xref: /openbmc/linux/net/socket.c (revision 87de87d5e47f94b4ea647a5bd1bc8dc1f7930db4)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
91 
92 #include <net/compat.h>
93 #include <net/wext.h>
94 
95 #include <net/sock.h>
96 #include <linux/netfilter.h>
97 
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
100 			 unsigned long nr_segs, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
102 			  unsigned long nr_segs, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
104 
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 			      struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
109 #ifdef CONFIG_COMPAT
110 static long compat_sock_ioctl(struct file *file,
111 			      unsigned int cmd, unsigned long arg);
112 #endif
113 static int sock_fasync(int fd, struct file *filp, int on);
114 static ssize_t sock_sendpage(struct file *file, struct page *page,
115 			     int offset, size_t size, loff_t *ppos, int more);
116 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
117 			        struct pipe_inode_info *pipe, size_t len,
118 				unsigned int flags);
119 
120 /*
121  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
122  *	in the operation structures but are done directly via the socketcall() multiplexor.
123  */
124 
125 static const struct file_operations socket_file_ops = {
126 	.owner =	THIS_MODULE,
127 	.llseek =	no_llseek,
128 	.aio_read =	sock_aio_read,
129 	.aio_write =	sock_aio_write,
130 	.poll =		sock_poll,
131 	.unlocked_ioctl = sock_ioctl,
132 #ifdef CONFIG_COMPAT
133 	.compat_ioctl = compat_sock_ioctl,
134 #endif
135 	.mmap =		sock_mmap,
136 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
137 	.release =	sock_close,
138 	.fasync =	sock_fasync,
139 	.sendpage =	sock_sendpage,
140 	.splice_write = generic_splice_sendpage,
141 	.splice_read =	sock_splice_read,
142 };
143 
144 /*
145  *	The protocol list. Each protocol is registered in here.
146  */
147 
148 static DEFINE_SPINLOCK(net_family_lock);
149 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
150 
151 /*
152  *	Statistics counters of the socket lists
153  */
154 
155 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
156 
157 /*
158  * Support routines.
159  * Move socket addresses back and forth across the kernel/user
160  * divide and look after the messy bits.
161  */
162 
163 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
164 					   16 for IP, 16 for IPX,
165 					   24 for IPv6,
166 					   about 80 for AX.25
167 					   must be at least one bigger than
168 					   the AF_UNIX size (see net/unix/af_unix.c
169 					   :unix_mkname()).
170 					 */
171 
172 /**
173  *	move_addr_to_kernel	-	copy a socket address into kernel space
174  *	@uaddr: Address in user space
175  *	@kaddr: Address in kernel space
176  *	@ulen: Length in user space
177  *
178  *	The address is copied into kernel space. If the provided address is
179  *	too long an error code of -EINVAL is returned. If the copy gives
180  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
181  */
182 
183 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
184 {
185 	if (ulen < 0 || ulen > MAX_SOCK_ADDR)
186 		return -EINVAL;
187 	if (ulen == 0)
188 		return 0;
189 	if (copy_from_user(kaddr, uaddr, ulen))
190 		return -EFAULT;
191 	return audit_sockaddr(ulen, kaddr);
192 }
193 
194 /**
195  *	move_addr_to_user	-	copy an address to user space
196  *	@kaddr: kernel space address
197  *	@klen: length of address in kernel
198  *	@uaddr: user space address
199  *	@ulen: pointer to user length field
200  *
201  *	The value pointed to by ulen on entry is the buffer length available.
202  *	This is overwritten with the buffer space used. -EINVAL is returned
203  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
204  *	is returned if either the buffer or the length field are not
205  *	accessible.
206  *	After copying the data up to the limit the user specifies, the true
207  *	length of the data is written over the length limit the user
208  *	specified. Zero is returned for a success.
209  */
210 
211 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
212 		      int __user *ulen)
213 {
214 	int err;
215 	int len;
216 
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0 || len > MAX_SOCK_ADDR)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 #define SOCKFS_MAGIC 0x534F434B
238 
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
240 
241 static struct inode *sock_alloc_inode(struct super_block *sb)
242 {
243 	struct socket_alloc *ei;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	init_waitqueue_head(&ei->socket.wait);
249 
250 	ei->socket.fasync_list = NULL;
251 	ei->socket.state = SS_UNCONNECTED;
252 	ei->socket.flags = 0;
253 	ei->socket.ops = NULL;
254 	ei->socket.sk = NULL;
255 	ei->socket.file = NULL;
256 
257 	return &ei->vfs_inode;
258 }
259 
260 static void sock_destroy_inode(struct inode *inode)
261 {
262 	kmem_cache_free(sock_inode_cachep,
263 			container_of(inode, struct socket_alloc, vfs_inode));
264 }
265 
266 static void init_once(struct kmem_cache *cachep, void *foo)
267 {
268 	struct socket_alloc *ei = (struct socket_alloc *)foo;
269 
270 	inode_init_once(&ei->vfs_inode);
271 }
272 
273 static int init_inodecache(void)
274 {
275 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
276 					      sizeof(struct socket_alloc),
277 					      0,
278 					      (SLAB_HWCACHE_ALIGN |
279 					       SLAB_RECLAIM_ACCOUNT |
280 					       SLAB_MEM_SPREAD),
281 					      init_once);
282 	if (sock_inode_cachep == NULL)
283 		return -ENOMEM;
284 	return 0;
285 }
286 
287 static struct super_operations sockfs_ops = {
288 	.alloc_inode =	sock_alloc_inode,
289 	.destroy_inode =sock_destroy_inode,
290 	.statfs =	simple_statfs,
291 };
292 
293 static int sockfs_get_sb(struct file_system_type *fs_type,
294 			 int flags, const char *dev_name, void *data,
295 			 struct vfsmount *mnt)
296 {
297 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
298 			     mnt);
299 }
300 
301 static struct vfsmount *sock_mnt __read_mostly;
302 
303 static struct file_system_type sock_fs_type = {
304 	.name =		"sockfs",
305 	.get_sb =	sockfs_get_sb,
306 	.kill_sb =	kill_anon_super,
307 };
308 
309 static int sockfs_delete_dentry(struct dentry *dentry)
310 {
311 	/*
312 	 * At creation time, we pretended this dentry was hashed
313 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
314 	 * At delete time, we restore the truth : not hashed.
315 	 * (so that dput() can proceed correctly)
316 	 */
317 	dentry->d_flags |= DCACHE_UNHASHED;
318 	return 0;
319 }
320 
321 /*
322  * sockfs_dname() is called from d_path().
323  */
324 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
325 {
326 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
327 				dentry->d_inode->i_ino);
328 }
329 
330 static struct dentry_operations sockfs_dentry_operations = {
331 	.d_delete = sockfs_delete_dentry,
332 	.d_dname  = sockfs_dname,
333 };
334 
335 /*
336  *	Obtains the first available file descriptor and sets it up for use.
337  *
338  *	These functions create file structures and maps them to fd space
339  *	of the current process. On success it returns file descriptor
340  *	and file struct implicitly stored in sock->file.
341  *	Note that another thread may close file descriptor before we return
342  *	from this function. We use the fact that now we do not refer
343  *	to socket after mapping. If one day we will need it, this
344  *	function will increment ref. count on file by 1.
345  *
346  *	In any case returned fd MAY BE not valid!
347  *	This race condition is unavoidable
348  *	with shared fd spaces, we cannot solve it inside kernel,
349  *	but we take care of internal coherence yet.
350  */
351 
352 static int sock_alloc_fd(struct file **filep)
353 {
354 	int fd;
355 
356 	fd = get_unused_fd();
357 	if (likely(fd >= 0)) {
358 		struct file *file = get_empty_filp();
359 
360 		*filep = file;
361 		if (unlikely(!file)) {
362 			put_unused_fd(fd);
363 			return -ENFILE;
364 		}
365 	} else
366 		*filep = NULL;
367 	return fd;
368 }
369 
370 static int sock_attach_fd(struct socket *sock, struct file *file)
371 {
372 	struct dentry *dentry;
373 	struct qstr name = { .name = "" };
374 
375 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
376 	if (unlikely(!dentry))
377 		return -ENOMEM;
378 
379 	dentry->d_op = &sockfs_dentry_operations;
380 	/*
381 	 * We dont want to push this dentry into global dentry hash table.
