1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 98 #include <net/sock.h> 99 #include <linux/netfilter.h> 100 101 #include <linux/if_tun.h> 102 #include <linux/ipv6_route.h> 103 #include <linux/route.h> 104 #include <linux/sockios.h> 105 #include <linux/atalk.h> 106 107 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 108 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 109 unsigned long nr_segs, loff_t pos); 110 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 111 unsigned long nr_segs, loff_t pos); 112 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 113 114 static int sock_close(struct inode *inode, struct file *file); 115 static unsigned int sock_poll(struct file *file, 116 struct poll_table_struct *wait); 117 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 118 #ifdef CONFIG_COMPAT 119 static long compat_sock_ioctl(struct file *file, 120 unsigned int cmd, unsigned long arg); 121 #endif 122 static int sock_fasync(int fd, struct file *filp, int on); 123 static ssize_t sock_sendpage(struct file *file, struct page *page, 124 int offset, size_t size, loff_t *ppos, int more); 125 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 126 struct pipe_inode_info *pipe, size_t len, 127 unsigned int flags); 128 129 /* 130 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 131 * in the operation structures but are done directly via the socketcall() multiplexor. 132 */ 133 134 static const struct file_operations socket_file_ops = { 135 .owner = THIS_MODULE, 136 .llseek = no_llseek, 137 .aio_read = sock_aio_read, 138 .aio_write = sock_aio_write, 139 .poll = sock_poll, 140 .unlocked_ioctl = sock_ioctl, 141 #ifdef CONFIG_COMPAT 142 .compat_ioctl = compat_sock_ioctl, 143 #endif 144 .mmap = sock_mmap, 145 .open = sock_no_open, /* special open code to disallow open via /proc */ 146 .release = sock_close, 147 .fasync = sock_fasync, 148 .sendpage = sock_sendpage, 149 .splice_write = generic_splice_sendpage, 150 .splice_read = sock_splice_read, 151 }; 152 153 /* 154 * The protocol list. Each protocol is registered in here. 155 */ 156 157 static DEFINE_SPINLOCK(net_family_lock); 158 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 159 160 /* 161 * Statistics counters of the socket lists 162 */ 163 164 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 165 166 /* 167 * Support routines. 168 * Move socket addresses back and forth across the kernel/user 169 * divide and look after the messy bits. 170 */ 171 172 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 173 16 for IP, 16 for IPX, 174 24 for IPv6, 175 about 80 for AX.25 176 must be at least one bigger than 177 the AF_UNIX size (see net/unix/af_unix.c 178 :unix_mkname()). 179 */ 180 181 /** 182 * move_addr_to_kernel - copy a socket address into kernel space 183 * @uaddr: Address in user space 184 * @kaddr: Address in kernel space 185 * @ulen: Length in user space 186 * 187 * The address is copied into kernel space. If the provided address is 188 * too long an error code of -EINVAL is returned. If the copy gives 189 * invalid addresses -EFAULT is returned. On a success 0 is returned. 190 */ 191 192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 193 { 194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 195 return -EINVAL; 196 if (ulen == 0) 197 return 0; 198 if (copy_from_user(kaddr, uaddr, ulen)) 199 return -EFAULT; 200 return audit_sockaddr(ulen, kaddr); 201 } 202 203 /** 204 * move_addr_to_user - copy an address to user space 205 * @kaddr: kernel space address 206 * @klen: length of address in kernel 207 * @uaddr: user space address 208 * @ulen: pointer to user length field 209 * 210 * The value pointed to by ulen on entry is the buffer length available. 211 * This is overwritten with the buffer space used. -EINVAL is returned 212 * if an overlong buffer is specified or a negative buffer size. -EFAULT 213 * is returned if either the buffer or the length field are not 214 * accessible. 215 * After copying the data up to the limit the user specifies, the true 216 * length of the data is written over the length limit the user 217 * specified. Zero is returned for a success. 218 */ 219 220 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 221 int __user *ulen) 222 { 223 int err; 224 int len; 225 226 err = get_user(len, ulen); 227 if (err) 228 return err; 229 if (len > klen) 230 len = klen; 231 if (len < 0 || len > sizeof(struct sockaddr_storage)) 232 return -EINVAL; 233 if (len) { 234 if (audit_sockaddr(klen, kaddr)) 235 return -ENOMEM; 236 if (copy_to_user(uaddr, kaddr, len)) 237 return -EFAULT; 238 } 239 /* 240 * "fromlen shall refer to the value before truncation.." 241 * 1003.1g 242 */ 243 return __put_user(klen, ulen); 244 } 245 246 static struct kmem_cache *sock_inode_cachep __read_mostly; 247 248 static struct inode *sock_alloc_inode(struct super_block *sb) 249 { 250 struct socket_alloc *ei; 251 252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 253 if (!ei) 254 return NULL; 255 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL); 256 if (!ei->socket.wq) { 257 kmem_cache_free(sock_inode_cachep, ei); 258 return NULL; 259 } 260 init_waitqueue_head(&ei->socket.wq->wait); 261 ei->socket.wq->fasync_list = NULL; 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 273 static void wq_free_rcu(struct rcu_head *head) 274 { 275 struct socket_wq *wq = container_of(head, struct socket_wq, rcu); 276 277 kfree(wq); 278 } 279 280 static void sock_destroy_inode(struct inode *inode) 281 { 282 struct socket_alloc *ei; 283 284 ei = container_of(inode, struct socket_alloc, vfs_inode); 285 call_rcu(&ei->socket.wq->rcu, wq_free_rcu); 286 kmem_cache_free(sock_inode_cachep, ei); 287 } 288 289 static void init_once(void *foo) 290 { 291 struct socket_alloc *ei = (struct socket_alloc *)foo; 292 293 inode_init_once(&ei->vfs_inode); 294 } 295 296 static int init_inodecache(void) 297 { 298 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 299 sizeof(struct socket_alloc), 300 0, 301 (SLAB_HWCACHE_ALIGN | 302 SLAB_RECLAIM_ACCOUNT | 303 SLAB_MEM_SPREAD), 304 init_once); 305 if (sock_inode_cachep == NULL) 306 return -ENOMEM; 307 return 0; 308 } 309 310 static const struct super_operations sockfs_ops = { 311 .alloc_inode = sock_alloc_inode, 312 .destroy_inode =sock_destroy_inode, 313 .statfs = simple_statfs, 314 }; 315 316 static int sockfs_get_sb(struct file_system_type *fs_type, 317 int flags, const char *dev_name, void *data, 318 struct vfsmount *mnt) 319 { 320 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 321 mnt); 322 } 323 324 static struct vfsmount *sock_mnt __read_mostly; 325 326 static struct file_system_type sock_fs_type = { 327 .name = "sockfs", 328 .get_sb = sockfs_get_sb, 329 .kill_sb = kill_anon_super, 330 }; 331 332 /* 333 * sockfs_dname() is called from d_path(). 