1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 92 #include <linux/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/termios.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 #include <linux/ptp_clock_kernel.h> 110 #include <trace/events/sock.h> 111 112 #ifdef CONFIG_NET_RX_BUSY_POLL 113 unsigned int sysctl_net_busy_read __read_mostly; 114 unsigned int sysctl_net_busy_poll __read_mostly; 115 #endif 116 117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 119 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 120 121 static int sock_close(struct inode *inode, struct file *file); 122 static __poll_t sock_poll(struct file *file, 123 struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 static void sock_splice_eof(struct file *file); 134 135 #ifdef CONFIG_PROC_FS 136 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 137 { 138 struct socket *sock = f->private_data; 139 const struct proto_ops *ops = READ_ONCE(sock->ops); 140 141 if (ops->show_fdinfo) 142 ops->show_fdinfo(m, sock); 143 } 144 #else 145 #define sock_show_fdinfo NULL 146 #endif 147 148 /* 149 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 150 * in the operation structures but are done directly via the socketcall() multiplexor. 151 */ 152 153 static const struct file_operations socket_file_ops = { 154 .owner = THIS_MODULE, 155 .llseek = no_llseek, 156 .read_iter = sock_read_iter, 157 .write_iter = sock_write_iter, 158 .poll = sock_poll, 159 .unlocked_ioctl = sock_ioctl, 160 #ifdef CONFIG_COMPAT 161 .compat_ioctl = compat_sock_ioctl, 162 #endif 163 .mmap = sock_mmap, 164 .release = sock_close, 165 .fasync = sock_fasync, 166 .splice_write = splice_to_socket, 167 .splice_read = sock_splice_read, 168 .splice_eof = sock_splice_eof, 169 .show_fdinfo = sock_show_fdinfo, 170 }; 171 172 static const char * const pf_family_names[] = { 173 [PF_UNSPEC] = "PF_UNSPEC", 174 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 175 [PF_INET] = "PF_INET", 176 [PF_AX25] = "PF_AX25", 177 [PF_IPX] = "PF_IPX", 178 [PF_APPLETALK] = "PF_APPLETALK", 179 [PF_NETROM] = "PF_NETROM", 180 [PF_BRIDGE] = "PF_BRIDGE", 181 [PF_ATMPVC] = "PF_ATMPVC", 182 [PF_X25] = "PF_X25", 183 [PF_INET6] = "PF_INET6", 184 [PF_ROSE] = "PF_ROSE", 185 [PF_DECnet] = "PF_DECnet", 186 [PF_NETBEUI] = "PF_NETBEUI", 187 [PF_SECURITY] = "PF_SECURITY", 188 [PF_KEY] = "PF_KEY", 189 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 190 [PF_PACKET] = "PF_PACKET", 191 [PF_ASH] = "PF_ASH", 192 [PF_ECONET] = "PF_ECONET", 193 [PF_ATMSVC] = "PF_ATMSVC", 194 [PF_RDS] = "PF_RDS", 195 [PF_SNA] = "PF_SNA", 196 [PF_IRDA] = "PF_IRDA", 197 [PF_PPPOX] = "PF_PPPOX", 198 [PF_WANPIPE] = "PF_WANPIPE", 199 [PF_LLC] = "PF_LLC", 200 [PF_IB] = "PF_IB", 201 [PF_MPLS] = "PF_MPLS", 202 [PF_CAN] = "PF_CAN", 203 [PF_TIPC] = "PF_TIPC", 204 [PF_BLUETOOTH] = "PF_BLUETOOTH", 205 [PF_IUCV] = "PF_IUCV", 206 [PF_RXRPC] = "PF_RXRPC", 207 [PF_ISDN] = "PF_ISDN", 208 [PF_PHONET] = "PF_PHONET", 209 [PF_IEEE802154] = "PF_IEEE802154", 210 [PF_CAIF] = "PF_CAIF", 211 [PF_ALG] = "PF_ALG", 212 [PF_NFC] = "PF_NFC", 213 [PF_VSOCK] = "PF_VSOCK", 214 [PF_KCM] = "PF_KCM", 215 [PF_QIPCRTR] = "PF_QIPCRTR", 216 [PF_SMC] = "PF_SMC", 217 [PF_XDP] = "PF_XDP", 218 [PF_MCTP] = "PF_MCTP", 219 }; 220 221 /* 222 * The protocol list. Each protocol is registered in here. 223 */ 224 225 static DEFINE_SPINLOCK(net_family_lock); 226 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 227 228 /* 229 * Support routines. 230 * Move socket addresses back and forth across the kernel/user 231 * divide and look after the messy bits. 232 */ 233 234 /** 235 * move_addr_to_kernel - copy a socket address into kernel space 236 * @uaddr: Address in user space 237 * @kaddr: Address in kernel space 238 * @ulen: Length in user space 239 * 240 * The address is copied into kernel space. If the provided address is 241 * too long an error code of -EINVAL is returned. If the copy gives 242 * invalid addresses -EFAULT is returned. On a success 0 is returned. 243 */ 244 245 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 246 { 247 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 248 return -EINVAL; 249 if (ulen == 0) 250 return 0; 251 if (copy_from_user(kaddr, uaddr, ulen)) 252 return -EFAULT; 253 return audit_sockaddr(ulen, kaddr); 254 } 255 256 /** 257 * move_addr_to_user - copy an address to user space 258 * @kaddr: kernel space address 259 * @klen: length of address in kernel 260 * @uaddr: user space address 261 * @ulen: pointer to user length field 262 * 263 * The value pointed to by ulen on entry is the buffer length available. 264 * This is overwritten with the buffer space used. -EINVAL is returned 265 * if an overlong buffer is specified or a negative buffer size. -EFAULT 266 * is returned if either the buffer or the length field are not 267 * accessible. 268 * After copying the data up to the limit the user specifies, the true 269 * length of the data is written over the length limit the user 270 * specified. Zero is returned for a success. 271 */ 272 273 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 274 void __user *uaddr, int __user *ulen) 275 { 276 int err; 277 int len; 278 279 BUG_ON(klen > sizeof(struct sockaddr_storage)); 280 err = get_user(len, ulen); 281 if (err) 282 return err; 283 if (len > klen) 284 len = klen; 285 if (len < 0) 286 return -EINVAL; 287 if (len) { 288 if (audit_sockaddr(klen, kaddr)) 289 return -ENOMEM; 290 if (copy_to_user(uaddr, kaddr, len)) 291 return -EFAULT; 292 } 293 /* 294 * "fromlen shall refer to the value before truncation.." 295 * 1003.1g 296 */ 297 return __put_user(klen, ulen); 298 } 299 300 static struct kmem_cache *sock_inode_cachep __ro_after_init; 301 302 static struct inode *sock_alloc_inode(struct super_block *sb) 303 { 304 struct socket_alloc *ei; 305 306 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 307 if (!ei) 308 return NULL; 309 init_waitqueue_head(&ei->socket.wq.wait); 310 ei->socket.wq.fasync_list = NULL; 311 ei->socket.wq.flags = 0; 312 313 ei->socket.state = SS_UNCONNECTED; 314 ei->socket.flags = 0; 315 ei->socket.ops = NULL; 316 ei->socket.sk = NULL; 317 ei->socket.file = NULL; 318 319 return &ei->vfs_inode; 320 } 321 322 static void sock_free_inode(struct inode *inode) 323 { 324 struct socket_alloc *ei; 325 326 ei = container_of(inode, struct socket_alloc, vfs_inode); 327 kmem_cache_free(sock_inode_cachep, ei); 328 } 329 330 static void init_once(void *foo) 331 { 332 struct socket_alloc *ei = (struct socket_alloc *)foo; 333 334 inode_init_once(&ei->vfs_inode); 335 } 336 337 static void init_inodecache(void) 338 { 339 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 340 sizeof(struct socket_alloc), 341 0, 342 (SLAB_HWCACHE_ALIGN | 343 SLAB_RECLAIM_ACCOUNT | 344 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 345 init_once); 346 BUG_ON(sock_inode_cachep == NULL); 347 } 348 349 static const struct super_operations sockfs_ops = { 350 .alloc_inode = sock_alloc_inode, 351 .free_inode = sock_free_inode, 352 .statfs = simple_statfs, 353 }; 354 355 /* 356 * sockfs_dname() is called from d_path(). 357 */ 358 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 359 { 360 return dynamic_dname(buffer, buflen, "socket:[%lu]", 361 d_inode(dentry)->i_ino); 362 } 363 364 static const struct dentry_operations sockfs_dentry_operations = { 365 .d_dname = sockfs_dname, 366 }; 367 368 static int sockfs_xattr_get(const struct xattr_handler *handler, 369 struct dentry *dentry, struct inode *inode, 370 const char *suffix, void *value, size_t size) 371 { 372 if (value) { 373 if (dentry->d_name.len + 1 > size) 374 return -ERANGE; 375 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 376 } 377 return dentry->d_name.len + 1; 378 } 379 380 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 381 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 382 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 383 384 static const struct xattr_handler sockfs_xattr_handler = { 385 .name = XATTR_NAME_SOCKPROTONAME, 386 .get = sockfs_xattr_get, 387 }; 388 389 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 390 struct mnt_idmap *idmap, 391 struct dentry *dentry, struct inode *inode, 392 const char *suffix, const void *value, 393 size_t size, int flags) 394 { 395 /* Handled by LSM. */ 396 return -EAGAIN; 397 } 398 399 static const struct xattr_handler sockfs_security_xattr_handler = { 400 .prefix = XATTR_SECURITY_PREFIX, 401 .set = sockfs_security_xattr_set, 402 }; 403 404 static const struct xattr_handler *sockfs_xattr_handlers[] = { 405 &sockfs_xattr_handler, 406 &sockfs_security_xattr_handler, 407 NULL 408 }; 409 410 static int sockfs_init_fs_context(struct fs_context *fc) 411 { 412 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 413 if (!ctx) 414 return -ENOMEM; 415 ctx->ops = &sockfs_ops; 416 ctx->dops = &sockfs_dentry_operations; 417 ctx->xattr = sockfs_xattr_handlers; 418 return 0; 419 } 420 421 static struct vfsmount *sock_mnt __read_mostly; 422 423 static struct file_system_type sock_fs_type = { 424 .name = "sockfs", 425 .init_fs_context = sockfs_init_fs_context, 426 .kill_sb = kill_anon_super, 427 }; 428 429 /* 430 * Obtains the first available file descriptor and sets it up for use. 431 * 432 * These functions create file structures and maps them to fd space 433 * of the current process. On success it returns file descriptor 434 * and file struct implicitly stored in sock->file. 435 * Note that another thread may close file descriptor before we return 436 * from this function. We use the fact that now we do not refer 437 * to socket after mapping. If one day we will need it, this 438 * function will increment ref. count on file by 1. 439 * 440 * In any case returned fd MAY BE not valid! 441 * This race condition is unavoidable 442 * with shared fd spaces, we cannot solve it inside kernel, 443 * but we take care of internal coherence yet. 444 */ 445 446 /** 447 * sock_alloc_file - Bind a &socket to a &file 448 * @sock: socket 449 * @flags: file status flags 450 * @dname: protocol name 451 * 452 * Returns the &file bound with @sock, implicitly storing it 453 * in sock->file. If dname is %NULL, sets to "". 454 * 455 * On failure @sock is released, and an ERR pointer is returned. 456 * 457 * This function uses GFP_KERNEL internally. 458 */ 459 460 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 461 { 462 struct file *file; 463 464 if (!dname) 465 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 466 467 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 468 O_RDWR | (flags & O_NONBLOCK), 469 &socket_file_ops); 470 if (IS_ERR(file)) { 471 sock_release(sock); 472 return file; 473 } 474 475 file->f_mode |= FMODE_NOWAIT; 476 sock->file = file; 477 file->private_data = sock; 478 stream_open(SOCK_INODE(sock), file); 479 return file; 480 } 481 EXPORT_SYMBOL(sock_alloc_file); 482 483 static int sock_map_fd(struct socket *sock, int flags) 484 { 485 struct file *newfile; 486 int fd = get_unused_fd_flags(flags); 487 if (unlikely(fd < 0)) { 488 sock_release(sock); 489 return fd; 490 } 491 492 newfile = sock_alloc_file(sock, flags, NULL); 493 if (!IS_ERR(newfile)) { 494 fd_install(fd, newfile); 495 return fd; 496 } 497 498 put_unused_fd(fd); 499 return PTR_ERR(newfile); 500 } 501 502 /** 503 * sock_from_file - Return the &socket bounded to @file. 504 * @file: file 505 * 506 * On failure returns %NULL. 507 */ 508 509 struct socket *sock_from_file(struct file *file) 510 { 511 if (file->f_op == &socket_file_ops) 512 return file->private_data; /* set in sock_alloc_file */ 513 514 return NULL; 515 } 516 EXPORT_SYMBOL(sock_from_file); 517 518 /** 519 * sockfd_lookup - Go from a file number to its socket slot 520 * @fd: file handle 521 * @err: pointer to an error code return 522 * 523 * The file handle passed in is locked and the socket it is bound 524 * to is returned. If an error occurs the err pointer is overwritten 525 * with a negative errno code and NULL is returned. The function checks 526 * for both invalid handles and passing a handle which is not a socket. 527 * 528 * On a success the socket object pointer is returned. 