382 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
383 	 * This permits a working /proc/$pid/fd/XXX on sockets
384 	 */
385 	dentry->d_flags &= ~DCACHE_UNHASHED;
386 	d_instantiate(dentry, SOCK_INODE(sock));
387 
388 	sock->file = file;
389 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
390 		  &socket_file_ops);
391 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
392 	file->f_flags = O_RDWR;
393 	file->f_pos = 0;
394 	file->private_data = sock;
395 
396 	return 0;
397 }
398 
399 int sock_map_fd(struct socket *sock)
400 {
401 	struct file *newfile;
402 	int fd = sock_alloc_fd(&newfile);
403 
404 	if (likely(fd >= 0)) {
405 		int err = sock_attach_fd(sock, newfile);
406 
407 		if (unlikely(err < 0)) {
408 			put_filp(newfile);
409 			put_unused_fd(fd);
410 			return err;
411 		}
412 		fd_install(fd, newfile);
413 	}
414 	return fd;
415 }
416 
417 static struct socket *sock_from_file(struct file *file, int *err)
418 {
419 	if (file->f_op == &socket_file_ops)
420 		return file->private_data;	/* set in sock_map_fd */
421 
422 	*err = -ENOTSOCK;
423 	return NULL;
424 }
425 
426 /**
427  *	sockfd_lookup	- 	Go from a file number to its socket slot
428  *	@fd: file handle
429  *	@err: pointer to an error code return
430  *
431  *	The file handle passed in is locked and the socket it is bound
432  *	too is returned. If an error occurs the err pointer is overwritten
433  *	with a negative errno code and NULL is returned. The function checks
434  *	for both invalid handles and passing a handle which is not a socket.
435  *
436  *	On a success the socket object pointer is returned.
437  */
438 
439 struct socket *sockfd_lookup(int fd, int *err)
440 {
441 	struct file *file;
442 	struct socket *sock;
443 
444 	file = fget(fd);
445 	if (!file) {
446 		*err = -EBADF;
447 		return NULL;
448 	}
449 
450 	sock = sock_from_file(file, err);
451 	if (!sock)
452 		fput(file);
453 	return sock;
454 }
455 
456 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
457 {
458 	struct file *file;
459 	struct socket *sock;
460 
461 	*err = -EBADF;
462 	file = fget_light(fd, fput_needed);
463 	if (file) {
464 		sock = sock_from_file(file, err);
465 		if (sock)
466 			return sock;
467 		fput_light(file, *fput_needed);
468 	}
469 	return NULL;
470 }
471 
472 /**
473  *	sock_alloc	-	allocate a socket
474  *
475  *	Allocate a new inode and socket object. The two are bound together
476  *	and initialised. The socket is then returned. If we are out of inodes
477  *	NULL is returned.
478  */
479 
480 static struct socket *sock_alloc(void)
481 {
482 	struct inode *inode;
483 	struct socket *sock;
484 
485 	inode = new_inode(sock_mnt->mnt_sb);
486 	if (!inode)
487 		return NULL;
488 
489 	sock = SOCKET_I(inode);
490 
491 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
492 	inode->i_uid = current->fsuid;
493 	inode->i_gid = current->fsgid;
494 
495 	get_cpu_var(sockets_in_use)++;
496 	put_cpu_var(sockets_in_use);
497 	return sock;
498 }
499 
500 /*
501  *	In theory you can't get an open on this inode, but /proc provides
502  *	a back door. Remember to keep it shut otherwise you'll let the
503  *	creepy crawlies in.
504  */
505 
506 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
507 {
508 	return -ENXIO;
509 }
510 
511 const struct file_operations bad_sock_fops = {
512 	.owner = THIS_MODULE,
513 	.open = sock_no_open,
514 };
515 
516 /**
517  *	sock_release	-	close a socket
518  *	@sock: socket to close
519  *
520  *	The socket is released from the protocol stack if it has a release
521  *	callback, and the inode is then released if the socket is bound to
522  *	an inode not a file.
523  */
524 
525 void sock_release(struct socket *sock)
526 {
527 	if (sock->ops) {
528 		struct module *owner = sock->ops->owner;
529 
530 		sock->ops->release(sock);
531 		sock->ops = NULL;
532 		module_put(owner);
533 	}
534 
535 	if (sock->fasync_list)
536 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
537 
538 	get_cpu_var(sockets_in_use)--;
539 	put_cpu_var(sockets_in_use);
540 	if (!sock->file) {
541 		iput(SOCK_INODE(sock));
542 		return;
543 	}
544 	sock->file = NULL;
545 }
546 
547 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
548 				 struct msghdr *msg, size_t size)
549 {
550 	struct sock_iocb *si = kiocb_to_siocb(iocb);
551 	int err;
552 
553 	si->sock = sock;
554 	si->scm = NULL;
555 	si->msg = msg;
556 	si->size = size;
557 
558 	err = security_socket_sendmsg(sock, msg, size);
559 	if (err)
560 		return err;
561 
562 	return sock->ops->sendmsg(iocb, sock, msg, size);
563 }
564 
565 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
566 {
567 	struct kiocb iocb;
568 	struct sock_iocb siocb;
569 	int ret;
570 
571 	init_sync_kiocb(&iocb, NULL);
572 	iocb.private = &siocb;
573 	ret = __sock_sendmsg(&iocb, sock, msg, size);
574 	if (-EIOCBQUEUED == ret)
575 		ret = wait_on_sync_kiocb(&iocb);
576 	return ret;
577 }
578 
579 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
580 		   struct kvec *vec, size_t num, size_t size)
581 {
582 	mm_segment_t oldfs = get_fs();
583 	int result;
584 
585 	set_fs(KERNEL_DS);
586 	/*
587 	 * the following is safe, since for compiler definitions of kvec and
588 	 * iovec are identical, yielding the same in-core layout and alignment
589 	 */
590 	msg->msg_iov = (struct iovec *)vec;
591 	msg->msg_iovlen = num;
592 	result = sock_sendmsg(sock, msg, size);
593 	set_fs(oldfs);
594 	return result;
595 }
596 
597 /*
598  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
599  */
600 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
601 	struct sk_buff *skb)
602 {
603 	ktime_t kt = skb->tstamp;
604 
605 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
606 		struct timeval tv;
607 		/* Race occurred between timestamp enabling and packet
608 		   receiving.  Fill in the current time for now. */
609 		if (kt.tv64 == 0)
610 			kt = ktime_get_real();
611 		skb->tstamp = kt;
612 		tv = ktime_to_timeval(kt);
613 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
614 	} else {
615 		struct timespec ts;
616 		/* Race occurred between timestamp enabling and packet
617 		   receiving.  Fill in the current time for now. */
618 		if (kt.tv64 == 0)
619 			kt = ktime_get_real();
620 		skb->tstamp = kt;
621 		ts = ktime_to_timespec(kt);
622 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
623 	}
624 }
625 
626 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
627 
628 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
629 				 struct msghdr *msg, size_t size, int flags)
630 {
631 	int err;
632 	struct sock_iocb *si = kiocb_to_siocb(iocb);
633 
634 	si->sock = sock;
635 	si->scm = NULL;
636 	si->msg = msg;
637 	si->size = size;
638 	si->flags = flags;
639 
640 	err = security_socket_recvmsg(sock, msg, size, flags);
641 	if (err)
642 		return err;
643 
644 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
645 }
646 
647 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
648 		 size_t size, int flags)
649 {
650 	struct kiocb iocb;
651 	struct sock_iocb siocb;
652 	int ret;
653 
654 	init_sync_kiocb(&iocb, NULL);
655 	iocb.private = &siocb;
656 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
657 	if (-EIOCBQUEUED == ret)
658 		ret = wait_on_sync_kiocb(&iocb);
659 	return ret;
660 }
661 
662 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
663 		   struct kvec *vec, size_t num, size_t size, int flags)
664 {
665 	mm_segment_t oldfs = get_fs();
666 	int result;
667 
668 	set_fs(KERNEL_DS);
669 	/*
670 	 * the following is safe, since for compiler definitions of kvec and
671 	 * iovec are identical, yielding the same in-core layout and alignment
