1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 118 unsigned long nr_segs, loff_t pos); 119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 120 unsigned long nr_segs, loff_t pos); 121 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 122 123 static int sock_close(struct inode *inode, struct file *file); 124 static unsigned int sock_poll(struct file *file, 125 struct poll_table_struct *wait); 126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 127 #ifdef CONFIG_COMPAT 128 static long compat_sock_ioctl(struct file *file, 129 unsigned int cmd, unsigned long arg); 130 #endif 131 static int sock_fasync(int fd, struct file *filp, int on); 132 static ssize_t sock_sendpage(struct file *file, struct page *page, 133 int offset, size_t size, loff_t *ppos, int more); 134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 135 struct pipe_inode_info *pipe, size_t len, 136 unsigned int flags); 137 138 /* 139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 140 * in the operation structures but are done directly via the socketcall() multiplexor. 141 */ 142 143 static const struct file_operations socket_file_ops = { 144 .owner = THIS_MODULE, 145 .llseek = no_llseek, 146 .aio_read = sock_aio_read, 147 .aio_write = sock_aio_write, 148 .poll = sock_poll, 149 .unlocked_ioctl = sock_ioctl, 150 #ifdef CONFIG_COMPAT 151 .compat_ioctl = compat_sock_ioctl, 152 #endif 153 .mmap = sock_mmap, 154 .open = sock_no_open, /* special open code to disallow open via /proc */ 155 .release = sock_close, 156 .fasync = sock_fasync, 157 .sendpage = sock_sendpage, 158 .splice_write = generic_splice_sendpage, 159 .splice_read = sock_splice_read, 160 }; 161 162 /* 163 * The protocol list. Each protocol is registered in here. 164 */ 165 166 static DEFINE_SPINLOCK(net_family_lock); 167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 168 169 /* 170 * Statistics counters of the socket lists 171 */ 172 173 static DEFINE_PER_CPU(int, sockets_in_use); 174 175 /* 176 * Support routines. 177 * Move socket addresses back and forth across the kernel/user 178 * divide and look after the messy bits. 179 */ 180 181 /** 182 * move_addr_to_kernel - copy a socket address into kernel space 183 * @uaddr: Address in user space 184 * @kaddr: Address in kernel space 185 * @ulen: Length in user space 186 * 187 * The address is copied into kernel space. If the provided address is 188 * too long an error code of -EINVAL is returned. If the copy gives 189 * invalid addresses -EFAULT is returned. On a success 0 is returned. 190 */ 191 192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 193 { 194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 195 return -EINVAL; 196 if (ulen == 0) 197 return 0; 198 if (copy_from_user(kaddr, uaddr, ulen)) 199 return -EFAULT; 200 return audit_sockaddr(ulen, kaddr); 201 } 202 203 /** 204 * move_addr_to_user - copy an address to user space 205 * @kaddr: kernel space address 206 * @klen: length of address in kernel 207 * @uaddr: user space address 208 * @ulen: pointer to user length field 209 * 210 * The value pointed to by ulen on entry is the buffer length available. 211 * This is overwritten with the buffer space used. -EINVAL is returned 212 * if an overlong buffer is specified or a negative buffer size. -EFAULT 213 * is returned if either the buffer or the length field are not 214 * accessible. 215 * After copying the data up to the limit the user specifies, the true 216 * length of the data is written over the length limit the user 217 * specified. Zero is returned for a success. 218 */ 219 220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 221 void __user *uaddr, int __user *ulen) 222 { 223 int err; 224 int len; 225 226 BUG_ON(klen > sizeof(struct sockaddr_storage)); 227 err = get_user(len, ulen); 228 if (err) 229 return err; 230 if (len > klen) 231 len = klen; 232 if (len < 0) 233 return -EINVAL; 234 if (len) { 235 if (audit_sockaddr(klen, kaddr)) 236 return -ENOMEM; 237 if (copy_to_user(uaddr, kaddr, len)) 238 return -EFAULT; 239 } 240 /* 241 * "fromlen shall refer to the value before truncation.." 242 * 1003.1g 243 */ 244 return __put_user(klen, ulen); 245 } 246 247 static struct kmem_cache *sock_inode_cachep __read_mostly; 248 249 static struct inode *sock_alloc_inode(struct super_block *sb) 250 { 251 struct socket_alloc *ei; 252 struct socket_wq *wq; 253 254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 255 if (!ei) 256 return NULL; 257 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 258 if (!wq) { 259 kmem_cache_free(sock_inode_cachep, ei); 260 return NULL; 261 } 262 init_waitqueue_head(&wq->wait); 263 wq->fasync_list = NULL; 264 RCU_INIT_POINTER(ei->socket.wq, wq); 265 266 ei->socket.state = SS_UNCONNECTED; 267 ei->socket.flags = 0; 268 ei->socket.ops = NULL; 269 ei->socket.sk = NULL; 270 ei->socket.file = NULL; 271 272 return &ei->vfs_inode; 273 } 274 275 static void sock_destroy_inode(struct inode *inode) 276 { 277 struct socket_alloc *ei; 278 struct socket_wq *wq; 279 280 ei = container_of(inode, struct socket_alloc, vfs_inode); 281 wq = rcu_dereference_protected(ei->socket.wq, 1); 282 kfree_rcu(wq, rcu); 283 kmem_cache_free(sock_inode_cachep, ei); 284 } 285 286 static void init_once(void *foo) 287 { 288 struct socket_alloc *ei = (struct socket_alloc *)foo; 289 290 inode_init_once(&ei->vfs_inode); 291 } 292 293 static int init_inodecache(void) 294 { 295 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 296 sizeof(struct socket_alloc), 297 0, 298 (SLAB_HWCACHE_ALIGN | 299 SLAB_RECLAIM_ACCOUNT | 300 SLAB_MEM_SPREAD), 301 init_once); 302 if (sock_inode_cachep == NULL) 303 return -ENOMEM; 304 return 0; 305 } 306 307 static const struct super_operations sockfs_ops = { 308 .alloc_inode = sock_alloc_inode, 309 .destroy_inode = sock_destroy_inode, 310 .statfs = simple_statfs, 311 }; 312 313 /* 314 * sockfs_dname() is called from d_path(). 315 */ 316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 317 { 318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 319 dentry->d_inode->i_ino); 320 } 321 322 static const struct dentry_operations sockfs_dentry_operations = { 323 .d_dname = sockfs_dname, 324 }; 325 326 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 327 int flags, const char *dev_name, void *data) 328 { 329 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 330 &sockfs_dentry_operations, SOCKFS_MAGIC); 331 } 332 333 static struct vfsmount *sock_mnt __read_mostly; 334 335 static struct file_system_type sock_fs_type = { 336 .name = "sockfs", 337 .mount = sockfs_mount, 338 .kill_sb = kill_anon_super, 339 }; 340 341 /* 342 * Obtains the first available file descriptor and sets it up for use. 343 * 344 * These functions create file structures and maps them to fd space 345 * of the current process. On success it returns file descriptor 346 * and file struct implicitly stored in sock->file. 347 * Note that another thread may close file descriptor before we return 348 * from this function. We use the fact that now we do not refer 349 * to socket after mapping. If one day we will need it, this 350 * function will increment ref. count on file by 1. 351 * 352 * In any case returned fd MAY BE not valid! 353 * This race condition is unavoidable 354 * with shared fd spaces, we cannot solve it inside kernel, 355 * but we take care of internal coherence yet. 356 */ 357 358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 359 { 360 struct qstr name = { .name = "" }; 361 struct path path; 362 struct file *file; 363 364 if (dname) { 365 name.name = dname; 366 name.len = strlen(name.name); 367 } else if (sock->sk) { 368 name.name = sock->sk->sk_prot_creator->name; 369 name.len = strlen(name.name); 370 } 371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 372 if (unlikely(!path.dentry)) 373 return ERR_PTR(-ENOMEM); 374 path.mnt = mntget(sock_mnt); 375 376 d_instantiate(path.dentry, SOCK_INODE(sock)); 377 SOCK_INODE(sock)->i_fop = &socket_file_ops; 378 379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 380 &socket_file_ops); 381 if (unlikely(IS_ERR(file))) { 382 /* drop dentry, keep inode */ 383 ihold(path.dentry->d_inode); 384 path_put(&path); 385 return file; 386 } 387 388 sock->file = file; 389 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 390 file->private_data = sock; 391 return file; 392 } 393 EXPORT_SYMBOL(sock_alloc_file); 394 395 static int sock_map_fd(struct socket *sock, int flags) 396 { 397 struct file *newfile; 398 int fd = get_unused_fd_flags(flags); 399 if (unlikely(fd < 0)) 400 return fd; 401 402 newfile = sock_alloc_file(sock, flags, NULL); 403 if (likely(!IS_ERR(newfile))) { 404 fd_install(fd, newfile); 405 return fd; 406 } 407 408 put_unused_fd(fd); 409 return PTR_ERR(newfile); 410 } 411 412 struct socket *sock_from_file(struct file *file, int *err) 413 { 414 if (file->f_op == &socket_file_ops) 415 return file->private_data; /* set in sock_map_fd */ 416 417 *err = -ENOTSOCK; 418 return NULL; 419 } 420 EXPORT_SYMBOL(sock_from_file); 421 422 /** 423 * sockfd_lookup - Go from a file number to its socket slot 424 * @fd: file handle 425 * @err: pointer to an error code return 426 * 427 * The file handle passed in is locked and the socket it is bound 428 * too is returned. If an error occurs the err pointer is overwritten 429 * with a negative errno code and NULL is returned. The function checks 430 * for both invalid handles and passing a handle which is not a socket. 431 * 432 * On a success the socket object pointer is returned. 433 */ 434 435 struct socket *sockfd_lookup(int fd, int *err) 436 { 437 struct file *file; 438 struct socket *sock; 439 440 file = fget(fd); 441 if (!file) { 442 *err = -EBADF; 443 return NULL; 444 } 445 446 sock = sock_from_file(file, err); 447 if (!sock) 448 fput(file); 449 return sock; 450 } 451 EXPORT_SYMBOL(sockfd_lookup); 452 453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 454 { 455 struct fd f = fdget(fd); 456 struct socket *sock; 457 458 *err = -EBADF; 459 if (f.file) { 460 sock = sock_from_file(f.file, err); 461 if (likely(sock)) { 462 *fput_needed = f.flags; 463 return sock; 464 } 465 fdput(f); 466 } 467 return NULL; 468 } 469 470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 473 static ssize_t sockfs_getxattr(struct dentry *dentry, 474 const char *name, void *value, size_t size) 475 { 476 const char *proto_name; 477 size_t proto_size; 478 int error; 479 480 error = -ENODATA; 481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 482 proto_name = dentry->d_name.name; 483 proto_size = strlen(proto_name); 484 485 if (value) { 486 error = -ERANGE; 487 if (proto_size + 1 > size) 488 goto out; 489 490 strncpy(value, proto_name, proto_size + 1); 491 } 492 error = proto_size + 1; 493 } 494 495 out: 496 return error; 497 } 498 499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 500 size_t size) 501 { 502 ssize_t len; 503 ssize_t used = 0; 504 505 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 506 if (len < 0) 507 return len; 508 used += len; 509 if (buffer) { 510 if (size < used) 511 return -ERANGE; 512 buffer += len; 513 } 514 515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 516 used += len; 517 if (buffer) { 518 if (size < used) 519 return -ERANGE; 520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 521 buffer += len; 522 } 523 524 return used; 525 } 526 527 static const struct inode_operations sockfs_inode_ops = { 528 .getxattr = sockfs_getxattr, 529 .listxattr = sockfs_listxattr, 530 }; 531 532 /** 533 * sock_alloc - allocate a socket 534 * 535 * Allocate a new inode and socket object. The two are bound together 536 * and initialised. The socket is then returned. If we are out of inodes 537 * NULL is returned. 