xref: /openbmc/linux/net/socket.c (revision 1f782fee18b39b9ad438ebbd82c2915a16c879ee)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100 
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/sockios.h>
105 #include <linux/atalk.h>
106 
107 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
108 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
109 			 unsigned long nr_segs, loff_t pos);
110 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
111 			  unsigned long nr_segs, loff_t pos);
112 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
113 
114 static int sock_close(struct inode *inode, struct file *file);
115 static unsigned int sock_poll(struct file *file,
116 			      struct poll_table_struct *wait);
117 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
118 #ifdef CONFIG_COMPAT
119 static long compat_sock_ioctl(struct file *file,
120 			      unsigned int cmd, unsigned long arg);
121 #endif
122 static int sock_fasync(int fd, struct file *filp, int on);
123 static ssize_t sock_sendpage(struct file *file, struct page *page,
124 			     int offset, size_t size, loff_t *ppos, int more);
125 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
126 			        struct pipe_inode_info *pipe, size_t len,
127 				unsigned int flags);
128 
129 /*
130  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
131  *	in the operation structures but are done directly via the socketcall() multiplexor.
132  */
133 
134 static const struct file_operations socket_file_ops = {
135 	.owner =	THIS_MODULE,
136 	.llseek =	no_llseek,
137 	.aio_read =	sock_aio_read,
138 	.aio_write =	sock_aio_write,
139 	.poll =		sock_poll,
140 	.unlocked_ioctl = sock_ioctl,
141 #ifdef CONFIG_COMPAT
142 	.compat_ioctl = compat_sock_ioctl,
143 #endif
144 	.mmap =		sock_mmap,
145 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
146 	.release =	sock_close,
147 	.fasync =	sock_fasync,
148 	.sendpage =	sock_sendpage,
149 	.splice_write = generic_splice_sendpage,
150 	.splice_read =	sock_splice_read,
151 };
152 
153 /*
154  *	The protocol list. Each protocol is registered in here.
155  */
156 
157 static DEFINE_SPINLOCK(net_family_lock);
158 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
159 
160 /*
161  *	Statistics counters of the socket lists
162  */
163 
164 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
165 
166 /*
167  * Support routines.
168  * Move socket addresses back and forth across the kernel/user
169  * divide and look after the messy bits.
170  */
171 
172 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
173 					   16 for IP, 16 for IPX,
174 					   24 for IPv6,
175 					   about 80 for AX.25
176 					   must be at least one bigger than
177 					   the AF_UNIX size (see net/unix/af_unix.c
178 					   :unix_mkname()).
179 					 */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
221 		      int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	err = get_user(len, ulen);
227 	if (err)
228 		return err;
229 	if (len > klen)
230 		len = klen;
231 	if (len < 0 || len > sizeof(struct sockaddr_storage))
232 		return -EINVAL;
233 	if (len) {
234 		if (audit_sockaddr(klen, kaddr))
235 			return -ENOMEM;
236 		if (copy_to_user(uaddr, kaddr, len))
237 			return -EFAULT;
238 	}
239 	/*
240 	 *      "fromlen shall refer to the value before truncation.."
241 	 *                      1003.1g
242 	 */
243 	return __put_user(klen, ulen);
244 }
245 
246 static struct kmem_cache *sock_inode_cachep __read_mostly;
247 
248 static struct inode *sock_alloc_inode(struct super_block *sb)
249 {
250 	struct socket_alloc *ei;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
256 	if (!ei->socket.wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&ei->socket.wq->wait);
261 	ei->socket.wq->fasync_list = NULL;
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 
273 static void wq_free_rcu(struct rcu_head *head)
274 {
275 	struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
276 
277 	kfree(wq);
278 }
279 
280 static void sock_destroy_inode(struct inode *inode)
281 {
282 	struct socket_alloc *ei;
283 
284 	ei = container_of(inode, struct socket_alloc, vfs_inode);
285 	call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
286 	kmem_cache_free(sock_inode_cachep, ei);
287 }
288 
289 static void init_once(void *foo)
290 {
291 	struct socket_alloc *ei = (struct socket_alloc *)foo;
292 
293 	inode_init_once(&ei->vfs_inode);
294 }
295 
296 static int init_inodecache(void)
297 {
298 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
299 					      sizeof(struct socket_alloc),
300 					      0,
301 					      (SLAB_HWCACHE_ALIGN |
302 					       SLAB_RECLAIM_ACCOUNT |
303 					       SLAB_MEM_SPREAD),
304 					      init_once);
305 	if (sock_inode_cachep == NULL)
306 		return -ENOMEM;
307 	return 0;
308 }
309 
310 static const struct super_operations sockfs_ops = {
311 	.alloc_inode =	sock_alloc_inode,
312 	.destroy_inode =sock_destroy_inode,
313 	.statfs =	simple_statfs,
314 };
315 
316 static int sockfs_get_sb(struct file_system_type *fs_type,
317 			 int flags, const char *dev_name, void *data,
318 			 struct vfsmount *mnt)
319 {
320 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
321 			     mnt);
322 }
323 
324 static struct vfsmount *sock_mnt __read_mostly;
325 
326 static struct file_system_type sock_fs_type = {
327 	.name =		"sockfs",
328 	.get_sb =	sockfs_get_sb,
329 	.kill_sb =	kill_anon_super,
330 };
331 
332 /*
333  * sockfs_dname() is called from d_path().
334  */
335 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
336 {
337 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
338 				dentry->d_inode->i_ino);
339 }
340 
341 static const struct dentry_operations sockfs_dentry_operations = {
342 	.d_dname  = sockfs_dname,
343 };
344 
345 /*
346  *	Obtains the first available file descriptor and sets it up for use.
347  *
348  *	These functions create file structures and maps them to fd space
349  *	of the current process. On success it returns file descriptor
350  *	and file struct implicitly stored in sock->file.
351  *	Note that another thread may close file descriptor before we return
352  *	from this function. We use the fact that now we do not refer
353  *	to socket after mapping. If one day we will need it, this
354  *	function will increment ref. count on file by 1.
355  *
356  *	In any case returned fd MAY BE not valid!
357  *	This race condition is unavoidable
358  *	with shared fd spaces, we cannot solve it inside kernel,
359  *	but we take care of internal coherence yet.
360  */
361 
362 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
363 {
364 	struct qstr name = { .name = "" };
365 	struct path path;
366 	struct file *file;
367 	int fd;
368 
369 	fd = get_unused_fd_flags(flags);
370 	if (unlikely(fd < 0))
371 		return fd;
372 
373 	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
374 	if (unlikely(!path.dentry)) {
375 		put_unused_fd(fd);
376 		return -ENOMEM;
377 	}
378 	path.mnt = mntget(sock_mnt);
379 
380 	path.dentry->d_op = &sockfs_dentry_operations;
381 	d_instantiate(path.dentry, SOCK_INODE(sock));
382 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
383 
384 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
385 		  &socket_file_ops);
386 	if (unlikely(!file)) {
387 		/* drop dentry, keep inode */
388 		atomic_inc(&path.dentry->d_inode->i_count);
389 		path_put(&path);
390 		put_unused_fd(fd);
391 		return -ENFILE;
392 	}
393 
394 	sock->file = file;
395 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
396 	file->f_pos = 0;
397 	file->private_data = sock;
398 
399 	*f = file;
400 	return fd;
401 }
402 
403 int sock_map_fd(struct socket *sock, int flags)
404 {
405 	struct file *newfile;
406 	int fd = sock_alloc_file(sock, &newfile, flags);
407 
408 	if (likely(fd >= 0))
409 		fd_install(fd, newfile);
410 
411 	return fd;
412 }
413 
414 static struct socket *sock_from_file(struct file *file, int *err)
415 {
416 	if (file->f_op == &socket_file_ops)
417 		return file->private_data;	/* set in sock_map_fd */
418 
419 	*err = -ENOTSOCK;
420 	return NULL;
421 }
422 
423 /**
424  *	sockfd_lookup	- 	Go from a file number to its socket slot
425  *	@fd: file handle
426  *	@err: pointer to an error code return
427  *
428  *	The file handle passed in is locked and the socket it is bound
429  *	too is returned. If an error occurs the err pointer is overwritten
430  *	with a negative errno code and NULL is returned. The function checks
431  *	for both invalid handles and passing a handle which is not a socket.
432  *
433  *	On a success the socket object pointer is returned.
434  */
435 
436 struct socket *sockfd_lookup(int fd, int *err)
437 {
438 	struct file *file;
439 	struct socket *sock;
440 
441 	file = fget(fd);
442 	if (!file) {
443 		*err = -EBADF;
444 		return NULL;
445 	}
446 
447 	sock = sock_from_file(file, err);
448 	if (!sock)
449 		fput(file);
450 	return sock;
451 }
452 
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 	struct file *file;
456 	struct socket *sock;
457 
458 	*err = -EBADF;
459 	file = fget_light(fd, fput_needed);
460 	if (file) {
461 		sock = sock_from_file(file, err);
462 		if (sock)
463 			return sock;
464 		fput_light(file, *fput_needed);
465 	}
466 	return NULL;
467 }
468 
469 /**
470  *	sock_alloc	-	allocate a socket
471  *
472  *	Allocate a new inode and socket object. The two are bound together
473  *	and initialised. The socket is then returned. If we are out of inodes
474  *	NULL is returned.
475  */
476 
477 static struct socket *sock_alloc(void)
478 {
479 	struct inode *inode;
480 	struct socket *sock;
481 
482 	inode = new_inode(sock_mnt->mnt_sb);
483 	if (!inode)
484 		return NULL;
485 
486 	sock = SOCKET_I(inode);
487 
488 	kmemcheck_annotate_bitfield(sock, type);
489 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
490 	inode->i_uid = current_fsuid();
491 	inode->i_gid = current_fsgid();
492 
493 	percpu_add(sockets_in_use, 1);
494 	return sock;
495 }
496 
497 /*
498  *	In theory you can't get an open on this inode, but /proc provides
499  *	a back door. Remember to keep it shut otherwise you'll let the
500  *	creepy crawlies in.
501  */
502 
503 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
504 {
505 	return -ENXIO;
506 }
507 
508 const struct file_operations bad_sock_fops = {
509 	.owner = THIS_MODULE,
510 	.open = sock_no_open,
511 };
512 
513 /**
514  *	sock_release	-	close a socket
515  *	@sock: socket to close
516  *
517  *	The socket is released from the protocol stack if it has a release
518  *	callback, and the inode is then released if the socket is bound to
519  *	an inode not a file.