672 	 */
673 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
674 	result = sock_recvmsg(sock, msg, size, flags);
675 	set_fs(oldfs);
676 	return result;
677 }
678 
679 static void sock_aio_dtor(struct kiocb *iocb)
680 {
681 	kfree(iocb->private);
682 }
683 
684 static ssize_t sock_sendpage(struct file *file, struct page *page,
685 			     int offset, size_t size, loff_t *ppos, int more)
686 {
687 	struct socket *sock;
688 	int flags;
689 
690 	sock = file->private_data;
691 
692 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
693 	if (more)
694 		flags |= MSG_MORE;
695 
696 	return sock->ops->sendpage(sock, page, offset, size, flags);
697 }
698 
699 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
700 			        struct pipe_inode_info *pipe, size_t len,
701 				unsigned int flags)
702 {
703 	struct socket *sock = file->private_data;
704 
705 	if (unlikely(!sock->ops->splice_read))
706 		return -EINVAL;
707 
708 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
709 }
710 
711 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
712 					 struct sock_iocb *siocb)
713 {
714 	if (!is_sync_kiocb(iocb)) {
715 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
716 		if (!siocb)
717 			return NULL;
718 		iocb->ki_dtor = sock_aio_dtor;
719 	}
720 
721 	siocb->kiocb = iocb;
722 	iocb->private = siocb;
723 	return siocb;
724 }
725 
726 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
727 		struct file *file, const struct iovec *iov,
728 		unsigned long nr_segs)
729 {
730 	struct socket *sock = file->private_data;
731 	size_t size = 0;
732 	int i;
733 
734 	for (i = 0; i < nr_segs; i++)
735 		size += iov[i].iov_len;
736 
737 	msg->msg_name = NULL;
738 	msg->msg_namelen = 0;
739 	msg->msg_control = NULL;
740 	msg->msg_controllen = 0;
741 	msg->msg_iov = (struct iovec *)iov;
742 	msg->msg_iovlen = nr_segs;
743 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
744 
745 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
746 }
747 
748 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
749 				unsigned long nr_segs, loff_t pos)
750 {
751 	struct sock_iocb siocb, *x;
752 
753 	if (pos != 0)
754 		return -ESPIPE;
755 
756 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
757 		return 0;
758 
759 
760 	x = alloc_sock_iocb(iocb, &siocb);
761 	if (!x)
762 		return -ENOMEM;
763 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
764 }
765 
766 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
767 			struct file *file, const struct iovec *iov,
768 			unsigned long nr_segs)
769 {
770 	struct socket *sock = file->private_data;
771 	size_t size = 0;
772 	int i;
773 
774 	for (i = 0; i < nr_segs; i++)
775 		size += iov[i].iov_len;
776 
777 	msg->msg_name = NULL;
778 	msg->msg_namelen = 0;
779 	msg->msg_control = NULL;
780 	msg->msg_controllen = 0;
781 	msg->msg_iov = (struct iovec *)iov;
782 	msg->msg_iovlen = nr_segs;
783 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
784 	if (sock->type == SOCK_SEQPACKET)
785 		msg->msg_flags |= MSG_EOR;
786 
787 	return __sock_sendmsg(iocb, sock, msg, size);
788 }
789 
790 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
791 			  unsigned long nr_segs, loff_t pos)
792 {
793 	struct sock_iocb siocb, *x;
794 
795 	if (pos != 0)
796 		return -ESPIPE;
797 
798 	x = alloc_sock_iocb(iocb, &siocb);
799 	if (!x)
800 		return -ENOMEM;
801 
802 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
803 }
804 
805 /*
806  * Atomic setting of ioctl hooks to avoid race
807  * with module unload.
808  */
809 
810 static DEFINE_MUTEX(br_ioctl_mutex);
811 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
812 
813 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
814 {
815 	mutex_lock(&br_ioctl_mutex);
816 	br_ioctl_hook = hook;
817 	mutex_unlock(&br_ioctl_mutex);
818 }
819 
820 EXPORT_SYMBOL(brioctl_set);
821 
822 static DEFINE_MUTEX(vlan_ioctl_mutex);
823 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
824 
825 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
826 {
827 	mutex_lock(&vlan_ioctl_mutex);
828 	vlan_ioctl_hook = hook;
829 	mutex_unlock(&vlan_ioctl_mutex);
830 }
831 
832 EXPORT_SYMBOL(vlan_ioctl_set);
833 
834 static DEFINE_MUTEX(dlci_ioctl_mutex);
835 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
836 
837 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
838 {
839 	mutex_lock(&dlci_ioctl_mutex);
840 	dlci_ioctl_hook = hook;
841 	mutex_unlock(&dlci_ioctl_mutex);
842 }
843 
844 EXPORT_SYMBOL(dlci_ioctl_set);
845 
846 /*
847  *	With an ioctl, arg may well be a user mode pointer, but we don't know
848  *	what to do with it - that's up to the protocol still.
849  */
850 
851 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
852 {
853 	struct socket *sock;
854 	struct sock *sk;
855 	void __user *argp = (void __user *)arg;
856 	int pid, err;
857 	struct net *net;
858 
859 	sock = file->private_data;
860 	sk = sock->sk;
861 	net = sock_net(sk);
862 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
863 		err = dev_ioctl(net, cmd, argp);
864 	} else
865 #ifdef CONFIG_WIRELESS_EXT
866 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
867 		err = dev_ioctl(net, cmd, argp);
868 	} else
869 #endif				/* CONFIG_WIRELESS_EXT */
870 		switch (cmd) {
871 		case FIOSETOWN:
872 		case SIOCSPGRP:
873 			err = -EFAULT;
874 			if (get_user(pid, (int __user *)argp))
875 				break;
876 			err = f_setown(sock->file, pid, 1);
877 			break;
878 		case FIOGETOWN:
879 		case SIOCGPGRP:
880 			err = put_user(f_getown(sock->file),
881 				       (int __user *)argp);
882 			break;
883 		case SIOCGIFBR:
884 		case SIOCSIFBR:
885 		case SIOCBRADDBR:
886 		case SIOCBRDELBR:
887 			err = -ENOPKG;
888 			if (!br_ioctl_hook)
889 				request_module("bridge");
890 
891 			mutex_lock(&br_ioctl_mutex);
892 			if (br_ioctl_hook)
893 				err = br_ioctl_hook(net, cmd, argp);
894 			mutex_unlock(&br_ioctl_mutex);
895 			break;
896 		case SIOCGIFVLAN:
897 		case SIOCSIFVLAN:
898 			err = -ENOPKG;
899 			if (!vlan_ioctl_hook)
900 				request_module("8021q");
901 
902 			mutex_lock(&vlan_ioctl_mutex);
903 			if (vlan_ioctl_hook)
904 				err = vlan_ioctl_hook(net, argp);
905 			mutex_unlock(&vlan_ioctl_mutex);
906 			break;
907 		case SIOCADDDLCI:
908 		case SIOCDELDLCI:
909 			err = -ENOPKG;
910 			if (!dlci_ioctl_hook)
911 				request_module("dlci");
912 
913 			mutex_lock(&dlci_ioctl_mutex);
914 			if (dlci_ioctl_hook)
915 				err = dlci_ioctl_hook(cmd, argp);
916 			mutex_unlock(&dlci_ioctl_mutex);
917 			break;
918 		default:
919 			err = sock->ops->ioctl(sock, cmd, arg);
920 
921 			/*
922 			 * If this ioctl is unknown try to hand it down
923 			 * to the NIC driver.
924 			 */
925 			if (err == -ENOIOCTLCMD)
926 				err = dev_ioctl(net, cmd, argp);
927 			break;
928 		}
929 	return err;
930 }
931 
932 int sock_create_lite(int family, int type, int protocol, struct socket **res)
933 {
934 	int err;
935 	struct socket *sock = NULL;
936 
937 	err = security_socket_create(family, type, protocol, 1);
938 	if (err)
939 		goto out;
940 
941 	sock = sock_alloc();
942 	if (!sock) {
943 		err = -ENOMEM;
944 		goto out;
945 	}
946 
947 	sock->type = type;
948 	err = security_socket_post_create(sock, family, type, protocol, 1);
949 	if (err)
950 		goto out_release;
951 
952 out:
953 	*res = sock;
954 	return err;
955 out_release:
956 	sock_release(sock);
957 	sock = NULL;
958 	goto out;
959 }
960 
961 /* No kernel lock held - perfect */
962 static unsigned int sock_poll(struct file *file, poll_table *wait)
963 {
964 	struct socket *sock;
965 
966 	/*
967 	 *      We can't return errors to poll, so it's either yes or no.