529 */ 530 531 struct socket *sockfd_lookup(int fd, int *err) 532 { 533 struct file *file; 534 struct socket *sock; 535 536 file = fget(fd); 537 if (!file) { 538 *err = -EBADF; 539 return NULL; 540 } 541 542 sock = sock_from_file(file); 543 if (!sock) { 544 *err = -ENOTSOCK; 545 fput(file); 546 } 547 return sock; 548 } 549 EXPORT_SYMBOL(sockfd_lookup); 550 551 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 552 { 553 struct fd f = fdget(fd); 554 struct socket *sock; 555 556 *err = -EBADF; 557 if (f.file) { 558 sock = sock_from_file(f.file); 559 if (likely(sock)) { 560 *fput_needed = f.flags & FDPUT_FPUT; 561 return sock; 562 } 563 *err = -ENOTSOCK; 564 fdput(f); 565 } 566 return NULL; 567 } 568 569 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 570 size_t size) 571 { 572 ssize_t len; 573 ssize_t used = 0; 574 575 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 576 if (len < 0) 577 return len; 578 used += len; 579 if (buffer) { 580 if (size < used) 581 return -ERANGE; 582 buffer += len; 583 } 584 585 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 586 used += len; 587 if (buffer) { 588 if (size < used) 589 return -ERANGE; 590 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 591 buffer += len; 592 } 593 594 return used; 595 } 596 597 static int sockfs_setattr(struct mnt_idmap *idmap, 598 struct dentry *dentry, struct iattr *iattr) 599 { 600 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 601 602 if (!err && (iattr->ia_valid & ATTR_UID)) { 603 struct socket *sock = SOCKET_I(d_inode(dentry)); 604 605 if (sock->sk) 606 sock->sk->sk_uid = iattr->ia_uid; 607 else 608 err = -ENOENT; 609 } 610 611 return err; 612 } 613 614 static const struct inode_operations sockfs_inode_ops = { 615 .listxattr = sockfs_listxattr, 616 .setattr = sockfs_setattr, 617 }; 618 619 /** 620 * sock_alloc - allocate a socket 621 * 622 * Allocate a new inode and socket object. The two are bound together 623 * and initialised. The socket is then returned. If we are out of inodes 624 * NULL is returned. This functions uses GFP_KERNEL internally. 625 */ 626 627 struct socket *sock_alloc(void) 628 { 629 struct inode *inode; 630 struct socket *sock; 631 632 inode = new_inode_pseudo(sock_mnt->mnt_sb); 633 if (!inode) 634 return NULL; 635 636 sock = SOCKET_I(inode); 637 638 inode->i_ino = get_next_ino(); 639 inode->i_mode = S_IFSOCK | S_IRWXUGO; 640 inode->i_uid = current_fsuid(); 641 inode->i_gid = current_fsgid(); 642 inode->i_op = &sockfs_inode_ops; 643 644 return sock; 645 } 646 EXPORT_SYMBOL(sock_alloc); 647 648 static void __sock_release(struct socket *sock, struct inode *inode) 649 { 650 const struct proto_ops *ops = READ_ONCE(sock->ops); 651 652 if (ops) { 653 struct module *owner = ops->owner; 654 655 if (inode) 656 inode_lock(inode); 657 ops->release(sock); 658 sock->sk = NULL; 659 if (inode) 660 inode_unlock(inode); 661 sock->ops = NULL; 662 module_put(owner); 663 } 664 665 if (sock->wq.fasync_list) 666 pr_err("%s: fasync list not empty!\n", __func__); 667 668 if (!sock->file) { 669 iput(SOCK_INODE(sock)); 670 return; 671 } 672 sock->file = NULL; 673 } 674 675 /** 676 * sock_release - close a socket 677 * @sock: socket to close 678 * 679 * The socket is released from the protocol stack if it has a release 680 * callback, and the inode is then released if the socket is bound to 681 * an inode not a file. 682 */ 683 void sock_release(struct socket *sock) 684 { 685 __sock_release(sock, NULL); 686 } 687 EXPORT_SYMBOL(sock_release); 688 689 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 690 { 691 u8 flags = *tx_flags; 692 693 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 694 flags |= SKBTX_HW_TSTAMP; 695 696 /* PTP hardware clocks can provide a free running cycle counter 697 * as a time base for virtual clocks. Tell driver to use the 698 * free running cycle counter for timestamp if socket is bound 699 * to virtual clock. 700 */ 701 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 702 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 703 } 704 705 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 706 flags |= SKBTX_SW_TSTAMP; 707 708 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 709 flags |= SKBTX_SCHED_TSTAMP; 710 711 *tx_flags = flags; 712 } 713 EXPORT_SYMBOL(__sock_tx_timestamp); 714 715 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 716 size_t)); 717 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 718 size_t)); 719 720 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 721 int flags) 722 { 723 trace_sock_send_length(sk, ret, 0); 724 } 725 726 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 727 { 728 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 729 inet_sendmsg, sock, msg, 730 msg_data_left(msg)); 731 BUG_ON(ret == -EIOCBQUEUED); 732 733 if (trace_sock_send_length_enabled()) 734 call_trace_sock_send_length(sock->sk, ret, 0); 735 return ret; 736 } 737 738 /** 739 * sock_sendmsg - send a message through @sock 740 * @sock: socket 741 * @msg: message to send 742 * 743 * Sends @msg through @sock, passing through LSM. 744 * Returns the number of bytes sent, or an error code. 745 */ 746 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 747 { 748 int err = security_socket_sendmsg(sock, msg, 749 msg_data_left(msg)); 750 751 return err ?: sock_sendmsg_nosec(sock, msg); 752 } 753 EXPORT_SYMBOL(sock_sendmsg); 754 755 /** 756 * kernel_sendmsg - send a message through @sock (kernel-space) 757 * @sock: socket 758 * @msg: message header 759 * @vec: kernel vec 760 * @num: vec array length 761 * @size: total message data size 762 * 763 * Builds the message data with @vec and sends it through @sock. 764 * Returns the number of bytes sent, or an error code. 765 */ 766 767 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 768 struct kvec *vec, size_t num, size_t size) 769 { 770 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 771 return sock_sendmsg(sock, msg); 772 } 773 EXPORT_SYMBOL(kernel_sendmsg); 774 775 /** 776 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 777 * @sk: sock 778 * @msg: message header 779 * @vec: output s/g array 780 * @num: output s/g array length 781 * @size: total message data size 782 * 783 * Builds the message data with @vec and sends it through @sock. 784 * Returns the number of bytes sent, or an error code. 785 * Caller must hold @sk. 786 */ 787 788 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 789 struct kvec *vec, size_t num, size_t size) 790 { 791 struct socket *sock = sk->sk_socket; 792 const struct proto_ops *ops = READ_ONCE(sock->ops); 793 794 if (!ops->sendmsg_locked) 795 return sock_no_sendmsg_locked(sk, msg, size); 796 797 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 798 799 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 800 } 801 EXPORT_SYMBOL(kernel_sendmsg_locked); 802 803 static bool skb_is_err_queue(const struct sk_buff *skb) 804 { 805 /* pkt_type of skbs enqueued on the error queue are set to 806 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 807 * in recvmsg, since skbs received on a local socket will never 808 * have a pkt_type of PACKET_OUTGOING. 809 */ 810 return skb->pkt_type == PACKET_OUTGOING; 811 } 812 813 /* On transmit, software and hardware timestamps are returned independently. 814 * As the two skb clones share the hardware timestamp, which may be updated 815 * before the software timestamp is received, a hardware TX timestamp may be 816 * returned only if there is no software TX timestamp. Ignore false software 817 * timestamps, which may be made in the __sock_recv_timestamp() call when the 818 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 819 * hardware timestamp. 820 */ 821 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 822 { 823 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 824 } 825 826 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 827 { 828 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 829 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 830 struct net_device *orig_dev; 831 ktime_t hwtstamp; 832 833 rcu_read_lock(); 834 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 835 if (orig_dev) { 836 *if_index = orig_dev->ifindex; 837 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 838 } else { 839 hwtstamp = shhwtstamps->hwtstamp; 840 } 841 rcu_read_unlock(); 842 843 return hwtstamp; 844 } 845 846 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 847 int if_index) 848 { 849 struct scm_ts_pktinfo ts_pktinfo; 850 struct net_device *orig_dev; 851 852 if (!skb_mac_header_was_set(skb)) 853 return; 854 855 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 856 857 if (!if_index) { 858 rcu_read_lock(); 859 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 860 if (orig_dev) 861 if_index = orig_dev->ifindex; 862 rcu_read_unlock(); 863 } 864 ts_pktinfo.if_index = if_index; 865 866 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 867 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 868 sizeof(ts_pktinfo), &ts_pktinfo); 869 } 870 871 /* 872 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 873 */ 874 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 875 struct sk_buff *skb) 876 { 877 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 878 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 879 struct scm_timestamping_internal tss; 880 int empty = 1, false_tstamp = 0; 881 struct skb_shared_hwtstamps *shhwtstamps = 882 skb_hwtstamps(skb); 883 int if_index; 884 ktime_t hwtstamp; 885 u32 tsflags; 886 887 /* Race occurred between timestamp enabling and packet 888 receiving. Fill in the current time for now. */ 889 if (need_software_tstamp && skb->tstamp == 0) { 890 __net_timestamp(skb); 891 false_tstamp = 1; 892 } 893 894 if (need_software_tstamp) { 895 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 896 if (new_tstamp) { 897 struct __kernel_sock_timeval tv; 898 899 skb_get_new_timestamp(skb, &tv); 900 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 901 sizeof(tv), &tv); 902 } else { 903 struct __kernel_old_timeval tv; 904 905 skb_get_timestamp(skb, &tv); 906 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 907 sizeof(tv), &tv); 908 } 909 } else { 910 if (new_tstamp) { 911 struct __kernel_timespec ts; 912 913 skb_get_new_timestampns(skb, &ts); 914 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 915 sizeof(ts), &ts); 916 } else { 917 struct __kernel_old_timespec ts; 918 919 skb_get_timestampns(skb, &ts); 920 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 921 sizeof(ts), &ts); 922 } 923 } 924 } 925 926 memset(&tss, 0, sizeof(tss)); 927 tsflags = READ_ONCE(sk->sk_tsflags); 928 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && 929 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 930 empty = 0; 931 if (shhwtstamps && 932 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 933 !skb_is_swtx_tstamp(skb, false_tstamp)) { 934 if_index = 0; 935 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 936 hwtstamp = get_timestamp(sk, skb, &if_index); 937 else 938 hwtstamp = shhwtstamps->hwtstamp; 939 940 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 941 hwtstamp = ptp_convert_timestamp(&hwtstamp, 942 READ_ONCE(sk->sk_bind_phc)); 943 944 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 945 empty = 0; 946 947 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 948 !skb_is_err_queue(skb)) 949 put_ts_pktinfo(msg, skb, if_index); 950 } 951 } 952 if (!empty) { 953 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 954 put_cmsg_scm_timestamping64(msg, &tss); 955 else 956 put_cmsg_scm_timestamping(msg, &tss); 957 958 if (skb_is_err_queue(skb) && skb->len && 959 SKB_EXT_ERR(skb)->opt_stats) 960 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 961 skb->len, skb->data); 962 } 963 } 964 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 965 966 #ifdef CONFIG_WIRELESS 967 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 968 struct sk_buff *skb) 969 { 970 int ack; 971 972 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 973 return; 974 if (!skb->wifi_acked_valid) 975 return; 976 977 ack = skb->wifi_acked; 978 979 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 980 } 981 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 982 #endif 983 984 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 985 struct sk_buff *skb) 986 { 987 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 988 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 989 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 990 } 991 992 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 993 struct sk_buff *skb) 994 { 995 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 996 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 997 __u32 mark = skb->mark; 998 999 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1000 } 1001 } 1002 1003 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1004 struct sk_buff *skb) 1005 { 1006 sock_recv_timestamp(msg, sk, skb); 1007 sock_recv_drops(msg, sk, skb); 1008 sock_recv_mark(msg, sk, skb); 1009 } 1010 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1011 1012 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1013 size_t, int)); 1014 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1015 size_t, int)); 1016 1017 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1018 { 1019 trace_sock_recv_length(sk, ret, flags); 1020 } 1021 1022 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1023 int flags) 1024 { 1025 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1026 inet6_recvmsg, 1027 inet_recvmsg, sock, msg, 1028 msg_data_left(msg), flags); 1029 if (trace_sock_recv_length_enabled()) 1030 call_trace_sock_recv_length(sock->sk, ret, flags); 1031 return ret; 1032 } 1033 1034 /** 1035 * sock_recvmsg - receive a message from @sock 1036 * @sock: socket 1037 * @msg: message to receive 1038 * @flags: message flags 1039 * 1040 * Receives @msg from @sock, passing through LSM. Returns the total number 1041 * of bytes received, or an error. 1042 */ 1043 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1044 { 1045 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1046 1047 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1048 } 1049 EXPORT_SYMBOL(sock_recvmsg); 1050 1051 /** 1052 * kernel_recvmsg - Receive a message from a socket (kernel space) 1053 * @sock: The socket to receive the message from 1054 * @msg: Received message 1055 * @vec: Input s/g array for message data 1056 * @num: Size of input s/g array 1057 * @size: Number of bytes to read 1058 * @flags: Message flags (MSG_DONTWAIT, etc...) 1059 * 1060 * On return the msg structure contains the scatter/gather array passed in the 1061 * vec argument. The array is modified so that it consists of the unfilled 1062 * portion of the original array. 1063 * 1064 * The returned value is the total number of bytes received, or an error. 1065 */ 1066 1067 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1068 struct kvec *vec, size_t num, size_t size, int flags) 1069 { 1070 msg->msg_control_is_user = false; 1071 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1072 return sock_recvmsg(sock, msg, flags); 1073 } 1074 EXPORT_SYMBOL(kernel_recvmsg); 1075 1076 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1077 struct pipe_inode_info *pipe, size_t len, 1078 unsigned int flags) 1079 { 1080 struct socket *sock = file->private_data; 1081 const struct proto_ops *ops; 1082 1083 ops = READ_ONCE(sock->ops); 1084 if (unlikely(!ops->splice_read)) 1085 return copy_splice_read(file, ppos, pipe, len, flags); 1086 1087 return ops->splice_read(sock, ppos, pipe, len, flags); 1088 } 1089 1090 static void sock_splice_eof(struct file *file) 1091 { 1092 struct socket *sock = file->private_data; 1093 const struct proto_ops *ops; 1094 1095 ops = READ_ONCE(sock->ops); 1096 if (ops->splice_eof) 1097 ops->splice_eof(sock); 1098 } 1099 1100 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1101 { 1102 struct file *file = iocb->ki_filp; 1103 struct socket *sock = file->private_data; 1104 struct msghdr msg = {.msg_iter = *to, 1105 .msg_iocb = iocb}; 1106 ssize_t res; 1107 1108 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1109 msg.msg_flags = MSG_DONTWAIT; 1110 1111 if (iocb->ki_pos != 0) 1112 return -ESPIPE; 1113 1114 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1115 return 0; 1116 1117 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1118 *to = msg.msg_iter; 1119 return res; 1120 } 1121 1122 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1123 { 1124 struct file *file = iocb->ki_filp; 1125 struct socket *sock = file->private_data; 1126 struct msghdr msg = {.msg_iter = *from, 1127 .msg_iocb = iocb}; 1128 ssize_t res; 1129 1130 if (iocb->ki_pos != 0) 1131 return -ESPIPE; 1132 1133 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1134 msg.msg_flags = MSG_DONTWAIT; 1135 1136 if (sock->type == SOCK_SEQPACKET) 1137 msg.msg_flags |= MSG_EOR; 1138 1139 res = sock_sendmsg(sock, &msg); 1140 *from = msg.msg_iter; 1141 return res; 1142 } 1143 1144 /* 1145 * Atomic setting of ioctl hooks to avoid race 1146 * with module unload. 1147 */ 1148 1149 static DEFINE_MUTEX(br_ioctl_mutex); 1150 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1151 unsigned int cmd, struct ifreq *ifr, 1152 void __user *uarg); 1153 1154 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1155 unsigned int cmd, struct ifreq *ifr, 1156 void __user *uarg)) 1157 { 1158 mutex_lock(&br_ioctl_mutex); 1159 br_ioctl_hook = hook; 1160 mutex_unlock(&br_ioctl_mutex); 1161 } 1162 EXPORT_SYMBOL(brioctl_set); 1163 1164 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1165 struct ifreq *ifr, void __user *uarg) 1166 { 1167 int err = -ENOPKG; 1168 1169 if (!br_ioctl_hook) 1170 request_module("bridge"); 1171 1172 mutex_lock(&br_ioctl_mutex); 1173 if (br_ioctl_hook) 1174 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1175 mutex_unlock(&br_ioctl_mutex); 1176 1177 return err; 1178 } 1179 1180 static DEFINE_MUTEX(vlan_ioctl_mutex); 1181 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1182 1183 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1184 { 1185 mutex_lock(&vlan_ioctl_mutex); 1186 vlan_ioctl_hook = hook; 1187 mutex_unlock(&vlan_ioctl_mutex); 1188 } 1189 EXPORT_SYMBOL(vlan_ioctl_set); 1190 1191 static long sock_do_ioctl(struct net *net, struct socket *sock, 1192 unsigned int cmd, unsigned long arg) 1193 { 1194 const struct proto_ops *ops = READ_ONCE(sock->ops); 1195 struct ifreq ifr; 1196 bool need_copyout; 1197 int err; 1198 void __user *argp = (void __user *)arg; 1199 void __user *data; 1200 1201 err = ops->ioctl(sock, cmd, arg); 1202 1203 /* 1204 * If this ioctl is unknown try to hand it down 1205 * to the NIC driver. 1206 */ 1207 if (err != -ENOIOCTLCMD) 1208 return err; 1209 1210 if (!is_socket_ioctl_cmd(cmd)) 1211 return -ENOTTY; 1212 1213 if (get_user_ifreq(&ifr, &data, argp)) 1214 return -EFAULT; 1215 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1216 if (!err && need_copyout) 1217 if (put_user_ifreq(&ifr, argp)) 1218 return -EFAULT; 1219 1220 return err; 1221 } 1222 1223 /* 1224 * With an ioctl, arg may well be a user mode pointer, but we don't know 1225 * what to do with it - that's up to the protocol still. 1226 */ 1227 1228 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1229 { 1230 const struct proto_ops *ops; 1231 struct socket *sock; 1232 struct sock *sk; 1233 void __user *argp = (void __user *)arg; 1234 int pid, err; 1235 struct net *net; 1236 1237 sock = file->private_data; 1238 ops = READ_ONCE(sock->ops); 1239 sk = sock->sk; 1240 net = sock_net(sk); 1241 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1242 struct ifreq ifr; 1243 void __user *data; 1244 bool need_copyout; 1245 if (get_user_ifreq(&ifr, &data, argp)) 1246 return -EFAULT; 1247 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1248 if (!err && need_copyout) 1249 if (put_user_ifreq(&ifr, argp)) 1250 return -EFAULT; 1251 } else 1252 #ifdef CONFIG_WEXT_CORE 1253 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1254 err = wext_handle_ioctl(net, cmd, argp); 1255 } else 1256 #endif 1257 switch (cmd) { 1258 case FIOSETOWN: 1259 case SIOCSPGRP: 1260 err = -EFAULT; 1261 if (get_user(pid, (int __user *)argp)) 1262 break; 1263 err = f_setown(sock->file, pid, 1); 1264 break; 1265 case FIOGETOWN: 1266 case SIOCGPGRP: 1267 err = put_user(f_getown(sock->file), 1268 (int __user *)argp); 1269 break; 1270 case SIOCGIFBR: 1271 case SIOCSIFBR: 1272 case SIOCBRADDBR: 1273 case SIOCBRDELBR: 1274 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1275 break; 1276 case SIOCGIFVLAN: 1277 case SIOCSIFVLAN: 1278 err = -ENOPKG; 1279 if (!vlan_ioctl_hook) 1280 request_module("8021q"); 1281 1282 mutex_lock(&vlan_ioctl_mutex); 1283 if (vlan_ioctl_hook) 1284 err = vlan_ioctl_hook(net, argp); 1285 mutex_unlock(&vlan_ioctl_mutex); 1286 break; 1287 case SIOCGSKNS: 1288 err = -EPERM; 1289 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1290 break; 1291 1292 err = open_related_ns(&net->ns, get_net_ns); 1293 break; 1294 case SIOCGSTAMP_OLD: 1295 case SIOCGSTAMPNS_OLD: 1296 if (!ops->gettstamp) { 1297 err = -ENOIOCTLCMD; 1298 break; 1299 } 1300 err = ops->gettstamp(sock, argp, 1301 cmd == SIOCGSTAMP_OLD, 1302 !IS_ENABLED(CONFIG_64BIT)); 1303 break; 1304 case SIOCGSTAMP_NEW: 1305 case SIOCGSTAMPNS_NEW: 1306 if (!ops->gettstamp) { 1307 err = -ENOIOCTLCMD; 1308 break; 1309 } 1310 err = ops->gettstamp(sock, argp, 1311 cmd == SIOCGSTAMP_NEW, 1312 false); 1313 break; 1314 1315 case SIOCGIFCONF: 1316 err = dev_ifconf(net, argp); 1317 break; 1318 1319 default: 1320 err = sock_do_ioctl(net, sock, cmd, arg); 1321 break; 1322 } 1323 return err; 1324 } 1325 1326 /** 1327 * sock_create_lite - creates a socket 1328 * @family: protocol family (AF_INET, ...) 1329 * @type: communication type (SOCK_STREAM, ...) 1330 * @protocol: protocol (0, ...) 1331 * @res: new socket 1332 * 1333 * Creates a new socket and assigns it to @res, passing through LSM. 1334 * The new socket initialization is not complete, see kernel_accept(). 1335 * Returns 0 or an error. On failure @res is set to %NULL. 1336 * This function internally uses GFP_KERNEL. 1337 */ 1338 1339 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1340 { 1341 int err; 1342 struct socket *sock = NULL; 1343 1344 err = security_socket_create(family, type, protocol, 1); 1345 if (err) 1346 goto out; 1347 1348 sock = sock_alloc(); 1349 if (!sock) { 1350 err = -ENOMEM; 1351 goto out; 1352 } 1353 1354 sock->type = type; 1355 err = security_socket_post_create(sock, family, type, protocol, 1); 1356 if (err) 1357 goto out_release; 1358 1359 out: 1360 *res = sock; 1361 return err; 1362 out_release: 1363 sock_release(sock); 1364 sock = NULL; 1365 goto out; 1366 } 1367 EXPORT_SYMBOL(sock_create_lite); 1368 1369 /* No kernel lock held - perfect */ 1370 static __poll_t sock_poll(struct file *file, poll_table *wait) 1371 { 1372 struct socket *sock = file->private_data; 1373 const struct proto_ops *ops = READ_ONCE(sock->ops); 1374 __poll_t events = poll_requested_events(wait), flag = 0; 1375 1376 if (!ops->poll) 1377 return 0; 1378 1379 if (sk_can_busy_loop(sock->sk)) { 1380 /* poll once if requested by the syscall */ 1381 if (events & POLL_BUSY_LOOP) 1382 sk_busy_loop(sock->sk, 1); 1383 1384 /* if this socket can poll_ll, tell the system call */ 1385 flag = POLL_BUSY_LOOP; 1386 } 1387 1388 return ops->poll(file, sock, wait) | flag; 1389 } 1390 1391 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1392 { 1393 struct socket *sock = file->private_data; 1394 1395 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1396 } 1397 1398 static int sock_close(struct inode *inode, struct file *filp) 1399 { 1400 __sock_release(SOCKET_I(inode), inode); 1401 return 0; 1402 } 1403 1404 /* 1405 * Update the socket async list 1406 * 1407 * Fasync_list locking strategy. 1408 * 1409 * 1. fasync_list is modified only under process context socket lock 1410 * i.e. under semaphore. 