520  */
521 
522 void sock_release(struct socket *sock)
523 {
524 	if (sock->ops) {
525 		struct module *owner = sock->ops->owner;
526 
527 		sock->ops->release(sock);
528 		sock->ops = NULL;
529 		module_put(owner);
530 	}
531 
532 	if (sock->wq->fasync_list)
533 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
534 
535 	percpu_sub(sockets_in_use, 1);
536 	if (!sock->file) {
537 		iput(SOCK_INODE(sock));
538 		return;
539 	}
540 	sock->file = NULL;
541 }
542 
543 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk,
544 		      union skb_shared_tx *shtx)
545 {
546 	shtx->flags = 0;
547 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
548 		shtx->hardware = 1;
549 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
550 		shtx->software = 1;
551 	return 0;
552 }
553 EXPORT_SYMBOL(sock_tx_timestamp);
554 
555 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
556 				 struct msghdr *msg, size_t size)
557 {
558 	struct sock_iocb *si = kiocb_to_siocb(iocb);
559 	int err;
560 
561 	si->sock = sock;
562 	si->scm = NULL;
563 	si->msg = msg;
564 	si->size = size;
565 
566 	err = security_socket_sendmsg(sock, msg, size);
567 	if (err)
568 		return err;
569 
570 	return sock->ops->sendmsg(iocb, sock, msg, size);
571 }
572 
573 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
574 {
575 	struct kiocb iocb;
576 	struct sock_iocb siocb;
577 	int ret;
578 
579 	init_sync_kiocb(&iocb, NULL);
580 	iocb.private = &siocb;
581 	ret = __sock_sendmsg(&iocb, sock, msg, size);
582 	if (-EIOCBQUEUED == ret)
583 		ret = wait_on_sync_kiocb(&iocb);
584 	return ret;
585 }
586 
587 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
588 		   struct kvec *vec, size_t num, size_t size)
589 {
590 	mm_segment_t oldfs = get_fs();
591 	int result;
592 
593 	set_fs(KERNEL_DS);
594 	/*
595 	 * the following is safe, since for compiler definitions of kvec and
596 	 * iovec are identical, yielding the same in-core layout and alignment
597 	 */
598 	msg->msg_iov = (struct iovec *)vec;
599 	msg->msg_iovlen = num;
600 	result = sock_sendmsg(sock, msg, size);
601 	set_fs(oldfs);
602 	return result;
603 }
604 
605 static int ktime2ts(ktime_t kt, struct timespec *ts)
606 {
607 	if (kt.tv64) {
608 		*ts = ktime_to_timespec(kt);
609 		return 1;
610 	} else {
611 		return 0;
612 	}
613 }
614 
615 /*
616  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
617  */
618 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
619 	struct sk_buff *skb)
620 {
621 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
622 	struct timespec ts[3];
623 	int empty = 1;
624 	struct skb_shared_hwtstamps *shhwtstamps =
625 		skb_hwtstamps(skb);
626 
627 	/* Race occurred between timestamp enabling and packet
628 	   receiving.  Fill in the current time for now. */
629 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
630 		__net_timestamp(skb);
631 
632 	if (need_software_tstamp) {
633 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
634 			struct timeval tv;
635 			skb_get_timestamp(skb, &tv);
636 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
637 				 sizeof(tv), &tv);
638 		} else {
639 			skb_get_timestampns(skb, &ts[0]);
640 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
641 				 sizeof(ts[0]), &ts[0]);
642 		}
643 	}
644 
645 
646 	memset(ts, 0, sizeof(ts));
647 	if (skb->tstamp.tv64 &&
648 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
649 		skb_get_timestampns(skb, ts + 0);
650 		empty = 0;
651 	}
652 	if (shhwtstamps) {
653 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
654 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
655 			empty = 0;
656 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
657 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
658 			empty = 0;
659 	}
660 	if (!empty)
661 		put_cmsg(msg, SOL_SOCKET,
662 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
663 }
664 
665 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
666 
667 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
668 {
669 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
670 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
671 			sizeof(__u32), &skb->dropcount);
672 }
673 
674 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
675 	struct sk_buff *skb)
676 {
677 	sock_recv_timestamp(msg, sk, skb);
678 	sock_recv_drops(msg, sk, skb);
679 }
680 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
681 
682 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
683 				       struct msghdr *msg, size_t size, int flags)
684 {
685 	struct sock_iocb *si = kiocb_to_siocb(iocb);
686 
687 	si->sock = sock;
688 	si->scm = NULL;
689 	si->msg = msg;
690 	si->size = size;
691 	si->flags = flags;
692 
693 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
694 }
695 
696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
697 				 struct msghdr *msg, size_t size, int flags)
698 {
699 	int err = security_socket_recvmsg(sock, msg, size, flags);
700 
701 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
702 }
703 
704 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
705 		 size_t size, int flags)
706 {
707 	struct kiocb iocb;
708 	struct sock_iocb siocb;
709 	int ret;
710 
711 	init_sync_kiocb(&iocb, NULL);
712 	iocb.private = &siocb;
713 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
714 	if (-EIOCBQUEUED == ret)
715 		ret = wait_on_sync_kiocb(&iocb);
716 	return ret;
717 }
718 
719 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
720 			      size_t size, int flags)
721 {
722 	struct kiocb iocb;
723 	struct sock_iocb siocb;
724 	int ret;
725 
726 	init_sync_kiocb(&iocb, NULL);
727 	iocb.private = &siocb;
728 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
729 	if (-EIOCBQUEUED == ret)
730 		ret = wait_on_sync_kiocb(&iocb);
731 	return ret;
732 }
733 
734 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
735 		   struct kvec *vec, size_t num, size_t size, int flags)
736 {
737 	mm_segment_t oldfs = get_fs();
738 	int result;
739 
740 	set_fs(KERNEL_DS);
741 	/*
742 	 * the following is safe, since for compiler definitions of kvec and
743 	 * iovec are identical, yielding the same in-core layout and alignment
744 	 */
745 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
746 	result = sock_recvmsg(sock, msg, size, flags);
747 	set_fs(oldfs);
748 	return result;
749 }
750 
751 static void sock_aio_dtor(struct kiocb *iocb)
752 {
753 	kfree(iocb->private);
754 }
755 
756 static ssize_t sock_sendpage(struct file *file, struct page *page,
757 			     int offset, size_t size, loff_t *ppos, int more)
758 {
759 	struct socket *sock;
760 	int flags;
761 
762 	sock = file->private_data;
763 
764 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
765 	if (more)
766 		flags |= MSG_MORE;
767 
768 	return kernel_sendpage(sock, page, offset, size, flags);
769 }
770 
771 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
772 			        struct pipe_inode_info *pipe, size_t len,
773 				unsigned int flags)
774 {
775 	struct socket *sock = file->private_data;
776 
777 	if (unlikely(!sock->ops->splice_read))
778 		return -EINVAL;
779 
780 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
781 }
782 
783 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
784 					 struct sock_iocb *siocb)
785 {
786 	if (!is_sync_kiocb(iocb)) {
787 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
788 		if (!siocb)
789 			return NULL;
790 		iocb->ki_dtor = sock_aio_dtor;
791 	}
792 
793 	siocb->kiocb = iocb;
794 	iocb->private = siocb;
795 	return siocb;
796 }
797 
798 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
799 		struct file *file, const struct iovec *iov,
800 		unsigned long nr_segs)
801 {
802 	struct socket *sock = file->private_data;
803 	size_t size = 0;
804 	int i;
805 
806 	for (i = 0; i < nr_segs; i++)
807 		size += iov[i].iov_len;
808 
809 	msg->msg_name = NULL;
810 	msg->msg_namelen = 0;
811 	msg->msg_control = NULL;
812 	msg->msg_controllen = 0;
813 	msg->msg_iov = (struct iovec *)iov;
814 	msg->msg_iovlen = nr_segs;
815 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
816 
817 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
818 }
819 
820 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
821 				unsigned long nr_segs, loff_t pos)
822 {
823 	struct sock_iocb siocb, *x;
824 
825 	if (pos != 0)
826 		return -ESPIPE;
827 
828 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
829 		return 0;
830 
831 
832 	x = alloc_sock_iocb(iocb, &siocb);
833 	if (!x)
834 		return -ENOMEM;
835 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
836 }
837 
838 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
839 			struct file *file, const struct iovec *iov,
840 			unsigned long nr_segs)
841 {
842 	struct socket *sock = file->private_data;
843 	size_t size = 0;
844 	int i;
845 
846 	for (i = 0; i < nr_segs; i++)
847 		size += iov[i].iov_len;
848 
849 	msg->msg_name = NULL;
850 	msg->msg_namelen = 0;
851 	msg->msg_control = NULL;
852 	msg->msg_controllen = 0;
853 	msg->msg_iov = (struct iovec *)iov;
854 	msg->msg_iovlen = nr_segs;
855 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
856 	if (sock->type == SOCK_SEQPACKET)
857 		msg->msg_flags |= MSG_EOR;
858 
859 	return __sock_sendmsg(iocb, sock, msg, size);
860 }
861 
862 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
863 			  unsigned long nr_segs, loff_t pos)
864 {
865 	struct sock_iocb siocb, *x;
866 
867 	if (pos != 0)
868 		return -ESPIPE;
869 
870 	x = alloc_sock_iocb(iocb, &siocb);
871 	if (!x)
872 		return -ENOMEM;
873 
874 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
875 }
876 
877 /*
878  * Atomic setting of ioctl hooks to avoid race
879  * with module unload.
880  */
881 
882 static DEFINE_MUTEX(br_ioctl_mutex);
883 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
884 
885 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
886 {
887 	mutex_lock(&br_ioctl_mutex);
888 	br_ioctl_hook = hook;
889 	mutex_unlock(&br_ioctl_mutex);
890 }
891 
892 EXPORT_SYMBOL(brioctl_set);
893 
894 static DEFINE_MUTEX(vlan_ioctl_mutex);
895 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
896 
897 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
898 {
899 	mutex_lock(&vlan_ioctl_mutex);
900 	vlan_ioctl_hook = hook;
901 	mutex_unlock(&vlan_ioctl_mutex);
902 }
903 
904 EXPORT_SYMBOL(vlan_ioctl_set);
905 
906 static DEFINE_MUTEX(dlci_ioctl_mutex);
907 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
908 
909 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
910 {
911 	mutex_lock(&dlci_ioctl_mutex);
912 	dlci_ioctl_hook = hook;
913 	mutex_unlock(&dlci_ioctl_mutex);
914 }
915 
916 EXPORT_SYMBOL(dlci_ioctl_set);
917 
918 static long sock_do_ioctl(struct net *net, struct socket *sock,
919 				 unsigned int cmd, unsigned long arg)
920 {
921 	int err;
922 	void __user *argp = (void __user *)arg;
923 
924 	err = sock->ops->ioctl(sock, cmd, arg);
925 
926 	/*
927 	 * If this ioctl is unknown try to hand it down
928 	 * to the NIC driver.
929 	 */
930 	if (err == -ENOIOCTLCMD)
931 		err = dev_ioctl(net, cmd, argp);
932 
933 	return err;
934 }
935 
936 /*
937  *	With an ioctl, arg may well be a user mode pointer, but we don't know
938  *	what to do with it - that's up to the protocol still.