538 */ 539 540 static struct socket *sock_alloc(void) 541 { 542 struct inode *inode; 543 struct socket *sock; 544 545 inode = new_inode_pseudo(sock_mnt->mnt_sb); 546 if (!inode) 547 return NULL; 548 549 sock = SOCKET_I(inode); 550 551 kmemcheck_annotate_bitfield(sock, type); 552 inode->i_ino = get_next_ino(); 553 inode->i_mode = S_IFSOCK | S_IRWXUGO; 554 inode->i_uid = current_fsuid(); 555 inode->i_gid = current_fsgid(); 556 inode->i_op = &sockfs_inode_ops; 557 558 this_cpu_add(sockets_in_use, 1); 559 return sock; 560 } 561 562 /* 563 * In theory you can't get an open on this inode, but /proc provides 564 * a back door. Remember to keep it shut otherwise you'll let the 565 * creepy crawlies in. 566 */ 567 568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 569 { 570 return -ENXIO; 571 } 572 573 const struct file_operations bad_sock_fops = { 574 .owner = THIS_MODULE, 575 .open = sock_no_open, 576 .llseek = noop_llseek, 577 }; 578 579 /** 580 * sock_release - close a socket 581 * @sock: socket to close 582 * 583 * The socket is released from the protocol stack if it has a release 584 * callback, and the inode is then released if the socket is bound to 585 * an inode not a file. 586 */ 587 588 void sock_release(struct socket *sock) 589 { 590 if (sock->ops) { 591 struct module *owner = sock->ops->owner; 592 593 sock->ops->release(sock); 594 sock->ops = NULL; 595 module_put(owner); 596 } 597 598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 599 pr_err("%s: fasync list not empty!\n", __func__); 600 601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 602 return; 603 604 this_cpu_sub(sockets_in_use, 1); 605 if (!sock->file) { 606 iput(SOCK_INODE(sock)); 607 return; 608 } 609 sock->file = NULL; 610 } 611 EXPORT_SYMBOL(sock_release); 612 613 void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 614 { 615 u8 flags = *tx_flags; 616 617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 618 flags |= SKBTX_HW_TSTAMP; 619 620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 621 flags |= SKBTX_SW_TSTAMP; 622 623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 624 flags |= SKBTX_SCHED_TSTAMP; 625 626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 627 flags |= SKBTX_ACK_TSTAMP; 628 629 if (sock_flag(sk, SOCK_WIFI_STATUS)) 630 flags |= SKBTX_WIFI_STATUS; 631 632 *tx_flags = flags; 633 } 634 EXPORT_SYMBOL(sock_tx_timestamp); 635 636 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 637 struct msghdr *msg, size_t size) 638 { 639 struct sock_iocb *si = kiocb_to_siocb(iocb); 640 641 si->sock = sock; 642 si->scm = NULL; 643 si->msg = msg; 644 si->size = size; 645 646 return sock->ops->sendmsg(iocb, sock, msg, size); 647 } 648 649 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 650 struct msghdr *msg, size_t size) 651 { 652 int err = security_socket_sendmsg(sock, msg, size); 653 654 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 655 } 656 657 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 658 { 659 struct kiocb iocb; 660 struct sock_iocb siocb; 661 int ret; 662 663 init_sync_kiocb(&iocb, NULL); 664 iocb.private = &siocb; 665 ret = __sock_sendmsg(&iocb, sock, msg, size); 666 if (-EIOCBQUEUED == ret) 667 ret = wait_on_sync_kiocb(&iocb); 668 return ret; 669 } 670 EXPORT_SYMBOL(sock_sendmsg); 671 672 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 673 { 674 struct kiocb iocb; 675 struct sock_iocb siocb; 676 int ret; 677 678 init_sync_kiocb(&iocb, NULL); 679 iocb.private = &siocb; 680 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 681 if (-EIOCBQUEUED == ret) 682 ret = wait_on_sync_kiocb(&iocb); 683 return ret; 684 } 685 686 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 687 struct kvec *vec, size_t num, size_t size) 688 { 689 mm_segment_t oldfs = get_fs(); 690 int result; 691 692 set_fs(KERNEL_DS); 693 /* 694 * the following is safe, since for compiler definitions of kvec and 695 * iovec are identical, yielding the same in-core layout and alignment 696 */ 697 msg->msg_iov = (struct iovec *)vec; 698 msg->msg_iovlen = num; 699 result = sock_sendmsg(sock, msg, size); 700 set_fs(oldfs); 701 return result; 702 } 703 EXPORT_SYMBOL(kernel_sendmsg); 704 705 /* 706 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 707 */ 708 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 709 struct sk_buff *skb) 710 { 711 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 712 struct scm_timestamping tss; 713 int empty = 1; 714 struct skb_shared_hwtstamps *shhwtstamps = 715 skb_hwtstamps(skb); 716 717 /* Race occurred between timestamp enabling and packet 718 receiving. Fill in the current time for now. */ 719 if (need_software_tstamp && skb->tstamp.tv64 == 0) 720 __net_timestamp(skb); 721 722 if (need_software_tstamp) { 723 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 724 struct timeval tv; 725 skb_get_timestamp(skb, &tv); 726 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 727 sizeof(tv), &tv); 728 } else { 729 struct timespec ts; 730 skb_get_timestampns(skb, &ts); 731 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 732 sizeof(ts), &ts); 733 } 734 } 735 736 memset(&tss, 0, sizeof(tss)); 737 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 738 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 739 empty = 0; 740 if (shhwtstamps && 741 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 742 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 743 empty = 0; 744 if (!empty) 745 put_cmsg(msg, SOL_SOCKET, 746 SCM_TIMESTAMPING, sizeof(tss), &tss); 747 } 748 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 749 750 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 751 struct sk_buff *skb) 752 { 753 int ack; 754 755 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 756 return; 757 if (!skb->wifi_acked_valid) 758 return; 759 760 ack = skb->wifi_acked; 761 762 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 763 } 764 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 765 766 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 767 struct sk_buff *skb) 768 { 769 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 770 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 771 sizeof(__u32), &skb->dropcount); 772 } 773 774 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 775 struct sk_buff *skb) 776 { 777 sock_recv_timestamp(msg, sk, skb); 778 sock_recv_drops(msg, sk, skb); 779 } 780 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 781 782 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 783 struct msghdr *msg, size_t size, int flags) 784 { 785 struct sock_iocb *si = kiocb_to_siocb(iocb); 786 787 si->sock = sock; 788 si->scm = NULL; 789 si->msg = msg; 790 si->size = size; 791 si->flags = flags; 792 793 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 794 } 795 796 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 797 struct msghdr *msg, size_t size, int flags) 798 { 799 int err = security_socket_recvmsg(sock, msg, size, flags); 800 801 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 802 } 803 804 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 805 size_t size, int flags) 806 { 807 struct kiocb iocb; 808 struct sock_iocb siocb; 809 int ret; 810 811 init_sync_kiocb(&iocb, NULL); 812 iocb.private = &siocb; 813 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 814 if (-EIOCBQUEUED == ret) 815 ret = wait_on_sync_kiocb(&iocb); 816 return ret; 817 } 818 EXPORT_SYMBOL(sock_recvmsg); 819 820 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 821 size_t size, int flags) 822 { 823 struct kiocb iocb; 824 struct sock_iocb siocb; 825 int ret; 826 827 init_sync_kiocb(&iocb, NULL); 828 iocb.private = &siocb; 829 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 830 if (-EIOCBQUEUED == ret) 831 ret = wait_on_sync_kiocb(&iocb); 832 return ret; 833 } 834 835 /** 836 * kernel_recvmsg - Receive a message from a socket (kernel space) 837 * @sock: The socket to receive the message from 838 * @msg: Received message 839 * @vec: Input s/g array for message data 840 * @num: Size of input s/g array 841 * @size: Number of bytes to read 842 * @flags: Message flags (MSG_DONTWAIT, etc...) 843 * 844 * On return the msg structure contains the scatter/gather array passed in the 845 * vec argument. The array is modified so that it consists of the unfilled 846 * portion of the original array. 847 * 848 * The returned value is the total number of bytes received, or an error. 849 */ 850 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 851 struct kvec *vec, size_t num, size_t size, int flags) 852 { 853 mm_segment_t oldfs = get_fs(); 854 int result; 855 856 set_fs(KERNEL_DS); 857 /* 858 * the following is safe, since for compiler definitions of kvec and 859 * iovec are identical, yielding the same in-core layout and alignment 860 */ 861 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 862 result = sock_recvmsg(sock, msg, size, flags); 863 set_fs(oldfs); 864 return result; 865 } 866 EXPORT_SYMBOL(kernel_recvmsg); 867 868 static ssize_t sock_sendpage(struct file *file, struct page *page, 869 int offset, size_t size, loff_t *ppos, int more) 870 { 871 struct socket *sock; 872 int flags; 873 874 sock = file->private_data; 875 876 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 877 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 878 flags |= more; 879 880 return kernel_sendpage(sock, page, offset, size, flags); 881 } 882 883 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 884 struct pipe_inode_info *pipe, size_t len, 885 unsigned int flags) 886 { 887 struct socket *sock = file->private_data; 888 889 if (unlikely(!sock->ops->splice_read)) 890 return -EINVAL; 891 892 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 893 } 894 895 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 896 struct sock_iocb *siocb) 897 { 898 if (!is_sync_kiocb(iocb)) 899 BUG(); 900 901 siocb->kiocb = iocb; 902 iocb->private = siocb; 903 return siocb; 904 } 905 906 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 907 struct file *file, const struct iovec *iov, 908 unsigned long nr_segs) 909 { 910 struct socket *sock = file->private_data; 911 size_t size = 0; 912 int i; 913 914 for (i = 0; i < nr_segs; i++) 915 size += iov[i].iov_len; 916 917 msg->msg_name = NULL; 918 msg->msg_namelen = 0; 919 msg->msg_control = NULL; 920 msg->msg_controllen = 0; 921 msg->msg_iov = (struct iovec *)iov; 922 msg->msg_iovlen = nr_segs; 923 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 924 925 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 926 } 927 928 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 929 unsigned long nr_segs, loff_t pos) 930 { 931 struct sock_iocb siocb, *x; 932 933 if (pos != 0) 934 return -ESPIPE; 935 936 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 937 return 0; 938 939 940 x = alloc_sock_iocb(iocb, &siocb); 941 if (!x) 942 return -ENOMEM; 943 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 944 } 945 946 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 947 struct file *file, const struct iovec *iov, 948 unsigned long nr_segs) 949 { 950 struct socket *sock = file->private_data; 951 size_t size = 0; 952 int i; 953 954 for (i = 0; i < nr_segs; i++) 955 size += iov[i].iov_len; 956 957 msg->msg_name = NULL; 958 msg->msg_namelen = 0; 959 msg->msg_control = NULL; 960 msg->msg_controllen = 0; 961 msg->msg_iov = (struct iovec *)iov; 962 msg->msg_iovlen = nr_segs; 963 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 964 if (sock->type == SOCK_SEQPACKET) 965 msg->msg_flags |= MSG_EOR; 966 967 return __sock_sendmsg(iocb, sock, msg, size); 968 } 969 970 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 971 unsigned long nr_segs, loff_t pos) 972 { 973 struct sock_iocb siocb, *x; 974 975 if (pos != 0) 976 return -ESPIPE; 977 978 x = alloc_sock_iocb(iocb, &siocb); 979 if (!x) 980 return -ENOMEM; 981 982 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 983 } 984 985 /* 986 * Atomic setting of ioctl hooks to avoid race 987 * with module unload. 