xref: /openbmc/linux/net/sunrpc/auth_gss/gss_krb5_crypto.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 /*
2  *  linux/net/sunrpc/gss_krb5_crypto.c
3  *
4  *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
5  *  All rights reserved.
6  *
7  *  Andy Adamson   <andros@umich.edu>
8  *  Bruce Fields   <bfields@umich.edu>
9  */
10 
11 /*
12  * Copyright (C) 1998 by the FundsXpress, INC.
13  *
14  * All rights reserved.
15  *
16  * Export of this software from the United States of America may require
17  * a specific license from the United States Government.  It is the
18  * responsibility of any person or organization contemplating export to
19  * obtain such a license before exporting.
20  *
21  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22  * distribute this software and its documentation for any purpose and
23  * without fee is hereby granted, provided that the above copyright
24  * notice appear in all copies and that both that copyright notice and
25  * this permission notice appear in supporting documentation, and that
26  * the name of FundsXpress. not be used in advertising or publicity pertaining
27  * to distribution of the software without specific, written prior
28  * permission.  FundsXpress makes no representations about the suitability of
29  * this software for any purpose.  It is provided "as is" without express
30  * or implied warranty.
31  *
32  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35  */
36 
37 #include <crypto/algapi.h>
38 #include <crypto/hash.h>
39 #include <crypto/skcipher.h>
40 #include <linux/err.h>
41 #include <linux/types.h>
42 #include <linux/mm.h>
43 #include <linux/scatterlist.h>
44 #include <linux/highmem.h>
45 #include <linux/pagemap.h>
46 #include <linux/random.h>
47 #include <linux/sunrpc/gss_krb5.h>
48 #include <linux/sunrpc/xdr.h>
49 
50 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
51 # define RPCDBG_FACILITY        RPCDBG_AUTH
52 #endif
53 
54 u32
55 krb5_encrypt(
56 	struct crypto_skcipher *tfm,
57 	void * iv,
58 	void * in,
59 	void * out,
60 	int length)
61 {
62 	u32 ret = -EINVAL;
63 	struct scatterlist sg[1];
64 	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
65 	SKCIPHER_REQUEST_ON_STACK(req, tfm);
66 
67 	if (length % crypto_skcipher_blocksize(tfm) != 0)
68 		goto out;
69 
70 	if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
71 		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
72 			crypto_skcipher_ivsize(tfm));
73 		goto out;
74 	}
75 
76 	if (iv)
77 		memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
78 
79 	memcpy(out, in, length);
80 	sg_init_one(sg, out, length);
81 
82 	skcipher_request_set_tfm(req, tfm);
83 	skcipher_request_set_callback(req, 0, NULL, NULL);
84 	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
85 
86 	ret = crypto_skcipher_encrypt(req);
87 	skcipher_request_zero(req);
88 out:
89 	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
90 	return ret;
91 }
92 
93 u32
94 krb5_decrypt(
95      struct crypto_skcipher *tfm,
96      void * iv,
97      void * in,
98      void * out,
99      int length)
100 {
101 	u32 ret = -EINVAL;
102 	struct scatterlist sg[1];
103 	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
104 	SKCIPHER_REQUEST_ON_STACK(req, tfm);
105 
106 	if (length % crypto_skcipher_blocksize(tfm) != 0)
107 		goto out;
108 
109 	if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
110 		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
111 			crypto_skcipher_ivsize(tfm));
112 		goto out;
113 	}
114 	if (iv)