968 	 */
969 	sock = file->private_data;
970 	return sock->ops->poll(file, sock, wait);
971 }
972 
973 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
974 {
975 	struct socket *sock = file->private_data;
976 
977 	return sock->ops->mmap(file, sock, vma);
978 }
979 
980 static int sock_close(struct inode *inode, struct file *filp)
981 {
982 	/*
983 	 *      It was possible the inode is NULL we were
984 	 *      closing an unfinished socket.
985 	 */
986 
987 	if (!inode) {
988 		printk(KERN_DEBUG "sock_close: NULL inode\n");
989 		return 0;
990 	}
991 	sock_fasync(-1, filp, 0);
992 	sock_release(SOCKET_I(inode));
993 	return 0;
994 }
995 
996 /*
997  *	Update the socket async list
998  *
999  *	Fasync_list locking strategy.
1000  *
1001  *	1. fasync_list is modified only under process context socket lock
1002  *	   i.e. under semaphore.
1003  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1004  *	   or under socket lock.
1005  *	3. fasync_list can be used from softirq context, so that
1006  *	   modification under socket lock have to be enhanced with
1007  *	   write_lock_bh(&sk->sk_callback_lock).
1008  *							--ANK (990710)
1009  */
1010 
1011 static int sock_fasync(int fd, struct file *filp, int on)
1012 {
1013 	struct fasync_struct *fa, *fna = NULL, **prev;
1014 	struct socket *sock;
1015 	struct sock *sk;
1016 
1017 	if (on) {
1018 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1019 		if (fna == NULL)
1020 			return -ENOMEM;
1021 	}
1022 
1023 	sock = filp->private_data;
1024 
1025 	sk = sock->sk;
1026 	if (sk == NULL) {
1027 		kfree(fna);
1028 		return -EINVAL;
1029 	}
1030 
1031 	lock_sock(sk);
1032 
1033 	prev = &(sock->fasync_list);
1034 
1035 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1036 		if (fa->fa_file == filp)
1037 			break;
1038 
1039 	if (on) {
1040 		if (fa != NULL) {
1041 			write_lock_bh(&sk->sk_callback_lock);
1042 			fa->fa_fd = fd;
1043 			write_unlock_bh(&sk->sk_callback_lock);
1044 
1045 			kfree(fna);
1046 			goto out;
1047 		}
1048 		fna->fa_file = filp;
1049 		fna->fa_fd = fd;
1050 		fna->magic = FASYNC_MAGIC;
1051 		fna->fa_next = sock->fasync_list;
1052 		write_lock_bh(&sk->sk_callback_lock);
1053 		sock->fasync_list = fna;
1054 		write_unlock_bh(&sk->sk_callback_lock);
1055 	} else {
1056 		if (fa != NULL) {
1057 			write_lock_bh(&sk->sk_callback_lock);
1058 			*prev = fa->fa_next;
1059 			write_unlock_bh(&sk->sk_callback_lock);
1060 			kfree(fa);
1061 		}
1062 	}
1063 
1064 out:
1065 	release_sock(sock->sk);
1066 	return 0;
1067 }
1068 
1069 /* This function may be called only under socket lock or callback_lock */
1070 
1071 int sock_wake_async(struct socket *sock, int how, int band)
1072 {
1073 	if (!sock || !sock->fasync_list)
1074 		return -1;
1075 	switch (how) {
1076 	case SOCK_WAKE_WAITD:
1077 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1078 			break;
1079 		goto call_kill;
1080 	case SOCK_WAKE_SPACE:
1081 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1082 			break;
1083 		/* fall through */
1084 	case SOCK_WAKE_IO:
1085 call_kill:
1086 		__kill_fasync(sock->fasync_list, SIGIO, band);
1087 		break;
1088 	case SOCK_WAKE_URG:
1089 		__kill_fasync(sock->fasync_list, SIGURG, band);
1090 	}
1091 	return 0;
1092 }
1093 
1094 static int __sock_create(struct net *net, int family, int type, int protocol,
1095 			 struct socket **res, int kern)
1096 {
1097 	int err;
1098 	struct socket *sock;
1099 	const struct net_proto_family *pf;
1100 
1101 	/*
1102 	 *      Check protocol is in range
1103 	 */
1104 	if (family < 0 || family >= NPROTO)
1105 		return -EAFNOSUPPORT;
1106 	if (type < 0 || type >= SOCK_MAX)
1107 		return -EINVAL;
1108 
1109 	/* Compatibility.
1110 
1111 	   This uglymoron is moved from INET layer to here to avoid
1112 	   deadlock in module load.
1113 	 */
1114 	if (family == PF_INET && type == SOCK_PACKET) {
1115 		static int warned;
1116 		if (!warned) {
1117 			warned = 1;
1118 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 			       current->comm);
1120 		}
1121 		family = PF_PACKET;
1122 	}
1123 
1124 	err = security_socket_create(family, type, protocol, kern);
1125 	if (err)
1126 		return err;
1127 
1128 	/*
1129 	 *	Allocate the socket and allow the family to set things up. if
1130 	 *	the protocol is 0, the family is instructed to select an appropriate
1131 	 *	default.
1132 	 */
1133 	sock = sock_alloc();
1134 	if (!sock) {
1135 		if (net_ratelimit())
1136 			printk(KERN_WARNING "socket: no more sockets\n");
1137 		return -ENFILE;	/* Not exactly a match, but its the
1138 				   closest posix thing */
1139 	}
1140 
1141 	sock->type = type;
1142 
1143 #if defined(CONFIG_KMOD)
1144 	/* Attempt to load a protocol module if the find failed.
1145 	 *
1146 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1147 	 * requested real, full-featured networking support upon configuration.
1148 	 * Otherwise module support will break!
1149 	 */
1150 	if (net_families[family] == NULL)
1151 		request_module("net-pf-%d", family);
1152 #endif
1153 
1154 	rcu_read_lock();
1155 	pf = rcu_dereference(net_families[family]);
1156 	err = -EAFNOSUPPORT;
1157 	if (!pf)
1158 		goto out_release;
1159 
1160 	/*
1161 	 * We will call the ->create function, that possibly is in a loadable
1162 	 * module, so we have to bump that loadable module refcnt first.
1163 	 */
1164 	if (!try_module_get(pf->owner))
1165 		goto out_release;
1166 
1167 	/* Now protected by module ref count */
1168 	rcu_read_unlock();
1169 
1170 	err = pf->create(net, sock, protocol);
1171 	if (err < 0)
1172 		goto out_module_put;
1173 
1174 	/*
1175 	 * Now to bump the refcnt of the [loadable] module that owns this
1176 	 * socket at sock_release time we decrement its refcnt.
1177 	 */
1178 	if (!try_module_get(sock->ops->owner))
1179 		goto out_module_busy;
1180 
1181 	/*
1182 	 * Now that we're done with the ->create function, the [loadable]
1183 	 * module can have its refcnt decremented
1184 	 */
1185 	module_put(pf->owner);
1186 	err = security_socket_post_create(sock, family, type, protocol, kern);
1187 	if (err)
1188 		goto out_sock_release;
1189 	*res = sock;
1190 
1191 	return 0;
1192 
1193 out_module_busy:
1194 	err = -EAFNOSUPPORT;
1195 out_module_put:
1196 	sock->ops = NULL;
1197 	module_put(pf->owner);
1198 out_sock_release:
1199 	sock_release(sock);
1200 	return err;
1201 
1202 out_release:
1203 	rcu_read_unlock();
1204 	goto out_sock_release;
1205 }
1206 
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1208 {
1209 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210 }
1211 
1212 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1213 {
1214 	return __sock_create(&init_net, family, type, protocol, res, 1);
1215 }
1216 
1217 asmlinkage long sys_socket(int family, int type, int protocol)
1218 {
1219 	int retval;
1220 	struct socket *sock;
1221 
1222 	retval = sock_create(family, type, protocol, &sock);
1223 	if (retval < 0)
1224 		goto out;
1225 
1226 	retval = sock_map_fd(sock);
1227 	if (retval < 0)
1228 		goto out_release;
1229 
1230 out:
1231 	/* It may be already another descriptor 8) Not kernel problem. */
1232 	return retval;
1233 
1234 out_release:
1235 	sock_release(sock);
1236 	return retval;
1237 }
1238 
1239 /*
1240  *	Create a pair of connected sockets.