334 */ 335 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 336 { 337 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 338 dentry->d_inode->i_ino); 339 } 340 341 static const struct dentry_operations sockfs_dentry_operations = { 342 .d_dname = sockfs_dname, 343 }; 344 345 /* 346 * Obtains the first available file descriptor and sets it up for use. 347 * 348 * These functions create file structures and maps them to fd space 349 * of the current process. On success it returns file descriptor 350 * and file struct implicitly stored in sock->file. 351 * Note that another thread may close file descriptor before we return 352 * from this function. We use the fact that now we do not refer 353 * to socket after mapping. If one day we will need it, this 354 * function will increment ref. count on file by 1. 355 * 356 * In any case returned fd MAY BE not valid! 357 * This race condition is unavoidable 358 * with shared fd spaces, we cannot solve it inside kernel, 359 * but we take care of internal coherence yet. 360 */ 361 362 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 363 { 364 struct qstr name = { .name = "" }; 365 struct path path; 366 struct file *file; 367 int fd; 368 369 fd = get_unused_fd_flags(flags); 370 if (unlikely(fd < 0)) 371 return fd; 372 373 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 374 if (unlikely(!path.dentry)) { 375 put_unused_fd(fd); 376 return -ENOMEM; 377 } 378 path.mnt = mntget(sock_mnt); 379 380 path.dentry->d_op = &sockfs_dentry_operations; 381 d_instantiate(path.dentry, SOCK_INODE(sock)); 382 SOCK_INODE(sock)->i_fop = &socket_file_ops; 383 384 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 385 &socket_file_ops); 386 if (unlikely(!file)) { 387 /* drop dentry, keep inode */ 388 atomic_inc(&path.dentry->d_inode->i_count); 389 path_put(&path); 390 put_unused_fd(fd); 391 return -ENFILE; 392 } 393 394 sock->file = file; 395 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 396 file->f_pos = 0; 397 file->private_data = sock; 398 399 *f = file; 400 return fd; 401 } 402 403 int sock_map_fd(struct socket *sock, int flags) 404 { 405 struct file *newfile; 406 int fd = sock_alloc_file(sock, &newfile, flags); 407 408 if (likely(fd >= 0)) 409 fd_install(fd, newfile); 410 411 return fd; 412 } 413 414 static struct socket *sock_from_file(struct file *file, int *err) 415 { 416 if (file->f_op == &socket_file_ops) 417 return file->private_data; /* set in sock_map_fd */ 418 419 *err = -ENOTSOCK; 420 return NULL; 421 } 422 423 /** 424 * sockfd_lookup - Go from a file number to its socket slot 425 * @fd: file handle 426 * @err: pointer to an error code return 427 * 428 * The file handle passed in is locked and the socket it is bound 429 * too is returned. If an error occurs the err pointer is overwritten 430 * with a negative errno code and NULL is returned. The function checks 431 * for both invalid handles and passing a handle which is not a socket. 432 * 433 * On a success the socket object pointer is returned. 434 */ 435 436 struct socket *sockfd_lookup(int fd, int *err) 437 { 438 struct file *file; 439 struct socket *sock; 440 441 file = fget(fd); 442 if (!file) { 443 *err = -EBADF; 444 return NULL; 445 } 446 447 sock = sock_from_file(file, err); 448 if (!sock) 449 fput(file); 450 return sock; 451 } 452 453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 454 { 455 struct file *file; 456 struct socket *sock; 457 458 *err = -EBADF; 459 file = fget_light(fd, fput_needed); 460 if (file) { 461 sock = sock_from_file(file, err); 462 if (sock) 463 return sock; 464 fput_light(file, *fput_needed); 465 } 466 return NULL; 467 } 468 469 /** 470 * sock_alloc - allocate a socket 471 * 472 * Allocate a new inode and socket object. The two are bound together 473 * and initialised. The socket is then returned. If we are out of inodes 474 * NULL is returned. 475 */ 476 477 static struct socket *sock_alloc(void) 478 { 479 struct inode *inode; 480 struct socket *sock; 481 482 inode = new_inode(sock_mnt->mnt_sb); 483 if (!inode) 484 return NULL; 485 486 sock = SOCKET_I(inode); 487 488 kmemcheck_annotate_bitfield(sock, type); 489 inode->i_mode = S_IFSOCK | S_IRWXUGO; 490 inode->i_uid = current_fsuid(); 491 inode->i_gid = current_fsgid(); 492 493 percpu_add(sockets_in_use, 1); 494 return sock; 495 } 496 497 /* 498 * In theory you can't get an open on this inode, but /proc provides 499 * a back door. Remember to keep it shut otherwise you'll let the 500 * creepy crawlies in. 501 */ 502 503 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 504 { 505 return -ENXIO; 506 } 507 508 const struct file_operations bad_sock_fops = { 509 .owner = THIS_MODULE, 510 .open = sock_no_open, 511 }; 512 513 /** 514 * sock_release - close a socket 515 * @sock: socket to close 516 * 517 * The socket is released from the protocol stack if it has a release 518 * callback, and the inode is then released if the socket is bound to 519 * an inode not a file. 520 */ 521 522 void sock_release(struct socket *sock) 523 { 524 if (sock->ops) { 525 struct module *owner = sock->ops->owner; 526 527 sock->ops->release(sock); 528 sock->ops = NULL; 529 module_put(owner); 530 } 531 532 if (sock->wq->fasync_list) 533 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 534 535 percpu_sub(sockets_in_use, 1); 536 if (!sock->file) { 537 iput(SOCK_INODE(sock)); 538 return; 539 } 540 sock->file = NULL; 541 } 542 543 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk, 544 union skb_shared_tx *shtx) 545 { 546 shtx->flags = 0; 547 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 548 shtx->hardware = 1; 549 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 550 shtx->software = 1; 551 return 0; 552 } 553 EXPORT_SYMBOL(sock_tx_timestamp); 554 555 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 556 struct msghdr *msg, size_t size) 557 { 558 struct sock_iocb *si = kiocb_to_siocb(iocb); 559 int err; 560 561 si->sock = sock; 562 si->scm = NULL; 563 si->msg = msg; 564 si->size = size; 565 566 err = security_socket_sendmsg(sock, msg, size); 567 if (err) 568 return err; 569 570 return sock->ops->sendmsg(iocb, sock, msg, size); 571 } 572 573 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 574 { 575 struct kiocb iocb; 576 struct sock_iocb siocb; 577 int ret; 578 579 init_sync_kiocb(&iocb, NULL); 580 iocb.private = &siocb; 581 ret = __sock_sendmsg(&iocb, sock, msg, size); 582 if (-EIOCBQUEUED == ret) 583 ret = wait_on_sync_kiocb(&iocb); 584 return ret; 585 } 586 587 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 588 struct kvec *vec, size_t num, size_t size) 589 { 590 mm_segment_t oldfs = get_fs(); 591 int result; 592 593 set_fs(KERNEL_DS); 594 /* 595 * the following is safe, since for compiler definitions of kvec and 596 * iovec are identical, yielding the same in-core layout and alignment 597 */ 598 msg->msg_iov = (struct iovec *)vec; 599 msg->msg_iovlen = num; 600 result = sock_sendmsg(sock, msg, size); 601 set_fs(oldfs); 602 return result; 603 } 604 605 static int ktime2ts(ktime_t kt, struct timespec *ts) 606 { 607 if (kt.tv64) { 608 *ts = ktime_to_timespec(kt); 609 return 1; 610 } else { 611 return 0; 612 } 613 } 614 615 /* 616 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 617 */ 618 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 619 struct sk_buff *skb) 620 { 621 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 622 struct timespec ts[3]; 623 int empty = 1; 624 struct skb_shared_hwtstamps *shhwtstamps = 625 skb_hwtstamps(skb); 626 627 /* Race occurred between timestamp enabling and packet 628 receiving. Fill in the current time for now. */ 629 if (need_software_tstamp && skb->tstamp.tv64 == 0) 630 __net_timestamp(skb); 631 632 if (need_software_tstamp) { 633 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 634 struct timeval tv; 635 skb_get_timestamp(skb, &tv); 636 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 637 sizeof(tv), &tv); 638 } else { 639 skb_get_timestampns(skb, &ts[0]); 640 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 641 sizeof(ts[0]), &ts[0]); 642 } 643 } 644 645 646 memset(ts, 0, sizeof(ts)); 647 if (skb->tstamp.tv64 && 648 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 649 skb_get_timestampns(skb, ts + 0); 650 empty = 0; 651 } 652 if (shhwtstamps) { 653 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 654 ktime2ts(shhwtstamps->syststamp, ts + 1)) 655 empty = 0; 656 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 657 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 658 empty = 0; 659 } 660 if (!empty) 661 put_cmsg(msg, SOL_SOCKET, 662 SCM_TIMESTAMPING, sizeof(ts), &ts); 663 } 664 665 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 666 667 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 668 { 669 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 670 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 671 sizeof(__u32), &skb->dropcount); 672 } 673 674 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 675 struct sk_buff *skb) 676 { 677 sock_recv_timestamp(msg, sk, skb); 678 sock_recv_drops(msg, sk, skb); 679 } 680 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 681 682 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 683 struct msghdr *msg, size_t size, int flags) 684 { 685 struct sock_iocb *si = kiocb_to_siocb(iocb); 686 687 si->sock = sock; 688 si->scm = NULL; 689 si->msg = msg; 690 si->size = size; 691 si->flags = flags; 692 693 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 694 } 695 696 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 697 struct msghdr *msg, size_t size, int flags) 698 { 699 int err = security_socket_recvmsg(sock, msg, size, flags); 700 701 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 702 } 703 704 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 705 size_t size, int flags) 706 { 707 struct kiocb iocb; 708 struct sock_iocb siocb; 709 int ret; 710 711 init_sync_kiocb(&iocb, NULL); 712 iocb.private = &siocb; 713 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 714 if (-EIOCBQUEUED == ret) 715 ret = wait_on_sync_kiocb(&iocb); 716 return ret; 717 } 718 719 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 720 size_t size, int flags) 721 { 722 struct kiocb iocb; 723 struct sock_iocb siocb; 724 int ret; 725 726 init_sync_kiocb(&iocb, NULL); 727 iocb.private = &siocb; 728 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 729 if (-EIOCBQUEUED == ret) 730 ret = wait_on_sync_kiocb(&iocb); 731 return ret; 732 } 733 734 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 735 struct kvec *vec, size_t num, size_t size, int flags) 736 { 737 mm_segment_t oldfs = get_fs(); 738 int result; 739 740 set_fs(KERNEL_DS); 741 /* 742 * the following is safe, since for compiler definitions of kvec and 743 * iovec are identical, yielding the same in-core layout and alignment 744 */ 745 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 746 result = sock_recvmsg(sock, msg, size, flags); 747 set_fs(oldfs); 748 return result; 749 } 750 751 static void sock_aio_dtor(struct kiocb *iocb) 752 { 753 kfree(iocb->private); 754 } 755 756 static ssize_t sock_sendpage(struct file *file, struct page *page, 757 int offset, size_t size, loff_t *ppos, int more) 758 { 759 struct socket *sock; 760 int flags; 761 762 sock = file->private_data; 763 764 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 765 if (more) 766 flags |= MSG_MORE; 767 768 return kernel_sendpage(sock, page, offset, size, flags); 769 } 770 771 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 772 struct pipe_inode_info *pipe, size_t len, 773 unsigned int flags) 774 { 775 struct socket *sock = file->private_data; 776 777 if (unlikely(!sock->ops->splice_read)) 778 return -EINVAL; 779 780 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 781 } 782 783 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 784 struct sock_iocb *siocb) 785 { 786 if (!is_sync_kiocb(iocb)) { 787 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 788 if (!siocb) 789 return NULL; 790 iocb->ki_dtor = sock_aio_dtor; 791 } 792 793 siocb->kiocb = iocb; 794 iocb->private = siocb; 795 return siocb; 796 } 797 798 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 799 struct file *file, const struct iovec *iov, 800 unsigned long nr_segs) 801 { 802 struct socket *sock = file->private_data; 803 size_t size = 0; 804 int i; 805 806 for (i = 0; i < nr_segs; i++) 807 size += iov[i].iov_len; 808 809 msg->msg_name = NULL; 810 msg->msg_namelen = 0; 811 msg->msg_control = NULL; 812 msg->msg_controllen = 0; 813 msg->msg_iov = (struct iovec *)iov; 814 msg->msg_iovlen = nr_segs; 815 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 816 817 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 818 } 819 820 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 821 unsigned long nr_segs, loff_t pos) 822 { 823 struct sock_iocb siocb, *x; 824 825 if (pos != 0) 826 return -ESPIPE; 827 828 