115 		memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
116 
117 	memcpy(out, in, length);
118 	sg_init_one(sg, out, length);
119 
120 	skcipher_request_set_tfm(req, tfm);
121 	skcipher_request_set_callback(req, 0, NULL, NULL);
122 	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
123 
124 	ret = crypto_skcipher_decrypt(req);
125 	skcipher_request_zero(req);
126 out:
127 	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
128 	return ret;
129 }
130 
131 static int
132 checksummer(struct scatterlist *sg, void *data)
133 {
134 	struct ahash_request *req = data;
135 
136 	ahash_request_set_crypt(req, sg, NULL, sg->length);
137 
138 	return crypto_ahash_update(req);
139 }
140 
141 static int
142 arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
143 {
144 	unsigned int ms_usage;
145 
146 	switch (usage) {
147 	case KG_USAGE_SIGN:
148 		ms_usage = 15;
149 		break;
150 	case KG_USAGE_SEAL:
151 		ms_usage = 13;
152 		break;
153 	default:
154 		return -EINVAL;
155 	}
156 	salt[0] = (ms_usage >> 0) & 0xff;
157 	salt[1] = (ms_usage >> 8) & 0xff;
158 	salt[2] = (ms_usage >> 16) & 0xff;
159 	salt[3] = (ms_usage >> 24) & 0xff;
160 
161 	return 0;
162 }
163 
164 static u32
165 make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
166 		       struct xdr_buf *body, int body_offset, u8 *cksumkey,
167 		       unsigned int usage, struct xdr_netobj *cksumout)
168 {
169 	struct scatterlist              sg[1];
170 	int err = -1;
171 	u8 *checksumdata;
172 	u8 rc4salt[4];
173 	struct crypto_ahash *md5;
174 	struct crypto_ahash *hmac_md5;
175 	struct ahash_request *req;
176 
177 	if (cksumkey == NULL)
178 		return GSS_S_FAILURE;
179 
180 	if (cksumout->len < kctx->gk5e->cksumlength) {
181 		dprintk("%s: checksum buffer length, %u, too small for %s\n",
182 			__func__, cksumout->len, kctx->gk5e->name);
183 		return GSS_S_FAILURE;
184 	}
185 
186 	if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
187 		dprintk("%s: invalid usage value %u\n", __func__, usage);
188 		return GSS_S_FAILURE;
189 	}
190 
191 	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
192 	if (!checksumdata)
193 		return GSS_S_FAILURE;
194 
195 	md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
196 	if (IS_ERR(md5))
197 		goto out_free_cksum;
198 
199 	hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
200 				      CRYPTO_ALG_ASYNC);
201 	if (IS_ERR(hmac_md5))
202 		goto out_free_md5;
203 
204 	req = ahash_request_alloc(md5, GFP_NOFS);
205 	if (!req)
206 		goto out_free_hmac_md5;
207 
208 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
209 
210 	err = crypto_ahash_init(req);
211 	if (err)
212 		goto out;
213 	sg_init_one(sg, rc4salt, 4);
214 	ahash_request_set_crypt(req, sg, NULL, 4);
215 	err = crypto_ahash_update(req);
216 	if (err)
217 		goto out;
218 
219 	sg_init_one(sg, header, hdrlen);
220 	ahash_request_set_crypt(req, sg, NULL, hdrlen);
221 	err = crypto_ahash_update(req);
222 	if (err)
223 		goto out;
224 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
225 			      checksummer, req);
226 	if (err)
227 		goto out;
228 	ahash_request_set_crypt(req, NULL, checksumdata, 0);
229 	err = crypto_ahash_final(req);
230 	if (err)
231 		goto out;
232 
233 	ahash_request_free(req);
234 	req = ahash_request_alloc(hmac_md5, GFP_NOFS);
235 	if (!req)
236 		goto out_free_hmac_md5;
237 
238 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
239 
240 	err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
241 	if (err)
242 		goto out;
243 
244 	sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