1241  */
1242 
1243 asmlinkage long sys_socketpair(int family, int type, int protocol,
1244 			       int __user *usockvec)
1245 {
1246 	struct socket *sock1, *sock2;
1247 	int fd1, fd2, err;
1248 	struct file *newfile1, *newfile2;
1249 
1250 	/*
1251 	 * Obtain the first socket and check if the underlying protocol
1252 	 * supports the socketpair call.
1253 	 */
1254 
1255 	err = sock_create(family, type, protocol, &sock1);
1256 	if (err < 0)
1257 		goto out;
1258 
1259 	err = sock_create(family, type, protocol, &sock2);
1260 	if (err < 0)
1261 		goto out_release_1;
1262 
1263 	err = sock1->ops->socketpair(sock1, sock2);
1264 	if (err < 0)
1265 		goto out_release_both;
1266 
1267 	fd1 = sock_alloc_fd(&newfile1);
1268 	if (unlikely(fd1 < 0)) {
1269 		err = fd1;
1270 		goto out_release_both;
1271 	}
1272 
1273 	fd2 = sock_alloc_fd(&newfile2);
1274 	if (unlikely(fd2 < 0)) {
1275 		err = fd2;
1276 		put_filp(newfile1);
1277 		put_unused_fd(fd1);
1278 		goto out_release_both;
1279 	}
1280 
1281 	err = sock_attach_fd(sock1, newfile1);
1282 	if (unlikely(err < 0)) {
1283 		goto out_fd2;
1284 	}
1285 
1286 	err = sock_attach_fd(sock2, newfile2);
1287 	if (unlikely(err < 0)) {
1288 		fput(newfile1);
1289 		goto out_fd1;
1290 	}
1291 
1292 	err = audit_fd_pair(fd1, fd2);
1293 	if (err < 0) {
1294 		fput(newfile1);
1295 		fput(newfile2);
1296 		goto out_fd;
1297 	}
1298 
1299 	fd_install(fd1, newfile1);
1300 	fd_install(fd2, newfile2);
1301 	/* fd1 and fd2 may be already another descriptors.
1302 	 * Not kernel problem.
1303 	 */
1304 
1305 	err = put_user(fd1, &usockvec[0]);
1306 	if (!err)
1307 		err = put_user(fd2, &usockvec[1]);
1308 	if (!err)
1309 		return 0;
1310 
1311 	sys_close(fd2);
1312 	sys_close(fd1);
1313 	return err;
1314 
1315 out_release_both:
1316 	sock_release(sock2);
1317 out_release_1:
1318 	sock_release(sock1);
1319 out:
1320 	return err;
1321 
1322 out_fd2:
1323 	put_filp(newfile1);
1324 	sock_release(sock1);
1325 out_fd1:
1326 	put_filp(newfile2);
1327 	sock_release(sock2);
1328 out_fd:
1329 	put_unused_fd(fd1);
1330 	put_unused_fd(fd2);
1331 	goto out;
1332 }
1333 
1334 /*
1335  *	Bind a name to a socket. Nothing much to do here since it's
1336  *	the protocol's responsibility to handle the local address.
1337  *
1338  *	We move the socket address to kernel space before we call
1339  *	the protocol layer (having also checked the address is ok).
1340  */
1341 
1342 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1343 {
1344 	struct socket *sock;
1345 	char address[MAX_SOCK_ADDR];
1346 	int err, fput_needed;
1347 
1348 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1349 	if (sock) {
1350 		err = move_addr_to_kernel(umyaddr, addrlen, address);
1351 		if (err >= 0) {
1352 			err = security_socket_bind(sock,
1353 						   (struct sockaddr *)address,
1354 						   addrlen);
1355 			if (!err)
1356 				err = sock->ops->bind(sock,
1357 						      (struct sockaddr *)
1358 						      address, addrlen);
1359 		}
1360 		fput_light(sock->file, fput_needed);
1361 	}
1362 	return err;
1363 }
1364 
1365 /*
1366  *	Perform a listen. Basically, we allow the protocol to do anything
1367  *	necessary for a listen, and if that works, we mark the socket as
1368  *	ready for listening.
1369  */
1370 
1371 asmlinkage long sys_listen(int fd, int backlog)
1372 {
1373 	struct socket *sock;
1374 	int err, fput_needed;
1375 	int somaxconn;
1376 
1377 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1378 	if (sock) {
1379 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1380 		if ((unsigned)backlog > somaxconn)
1381 			backlog = somaxconn;
1382 
1383 		err = security_socket_listen(sock, backlog);
1384 		if (!err)
1385 			err = sock->ops->listen(sock, backlog);
1386 
1387 		fput_light(sock->file, fput_needed);
1388 	}
1389 	return err;
1390 }
1391 
1392 /*
1393  *	For accept, we attempt to create a new socket, set up the link
1394  *	with the client, wake up the client, then return the new
1395  *	connected fd. We collect the address of the connector in kernel
1396  *	space and move it to user at the very end. This is unclean because
1397  *	we open the socket then return an error.
1398  *
1399  *	1003.1g adds the ability to recvmsg() to query connection pending
1400  *	status to recvmsg. We need to add that support in a way thats
1401  *	clean when we restucture accept also.
1402  */
1403 
1404 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1405 			   int __user *upeer_addrlen)
1406 {
1407 	struct socket *sock, *newsock;
1408 	struct file *newfile;
1409 	int err, len, newfd, fput_needed;
1410 	char address[MAX_SOCK_ADDR];
1411 
1412 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1413 	if (!sock)
1414 		goto out;
1415 
1416 	err = -ENFILE;
1417 	if (!(newsock = sock_alloc()))
1418 		goto out_put;
1419 
1420 	newsock->type = sock->type;
1421 	newsock->ops = sock->ops;
1422 
1423 	/*
1424 	 * We don't need try_module_get here, as the listening socket (sock)
1425 	 * has the protocol module (sock->ops->owner) held.
1426 	 */
1427 	__module_get(newsock->ops->owner);
1428 
1429 	newfd = sock_alloc_fd(&newfile);
1430 	if (unlikely(newfd < 0)) {
1431 		err = newfd;
1432 		sock_release(newsock);
1433 		goto out_put;
1434 	}
1435 
1436 	err = sock_attach_fd(newsock, newfile);
1437 	if (err < 0)
1438 		goto out_fd_simple;
1439 
1440 	err = security_socket_accept(sock, newsock);
1441 	if (err)
1442 		goto out_fd;
1443 
1444 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1445 	if (err < 0)
1446 		goto out_fd;
1447 
1448 	if (upeer_sockaddr) {
1449 		if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1450 					  &len, 2) < 0) {
1451 			err = -ECONNABORTED;
1452 			goto out_fd;
1453 		}
1454 		err = move_addr_to_user(address, len, upeer_sockaddr,
1455 					upeer_addrlen);
1456 		if (err < 0)
1457 			goto out_fd;
1458 	}
1459 
1460 	/* File flags are not inherited via accept() unlike another OSes. */
1461 
1462 	fd_install(newfd, newfile);
1463 	err = newfd;
1464 
1465 	security_socket_post_accept(sock, newsock);
1466 
1467 out_put:
1468 	fput_light(sock->file, fput_needed);
1469 out:
1470 	return err;
1471 out_fd_simple:
1472 	sock_release(newsock);
1473 	put_filp(newfile);
1474 	put_unused_fd(newfd);
1475 	goto out_put;
1476 out_fd:
1477 	fput(newfile);
1478 	put_unused_fd(newfd);
1479 	goto out_put;
1480 }
1481 
1482 /*
1483  *	Attempt to connect to a socket with the server address.  The address
1484  *	is in user space so we verify it is OK and move it to kernel space.
1485  *
1486  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1487  *	break bindings
1488  *
1489  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1490  *	other SEQPACKET protocols that take time to connect() as it doesn't
1491  *	include the -EINPROGRESS status for such sockets.