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 829 return 0; 830 831 832 x = alloc_sock_iocb(iocb, &siocb); 833 if (!x) 834 return -ENOMEM; 835 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 836 } 837 838 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 839 struct file *file, const struct iovec *iov, 840 unsigned long nr_segs) 841 { 842 struct socket *sock = file->private_data; 843 size_t size = 0; 844 int i; 845 846 for (i = 0; i < nr_segs; i++) 847 size += iov[i].iov_len; 848 849 msg->msg_name = NULL; 850 msg->msg_namelen = 0; 851 msg->msg_control = NULL; 852 msg->msg_controllen = 0; 853 msg->msg_iov = (struct iovec *)iov; 854 msg->msg_iovlen = nr_segs; 855 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 856 if (sock->type == SOCK_SEQPACKET) 857 msg->msg_flags |= MSG_EOR; 858 859 return __sock_sendmsg(iocb, sock, msg, size); 860 } 861 862 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 863 unsigned long nr_segs, loff_t pos) 864 { 865 struct sock_iocb siocb, *x; 866 867 if (pos != 0) 868 return -ESPIPE; 869 870 x = alloc_sock_iocb(iocb, &siocb); 871 if (!x) 872 return -ENOMEM; 873 874 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 875 } 876 877 /* 878 * Atomic setting of ioctl hooks to avoid race 879 * with module unload. 880 */ 881 882 static DEFINE_MUTEX(br_ioctl_mutex); 883 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 884 885 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 886 { 887 mutex_lock(&br_ioctl_mutex); 888 br_ioctl_hook = hook; 889 mutex_unlock(&br_ioctl_mutex); 890 } 891 892 EXPORT_SYMBOL(brioctl_set); 893 894 static DEFINE_MUTEX(vlan_ioctl_mutex); 895 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 896 897 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 898 { 899 mutex_lock(&vlan_ioctl_mutex); 900 vlan_ioctl_hook = hook; 901 mutex_unlock(&vlan_ioctl_mutex); 902 } 903 904 EXPORT_SYMBOL(vlan_ioctl_set); 905 906 static DEFINE_MUTEX(dlci_ioctl_mutex); 907 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 908 909 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 910 { 911 mutex_lock(&dlci_ioctl_mutex); 912 dlci_ioctl_hook = hook; 913 mutex_unlock(&dlci_ioctl_mutex); 914 } 915 916 EXPORT_SYMBOL(dlci_ioctl_set); 917 918 static long sock_do_ioctl(struct net *net, struct socket *sock, 919 unsigned int cmd, unsigned long arg) 920 { 921 int err; 922 void __user *argp = (void __user *)arg; 923 924 err = sock->ops->ioctl(sock, cmd, arg); 925 926 /* 927 * If this ioctl is unknown try to hand it down 928 * to the NIC driver. 929 */ 930 if (err == -ENOIOCTLCMD) 931 err = dev_ioctl(net, cmd, argp); 932 933 return err; 934 } 935 936 /* 937 * With an ioctl, arg may well be a user mode pointer, but we don't know 938 * what to do with it - that's up to the protocol still. 939 */ 940 941 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 942 { 943 struct socket *sock; 944 struct sock *sk; 945 void __user *argp = (void __user *)arg; 946 int pid, err; 947 struct net *net; 948 949 sock = file->private_data; 950 sk = sock->sk; 951 net = sock_net(sk); 952 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 953 err = dev_ioctl(net, cmd, argp); 954 } else 955 #ifdef CONFIG_WEXT_CORE 956 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 957 err = dev_ioctl(net, cmd, argp); 958 } else 959 #endif 960 switch (cmd) { 961 case FIOSETOWN: 962 case SIOCSPGRP: 963 err = -EFAULT; 964 if (get_user(pid, (int __user *)argp)) 965 break; 966 err = f_setown(sock->file, pid, 1); 967 break; 968 case FIOGETOWN: 969 case SIOCGPGRP: 970 err = put_user(f_getown(sock->file), 971 (int __user *)argp); 972 break; 973 case SIOCGIFBR: 974 case SIOCSIFBR: 975 case SIOCBRADDBR: 976 case SIOCBRDELBR: 977 err = -ENOPKG; 978 if (!br_ioctl_hook) 979 request_module("bridge"); 980 981 mutex_lock(&br_ioctl_mutex); 982 if (br_ioctl_hook) 983 err = br_ioctl_hook(net, cmd, argp); 984 mutex_unlock(&br_ioctl_mutex); 985 break; 986 case SIOCGIFVLAN: 987 case SIOCSIFVLAN: 988 err = -ENOPKG; 989 if (!vlan_ioctl_hook) 990 request_module("8021q"); 991 992 mutex_lock(&vlan_ioctl_mutex); 993 if (vlan_ioctl_hook) 994 err = vlan_ioctl_hook(net, argp); 995 mutex_unlock(&vlan_ioctl_mutex); 996 break; 997 case SIOCADDDLCI: 998 case SIOCDELDLCI: 999 err = -ENOPKG; 1000 if (!dlci_ioctl_hook) 1001 request_module("dlci"); 1002 1003 mutex_lock(&dlci_ioctl_mutex); 1004 if (dlci_ioctl_hook) 1005 err = dlci_ioctl_hook(cmd, argp); 1006 mutex_unlock(&dlci_ioctl_mutex); 1007 break; 1008 default: 1009 err = sock_do_ioctl(net, sock, cmd, arg); 1010 break; 1011 } 1012 return err; 1013 } 1014 1015 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1016 { 1017 int err; 1018 struct socket *sock = NULL; 1019 1020 err = security_socket_create(family, type, protocol, 1); 1021 if (err) 1022 goto out; 1023 1024 sock = sock_alloc(); 1025 if (!sock) { 1026 err = -ENOMEM; 1027 goto out; 1028 } 1029 1030 sock->type = type; 1031 err = security_socket_post_create(sock, family, type, protocol, 1); 1032 if (err) 1033 goto out_release; 1034 1035 out: 1036 *res = sock; 1037 return err; 1038 out_release: 1039 sock_release(sock); 1040 sock = NULL; 1041 goto out; 1042 } 1043 1044 /* No kernel lock held - perfect */ 1045 static unsigned int sock_poll(struct file *file, poll_table *wait) 1046 { 1047 struct socket *sock; 1048 1049 /* 1050 * We can't return errors to poll, so it's either yes or no. 1051 */ 1052 sock = file->private_data; 1053 return sock->ops->poll(file, sock, wait); 1054 } 1055 1056 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1057 { 1058 struct socket *sock = file->private_data; 1059 1060 return sock->ops->mmap(file, sock, vma); 1061 } 1062 1063 static int sock_close(struct inode *inode, struct file *filp) 1064 { 1065 /* 1066 * It was possible the inode is NULL we were 1067 * closing an unfinished socket. 1068 */ 1069 1070 if (!inode) { 1071 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1072 return 0; 1073 } 1074 sock_release(SOCKET_I(inode)); 1075 return 0; 1076 } 1077 1078 /* 1079 * Update the socket async list 1080 * 1081 * Fasync_list locking strategy. 1082 * 1083 * 1. fasync_list is modified only under process context socket lock 1084 * i.e. under semaphore. 