245 	ahash_request_set_crypt(req, sg, checksumdata,
246 				crypto_ahash_digestsize(md5));
247 	err = crypto_ahash_digest(req);
248 	if (err)
249 		goto out;
250 
251 	memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
252 	cksumout->len = kctx->gk5e->cksumlength;
253 out:
254 	ahash_request_free(req);
255 out_free_hmac_md5:
256 	crypto_free_ahash(hmac_md5);
257 out_free_md5:
258 	crypto_free_ahash(md5);
259 out_free_cksum:
260 	kfree(checksumdata);
261 	return err ? GSS_S_FAILURE : 0;
262 }
263 
264 /*
265  * checksum the plaintext data and hdrlen bytes of the token header
266  * The checksum is performed over the first 8 bytes of the
267  * gss token header and then over the data body
268  */
269 u32
270 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
271 	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
272 	      unsigned int usage, struct xdr_netobj *cksumout)
273 {
274 	struct crypto_ahash *tfm;
275 	struct ahash_request *req;
276 	struct scatterlist              sg[1];
277 	int err = -1;
278 	u8 *checksumdata;
279 	unsigned int checksumlen;
280 
281 	if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
282 		return make_checksum_hmac_md5(kctx, header, hdrlen,
283 					      body, body_offset,
284 					      cksumkey, usage, cksumout);
285 
286 	if (cksumout->len < kctx->gk5e->cksumlength) {
287 		dprintk("%s: checksum buffer length, %u, too small for %s\n",
288 			__func__, cksumout->len, kctx->gk5e->name);
289 		return GSS_S_FAILURE;
290 	}
291 
292 	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
293 	if (checksumdata == NULL)
294 		return GSS_S_FAILURE;
295 
296 	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
297 	if (IS_ERR(tfm))
298 		goto out_free_cksum;
299 
300 	req = ahash_request_alloc(tfm, GFP_NOFS);
301 	if (!req)
302 		goto out_free_ahash;
303 
304 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
305 
306 	checksumlen = crypto_ahash_digestsize(tfm);
307 
308 	if (cksumkey != NULL) {
309 		err = crypto_ahash_setkey(tfm, cksumkey,
310 					  kctx->gk5e->keylength);
311 		if (err)
312 			goto out;
313 	}
314 
315 	err = crypto_ahash_init(req);
316 	if (err)
317 		goto out;
318 	sg_init_one(sg, header, hdrlen);
319 	ahash_request_set_crypt(req, sg, NULL, hdrlen);
320 	err = crypto_ahash_update(req);
321 	if (err)
322 		goto out;
323 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
324 			      checksummer, req);
325 	if (err)
326 		goto out;
327 	ahash_request_set_crypt(req, NULL, checksumdata, 0);
328 	err = crypto_ahash_final(req);
329 	if (err)
330 		goto out;
331 
332 	switch (kctx->gk5e->ctype) {
333 	case CKSUMTYPE_RSA_MD5:
334 		err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
335 					  checksumdata, checksumlen);
336 		if (err)
337 			goto out;
338 		memcpy(cksumout->data,
339 		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
340 		       kctx->gk5e->cksumlength);
341 		break;
342 	case CKSUMTYPE_HMAC_SHA1_DES3:
343 		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
344 		break;
345 	default:
346 		BUG();
347 		break;
348 	}
349 	cksumout->len = kctx->gk5e->cksumlength;
350 out:
351 	ahash_request_free(req);
352 out_free_ahash:
353 	crypto_free_ahash(tfm);
354 out_free_cksum:
355 	kfree(checksumdata);
356 	return err ? GSS_S_FAILURE : 0;
357 }
358 
359 /*
360  * checksum the plaintext data and hdrlen bytes of the token header
361  * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
362  * body then over the first 16 octets of the MIC token
363  * Inclusion of the header data in the calculation of the
364  * checksum is optional.