988 */ 989 990 static DEFINE_MUTEX(br_ioctl_mutex); 991 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 992 993 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 994 { 995 mutex_lock(&br_ioctl_mutex); 996 br_ioctl_hook = hook; 997 mutex_unlock(&br_ioctl_mutex); 998 } 999 EXPORT_SYMBOL(brioctl_set); 1000 1001 static DEFINE_MUTEX(vlan_ioctl_mutex); 1002 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1003 1004 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1005 { 1006 mutex_lock(&vlan_ioctl_mutex); 1007 vlan_ioctl_hook = hook; 1008 mutex_unlock(&vlan_ioctl_mutex); 1009 } 1010 EXPORT_SYMBOL(vlan_ioctl_set); 1011 1012 static DEFINE_MUTEX(dlci_ioctl_mutex); 1013 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1014 1015 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1016 { 1017 mutex_lock(&dlci_ioctl_mutex); 1018 dlci_ioctl_hook = hook; 1019 mutex_unlock(&dlci_ioctl_mutex); 1020 } 1021 EXPORT_SYMBOL(dlci_ioctl_set); 1022 1023 static long sock_do_ioctl(struct net *net, struct socket *sock, 1024 unsigned int cmd, unsigned long arg) 1025 { 1026 int err; 1027 void __user *argp = (void __user *)arg; 1028 1029 err = sock->ops->ioctl(sock, cmd, arg); 1030 1031 /* 1032 * If this ioctl is unknown try to hand it down 1033 * to the NIC driver. 1034 */ 1035 if (err == -ENOIOCTLCMD) 1036 err = dev_ioctl(net, cmd, argp); 1037 1038 return err; 1039 } 1040 1041 /* 1042 * With an ioctl, arg may well be a user mode pointer, but we don't know 1043 * what to do with it - that's up to the protocol still. 1044 */ 1045 1046 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1047 { 1048 struct socket *sock; 1049 struct sock *sk; 1050 void __user *argp = (void __user *)arg; 1051 int pid, err; 1052 struct net *net; 1053 1054 sock = file->private_data; 1055 sk = sock->sk; 1056 net = sock_net(sk); 1057 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1058 err = dev_ioctl(net, cmd, argp); 1059 } else 1060 #ifdef CONFIG_WEXT_CORE 1061 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1062 err = dev_ioctl(net, cmd, argp); 1063 } else 1064 #endif 1065 switch (cmd) { 1066 case FIOSETOWN: 1067 case SIOCSPGRP: 1068 err = -EFAULT; 1069 if (get_user(pid, (int __user *)argp)) 1070 break; 1071 err = f_setown(sock->file, pid, 1); 1072 break; 1073 case FIOGETOWN: 1074 case SIOCGPGRP: 1075 err = put_user(f_getown(sock->file), 1076 (int __user *)argp); 1077 break; 1078 case SIOCGIFBR: 1079 case SIOCSIFBR: 1080 case SIOCBRADDBR: 1081 case SIOCBRDELBR: 1082 err = -ENOPKG; 1083 if (!br_ioctl_hook) 1084 request_module("bridge"); 1085 1086 mutex_lock(&br_ioctl_mutex); 1087 if (br_ioctl_hook) 1088 err = br_ioctl_hook(net, cmd, argp); 1089 mutex_unlock(&br_ioctl_mutex); 1090 break; 1091 case SIOCGIFVLAN: 1092 case SIOCSIFVLAN: 1093 err = -ENOPKG; 1094 if (!vlan_ioctl_hook) 1095 request_module("8021q"); 1096 1097 mutex_lock(&vlan_ioctl_mutex); 1098 if (vlan_ioctl_hook) 1099 err = vlan_ioctl_hook(net, argp); 1100 mutex_unlock(&vlan_ioctl_mutex); 1101 break; 1102 case SIOCADDDLCI: 1103 case SIOCDELDLCI: 1104 err = -ENOPKG; 1105 if (!dlci_ioctl_hook) 1106 request_module("dlci"); 1107 1108 mutex_lock(&dlci_ioctl_mutex); 1109 if (dlci_ioctl_hook) 1110 err = dlci_ioctl_hook(cmd, argp); 1111 mutex_unlock(&dlci_ioctl_mutex); 1112 break; 1113 default: 1114 err = sock_do_ioctl(net, sock, cmd, arg); 1115 break; 1116 } 1117 return err; 1118 } 1119 1120 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1121 { 1122 int err; 1123 struct socket *sock = NULL; 1124 1125 err = security_socket_create(family, type, protocol, 1); 1126 if (err) 1127 goto out; 1128 1129 sock = sock_alloc(); 1130 if (!sock) { 1131 err = -ENOMEM; 1132 goto out; 1133 } 1134 1135 sock->type = type; 1136 err = security_socket_post_create(sock, family, type, protocol, 1); 1137 if (err) 1138 goto out_release; 1139 1140 out: 1141 *res = sock; 1142 return err; 1143 out_release: 1144 sock_release(sock); 1145 sock = NULL; 1146 goto out; 1147 } 1148 EXPORT_SYMBOL(sock_create_lite); 1149 1150 /* No kernel lock held - perfect */ 1151 static unsigned int sock_poll(struct file *file, poll_table *wait) 1152 { 1153 unsigned int busy_flag = 0; 1154 struct socket *sock; 1155 1156 /* 1157 * We can't return errors to poll, so it's either yes or no. 1158 */ 1159 sock = file->private_data; 1160 1161 if (sk_can_busy_loop(sock->sk)) { 1162 /* this socket can poll_ll so tell the system call */ 1163 busy_flag = POLL_BUSY_LOOP; 1164 1165 /* once, only if requested by syscall */ 1166 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1167 sk_busy_loop(sock->sk, 1); 1168 } 1169 1170 return busy_flag | sock->ops->poll(file, sock, wait); 1171 } 1172 1173 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1174 { 1175 struct socket *sock = file->private_data; 1176 1177 return sock->ops->mmap(file, sock, vma); 1178 } 1179 1180 static int sock_close(struct inode *inode, struct file *filp) 1181 { 1182 sock_release(SOCKET_I(inode)); 1183 return 0; 1184 } 1185 1186 /* 1187 * Update the socket async list 1188 * 1189 * Fasync_list locking strategy. 1190 * 1191 * 1. fasync_list is modified only under process context socket lock 1192 * i.e. under semaphore. 1193 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1194 * or under socket lock 1195 */ 1196 1197 static int sock_fasync(int fd, struct file *filp, int on) 1198 { 1199 struct socket *sock = filp->private_data; 1200 struct sock *sk = sock->sk; 1201 struct socket_wq *wq; 1202 1203 if (sk == NULL) 1204 return -EINVAL; 1205 1206 lock_sock(sk); 1207 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1208 fasync_helper(fd, filp, on, &wq->fasync_list); 1209 1210 if (!wq->fasync_list) 1211 sock_reset_flag(sk, SOCK_FASYNC); 1212 else 1213 sock_set_flag(sk, SOCK_FASYNC); 1214 1215 release_sock(sk); 1216 return 0; 1217 } 1218 1219 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1220 1221 int sock_wake_async(struct socket *sock, int how, int band) 1222 { 1223 struct socket_wq *wq; 1224 1225 if (!sock) 1226 return -1; 1227 rcu_read_lock(); 1228 wq = rcu_dereference(sock->wq); 1229 if (!wq || !wq->fasync_list) { 1230 rcu_read_unlock(); 1231 return -1; 1232 } 1233 switch (how) { 1234 case SOCK_WAKE_WAITD: 1235 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1236 break; 1237 goto call_kill; 1238 case SOCK_WAKE_SPACE: 1239 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1240 break; 1241 /* fall through */ 1242 case SOCK_WAKE_IO: 1243 call_kill: 1244 kill_fasync(&wq->fasync_list, SIGIO, band); 1245 break; 1246 case SOCK_WAKE_URG: 1247 kill_fasync(&wq->fasync_list, SIGURG, band); 1248 } 1249 rcu_read_unlock(); 1250 return 0; 1251 } 1252 EXPORT_SYMBOL(sock_wake_async); 1253 1254 int __sock_create(struct net *net, int family, int type, int protocol, 1255 struct socket **res, int kern) 1256 { 1257 int err; 1258 struct socket *sock; 1259 const struct net_proto_family *pf; 1260 1261 /* 1262 * Check protocol is in range 1263 */ 1264 if (family < 0 || family >= NPROTO) 1265 return -EAFNOSUPPORT; 1266 if (type < 0 || type >= SOCK_MAX) 1267 return -EINVAL; 1268 1269 /* Compatibility. 1270 1271 This uglymoron is moved from INET layer to here to avoid 1272 deadlock in module load. 1273 */ 1274 if (family == PF_INET && type == SOCK_PACKET) { 1275 static int warned; 1276 if (!warned) { 1277 warned = 1; 1278 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1279 current->comm); 1280 } 1281 family = PF_PACKET; 1282 } 1283 1284 err = security_socket_create(family, type, protocol, kern); 1285 if (err) 1286 return err; 1287 1288 /* 1289 * Allocate the socket and allow the family to set things up. if 1290 * the protocol is 0, the family is instructed to select an appropriate 1291 * default. 1292 */ 1293 sock = sock_alloc(); 1294 if (!sock) { 1295 net_warn_ratelimited("socket: no more sockets\n"); 1296 return -ENFILE; /* Not exactly a match, but its the 1297 closest posix thing */ 1298 } 1299 1300 sock->type = type; 1301 1302 #ifdef CONFIG_MODULES 1303 /* Attempt to load a protocol module if the find failed. 1304 * 1305 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1306 * requested real, full-featured networking support upon configuration. 1307 * Otherwise module support will break! 1308 */ 1309 if (rcu_access_pointer(net_families[family]) == NULL) 1310 request_module("net-pf-%d", family); 1311 #endif 1312 1313 rcu_read_lock(); 1314 pf = rcu_dereference(net_families[family]); 1315 err = -EAFNOSUPPORT; 1316 if (!pf) 1317 goto out_release; 1318 1319 /* 1320 * We will call the ->create function, that possibly is in a loadable 1321 * module, so we have to bump that loadable module refcnt first. 1322 */ 1323 if (!try_module_get(pf->owner)) 1324 goto out_release; 1325 1326 /* Now protected by module ref count */ 1327 rcu_read_unlock(); 1328 1329 err = pf->create(net, sock, protocol, kern); 1330 if (err < 0) 1331 goto out_module_put; 1332 1333 /* 1334 * Now to bump the refcnt of the [loadable] module that owns this 1335 * socket at sock_release time we decrement its refcnt. 1336 */ 1337 if (!try_module_get(sock->ops->owner)) 1338 goto out_module_busy; 1339 1340 /* 1341 * Now that we're done with the ->create function, the [loadable] 1342 * module can have its refcnt decremented 1343 */ 1344 module_put(pf->owner); 1345 err = security_socket_post_create(sock, family, type, protocol, kern); 1346 if (err) 1347 goto out_sock_release; 1348 *res = sock; 1349 1350 return 0; 1351 1352 out_module_busy: 1353 err = -EAFNOSUPPORT; 1354 out_module_put: 1355 sock->ops = NULL; 1356 module_put(pf->owner); 1357 out_sock_release: 1358 sock_release(sock); 1359 return err; 1360 1361 out_release: 1362 rcu_read_unlock(); 1363 goto out_sock_release; 1364 } 1365 EXPORT_SYMBOL(__sock_create); 1366 1367 int sock_create(int family, int type, int protocol, struct socket **res) 1368 { 1369 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1370 } 1371 EXPORT_SYMBOL(sock_create); 1372 1373 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1374 { 1375 return __sock_create(&init_net, family, type, protocol, res, 1); 1376 } 1377 EXPORT_SYMBOL(sock_create_kern); 1378 1379 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1380 { 1381 int retval; 1382 struct socket *sock; 1383 int flags; 1384 1385 /* Check the SOCK_* constants for consistency. */ 1386 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1387 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1388 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1389 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1390 1391 flags = type & ~SOCK_TYPE_MASK; 1392 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1393 return -EINVAL; 1394 type &= SOCK_TYPE_MASK; 1395 1396 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1397 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1398 1399 retval = sock_create(family, type, protocol, &sock); 1400 if (retval < 0) 1401 goto out; 1402 1403 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1404 if (retval < 0) 1405 goto out_release; 1406 1407 out: 1408 /* It may be already another descriptor 8) Not kernel problem. */ 1409 return retval; 1410 1411 out_release: 1412 sock_release(sock); 1413 return retval; 1414 } 1415 1416 /* 1417 * Create a pair of connected sockets. 