1085 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1086 * or under socket lock 1087 */ 1088 1089 static int sock_fasync(int fd, struct file *filp, int on) 1090 { 1091 struct socket *sock = filp->private_data; 1092 struct sock *sk = sock->sk; 1093 1094 if (sk == NULL) 1095 return -EINVAL; 1096 1097 lock_sock(sk); 1098 1099 fasync_helper(fd, filp, on, &sock->wq->fasync_list); 1100 1101 if (!sock->wq->fasync_list) 1102 sock_reset_flag(sk, SOCK_FASYNC); 1103 else 1104 sock_set_flag(sk, SOCK_FASYNC); 1105 1106 release_sock(sk); 1107 return 0; 1108 } 1109 1110 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1111 1112 int sock_wake_async(struct socket *sock, int how, int band) 1113 { 1114 struct socket_wq *wq; 1115 1116 if (!sock) 1117 return -1; 1118 rcu_read_lock(); 1119 wq = rcu_dereference(sock->wq); 1120 if (!wq || !wq->fasync_list) { 1121 rcu_read_unlock(); 1122 return -1; 1123 } 1124 switch (how) { 1125 case SOCK_WAKE_WAITD: 1126 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1127 break; 1128 goto call_kill; 1129 case SOCK_WAKE_SPACE: 1130 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1131 break; 1132 /* fall through */ 1133 case SOCK_WAKE_IO: 1134 call_kill: 1135 kill_fasync(&wq->fasync_list, SIGIO, band); 1136 break; 1137 case SOCK_WAKE_URG: 1138 kill_fasync(&wq->fasync_list, SIGURG, band); 1139 } 1140 rcu_read_unlock(); 1141 return 0; 1142 } 1143 1144 static int __sock_create(struct net *net, int family, int type, int protocol, 1145 struct socket **res, int kern) 1146 { 1147 int err; 1148 struct socket *sock; 1149 const struct net_proto_family *pf; 1150 1151 /* 1152 * Check protocol is in range 1153 */ 1154 if (family < 0 || family >= NPROTO) 1155 return -EAFNOSUPPORT; 1156 if (type < 0 || type >= SOCK_MAX) 1157 return -EINVAL; 1158 1159 /* Compatibility. 1160 1161 This uglymoron is moved from INET layer to here to avoid 1162 deadlock in module load. 1163 */ 1164 if (family == PF_INET && type == SOCK_PACKET) { 1165 static int warned; 1166 if (!warned) { 1167 warned = 1; 1168 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1169 current->comm); 1170 } 1171 family = PF_PACKET; 1172 } 1173 1174 err = security_socket_create(family, type, protocol, kern); 1175 if (err) 1176 return err; 1177 1178 /* 1179 * Allocate the socket and allow the family to set things up. if 1180 * the protocol is 0, the family is instructed to select an appropriate 1181 * default. 1182 */ 1183 sock = sock_alloc(); 1184 if (!sock) { 1185 if (net_ratelimit()) 1186 printk(KERN_WARNING "socket: no more sockets\n"); 1187 return -ENFILE; /* Not exactly a match, but its the 1188 closest posix thing */ 1189 } 1190 1191 sock->type = type; 1192 1193 #ifdef CONFIG_MODULES 1194 /* Attempt to load a protocol module if the find failed. 1195 * 1196 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1197 * requested real, full-featured networking support upon configuration. 1198 * Otherwise module support will break! 1199 */ 1200 if (net_families[family] == NULL) 1201 request_module("net-pf-%d", family); 1202 #endif 1203 1204 rcu_read_lock(); 1205 pf = rcu_dereference(net_families[family]); 1206 err = -EAFNOSUPPORT; 1207 if (!pf) 1208 goto out_release; 1209 1210 /* 1211 * We will call the ->create function, that possibly is in a loadable 1212 * module, so we have to bump that loadable module refcnt first. 1213 */ 1214 if (!try_module_get(pf->owner)) 1215 goto out_release; 1216 1217 /* Now protected by module ref count */ 1218 rcu_read_unlock(); 1219 1220 err = pf->create(net, sock, protocol, kern); 1221 if (err < 0) 1222 goto out_module_put; 1223 1224 /* 1225 * Now to bump the refcnt of the [loadable] module that owns this 1226 * socket at sock_release time we decrement its refcnt. 1227 */ 1228 if (!try_module_get(sock->ops->owner)) 1229 goto out_module_busy; 1230 1231 /* 1232 * Now that we're done with the ->create function, the [loadable] 1233 * module can have its refcnt decremented 1234 */ 1235 module_put(pf->owner); 1236 err = security_socket_post_create(sock, family, type, protocol, kern); 1237 if (err) 1238 goto out_sock_release; 1239 *res = sock; 1240 1241 return 0; 1242 1243 out_module_busy: 1244 err = -EAFNOSUPPORT; 1245 out_module_put: 1246 sock->ops = NULL; 1247 module_put(pf->owner); 1248 out_sock_release: 1249 sock_release(sock); 1250 return err; 1251 1252 out_release: 1253 rcu_read_unlock(); 1254 goto out_sock_release; 1255 } 1256 1257 int sock_create(int family, int type, int protocol, struct socket **res) 1258 { 1259 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1260 } 1261 1262 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1263 { 1264 return __sock_create(&init_net, family, type, protocol, res, 1); 1265 } 1266 1267 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1268 { 1269 int retval; 1270 struct socket *sock; 1271 int flags; 1272 1273 /* Check the SOCK_* constants for consistency. */ 1274 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1275 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1276 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1277 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1278 1279 flags = type & ~SOCK_TYPE_MASK; 1280 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1281 return -EINVAL; 1282 type &= SOCK_TYPE_MASK; 1283 1284 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1285 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1286 1287 retval = sock_create(family, type, protocol, &sock); 1288 if (retval < 0) 1289 goto out; 1290 1291 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1292 if (retval < 0) 1293 goto out_release; 1294 1295 out: 1296 /* It may be already another descriptor 8) Not kernel problem. */ 1297 return retval; 1298 1299 out_release: 1300 sock_release(sock); 1301 return retval; 1302 } 1303 1304 /* 1305 * Create a pair of connected sockets. 1306 */ 1307 1308 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1309 int __user *, usockvec) 1310 { 1311 struct socket *sock1, *sock2; 1312 int fd1, fd2, err; 1313 struct file *newfile1, *newfile2; 1314 int flags; 1315 1316 flags = type & ~SOCK_TYPE_MASK; 1317 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1318 return -EINVAL; 1319 type &= SOCK_TYPE_MASK; 1320 1321 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1322 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1323 1324 /* 1325 * Obtain the first socket and check if the underlying protocol 1326 * supports the socketpair call. 1327 */ 1328 1329 err = sock_create(family, type, protocol, &sock1); 1330 if (err < 0) 1331 goto out; 1332 1333 err = sock_create(family, type, protocol, &sock2); 1334 if (err < 0) 1335 goto out_release_1; 1336 1337 err = sock1->ops->socketpair(sock1, sock2); 1338 if (err < 0) 1339 goto out_release_both; 1340 1341 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1342 if (unlikely(fd1 < 0)) { 1343 err = fd1; 1344 goto out_release_both; 1345 } 1346 1347 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1348 if (unlikely(fd2 < 0)) { 1349 err = fd2; 1350 fput(newfile1); 1351 put_unused_fd(fd1); 1352 sock_release(sock2); 1353 goto out; 1354 } 1355 1356 audit_fd_pair(fd1, fd2); 1357 fd_install(fd1, newfile1); 1358 fd_install(fd2, newfile2); 1359 /* fd1 and fd2 may be already another descriptors. 