365  */
366 u32
367 make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
368 		 struct xdr_buf *body, int body_offset, u8 *cksumkey,
369 		 unsigned int usage, struct xdr_netobj *cksumout)
370 {
371 	struct crypto_ahash *tfm;
372 	struct ahash_request *req;
373 	struct scatterlist sg[1];
374 	int err = -1;
375 	u8 *checksumdata;
376 	unsigned int checksumlen;
377 
378 	if (kctx->gk5e->keyed_cksum == 0) {
379 		dprintk("%s: expected keyed hash for %s\n",
380 			__func__, kctx->gk5e->name);
381 		return GSS_S_FAILURE;
382 	}
383 	if (cksumkey == NULL) {
384 		dprintk("%s: no key supplied for %s\n",
385 			__func__, kctx->gk5e->name);
386 		return GSS_S_FAILURE;
387 	}
388 
389 	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
390 	if (!checksumdata)
391 		return GSS_S_FAILURE;
392 
393 	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
394 	if (IS_ERR(tfm))
395 		goto out_free_cksum;
396 	checksumlen = crypto_ahash_digestsize(tfm);
397 
398 	req = ahash_request_alloc(tfm, GFP_NOFS);
399 	if (!req)
400 		goto out_free_ahash;
401 
402 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
403 
404 	err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
405 	if (err)
406 		goto out;
407 
408 	err = crypto_ahash_init(req);
409 	if (err)
410 		goto out;
411 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
412 			      checksummer, req);
413 	if (err)
414 		goto out;
415 	if (header != NULL) {
416 		sg_init_one(sg, header, hdrlen);
417 		ahash_request_set_crypt(req, sg, NULL, hdrlen);
418 		err = crypto_ahash_update(req);
419 		if (err)
420 			goto out;
421 	}
422 	ahash_request_set_crypt(req, NULL, checksumdata, 0);
423 	err = crypto_ahash_final(req);
424 	if (err)
425 		goto out;
426 
427 	cksumout->len = kctx->gk5e->cksumlength;
428 
429 	switch (kctx->gk5e->ctype) {
430 	case CKSUMTYPE_HMAC_SHA1_96_AES128:
431 	case CKSUMTYPE_HMAC_SHA1_96_AES256:
432 		/* note that this truncates the hash */
433 		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
434 		break;
435 	default:
436 		BUG();
437 		break;
438 	}
439 out:
440 	ahash_request_free(req);
441 out_free_ahash:
442 	crypto_free_ahash(tfm);
443 out_free_cksum:
444 	kfree(checksumdata);
445 	return err ? GSS_S_FAILURE : 0;
446 }
447 
448 struct encryptor_desc {
449 	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
450 	struct skcipher_request *req;
451 	int pos;
452 	struct xdr_buf *outbuf;
453 	struct page **pages;
454 	struct scatterlist infrags[4];
455 	struct scatterlist outfrags[4];
456 	int fragno;
457 	int fraglen;
458 };
459 
460 static int
461 encryptor(struct scatterlist *sg, void *data)
462 {
463 	struct encryptor_desc *desc = data;
464 	struct xdr_buf *outbuf = desc->outbuf;
465 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
466 	struct page *in_page;
467 	int thislen = desc->fraglen + sg->length;
468 	int fraglen, ret;
469 	int page_pos;
470 
471 	/* Worst case is 4 fragments: head, end of page 1, start
472 	 * of page 2, tail.  Anything more is a bug. */
473 	BUG_ON(desc->fragno > 3);
474 
475 	page_pos = desc->pos - outbuf->head[0].iov_len;
476 	if (page_pos >= 0 && page_pos < outbuf->page_len) {
477 		/* pages are not in place: */
478 		int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
479 		in_page = desc->pages[i];
480 	} else {
481 		in_page = sg_page(sg);
482 	}
483 	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
484 		    sg->offset);
485 	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
486 		    sg->offset);
487 	desc->fragno++;
488 	desc->fraglen += sg->length;
489 	desc->pos += sg->length;
490 
491 	fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
492 	thislen -= fraglen;
493 
494 	if (thislen == 0)
495 		return 0;
496 
497 	sg_mark_end(&desc->infrags[desc->fragno - 1]);
498 	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
499 
500 	skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
501 				   thislen, desc->iv);
502 
503 	ret = crypto_skcipher_encrypt(desc->req);
504 	if (ret)
505 		return ret;
506 
507 	sg_init_table(desc->infrags, 4);
508 	sg_init_table(desc->outfrags, 4);
509 
510 	if (fraglen) {
511 		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
512 				sg->offset + sg->length - fraglen);
513 		desc->infrags[0] = desc->outfrags[0];
514 		sg_assign_page(&desc->infrags[0], in_page);
515 		desc->fragno = 1;
516 		desc->fraglen = fraglen;
517 	} else {
518 		desc->fragno = 0;
519 		desc->fraglen = 0;
520 	}
521 	return 0;
522 }
523 
524 int
525 gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
526 		    int offset, struct page **pages)
527 {
528 	int ret;