1418 */ 1419 1420 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1421 int __user *, usockvec) 1422 { 1423 struct socket *sock1, *sock2; 1424 int fd1, fd2, err; 1425 struct file *newfile1, *newfile2; 1426 int flags; 1427 1428 flags = type & ~SOCK_TYPE_MASK; 1429 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1430 return -EINVAL; 1431 type &= SOCK_TYPE_MASK; 1432 1433 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1434 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1435 1436 /* 1437 * Obtain the first socket and check if the underlying protocol 1438 * supports the socketpair call. 1439 */ 1440 1441 err = sock_create(family, type, protocol, &sock1); 1442 if (err < 0) 1443 goto out; 1444 1445 err = sock_create(family, type, protocol, &sock2); 1446 if (err < 0) 1447 goto out_release_1; 1448 1449 err = sock1->ops->socketpair(sock1, sock2); 1450 if (err < 0) 1451 goto out_release_both; 1452 1453 fd1 = get_unused_fd_flags(flags); 1454 if (unlikely(fd1 < 0)) { 1455 err = fd1; 1456 goto out_release_both; 1457 } 1458 1459 fd2 = get_unused_fd_flags(flags); 1460 if (unlikely(fd2 < 0)) { 1461 err = fd2; 1462 goto out_put_unused_1; 1463 } 1464 1465 newfile1 = sock_alloc_file(sock1, flags, NULL); 1466 if (unlikely(IS_ERR(newfile1))) { 1467 err = PTR_ERR(newfile1); 1468 goto out_put_unused_both; 1469 } 1470 1471 newfile2 = sock_alloc_file(sock2, flags, NULL); 1472 if (IS_ERR(newfile2)) { 1473 err = PTR_ERR(newfile2); 1474 goto out_fput_1; 1475 } 1476 1477 err = put_user(fd1, &usockvec[0]); 1478 if (err) 1479 goto out_fput_both; 1480 1481 err = put_user(fd2, &usockvec[1]); 1482 if (err) 1483 goto out_fput_both; 1484 1485 audit_fd_pair(fd1, fd2); 1486 1487 fd_install(fd1, newfile1); 1488 fd_install(fd2, newfile2); 1489 /* fd1 and fd2 may be already another descriptors. 1490 * Not kernel problem. 1491 */ 1492 1493 return 0; 1494 1495 out_fput_both: 1496 fput(newfile2); 1497 fput(newfile1); 1498 put_unused_fd(fd2); 1499 put_unused_fd(fd1); 1500 goto out; 1501 1502 out_fput_1: 1503 fput(newfile1); 1504 put_unused_fd(fd2); 1505 put_unused_fd(fd1); 1506 sock_release(sock2); 1507 goto out; 1508 1509 out_put_unused_both: 1510 put_unused_fd(fd2); 1511 out_put_unused_1: 1512 put_unused_fd(fd1); 1513 out_release_both: 1514 sock_release(sock2); 1515 out_release_1: 1516 sock_release(sock1); 1517 out: 1518 return err; 1519 } 1520 1521 /* 1522 * Bind a name to a socket. Nothing much to do here since it's 1523 * the protocol's responsibility to handle the local address. 1524 * 1525 * We move the socket address to kernel space before we call 1526 * the protocol layer (having also checked the address is ok). 1527 */ 1528 1529 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1530 { 1531 struct socket *sock; 1532 struct sockaddr_storage address; 1533 int err, fput_needed; 1534 1535 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1536 if (sock) { 1537 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1538 if (err >= 0) { 1539 err = security_socket_bind(sock, 1540 (struct sockaddr *)&address, 1541 addrlen); 1542 if (!err) 1543 err = sock->ops->bind(sock, 1544 (struct sockaddr *) 1545 &address, addrlen); 1546 } 1547 fput_light(sock->file, fput_needed); 1548 } 1549 return err; 1550 } 1551 1552 /* 1553 * Perform a listen. Basically, we allow the protocol to do anything 1554 * necessary for a listen, and if that works, we mark the socket as 1555 * ready for listening. 1556 */ 1557 1558 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1559 { 1560 struct socket *sock; 1561 int err, fput_needed; 1562 int somaxconn; 1563 1564 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1565 if (sock) { 1566 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1567 if ((unsigned int)backlog > somaxconn) 1568 backlog = somaxconn; 1569 1570 err = security_socket_listen(sock, backlog); 1571 if (!err) 1572 err = sock->ops->listen(sock, backlog); 1573 1574 fput_light(sock->file, fput_needed); 1575 } 1576 return err; 1577 } 1578 1579 /* 1580 * For accept, we attempt to create a new socket, set up the link 1581 * with the client, wake up the client, then return the new 1582 * connected fd. We collect the address of the connector in kernel 1583 * space and move it to user at the very end. This is unclean because 1584 * we open the socket then return an error. 1585 * 1586 * 1003.1g adds the ability to recvmsg() to query connection pending 1587 * status to recvmsg. We need to add that support in a way thats 1588 * clean when we restucture accept also. 1589 */ 1590 1591 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1592 int __user *, upeer_addrlen, int, flags) 1593 { 1594 struct socket *sock, *newsock; 1595 struct file *newfile; 1596 int err, len, newfd, fput_needed; 1597 struct sockaddr_storage address; 1598 1599 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1600 return -EINVAL; 1601 1602 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1603 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1604 1605 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1606 if (!sock) 1607 goto out; 1608 1609 err = -ENFILE; 1610 newsock = sock_alloc(); 1611 if (!newsock) 1612 goto out_put; 1613 1614 newsock->type = sock->type; 1615 newsock->ops = sock->ops; 1616 1617 /* 1618 * We don't need try_module_get here, as the listening socket (sock) 1619 * has the protocol module (sock->ops->owner) held. 1620 */ 1621 __module_get(newsock->ops->owner); 1622 1623 newfd = get_unused_fd_flags(flags); 1624 if (unlikely(newfd < 0)) { 1625 err = newfd; 1626 sock_release(newsock); 1627 goto out_put; 1628 } 1629 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1630 if (unlikely(IS_ERR(newfile))) { 1631 err = PTR_ERR(newfile); 1632 put_unused_fd(newfd); 1633 sock_release(newsock); 1634 goto out_put; 1635 } 1636 1637 err = security_socket_accept(sock, newsock); 1638 if (err) 1639 goto out_fd; 1640 1641 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1642 if (err < 0) 1643 goto out_fd; 1644 1645 if (upeer_sockaddr) { 1646 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1647 &len, 2) < 0) { 1648 err = -ECONNABORTED; 1649 goto out_fd; 1650 } 1651 err = move_addr_to_user(&address, 1652 len, upeer_sockaddr, upeer_addrlen); 1653 if (err < 0) 1654 goto out_fd; 1655 } 1656 1657 /* File flags are not inherited via accept() unlike another OSes. */ 1658 1659 fd_install(newfd, newfile); 1660 err = newfd; 1661 1662 out_put: 1663 fput_light(sock->file, fput_needed); 1664 out: 1665 return err; 1666 out_fd: 1667 fput(newfile); 1668 put_unused_fd(newfd); 1669 goto out_put; 1670 } 1671 1672 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1673 int __user *, upeer_addrlen) 1674 { 1675 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1676 } 1677 1678 /* 1679 * Attempt to connect to a socket with the server address. The address 1680 * is in user space so we verify it is OK and move it to kernel space. 1681 * 1682 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1683 * break bindings 1684 * 1685 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1686 * other SEQPACKET protocols that take time to connect() as it doesn't 1687 * include the -EINPROGRESS status for such sockets. 1688 */ 1689 1690 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1691 int, addrlen) 1692 { 1693 struct socket *sock; 1694 struct sockaddr_storage address; 1695 int err, fput_needed; 1696 1697 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1698 if (!sock) 1699 goto out; 1700 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1701 if (err < 0) 1702 goto out_put; 1703 1704 err = 1705 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1706 if (err) 1707 goto out_put; 1708 1709 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1710 sock->file->f_flags); 1711 out_put: 1712 fput_light(sock->file, fput_needed); 1713 out: 1714 return err; 1715 } 1716 1717 /* 1718 * Get the local address ('name') of a socket object. Move the obtained 1719 * name to user space. 1720 */ 1721 1722 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1723 int __user *, usockaddr_len) 1724 { 1725 struct socket *sock; 1726 struct sockaddr_storage address; 1727 int len, err, fput_needed; 1728 1729 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1730 if (!sock) 1731 goto out; 1732 1733 err = security_socket_getsockname(sock); 1734 if (err) 1735 goto out_put; 1736 1737 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1738 if (err) 1739 goto out_put; 1740 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1741 1742 out_put: 1743 fput_light(sock->file, fput_needed); 1744 out: 1745 return err; 1746 } 1747 1748 /* 1749 * Get the remote address ('name') of a socket object. Move the obtained 1750 * name to user space. 1751 */ 1752 1753 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1754 int __user *, usockaddr_len) 1755 { 1756 struct socket *sock; 1757 struct sockaddr_storage address; 1758 int len, err, fput_needed; 1759 1760 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1761 if (sock != NULL) { 1762 err = security_socket_getpeername(sock); 1763 if (err) { 1764 fput_light(sock->file, fput_needed); 1765 return err; 1766 } 1767 1768 err = 1769 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1770 1); 1771 if (!err) 1772 err = move_addr_to_user(&address, len, usockaddr, 1773 usockaddr_len); 1774 fput_light(sock->file, fput_needed); 1775 } 1776 return err; 1777 } 1778 1779 /* 1780 * Send a datagram to a given address. We move the address into kernel 1781 * space and check the user space data area is readable before invoking 1782 * the protocol. 1783 */ 1784 1785 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1786 unsigned int, flags, struct sockaddr __user *, addr, 1787 int, addr_len) 1788 { 1789 struct socket *sock; 1790 struct sockaddr_storage address; 1791 int err; 1792 struct msghdr msg; 1793 struct iovec iov; 1794 int fput_needed; 1795 1796 if (len > INT_MAX) 1797 len = INT_MAX; 1798 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1799 if (!sock) 1800 goto out; 1801 1802 iov.iov_base = buff; 1803 iov.iov_len = len; 1804 msg.msg_name = NULL; 1805 msg.msg_iov = &iov; 1806 msg.msg_iovlen = 1; 1807 msg.msg_control = NULL; 1808 msg.msg_controllen = 0; 1809 msg.msg_namelen = 0; 1810 if (addr) { 1811 err = move_addr_to_kernel(addr, addr_len, &address); 1812 if (err < 0) 1813 goto out_put; 1814 msg.msg_name = (struct sockaddr *)&address; 1815 msg.msg_namelen = addr_len; 1816 } 1817 if (sock->file->f_flags & O_NONBLOCK) 1818 flags |= MSG_DONTWAIT; 1819 msg.msg_flags = flags; 1820 err = sock_sendmsg(sock, &msg, len); 1821 1822 out_put: 1823 fput_light(sock->file, fput_needed); 1824 out: 1825 return err; 1826 } 1827 1828 /* 1829 * Send a datagram down a socket. 