1360 * Not kernel problem. 1361 */ 1362 1363 err = put_user(fd1, &usockvec[0]); 1364 if (!err) 1365 err = put_user(fd2, &usockvec[1]); 1366 if (!err) 1367 return 0; 1368 1369 sys_close(fd2); 1370 sys_close(fd1); 1371 return err; 1372 1373 out_release_both: 1374 sock_release(sock2); 1375 out_release_1: 1376 sock_release(sock1); 1377 out: 1378 return err; 1379 } 1380 1381 /* 1382 * Bind a name to a socket. Nothing much to do here since it's 1383 * the protocol's responsibility to handle the local address. 1384 * 1385 * We move the socket address to kernel space before we call 1386 * the protocol layer (having also checked the address is ok). 1387 */ 1388 1389 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1390 { 1391 struct socket *sock; 1392 struct sockaddr_storage address; 1393 int err, fput_needed; 1394 1395 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1396 if (sock) { 1397 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1398 if (err >= 0) { 1399 err = security_socket_bind(sock, 1400 (struct sockaddr *)&address, 1401 addrlen); 1402 if (!err) 1403 err = sock->ops->bind(sock, 1404 (struct sockaddr *) 1405 &address, addrlen); 1406 } 1407 fput_light(sock->file, fput_needed); 1408 } 1409 return err; 1410 } 1411 1412 /* 1413 * Perform a listen. Basically, we allow the protocol to do anything 1414 * necessary for a listen, and if that works, we mark the socket as 1415 * ready for listening. 1416 */ 1417 1418 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1419 { 1420 struct socket *sock; 1421 int err, fput_needed; 1422 int somaxconn; 1423 1424 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1425 if (sock) { 1426 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1427 if ((unsigned)backlog > somaxconn) 1428 backlog = somaxconn; 1429 1430 err = security_socket_listen(sock, backlog); 1431 if (!err) 1432 err = sock->ops->listen(sock, backlog); 1433 1434 fput_light(sock->file, fput_needed); 1435 } 1436 return err; 1437 } 1438 1439 /* 1440 * For accept, we attempt to create a new socket, set up the link 1441 * with the client, wake up the client, then return the new 1442 * connected fd. We collect the address of the connector in kernel 1443 * space and move it to user at the very end. This is unclean because 1444 * we open the socket then return an error. 1445 * 1446 * 1003.1g adds the ability to recvmsg() to query connection pending 1447 * status to recvmsg. We need to add that support in a way thats 1448 * clean when we restucture accept also. 1449 */ 1450 1451 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1452 int __user *, upeer_addrlen, int, flags) 1453 { 1454 struct socket *sock, *newsock; 1455 struct file *newfile; 1456 int err, len, newfd, fput_needed; 1457 struct sockaddr_storage address; 1458 1459 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1460 return -EINVAL; 1461 1462 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1463 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1464 1465 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1466 if (!sock) 1467 goto out; 1468 1469 err = -ENFILE; 1470 if (!(newsock = sock_alloc())) 1471 goto out_put; 1472 1473 newsock->type = sock->type; 1474 newsock->ops = sock->ops; 1475 1476 /* 1477 * We don't need try_module_get here, as the listening socket (sock) 1478 * has the protocol module (sock->ops->owner) held. 1479 */ 1480 __module_get(newsock->ops->owner); 1481 1482 newfd = sock_alloc_file(newsock, &newfile, flags); 1483 if (unlikely(newfd < 0)) { 1484 err = newfd; 1485 sock_release(newsock); 1486 goto out_put; 1487 } 1488 1489 err = security_socket_accept(sock, newsock); 1490 if (err) 1491 goto out_fd; 1492 1493 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1494 if (err < 0) 1495 goto out_fd; 1496 1497 if (upeer_sockaddr) { 1498 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1499 &len, 2) < 0) { 1500 err = -ECONNABORTED; 1501 goto out_fd; 1502 } 1503 err = move_addr_to_user((struct sockaddr *)&address, 1504 len, upeer_sockaddr, upeer_addrlen); 1505 if (err < 0) 1506 goto out_fd; 1507 } 1508 1509 /* File flags are not inherited via accept() unlike another OSes. */ 1510 1511 fd_install(newfd, newfile); 1512 err = newfd; 1513 1514 out_put: 1515 fput_light(sock->file, fput_needed); 1516 out: 1517 return err; 1518 out_fd: 1519 fput(newfile); 1520 put_unused_fd(newfd); 1521 goto out_put; 1522 } 1523 1524 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1525 int __user *, upeer_addrlen) 1526 { 1527 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1528 } 1529 1530 /* 1531 * Attempt to connect to a socket with the server address. The address 1532 * is in user space so we verify it is OK and move it to kernel space. 1533 * 1534 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1535 * break bindings 1536 * 1537 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1538 * other SEQPACKET protocols that take time to connect() as it doesn't 1539 * include the -EINPROGRESS status for such sockets. 1540 */ 1541 1542 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1543 int, addrlen) 1544 { 1545 struct socket *sock; 1546 struct sockaddr_storage address; 1547 int err, fput_needed; 1548 1549 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1550 if (!sock) 1551 goto out; 1552 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1553 if (err < 0) 1554 goto out_put; 1555 1556 err = 1557 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1558 if (err) 1559 goto out_put; 1560 1561 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1562 sock->file->f_flags); 1563 out_put: 1564 fput_light(sock->file, fput_needed); 1565 out: 1566 return err; 1567 } 1568 1569 /* 1570 * Get the local address ('name') of a socket object. Move the obtained 1571 * name to user space. 1572 */ 1573 1574 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1575 int __user *, usockaddr_len) 1576 { 1577 struct socket *sock; 1578 struct sockaddr_storage address; 1579 int len, err, fput_needed; 1580 1581 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1582 if (!sock) 1583 goto out; 1584 1585 err = security_socket_getsockname(sock); 1586 if (err) 1587 goto out_put; 1588 1589 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1590 if (err) 1591 goto out_put; 1592 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1593 1594 out_put: 1595 fput_light(sock->file, fput_needed); 1596 out: 1597 return err; 1598 } 1599 1600 /* 1601 * Get the remote address ('name') of a socket object. Move the obtained 1602 * name to user space. 