529 	struct encryptor_desc desc;
530 	SKCIPHER_REQUEST_ON_STACK(req, tfm);
531 
532 	BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
533 
534 	skcipher_request_set_tfm(req, tfm);
535 	skcipher_request_set_callback(req, 0, NULL, NULL);
536 
537 	memset(desc.iv, 0, sizeof(desc.iv));
538 	desc.req = req;
539 	desc.pos = offset;
540 	desc.outbuf = buf;
541 	desc.pages = pages;
542 	desc.fragno = 0;
543 	desc.fraglen = 0;
544 
545 	sg_init_table(desc.infrags, 4);
546 	sg_init_table(desc.outfrags, 4);
547 
548 	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
549 	skcipher_request_zero(req);
550 	return ret;
551 }
552 
553 struct decryptor_desc {
554 	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
555 	struct skcipher_request *req;
556 	struct scatterlist frags[4];
557 	int fragno;
558 	int fraglen;
559 };
560 
561 static int
562 decryptor(struct scatterlist *sg, void *data)
563 {
564 	struct decryptor_desc *desc = data;
565 	int thislen = desc->fraglen + sg->length;
566 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
567 	int fraglen, ret;
568 
569 	/* Worst case is 4 fragments: head, end of page 1, start
570 	 * of page 2, tail.  Anything more is a bug. */
571 	BUG_ON(desc->fragno > 3);
572 	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
573 		    sg->offset);
574 	desc->fragno++;
575 	desc->fraglen += sg->length;
576 
577 	fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
578 	thislen -= fraglen;
579 
580 	if (thislen == 0)
581 		return 0;
582 
583 	sg_mark_end(&desc->frags[desc->fragno - 1]);
584 
585 	skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
586 				   thislen, desc->iv);
587 
588 	ret = crypto_skcipher_decrypt(desc->req);
589 	if (ret)
590 		return ret;
591 
592 	sg_init_table(desc->frags, 4);
593 
594 	if (fraglen) {
595 		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
596 				sg->offset + sg->length - fraglen);
597 		desc->fragno = 1;
598 		desc->fraglen = fraglen;
599 	} else {
600 		desc->fragno = 0;
601 		desc->fraglen = 0;
602 	}
603 	return 0;
604 }
605 
606 int
607 gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
608 		    int offset)
609 {
610 	int ret;
611 	struct decryptor_desc desc;
612 	SKCIPHER_REQUEST_ON_STACK(req, tfm);
613 
614 	/* XXXJBF: */
615 	BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
616 
617 	skcipher_request_set_tfm(req, tfm);
618 	skcipher_request_set_callback(req, 0, NULL, NULL);
619 
620 	memset(desc.iv, 0, sizeof(desc.iv));
621 	desc.req = req;
622 	desc.fragno = 0;
623 	desc.fraglen = 0;
624 
625 	sg_init_table(desc.frags, 4);
626 
627 	ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
628 	skcipher_request_zero(req);
629 	return ret;
630 }
631 
632 /*
633  * This function makes the assumption that it was ultimately called
634  * from gss_wrap().
635  *
636  * The client auth_gss code moves any existing tail data into a
637  * separate page before calling gss_wrap.
638  * The server svcauth_gss code ensures that both the head and the
639  * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
640  *
641  * Even with that guarantee, this function may be called more than
642  * once in the processing of gss_wrap().  The best we can do is
643  * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
644  * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
645  * At run-time we can verify that a single invocation of this
646  * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
647  */
648 
649 int
650 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
651 {
652 	u8 *p;
653 
654 	if (shiftlen == 0)
655 		return 0;
656 
657 	BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
658 	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
659 
660 	p = buf->head[0].iov_base + base;
661 
662 	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
663 
664 	buf->head[0].iov_len += shiftlen;
665 	buf->len += shiftlen;
666 
667 	return 0;
668 }
669 
670 static u32
671 gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
672 		   u32 offset, u8 *iv, struct page **pages, int encrypt)
673 {
674 	u32 ret;
675 	struct scatterlist sg[1];
676 	SKCIPHER_REQUEST_ON_STACK(req, cipher);
677 	u8 *data;
678 	struct page **save_pages;
679 	u32 len = buf->len - offset;
680 
681 	if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
682 		WARN_ON(0);
683 		return -ENOMEM;
684 	}
685 	data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
686 	if (!data)
687 		return -ENOMEM;
688 
689 	/*
690 	 * For encryption, we want to read from the cleartext
691 	 * page cache pages, and write the encrypted data to
692 	 * the supplied xdr_buf pages.