939  */
940 
941 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
942 {
943 	struct socket *sock;
944 	struct sock *sk;
945 	void __user *argp = (void __user *)arg;
946 	int pid, err;
947 	struct net *net;
948 
949 	sock = file->private_data;
950 	sk = sock->sk;
951 	net = sock_net(sk);
952 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
953 		err = dev_ioctl(net, cmd, argp);
954 	} else
955 #ifdef CONFIG_WEXT_CORE
956 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
957 		err = dev_ioctl(net, cmd, argp);
958 	} else
959 #endif
960 		switch (cmd) {
961 		case FIOSETOWN:
962 		case SIOCSPGRP:
963 			err = -EFAULT;
964 			if (get_user(pid, (int __user *)argp))
965 				break;
966 			err = f_setown(sock->file, pid, 1);
967 			break;
968 		case FIOGETOWN:
969 		case SIOCGPGRP:
970 			err = put_user(f_getown(sock->file),
971 				       (int __user *)argp);
972 			break;
973 		case SIOCGIFBR:
974 		case SIOCSIFBR:
975 		case SIOCBRADDBR:
976 		case SIOCBRDELBR:
977 			err = -ENOPKG;
978 			if (!br_ioctl_hook)
979 				request_module("bridge");
980 
981 			mutex_lock(&br_ioctl_mutex);
982 			if (br_ioctl_hook)
983 				err = br_ioctl_hook(net, cmd, argp);
984 			mutex_unlock(&br_ioctl_mutex);
985 			break;
986 		case SIOCGIFVLAN:
987 		case SIOCSIFVLAN:
988 			err = -ENOPKG;
989 			if (!vlan_ioctl_hook)
990 				request_module("8021q");
991 
992 			mutex_lock(&vlan_ioctl_mutex);
993 			if (vlan_ioctl_hook)
994 				err = vlan_ioctl_hook(net, argp);
995 			mutex_unlock(&vlan_ioctl_mutex);
996 			break;
997 		case SIOCADDDLCI:
998 		case SIOCDELDLCI:
999 			err = -ENOPKG;
1000 			if (!dlci_ioctl_hook)
1001 				request_module("dlci");
1002 
1003 			mutex_lock(&dlci_ioctl_mutex);
1004 			if (dlci_ioctl_hook)
1005 				err = dlci_ioctl_hook(cmd, argp);
1006 			mutex_unlock(&dlci_ioctl_mutex);
1007 			break;
1008 		default:
1009 			err = sock_do_ioctl(net, sock, cmd, arg);
1010 			break;
1011 		}
1012 	return err;
1013 }
1014 
1015 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1016 {
1017 	int err;
1018 	struct socket *sock = NULL;
1019 
1020 	err = security_socket_create(family, type, protocol, 1);
1021 	if (err)
1022 		goto out;
1023 
1024 	sock = sock_alloc();
1025 	if (!sock) {
1026 		err = -ENOMEM;
1027 		goto out;
1028 	}
1029 
1030 	sock->type = type;
1031 	err = security_socket_post_create(sock, family, type, protocol, 1);
1032 	if (err)
1033 		goto out_release;
1034 
1035 out:
1036 	*res = sock;
1037 	return err;
1038 out_release:
1039 	sock_release(sock);
1040 	sock = NULL;
1041 	goto out;
1042 }
1043 
1044 /* No kernel lock held - perfect */
1045 static unsigned int sock_poll(struct file *file, poll_table *wait)
1046 {
1047 	struct socket *sock;
1048 
1049 	/*
1050 	 *      We can't return errors to poll, so it's either yes or no.
1051 	 */
1052 	sock = file->private_data;
1053 	return sock->ops->poll(file, sock, wait);
1054 }
1055 
1056 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1057 {
1058 	struct socket *sock = file->private_data;
1059 
1060 	return sock->ops->mmap(file, sock, vma);
1061 }
1062 
1063 static int sock_close(struct inode *inode, struct file *filp)
1064 {
1065 	/*
1066 	 *      It was possible the inode is NULL we were
1067 	 *      closing an unfinished socket.
1068 	 */
1069 
1070 	if (!inode) {
1071 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1072 		return 0;
1073 	}
1074 	sock_release(SOCKET_I(inode));
1075 	return 0;
1076 }
1077 
1078 /*
1079  *	Update the socket async list
1080  *
1081  *	Fasync_list locking strategy.
1082  *
1083  *	1. fasync_list is modified only under process context socket lock
1084  *	   i.e. under semaphore.
1085  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1086  *	   or under socket lock
1087  */
1088 
1089 static int sock_fasync(int fd, struct file *filp, int on)
1090 {
1091 	struct socket *sock = filp->private_data;
1092 	struct sock *sk = sock->sk;
1093 
1094 	if (sk == NULL)
1095 		return -EINVAL;
1096 
1097 	lock_sock(sk);
1098 
1099 	fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1100 
1101 	if (!sock->wq->fasync_list)
1102 		sock_reset_flag(sk, SOCK_FASYNC);
1103 	else
1104 		sock_set_flag(sk, SOCK_FASYNC);
1105 
1106 	release_sock(sk);
1107 	return 0;
1108 }
1109 
1110 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1111 
1112 int sock_wake_async(struct socket *sock, int how, int band)
1113 {
1114 	struct socket_wq *wq;
1115 
1116 	if (!sock)
1117 		return -1;
1118 	rcu_read_lock();
1119 	wq = rcu_dereference(sock->wq);
1120 	if (!wq || !wq->fasync_list) {
1121 		rcu_read_unlock();
1122 		return -1;
1123 	}
1124 	switch (how) {
1125 	case SOCK_WAKE_WAITD:
1126 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1127 			break;
1128 		goto call_kill;
1129 	case SOCK_WAKE_SPACE:
1130 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1131 			break;
1132 		/* fall through */
1133 	case SOCK_WAKE_IO:
1134 call_kill:
1135 		kill_fasync(&wq->fasync_list, SIGIO, band);
1136 		break;
1137 	case SOCK_WAKE_URG:
1138 		kill_fasync(&wq->fasync_list, SIGURG, band);
1139 	}
1140 	rcu_read_unlock();
1141 	return 0;
1142 }
1143 
1144 static int __sock_create(struct net *net, int family, int type, int protocol,
1145 			 struct socket **res, int kern)
1146 {
1147 	int err;
1148 	struct socket *sock;
1149 	const struct net_proto_family *pf;
1150 
1151 	/*
1152 	 *      Check protocol is in range
1153 	 */
1154 	if (family < 0 || family >= NPROTO)
1155 		return -EAFNOSUPPORT;
1156 	if (type < 0 || type >= SOCK_MAX)
1157 		return -EINVAL;
1158 
1159 	/* Compatibility.
1160 
1161 	   This uglymoron is moved from INET layer to here to avoid
1162 	   deadlock in module load.
1163 	 */
1164 	if (family == PF_INET && type == SOCK_PACKET) {
1165 		static int warned;
1166 		if (!warned) {
1167 			warned = 1;
1168 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1169 			       current->comm);
1170 		}
1171 		family = PF_PACKET;
1172 	}
1173 
1174 	err = security_socket_create(family, type, protocol, kern);
1175 	if (err)
1176 		return err;
1177 
1178 	/*
1179 	 *	Allocate the socket and allow the family to set things up. if
1180 	 *	the protocol is 0, the family is instructed to select an appropriate
1181 	 *	default.
1182 	 */
1183 	sock = sock_alloc();
1184 	if (!sock) {
1185 		if (net_ratelimit())
1186 			printk(KERN_WARNING "socket: no more sockets\n");
1187 		return -ENFILE;	/* Not exactly a match, but its the
1188 				   closest posix thing */
1189 	}
1190 
1191 	sock->type = type;
1192 
1193 #ifdef CONFIG_MODULES
1194 	/* Attempt to load a protocol module if the find failed.
1195 	 *
1196 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1197 	 * requested real, full-featured networking support upon configuration.
1198 	 * Otherwise module support will break!
1199 	 */
1200 	if (net_families[family] == NULL)
1201 		request_module("net-pf-%d", family);
1202 #endif
1203 
1204 	rcu_read_lock();
1205 	pf = rcu_dereference(net_families[family]);
1206 	err = -EAFNOSUPPORT;
1207 	if (!pf)
1208 		goto out_release;
1209 
1210 	/*
1211 	 * We will call the ->create function, that possibly is in a loadable
1212 	 * module, so we have to bump that loadable module refcnt first.
1213 	 */
1214 	if (!try_module_get(pf->owner))
1215 		goto out_release;
1216 
1217 	/* Now protected by module ref count */
1218 	rcu_read_unlock();
1219 
1220 	err = pf->create(net, sock, protocol, kern);
1221 	if (err < 0)
1222 		goto out_module_put;
1223 
1224 	/*
1225 	 * Now to bump the refcnt of the [loadable] module that owns this
1226 	 * socket at sock_release time we decrement its refcnt.
1227 	 */
1228 	if (!try_module_get(sock->ops->owner))
1229 		goto out_module_busy;
1230 
1231 	/*
1232 	 * Now that we're done with the ->create function, the [loadable]
1233 	 * module can have its refcnt decremented
1234 	 */
1235 	module_put(pf->owner);
1236 	err = security_socket_post_create(sock, family, type, protocol, kern);
1237 	if (err)
1238 		goto out_sock_release;
1239 	*res = sock;
1240 
1241 	return 0;
1242 
1243 out_module_busy:
1244 	err = -EAFNOSUPPORT;
1245 out_module_put:
1246 	sock->ops = NULL;
1247 	module_put(pf->owner);
1248 out_sock_release:
1249 	sock_release(sock);
1250 	return err;
1251 
1252 out_release:
1253 	rcu_read_unlock();
1254 	goto out_sock_release;
1255 }
1256 
1257 int sock_create(int family, int type, int protocol, struct socket **res)
1258 {
1259 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1260 }
1261 
1262 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1263 {
1264 	return __sock_create(&init_net, family, type, protocol, res, 1);
1265 }
1266 
1267 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1268 {
1269 	int retval;
1270 	struct socket *sock;
1271 	int flags;
1272 
1273 	/* Check the SOCK_* constants for consistency.  */
1274 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1275 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1276 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1277 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1278 
1279 	flags = type & ~SOCK_TYPE_MASK;
1280 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1281 		return -EINVAL;
1282 	type &= SOCK_TYPE_MASK;
1283 
1284 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1285 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1286 
1287 	retval = sock_create(family, type, protocol, &sock);
1288 	if (retval < 0)
1289 		goto out;
1290 
1291 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1292 	if (retval < 0)
1293 		goto out_release;
1294 
1295 out:
1296 	/* It may be already another descriptor 8) Not kernel problem. */
1297 	return retval;
1298 
1299 out_release:
1300 	sock_release(sock);
1301 	return retval;
1302 }
1303 
1304 /*
1305  *	Create a pair of connected sockets.