1603 */ 1604 1605 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1606 int __user *, usockaddr_len) 1607 { 1608 struct socket *sock; 1609 struct sockaddr_storage address; 1610 int len, err, fput_needed; 1611 1612 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1613 if (sock != NULL) { 1614 err = security_socket_getpeername(sock); 1615 if (err) { 1616 fput_light(sock->file, fput_needed); 1617 return err; 1618 } 1619 1620 err = 1621 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1622 1); 1623 if (!err) 1624 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1625 usockaddr_len); 1626 fput_light(sock->file, fput_needed); 1627 } 1628 return err; 1629 } 1630 1631 /* 1632 * Send a datagram to a given address. We move the address into kernel 1633 * space and check the user space data area is readable before invoking 1634 * the protocol. 1635 */ 1636 1637 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1638 unsigned, flags, struct sockaddr __user *, addr, 1639 int, addr_len) 1640 { 1641 struct socket *sock; 1642 struct sockaddr_storage address; 1643 int err; 1644 struct msghdr msg; 1645 struct iovec iov; 1646 int fput_needed; 1647 1648 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1649 if (!sock) 1650 goto out; 1651 1652 iov.iov_base = buff; 1653 iov.iov_len = len; 1654 msg.msg_name = NULL; 1655 msg.msg_iov = &iov; 1656 msg.msg_iovlen = 1; 1657 msg.msg_control = NULL; 1658 msg.msg_controllen = 0; 1659 msg.msg_namelen = 0; 1660 if (addr) { 1661 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1662 if (err < 0) 1663 goto out_put; 1664 msg.msg_name = (struct sockaddr *)&address; 1665 msg.msg_namelen = addr_len; 1666 } 1667 if (sock->file->f_flags & O_NONBLOCK) 1668 flags |= MSG_DONTWAIT; 1669 msg.msg_flags = flags; 1670 err = sock_sendmsg(sock, &msg, len); 1671 1672 out_put: 1673 fput_light(sock->file, fput_needed); 1674 out: 1675 return err; 1676 } 1677 1678 /* 1679 * Send a datagram down a socket. 1680 */ 1681 1682 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1683 unsigned, flags) 1684 { 1685 return sys_sendto(fd, buff, len, flags, NULL, 0); 1686 } 1687 1688 /* 1689 * Receive a frame from the socket and optionally record the address of the 1690 * sender. We verify the buffers are writable and if needed move the 1691 * sender address from kernel to user space. 1692 */ 1693 1694 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1695 unsigned, flags, struct sockaddr __user *, addr, 1696 int __user *, addr_len) 1697 { 1698 struct socket *sock; 1699 struct iovec iov; 1700 struct msghdr msg; 1701 struct sockaddr_storage address; 1702 int err, err2; 1703 int fput_needed; 1704 1705 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1706 if (!sock) 1707 goto out; 1708 1709 msg.msg_control = NULL; 1710 msg.msg_controllen = 0; 1711 msg.msg_iovlen = 1; 1712 msg.msg_iov = &iov; 1713 iov.iov_len = size; 1714 iov.iov_base = ubuf; 1715 msg.msg_name = (struct sockaddr *)&address; 1716 msg.msg_namelen = sizeof(address); 1717 if (sock->file->f_flags & O_NONBLOCK) 1718 flags |= MSG_DONTWAIT; 1719 err = sock_recvmsg(sock, &msg, size, flags); 1720 1721 if (err >= 0 && addr != NULL) { 1722 err2 = move_addr_to_user((struct sockaddr *)&address, 1723 msg.msg_namelen, addr, addr_len); 1724 if (err2 < 0) 1725 err = err2; 1726 } 1727 1728 fput_light(sock->file, fput_needed); 1729 out: 1730 return err; 1731 } 1732 1733 /* 1734 * Receive a datagram from a socket. 1735 */ 1736 1737 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1738 unsigned flags) 1739 { 1740 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1741 } 1742 1743 /* 1744 * Set a socket option. Because we don't know the option lengths we have 1745 * to pass the user mode parameter for the protocols to sort out. 1746 */ 1747 1748 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1749 char __user *, optval, int, optlen) 1750 { 1751 int err, fput_needed; 1752 struct socket *sock; 1753 1754 if (optlen < 0) 1755 return -EINVAL; 1756 1757 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1758 if (sock != NULL) { 1759 err = security_socket_setsockopt(sock, level, optname); 1760 if (err) 1761 goto out_put; 1762 1763 if (level == SOL_SOCKET) 1764 err = 1765 sock_setsockopt(sock, level, optname, optval, 1766 optlen); 1767 else 1768 err = 1769 sock->ops->setsockopt(sock, level, optname, optval, 1770 optlen); 1771 out_put: 1772 fput_light(sock->file, fput_needed); 1773 } 1774 return err; 1775 } 1776 1777 /* 1778 * Get a socket option. Because we don't know the option lengths we have 1779 * to pass a user mode parameter for the protocols to sort out. 1780 */ 1781 1782 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1783 char __user *, optval, int __user *, optlen) 1784 { 1785 int err, fput_needed; 1786 struct socket *sock; 1787 1788 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1789 if (sock != NULL) { 1790 err = security_socket_getsockopt(sock, level, optname); 1791 if (err) 1792 goto out_put; 1793 1794 if (level == SOL_SOCKET) 1795 err = 1796 sock_getsockopt(sock, level, optname, optval, 1797 optlen); 1798 else 1799 err = 1800 sock->ops->getsockopt(sock, level, optname, optval, 1801 optlen); 1802 out_put: 1803 fput_light(sock->file, fput_needed); 1804 } 1805 return err; 1806 } 1807 1808 /* 1809 * Shutdown a socket. 1810 */ 1811 1812 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1813 { 1814 int err, fput_needed; 1815 struct socket *sock; 1816 1817 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1818 if (sock != NULL) { 1819 err = security_socket_shutdown(sock, how); 1820 if (!err) 1821 err = sock->ops->shutdown(sock, how); 1822 fput_light(sock->file, fput_needed); 1823 } 1824 return err; 1825 } 1826 1827 /* A couple of helpful macros for getting the address of the 32/64 bit 1828 * fields which are the same type (int / unsigned) on our platforms. 