1411 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1412 * or under socket lock 1413 */ 1414 1415 static int sock_fasync(int fd, struct file *filp, int on) 1416 { 1417 struct socket *sock = filp->private_data; 1418 struct sock *sk = sock->sk; 1419 struct socket_wq *wq = &sock->wq; 1420 1421 if (sk == NULL) 1422 return -EINVAL; 1423 1424 lock_sock(sk); 1425 fasync_helper(fd, filp, on, &wq->fasync_list); 1426 1427 if (!wq->fasync_list) 1428 sock_reset_flag(sk, SOCK_FASYNC); 1429 else 1430 sock_set_flag(sk, SOCK_FASYNC); 1431 1432 release_sock(sk); 1433 return 0; 1434 } 1435 1436 /* This function may be called only under rcu_lock */ 1437 1438 int sock_wake_async(struct socket_wq *wq, int how, int band) 1439 { 1440 if (!wq || !wq->fasync_list) 1441 return -1; 1442 1443 switch (how) { 1444 case SOCK_WAKE_WAITD: 1445 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1446 break; 1447 goto call_kill; 1448 case SOCK_WAKE_SPACE: 1449 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1450 break; 1451 fallthrough; 1452 case SOCK_WAKE_IO: 1453 call_kill: 1454 kill_fasync(&wq->fasync_list, SIGIO, band); 1455 break; 1456 case SOCK_WAKE_URG: 1457 kill_fasync(&wq->fasync_list, SIGURG, band); 1458 } 1459 1460 return 0; 1461 } 1462 EXPORT_SYMBOL(sock_wake_async); 1463 1464 /** 1465 * __sock_create - creates a socket 1466 * @net: net namespace 1467 * @family: protocol family (AF_INET, ...) 1468 * @type: communication type (SOCK_STREAM, ...) 1469 * @protocol: protocol (0, ...) 1470 * @res: new socket 1471 * @kern: boolean for kernel space sockets 1472 * 1473 * Creates a new socket and assigns it to @res, passing through LSM. 1474 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1475 * be set to true if the socket resides in kernel space. 1476 * This function internally uses GFP_KERNEL. 1477 */ 1478 1479 int __sock_create(struct net *net, int family, int type, int protocol, 1480 struct socket **res, int kern) 1481 { 1482 int err; 1483 struct socket *sock; 1484 const struct net_proto_family *pf; 1485 1486 /* 1487 * Check protocol is in range 1488 */ 1489 if (family < 0 || family >= NPROTO) 1490 return -EAFNOSUPPORT; 1491 if (type < 0 || type >= SOCK_MAX) 1492 return -EINVAL; 1493 1494 /* Compatibility. 1495 1496 This uglymoron is moved from INET layer to here to avoid 1497 deadlock in module load. 1498 */ 1499 if (family == PF_INET && type == SOCK_PACKET) { 1500 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1501 current->comm); 1502 family = PF_PACKET; 1503 } 1504 1505 err = security_socket_create(family, type, protocol, kern); 1506 if (err) 1507 return err; 1508 1509 /* 1510 * Allocate the socket and allow the family to set things up. if 1511 * the protocol is 0, the family is instructed to select an appropriate 1512 * default. 1513 */ 1514 sock = sock_alloc(); 1515 if (!sock) { 1516 net_warn_ratelimited("socket: no more sockets\n"); 1517 return -ENFILE; /* Not exactly a match, but its the 1518 closest posix thing */ 1519 } 1520 1521 sock->type = type; 1522 1523 #ifdef CONFIG_MODULES 1524 /* Attempt to load a protocol module if the find failed. 1525 * 1526 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1527 * requested real, full-featured networking support upon configuration. 1528 * Otherwise module support will break! 1529 */ 1530 if (rcu_access_pointer(net_families[family]) == NULL) 1531 request_module("net-pf-%d", family); 1532 #endif 1533 1534 rcu_read_lock(); 1535 pf = rcu_dereference(net_families[family]); 1536 err = -EAFNOSUPPORT; 1537 if (!pf) 1538 goto out_release; 1539 1540 /* 1541 * We will call the ->create function, that possibly is in a loadable 1542 * module, so we have to bump that loadable module refcnt first. 1543 */ 1544 if (!try_module_get(pf->owner)) 1545 goto out_release; 1546 1547 /* Now protected by module ref count */ 1548 rcu_read_unlock(); 1549 1550 err = pf->create(net, sock, protocol, kern); 1551 if (err < 0) 1552 goto out_module_put; 1553 1554 /* 1555 * Now to bump the refcnt of the [loadable] module that owns this 1556 * socket at sock_release time we decrement its refcnt. 1557 */ 1558 if (!try_module_get(sock->ops->owner)) 1559 goto out_module_busy; 1560 1561 /* 1562 * Now that we're done with the ->create function, the [loadable] 1563 * module can have its refcnt decremented 1564 */ 1565 module_put(pf->owner); 1566 err = security_socket_post_create(sock, family, type, protocol, kern); 1567 if (err) 1568 goto out_sock_release; 1569 *res = sock; 1570 1571 return 0; 1572 1573 out_module_busy: 1574 err = -EAFNOSUPPORT; 1575 out_module_put: 1576 sock->ops = NULL; 1577 module_put(pf->owner); 1578 out_sock_release: 1579 sock_release(sock); 1580 return err; 1581 1582 out_release: 1583 rcu_read_unlock(); 1584 goto out_sock_release; 1585 } 1586 EXPORT_SYMBOL(__sock_create); 1587 1588 /** 1589 * sock_create - creates a socket 1590 * @family: protocol family (AF_INET, ...) 1591 * @type: communication type (SOCK_STREAM, ...) 1592 * @protocol: protocol (0, ...) 1593 * @res: new socket 1594 * 1595 * A wrapper around __sock_create(). 1596 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1597 */ 1598 1599 int sock_create(int family, int type, int protocol, struct socket **res) 1600 { 1601 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1602 } 1603 EXPORT_SYMBOL(sock_create); 1604 1605 /** 1606 * sock_create_kern - creates a socket (kernel space) 1607 * @net: net namespace 1608 * @family: protocol family (AF_INET, ...) 1609 * @type: communication type (SOCK_STREAM, ...) 1610 * @protocol: protocol (0, ...) 1611 * @res: new socket 1612 * 1613 * A wrapper around __sock_create(). 1614 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1615 */ 1616 1617 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1618 { 1619 return __sock_create(net, family, type, protocol, res, 1); 1620 } 1621 EXPORT_SYMBOL(sock_create_kern); 1622 1623 static struct socket *__sys_socket_create(int family, int type, int protocol) 1624 { 1625 struct socket *sock; 1626 int retval; 1627 1628 /* Check the SOCK_* constants for consistency. */ 1629 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1630 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1631 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1632 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1633 1634 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1635 return ERR_PTR(-EINVAL); 1636 type &= SOCK_TYPE_MASK; 1637 1638 retval = sock_create(family, type, protocol, &sock); 1639 if (retval < 0) 1640 return ERR_PTR(retval); 1641 1642 return sock; 1643 } 1644 1645 struct file *__sys_socket_file(int family, int type, int protocol) 1646 { 1647 struct socket *sock; 1648 int flags; 1649 1650 sock = __sys_socket_create(family, type, protocol); 1651 if (IS_ERR(sock)) 1652 return ERR_CAST(sock); 1653 1654 flags = type & ~SOCK_TYPE_MASK; 1655 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1656 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1657 1658 return sock_alloc_file(sock, flags, NULL); 1659 } 1660 1661 /* A hook for bpf progs to attach to and update socket protocol. 1662 * 1663 * A static noinline declaration here could cause the compiler to 1664 * optimize away the function. A global noinline declaration will 1665 * keep the definition, but may optimize away the callsite. 1666 * Therefore, __weak is needed to ensure that the call is still 1667 * emitted, by telling the compiler that we don't know what the 1668 * function might eventually be. 1669 * 1670 * __diag_* below are needed to dismiss the missing prototype warning. 1671 */ 1672 1673 __diag_push(); 1674 __diag_ignore_all("-Wmissing-prototypes", 1675 "A fmod_ret entry point for BPF programs"); 1676 1677 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1678 { 1679 return protocol; 1680 } 1681 1682 __diag_pop(); 1683 1684 int __sys_socket(int family, int type, int protocol) 1685 { 1686 struct socket *sock; 1687 int flags; 1688 1689 sock = __sys_socket_create(family, type, 1690 update_socket_protocol(family, type, protocol)); 1691 if (IS_ERR(sock)) 1692 return PTR_ERR(sock); 1693 1694 flags = type & ~SOCK_TYPE_MASK; 1695 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1696 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1697 1698 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1699 } 1700 1701 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1702 { 1703 return __sys_socket(family, type, protocol); 1704 } 1705 1706 /* 1707 * Create a pair of connected sockets. 1708 */ 1709 1710 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1711 { 1712 struct socket *sock1, *sock2; 1713 int fd1, fd2, err; 1714 struct file *newfile1, *newfile2; 1715 int flags; 1716 1717 flags = type & ~SOCK_TYPE_MASK; 1718 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1719 return -EINVAL; 1720 type &= SOCK_TYPE_MASK; 1721 1722 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1723 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1724 1725 /* 1726 * reserve descriptors and make sure we won't fail 1727 * to return them to userland. 1728 */ 1729 fd1 = get_unused_fd_flags(flags); 1730 if (unlikely(fd1 < 0)) 1731 return fd1; 1732 1733 fd2 = get_unused_fd_flags(flags); 1734 if (unlikely(fd2 < 0)) { 1735 put_unused_fd(fd1); 1736 return fd2; 1737 } 1738 1739 err = put_user(fd1, &usockvec[0]); 1740 if (err) 1741 goto out; 1742 1743 err = put_user(fd2, &usockvec[1]); 1744 if (err) 1745 goto out; 1746 1747 /* 1748 * Obtain the first socket and check if the underlying protocol 1749 * supports the socketpair call. 1750 */ 1751 1752 err = sock_create(family, type, protocol, &sock1); 1753 if (unlikely(err < 0)) 1754 goto out; 1755 1756 err = sock_create(family, type, protocol, &sock2); 1757 if (unlikely(err < 0)) { 1758 sock_release(sock1); 1759 goto out; 1760 } 1761 1762 err = security_socket_socketpair(sock1, sock2); 1763 if (unlikely(err)) { 1764 sock_release(sock2); 1765 sock_release(sock1); 1766 goto out; 1767 } 1768 1769 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1770 if (unlikely(err < 0)) { 1771 sock_release(sock2); 1772 sock_release(sock1); 1773 goto out; 1774 } 1775 1776 newfile1 = sock_alloc_file(sock1, flags, NULL); 1777 if (IS_ERR(newfile1)) { 1778 err = PTR_ERR(newfile1); 1779 sock_release(sock2); 1780 goto out; 1781 } 1782 1783 newfile2 = sock_alloc_file(sock2, flags, NULL); 1784 if (IS_ERR(newfile2)) { 1785 err = PTR_ERR(newfile2); 1786 fput(newfile1); 1787 goto out; 1788 } 1789 1790 audit_fd_pair(fd1, fd2); 1791 1792 fd_install(fd1, newfile1); 1793 fd_install(fd2, newfile2); 1794 return 0; 1795 1796 out: 1797 put_unused_fd(fd2); 1798 put_unused_fd(fd1); 1799 return err; 1800 } 1801 1802 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1803 int __user *, usockvec) 1804 { 1805 return __sys_socketpair(family, type, protocol, usockvec); 1806 } 1807 1808 /* 1809 * Bind a name to a socket. Nothing much to do here since it's 1810 * the protocol's responsibility to handle the local address. 1811 * 1812 * We move the socket address to kernel space before we call 1813 * the protocol layer (having also checked the address is ok). 1814 */ 1815 1816 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1817 { 1818 struct socket *sock; 1819 struct sockaddr_storage address; 1820 int err, fput_needed; 1821 1822 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1823 if (sock) { 1824 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1825 if (!err) { 1826 err = security_socket_bind(sock, 1827 (struct sockaddr *)&address, 1828 addrlen); 1829 if (!err) 1830 err = READ_ONCE(sock->ops)->bind(sock, 1831 (struct sockaddr *) 1832 &address, addrlen); 1833 } 1834 fput_light(sock->file, fput_needed); 1835 } 1836 return err; 1837 } 1838 1839 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1840 { 1841 return __sys_bind(fd, umyaddr, addrlen); 1842 } 1843 1844 /* 1845 * Perform a listen. Basically, we allow the protocol to do anything 1846 * necessary for a listen, and if that works, we mark the socket as 1847 * ready for listening. 