1306  */
1307 
1308 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1309 		int __user *, usockvec)
1310 {
1311 	struct socket *sock1, *sock2;
1312 	int fd1, fd2, err;
1313 	struct file *newfile1, *newfile2;
1314 	int flags;
1315 
1316 	flags = type & ~SOCK_TYPE_MASK;
1317 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1318 		return -EINVAL;
1319 	type &= SOCK_TYPE_MASK;
1320 
1321 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1322 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1323 
1324 	/*
1325 	 * Obtain the first socket and check if the underlying protocol
1326 	 * supports the socketpair call.
1327 	 */
1328 
1329 	err = sock_create(family, type, protocol, &sock1);
1330 	if (err < 0)
1331 		goto out;
1332 
1333 	err = sock_create(family, type, protocol, &sock2);
1334 	if (err < 0)
1335 		goto out_release_1;
1336 
1337 	err = sock1->ops->socketpair(sock1, sock2);
1338 	if (err < 0)
1339 		goto out_release_both;
1340 
1341 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1342 	if (unlikely(fd1 < 0)) {
1343 		err = fd1;
1344 		goto out_release_both;
1345 	}
1346 
1347 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1348 	if (unlikely(fd2 < 0)) {
1349 		err = fd2;
1350 		fput(newfile1);
1351 		put_unused_fd(fd1);
1352 		sock_release(sock2);
1353 		goto out;
1354 	}
1355 
1356 	audit_fd_pair(fd1, fd2);
1357 	fd_install(fd1, newfile1);
1358 	fd_install(fd2, newfile2);
1359 	/* fd1 and fd2 may be already another descriptors.
1360 	 * Not kernel problem.
1361 	 */
1362 
1363 	err = put_user(fd1, &usockvec[0]);
1364 	if (!err)
1365 		err = put_user(fd2, &usockvec[1]);
1366 	if (!err)
1367 		return 0;
1368 
1369 	sys_close(fd2);
1370 	sys_close(fd1);
1371 	return err;
1372 
1373 out_release_both:
1374 	sock_release(sock2);
1375 out_release_1:
1376 	sock_release(sock1);
1377 out:
1378 	return err;
1379 }
1380 
1381 /*
1382  *	Bind a name to a socket. Nothing much to do here since it's
1383  *	the protocol's responsibility to handle the local address.
1384  *
1385  *	We move the socket address to kernel space before we call
1386  *	the protocol layer (having also checked the address is ok).
1387  */
1388 
1389 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1390 {
1391 	struct socket *sock;
1392 	struct sockaddr_storage address;
1393 	int err, fput_needed;
1394 
1395 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1396 	if (sock) {
1397 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1398 		if (err >= 0) {
1399 			err = security_socket_bind(sock,
1400 						   (struct sockaddr *)&address,
1401 						   addrlen);
1402 			if (!err)
1403 				err = sock->ops->bind(sock,
1404 						      (struct sockaddr *)
1405 						      &address, addrlen);
1406 		}
1407 		fput_light(sock->file, fput_needed);
1408 	}
1409 	return err;
1410 }
1411 
1412 /*
1413  *	Perform a listen. Basically, we allow the protocol to do anything
1414  *	necessary for a listen, and if that works, we mark the socket as
1415  *	ready for listening.
1416  */
1417 
1418 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1419 {
1420 	struct socket *sock;
1421 	int err, fput_needed;
1422 	int somaxconn;
1423 
1424 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1425 	if (sock) {
1426 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1427 		if ((unsigned)backlog > somaxconn)
1428 			backlog = somaxconn;
1429 
1430 		err = security_socket_listen(sock, backlog);
1431 		if (!err)
1432 			err = sock->ops->listen(sock, backlog);
1433 
1434 		fput_light(sock->file, fput_needed);
1435 	}
1436 	return err;
1437 }
1438 
1439 /*
1440  *	For accept, we attempt to create a new socket, set up the link
1441  *	with the client, wake up the client, then return the new
1442  *	connected fd. We collect the address of the connector in kernel
1443  *	space and move it to user at the very end. This is unclean because
1444  *	we open the socket then return an error.
1445  *
1446  *	1003.1g adds the ability to recvmsg() to query connection pending
1447  *	status to recvmsg. We need to add that support in a way thats
1448  *	clean when we restucture accept also.
1449  */
1450 
1451 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1452 		int __user *, upeer_addrlen, int, flags)
1453 {
1454 	struct socket *sock, *newsock;
1455 	struct file *newfile;
1456 	int err, len, newfd, fput_needed;
1457 	struct sockaddr_storage address;
1458 
1459 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1460 		return -EINVAL;
1461 
1462 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1463 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1464 
1465 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1466 	if (!sock)
1467 		goto out;
1468 
1469 	err = -ENFILE;
1470 	if (!(newsock = sock_alloc()))
1471 		goto out_put;
1472 
1473 	newsock->type = sock->type;
1474 	newsock->ops = sock->ops;
1475 
1476 	/*
1477 	 * We don't need try_module_get here, as the listening socket (sock)
1478 	 * has the protocol module (sock->ops->owner) held.
1479 	 */
1480 	__module_get(newsock->ops->owner);
1481 
1482 	newfd = sock_alloc_file(newsock, &newfile, flags);
1483 	if (unlikely(newfd < 0)) {
1484 		err = newfd;
1485 		sock_release(newsock);
1486 		goto out_put;
1487 	}
1488 
1489 	err = security_socket_accept(sock, newsock);
1490 	if (err)
1491 		goto out_fd;
1492 
1493 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1494 	if (err < 0)
1495 		goto out_fd;
1496 
1497 	if (upeer_sockaddr) {
1498 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1499 					  &len, 2) < 0) {
1500 			err = -ECONNABORTED;
1501 			goto out_fd;
1502 		}
1503 		err = move_addr_to_user((struct sockaddr *)&address,
1504 					len, upeer_sockaddr, upeer_addrlen);
1505 		if (err < 0)
1506 			goto out_fd;
1507 	}
1508 
1509 	/* File flags are not inherited via accept() unlike another OSes. */
1510 
1511 	fd_install(newfd, newfile);
1512 	err = newfd;
1513 
1514 out_put:
1515 	fput_light(sock->file, fput_needed);
1516 out:
1517 	return err;
1518 out_fd:
1519 	fput(newfile);
1520 	put_unused_fd(newfd);
1521 	goto out_put;
1522 }
1523 
1524 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1525 		int __user *, upeer_addrlen)
1526 {
1527 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1528 }
1529 
1530 /*
1531  *	Attempt to connect to a socket with the server address.  The address
1532  *	is in user space so we verify it is OK and move it to kernel space.
1533  *
1534  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1535  *	break bindings
1536  *
1537  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1538  *	other SEQPACKET protocols that take time to connect() as it doesn't
1539  *	include the -EINPROGRESS status for such sockets.
1540  */
1541 
1542 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1543 		int, addrlen)
1544 {
1545 	struct socket *sock;
1546 	struct sockaddr_storage address;
1547 	int err, fput_needed;
1548 
1549 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1550 	if (!sock)
1551 		goto out;
1552 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1553 	if (err < 0)
1554 		goto out_put;
1555 
1556 	err =
1557 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1558 	if (err)
1559 		goto out_put;
1560 
1561 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1562 				 sock->file->f_flags);
1563 out_put:
1564 	fput_light(sock->file, fput_needed);
1565 out:
1566 	return err;
1567 }
1568 
1569 /*
1570  *	Get the local address ('name') of a socket object. Move the obtained
1571  *	name to user space.
1572  */
1573 
1574 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1575 		int __user *, usockaddr_len)
1576 {
1577 	struct socket *sock;
1578 	struct sockaddr_storage address;
1579 	int len, err, fput_needed;
1580 
1581 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1582 	if (!sock)
1583 		goto out;
1584 
1585 	err = security_socket_getsockname(sock);
1586 	if (err)
1587 		goto out_put;
1588 
1589 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1590 	if (err)
1591 		goto out_put;
1592 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1593 
1594 out_put:
1595 	fput_light(sock->file, fput_needed);
1596 out:
1597 	return err;
1598 }
1599 
1600 /*
1601  *	Get the remote address ('name') of a socket object. Move the obtained
1602  *	name to user space.
1603  */
1604 
1605 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1606 		int __user *, usockaddr_len)
1607 {
1608 	struct socket *sock;
1609 	struct sockaddr_storage address;
1610 	int len, err, fput_needed;
1611 
1612 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1613 	if (sock != NULL) {
1614 		err = security_socket_getpeername(sock);
1615 		if (err) {
1616 			fput_light(sock->file, fput_needed);
1617 			return err;
1618 		}
1619 
1620 		err =
1621 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1622 				       1);
1623 		if (!err)
1624 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1625 						usockaddr_len);
1626 		fput_light(sock->file, fput_needed);
1627 	}
1628 	return err;
1629 }
1630 
1631 /*
1632  *	Send a datagram to a given address. We move the address into kernel
1633  *	space and check the user space data area is readable before invoking
1634  *	the protocol.
1635  */
1636 
1637 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1638 		unsigned, flags, struct sockaddr __user *, addr,
1639 		int, addr_len)
1640 {
1641 	struct socket *sock;
1642 	struct sockaddr_storage address;
1643 	int err;
1644 	struct msghdr msg;
1645 	struct iovec iov;
1646 	int fput_needed;
1647 
1648 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649 	if (!sock)
1650 		goto out;
1651 
1652 	iov.iov_base = buff;
1653 	iov.iov_len = len;
1654 	msg.msg_name = NULL;
1655 	msg.msg_iov = &iov;
1656 	msg.msg_iovlen = 1;
1657 	msg.msg_control = NULL;
1658 	msg.msg_controllen = 0;
1659 	msg.msg_namelen = 0;
1660 	if (addr) {
1661 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1662 		if (err < 0)
1663 			goto out_put;
1664 		msg.msg_name = (struct sockaddr *)&address;
1665 		msg.msg_namelen = addr_len;
1666 	}
1667 	if (sock->file->f_flags & O_NONBLOCK)
1668 		flags |= MSG_DONTWAIT;
1669 	msg.msg_flags = flags;
1670 	err = sock_sendmsg(sock, &msg, len);
1671 
1672 out_put:
1673 	fput_light(sock->file, fput_needed);
1674 out:
1675 	return err;
1676 }
1677 
1678 /*
1679  *	Send a datagram down a socket.
1680  */
1681 
1682 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1683 		unsigned, flags)
1684 {
1685 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1686 }
1687 
1688 /*
1689  *	Receive a frame from the socket and optionally record the address of the
1690  *	sender. We verify the buffers are writable and if needed move the
1691  *	sender address from kernel to user space.