1830 */ 1831 1832 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1833 unsigned int, flags) 1834 { 1835 return sys_sendto(fd, buff, len, flags, NULL, 0); 1836 } 1837 1838 /* 1839 * Receive a frame from the socket and optionally record the address of the 1840 * sender. We verify the buffers are writable and if needed move the 1841 * sender address from kernel to user space. 1842 */ 1843 1844 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1845 unsigned int, flags, struct sockaddr __user *, addr, 1846 int __user *, addr_len) 1847 { 1848 struct socket *sock; 1849 struct iovec iov; 1850 struct msghdr msg; 1851 struct sockaddr_storage address; 1852 int err, err2; 1853 int fput_needed; 1854 1855 if (size > INT_MAX) 1856 size = INT_MAX; 1857 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1858 if (!sock) 1859 goto out; 1860 1861 msg.msg_control = NULL; 1862 msg.msg_controllen = 0; 1863 msg.msg_iovlen = 1; 1864 msg.msg_iov = &iov; 1865 iov.iov_len = size; 1866 iov.iov_base = ubuf; 1867 /* Save some cycles and don't copy the address if not needed */ 1868 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1869 /* We assume all kernel code knows the size of sockaddr_storage */ 1870 msg.msg_namelen = 0; 1871 if (sock->file->f_flags & O_NONBLOCK) 1872 flags |= MSG_DONTWAIT; 1873 err = sock_recvmsg(sock, &msg, size, flags); 1874 1875 if (err >= 0 && addr != NULL) { 1876 err2 = move_addr_to_user(&address, 1877 msg.msg_namelen, addr, addr_len); 1878 if (err2 < 0) 1879 err = err2; 1880 } 1881 1882 fput_light(sock->file, fput_needed); 1883 out: 1884 return err; 1885 } 1886 1887 /* 1888 * Receive a datagram from a socket. 1889 */ 1890 1891 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1892 unsigned int, flags) 1893 { 1894 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1895 } 1896 1897 /* 1898 * Set a socket option. Because we don't know the option lengths we have 1899 * to pass the user mode parameter for the protocols to sort out. 1900 */ 1901 1902 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1903 char __user *, optval, int, optlen) 1904 { 1905 int err, fput_needed; 1906 struct socket *sock; 1907 1908 if (optlen < 0) 1909 return -EINVAL; 1910 1911 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1912 if (sock != NULL) { 1913 err = security_socket_setsockopt(sock, level, optname); 1914 if (err) 1915 goto out_put; 1916 1917 if (level == SOL_SOCKET) 1918 err = 1919 sock_setsockopt(sock, level, optname, optval, 1920 optlen); 1921 else 1922 err = 1923 sock->ops->setsockopt(sock, level, optname, optval, 1924 optlen); 1925 out_put: 1926 fput_light(sock->file, fput_needed); 1927 } 1928 return err; 1929 } 1930 1931 /* 1932 * Get a socket option. Because we don't know the option lengths we have 1933 * to pass a user mode parameter for the protocols to sort out. 1934 */ 1935 1936 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1937 char __user *, optval, int __user *, optlen) 1938 { 1939 int err, fput_needed; 1940 struct socket *sock; 1941 1942 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1943 if (sock != NULL) { 1944 err = security_socket_getsockopt(sock, level, optname); 1945 if (err) 1946 goto out_put; 1947 1948 if (level == SOL_SOCKET) 1949 err = 1950 sock_getsockopt(sock, level, optname, optval, 1951 optlen); 1952 else 1953 err = 1954 sock->ops->getsockopt(sock, level, optname, optval, 1955 optlen); 1956 out_put: 1957 fput_light(sock->file, fput_needed); 1958 } 1959 return err; 1960 } 1961 1962 /* 1963 * Shutdown a socket. 1964 */ 1965 1966 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1967 { 1968 int err, fput_needed; 1969 struct socket *sock; 1970 1971 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1972 if (sock != NULL) { 1973 err = security_socket_shutdown(sock, how); 1974 if (!err) 1975 err = sock->ops->shutdown(sock, how); 1976 fput_light(sock->file, fput_needed); 1977 } 1978 return err; 1979 } 1980 1981 /* A couple of helpful macros for getting the address of the 32/64 bit 1982 * fields which are the same type (int / unsigned) on our platforms. 1983 */ 1984 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1985 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1986 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1987 1988 struct used_address { 1989 struct sockaddr_storage name; 1990 unsigned int name_len; 1991 }; 1992 1993 static int copy_msghdr_from_user(struct msghdr *kmsg, 1994 struct msghdr __user *umsg) 1995 { 1996 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) 1997 return -EFAULT; 1998 1999 if (kmsg->msg_namelen < 0) 2000 return -EINVAL; 2001 2002 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2003 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2004 return 0; 2005 } 2006 2007 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 2008 struct msghdr *msg_sys, unsigned int flags, 2009 struct used_address *used_address) 2010 { 2011 struct compat_msghdr __user *msg_compat = 2012 (struct compat_msghdr __user *)msg; 2013 struct sockaddr_storage address; 2014 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2015 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2016 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2017 /* 20 is size of ipv6_pktinfo */ 2018 unsigned char *ctl_buf = ctl; 2019 int err, ctl_len, total_len; 2020 2021 err = -EFAULT; 2022 if (MSG_CMSG_COMPAT & flags) { 2023 if (get_compat_msghdr(msg_sys, msg_compat)) 2024 return -EFAULT; 2025 } else { 2026 err = copy_msghdr_from_user(msg_sys, msg); 2027 if (err) 2028 return err; 2029 } 2030 2031 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2032 err = -EMSGSIZE; 2033 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2034 goto out; 2035 err = -ENOMEM; 2036 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2037 GFP_KERNEL); 2038 if (!iov) 2039 goto out; 2040 } 2041 2042 /* This will also move the address data into kernel space */ 2043 if (MSG_CMSG_COMPAT & flags) { 2044 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2045 } else 2046 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2047 if (err < 0) 2048 goto out_freeiov; 2049 total_len = err; 2050 2051 err = -ENOBUFS; 2052 2053 if (msg_sys->msg_controllen > INT_MAX) 2054 goto out_freeiov; 2055 ctl_len = msg_sys->msg_controllen; 2056 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2057 err = 2058 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2059 sizeof(ctl)); 2060 if (err) 2061 goto out_freeiov; 2062 ctl_buf = msg_sys->msg_control; 2063 ctl_len = msg_sys->msg_controllen; 2064 } else if (ctl_len) { 2065 if (ctl_len > sizeof(ctl)) { 2066 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2067 if (ctl_buf == NULL) 2068 goto out_freeiov; 2069 } 2070 err = -EFAULT; 2071 /* 2072 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2073 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2074 * checking falls down on this. 2075 */ 2076 if (copy_from_user(ctl_buf, 2077 (void __user __force *)msg_sys->msg_control, 2078 ctl_len)) 2079 goto out_freectl; 2080 msg_sys->msg_control = ctl_buf; 2081 } 2082 msg_sys->msg_flags = flags; 2083 2084 if (sock->file->f_flags & O_NONBLOCK) 2085 msg_sys->msg_flags |= MSG_DONTWAIT; 2086 /* 2087 * If this is sendmmsg() and current destination address is same as 2088 * previously succeeded address, omit asking LSM's decision. 2089 * used_address->name_len is initialized to UINT_MAX so that the first 2090 * destination address never matches. 2091 */ 2092 if (used_address && msg_sys->msg_name && 2093 used_address->name_len == msg_sys->msg_namelen && 2094 !memcmp(&used_address->name, msg_sys->msg_name, 2095 used_address->name_len)) { 2096 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2097 goto out_freectl; 2098 } 2099 err = sock_sendmsg(sock, msg_sys, total_len); 2100 /* 2101 * If this is sendmmsg() and sending to current destination address was 2102 * successful, remember it. 2103 */ 2104 if (used_address && err >= 0) { 2105 used_address->name_len = msg_sys->msg_namelen; 2106 if (msg_sys->msg_name) 2107 memcpy(&used_address->name, msg_sys->msg_name, 2108 used_address->name_len); 2109 } 2110 2111 out_freectl: 2112 if (ctl_buf != ctl) 2113 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2114 out_freeiov: 2115 if (iov != iovstack) 2116 kfree(iov); 2117 out: 2118 return err; 2119 } 2120 2121 /* 2122 * BSD sendmsg interface 2123 */ 2124 2125 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 2126 { 2127 int fput_needed, err; 2128 struct msghdr msg_sys; 2129 struct socket *sock; 2130 2131 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2132 if (!sock) 2133 goto out; 2134 2135 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2136 2137 fput_light(sock->file, fput_needed); 2138 out: 2139 return err; 2140 } 2141 2142 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2143 { 2144 if (flags & MSG_CMSG_COMPAT) 2145 return -EINVAL; 2146 return __sys_sendmsg(fd, msg, flags); 2147 } 2148 2149 /* 2150 * Linux sendmmsg interface 2151 */ 2152 2153 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2154 unsigned int flags) 2155 { 2156 int fput_needed, err, datagrams; 2157 struct socket *sock; 2158 struct mmsghdr __user *entry; 2159 struct compat_mmsghdr __user *compat_entry; 2160 struct msghdr msg_sys; 2161 struct used_address used_address; 2162 2163 if (vlen > UIO_MAXIOV) 2164 vlen = UIO_MAXIOV; 2165 2166 datagrams = 0; 2167 2168 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2169 if (!sock) 2170 return err; 2171 2172 used_address.name_len = UINT_MAX; 2173 entry = mmsg; 2174 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2175 err = 0; 2176 2177 while (datagrams < vlen) { 2178 if (MSG_CMSG_COMPAT & flags) { 2179 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2180 &msg_sys, flags, &used_address); 2181 if (err < 0) 2182 break; 2183 err = __put_user(err, &compat_entry->msg_len); 2184 ++compat_entry; 2185 } else { 2186 err = ___sys_sendmsg(sock, 2187 (struct msghdr __user *)entry, 2188 &msg_sys, flags, &used_address); 2189 if (err < 0) 2190 break; 2191 err = put_user(err, &entry->msg_len); 2192 ++entry; 2193 } 2194 2195 if (err) 2196 break; 2197 ++datagrams; 2198 } 2199 2200 fput_light(sock->file, fput_needed); 2201 2202 /* We only return an error if no datagrams were able to be sent */ 2203 if (datagrams != 0) 2204 return datagrams; 2205 2206 return err; 2207 } 2208 2209 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2210 unsigned int, vlen, unsigned int, flags) 2211 { 2212 if (flags & MSG_CMSG_COMPAT) 2213 return -EINVAL; 2214 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2215 } 2216 2217 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2218 struct msghdr *msg_sys, unsigned int flags, int nosec) 2219 { 2220 struct compat_msghdr __user *msg_compat = 2221 (struct compat_msghdr __user *)msg; 2222 struct iovec iovstack[UIO_FASTIOV]; 2223 struct iovec *iov = iovstack; 2224 unsigned long cmsg_ptr; 2225 int err, total_len, len; 2226 2227 /* kernel mode address */ 2228 struct sockaddr_storage addr; 2229 2230 /* user