1848 */ 1849 1850 int __sys_listen(int fd, int backlog) 1851 { 1852 struct socket *sock; 1853 int err, fput_needed; 1854 int somaxconn; 1855 1856 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1857 if (sock) { 1858 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1859 if ((unsigned int)backlog > somaxconn) 1860 backlog = somaxconn; 1861 1862 err = security_socket_listen(sock, backlog); 1863 if (!err) 1864 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1865 1866 fput_light(sock->file, fput_needed); 1867 } 1868 return err; 1869 } 1870 1871 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1872 { 1873 return __sys_listen(fd, backlog); 1874 } 1875 1876 struct file *do_accept(struct file *file, unsigned file_flags, 1877 struct sockaddr __user *upeer_sockaddr, 1878 int __user *upeer_addrlen, int flags) 1879 { 1880 struct socket *sock, *newsock; 1881 struct file *newfile; 1882 int err, len; 1883 struct sockaddr_storage address; 1884 const struct proto_ops *ops; 1885 1886 sock = sock_from_file(file); 1887 if (!sock) 1888 return ERR_PTR(-ENOTSOCK); 1889 1890 newsock = sock_alloc(); 1891 if (!newsock) 1892 return ERR_PTR(-ENFILE); 1893 ops = READ_ONCE(sock->ops); 1894 1895 newsock->type = sock->type; 1896 newsock->ops = ops; 1897 1898 /* 1899 * We don't need try_module_get here, as the listening socket (sock) 1900 * has the protocol module (sock->ops->owner) held. 1901 */ 1902 __module_get(ops->owner); 1903 1904 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1905 if (IS_ERR(newfile)) 1906 return newfile; 1907 1908 err = security_socket_accept(sock, newsock); 1909 if (err) 1910 goto out_fd; 1911 1912 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1913 false); 1914 if (err < 0) 1915 goto out_fd; 1916 1917 if (upeer_sockaddr) { 1918 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1919 if (len < 0) { 1920 err = -ECONNABORTED; 1921 goto out_fd; 1922 } 1923 err = move_addr_to_user(&address, 1924 len, upeer_sockaddr, upeer_addrlen); 1925 if (err < 0) 1926 goto out_fd; 1927 } 1928 1929 /* File flags are not inherited via accept() unlike another OSes. */ 1930 return newfile; 1931 out_fd: 1932 fput(newfile); 1933 return ERR_PTR(err); 1934 } 1935 1936 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1937 int __user *upeer_addrlen, int flags) 1938 { 1939 struct file *newfile; 1940 int newfd; 1941 1942 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1943 return -EINVAL; 1944 1945 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1946 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1947 1948 newfd = get_unused_fd_flags(flags); 1949 if (unlikely(newfd < 0)) 1950 return newfd; 1951 1952 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1953 flags); 1954 if (IS_ERR(newfile)) { 1955 put_unused_fd(newfd); 1956 return PTR_ERR(newfile); 1957 } 1958 fd_install(newfd, newfile); 1959 return newfd; 1960 } 1961 1962 /* 1963 * For accept, we attempt to create a new socket, set up the link 1964 * with the client, wake up the client, then return the new 1965 * connected fd. We collect the address of the connector in kernel 1966 * space and move it to user at the very end. This is unclean because 1967 * we open the socket then return an error. 1968 * 1969 * 1003.1g adds the ability to recvmsg() to query connection pending 1970 * status to recvmsg. We need to add that support in a way thats 1971 * clean when we restructure accept also. 1972 */ 1973 1974 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1975 int __user *upeer_addrlen, int flags) 1976 { 1977 int ret = -EBADF; 1978 struct fd f; 1979 1980 f = fdget(fd); 1981 if (f.file) { 1982 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1983 upeer_addrlen, flags); 1984 fdput(f); 1985 } 1986 1987 return ret; 1988 } 1989 1990 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1991 int __user *, upeer_addrlen, int, flags) 1992 { 1993 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1994 } 1995 1996 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1997 int __user *, upeer_addrlen) 1998 { 1999 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2000 } 2001 2002 /* 2003 * Attempt to connect to a socket with the server address. The address 2004 * is in user space so we verify it is OK and move it to kernel space. 2005 * 2006 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2007 * break bindings 2008 * 2009 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2010 * other SEQPACKET protocols that take time to connect() as it doesn't 2011 * include the -EINPROGRESS status for such sockets. 2012 */ 2013 2014 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2015 int addrlen, int file_flags) 2016 { 2017 struct socket *sock; 2018 int err; 2019 2020 sock = sock_from_file(file); 2021 if (!sock) { 2022 err = -ENOTSOCK; 2023 goto out; 2024 } 2025 2026 err = 2027 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2028 if (err) 2029 goto out; 2030 2031 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2032 addrlen, sock->file->f_flags | file_flags); 2033 out: 2034 return err; 2035 } 2036 2037 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2038 { 2039 int ret = -EBADF; 2040 struct fd f; 2041 2042 f = fdget(fd); 2043 if (f.file) { 2044 struct sockaddr_storage address; 2045 2046 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2047 if (!ret) 2048 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2049 fdput(f); 2050 } 2051 2052 return ret; 2053 } 2054 2055 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2056 int, addrlen) 2057 { 2058 return __sys_connect(fd, uservaddr, addrlen); 2059 } 2060 2061 /* 2062 * Get the local address ('name') of a socket object. Move the obtained 2063 * name to user space. 2064 */ 2065 2066 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2067 int __user *usockaddr_len) 2068 { 2069 struct socket *sock; 2070 struct sockaddr_storage address; 2071 int err, fput_needed; 2072 2073 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2074 if (!sock) 2075 goto out; 2076 2077 err = security_socket_getsockname(sock); 2078 if (err) 2079 goto out_put; 2080 2081 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2082 if (err < 0) 2083 goto out_put; 2084 /* "err" is actually length in this case */ 2085 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2086 2087 out_put: 2088 fput_light(sock->file, fput_needed); 2089 out: 2090 return err; 2091 } 2092 2093 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2094 int __user *, usockaddr_len) 2095 { 2096 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2097 } 2098 2099 /* 2100 * Get the remote address ('name') of a socket object. Move the obtained 2101 * name to user space. 2102 */ 2103 2104 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2105 int __user *usockaddr_len) 2106 { 2107 struct socket *sock; 2108 struct sockaddr_storage address; 2109 int err, fput_needed; 2110 2111 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2112 if (sock != NULL) { 2113 const struct proto_ops *ops = READ_ONCE(sock->ops); 2114 2115 err = security_socket_getpeername(sock); 2116 if (err) { 2117 fput_light(sock->file, fput_needed); 2118 return err; 2119 } 2120 2121 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2122 if (err >= 0) 2123 /* "err" is actually length in this case */ 2124 err = move_addr_to_user(&address, err, usockaddr, 2125 usockaddr_len); 2126 fput_light(sock->file, fput_needed); 2127 } 2128 return err; 2129 } 2130 2131 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2132 int __user *, usockaddr_len) 2133 { 2134 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2135 } 2136 2137 /* 2138 * Send a datagram to a given address. We move the address into kernel 2139 * space and check the user space data area is readable before invoking 2140 * the protocol. 2141 */ 2142 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2143 struct sockaddr __user *addr, int addr_len) 2144 { 2145 struct socket *sock; 2146 struct sockaddr_storage address; 2147 int err; 2148 struct msghdr msg; 2149 struct iovec iov; 2150 int fput_needed; 2151 2152 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2153 if (unlikely(err)) 2154 return err; 2155 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2156 if (!sock) 2157 goto out; 2158 2159 msg.msg_name = NULL; 2160 msg.msg_control = NULL; 2161 msg.msg_controllen = 0; 2162 msg.msg_namelen = 0; 2163 msg.msg_ubuf = NULL; 2164 if (addr) { 2165 err = move_addr_to_kernel(addr, addr_len, &address); 2166 if (err < 0) 2167 goto out_put; 2168 msg.msg_name = (struct sockaddr *)&address; 2169 msg.msg_namelen = addr_len; 2170 } 2171 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2172 if (sock->file->f_flags & O_NONBLOCK) 2173 flags |= MSG_DONTWAIT; 2174 msg.msg_flags = flags; 2175 err = sock_sendmsg(sock, &msg); 2176 2177 out_put: 2178 fput_light(sock->file, fput_needed); 2179 out: 2180 return err; 2181 } 2182 2183 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2184 unsigned int, flags, struct sockaddr __user *, addr, 2185 int, addr_len) 2186 { 2187 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2188 } 2189 2190 /* 2191 * Send a datagram down a socket. 2192 */ 2193 2194 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2195 unsigned int, flags) 2196 { 2197 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2198 } 2199 2200 /* 2201 * Receive a frame from the socket and optionally record the address of the 2202 * sender. We verify the buffers are writable and if needed move the 2203 * sender address from kernel to user space. 2204 */ 2205 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2206 struct sockaddr __user *addr, int __user *addr_len) 2207 { 2208 struct sockaddr_storage address; 2209 struct msghdr msg = { 2210 /* Save some cycles and don't copy the address if not needed */ 2211 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2212 }; 2213 struct socket *sock; 2214 struct iovec iov; 2215 int err, err2; 2216 int fput_needed; 2217 2218 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2219 if (unlikely(err)) 2220 return err; 2221 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2222 if (!sock) 2223 goto out; 2224 2225 if (sock->file->f_flags & O_NONBLOCK) 2226 flags |= MSG_DONTWAIT; 2227 err = sock_recvmsg(sock, &msg, flags); 2228 2229 if (err >= 0 && addr != NULL) { 2230 err2 = move_addr_to_user(&address, 2231 msg.msg_namelen, addr, addr_len); 2232 if (err2 < 0) 2233 err = err2; 2234 } 2235 2236 fput_light(sock->file, fput_needed); 2237 out: 2238 return err; 2239 } 2240 2241 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2242 unsigned int, flags, struct sockaddr __user *, addr, 2243 int __user *, addr_len) 2244 { 2245 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2246 } 2247 2248 /* 2249 * Receive a datagram from a socket. 2250 */ 2251 2252 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2253 unsigned int, flags) 2254 { 2255 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2256 } 2257 2258 static bool sock_use_custom_sol_socket(const struct socket *sock) 2259 { 2260 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2261 } 2262 2263 /* 2264 * Set a socket option. Because we don't know the option lengths we have 2265 * to pass the user mode parameter for the protocols to sort out. 2266 */ 2267 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2268 int optlen) 2269 { 2270 sockptr_t optval = USER_SOCKPTR(user_optval); 2271 const struct proto_ops *ops; 2272 char *kernel_optval = NULL; 2273 int err, fput_needed; 2274 struct socket *sock; 2275 2276 if (optlen < 0) 2277 return -EINVAL; 2278 2279 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2280 if (!sock) 2281 return err; 2282 2283 err = security_socket_setsockopt(sock, level, optname); 2284 if (err) 2285 goto out_put; 2286 2287 if (!in_compat_syscall()) 2288 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2289 user_optval, &optlen, 2290 &kernel_optval); 2291 if (err < 0) 2292 goto out_put; 2293 if (err > 0) { 2294 err = 0; 2295 goto out_put; 2296 } 2297 2298 if (kernel_optval) 2299 optval = KERNEL_SOCKPTR(kernel_optval); 2300 ops = READ_ONCE(sock->ops); 2301 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2302 err = sock_setsockopt(sock, level, optname, optval, optlen); 2303 else if (unlikely(!ops->setsockopt)) 2304 err = -EOPNOTSUPP; 2305 else 2306 err = ops->setsockopt(sock, level, optname, optval, 2307 optlen); 2308 kfree(kernel_optval); 2309 out_put: 2310 fput_light(sock->file, fput_needed); 2311 return err; 2312 } 2313 2314 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2315 char __user *, optval, int, optlen) 2316 { 2317 return __sys_setsockopt(fd, level, optname, optval, optlen); 2318 } 2319 2320 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2321 int optname)); 2322 2323 /* 2324 * Get a socket option. Because we don't know the option lengths we have 2325 * to pass a user mode parameter for the protocols to sort out. 2326 */ 2327 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2328 int __user *optlen) 2329 { 2330 int max_optlen __maybe_unused; 2331 const struct proto_ops *ops; 2332 int err, fput_needed; 2333 struct socket *sock; 2334 2335 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2336 if (!sock) 2337 return err; 2338 2339 err = security_socket_getsockopt(sock, level, optname); 2340 if (err) 2341 goto out_put; 2342 2343 if (!in_compat_syscall()) 2344 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2345 2346 ops = READ_ONCE(sock->ops); 2347 if (level == SOL_SOCKET) 2348 err = sock_getsockopt(sock, level, optname, optval, optlen); 2349 else if (unlikely(!ops->getsockopt)) 2350 err = -EOPNOTSUPP; 2351 else 2352 err = ops->getsockopt(sock, level, optname, optval, 2353 optlen); 2354 2355 if (!in_compat_syscall()) 2356 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2357 optval, optlen, max_optlen, 2358 err); 2359 out_put: 2360 fput_light(sock->file, fput_needed); 2361 return err; 2362 } 2363 2364 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2365 char __user *, optval, int __user *, optlen) 2366 { 2367 return __sys_getsockopt(fd, level, optname, optval, optlen); 2368 } 2369 2370 /* 2371 * Shutdown a socket. 