1692  */
1693 
1694 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1695 		unsigned, flags, struct sockaddr __user *, addr,
1696 		int __user *, addr_len)
1697 {
1698 	struct socket *sock;
1699 	struct iovec iov;
1700 	struct msghdr msg;
1701 	struct sockaddr_storage address;
1702 	int err, err2;
1703 	int fput_needed;
1704 
1705 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 	if (!sock)
1707 		goto out;
1708 
1709 	msg.msg_control = NULL;
1710 	msg.msg_controllen = 0;
1711 	msg.msg_iovlen = 1;
1712 	msg.msg_iov = &iov;
1713 	iov.iov_len = size;
1714 	iov.iov_base = ubuf;
1715 	msg.msg_name = (struct sockaddr *)&address;
1716 	msg.msg_namelen = sizeof(address);
1717 	if (sock->file->f_flags & O_NONBLOCK)
1718 		flags |= MSG_DONTWAIT;
1719 	err = sock_recvmsg(sock, &msg, size, flags);
1720 
1721 	if (err >= 0 && addr != NULL) {
1722 		err2 = move_addr_to_user((struct sockaddr *)&address,
1723 					 msg.msg_namelen, addr, addr_len);
1724 		if (err2 < 0)
1725 			err = err2;
1726 	}
1727 
1728 	fput_light(sock->file, fput_needed);
1729 out:
1730 	return err;
1731 }
1732 
1733 /*
1734  *	Receive a datagram from a socket.
1735  */
1736 
1737 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1738 			 unsigned flags)
1739 {
1740 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1741 }
1742 
1743 /*
1744  *	Set a socket option. Because we don't know the option lengths we have
1745  *	to pass the user mode parameter for the protocols to sort out.
1746  */
1747 
1748 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1749 		char __user *, optval, int, optlen)
1750 {
1751 	int err, fput_needed;
1752 	struct socket *sock;
1753 
1754 	if (optlen < 0)
1755 		return -EINVAL;
1756 
1757 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1758 	if (sock != NULL) {
1759 		err = security_socket_setsockopt(sock, level, optname);
1760 		if (err)
1761 			goto out_put;
1762 
1763 		if (level == SOL_SOCKET)
1764 			err =
1765 			    sock_setsockopt(sock, level, optname, optval,
1766 					    optlen);
1767 		else
1768 			err =
1769 			    sock->ops->setsockopt(sock, level, optname, optval,
1770 						  optlen);
1771 out_put:
1772 		fput_light(sock->file, fput_needed);
1773 	}
1774 	return err;
1775 }
1776 
1777 /*
1778  *	Get a socket option. Because we don't know the option lengths we have
1779  *	to pass a user mode parameter for the protocols to sort out.
1780  */
1781 
1782 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1783 		char __user *, optval, int __user *, optlen)
1784 {
1785 	int err, fput_needed;
1786 	struct socket *sock;
1787 
1788 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 	if (sock != NULL) {
1790 		err = security_socket_getsockopt(sock, level, optname);
1791 		if (err)
1792 			goto out_put;
1793 
1794 		if (level == SOL_SOCKET)
1795 			err =
1796 			    sock_getsockopt(sock, level, optname, optval,
1797 					    optlen);
1798 		else
1799 			err =
1800 			    sock->ops->getsockopt(sock, level, optname, optval,
1801 						  optlen);
1802 out_put:
1803 		fput_light(sock->file, fput_needed);
1804 	}
1805 	return err;
1806 }
1807 
1808 /*
1809  *	Shutdown a socket.
1810  */
1811 
1812 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1813 {
1814 	int err, fput_needed;
1815 	struct socket *sock;
1816 
1817 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1818 	if (sock != NULL) {
1819 		err = security_socket_shutdown(sock, how);
1820 		if (!err)
1821 			err = sock->ops->shutdown(sock, how);
1822 		fput_light(sock->file, fput_needed);
1823 	}
1824 	return err;
1825 }
1826 
1827 /* A couple of helpful macros for getting the address of the 32/64 bit
1828  * fields which are the same type (int / unsigned) on our platforms.
1829  */
1830 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1831 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1832 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1833 
1834 /*
1835  *	BSD sendmsg interface
1836  */
1837 
1838 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1839 {
1840 	struct compat_msghdr __user *msg_compat =
1841 	    (struct compat_msghdr __user *)msg;
1842 	struct socket *sock;
1843 	struct sockaddr_storage address;
1844 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1845 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1846 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1847 	/* 20 is size of ipv6_pktinfo */
1848 	unsigned char *ctl_buf = ctl;
1849 	struct msghdr msg_sys;
1850 	int err, ctl_len, iov_size, total_len;
1851 	int fput_needed;
1852 
1853 	err = -EFAULT;
1854 	if (MSG_CMSG_COMPAT & flags) {
1855 		if (get_compat_msghdr(&msg_sys, msg_compat))
1856 			return -EFAULT;
1857 	}
1858 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1859 		return -EFAULT;
1860 
1861 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1862 	if (!sock)
1863 		goto out;
1864 
1865 	/* do not move before msg_sys is valid */
1866 	err = -EMSGSIZE;
1867 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1868 		goto out_put;
1869 
1870 	/* Check whether to allocate the iovec area */
1871 	err = -ENOMEM;
1872 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1873 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1874 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1875 		if (!iov)
1876 			goto out_put;
1877 	}
1878 
1879 	/* This will also move the address data into kernel space */
1880 	if (MSG_CMSG_COMPAT & flags) {
1881 		err = verify_compat_iovec(&msg_sys, iov,
1882 					  (struct sockaddr *)&address,
1883 					  VERIFY_READ);
1884 	} else
1885 		err = verify_iovec(&msg_sys, iov,
1886 				   (struct sockaddr *)&address,
1887 				   VERIFY_READ);
1888 	if (err < 0)
1889 		goto out_freeiov;
1890 	total_len = err;
1891 
1892 	err = -ENOBUFS;
1893 
1894 	if (msg_sys.msg_controllen > INT_MAX)
1895 		goto out_freeiov;
1896 	ctl_len = msg_sys.msg_controllen;
1897 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1898 		err =
1899 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1900 						     sizeof(ctl));
1901 		if (err)
1902 			goto out_freeiov;
1903 		ctl_buf = msg_sys.msg_control;
1904 		ctl_len = msg_sys.msg_controllen;
1905 	} else if (ctl_len) {
1906 		if (ctl_len > sizeof(ctl)) {
1907 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1908 			if (ctl_buf == NULL)
1909 				goto out_freeiov;
1910 		}
1911 		err = -EFAULT;
1912 		/*
1913 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1914 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1915 		 * checking falls down on this.
1916 		 */
1917 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1918 				   ctl_len))
1919 			goto out_freectl;
1920 		msg_sys.msg_control = ctl_buf;
1921 	}
1922 	msg_sys.msg_flags = flags;
1923 
1924 	if (sock->file->f_flags & O_NONBLOCK)
1925 		msg_sys.msg_flags |= MSG_DONTWAIT;
1926 	err = sock_sendmsg(sock, &msg_sys, total_len);
1927 
1928 out_freectl:
1929 	if (ctl_buf != ctl)
1930 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1931 out_freeiov:
1932 	if (iov != iovstack)
1933 		sock_kfree_s(sock->sk, iov, iov_size);
1934 out_put:
1935 	fput_light(sock->file, fput_needed);
1936 out:
1937 	return err;
1938 }
1939 
1940 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1941 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1942 {
1943 	struct compat_msghdr __user *msg_compat =
1944 	    (struct compat_msghdr __user *)msg;
1945 	struct iovec iovstack[UIO_FASTIOV];
1946 	struct iovec *iov = iovstack;
1947 	unsigned long cmsg_ptr;
1948 	int err, iov_size, total_len, len;
1949 
1950 	/* kernel mode address */
1951 	struct sockaddr_storage addr;
1952 
1953 	/* user mode address pointers */
1954 	struct sockaddr __user *uaddr;
1955 	int __user *uaddr_len;
1956 
1957 	if (MSG_CMSG_COMPAT & flags) {
1958 		if (get_compat_msghdr(msg_sys, msg_compat))
1959 			return -EFAULT;
1960 	}
1961 	else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1962 		return -EFAULT;
1963 
1964 	err = -EMSGSIZE;
1965 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1966 		goto out;
1967 
1968 	/* Check whether to allocate the iovec area */
1969 	err = -ENOMEM;
1970 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1971 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1972 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1973 		if (!iov)
1974 			goto out;
1975 	}
1976 
1977 	/*
1978 	 *      Save the user-mode address (verify_iovec will change the
1979 	 *      kernel msghdr to use the kernel address space)
1980 	 */
1981 
1982 	uaddr = (__force void __user *)msg_sys->msg_name;
1983 	uaddr_len = COMPAT_NAMELEN(msg);
1984 	if (MSG_CMSG_COMPAT & flags) {
1985 		err = verify_compat_iovec(msg_sys, iov,
1986 					  (struct sockaddr *)&addr,
1987 					  VERIFY_WRITE);
1988 	} else
1989 		err = verify_iovec(msg_sys, iov,
1990 				   (struct sockaddr *)&addr,
1991 				   VERIFY_WRITE);
1992 	if (err < 0)
1993 		goto out_freeiov;
1994 	total_len = err;
1995 
1996 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
1997 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1998 
1999 	if (sock->file->f_flags & O_NONBLOCK)
2000 		flags |= MSG_DONTWAIT;
2001 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2002 							  total_len, flags);
2003 	if (err < 0)
2004 		goto out_freeiov;
2005 	len = err;
2006 
2007 	if (uaddr != NULL) {
2008 		err = move_addr_to_user((struct sockaddr *)&addr,
2009 					msg_sys->msg_namelen, uaddr,
2010 					uaddr_len);
2011 		if (err < 0)
2012 			goto out_freeiov;
2013 	}
2014 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2015 			 COMPAT_FLAGS(msg));
2016 	if (err)
2017 		goto out_freeiov;
2018 	if (MSG_CMSG_COMPAT & flags)
2019 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2020 				 &msg_compat->msg_controllen);
2021 	else
2022 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2023 				 &msg->msg_controllen);
2024 	if (err)
2025 		goto out_freeiov;
2026 	err = len;
2027 
2028 out_freeiov:
2029 	if (iov != iovstack)
2030 		sock_kfree_s(sock->sk, iov, iov_size);
2031 out:
2032 	return err;
2033 }
2034 
2035 /*
2036  *	BSD recvmsg interface
2037  */
2038 
2039 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2040 		unsigned int, flags)
2041 {
2042 	int fput_needed, err;
2043 	struct msghdr msg_sys;
2044 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2045 
2046 	if (!sock)
2047 		goto out;
2048 
2049 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2050 
2051 	fput_light(sock->file, fput_needed);
2052 out:
2053 	return err;
2054 }
2055 
2056 /*
2057  *     Linux recvmmsg interface
2058  */
2059 
2060 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2061 		   unsigned int flags, struct timespec *timeout)
2062 {
2063 	int fput_needed, err, datagrams;
2064 	struct socket *sock;
2065 	struct mmsghdr __user *entry;
2066 	struct compat_mmsghdr __user *compat_entry;
2067 	struct msghdr msg_sys;
2068 	struct timespec end_time;
2069 
2070 	if (timeout &&
2071 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2072 				    timeout->tv_nsec))
2073 		return -EINVAL;
2074 
2075 	datagrams = 0;
2076 
2077 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2078 	if (!sock)
2079 		return err;
2080 
2081 	err = sock_error(sock->sk);
2082 	if (err)
2083 		goto out_put;
2084 
2085 	entry = mmsg;
2086 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2087 
2088 	while (datagrams < vlen) {
2089 		/*
2090 		 * No need to ask LSM for more than the first datagram.