1492  */
1493 
1494 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1495 			    int addrlen)
1496 {
1497 	struct socket *sock;
1498 	char address[MAX_SOCK_ADDR];
1499 	int err, fput_needed;
1500 
1501 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1502 	if (!sock)
1503 		goto out;
1504 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1505 	if (err < 0)
1506 		goto out_put;
1507 
1508 	err =
1509 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1510 	if (err)
1511 		goto out_put;
1512 
1513 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1514 				 sock->file->f_flags);
1515 out_put:
1516 	fput_light(sock->file, fput_needed);
1517 out:
1518 	return err;
1519 }
1520 
1521 /*
1522  *	Get the local address ('name') of a socket object. Move the obtained
1523  *	name to user space.
1524  */
1525 
1526 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1527 				int __user *usockaddr_len)
1528 {
1529 	struct socket *sock;
1530 	char address[MAX_SOCK_ADDR];
1531 	int len, err, fput_needed;
1532 
1533 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1534 	if (!sock)
1535 		goto out;
1536 
1537 	err = security_socket_getsockname(sock);
1538 	if (err)
1539 		goto out_put;
1540 
1541 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1542 	if (err)
1543 		goto out_put;
1544 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1545 
1546 out_put:
1547 	fput_light(sock->file, fput_needed);
1548 out:
1549 	return err;
1550 }
1551 
1552 /*
1553  *	Get the remote address ('name') of a socket object. Move the obtained
1554  *	name to user space.
1555  */
1556 
1557 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1558 				int __user *usockaddr_len)
1559 {
1560 	struct socket *sock;
1561 	char address[MAX_SOCK_ADDR];
1562 	int len, err, fput_needed;
1563 
1564 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565 	if (sock != NULL) {
1566 		err = security_socket_getpeername(sock);
1567 		if (err) {
1568 			fput_light(sock->file, fput_needed);
1569 			return err;
1570 		}
1571 
1572 		err =
1573 		    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1574 				       1);
1575 		if (!err)
1576 			err = move_addr_to_user(address, len, usockaddr,
1577 						usockaddr_len);
1578 		fput_light(sock->file, fput_needed);
1579 	}
1580 	return err;
1581 }
1582 
1583 /*
1584  *	Send a datagram to a given address. We move the address into kernel
1585  *	space and check the user space data area is readable before invoking
1586  *	the protocol.
1587  */
1588 
1589 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1590 			   unsigned flags, struct sockaddr __user *addr,
1591 			   int addr_len)
1592 {
1593 	struct socket *sock;
1594 	char address[MAX_SOCK_ADDR];
1595 	int err;
1596 	struct msghdr msg;
1597 	struct iovec iov;
1598 	int fput_needed;
1599 
1600 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 	if (!sock)
1602 		goto out;
1603 
1604 	iov.iov_base = buff;
1605 	iov.iov_len = len;
1606 	msg.msg_name = NULL;
1607 	msg.msg_iov = &iov;
1608 	msg.msg_iovlen = 1;
1609 	msg.msg_control = NULL;
1610 	msg.msg_controllen = 0;
1611 	msg.msg_namelen = 0;
1612 	if (addr) {
1613 		err = move_addr_to_kernel(addr, addr_len, address);
1614 		if (err < 0)
1615 			goto out_put;
1616 		msg.msg_name = address;
1617 		msg.msg_namelen = addr_len;
1618 	}
1619 	if (sock->file->f_flags & O_NONBLOCK)
1620 		flags |= MSG_DONTWAIT;
1621 	msg.msg_flags = flags;
1622 	err = sock_sendmsg(sock, &msg, len);
1623 
1624 out_put:
1625 	fput_light(sock->file, fput_needed);
1626 out:
1627 	return err;
1628 }
1629 
1630 /*
1631  *	Send a datagram down a socket.
1632  */
1633 
1634 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1635 {
1636 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1637 }
1638 
1639 /*
1640  *	Receive a frame from the socket and optionally record the address of the
1641  *	sender. We verify the buffers are writable and if needed move the
1642  *	sender address from kernel to user space.
1643  */
1644 
1645 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1646 			     unsigned flags, struct sockaddr __user *addr,
1647 			     int __user *addr_len)
1648 {
1649 	struct socket *sock;
1650 	struct iovec iov;
1651 	struct msghdr msg;
1652 	char address[MAX_SOCK_ADDR];
1653 	int err, err2;
1654 	int fput_needed;
1655 
1656 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1657 	if (!sock)
1658 		goto out;
1659 
1660 	msg.msg_control = NULL;
1661 	msg.msg_controllen = 0;
1662 	msg.msg_iovlen = 1;
1663 	msg.msg_iov = &iov;
1664 	iov.iov_len = size;
1665 	iov.iov_base = ubuf;
1666 	msg.msg_name = address;
1667 	msg.msg_namelen = MAX_SOCK_ADDR;
1668 	if (sock->file->f_flags & O_NONBLOCK)
1669 		flags |= MSG_DONTWAIT;
1670 	err = sock_recvmsg(sock, &msg, size, flags);
1671 
1672 	if (err >= 0 && addr != NULL) {
1673 		err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1674 		if (err2 < 0)
1675 			err = err2;
1676 	}
1677 
1678 	fput_light(sock->file, fput_needed);
1679 out:
1680 	return err;
1681 }
1682 
1683 /*
1684  *	Receive a datagram from a socket.
1685  */
1686 
1687 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1688 			 unsigned flags)
1689 {
1690 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1691 }
1692 
1693 /*
1694  *	Set a socket option. Because we don't know the option lengths we have
1695  *	to pass the user mode parameter for the protocols to sort out.
1696  */
1697 
1698 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1699 			       char __user *optval, int optlen)
1700 {
1701 	int err, fput_needed;
1702 	struct socket *sock;
1703 
1704 	if (optlen < 0)
1705 		return -EINVAL;
1706 
1707 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 	if (sock != NULL) {
1709 		err = security_socket_setsockopt(sock, level, optname);
1710 		if (err)
1711 			goto out_put;
1712 
1713 		if (level == SOL_SOCKET)
1714 			err =
1715 			    sock_setsockopt(sock, level, optname, optval,
1716 					    optlen);
1717 		else
1718 			err =
1719 			    sock->ops->setsockopt(sock, level, optname, optval,
1720 						  optlen);
1721 out_put:
1722 		fput_light(sock->file, fput_needed);
1723 	}
1724 	return err;
1725 }
1726 
1727 /*
1728  *	Get a socket option. Because we don't know the option lengths we have
1729  *	to pass a user mode parameter for the protocols to sort out.
1730  */
1731 
1732 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1733 			       char __user *optval, int __user *optlen)
1734 {
1735 	int err, fput_needed;
1736 	struct socket *sock;
1737 
1738 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1739 	if (sock != NULL) {
1740 		err = security_socket_getsockopt(sock, level, optname);
1741 		if (err)
1742 			goto out_put;
1743 
1744 		if (level == SOL_SOCKET)
1745 			err =
1746 			    sock_getsockopt(sock, level, optname, optval,
1747 					    optlen);
1748 		else
1749 			err =
1750 			    sock->ops->getsockopt(sock, level, optname, optval,
1751 						  optlen);
1752 out_put:
1753 		fput_light(sock->file, fput_needed);
1754 	}
1755 	return err;
1756 }
1757 
1758 /*
1759  *	Shutdown a socket.
1760  */
1761 
1762 asmlinkage long sys_shutdown(int fd, int how)
1763 {
1764 	int err, fput_needed;
1765 	struct socket *sock;
1766 
1767 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768 	if (sock != NULL) {
1769 		err = security_socket_shutdown(sock, how);
1770 		if (!err)
1771 			err = sock->ops->shutdown(sock, how);
1772 		fput_light(sock->file, fput_needed);
1773 	}
1774 	return err;
1775 }
1776 
1777 /* A couple of helpful macros for getting the address of the 32/64 bit
1778  * fields which are the same type (int / unsigned) on our platforms.
