 	if (copy_from_user(tbuf, buf, count))
1270 		return -EFAULT;
1271 	tbuf[count] = 0;
1272 	flushtime = simple_strtoul(tbuf, &ep, 0);
1273 	if (*ep && *ep != '\n')
1274 		return -EINVAL;
1275 
1276 	cd->flush_time = flushtime;
1277 	cd->nextcheck = get_seconds();
1278 	cache_flush();
1279 
1280 	*ppos += count;
1281 	return count;
1282 }
1283 
1284 static const struct file_operations cache_flush_operations = {
1285 	.open		= nonseekable_open,
1286 	.read		= read_flush,
1287 	.write		= write_flush,
1288 };
1289