mode address pointers */ 2231 struct sockaddr __user *uaddr; 2232 int __user *uaddr_len; 2233 2234 if (MSG_CMSG_COMPAT & flags) { 2235 if (get_compat_msghdr(msg_sys, msg_compat)) 2236 return -EFAULT; 2237 } else { 2238 err = copy_msghdr_from_user(msg_sys, msg); 2239 if (err) 2240 return err; 2241 } 2242 2243 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2244 err = -EMSGSIZE; 2245 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2246 goto out; 2247 err = -ENOMEM; 2248 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2249 GFP_KERNEL); 2250 if (!iov) 2251 goto out; 2252 } 2253 2254 /* Save the user-mode address (verify_iovec will change the 2255 * kernel msghdr to use the kernel address space) 2256 */ 2257 uaddr = (__force void __user *)msg_sys->msg_name; 2258 uaddr_len = COMPAT_NAMELEN(msg); 2259 if (MSG_CMSG_COMPAT & flags) 2260 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2261 else 2262 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2263 if (err < 0) 2264 goto out_freeiov; 2265 total_len = err; 2266 2267 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2268 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2269 2270 /* We assume all kernel code knows the size of sockaddr_storage */ 2271 msg_sys->msg_namelen = 0; 2272 2273 if (sock->file->f_flags & O_NONBLOCK) 2274 flags |= MSG_DONTWAIT; 2275 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2276 total_len, flags); 2277 if (err < 0) 2278 goto out_freeiov; 2279 len = err; 2280 2281 if (uaddr != NULL) { 2282 err = move_addr_to_user(&addr, 2283 msg_sys->msg_namelen, uaddr, 2284 uaddr_len); 2285 if (err < 0) 2286 goto out_freeiov; 2287 } 2288 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2289 COMPAT_FLAGS(msg)); 2290 if (err) 2291 goto out_freeiov; 2292 if (MSG_CMSG_COMPAT & flags) 2293 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2294 &msg_compat->msg_controllen); 2295 else 2296 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2297 &msg->msg_controllen); 2298 if (err) 2299 goto out_freeiov; 2300 err = len; 2301 2302 out_freeiov: 2303 if (iov != iovstack) 2304 kfree(iov); 2305 out: 2306 return err; 2307 } 2308 2309 /* 2310 * BSD recvmsg interface 2311 */ 2312 2313 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) 2314 { 2315 int fput_needed, err; 2316 struct msghdr msg_sys; 2317 struct socket *sock; 2318 2319 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2320 if (!sock) 2321 goto out; 2322 2323 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2324 2325 fput_light(sock->file, fput_needed); 2326 out: 2327 return err; 2328 } 2329 2330 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2331 unsigned int, flags) 2332 { 2333 if (flags & MSG_CMSG_COMPAT) 2334 return -EINVAL; 2335 return __sys_recvmsg(fd, msg, flags); 2336 } 2337 2338 /* 2339 * Linux recvmmsg interface 2340 */ 2341 2342 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2343 unsigned int flags, struct timespec *timeout) 2344 { 2345 int fput_needed, err, datagrams; 2346 struct socket *sock; 2347 struct mmsghdr __user *entry; 2348 struct compat_mmsghdr __user *compat_entry; 2349 struct msghdr msg_sys; 2350 struct timespec end_time; 2351 2352 if (timeout && 2353 poll_select_set_timeout(&end_time, timeout->tv_sec, 2354 timeout->tv_nsec)) 2355 return -EINVAL; 2356 2357 datagrams = 0; 2358 2359 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2360 if (!sock) 2361 return err; 2362 2363 err = sock_error(sock->sk); 2364 if (err) 2365 goto out_put; 2366 2367 entry = mmsg; 2368 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2369 2370 while (datagrams < vlen) { 2371 /* 2372 * No need to ask LSM for more than the first datagram. 2373 */ 2374 if (MSG_CMSG_COMPAT & flags) { 2375 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2376 &msg_sys, flags & ~MSG_WAITFORONE, 2377 datagrams); 2378 if (err < 0) 2379 break; 2380 err = __put_user(err, &compat_entry->msg_len); 2381 ++compat_entry; 2382 } else { 2383 err = ___sys_recvmsg(sock, 2384 (struct msghdr __user *)entry, 2385 &msg_sys, flags & ~MSG_WAITFORONE, 2386 datagrams); 2387 if (err < 0) 2388 break; 2389 err = put_user(err, &entry->msg_len); 2390 ++entry; 2391 } 2392 2393 if (err) 2394 break; 2395 ++datagrams; 2396 2397 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2398 if (flags & MSG_WAITFORONE) 2399 flags |= MSG_DONTWAIT; 2400 2401 if (timeout) { 2402 ktime_get_ts(timeout); 2403 *timeout = timespec_sub(end_time, *timeout); 2404 if (timeout->tv_sec < 0) { 2405 timeout->tv_sec = timeout->tv_nsec = 0; 2406 break; 2407 } 2408 2409 /* Timeout, return less than vlen datagrams */ 2410 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2411 break; 2412 } 2413 2414 /* Out of band data, return right away */ 2415 if (msg_sys.msg_flags & MSG_OOB) 2416 break; 2417 } 2418 2419 out_put: 2420 fput_light(sock->file, fput_needed); 2421 2422 if (err == 0) 2423 return datagrams; 2424 2425 if (datagrams != 0) { 2426 /* 2427 * We may return less entries than requested (vlen) if the 2428 * sock is non block and there aren't enough datagrams... 2429 */ 2430 if (err != -EAGAIN) { 2431 /* 2432 * ... or if recvmsg returns an error after we 2433 * received some datagrams, where we record the 2434 * error to return on the next call or if the 2435 * app asks about it using getsockopt(SO_ERROR). 2436 */ 2437 sock->sk->sk_err = -err; 2438 } 2439 2440 return datagrams; 2441 } 2442 2443 return err; 2444 } 2445 2446 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2447 unsigned int, vlen, unsigned int, flags, 2448 struct timespec __user *, timeout) 2449 { 2450 int datagrams; 2451 struct timespec timeout_sys; 2452 2453 if (flags & MSG_CMSG_COMPAT) 2454 return -EINVAL; 2455 2456 if (!timeout) 2457 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2458 2459 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2460 return -EFAULT; 2461 2462 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2463 2464 if (datagrams > 0 && 2465 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2466 datagrams = -EFAULT; 2467 2468 return datagrams; 2469 } 2470 2471 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2472 /* Argument list sizes for sys_socketcall */ 2473 #define AL(x) ((x) * sizeof(unsigned long)) 2474 static const unsigned char nargs[21] = { 2475 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2476 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2477 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2478 AL(4), AL(5), AL(4) 2479 }; 2480 2481 #undef AL 2482 2483 /* 2484 * System call vectors. 2485 * 2486 * Argument checking cleaned up. Saved 20% in size. 2487 * This function doesn't need to set the kernel lock because 2488 * it is set by the callees. 2489 */ 2490 2491 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2492 { 2493 unsigned long a[AUDITSC_ARGS]; 2494 unsigned long a0, a1; 2495 int err; 2496 unsigned int len; 2497 2498 if (call < 1 || call > SYS_SENDMMSG) 2499 return -EINVAL; 2500 2501 len = nargs[call]; 2502 if (len > sizeof(a)) 2503 return -EINVAL; 2504 2505 /* copy_from_user should be SMP safe. */ 2506 if (copy_from_user(a, args, len)) 2507 return -EFAULT; 2508 2509 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2510 if (err) 2511 return err; 2512 2513 a0 = a[0]; 2514 a1 = a[1]; 2515 2516 switch (call) { 2517 case SYS_SOCKET: 2518 err = sys_socket(a0, a1, a[2]); 2519 break; 2520 case SYS_BIND: 2521 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2522 break; 2523 case SYS_CONNECT: 2524 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2525 break; 2526 case SYS_LISTEN: 2527 err = sys_listen(a0, a1); 2528 break; 2529 case SYS_ACCEPT: 2530 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2531 (int __user *)a[2], 0); 2532 break; 2533 case SYS_GETSOCKNAME: 2534 err = 2535 sys_getsockname(a0, (struct sockaddr __user *)a1, 2536 (int __user *)a[2]); 2537 break; 2538 case SYS_GETPEERNAME: 2539 err = 2540 sys_getpeername(a0, (struct sockaddr __user *)a1, 2541 (int __user *)a[2]); 2542 break; 2543 case SYS_SOCKETPAIR: 2544 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2545 break; 2546 case SYS_SEND: 2547 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2548 break; 2549 case SYS_SENDTO: 2550 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2551 (struct sockaddr __user *)a[4], a[5]); 2552 break; 2553 case SYS_RECV: 2554 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2555 break; 2556 case SYS_RECVFROM: 2557 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2558 (struct sockaddr __user *)a[4], 2559 (int __user *)a[5]); 2560 break; 2561 case SYS_SHUTDOWN: 2562 err = sys_shutdown(a0, a1); 2563 break; 2564 case SYS_SETSOCKOPT: 2565 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2566 break; 2567 case SYS_GETSOCKOPT: 2568 err = 2569 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2570 (int __user *)a[4]); 2571 break; 2572 case SYS_SENDMSG: 2573 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2574 break; 2575 case SYS_SENDMMSG: 2576 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2577 break; 2578 case SYS_RECVMSG: 2579 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2580 break; 2581 case SYS_RECVMMSG: 2582 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2583 (struct timespec __user *)a[4]); 2584 break; 2585 case SYS_ACCEPT4: 2586 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2587 (int __user *)a[2], a[3]); 2588 break; 2589 default: 2590 err = -EINVAL; 2591 break; 2592 } 2593 return err; 2594 } 2595 2596 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2597 2598 /** 2599 * sock_register - add a socket protocol handler 2600 * @ops: description of protocol 2601 * 2602 * This function is called by a protocol handler that wants to 2603 * advertise its address family, and have it linked into the 2604 * socket interface. The value ops->family corresponds to the 2605 * socket system call protocol family. 2606 */ 2607 int sock_register(const struct net_proto_family *ops) 2608 { 2609 int err; 2610 2611 if (ops->family >= NPROTO) { 2612 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2613 return -ENOBUFS; 2614 } 2615 2616 spin_lock(&net_family_lock); 2617 if (rcu_dereference_protected(net_families[ops->family], 2618 lockdep_is_held(&net_family_lock))) 2619 err = -EEXIST; 2620 else { 2621 rcu_assign_pointer(net_families[ops->family], ops); 2622 err = 0; 2623 } 2624 spin_unlock(&net_family_lock); 2625 2626 pr_info("NET: Registered protocol family %d\n", ops->family); 2627 return err; 2628 } 2629 EXPORT_SYMBOL(sock_register); 2630 2631 /** 2632 * sock_unregister - remove a protocol handler 2633 * @family: protocol family to remove 2634 * 2635 * This function is called by a protocol handler that wants to 2636 * remove its address family, and have it unlinked from the 2637 * new socket creation. 2638 * 2639 * If protocol handler is a module, then it can use module reference 2640 * counts to protect against new references. If protocol handler is not 2641 * a module then it needs to provide its own protection in 2642 * the ops->create routine. 2643 */ 2644 void sock_unregister(int family) 2645 { 2646 BUG_ON(family < 0 || family >= NPROTO); 2647 2648 spin_lock(&net_family_lock); 2649 RCU_INIT_POINTER(net_families[family], NULL); 2650 spin_unlock(&net_family_lock); 2651 2652 synchronize_rcu(); 2653 2654 pr_info("NET: Unregistered protocol family %d\n", family); 2655 } 2656 EXPORT_SYMBOL(sock_unregister); 2657 2658 static int __init sock_init(void) 2659 { 2660 int err; 2661 /* 2662 * Initialize the network sysctl infrastructure. 