1779  */
1780 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1781 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1782 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1783 
1784 /*
1785  *	BSD sendmsg interface
1786  */
1787 
1788 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1789 {
1790 	struct compat_msghdr __user *msg_compat =
1791 	    (struct compat_msghdr __user *)msg;
1792 	struct socket *sock;
1793 	char address[MAX_SOCK_ADDR];
1794 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1795 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1796 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1797 	/* 20 is size of ipv6_pktinfo */
1798 	unsigned char *ctl_buf = ctl;
1799 	struct msghdr msg_sys;
1800 	int err, ctl_len, iov_size, total_len;
1801 	int fput_needed;
1802 
1803 	err = -EFAULT;
1804 	if (MSG_CMSG_COMPAT & flags) {
1805 		if (get_compat_msghdr(&msg_sys, msg_compat))
1806 			return -EFAULT;
1807 	}
1808 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1809 		return -EFAULT;
1810 
1811 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1812 	if (!sock)
1813 		goto out;
1814 
1815 	/* do not move before msg_sys is valid */
1816 	err = -EMSGSIZE;
1817 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1818 		goto out_put;
1819 
1820 	/* Check whether to allocate the iovec area */
1821 	err = -ENOMEM;
1822 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1823 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1824 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1825 		if (!iov)
1826 			goto out_put;
1827 	}
1828 
1829 	/* This will also move the address data into kernel space */
1830 	if (MSG_CMSG_COMPAT & flags) {
1831 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1832 	} else
1833 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1834 	if (err < 0)
1835 		goto out_freeiov;
1836 	total_len = err;
1837 
1838 	err = -ENOBUFS;
1839 
1840 	if (msg_sys.msg_controllen > INT_MAX)
1841 		goto out_freeiov;
1842 	ctl_len = msg_sys.msg_controllen;
1843 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1844 		err =
1845 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1846 						     sizeof(ctl));
1847 		if (err)
1848 			goto out_freeiov;
1849 		ctl_buf = msg_sys.msg_control;
1850 		ctl_len = msg_sys.msg_controllen;
1851 	} else if (ctl_len) {
1852 		if (ctl_len > sizeof(ctl)) {
1853 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1854 			if (ctl_buf == NULL)
1855 				goto out_freeiov;
1856 		}
1857 		err = -EFAULT;
1858 		/*
1859 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1860 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1861 		 * checking falls down on this.
1862 		 */
1863 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1864 				   ctl_len))
1865 			goto out_freectl;
1866 		msg_sys.msg_control = ctl_buf;
1867 	}
1868 	msg_sys.msg_flags = flags;
1869 
1870 	if (sock->file->f_flags & O_NONBLOCK)
1871 		msg_sys.msg_flags |= MSG_DONTWAIT;
1872 	err = sock_sendmsg(sock, &msg_sys, total_len);
1873 
1874 out_freectl:
1875 	if (ctl_buf != ctl)
1876 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1877 out_freeiov:
1878 	if (iov != iovstack)
1879 		sock_kfree_s(sock->sk, iov, iov_size);
1880 out_put:
1881 	fput_light(sock->file, fput_needed);
1882 out:
1883 	return err;
1884 }
1885 
1886 /*
1887  *	BSD recvmsg interface
1888  */
1889 
1890 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1891 			    unsigned int flags)
1892 {
1893 	struct compat_msghdr __user *msg_compat =
1894 	    (struct compat_msghdr __user *)msg;
1895 	struct socket *sock;
1896 	struct iovec iovstack[UIO_FASTIOV];
1897 	struct iovec *iov = iovstack;
1898 	struct msghdr msg_sys;
1899 	unsigned long cmsg_ptr;
1900 	int err, iov_size, total_len, len;
1901 	int fput_needed;
1902 
1903 	/* kernel mode address */
1904 	char addr[MAX_SOCK_ADDR];
1905 
1906 	/* user mode address pointers */
1907 	struct sockaddr __user *uaddr;
1908 	int __user *uaddr_len;
1909 
1910 	if (MSG_CMSG_COMPAT & flags) {
1911 		if (get_compat_msghdr(&msg_sys, msg_compat))
1912 			return -EFAULT;
1913 	}
1914 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1915 		return -EFAULT;
1916 
1917 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1918 	if (!sock)
1919 		goto out;
1920 
1921 	err = -EMSGSIZE;
1922 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1923 		goto out_put;
1924 
1925 	/* Check whether to allocate the iovec area */
1926 	err = -ENOMEM;
1927 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1928 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1929 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1930 		if (!iov)
1931 			goto out_put;
1932 	}
1933 
1934 	/*
1935 	 *      Save the user-mode address (verify_iovec will change the
1936 	 *      kernel msghdr to use the kernel address space)
1937 	 */
1938 
1939 	uaddr = (__force void __user *)msg_sys.msg_name;
1940 	uaddr_len = COMPAT_NAMELEN(msg);
1941 	if (MSG_CMSG_COMPAT & flags) {
1942 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1943 	} else
1944 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1945 	if (err < 0)
1946 		goto out_freeiov;
1947 	total_len = err;
1948 
1949 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1950 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1951 
1952 	if (sock->file->f_flags & O_NONBLOCK)
1953 		flags |= MSG_DONTWAIT;
1954 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1955 	if (err < 0)
1956 		goto out_freeiov;
1957 	len = err;
1958 
1959 	if (uaddr != NULL) {
1960 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1961 					uaddr_len);
1962 		if (err < 0)
1963 			goto out_freeiov;
1964 	}
1965 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1966 			 COMPAT_FLAGS(msg));
1967 	if (err)
1968 		goto out_freeiov;
1969 	if (MSG_CMSG_COMPAT & flags)
1970 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1971 				 &msg_compat->msg_controllen);
1972 	else
1973 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1974 				 &msg->msg_controllen);
1975 	if (err)
1976 		goto out_freeiov;
1977 	err = len;
1978 
1979 out_freeiov:
1980 	if (iov != iovstack)
1981 		sock_kfree_s(sock->sk, iov, iov_size);
1982 out_put:
1983 	fput_light(sock->file, fput_needed);
1984 out:
1985 	return err;
1986 }
1987 
1988 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1989 
1990 /* Argument list sizes for sys_socketcall */
1991 #define AL(x) ((x) * sizeof(unsigned long))
1992 static const unsigned char nargs[18]={
1993 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1994 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1995 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1996 };
1997 
1998 #undef AL
1999 
2000 /*
2001  *	System call vectors.
2002  *
2003  *	Argument checking cleaned up. Saved 20% in size.
2004  *  This function doesn't need to set the kernel lock because
2005  *  it is set by the callees.
2006  */
2007 
2008 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2009 {
2010 	unsigned long a[6];
2011 	unsigned long a0, a1;
2012 	int err;
2013 
2014 	if (call < 1 || call > SYS_RECVMSG)
2015 		return -EINVAL;
2016 
2017 	/* copy_from_user should be SMP safe. */
2018 	if (copy_from_user(a, args, nargs[call]))
2019 		return -EFAULT;
2020 
2021 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2022 	if (err)
2023 		return err;
2024 
2025 	a0 = a[0];
2026 	a1 = a[1];
2027 
2028 	switch (call) {
2029 	case SYS_SOCKET:
2030 		err = sys_socket(a0, a1, a[2]);
2031 		break;
2032 	case SYS_BIND:
2033 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2034 		break;
2035 	case SYS_CONNECT:
2036 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2037 		break;
2038 	case SYS_LISTEN:
2039 		err = sys_listen(a0, a1);
2040 		break;
2041 	case SYS_ACCEPT:
2042 		err =
2043 		    sys_accept(a0, (struct sockaddr __user *)a1,
2044 			       (int __user *)a[2]);
2045 		break;
2046 	case SYS_GETSOCKNAME:
2047 		err =
2048 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2049 				    (int __user *)a[2]);
2050 		break;
2051 	case SYS_GETPEERNAME:
2052 		err =
2053 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2054 				    (int __user *)a[2]);
2055 		break;
2056 	case SYS_SOCKETPAIR:
2057 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2058 		break;
2059 	case SYS_SEND:
2060 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2061 		break;
2062 	case SYS_SENDTO:
2063 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2064 				 (struct sockaddr __user *)a[4], a[5]);
2065 		break;
2066 	case SYS_RECV:
2067 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2068 		break;
2069 	case SYS_RECVFROM:
2070 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2071 				   (struct sockaddr __user *)a[4],
2072 				   (int __user *)a[5]);
2073 		break;
2074 	case SYS_SHUTDOWN:
2075 		err = sys_shutdown(a0, a1);
2076 		break;
2077 	case SYS_SETSOCKOPT:
2078 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2079 		break;
2080 	case SYS_GETSOCKOPT:
2081 		err =
2082 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2083 				   (int __user *)a[4]);
2084 		break;
2085 	case SYS_SENDMSG:
2086 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2087 		break;
2088 	case SYS_RECVMSG:
2089 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2090 		break;
2091 	default:
2092 		err = -EINVAL;
2093 		break;
2094 	}
2095 	return err;
2096 }
2097 
2098 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2099 
2100 /**
2101  *	sock_register - add a socket protocol handler
2102  *	@ops: description of protocol
2103  *
2104  *	This function is called by a protocol handler that wants to
2105  *	advertise its address family, and have it linked into the
2106  *	socket interface. The value ops->family coresponds to the
2107  *	socket system call protocol family.