2372 */ 2373 2374 int __sys_shutdown_sock(struct socket *sock, int how) 2375 { 2376 int err; 2377 2378 err = security_socket_shutdown(sock, how); 2379 if (!err) 2380 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2381 2382 return err; 2383 } 2384 2385 int __sys_shutdown(int fd, int how) 2386 { 2387 int err, fput_needed; 2388 struct socket *sock; 2389 2390 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2391 if (sock != NULL) { 2392 err = __sys_shutdown_sock(sock, how); 2393 fput_light(sock->file, fput_needed); 2394 } 2395 return err; 2396 } 2397 2398 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2399 { 2400 return __sys_shutdown(fd, how); 2401 } 2402 2403 /* A couple of helpful macros for getting the address of the 32/64 bit 2404 * fields which are the same type (int / unsigned) on our platforms. 2405 */ 2406 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2407 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2408 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2409 2410 struct used_address { 2411 struct sockaddr_storage name; 2412 unsigned int name_len; 2413 }; 2414 2415 int __copy_msghdr(struct msghdr *kmsg, 2416 struct user_msghdr *msg, 2417 struct sockaddr __user **save_addr) 2418 { 2419 ssize_t err; 2420 2421 kmsg->msg_control_is_user = true; 2422 kmsg->msg_get_inq = 0; 2423 kmsg->msg_control_user = msg->msg_control; 2424 kmsg->msg_controllen = msg->msg_controllen; 2425 kmsg->msg_flags = msg->msg_flags; 2426 2427 kmsg->msg_namelen = msg->msg_namelen; 2428 if (!msg->msg_name) 2429 kmsg->msg_namelen = 0; 2430 2431 if (kmsg->msg_namelen < 0) 2432 return -EINVAL; 2433 2434 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2435 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2436 2437 if (save_addr) 2438 *save_addr = msg->msg_name; 2439 2440 if (msg->msg_name && kmsg->msg_namelen) { 2441 if (!save_addr) { 2442 err = move_addr_to_kernel(msg->msg_name, 2443 kmsg->msg_namelen, 2444 kmsg->msg_name); 2445 if (err < 0) 2446 return err; 2447 } 2448 } else { 2449 kmsg->msg_name = NULL; 2450 kmsg->msg_namelen = 0; 2451 } 2452 2453 if (msg->msg_iovlen > UIO_MAXIOV) 2454 return -EMSGSIZE; 2455 2456 kmsg->msg_iocb = NULL; 2457 kmsg->msg_ubuf = NULL; 2458 return 0; 2459 } 2460 2461 static int copy_msghdr_from_user(struct msghdr *kmsg, 2462 struct user_msghdr __user *umsg, 2463 struct sockaddr __user **save_addr, 2464 struct iovec **iov) 2465 { 2466 struct user_msghdr msg; 2467 ssize_t err; 2468 2469 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2470 return -EFAULT; 2471 2472 err = __copy_msghdr(kmsg, &msg, save_addr); 2473 if (err) 2474 return err; 2475 2476 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2477 msg.msg_iov, msg.msg_iovlen, 2478 UIO_FASTIOV, iov, &kmsg->msg_iter); 2479 return err < 0 ? err : 0; 2480 } 2481 2482 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2483 unsigned int flags, struct used_address *used_address, 2484 unsigned int allowed_msghdr_flags) 2485 { 2486 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2487 __aligned(sizeof(__kernel_size_t)); 2488 /* 20 is size of ipv6_pktinfo */ 2489 unsigned char *ctl_buf = ctl; 2490 int ctl_len; 2491 ssize_t err; 2492 2493 err = -ENOBUFS; 2494 2495 if (msg_sys->msg_controllen > INT_MAX) 2496 goto out; 2497 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2498 ctl_len = msg_sys->msg_controllen; 2499 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2500 err = 2501 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2502 sizeof(ctl)); 2503 if (err) 2504 goto out; 2505 ctl_buf = msg_sys->msg_control; 2506 ctl_len = msg_sys->msg_controllen; 2507 } else if (ctl_len) { 2508 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2509 CMSG_ALIGN(sizeof(struct cmsghdr))); 2510 if (ctl_len > sizeof(ctl)) { 2511 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2512 if (ctl_buf == NULL) 2513 goto out; 2514 } 2515 err = -EFAULT; 2516 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2517 goto out_freectl; 2518 msg_sys->msg_control = ctl_buf; 2519 msg_sys->msg_control_is_user = false; 2520 } 2521 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2522 msg_sys->msg_flags = flags; 2523 2524 if (sock->file->f_flags & O_NONBLOCK) 2525 msg_sys->msg_flags |= MSG_DONTWAIT; 2526 /* 2527 * If this is sendmmsg() and current destination address is same as 2528 * previously succeeded address, omit asking LSM's decision. 2529 * used_address->name_len is initialized to UINT_MAX so that the first 2530 * destination address never matches. 2531 */ 2532 if (used_address && msg_sys->msg_name && 2533 used_address->name_len == msg_sys->msg_namelen && 2534 !memcmp(&used_address->name, msg_sys->msg_name, 2535 used_address->name_len)) { 2536 err = sock_sendmsg_nosec(sock, msg_sys); 2537 goto out_freectl; 2538 } 2539 err = sock_sendmsg(sock, msg_sys); 2540 /* 2541 * If this is sendmmsg() and sending to current destination address was 2542 * successful, remember it. 2543 */ 2544 if (used_address && err >= 0) { 2545 used_address->name_len = msg_sys->msg_namelen; 2546 if (msg_sys->msg_name) 2547 memcpy(&used_address->name, msg_sys->msg_name, 2548 used_address->name_len); 2549 } 2550 2551 out_freectl: 2552 if (ctl_buf != ctl) 2553 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2554 out: 2555 return err; 2556 } 2557 2558 int sendmsg_copy_msghdr(struct msghdr *msg, 2559 struct user_msghdr __user *umsg, unsigned flags, 2560 struct iovec **iov) 2561 { 2562 int err; 2563 2564 if (flags & MSG_CMSG_COMPAT) { 2565 struct compat_msghdr __user *msg_compat; 2566 2567 msg_compat = (struct compat_msghdr __user *) umsg; 2568 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2569 } else { 2570 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2571 } 2572 if (err < 0) 2573 return err; 2574 2575 return 0; 2576 } 2577 2578 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2579 struct msghdr *msg_sys, unsigned int flags, 2580 struct used_address *used_address, 2581 unsigned int allowed_msghdr_flags) 2582 { 2583 struct sockaddr_storage address; 2584 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2585 ssize_t err; 2586 2587 msg_sys->msg_name = &address; 2588 2589 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2590 if (err < 0) 2591 return err; 2592 2593 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2594 allowed_msghdr_flags); 2595 kfree(iov); 2596 return err; 2597 } 2598 2599 /* 2600 * BSD sendmsg interface 2601 */ 2602 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2603 unsigned int flags) 2604 { 2605 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2606 } 2607 2608 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2609 bool forbid_cmsg_compat) 2610 { 2611 int fput_needed, err; 2612 struct msghdr msg_sys; 2613 struct socket *sock; 2614 2615 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2616 return -EINVAL; 2617 2618 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2619 if (!sock) 2620 goto out; 2621 2622 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2623 2624 fput_light(sock->file, fput_needed); 2625 out: 2626 return err; 2627 } 2628 2629 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2630 { 2631 return __sys_sendmsg(fd, msg, flags, true); 2632 } 2633 2634 /* 2635 * Linux sendmmsg interface 2636 */ 2637 2638 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2639 unsigned int flags, bool forbid_cmsg_compat) 2640 { 2641 int fput_needed, err, datagrams; 2642 struct socket *sock; 2643 struct mmsghdr __user *entry; 2644 struct compat_mmsghdr __user *compat_entry; 2645 struct msghdr msg_sys; 2646 struct used_address used_address; 2647 unsigned int oflags = flags; 2648 2649 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2650 return -EINVAL; 2651 2652 if (vlen > UIO_MAXIOV) 2653 vlen = UIO_MAXIOV; 2654 2655 datagrams = 0; 2656 2657 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2658 if (!sock) 2659 return err; 2660 2661 used_address.name_len = UINT_MAX; 2662 entry = mmsg; 2663 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2664 err = 0; 2665 flags |= MSG_BATCH; 2666 2667 while (datagrams < vlen) { 2668 if (datagrams == vlen - 1) 2669 flags = oflags; 2670 2671 if (MSG_CMSG_COMPAT & flags) { 2672 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2673 &msg_sys, flags, &used_address, MSG_EOR); 2674 if (err < 0) 2675 break; 2676 err = __put_user(err, &compat_entry->msg_len); 2677 ++compat_entry; 2678 } else { 2679 err = ___sys_sendmsg(sock, 2680 (struct user_msghdr __user *)entry, 2681 &msg_sys, flags, &used_address, MSG_EOR); 2682 if (err < 0) 2683 break; 2684 err = put_user(err, &entry->msg_len); 2685 ++entry; 2686 } 2687 2688 if (err) 2689 break; 2690 ++datagrams; 2691 if (msg_data_left(&msg_sys)) 2692 break; 2693 cond_resched(); 2694 } 2695 2696 fput_light(sock->file, fput_needed); 2697 2698 /* We only return an error if no datagrams were able to be sent */ 2699 if (datagrams != 0) 2700 return datagrams; 2701 2702 return err; 2703 } 2704 2705 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2706 unsigned int, vlen, unsigned int, flags) 2707 { 2708 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2709 } 2710 2711 int recvmsg_copy_msghdr(struct msghdr *msg, 2712 struct user_msghdr __user *umsg, unsigned flags, 2713 struct sockaddr __user **uaddr, 2714 struct iovec **iov) 2715 { 2716 ssize_t err; 2717 2718 if (MSG_CMSG_COMPAT & flags) { 2719 struct compat_msghdr __user *msg_compat; 2720 2721 msg_compat = (struct compat_msghdr __user *) umsg; 2722 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2723 } else { 2724 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2725 } 2726 if (err < 0) 2727 return err; 2728 2729 return 0; 2730 } 2731 2732 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2733 struct user_msghdr __user *msg, 2734 struct sockaddr __user *uaddr, 2735 unsigned int flags, int nosec) 2736 { 2737 struct compat_msghdr __user *msg_compat = 2738 (struct compat_msghdr __user *) msg; 2739 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2740 struct sockaddr_storage addr; 2741 unsigned long cmsg_ptr; 2742 int len; 2743 ssize_t err; 2744 2745 msg_sys->msg_name = &addr; 2746 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2747 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2748 2749 /* We assume all kernel code knows the size of sockaddr_storage */ 2750 msg_sys->msg_namelen = 0; 2751 2752 if (sock->file->f_flags & O_NONBLOCK) 2753 flags |= MSG_DONTWAIT; 2754 2755 if (unlikely(nosec)) 2756 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2757 else 2758 err = sock_recvmsg(sock, msg_sys, flags); 2759 2760 if (err < 0) 2761 