693 	 */
694 	save_pages = buf->pages;
695 	if (encrypt)
696 		buf->pages = pages;
697 
698 	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
699 	buf->pages = save_pages;
700 	if (ret)
701 		goto out;
702 
703 	sg_init_one(sg, data, len);
704 
705 	skcipher_request_set_tfm(req, cipher);
706 	skcipher_request_set_callback(req, 0, NULL, NULL);
707 	skcipher_request_set_crypt(req, sg, sg, len, iv);
708 
709 	if (encrypt)
710 		ret = crypto_skcipher_encrypt(req);
711 	else
712 		ret = crypto_skcipher_decrypt(req);
713 
714 	skcipher_request_zero(req);
715 
716 	if (ret)
717 		goto out;
718 
719 	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
720 
721 out:
722 	kfree(data);
723 	return ret;
724 }
725 
726 u32
727 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
728 		     struct xdr_buf *buf, struct page **pages)
729 {
730 	u32 err;
731 	struct xdr_netobj hmac;
732 	u8 *cksumkey;
733 	u8 *ecptr;
734 	struct crypto_skcipher *cipher, *aux_cipher;
735 	int blocksize;
736 	struct page **save_pages;
737 	int nblocks, nbytes;
738 	struct encryptor_desc desc;
739 	u32 cbcbytes;
740 	unsigned int usage;
741 
742 	if (kctx->initiate) {
743 		cipher = kctx->initiator_enc;
744 		aux_cipher = kctx->initiator_enc_aux;
745 		cksumkey = kctx->initiator_integ;
746 		usage = KG_USAGE_INITIATOR_SEAL;
747 	} else {
748 		cipher = kctx->acceptor_enc;
749 		aux_cipher = kctx->acceptor_enc_aux;
750 		cksumkey = kctx->acceptor_integ;
751 		usage = KG_USAGE_ACCEPTOR_SEAL;
752 	}
753 	blocksize = crypto_skcipher_blocksize(cipher);
754 
755 	/* hide the gss token header and insert the confounder */
756 	offset += GSS_KRB5_TOK_HDR_LEN;
757 	if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
758 		return GSS_S_FAILURE;
759 	gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
760 	offset -= GSS_KRB5_TOK_HDR_LEN;
761 
762 	if (buf->tail[0].iov_base != NULL) {
763 		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
764 	} else {
765 		buf->tail[0].iov_base = buf->head[0].iov_base
766 							+ buf->head[0].iov_len;
767 		buf->tail[0].iov_len = 0;
768 		ecptr = buf->tail[0].iov_base;
769 	}
770 
771 	/* copy plaintext gss token header after filler (if any) */
772 	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
773 	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
774 	buf->len += GSS_KRB5_TOK_HDR_LEN;
775 
776 	/* Do the HMAC */
777 	hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
778 	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
779 
780 	/*
781 	 * When we are called, pages points to the real page cache
782 	 * data -- which we can't go and encrypt!  buf->pages points
783 	 * to scratch pages which we are going to send off to the
784 	 * client/server.  Swap in the plaintext pages to calculate
785 	 * the hmac.