2108  */
2109 int sock_register(const struct net_proto_family *ops)
2110 {
2111 	int err;
2112 
2113 	if (ops->family >= NPROTO) {
2114 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2115 		       NPROTO);
2116 		return -ENOBUFS;
2117 	}
2118 
2119 	spin_lock(&net_family_lock);
2120 	if (net_families[ops->family])
2121 		err = -EEXIST;
2122 	else {
2123 		net_families[ops->family] = ops;
2124 		err = 0;
2125 	}
2126 	spin_unlock(&net_family_lock);
2127 
2128 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2129 	return err;
2130 }
2131 
2132 /**
2133  *	sock_unregister - remove a protocol handler
2134  *	@family: protocol family to remove
2135  *
2136  *	This function is called by a protocol handler that wants to
2137  *	remove its address family, and have it unlinked from the
2138  *	new socket creation.
2139  *
2140  *	If protocol handler is a module, then it can use module reference
2141  *	counts to protect against new references. If protocol handler is not
2142  *	a module then it needs to provide its own protection in
2143  *	the ops->create routine.
2144  */
2145 void sock_unregister(int family)
2146 {
2147 	BUG_ON(family < 0 || family >= NPROTO);
2148 
2149 	spin_lock(&net_family_lock);
2150 	net_families[family] = NULL;
2151 	spin_unlock(&net_family_lock);
2152 
2153 	synchronize_rcu();
2154 
2155 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2156 }
2157 
2158 static int __init sock_init(void)
2159 {
2160 	/*
2161 	 *      Initialize sock SLAB cache.
2162 	 */
2163 
2164 	sk_init();
2165 
2166 	/*
2167 	 *      Initialize skbuff SLAB cache
2168 	 */
2169 	skb_init();
2170 
2171 	/*
2172 	 *      Initialize the protocols module.
2173 	 */
2174 
2175 	init_inodecache();
2176 	register_filesystem(&sock_fs_type);
2177 	sock_mnt = kern_mount(&sock_fs_type);
2178 
2179 	/* The real protocol initialization is performed in later initcalls.
2180 	 */
2181 
2182 #ifdef CONFIG_NETFILTER
2183 	netfilter_init();
2184 #endif
2185 
2186 	return 0;
2187 }
2188 
2189 core_initcall(sock_init);	/* early initcall */
2190 
2191 #ifdef CONFIG_PROC_FS
2192 void socket_seq_show(struct seq_file *seq)
2193 {
2194 	int cpu;
2195 	int counter = 0;
2196 
2197 	for_each_possible_cpu(cpu)
2198 	    counter += per_cpu(sockets_in_use, cpu);
2199 
2200 	/* It can be negative, by the way. 8) */
2201 	if (counter < 0)
2202 		counter = 0;
2203 
2204 	seq_printf(seq, "sockets: used %d\n", counter);
2205 }
2206 #endif				/* CONFIG_PROC_FS */
2207 
2208 #ifdef CONFIG_COMPAT
2209 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2210 			      unsigned long arg)
2211 {
2212 	struct socket *sock = file->private_data;
2213 	int ret = -ENOIOCTLCMD;
2214 	struct sock *sk;
2215 	struct net *net;
2216 
2217 	sk = sock->sk;
2218 	net = sock_net(sk);
2219 
2220 	if (sock->ops->compat_ioctl)
2221 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2222 
2223 	if (ret == -ENOIOCTLCMD &&
2224 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2225 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2226 
2227 	return ret;
2228 }
2229 #endif
2230 
2231 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2232 {
2233 	return sock->ops->bind(sock, addr, addrlen);
2234 }
2235 
2236 int kernel_listen(struct socket *sock, int backlog)
2237 {
2238 	return sock->ops->listen(sock, backlog);
2239 }
2240 
2241 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2242 {
2243 	struct sock *sk = sock->sk;
2244 	int err;
2245 
2246 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2247 			       newsock);
2248 	if (err < 0)
2249 		goto done;
2250 
2251 	err = sock->ops->accept(sock, *newsock, flags);
2252 	if (err < 0) {
2253 		sock_release(*newsock);
2254 		*newsock = NULL;
2255 		goto done;
2256 	}
2257 
2258 	(*newsock)->ops = sock->ops;
2259 
2260 done:
2261 	return err;
2262 }
2263 
2264 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2265 		   int flags)
2266 {
2267 	return sock->ops->connect(sock, addr, addrlen, flags);
2268 }
2269 
2270 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2271 			 int *addrlen)
2272 {
2273 	return sock->ops->getname(sock, addr, addrlen, 0);
2274 }
2275 
2276 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2277 			 int *addrlen)
2278 {
2279 	return sock->ops->getname(sock, addr, addrlen, 1);
2280 }
2281 
2282 int kernel_getsockopt(struct socket *sock, int level, int optname,
2283 			char *optval, int *optlen)
2284 {
2285 	mm_segment_t oldfs = get_fs();
2286 	int err;
2287 
2288 	set_fs(KERNEL_DS);
2289 	if (level == SOL_SOCKET)
2290 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2291 	else
2292 		err = sock->ops->getsockopt(sock, level, optname, optval,
2293 					    optlen);
2294 	set_fs(oldfs);
2295 	return err;
2296 }
2297 
2298 int kernel_setsockopt(struct socket *sock, int level, int optname,
2299 			char *optval, int optlen)
2300 {
2301 	mm_segment_t oldfs = get_fs();
2302 	int err;
2303 
2304 	set_fs(KERNEL_DS);
2305 	if (level == SOL_SOCKET)
2306 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2307 	else
2308 		err = sock->ops->setsockopt(sock, level, optname, optval,
2309 					    optlen);
2310 	set_fs(oldfs);
2311 	return err;
2312 }
2313 
2314 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2315 		    size_t size, int flags)
2316 {
2317 	if (sock->ops->sendpage)
2318 		return sock->ops->sendpage(sock, page, offset, size, flags);
2319 
2320 	return sock_no_sendpage(sock, page, offset, size, flags);
2321 }
2322 
2323 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2324 {
2325 	mm_segment_t oldfs = get_fs();
2326 	int err;
2327 
2328 	set_fs(KERNEL_DS);
2329 	err = sock->ops->ioctl(sock, cmd, arg);
2330 	set_fs(oldfs);
2331 
2332 	return err;
2333 }
2334 
2335 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2336 {
2337 	return sock->ops->shutdown(sock, how);
2338 }
2339 
2340 EXPORT_SYMBOL(sock_create);
2341 EXPORT_SYMBOL(sock_create_kern);
2342 EXPORT_SYMBOL(sock_create_lite);
2343 EXPORT_SYMBOL(sock_map_fd);
2344 EXPORT_SYMBOL(sock_recvmsg);
2345 EXPORT_SYMBOL(sock_register);
2346 EXPORT_SYMBOL(sock_release);
2347 EXPORT_SYMBOL(sock_sendmsg);
2348 EXPORT_SYMBOL(sock_unregister);
2349 EXPORT_SYMBOL(sock_wake_async);
2350 EXPORT_SYMBOL(sockfd_lookup);
2351 EXPORT_SYMBOL(kernel_sendmsg);
2352 EXPORT_SYMBOL(kernel_recvmsg);
2353 EXPORT_SYMBOL(kernel_bind);
2354 EXPORT_SYMBOL(kernel_listen);
2355 EXPORT_SYMBOL(kernel_accept);
2356 EXPORT_SYMBOL(kernel_connect);
2357 EXPORT_SYMBOL(kernel_getsockname);
2358 EXPORT_SYMBOL(kernel_getpeername);
2359 EXPORT_SYMBOL(kernel_getsockopt);
2360 EXPORT_SYMBOL(kernel_setsockopt);
2361 EXPORT_SYMBOL(kernel_sendpage);
2362 EXPORT_SYMBOL(kernel_sock_ioctl);
2363 EXPORT_SYMBOL(kernel_sock_shutdown);
2364