2663 */ 2664 err = net_sysctl_init(); 2665 if (err) 2666 goto out; 2667 2668 /* 2669 * Initialize skbuff SLAB cache 2670 */ 2671 skb_init(); 2672 2673 /* 2674 * Initialize the protocols module. 2675 */ 2676 2677 init_inodecache(); 2678 2679 err = register_filesystem(&sock_fs_type); 2680 if (err) 2681 goto out_fs; 2682 sock_mnt = kern_mount(&sock_fs_type); 2683 if (IS_ERR(sock_mnt)) { 2684 err = PTR_ERR(sock_mnt); 2685 goto out_mount; 2686 } 2687 2688 /* The real protocol initialization is performed in later initcalls. 2689 */ 2690 2691 #ifdef CONFIG_NETFILTER 2692 err = netfilter_init(); 2693 if (err) 2694 goto out; 2695 #endif 2696 2697 ptp_classifier_init(); 2698 2699 out: 2700 return err; 2701 2702 out_mount: 2703 unregister_filesystem(&sock_fs_type); 2704 out_fs: 2705 goto out; 2706 } 2707 2708 core_initcall(sock_init); /* early initcall */ 2709 2710 #ifdef CONFIG_PROC_FS 2711 void socket_seq_show(struct seq_file *seq) 2712 { 2713 int cpu; 2714 int counter = 0; 2715 2716 for_each_possible_cpu(cpu) 2717 counter += per_cpu(sockets_in_use, cpu); 2718 2719 /* It can be negative, by the way. 8) */ 2720 if (counter < 0) 2721 counter = 0; 2722 2723 seq_printf(seq, "sockets: used %d\n", counter); 2724 } 2725 #endif /* CONFIG_PROC_FS */ 2726 2727 #ifdef CONFIG_COMPAT 2728 static int do_siocgstamp(struct net *net, struct socket *sock, 2729 unsigned int cmd, void __user *up) 2730 { 2731 mm_segment_t old_fs = get_fs(); 2732 struct timeval ktv; 2733 int err; 2734 2735 set_fs(KERNEL_DS); 2736 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2737 set_fs(old_fs); 2738 if (!err) 2739 err = compat_put_timeval(&ktv, up); 2740 2741 return err; 2742 } 2743 2744 static int do_siocgstampns(struct net *net, struct socket *sock, 2745 unsigned int cmd, void __user *up) 2746 { 2747 mm_segment_t old_fs = get_fs(); 2748 struct timespec kts; 2749 int err; 2750 2751 set_fs(KERNEL_DS); 2752 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2753 set_fs(old_fs); 2754 if (!err) 2755 err = compat_put_timespec(&kts, up); 2756 2757 return err; 2758 } 2759 2760 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2761 { 2762 struct ifreq __user *uifr; 2763 int err; 2764 2765 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2766 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2767 return -EFAULT; 2768 2769 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2770 if (err) 2771 return err; 2772 2773 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2774 return -EFAULT; 2775 2776 return 0; 2777 } 2778 2779 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2780 { 2781 struct compat_ifconf ifc32; 2782 struct ifconf ifc; 2783 struct ifconf __user *uifc; 2784 struct compat_ifreq __user *ifr32; 2785 struct ifreq __user *ifr; 2786 unsigned int i, j; 2787 int err; 2788 2789 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2790 return -EFAULT; 2791 2792 memset(&ifc, 0, sizeof(ifc)); 2793 if (ifc32.ifcbuf == 0) { 2794 ifc32.ifc_len = 0; 2795 ifc.ifc_len = 0; 2796 ifc.ifc_req = NULL; 2797 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2798 } else { 2799 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2800 sizeof(struct ifreq); 2801 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2802 ifc.ifc_len = len; 2803 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2804 ifr32 = compat_ptr(ifc32.ifcbuf); 2805 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2806 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2807 return -EFAULT; 2808 ifr++; 2809 ifr32++; 2810 } 2811 } 2812 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2813 return -EFAULT; 2814 2815 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2816 if (err) 2817 return err; 2818 2819 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2820 return -EFAULT; 2821 2822 ifr = ifc.ifc_req; 2823 ifr32 = compat_ptr(ifc32.ifcbuf); 2824 for (i = 0, j = 0; 2825 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2826 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2827 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2828 return -EFAULT; 2829 ifr32++; 2830 ifr++; 2831 } 2832 2833 if (ifc32.ifcbuf == 0) { 2834 /* Translate from 64-bit structure multiple to 2835 * a 32-bit one. 2836 */ 2837 i = ifc.ifc_len; 2838 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2839 ifc32.ifc_len = i; 2840 } else { 2841 ifc32.ifc_len = i; 2842 } 2843 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2844 return -EFAULT; 2845 2846 return 0; 2847 } 2848 2849 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2850 { 2851 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2852 bool convert_in = false, convert_out = false; 2853 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2854 struct ethtool_rxnfc __user *rxnfc; 2855 struct ifreq __user *ifr; 2856 u32 rule_cnt = 0, actual_rule_cnt; 2857 u32 ethcmd; 2858 u32 data; 2859 int ret; 2860 2861 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2862 return -EFAULT; 2863 2864 compat_rxnfc = compat_ptr(data); 2865 2866 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2867 return -EFAULT; 2868 2869 /* Most ethtool structures are defined without padding. 2870 * Unfortunately struct ethtool_rxnfc is an exception. 2871 */ 2872 switch (ethcmd) { 2873 default: 2874 break; 2875 case ETHTOOL_GRXCLSRLALL: 2876 /* Buffer size is variable */ 2877 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2878 return -EFAULT; 2879 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2880 return -ENOMEM; 2881 buf_size += rule_cnt * sizeof(u32); 2882 /* fall through */ 2883 case ETHTOOL_GRXRINGS: 2884 case ETHTOOL_GRXCLSRLCNT: 2885 case ETHTOOL_GRXCLSRULE: 2886 case ETHTOOL_SRXCLSRLINS: 2887 convert_out = true; 2888 /* fall through */ 2889 case ETHTOOL_SRXCLSRLDEL: 2890 buf_size += sizeof(struct ethtool_rxnfc); 2891 convert_in = true; 2892 break; 2893 } 2894 2895 ifr = compat_alloc_user_space(buf_size); 2896 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2897 2898 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2899 return -EFAULT; 2900 2901 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2902 &ifr->ifr_ifru.ifru_data)) 2903 return -EFAULT; 2904 2905 if (convert_in) { 2906 /* We expect there to be holes between fs.m_ext and 2907 * fs.ring_cookie and at the end of fs, but nowhere else. 2908 */ 2909 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2910 sizeof(compat_rxnfc->fs.m_ext) != 2911 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2912 sizeof(rxnfc->fs.m_ext)); 2913 BUILD_BUG_ON( 2914 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2915 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2916 offsetof(struct ethtool_rxnfc, fs.location) - 2917 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2918 2919 if (copy_in_user(rxnfc, compat_rxnfc, 2920 (void __user *)(&rxnfc->fs.m_ext + 1) - 2921 (void __user *)rxnfc) || 2922 copy_in_user(&rxnfc->fs.ring_cookie, 2923 &compat_rxnfc->fs.ring_cookie, 2924 (void __user *)(&rxnfc->fs.location + 1) - 2925 (void __user *)&rxnfc->fs.ring_cookie) || 2926 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2927 sizeof(rxnfc->rule_cnt))) 2928 return -EFAULT; 2929 } 2930 2931 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2932 if (ret) 2933 return ret; 2934 2935 if (convert_out) { 2936 if (copy_in_user(compat_rxnfc, rxnfc, 2937 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2938 (const void __user *)rxnfc) || 2939 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2940 &rxnfc->fs.ring_cookie, 2941 (const void __user *)(&rxnfc->fs.location + 1) - 2942 (const void __user *)&rxnfc->fs.ring_cookie) || 2943 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2944 sizeof(rxnfc->rule_cnt))) 2945 return -EFAULT; 2946 2947 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2948 /* As an optimisation, we only copy the actual 2949 * number of rules that the underlying 2950 * function returned. Since Mallory might 2951 * change the rule count in user memory, we 2952 * check that it is less than the rule count 2953 * originally given (as the user buffer size), 2954 * which has been range-checked. 2955 */ 2956 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2957 return -EFAULT; 2958 if (actual_rule_cnt < rule_cnt) 2959 rule_cnt = actual_rule_cnt; 2960 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2961 &rxnfc->rule_locs[0], 2962 rule_cnt * sizeof(u32))) 2963 return -EFAULT; 2964 } 2965 } 2966 2967 return 0; 2968 } 2969 2970 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2971 { 2972 void __user *uptr; 2973 compat_uptr_t uptr32; 2974 struct ifreq __user *uifr; 2975 2976 uifr = compat_alloc_user_space(sizeof(*uifr)); 2977 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2978 return -EFAULT; 2979 2980 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2981 return -EFAULT; 2982 2983 uptr = compat_ptr(uptr32); 2984 2985 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2986 return -EFAULT; 2987 2988 return dev_ioctl(net, SIOCWANDEV, uifr); 2989 } 2990 2991 static int bond_ioctl(struct net *net, unsigned int cmd, 2992 struct compat_ifreq __user *ifr32) 2993 { 2994 struct ifreq kifr; 2995 mm_segment_t old_fs; 2996 int err; 2997 2998 switch (cmd) { 2999 case SIOCBONDENSLAVE: 3000 case SIOCBONDRELEASE: 3001 case SIOCBONDSETHWADDR: 3002 case SIOCBONDCHANGEACTIVE: 3003 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 3004 return -EFAULT; 3005 3006 old_fs = get_fs(); 3007 set_fs(KERNEL_DS); 3008 err = dev_ioctl(net, cmd, 3009 (struct ifreq __user __force *) &kifr); 3010 set_fs(old_fs); 3011 3012 return err; 3013 default: 3014 return -ENOIOCTLCMD; 3015 } 3016 } 3017 3018 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3019 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3020 struct compat_ifreq __user *u_ifreq32) 3021 { 3022 struct ifreq __user *u_ifreq64; 3023 char tmp_buf[IFNAMSIZ]; 3024 void __user *data64; 3025 u32 data32; 3026 3027 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 3028 IFNAMSIZ)) 3029 return -EFAULT; 3030 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 3031 return -EFAULT; 3032 data64 = compat_ptr(data32); 3033 3034 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3035 3036 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3037 IFNAMSIZ)) 3038 return -EFAULT; 3039 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3040 return -EFAULT; 3041 3042 return dev_ioctl(net, cmd, u_ifreq64); 3043 } 3044 3045 static int dev_ifsioc(struct net *net, struct socket *sock, 3046 unsigned int cmd, struct compat_ifreq __user *uifr32) 3047 { 3048 struct ifreq __user *uifr; 3049 int err; 3050 3051 uifr = compat_alloc_user_space(sizeof(*uifr)); 3052 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3053 return -EFAULT; 3054 3055 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3056 3057 if (!err) { 3058 switch (cmd) { 3059 case SIOCGIFFLAGS: 3060 case SIOCGIFMETRIC: 3061 case SIOCGIFMTU: 3062 case SIOCGIFMEM: 3063 case SIOCGIFHWADDR: 3064 case SIOCGIFINDEX: 3065 case SIOCGIFADDR: 3066 case SIOCGIFBRDADDR: 3067 case SIOCGIFDSTADDR: 3068 case SIOCGIFNETMASK: 3069 case SIOCGIFPFLAGS: 3070 case