goto out; 2762 len = err; 2763 2764 if (uaddr != NULL) { 2765 err = move_addr_to_user(&addr, 2766 msg_sys->msg_namelen, uaddr, 2767 uaddr_len); 2768 if (err < 0) 2769 goto out; 2770 } 2771 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2772 COMPAT_FLAGS(msg)); 2773 if (err) 2774 goto out; 2775 if (MSG_CMSG_COMPAT & flags) 2776 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2777 &msg_compat->msg_controllen); 2778 else 2779 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2780 &msg->msg_controllen); 2781 if (err) 2782 goto out; 2783 err = len; 2784 out: 2785 return err; 2786 } 2787 2788 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2789 struct msghdr *msg_sys, unsigned int flags, int nosec) 2790 { 2791 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2792 /* user mode address pointers */ 2793 struct sockaddr __user *uaddr; 2794 ssize_t err; 2795 2796 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2797 if (err < 0) 2798 return err; 2799 2800 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2801 kfree(iov); 2802 return err; 2803 } 2804 2805 /* 2806 * BSD recvmsg interface 2807 */ 2808 2809 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2810 struct user_msghdr __user *umsg, 2811 struct sockaddr __user *uaddr, unsigned int flags) 2812 { 2813 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2814 } 2815 2816 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2817 bool forbid_cmsg_compat) 2818 { 2819 int fput_needed, err; 2820 struct msghdr msg_sys; 2821 struct socket *sock; 2822 2823 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2824 return -EINVAL; 2825 2826 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2827 if (!sock) 2828 goto out; 2829 2830 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2831 2832 fput_light(sock->file, fput_needed); 2833 out: 2834 return err; 2835 } 2836 2837 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2838 unsigned int, flags) 2839 { 2840 return __sys_recvmsg(fd, msg, flags, true); 2841 } 2842 2843 /* 2844 * Linux recvmmsg interface 2845 */ 2846 2847 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2848 unsigned int vlen, unsigned int flags, 2849 struct timespec64 *timeout) 2850 { 2851 int fput_needed, err, datagrams; 2852 struct socket *sock; 2853 struct mmsghdr __user *entry; 2854 struct compat_mmsghdr __user *compat_entry; 2855 struct msghdr msg_sys; 2856 struct timespec64 end_time; 2857 struct timespec64 timeout64; 2858 2859 if (timeout && 2860 poll_select_set_timeout(&end_time, timeout->tv_sec, 2861 timeout->tv_nsec)) 2862 return -EINVAL; 2863 2864 datagrams = 0; 2865 2866 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2867 if (!sock) 2868 return err; 2869 2870 if (likely(!(flags & MSG_ERRQUEUE))) { 2871 err = sock_error(sock->sk); 2872 if (err) { 2873 datagrams = err; 2874 goto out_put; 2875 } 2876 } 2877 2878 entry = mmsg; 2879 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2880 2881 while (datagrams < vlen) { 2882 /* 2883 * No need to ask LSM for more than the first datagram. 2884 */ 2885 if (MSG_CMSG_COMPAT & flags) { 2886 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2887 &msg_sys, flags & ~MSG_WAITFORONE, 2888 datagrams); 2889 if (err < 0) 2890 break; 2891 err = __put_user(err, &compat_entry->msg_len); 2892 ++compat_entry; 2893 } else { 2894 err = ___sys_recvmsg(sock, 2895 (struct user_msghdr __user *)entry, 2896 &msg_sys, flags & ~MSG_WAITFORONE, 2897 datagrams); 2898 if (err < 0) 2899 break; 2900 err = put_user(err, &entry->msg_len); 2901 ++entry; 2902 } 2903 2904 if (err) 2905 break; 2906 ++datagrams; 2907 2908 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2909 if (flags & MSG_WAITFORONE) 2910 flags |= MSG_DONTWAIT; 2911 2912 if (timeout) { 2913 ktime_get_ts64(&timeout64); 2914 *timeout = timespec64_sub(end_time, timeout64); 2915 if (timeout->tv_sec < 0) { 2916 timeout->tv_sec = timeout->tv_nsec = 0; 2917 break; 2918 } 2919 2920 /* Timeout, return less than vlen datagrams */ 2921 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2922 break; 2923 } 2924 2925 /* Out of band data, return right away */ 2926 if (msg_sys.msg_flags & MSG_OOB) 2927 break; 2928 cond_resched(); 2929 } 2930 2931 if (err == 0) 2932 goto out_put; 2933 2934 if (datagrams == 0) { 2935 datagrams = err; 2936 goto out_put; 2937 } 2938 2939 /* 2940 * We may return less entries than requested (vlen) if the 2941 * sock is non block and there aren't enough datagrams... 2942 */ 2943 if (err != -EAGAIN) { 2944 /* 2945 * ... or if recvmsg returns an error after we 2946 * received some datagrams, where we record the 2947 * error to return on the next call or if the 2948 * app asks about it using getsockopt(SO_ERROR). 2949 */ 2950 WRITE_ONCE(sock->sk->sk_err, -err); 2951 } 2952 out_put: 2953 fput_light(sock->file, fput_needed); 2954 2955 return datagrams; 2956 } 2957 2958 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2959 unsigned int vlen, unsigned int flags, 2960 struct __kernel_timespec __user *timeout, 2961 struct old_timespec32 __user *timeout32) 2962 { 2963 int datagrams; 2964 struct timespec64 timeout_sys; 2965 2966 if (timeout && get_timespec64(&timeout_sys, timeout)) 2967 return -EFAULT; 2968 2969 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2970 return -EFAULT; 2971 2972 if (!timeout && !timeout32) 2973 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2974 2975 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2976 2977 if (datagrams <= 0) 2978 return datagrams; 2979 2980 if (timeout && put_timespec64(&timeout_sys, timeout)) 2981 datagrams = -EFAULT; 2982 2983 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2984 datagrams = -EFAULT; 2985 2986 return datagrams; 2987 } 2988 2989 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2990 unsigned int, vlen, unsigned int, flags, 2991 struct __kernel_timespec __user *, timeout) 2992 { 2993 if (flags & MSG_CMSG_COMPAT) 2994 return -EINVAL; 2995 2996 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2997 } 2998 2999 #ifdef CONFIG_COMPAT_32BIT_TIME 3000 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3001 unsigned int, vlen, unsigned int, flags, 3002 struct old_timespec32 __user *, timeout) 3003 { 3004 if (flags & MSG_CMSG_COMPAT) 3005 return -EINVAL; 3006 3007 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3008 } 3009 #endif 3010 3011 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3012 /* Argument list sizes for sys_socketcall */ 3013 #define AL(x) ((x) * sizeof(unsigned long)) 3014 static const unsigned char nargs[21] = { 3015 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3016 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3017 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3018 AL(4), AL(5), AL(4) 3019 }; 3020 3021 #undef AL 3022 3023 /* 3024 * System call vectors. 3025 * 3026 * Argument checking cleaned up. Saved 20% in size. 3027 * This function doesn't need to set the kernel lock because 3028 * it is set by the callees. 3029 */ 3030 3031 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3032 { 3033 unsigned long a[AUDITSC_ARGS]; 3034 unsigned long a0, a1; 3035 int err; 3036 unsigned int len; 3037 3038 if (call < 1 || call > SYS_SENDMMSG) 3039 return -EINVAL; 3040 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3041 3042 len = nargs[call]; 3043 if (len > sizeof(a)) 3044 return -EINVAL; 3045 3046 /* copy_from_user should be SMP safe. */ 3047 if (copy_from_user(a, args, len)) 3048 return -EFAULT; 3049 3050 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3051 if (err) 3052 return err; 3053 3054 a0 = a[0]; 3055 a1 = a[1]; 3056 3057 switch (call) { 3058 case SYS_SOCKET: 3059 err = __sys_socket(a0, a1, a[2]); 3060 break; 3061 case SYS_BIND: 3062 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3063 break; 3064 case SYS_CONNECT: 3065 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3066 break; 3067 case SYS_LISTEN: 3068 err = __sys_listen(a0, a1); 3069 break; 3070 case SYS_ACCEPT: 3071 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3072 (int __user *)a[2], 0); 3073 break; 3074 case SYS_GETSOCKNAME: 3075 err = 3076 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3077 (int __user *)a[2]); 3078 break; 3079 case SYS_GETPEERNAME: 3080 err = 3081 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3082 (int __user *)a[2]); 3083 break; 3084 case SYS_SOCKETPAIR: 3085 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3086 break; 3087 case SYS_SEND: 3088 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3089 NULL, 0); 3090 break; 3091 case SYS_SENDTO: 3092 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3093 (struct sockaddr __user *)a[4], a[5]); 3094 break; 3095 case SYS_RECV: 3096 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3097 NULL, NULL); 3098 break; 3099 case SYS_RECVFROM: 3100 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3101 (struct sockaddr __user *)a[4], 3102 (int __user *)a[5]); 3103 break; 3104 case SYS_SHUTDOWN: 3105 err = __sys_shutdown(a0, a1); 3106 break; 3107 case SYS_SETSOCKOPT: 3108 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3109 a[4]); 3110 break; 3111 case SYS_GETSOCKOPT: 3112 err = 3113 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3114 (int __user *)a[4]); 3115 break; 3116 case SYS_SENDMSG: 3117 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3118 a[2], true); 3119 break; 3120 case SYS_SENDMMSG: 3121 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3122 a[3], true); 3123 break; 3124 case SYS_RECVMSG: 3125 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3126 a[2], true); 3127 break; 3128 case SYS_RECVMMSG: 3129 if (IS_ENABLED(CONFIG_64BIT)) 3130 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3131 a[2], a[3], 3132 (struct __kernel_timespec __user *)a[4], 3133 NULL); 3134 else 3135 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3136 a[2], a[3], NULL, 3137 (struct old_timespec32 __user *)a[4]); 3138 break; 3139 case SYS_ACCEPT4: 3140 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3141 (int __user *)a[2], a[3]); 3142 break; 3143 default: 3144 err = -EINVAL; 3145 break; 3146 } 3147 return err; 3148 } 3149 3150 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3151 3152 /** 3153 * sock_register - add a socket protocol handler 3154 * @ops: description of protocol 3155 * 3156 * This function is called by a protocol handler that wants to 3157 * advertise its address family, and have it linked into the 3158 * socket interface. The value ops->family corresponds to the 3159 * socket system call protocol family. 3160 */ 3161 int sock_register(const struct net_proto_family *ops) 3162 { 3163 int err; 3164 3165 if (ops->family >= NPROTO) { 3166 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3167 return -ENOBUFS; 3168 } 3169 3170 spin_lock(&net_family_lock); 3171 if (rcu_dereference_protected(net_families[ops->family], 3172 lockdep_is_held(&net_family_lock))) 3173 err = -EEXIST; 3174 else { 3175 rcu_assign_pointer(net_families[ops->family], ops); 3176 err = 0; 3177 } 3178 spin_unlock(&net_family_lock); 3179 3180 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3181 return err; 3182 } 3183 EXPORT_SYMBOL(sock_register); 3184 3185 /** 3186 * sock_unregister - remove a protocol handler 3187 * @family: protocol family to remove 3188 * 3189 * This function is called by a protocol handler that wants to 3190 * remove its address family, and have it unlinked from the 3191 * new socket creation. 3192 * 3193 * If protocol handler is a module, then it can use module reference 3194 * counts to protect against new references. If protocol handler is not 3195 * a module then it needs to provide its own protection in 3196 * the ops->create routine. 3197 */ 3198 void sock_unregister(int family) 3199 { 3200 BUG_ON(family < 0 || family >= NPROTO); 3201 3202 spin_lock(&net_family_lock); 3203 RCU_INIT_POINTER(net_families[family], NULL); 3204 spin_unlock(&net_family_lock); 3205 3206 synchronize_rcu(); 3207 3208 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3209 } 3210 EXPORT_SYMBOL(sock_unregister); 3211 3212 bool sock_is_registered(int family) 3213 { 3214 return family < NPROTO && rcu_access_pointer(net_families[family]); 3215 } 3216 3217 static int __init sock_init(void) 3218 { 3219 int err; 3220 /* 3221 * Initialize the network sysctl infrastructure. 