2091 		 */
2092 		if (MSG_CMSG_COMPAT & flags) {
2093 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2094 					    &msg_sys, flags, datagrams);
2095 			if (err < 0)
2096 				break;
2097 			err = __put_user(err, &compat_entry->msg_len);
2098 			++compat_entry;
2099 		} else {
2100 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2101 					    &msg_sys, flags, datagrams);
2102 			if (err < 0)
2103 				break;
2104 			err = put_user(err, &entry->msg_len);
2105 			++entry;
2106 		}
2107 
2108 		if (err)
2109 			break;
2110 		++datagrams;
2111 
2112 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2113 		if (flags & MSG_WAITFORONE)
2114 			flags |= MSG_DONTWAIT;
2115 
2116 		if (timeout) {
2117 			ktime_get_ts(timeout);
2118 			*timeout = timespec_sub(end_time, *timeout);
2119 			if (timeout->tv_sec < 0) {
2120 				timeout->tv_sec = timeout->tv_nsec = 0;
2121 				break;
2122 			}
2123 
2124 			/* Timeout, return less than vlen datagrams */
2125 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2126 				break;
2127 		}
2128 
2129 		/* Out of band data, return right away */
2130 		if (msg_sys.msg_flags & MSG_OOB)
2131 			break;
2132 	}
2133 
2134 out_put:
2135 	fput_light(sock->file, fput_needed);
2136 
2137 	if (err == 0)
2138 		return datagrams;
2139 
2140 	if (datagrams != 0) {
2141 		/*
2142 		 * We may return less entries than requested (vlen) if the
2143 		 * sock is non block and there aren't enough datagrams...
2144 		 */
2145 		if (err != -EAGAIN) {
2146 			/*
2147 			 * ... or  if recvmsg returns an error after we
2148 			 * received some datagrams, where we record the
2149 			 * error to return on the next call or if the
2150 			 * app asks about it using getsockopt(SO_ERROR).
2151 			 */
2152 			sock->sk->sk_err = -err;
2153 		}
2154 
2155 		return datagrams;
2156 	}
2157 
2158 	return err;
2159 }
2160 
2161 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2162 		unsigned int, vlen, unsigned int, flags,
2163 		struct timespec __user *, timeout)
2164 {
2165 	int datagrams;
2166 	struct timespec timeout_sys;
2167 
2168 	if (!timeout)
2169 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2170 
2171 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2172 		return -EFAULT;
2173 
2174 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2175 
2176 	if (datagrams > 0 &&
2177 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2178 		datagrams = -EFAULT;
2179 
2180 	return datagrams;
2181 }
2182 
2183 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2184 /* Argument list sizes for sys_socketcall */
2185 #define AL(x) ((x) * sizeof(unsigned long))
2186 static const unsigned char nargs[20] = {
2187 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2188 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2189 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2190 	AL(4),AL(5)
2191 };
2192 
2193 #undef AL
2194 
2195 /*
2196  *	System call vectors.
2197  *
2198  *	Argument checking cleaned up. Saved 20% in size.
2199  *  This function doesn't need to set the kernel lock because
2200  *  it is set by the callees.
2201  */
2202 
2203 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2204 {
2205 	unsigned long a[6];
2206 	unsigned long a0, a1;
2207 	int err;
2208 	unsigned int len;
2209 
2210 	if (call < 1 || call > SYS_RECVMMSG)
2211 		return -EINVAL;
2212 
2213 	len = nargs[call];
2214 	if (len > sizeof(a))
2215 		return -EINVAL;
2216 
2217 	/* copy_from_user should be SMP safe. */
2218 	if (copy_from_user(a, args, len))
2219 		return -EFAULT;
2220 
2221 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2222 
2223 	a0 = a[0];
2224 	a1 = a[1];
2225 
2226 	switch (call) {
2227 	case SYS_SOCKET:
2228 		err = sys_socket(a0, a1, a[2]);
2229 		break;
2230 	case SYS_BIND:
2231 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2232 		break;
2233 	case SYS_CONNECT:
2234 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2235 		break;
2236 	case SYS_LISTEN:
2237 		err = sys_listen(a0, a1);
2238 		break;
2239 	case SYS_ACCEPT:
2240 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2241 				  (int __user *)a[2], 0);
2242 		break;
2243 	case SYS_GETSOCKNAME:
2244 		err =
2245 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2246 				    (int __user *)a[2]);
2247 		break;
2248 	case SYS_GETPEERNAME:
2249 		err =
2250 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2251 				    (int __user *)a[2]);
2252 		break;
2253 	case SYS_SOCKETPAIR:
2254 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2255 		break;
2256 	case SYS_SEND:
2257 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2258 		break;
2259 	case SYS_SENDTO:
2260 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2261 				 (struct sockaddr __user *)a[4], a[5]);
2262 		break;
2263 	case SYS_RECV:
2264 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2265 		break;
2266 	case SYS_RECVFROM:
2267 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2268 				   (struct sockaddr __user *)a[4],
2269 				   (int __user *)a[5]);
2270 		break;
2271 	case SYS_SHUTDOWN:
2272 		err = sys_shutdown(a0, a1);
2273 		break;
2274 	case SYS_SETSOCKOPT:
2275 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2276 		break;
2277 	case SYS_GETSOCKOPT:
2278 		err =
2279 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2280 				   (int __user *)a[4]);
2281 		break;
2282 	case SYS_SENDMSG:
2283 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2284 		break;
2285 	case SYS_RECVMSG:
2286 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2287 		break;
2288 	case SYS_RECVMMSG:
2289 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2290 				   (struct timespec __user *)a[4]);
2291 		break;
2292 	case SYS_ACCEPT4:
2293 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2294 				  (int __user *)a[2], a[3]);
2295 		break;
2296 	default:
2297 		err = -EINVAL;
2298 		break;
2299 	}
2300 	return err;
2301 }
2302 
2303 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2304 
2305 /**
2306  *	sock_register - add a socket protocol handler
2307  *	@ops: description of protocol
2308  *
2309  *	This function is called by a protocol handler that wants to
2310  *	advertise its address family, and have it linked into the
2311  *	socket interface. The value ops->family coresponds to the
2312  *	socket system call protocol family.
2313  */
2314 int sock_register(const struct net_proto_family *ops)
2315 {
2316 	int err;
2317 
2318 	if (ops->family >= NPROTO) {
2319 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2320 		       NPROTO);
2321 		return -ENOBUFS;
2322 	}
2323 
2324 	spin_lock(&net_family_lock);
2325 	if (net_families[ops->family])
2326 		err = -EEXIST;
2327 	else {
2328 		net_families[ops->family] = ops;
2329 		err = 0;
2330 	}
2331 	spin_unlock(&net_family_lock);
2332 
2333 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2334 	return err;
2335 }
2336 
2337 /**
2338  *	sock_unregister - remove a protocol handler
2339  *	@family: protocol family to remove
2340  *
2341  *	This function is called by a protocol handler that wants to
2342  *	remove its address family, and have it unlinked from the
2343  *	new socket creation.
2344  *
2345  *	If protocol handler is a module, then it can use module reference
2346  *	counts to protect against new references. If protocol handler is not
2347  *	a module then it needs to provide its own protection in
2348  *	the ops->create routine.
2349  */
2350 void sock_unregister(int family)
2351 {
2352 	BUG_ON(family < 0 || family >= NPROTO);
2353 
2354 	spin_lock(&net_family_lock);
2355 	net_families[family] = NULL;
2356 	spin_unlock(&net_family_lock);
2357 
2358 	synchronize_rcu();
2359 
2360 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2361 }
2362 
2363 static int __init sock_init(void)
2364 {
2365 	/*
2366 	 *      Initialize sock SLAB cache.
2367 	 */
2368 
2369 	sk_init();
2370 
2371 	/*
2372 	 *      Initialize skbuff SLAB cache
2373 	 */
2374 	skb_init();
2375 
2376 	/*
2377 	 *      Initialize the protocols module.
2378 	 */
2379 
2380 	init_inodecache();
2381 	register_filesystem(&sock_fs_type);
2382 	sock_mnt = kern_mount(&sock_fs_type);
2383 
2384 	/* The real protocol initialization is performed in later initcalls.