SIOCGIFTXQLEN: 3071 case SIOCGMIIPHY: 3072 case SIOCGMIIREG: 3073 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3074 err = -EFAULT; 3075 break; 3076 } 3077 } 3078 return err; 3079 } 3080 3081 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3082 struct compat_ifreq __user *uifr32) 3083 { 3084 struct ifreq ifr; 3085 struct compat_ifmap __user *uifmap32; 3086 mm_segment_t old_fs; 3087 int err; 3088 3089 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3090 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3091 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3092 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3093 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3094 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3095 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3096 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3097 if (err) 3098 return -EFAULT; 3099 3100 old_fs = get_fs(); 3101 set_fs(KERNEL_DS); 3102 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3103 set_fs(old_fs); 3104 3105 if (cmd == SIOCGIFMAP && !err) { 3106 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3107 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3108 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3109 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3110 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3111 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3112 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3113 if (err) 3114 err = -EFAULT; 3115 } 3116 return err; 3117 } 3118 3119 struct rtentry32 { 3120 u32 rt_pad1; 3121 struct sockaddr rt_dst; /* target address */ 3122 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3123 struct sockaddr rt_genmask; /* target network mask (IP) */ 3124 unsigned short rt_flags; 3125 short rt_pad2; 3126 u32 rt_pad3; 3127 unsigned char rt_tos; 3128 unsigned char rt_class; 3129 short rt_pad4; 3130 short rt_metric; /* +1 for binary compatibility! */ 3131 /* char * */ u32 rt_dev; /* forcing the device at add */ 3132 u32 rt_mtu; /* per route MTU/Window */ 3133 u32 rt_window; /* Window clamping */ 3134 unsigned short rt_irtt; /* Initial RTT */ 3135 }; 3136 3137 struct in6_rtmsg32 { 3138 struct in6_addr rtmsg_dst; 3139 struct in6_addr rtmsg_src; 3140 struct in6_addr rtmsg_gateway; 3141 u32 rtmsg_type; 3142 u16 rtmsg_dst_len; 3143 u16 rtmsg_src_len; 3144 u32 rtmsg_metric; 3145 u32 rtmsg_info; 3146 u32 rtmsg_flags; 3147 s32 rtmsg_ifindex; 3148 }; 3149 3150 static int routing_ioctl(struct net *net, struct socket *sock, 3151 unsigned int cmd, void __user *argp) 3152 { 3153 int ret; 3154 void *r = NULL; 3155 struct in6_rtmsg r6; 3156 struct rtentry r4; 3157 char devname[16]; 3158 u32 rtdev; 3159 mm_segment_t old_fs = get_fs(); 3160 3161 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3162 struct in6_rtmsg32 __user *ur6 = argp; 3163 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3164 3 * sizeof(struct in6_addr)); 3165 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3166 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3167 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3168 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3169 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3170 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3171 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3172 3173 r = (void *) &r6; 3174 } else { /* ipv4 */ 3175 struct rtentry32 __user *ur4 = argp; 3176 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3177 3 * sizeof(struct sockaddr)); 3178 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3179 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3180 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3181 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3182 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3183 ret |= get_user(rtdev, &(ur4->rt_dev)); 3184 if (rtdev) { 3185 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3186 r4.rt_dev = (char __user __force *)devname; 3187 devname[15] = 0; 3188 } else 3189 r4.rt_dev = NULL; 3190 3191 r = (void *) &r4; 3192 } 3193 3194 if (ret) { 3195 ret = -EFAULT; 3196 goto out; 3197 } 3198 3199 set_fs(KERNEL_DS); 3200 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3201 set_fs(old_fs); 3202 3203 out: 3204 return ret; 3205 } 3206 3207 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3208 * for some operations; this forces use of the newer bridge-utils that 3209 * use compatible ioctls 3210 */ 3211 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3212 { 3213 compat_ulong_t tmp; 3214 3215 if (get_user(tmp, argp)) 3216 return -EFAULT; 3217 if (tmp == BRCTL_GET_VERSION) 3218 return BRCTL_VERSION + 1; 3219 return -EINVAL; 3220 } 3221 3222 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3223 unsigned int cmd, unsigned long arg) 3224 { 3225 void __user *argp = compat_ptr(arg); 3226 struct sock *sk = sock->sk; 3227 struct net *net = sock_net(sk); 3228 3229 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3230 return compat_ifr_data_ioctl(net, cmd, argp); 3231 3232 switch (cmd) { 3233 case SIOCSIFBR: 3234 case SIOCGIFBR: 3235 return old_bridge_ioctl(argp); 3236 case SIOCGIFNAME: 3237 return dev_ifname32(net, argp); 3238 case SIOCGIFCONF: 3239 return dev_ifconf(net, argp); 3240 case SIOCETHTOOL: 3241 return ethtool_ioctl(net, argp); 3242 case SIOCWANDEV: 3243 return compat_siocwandev(net, argp); 3244 case SIOCGIFMAP: 3245 case SIOCSIFMAP: 3246 return compat_sioc_ifmap(net, cmd, argp); 3247 case SIOCBONDENSLAVE: 3248 case SIOCBONDRELEASE: 3249 case SIOCBONDSETHWADDR: 3250 case SIOCBONDCHANGEACTIVE: 3251 return bond_ioctl(net, cmd, argp); 3252 case SIOCADDRT: 3253 case SIOCDELRT: 3254 return routing_ioctl(net, sock, cmd, argp); 3255 case SIOCGSTAMP: 3256 return do_siocgstamp(net, sock, cmd, argp); 3257 case SIOCGSTAMPNS: 3258 return do_siocgstampns(net, sock, cmd, argp); 3259 case SIOCBONDSLAVEINFOQUERY: 3260 case SIOCBONDINFOQUERY: 3261 case SIOCSHWTSTAMP: 3262 case SIOCGHWTSTAMP: 3263 return compat_ifr_data_ioctl(net, cmd, argp); 3264 3265 case FIOSETOWN: 3266 case SIOCSPGRP: 3267 case FIOGETOWN: 3268 case SIOCGPGRP: 3269 case SIOCBRADDBR: 3270 case SIOCBRDELBR: 3271 case SIOCGIFVLAN: 3272 case SIOCSIFVLAN: 3273 case SIOCADDDLCI: 3274 case SIOCDELDLCI: 3275 return sock_ioctl(file, cmd, arg); 3276 3277 case SIOCGIFFLAGS: 3278 case SIOCSIFFLAGS: 3279 case SIOCGIFMETRIC: 3280 case SIOCSIFMETRIC: 3281 case SIOCGIFMTU: 3282 case SIOCSIFMTU: 3283 case SIOCGIFMEM: 3284 case SIOCSIFMEM: 3285 case SIOCGIFHWADDR: 3286 case SIOCSIFHWADDR: 3287 case SIOCADDMULTI: 3288 case SIOCDELMULTI: 3289 case SIOCGIFINDEX: 3290 case SIOCGIFADDR: 3291 case SIOCSIFADDR: 3292 case SIOCSIFHWBROADCAST: 3293 case SIOCDIFADDR: 3294 case SIOCGIFBRDADDR: 3295 case SIOCSIFBRDADDR: 3296 case SIOCGIFDSTADDR: 3297 case SIOCSIFDSTADDR: 3298 case SIOCGIFNETMASK: 3299 case SIOCSIFNETMASK: 3300 case SIOCSIFPFLAGS: 3301 case SIOCGIFPFLAGS: 3302 case SIOCGIFTXQLEN: 3303 case SIOCSIFTXQLEN: 3304 case SIOCBRADDIF: 3305 case SIOCBRDELIF: 3306 case SIOCSIFNAME: 3307 case SIOCGMIIPHY: 3308 case SIOCGMIIREG: 3309 case SIOCSMIIREG: 3310 return dev_ifsioc(net, sock, cmd, argp); 3311 3312 case SIOCSARP: 3313 case SIOCGARP: 3314 case SIOCDARP: 3315 case SIOCATMARK: 3316 return sock_do_ioctl(net, sock, cmd, arg); 3317 } 3318 3319 return -ENOIOCTLCMD; 3320 } 3321 3322 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3323 unsigned long arg) 3324 { 3325 struct socket *sock = file->private_data; 3326 int ret = -ENOIOCTLCMD; 3327 struct sock *sk; 3328 struct net *net; 3329 3330 sk = sock->sk; 3331 net = sock_net(sk); 3332 3333 if (sock->ops->compat_ioctl) 3334 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3335 3336 if (ret == -ENOIOCTLCMD && 3337 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3338 ret = compat_wext_handle_ioctl(net, cmd, arg); 3339 3340 if (ret == -ENOIOCTLCMD) 3341 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3342 3343 return ret; 3344 } 3345 #endif 3346 3347 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3348 { 3349 return sock->ops->bind(sock, addr, addrlen); 3350 } 3351 EXPORT_SYMBOL(kernel_bind); 3352 3353 int kernel_listen(struct socket *sock, int backlog) 3354 { 3355 return sock->ops->listen(sock, backlog); 3356 } 3357 EXPORT_SYMBOL(kernel_listen); 3358 3359 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3360 { 3361 struct sock *sk = sock->sk; 3362 int err; 3363 3364 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3365 newsock); 3366 if (err < 0) 3367 goto done; 3368 3369 err = sock->ops->accept(sock, *newsock, flags); 3370 if (err < 0) { 3371 sock_release(*newsock); 3372 *newsock = NULL; 3373 goto done; 3374 } 3375 3376 (*newsock)->ops = sock->ops; 3377 __module_get((*newsock)->ops->owner); 3378 3379 done: 3380 return err; 3381 } 3382 EXPORT_SYMBOL(kernel_accept); 3383 3384 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3385 int flags) 3386 { 3387 return sock->ops->connect(sock, addr, addrlen, flags); 3388 } 3389 EXPORT_SYMBOL(kernel_connect); 3390 3391 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3392 int *addrlen) 3393 { 3394 return sock->ops->getname(sock, addr, addrlen, 0); 3395 } 3396 EXPORT_SYMBOL(kernel_getsockname); 3397 3398 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3399 int *addrlen) 3400 { 3401 return sock->ops->getname(sock, addr, addrlen, 1); 3402 } 3403 EXPORT_SYMBOL(kernel_getpeername); 3404 3405 int kernel_getsockopt(struct socket *sock, int level, int optname, 3406 char *optval, int *optlen) 3407 { 3408 mm_segment_t oldfs = get_fs(); 3409 char __user *uoptval; 3410 int __user *uoptlen; 3411 int err; 3412 3413 uoptval = (char __user __force *) optval; 3414 uoptlen = (int __user __force *) optlen; 3415 3416 set_fs(KERNEL_DS); 3417 if (level == SOL_SOCKET) 3418 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3419 else 3420 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3421 uoptlen); 3422 set_fs(oldfs); 3423 return err; 3424 } 3425 EXPORT_SYMBOL(kernel_getsockopt); 3426 3427 int kernel_setsockopt(struct socket *sock, int level, int optname, 3428 char *optval, unsigned int optlen) 3429 { 3430 mm_segment_t oldfs = get_fs(); 3431 char __user *uoptval; 3432 int err; 3433 3434 uoptval = (char __user __force *) optval; 3435 3436 set_fs(KERNEL_DS); 3437 if (level == SOL_SOCKET) 3438 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3439 else 3440 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3441 optlen); 3442 set_fs(oldfs); 3443 return err; 3444 } 3445 EXPORT_SYMBOL(kernel_setsockopt); 3446 3447 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3448 size_t size, int flags) 3449 { 3450 if (sock->ops->sendpage) 3451 return sock->ops->sendpage(sock, page, offset, size, flags); 3452 3453 return sock_no_sendpage(sock, page, offset, size, flags); 3454 } 3455 EXPORT_SYMBOL(kernel_sendpage); 3456 3457 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3458 { 3459 mm_segment_t oldfs = get_fs(); 3460 int err; 3461 3462 set_fs(KERNEL_DS); 3463 err = sock->ops->ioctl(sock, cmd, arg); 3464 set_fs(oldfs); 3465 3466 return err; 3467 } 3468 EXPORT_SYMBOL(kernel_sock_ioctl); 3469 3470 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3471 { 3472 return sock->ops->shutdown(sock, how); 3473 } 3474 EXPORT_SYMBOL(kernel_sock_shutdown); 3475