786 	 */
787 	save_pages = buf->pages;
788 	buf->pages = pages;
789 
790 	err = make_checksum_v2(kctx, NULL, 0, buf,
791 			       offset + GSS_KRB5_TOK_HDR_LEN,
792 			       cksumkey, usage, &hmac);
793 	buf->pages = save_pages;
794 	if (err)
795 		return GSS_S_FAILURE;
796 
797 	nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
798 	nblocks = (nbytes + blocksize - 1) / blocksize;
799 	cbcbytes = 0;
800 	if (nblocks > 2)
801 		cbcbytes = (nblocks - 2) * blocksize;
802 
803 	memset(desc.iv, 0, sizeof(desc.iv));
804 
805 	if (cbcbytes) {
806 		SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
807 
808 		desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
809 		desc.fragno = 0;
810 		desc.fraglen = 0;
811 		desc.pages = pages;
812 		desc.outbuf = buf;
813 		desc.req = req;
814 
815 		skcipher_request_set_tfm(req, aux_cipher);
816 		skcipher_request_set_callback(req, 0, NULL, NULL);
817 
818 		sg_init_table(desc.infrags, 4);
819 		sg_init_table(desc.outfrags, 4);
820 
821 		err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
822 				      cbcbytes, encryptor, &desc);
823 		skcipher_request_zero(req);
824 		if (err)
825 			goto out_err;
826 	}
827 
828 	/* Make sure IV carries forward from any CBC results. */
829 	err = gss_krb5_cts_crypt(cipher, buf,
830 				 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
831 				 desc.iv, pages, 1);
832 	if (err) {
833 		err = GSS_S_FAILURE;
834 		goto out_err;
835 	}
836 
837 	/* Now update buf to account for HMAC */
838 	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
839 	buf->len += kctx->gk5e->cksumlength;
840 
841 out_err:
842 	if (err)
843 		err = GSS_S_FAILURE;
844 	return err;
845 }
846 
847 u32
848 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
849 		     u32 *headskip, u32 *tailskip)
850 {
851 	struct xdr_buf subbuf;
852 	u32 ret = 0;
853 	u8 *cksum_key;
854 	struct crypto_skcipher *cipher, *aux_cipher;
855 	struct xdr_netobj our_hmac_obj;
856 	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
857 	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
858 	int nblocks, blocksize, cbcbytes;
859 	struct decryptor_desc desc;
860 	unsigned int usage;
861 
862 	if (kctx->initiate) {
863 		cipher = kctx->acceptor_enc;
864 		aux_cipher = kctx->acceptor_enc_aux;
865 		cksum_key = kctx->acceptor_integ;
866 		usage = KG_USAGE_ACCEPTOR_SEAL;
867 	} else {
868 		cipher = kctx->initiator_enc;
869 		aux_cipher = kctx->initiator_enc_aux;
870 		cksum_key = kctx->initiator_integ;
871 		usage = KG_USAGE_INITIATOR_SEAL;
872 	}
873 	blocksize = crypto_skcipher_blocksize(cipher);
874 
875 
876 	/* create a segment skipping the header and leaving out the checksum */
877 	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
878 				    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
879 				     kctx->gk5e->cksumlength));
880 
881 	nblocks = (subbuf.len + blocksize - 1) / blocksize;
882 
883 	cbcbytes = 0;
884 	if (nblocks > 2)
885 		cbcbytes = (nblocks - 2) * blocksize;
886 
887 	memset(desc.iv, 0, sizeof(desc.iv));
888 
889 	if (cbcbytes) {
890 		SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
891 
892 		desc.fragno = 0;
893 		desc.fraglen = 0;
894 		desc.req = req;
895 
896 		skcipher_request_set_tfm(req, aux_cipher);
897 		skcipher_request_set_callback(req, 0, NULL, NULL);
898 
899 		sg_init_table(desc.frags, 4);
900 
901 		ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
902 		skcipher_request_zero(req);
903 		if (ret)
904 			goto out_err;
905 	}
906 
907 	/* Make sure IV carries forward from any CBC results. */
908 	ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
909 	if (ret)
910 		goto out_err;
911 
912 
913 	/* Calculate our hmac over the plaintext data */
914 	our_hmac_obj.len = sizeof(our_hmac);
915 	our_hmac_obj.data = our_hmac;
916 
917 	ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
918 			       cksum_key, usage, &our_hmac_obj);
919 	if (ret)
920 		goto out_err;
921 
922 	/* Get the packet's hmac value */
923 	ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
924 				      pkt_hmac, kctx->gk5e->cksumlength);
925 	if (ret)
926 		goto out_err;
927 
928 	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
929 		ret = GSS_S_BAD_SIG;
930 		goto out_err;
931 	}
932 	*headskip = kctx->gk5e->conflen;
933 	*tailskip = kctx->gk5e->cksumlength;
934 out_err:
935 	if (ret && ret != GSS_S_BAD_SIG)
936 		ret = GSS_S_FAILURE;
937 	return ret;
938 }
939 
940 /*
941  * Compute Kseq given the initial session key and the checksum.