2385 	 */
2386 
2387 #ifdef CONFIG_NETFILTER
2388 	netfilter_init();
2389 #endif
2390 
2391 	return 0;
2392 }
2393 
2394 core_initcall(sock_init);	/* early initcall */
2395 
2396 #ifdef CONFIG_PROC_FS
2397 void socket_seq_show(struct seq_file *seq)
2398 {
2399 	int cpu;
2400 	int counter = 0;
2401 
2402 	for_each_possible_cpu(cpu)
2403 	    counter += per_cpu(sockets_in_use, cpu);
2404 
2405 	/* It can be negative, by the way. 8) */
2406 	if (counter < 0)
2407 		counter = 0;
2408 
2409 	seq_printf(seq, "sockets: used %d\n", counter);
2410 }
2411 #endif				/* CONFIG_PROC_FS */
2412 
2413 #ifdef CONFIG_COMPAT
2414 static int do_siocgstamp(struct net *net, struct socket *sock,
2415 			 unsigned int cmd, struct compat_timeval __user *up)
2416 {
2417 	mm_segment_t old_fs = get_fs();
2418 	struct timeval ktv;
2419 	int err;
2420 
2421 	set_fs(KERNEL_DS);
2422 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2423 	set_fs(old_fs);
2424 	if (!err) {
2425 		err = put_user(ktv.tv_sec, &up->tv_sec);
2426 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2427 	}
2428 	return err;
2429 }
2430 
2431 static int do_siocgstampns(struct net *net, struct socket *sock,
2432 			 unsigned int cmd, struct compat_timespec __user *up)
2433 {
2434 	mm_segment_t old_fs = get_fs();
2435 	struct timespec kts;
2436 	int err;
2437 
2438 	set_fs(KERNEL_DS);
2439 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2440 	set_fs(old_fs);
2441 	if (!err) {
2442 		err = put_user(kts.tv_sec, &up->tv_sec);
2443 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2444 	}
2445 	return err;
2446 }
2447 
2448 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2449 {
2450 	struct ifreq __user *uifr;
2451 	int err;
2452 
2453 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2454 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2455 		return -EFAULT;
2456 
2457 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2458 	if (err)
2459 		return err;
2460 
2461 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2462 		return -EFAULT;
2463 
2464 	return 0;
2465 }
2466 
2467 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2468 {
2469 	struct compat_ifconf ifc32;
2470 	struct ifconf ifc;
2471 	struct ifconf __user *uifc;
2472 	struct compat_ifreq __user *ifr32;
2473 	struct ifreq __user *ifr;
2474 	unsigned int i, j;
2475 	int err;
2476 
2477 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2478 		return -EFAULT;
2479 
2480 	if (ifc32.ifcbuf == 0) {
2481 		ifc32.ifc_len = 0;
2482 		ifc.ifc_len = 0;
2483 		ifc.ifc_req = NULL;
2484 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2485 	} else {
2486 		size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) *
2487 			sizeof (struct ifreq);
2488 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2489 		ifc.ifc_len = len;
2490 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2491 		ifr32 = compat_ptr(ifc32.ifcbuf);
2492 		for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) {
2493 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2494 				return -EFAULT;
2495 			ifr++;
2496 			ifr32++;
2497 		}
2498 	}
2499 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2500 		return -EFAULT;
2501 
2502 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2503 	if (err)
2504 		return err;
2505 
2506 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2507 		return -EFAULT;
2508 
2509 	ifr = ifc.ifc_req;
2510 	ifr32 = compat_ptr(ifc32.ifcbuf);
2511 	for (i = 0, j = 0;
2512              i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2513 	     i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) {
2514 		if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq)))
2515 			return -EFAULT;
2516 		ifr32++;
2517 		ifr++;
2518 	}
2519 
2520 	if (ifc32.ifcbuf == 0) {
2521 		/* Translate from 64-bit structure multiple to
2522 		 * a 32-bit one.
2523 		 */
2524 		i = ifc.ifc_len;
2525 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2526 		ifc32.ifc_len = i;
2527 	} else {
2528 		ifc32.ifc_len = i;
2529 	}
2530 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2531 		return -EFAULT;
2532 
2533 	return 0;
2534 }
2535 
2536 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2537 {
2538 	struct ifreq __user *ifr;
2539 	u32 data;
2540 	void __user *datap;
2541 
2542 	ifr = compat_alloc_user_space(sizeof(*ifr));
2543 
2544 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2545 		return -EFAULT;
2546 
2547 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2548 		return -EFAULT;
2549 
2550 	datap = compat_ptr(data);
2551 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2552 		return -EFAULT;
2553 
2554 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2555 }
2556 
2557 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2558 {
2559 	void __user *uptr;
2560 	compat_uptr_t uptr32;
2561 	struct ifreq __user *uifr;
2562 
2563 	uifr = compat_alloc_user_space(sizeof (*uifr));
2564 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2565 		return -EFAULT;
2566 
2567 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2568 		return -EFAULT;
2569 
2570 	uptr = compat_ptr(uptr32);
2571 
2572 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2573 		return -EFAULT;
2574 
2575 	return dev_ioctl(net, SIOCWANDEV, uifr);
2576 }
2577 
2578 static int bond_ioctl(struct net *net, unsigned int cmd,
2579 			 struct compat_ifreq __user *ifr32)
2580 {
2581 	struct ifreq kifr;
2582 	struct ifreq __user *uifr;
2583 	mm_segment_t old_fs;
2584 	int err;
2585 	u32 data;
2586 	void __user *datap;
2587 
2588 	switch (cmd) {
2589 	case SIOCBONDENSLAVE:
2590 	case SIOCBONDRELEASE:
2591 	case SIOCBONDSETHWADDR:
2592 	case SIOCBONDCHANGEACTIVE:
2593 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2594 			return -EFAULT;
2595 
2596 		old_fs = get_fs();
2597 		set_fs (KERNEL_DS);
2598 		err = dev_ioctl(net, cmd, &kifr);
2599 		set_fs (old_fs);
2600 
2601 		return err;
2602 	case SIOCBONDSLAVEINFOQUERY:
2603 	case SIOCBONDINFOQUERY:
2604 		uifr = compat_alloc_user_space(sizeof(*uifr));
2605 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2606 			return -EFAULT;
2607 
2608 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2609 			return -EFAULT;
2610 
2611 		datap = compat_ptr(data);
2612 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2613 			return -EFAULT;
2614 
2615 		return dev_ioctl(net, cmd, uifr);
2616 	default:
2617 		return -EINVAL;
2618 	}
2619 }
2620 
2621 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2622 				 struct compat_ifreq __user *u_ifreq32)
2623 {
2624 	struct ifreq __user *u_ifreq64;
2625 	char tmp_buf[IFNAMSIZ];
2626 	void __user *data64;
2627 	u32 data32;
2628 
2629 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2630 			   IFNAMSIZ))
2631 		return -EFAULT;
2632 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2633 		return -EFAULT;
2634 	data64 = compat_ptr(data32);
2635 
2636 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2637 
2638 	/* Don't check these user accesses, just let that get trapped
2639 	 * in the ioctl handler instead.
2640 	 */
2641 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2642 			 IFNAMSIZ))
2643 		return -EFAULT;
2644 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2645 		return -EFAULT;
2646 
2647 	return dev_ioctl(net, cmd, u_ifreq64);
2648 }
2649 
2650 static int dev_ifsioc(struct net *net, struct socket *sock,
2651 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2652 {
2653 	struct ifreq __user *uifr;
2654 	int err;
2655 
2656 	uifr = compat_alloc_user_space(sizeof(*uifr));
2657 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2658 		return -EFAULT;
2659 
2660 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2661 
2662 	if (!err) {
2663 		switch (cmd) {
2664 		case SIOCGIFFLAGS:
2665 		case SIOCGIFMETRIC:
2666 		case SIOCGIFMTU:
2667 		case SIOCGIFMEM:
2668 		case SIOCGIFHWADDR:
2669 		case SIOCGIFINDEX:
2670 		case SIOCGIFADDR:
2671 		case SIOCGIFBRDADDR:
2672 		case SIOCGIFDSTADDR:
2673 		case SIOCGIFNETMASK:
2674 		case SIOCGIFPFLAGS:
2675 		case SIOCGIFTXQLEN:
2676 		case SIOCGMIIPHY:
2677 		case SIOCGMIIREG:
2678 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2679 				err = -EFAULT;
2680 			break;
2681 		}
2682 	}
2683 	return err;
2684 }
2685 
2686 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2687 			struct compat_ifreq __user *uifr32)
2688 {
2689 	struct ifreq ifr;
2690 	struct compat_ifmap __user *uifmap32;
2691 	mm_segment_t old_fs;
2692 	int err;
2693 
2694 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2695 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2696 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2697 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2698 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2699 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2700 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2701 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2702 	if (err)
2703 		return -EFAULT;
2704 
2705 	old_fs = get_fs();
2706 	set_fs (KERNEL_DS);
2707 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2708 	set_fs (old_fs);
2709 
2710 	if (cmd == SIOCGIFMAP && !err) {
2711 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2712 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2713 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2714 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2715 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2716 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2717 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2718 		if (err)
2719 			err = -EFAULT;
2720 	}
2721 	return err;
2722 }
2723 
2724 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2725 {
2726 	void __user *uptr;
2727 	compat_uptr_t uptr32;
2728 	struct ifreq __user *uifr;
2729 
2730 	uifr = compat_alloc_user_space(sizeof (*uifr));
2731 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2732 		return -EFAULT;
2733 
2734 	if (get_user(uptr32, &uifr32->ifr_data))
2735 		return -EFAULT;
2736 
2737 	uptr = compat_ptr(uptr32);
2738 
2739 	if (put_user(uptr, &uifr->ifr_data))
2740 		return -EFAULT;
2741 
2742 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2743 }
2744 
2745 struct rtentry32 {
2746 	u32   		rt_pad1;
2747 	struct sockaddr rt_dst;         /* target address               */
2748 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2749 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2750 	unsigned short  rt_flags;
2751 	short           rt_pad2;
2752 	u32   		rt_pad3;
2753 	unsigned char   rt_tos;