3222 */ 3223 err = net_sysctl_init(); 3224 if (err) 3225 goto out; 3226 3227 /* 3228 * Initialize skbuff SLAB cache 3229 */ 3230 skb_init(); 3231 3232 /* 3233 * Initialize the protocols module. 3234 */ 3235 3236 init_inodecache(); 3237 3238 err = register_filesystem(&sock_fs_type); 3239 if (err) 3240 goto out; 3241 sock_mnt = kern_mount(&sock_fs_type); 3242 if (IS_ERR(sock_mnt)) { 3243 err = PTR_ERR(sock_mnt); 3244 goto out_mount; 3245 } 3246 3247 /* The real protocol initialization is performed in later initcalls. 3248 */ 3249 3250 #ifdef CONFIG_NETFILTER 3251 err = netfilter_init(); 3252 if (err) 3253 goto out; 3254 #endif 3255 3256 ptp_classifier_init(); 3257 3258 out: 3259 return err; 3260 3261 out_mount: 3262 unregister_filesystem(&sock_fs_type); 3263 goto out; 3264 } 3265 3266 core_initcall(sock_init); /* early initcall */ 3267 3268 #ifdef CONFIG_PROC_FS 3269 void socket_seq_show(struct seq_file *seq) 3270 { 3271 seq_printf(seq, "sockets: used %d\n", 3272 sock_inuse_get(seq->private)); 3273 } 3274 #endif /* CONFIG_PROC_FS */ 3275 3276 /* Handle the fact that while struct ifreq has the same *layout* on 3277 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3278 * which are handled elsewhere, it still has different *size* due to 3279 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3280 * resulting in struct ifreq being 32 and 40 bytes respectively). 3281 * As a result, if the struct happens to be at the end of a page and 3282 * the next page isn't readable/writable, we get a fault. To prevent 3283 * that, copy back and forth to the full size. 3284 */ 3285 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3286 { 3287 if (in_compat_syscall()) { 3288 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3289 3290 memset(ifr, 0, sizeof(*ifr)); 3291 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3292 return -EFAULT; 3293 3294 if (ifrdata) 3295 *ifrdata = compat_ptr(ifr32->ifr_data); 3296 3297 return 0; 3298 } 3299 3300 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3301 return -EFAULT; 3302 3303 if (ifrdata) 3304 *ifrdata = ifr->ifr_data; 3305 3306 return 0; 3307 } 3308 EXPORT_SYMBOL(get_user_ifreq); 3309 3310 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3311 { 3312 size_t size = sizeof(*ifr); 3313 3314 if (in_compat_syscall()) 3315 size = sizeof(struct compat_ifreq); 3316 3317 if (copy_to_user(arg, ifr, size)) 3318 return -EFAULT; 3319 3320 return 0; 3321 } 3322 EXPORT_SYMBOL(put_user_ifreq); 3323 3324 #ifdef CONFIG_COMPAT 3325 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3326 { 3327 compat_uptr_t uptr32; 3328 struct ifreq ifr; 3329 void __user *saved; 3330 int err; 3331 3332 if (get_user_ifreq(&ifr, NULL, uifr32)) 3333 return -EFAULT; 3334 3335 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3336 return -EFAULT; 3337 3338 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3339 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3340 3341 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3342 if (!err) { 3343 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3344 if (put_user_ifreq(&ifr, uifr32)) 3345 err = -EFAULT; 3346 } 3347 return err; 3348 } 3349 3350 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3351 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3352 struct compat_ifreq __user *u_ifreq32) 3353 { 3354 struct ifreq ifreq; 3355 void __user *data; 3356 3357 if (!is_socket_ioctl_cmd(cmd)) 3358 return -ENOTTY; 3359 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3360 return -EFAULT; 3361 ifreq.ifr_data = data; 3362 3363 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3364 } 3365 3366 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3367 unsigned int cmd, unsigned long arg) 3368 { 3369 void __user *argp = compat_ptr(arg); 3370 struct sock *sk = sock->sk; 3371 struct net *net = sock_net(sk); 3372 const struct proto_ops *ops; 3373 3374 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3375 return sock_ioctl(file, cmd, (unsigned long)argp); 3376 3377 switch (cmd) { 3378 case SIOCWANDEV: 3379 return compat_siocwandev(net, argp); 3380 case SIOCGSTAMP_OLD: 3381 case SIOCGSTAMPNS_OLD: 3382 ops = READ_ONCE(sock->ops); 3383 if (!ops->gettstamp) 3384 return -ENOIOCTLCMD; 3385 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3386 !COMPAT_USE_64BIT_TIME); 3387 3388 case SIOCETHTOOL: 3389 case SIOCBONDSLAVEINFOQUERY: 3390 case SIOCBONDINFOQUERY: 3391 case SIOCSHWTSTAMP: 3392 case SIOCGHWTSTAMP: 3393 return compat_ifr_data_ioctl(net, cmd, argp); 3394 3395 case FIOSETOWN: 3396 case SIOCSPGRP: 3397 case FIOGETOWN: 3398 case SIOCGPGRP: 3399 case SIOCBRADDBR: 3400 case SIOCBRDELBR: 3401 case SIOCGIFVLAN: 3402 case SIOCSIFVLAN: 3403 case SIOCGSKNS: 3404 case SIOCGSTAMP_NEW: 3405 case SIOCGSTAMPNS_NEW: 3406 case SIOCGIFCONF: 3407 case SIOCSIFBR: 3408 case SIOCGIFBR: 3409 return sock_ioctl(file, cmd, arg); 3410 3411 case SIOCGIFFLAGS: 3412 case SIOCSIFFLAGS: 3413 case SIOCGIFMAP: 3414 case SIOCSIFMAP: 3415 case SIOCGIFMETRIC: 3416 case SIOCSIFMETRIC: 3417 case SIOCGIFMTU: 3418 case SIOCSIFMTU: 3419 case SIOCGIFMEM: 3420 case SIOCSIFMEM: 3421 case SIOCGIFHWADDR: 3422 case SIOCSIFHWADDR: 3423 case SIOCADDMULTI: 3424 case SIOCDELMULTI: 3425 case SIOCGIFINDEX: 3426 case SIOCGIFADDR: 3427 case SIOCSIFADDR: 3428 case SIOCSIFHWBROADCAST: 3429 case SIOCDIFADDR: 3430 case SIOCGIFBRDADDR: 3431 case SIOCSIFBRDADDR: 3432 case SIOCGIFDSTADDR: 3433 case SIOCSIFDSTADDR: 3434 case SIOCGIFNETMASK: 3435 case SIOCSIFNETMASK: 3436 case SIOCSIFPFLAGS: 3437 case SIOCGIFPFLAGS: 3438 case SIOCGIFTXQLEN: 3439 case SIOCSIFTXQLEN: 3440 case SIOCBRADDIF: 3441 case SIOCBRDELIF: 3442 case SIOCGIFNAME: 3443 case SIOCSIFNAME: 3444 case SIOCGMIIPHY: 3445 case SIOCGMIIREG: 3446 case SIOCSMIIREG: 3447 case SIOCBONDENSLAVE: 3448 case SIOCBONDRELEASE: 3449 case SIOCBONDSETHWADDR: 3450 case SIOCBONDCHANGEACTIVE: 3451 case SIOCSARP: 3452 case SIOCGARP: 3453 case SIOCDARP: 3454 case SIOCOUTQ: 3455 case SIOCOUTQNSD: 3456 case SIOCATMARK: 3457 return sock_do_ioctl(net, sock, cmd, arg); 3458 } 3459 3460 return -ENOIOCTLCMD; 3461 } 3462 3463 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3464 unsigned long arg) 3465 { 3466 struct socket *sock = file->private_data; 3467 const struct proto_ops *ops = READ_ONCE(sock->ops); 3468 int ret = -ENOIOCTLCMD; 3469 struct sock *sk; 3470 struct net *net; 3471 3472 sk = sock->sk; 3473 net = sock_net(sk); 3474 3475 if (ops->compat_ioctl) 3476 ret = ops->compat_ioctl(sock, cmd, arg); 3477 3478 if (ret == -ENOIOCTLCMD && 3479 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3480 ret = compat_wext_handle_ioctl(net, cmd, arg); 3481 3482 if (ret == -ENOIOCTLCMD) 3483 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3484 3485 return ret; 3486 } 3487 #endif 3488 3489 /** 3490 * kernel_bind - bind an address to a socket (kernel space) 3491 * @sock: socket 3492 * @addr: address 3493 * @addrlen: length of address 3494 * 3495 * Returns 0 or an error. 3496 */ 3497 3498 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3499 { 3500 return READ_ONCE(sock->ops)->bind(sock, addr, addrlen); 3501 } 3502 EXPORT_SYMBOL(kernel_bind); 3503 3504 /** 3505 * kernel_listen - move socket to listening state (kernel space) 3506 * @sock: socket 3507 * @backlog: pending connections queue size 3508 * 3509 * Returns 0 or an error. 3510 */ 3511 3512 int kernel_listen(struct socket *sock, int backlog) 3513 { 3514 return READ_ONCE(sock->ops)->listen(sock, backlog); 3515 } 3516 EXPORT_SYMBOL(kernel_listen); 3517 3518 /** 3519 * kernel_accept - accept a connection (kernel space) 3520 * @sock: listening socket 3521 * @newsock: new connected socket 3522 * @flags: flags 3523 * 3524 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3525 * If it fails, @newsock is guaranteed to be %NULL. 3526 * Returns 0 or an error. 3527 */ 3528 3529 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3530 { 3531 struct sock *sk = sock->sk; 3532 const struct proto_ops *ops = READ_ONCE(sock->ops); 3533 int err; 3534 3535 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3536 newsock); 3537 if (err < 0) 3538 goto done; 3539 3540 err = ops->accept(sock, *newsock, flags, true); 3541 if (err < 0) { 3542 sock_release(*newsock); 3543 *newsock = NULL; 3544 goto done; 3545 } 3546 3547 (*newsock)->ops = ops; 3548 __module_get(ops->owner); 3549 3550 done: 3551 return err; 3552 } 3553 EXPORT_SYMBOL(kernel_accept); 3554 3555 /** 3556 * kernel_connect - connect a socket (kernel space) 3557 * @sock: socket 3558 * @addr: address 3559 * @addrlen: address length 3560 * @flags: flags (O_NONBLOCK, ...) 3561 * 3562 * For datagram sockets, @addr is the address to which datagrams are sent 3563 * by default, and the only address from which datagrams are received. 3564 * For stream sockets, attempts to connect to @addr. 3565 * Returns 0 or an error code. 3566 */ 3567 3568 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3569 int flags) 3570 { 3571 struct sockaddr_storage address; 3572 3573 memcpy(&address, addr, addrlen); 3574 3575 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3576 addrlen, flags); 3577 } 3578 EXPORT_SYMBOL(kernel_connect); 3579 3580 /** 3581 * kernel_getsockname - get the address which the socket is bound (kernel space) 3582 * @sock: socket 3583 * @addr: address holder 3584 * 3585 * Fills the @addr pointer with the address which the socket is bound. 3586 * Returns the length of the address in bytes or an error code. 3587 */ 3588 3589 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3590 { 3591 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3592 } 3593 EXPORT_SYMBOL(kernel_getsockname); 3594 3595 /** 3596 * kernel_getpeername - get the address which the socket is connected (kernel space) 3597 * @sock: socket 3598 * @addr: address holder 3599 * 3600 * Fills the @addr pointer with the address which the socket is connected. 3601 * Returns the length of the address in bytes or an error code. 3602 */ 3603 3604 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3605 { 3606 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3607 } 3608 EXPORT_SYMBOL(kernel_getpeername); 3609 3610 /** 3611 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3612 * @sock: socket 3613 * @how: connection part 3614 * 3615 * Returns 0 or an error. 3616 */ 3617 3618 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3619 { 3620 return READ_ONCE(sock->ops)->shutdown(sock, how); 3621 } 3622 EXPORT_SYMBOL(kernel_sock_shutdown); 3623 3624 /** 3625 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3626 * @sk: socket 3627 * 3628 * This routine returns the IP overhead imposed by a socket i.e. 3629 * the length of the underlying IP header, depending on whether 3630 * this is an IPv4 or IPv6 socket and the length from IP options turned 3631 * on at the socket. Assumes that the caller has a lock on the socket. 3632 */ 3633 3634 u32 kernel_sock_ip_overhead(struct sock *sk) 3635 { 3636 struct inet_sock *inet; 3637 struct ip_options_rcu *opt; 3638 u32 overhead = 0; 3639 #if IS_ENABLED(CONFIG_IPV6) 3640 struct ipv6_pinfo *np; 3641 struct ipv6_txoptions *optv6 = NULL; 3642 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3643 3644 if (!sk) 3645 return overhead; 3646 3647 switch (sk->sk_family) { 3648 case AF_INET: 3649 inet = inet_sk(sk); 3650 overhead += sizeof(struct iphdr); 3651 opt = rcu_dereference_protected(inet->inet_opt, 3652 sock_owned_by_user(sk)); 3653 if (opt) 3654 overhead += opt->opt.optlen; 3655 return overhead; 3656 #if IS_ENABLED(CONFIG_IPV6) 3657 case AF_INET6: 3658 np = inet6_sk(sk); 3659 overhead += sizeof(struct ipv6hdr); 3660 if (np) 3661 optv6 = rcu_dereference_protected(np->opt, 3662 sock_owned_by_user(sk)); 3663 if (optv6) 3664 overhead += (optv6->opt_flen + optv6->opt_nflen); 3665 return overhead; 3666 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3667 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3668 return overhead; 3669 } 3670 } 3671 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3672