942  * Set the key of the given cipher.
943  */
944 int
945 krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
946 		       unsigned char *cksum)
947 {
948 	struct crypto_shash *hmac;
949 	struct shash_desc *desc;
950 	u8 Kseq[GSS_KRB5_MAX_KEYLEN];
951 	u32 zeroconstant = 0;
952 	int err;
953 
954 	dprintk("%s: entered\n", __func__);
955 
956 	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
957 	if (IS_ERR(hmac)) {
958 		dprintk("%s: error %ld, allocating hash '%s'\n",
959 			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
960 		return PTR_ERR(hmac);
961 	}
962 
963 	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
964 		       GFP_NOFS);
965 	if (!desc) {
966 		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
967 			__func__, kctx->gk5e->cksum_name);
968 		crypto_free_shash(hmac);
969 		return -ENOMEM;
970 	}
971 
972 	desc->tfm = hmac;
973 	desc->flags = 0;
974 
975 	/* Compute intermediate Kseq from session key */
976 	err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
977 	if (err)
978 		goto out_err;
979 
980 	err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
981 	if (err)
982 		goto out_err;
983 
984 	/* Compute final Kseq from the checksum and intermediate Kseq */
985 	err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
986 	if (err)
987 		goto out_err;
988 
989 	err = crypto_shash_digest(desc, cksum, 8, Kseq);
990 	if (err)
991 		goto out_err;
992 
993 	err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
994 	if (err)
995 		goto out_err;
996 
997 	err = 0;
998 
999 out_err:
1000 	kzfree(desc);
1001 	crypto_free_shash(hmac);
1002 	dprintk("%s: returning %d\n", __func__, err);
1003 	return err;
1004 }
1005 
1006 /*
1007  * Compute Kcrypt given the initial session key and the plaintext seqnum.
1008  * Set the key of cipher kctx->enc.
1009  */
1010 int
1011 krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
1012 		       s32 seqnum)
1013 {
1014 	struct crypto_shash *hmac;
1015 	struct shash_desc *desc;
1016 	u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1017 	u8 zeroconstant[4] = {0};
1018 	u8 seqnumarray[4];
1019 	int err, i;
1020 
1021 	dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1022 
1023 	hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1024 	if (IS_ERR(hmac)) {
1025 		dprintk("%s: error %ld, allocating hash '%s'\n",
1026 			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1027 		return PTR_ERR(hmac);
1028 	}
1029 
1030 	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1031 		       GFP_NOFS);
1032 	if (!desc) {
1033 		dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1034 			__func__, kctx->gk5e->cksum_name);
1035 		crypto_free_shash(hmac);
1036 		return -ENOMEM;
1037 	}
1038 
1039 	desc->tfm = hmac;
1040 	desc->flags = 0;
1041 
1042 	/* Compute intermediate Kcrypt from session key */
1043 	for (i = 0; i < kctx->gk5e->keylength; i++)
1044 		Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1045 
1046 	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1047 	if (err)
1048 		goto out_err;
1049 
1050 	err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1051 	if (err)
1052 		goto out_err;
1053 
1054 	/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1055 	err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1056 	if (err)
1057 		goto out_err;
1058 
1059 	seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1060 	seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1061 	seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1062 	seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1063 
1064 	err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1065 	if (err)
1066 		goto out_err;
1067 
1068 	err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
1069 	if (err)
1070 		goto out_err;
1071 
1072 	err = 0;
1073 
1074 out_err:
1075 	kzfree(desc);
1076 	crypto_free_shash(hmac);
1077 	dprintk("%s: returning %d\n", __func__, err);
1078 	return err;
1079 }
1080 
1081