2754 	unsigned char   rt_class;
2755 	short           rt_pad4;
2756 	short           rt_metric;      /* +1 for binary compatibility! */
2757 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2758 	u32   		rt_mtu;         /* per route MTU/Window         */
2759 	u32   		rt_window;      /* Window clamping              */
2760 	unsigned short  rt_irtt;        /* Initial RTT                  */
2761 };
2762 
2763 struct in6_rtmsg32 {
2764 	struct in6_addr		rtmsg_dst;
2765 	struct in6_addr		rtmsg_src;
2766 	struct in6_addr		rtmsg_gateway;
2767 	u32			rtmsg_type;
2768 	u16			rtmsg_dst_len;
2769 	u16			rtmsg_src_len;
2770 	u32			rtmsg_metric;
2771 	u32			rtmsg_info;
2772 	u32			rtmsg_flags;
2773 	s32			rtmsg_ifindex;
2774 };
2775 
2776 static int routing_ioctl(struct net *net, struct socket *sock,
2777 			 unsigned int cmd, void __user *argp)
2778 {
2779 	int ret;
2780 	void *r = NULL;
2781 	struct in6_rtmsg r6;
2782 	struct rtentry r4;
2783 	char devname[16];
2784 	u32 rtdev;
2785 	mm_segment_t old_fs = get_fs();
2786 
2787 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2788 		struct in6_rtmsg32 __user *ur6 = argp;
2789 		ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2790 			3 * sizeof(struct in6_addr));
2791 		ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type));
2792 		ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2793 		ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2794 		ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric));
2795 		ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info));
2796 		ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags));
2797 		ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2798 
2799 		r = (void *) &r6;
2800 	} else { /* ipv4 */
2801 		struct rtentry32 __user *ur4 = argp;
2802 		ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst),
2803 					3 * sizeof(struct sockaddr));
2804 		ret |= __get_user (r4.rt_flags, &(ur4->rt_flags));
2805 		ret |= __get_user (r4.rt_metric, &(ur4->rt_metric));
2806 		ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu));
2807 		ret |= __get_user (r4.rt_window, &(ur4->rt_window));
2808 		ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt));
2809 		ret |= __get_user (rtdev, &(ur4->rt_dev));
2810 		if (rtdev) {
2811 			ret |= copy_from_user (devname, compat_ptr(rtdev), 15);
2812 			r4.rt_dev = devname; devname[15] = 0;
2813 		} else
2814 			r4.rt_dev = NULL;
2815 
2816 		r = (void *) &r4;
2817 	}
2818 
2819 	if (ret) {
2820 		ret = -EFAULT;
2821 		goto out;
2822 	}
2823 
2824 	set_fs (KERNEL_DS);
2825 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2826 	set_fs (old_fs);
2827 
2828 out:
2829 	return ret;
2830 }
2831 
2832 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2833  * for some operations; this forces use of the newer bridge-utils that
2834  * use compatiable ioctls
2835  */
2836 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2837 {
2838 	compat_ulong_t tmp;
2839 
2840 	if (get_user(tmp, argp))
2841 		return -EFAULT;
2842 	if (tmp == BRCTL_GET_VERSION)
2843 		return BRCTL_VERSION + 1;
2844 	return -EINVAL;
2845 }
2846 
2847 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2848 			 unsigned int cmd, unsigned long arg)
2849 {
2850 	void __user *argp = compat_ptr(arg);
2851 	struct sock *sk = sock->sk;
2852 	struct net *net = sock_net(sk);
2853 
2854 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2855 		return siocdevprivate_ioctl(net, cmd, argp);
2856 
2857 	switch (cmd) {
2858 	case SIOCSIFBR:
2859 	case SIOCGIFBR:
2860 		return old_bridge_ioctl(argp);
2861 	case SIOCGIFNAME:
2862 		return dev_ifname32(net, argp);
2863 	case SIOCGIFCONF:
2864 		return dev_ifconf(net, argp);
2865 	case SIOCETHTOOL:
2866 		return ethtool_ioctl(net, argp);
2867 	case SIOCWANDEV:
2868 		return compat_siocwandev(net, argp);
2869 	case SIOCGIFMAP:
2870 	case SIOCSIFMAP:
2871 		return compat_sioc_ifmap(net, cmd, argp);
2872 	case SIOCBONDENSLAVE:
2873 	case SIOCBONDRELEASE:
2874 	case SIOCBONDSETHWADDR:
2875 	case SIOCBONDSLAVEINFOQUERY:
2876 	case SIOCBONDINFOQUERY:
2877 	case SIOCBONDCHANGEACTIVE:
2878 		return bond_ioctl(net, cmd, argp);
2879 	case SIOCADDRT:
2880 	case SIOCDELRT:
2881 		return routing_ioctl(net, sock, cmd, argp);
2882 	case SIOCGSTAMP:
2883 		return do_siocgstamp(net, sock, cmd, argp);
2884 	case SIOCGSTAMPNS:
2885 		return do_siocgstampns(net, sock, cmd, argp);
2886 	case SIOCSHWTSTAMP:
2887 		return compat_siocshwtstamp(net, argp);
2888 
2889 	case FIOSETOWN:
2890 	case SIOCSPGRP:
2891 	case FIOGETOWN:
2892 	case SIOCGPGRP:
2893 	case SIOCBRADDBR:
2894 	case SIOCBRDELBR:
2895 	case SIOCGIFVLAN:
2896 	case SIOCSIFVLAN:
2897 	case SIOCADDDLCI:
2898 	case SIOCDELDLCI:
2899 		return sock_ioctl(file, cmd, arg);
2900 
2901 	case SIOCGIFFLAGS:
2902 	case SIOCSIFFLAGS:
2903 	case SIOCGIFMETRIC:
2904 	case SIOCSIFMETRIC:
2905 	case SIOCGIFMTU:
2906 	case SIOCSIFMTU:
2907 	case SIOCGIFMEM:
2908 	case SIOCSIFMEM:
2909 	case SIOCGIFHWADDR:
2910 	case SIOCSIFHWADDR:
2911 	case SIOCADDMULTI:
2912 	case SIOCDELMULTI:
2913 	case SIOCGIFINDEX:
2914 	case SIOCGIFADDR:
2915 	case SIOCSIFADDR:
2916 	case SIOCSIFHWBROADCAST:
2917 	case SIOCDIFADDR:
2918 	case SIOCGIFBRDADDR:
2919 	case SIOCSIFBRDADDR:
2920 	case SIOCGIFDSTADDR:
2921 	case SIOCSIFDSTADDR:
2922 	case SIOCGIFNETMASK:
2923 	case SIOCSIFNETMASK:
2924 	case SIOCSIFPFLAGS:
2925 	case SIOCGIFPFLAGS:
2926 	case SIOCGIFTXQLEN:
2927 	case SIOCSIFTXQLEN:
2928 	case SIOCBRADDIF:
2929 	case SIOCBRDELIF:
2930 	case SIOCSIFNAME:
2931 	case SIOCGMIIPHY:
2932 	case SIOCGMIIREG:
2933 	case SIOCSMIIREG:
2934 		return dev_ifsioc(net, sock, cmd, argp);
2935 
2936 	case SIOCSARP:
2937 	case SIOCGARP:
2938 	case SIOCDARP:
2939 	case SIOCATMARK:
2940 		return sock_do_ioctl(net, sock, cmd, arg);
2941 	}
2942 
2943 	/* Prevent warning from compat_sys_ioctl, these always
2944 	 * result in -EINVAL in the native case anyway. */
2945 	switch (cmd) {
2946 	case SIOCRTMSG:
2947 	case SIOCGIFCOUNT:
2948 	case SIOCSRARP:
2949 	case SIOCGRARP:
2950 	case SIOCDRARP:
2951 	case SIOCSIFLINK:
2952 	case SIOCGIFSLAVE:
2953 	case SIOCSIFSLAVE:
2954 		return -EINVAL;
2955 	}
2956 
2957 	return -ENOIOCTLCMD;
2958 }
2959 
2960 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2961 			      unsigned long arg)
2962 {
2963 	struct socket *sock = file->private_data;
2964 	int ret = -ENOIOCTLCMD;
2965 	struct sock *sk;
2966 	struct net *net;
2967 
2968 	sk = sock->sk;
2969 	net = sock_net(sk);
2970 
2971 	if (sock->ops->compat_ioctl)
2972 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2973 
2974 	if (ret == -ENOIOCTLCMD &&
2975 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2976 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2977 
2978 	if (ret == -ENOIOCTLCMD)
2979 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2980 
2981 	return ret;
2982 }
2983 #endif
2984 
2985 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2986 {
2987 	return sock->ops->bind(sock, addr, addrlen);
2988 }
2989 
2990 int kernel_listen(struct socket *sock, int backlog)
2991 {
2992 	return sock->ops->listen(sock, backlog);
2993 }
2994 
2995 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2996 {
2997 	struct sock *sk = sock->sk;
2998 	int err;
2999 
3000 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3001 			       newsock);
3002 	if (err < 0)
3003 		goto done;
3004 
3005 	err = sock->ops->accept(sock, *newsock, flags);
3006 	if (err < 0) {
3007 		sock_release(*newsock);
3008 		*newsock = NULL;
3009 		goto done;
3010 	}
3011 
3012 	(*newsock)->ops = sock->ops;
3013 	__module_get((*newsock)->ops->owner);
3014 
3015 done:
3016 	return err;
3017 }
3018 
3019 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3020 		   int flags)
3021 {
3022 	return sock->ops->connect(sock, addr, addrlen, flags);
3023 }
3024 
3025 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3026 			 int *addrlen)
3027 {
3028 	return sock->ops->getname(sock, addr, addrlen, 0);
3029 }
3030 
3031 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3032 			 int *addrlen)
3033 {
3034 	return sock->ops->getname(sock, addr, addrlen, 1);
3035 }
3036 
3037 int kernel_getsockopt(struct socket *sock, int level, int optname,
3038 			char *optval, int *optlen)
3039 {
3040 	mm_segment_t oldfs = get_fs();
3041 	int err;
3042 
3043 	set_fs(KERNEL_DS);
3044 	if (level == SOL_SOCKET)
3045 		err = sock_getsockopt(sock, level, optname, optval, optlen);
3046 	else
3047 		err = sock->ops->getsockopt(sock, level, optname, optval,
3048 					    optlen);
3049 	set_fs(oldfs);
3050 	return err;
3051 }
3052 
3053 int kernel_setsockopt(struct socket *sock, int level, int optname,
3054 			char *optval, unsigned int optlen)
3055 {
3056 	mm_segment_t oldfs = get_fs();
3057 	int err;
3058 
3059 	set_fs(KERNEL_DS);
3060 	if (level == SOL_SOCKET)
3061 		err = sock_setsockopt(sock, level, optname, optval, optlen);
3062 	else
3063 		err = sock->ops->setsockopt(sock, level, optname, optval,
3064 					    optlen);
3065 	set_fs(oldfs);
3066 	return err;
3067 }
3068 
3069 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3070 		    size_t size, int flags)
3071 {
3072 	if (sock->ops->sendpage)
3073 		return sock->ops->sendpage(sock, page, offset, size, flags);
3074 
3075 	return sock_no_sendpage(sock, page, offset, size, flags);
3076 }
3077 
3078 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3079 {
3080 	mm_segment_t oldfs = get_fs();
3081 	int err;
3082 
3083 	set_fs(KERNEL_DS);
3084 	err = sock->ops->ioctl(sock, cmd, arg);
3085 	set_fs(oldfs);
3086 
3087 	return err;
3088 }
3089 
3090 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3091 {
3092 	return sock->ops->shutdown(sock, how);
3093 }
3094 
3095 EXPORT_SYMBOL(sock_create);
3096 EXPORT_SYMBOL(sock_create_kern);
3097 EXPORT_SYMBOL(sock_create_lite);
3098 EXPORT_SYMBOL(sock_map_fd);
3099 EXPORT_SYMBOL(sock_recvmsg);
3100 EXPORT_SYMBOL(sock_register);
3101 EXPORT_SYMBOL(sock_release);
3102 EXPORT_SYMBOL(sock_sendmsg);
3103 EXPORT_SYMBOL(sock_unregister);
3104 EXPORT_SYMBOL(sock_wake_async);
3105 EXPORT_SYMBOL(sockfd_lookup);
3106 EXPORT_SYMBOL(kernel_sendmsg);
3107 EXPORT_SYMBOL(kernel_recvmsg);
3108 EXPORT_SYMBOL(kernel_bind);
3109 EXPORT_SYMBOL(kernel_listen);
3110 EXPORT_SYMBOL(kernel_accept);
3111 EXPORT_SYMBOL(kernel_connect);
3112 EXPORT_SYMBOL(kernel_getsockname);
3113 EXPORT_SYMBOL(kernel_getpeername);
3114 EXPORT_SYMBOL(kernel_getsockopt);
3115 EXPORT_SYMBOL(kernel_setsockopt);
3116 EXPORT_SYMBOL(kernel_sendpage);
3117 EXPORT_SYMBOL(kernel_sock_ioctl);
3118 EXPORT_SYMBOL(kernel_sock_shutdown);
3119