1829 */ 1830 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1831 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1832 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1833 1834 /* 1835 * BSD sendmsg interface 1836 */ 1837 1838 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1839 { 1840 struct compat_msghdr __user *msg_compat = 1841 (struct compat_msghdr __user *)msg; 1842 struct socket *sock; 1843 struct sockaddr_storage address; 1844 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1845 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1846 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1847 /* 20 is size of ipv6_pktinfo */ 1848 unsigned char *ctl_buf = ctl; 1849 struct msghdr msg_sys; 1850 int err, ctl_len, iov_size, total_len; 1851 int fput_needed; 1852 1853 err = -EFAULT; 1854 if (MSG_CMSG_COMPAT & flags) { 1855 if (get_compat_msghdr(&msg_sys, msg_compat)) 1856 return -EFAULT; 1857 } 1858 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1859 return -EFAULT; 1860 1861 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1862 if (!sock) 1863 goto out; 1864 1865 /* do not move before msg_sys is valid */ 1866 err = -EMSGSIZE; 1867 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1868 goto out_put; 1869 1870 /* Check whether to allocate the iovec area */ 1871 err = -ENOMEM; 1872 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1873 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1874 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1875 if (!iov) 1876 goto out_put; 1877 } 1878 1879 /* This will also move the address data into kernel space */ 1880 if (MSG_CMSG_COMPAT & flags) { 1881 err = verify_compat_iovec(&msg_sys, iov, 1882 (struct sockaddr *)&address, 1883 VERIFY_READ); 1884 } else 1885 err = verify_iovec(&msg_sys, iov, 1886 (struct sockaddr *)&address, 1887 VERIFY_READ); 1888 if (err < 0) 1889 goto out_freeiov; 1890 total_len = err; 1891 1892 err = -ENOBUFS; 1893 1894 if (msg_sys.msg_controllen > INT_MAX) 1895 goto out_freeiov; 1896 ctl_len = msg_sys.msg_controllen; 1897 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1898 err = 1899 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1900 sizeof(ctl)); 1901 if (err) 1902 goto out_freeiov; 1903 ctl_buf = msg_sys.msg_control; 1904 ctl_len = msg_sys.msg_controllen; 1905 } else if (ctl_len) { 1906 if (ctl_len > sizeof(ctl)) { 1907 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1908 if (ctl_buf == NULL) 1909 goto out_freeiov; 1910 } 1911 err = -EFAULT; 1912 /* 1913 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1914 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1915 * checking falls down on this. 1916 */ 1917 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1918 ctl_len)) 1919 goto out_freectl; 1920 msg_sys.msg_control = ctl_buf; 1921 } 1922 msg_sys.msg_flags = flags; 1923 1924 if (sock->file->f_flags & O_NONBLOCK) 1925 msg_sys.msg_flags |= MSG_DONTWAIT; 1926 err = sock_sendmsg(sock, &msg_sys, total_len); 1927 1928 out_freectl: 1929 if (ctl_buf != ctl) 1930 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1931 out_freeiov: 1932 if (iov != iovstack) 1933 sock_kfree_s(sock->sk, iov, iov_size); 1934 out_put: 1935 fput_light(sock->file, fput_needed); 1936 out: 1937 return err; 1938 } 1939 1940 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 1941 struct msghdr *msg_sys, unsigned flags, int nosec) 1942 { 1943 struct compat_msghdr __user *msg_compat = 1944 (struct compat_msghdr __user *)msg; 1945 struct iovec iovstack[UIO_FASTIOV]; 1946 struct iovec *iov = iovstack; 1947 unsigned long cmsg_ptr; 1948 int err, iov_size, total_len, len; 1949 1950 /* kernel mode address */ 1951 struct sockaddr_storage addr; 1952 1953 /* user mode address pointers */ 1954 struct sockaddr __user *uaddr; 1955 int __user *uaddr_len; 1956 1957 if (MSG_CMSG_COMPAT & flags) { 1958 if (get_compat_msghdr(msg_sys, msg_compat)) 1959 return -EFAULT; 1960 } 1961 else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1962 return -EFAULT; 1963 1964 err = -EMSGSIZE; 1965 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1966 goto out; 1967 1968 /* Check whether to allocate the iovec area */ 1969 err = -ENOMEM; 1970 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1971 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1972 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1973 if (!iov) 1974 goto out; 1975 } 1976 1977 /* 1978 * Save the user-mode address (verify_iovec will change the 1979 * kernel msghdr to use the kernel address space) 1980 */ 1981 1982 uaddr = (__force void __user *)msg_sys->msg_name; 1983 uaddr_len = COMPAT_NAMELEN(msg); 1984 if (MSG_CMSG_COMPAT & flags) { 1985 err = verify_compat_iovec(msg_sys, iov, 1986 (struct sockaddr *)&addr, 1987 VERIFY_WRITE); 1988 } else 1989 err = verify_iovec(msg_sys, iov, 1990 (struct sockaddr *)&addr, 1991 VERIFY_WRITE); 1992 if (err < 0) 1993 goto out_freeiov; 1994 total_len = err; 1995 1996 cmsg_ptr = (unsigned long)msg_sys->msg_control; 1997 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 1998 1999 if (sock->file->f_flags & O_NONBLOCK) 2000 flags |= MSG_DONTWAIT; 2001 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2002 total_len, flags); 2003 if (err < 0) 2004 goto out_freeiov; 2005 len = err; 2006 2007 if (uaddr != NULL) { 2008 err = move_addr_to_user((struct sockaddr *)&addr, 2009 msg_sys->msg_namelen, uaddr, 2010 uaddr_len); 2011 if (err < 0) 2012 goto out_freeiov; 2013 } 2014 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2015 COMPAT_FLAGS(msg)); 2016 if (err) 2017 goto out_freeiov; 2018 if (MSG_CMSG_COMPAT & flags) 2019 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2020 &msg_compat->msg_controllen); 2021 else 2022 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2023 &msg->msg_controllen); 2024 if (err) 2025 goto out_freeiov; 2026 err = len; 2027 2028 out_freeiov: 2029 if (iov != iovstack) 2030 sock_kfree_s(sock->sk, iov, iov_size); 2031 out: 2032 return err; 2033 } 2034 2035 /* 2036 * BSD recvmsg interface 2037 */ 2038 2039 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2040 unsigned int, flags) 2041 { 2042 int fput_needed, err; 2043 struct msghdr msg_sys; 2044 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2045 2046 if (!sock) 2047 goto out; 2048 2049 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2050 2051 fput_light(sock->file, fput_needed); 2052 out: 2053 return err; 2054 } 2055 2056 /* 2057 * Linux recvmmsg interface 2058 */ 2059 2060 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2061 unsigned int flags, struct timespec *timeout) 2062 { 2063 int fput_needed, err, datagrams; 2064 struct socket *sock; 2065 struct mmsghdr __user *entry; 2066 struct compat_mmsghdr __user *compat_entry; 2067 struct msghdr msg_sys; 2068 struct timespec end_time; 2069 2070 if (timeout && 2071 poll_select_set_timeout(&end_time, timeout->tv_sec, 2072 timeout->tv_nsec)) 2073 return -EINVAL; 2074 2075 datagrams = 0; 2076 2077 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2078 if (!sock) 2079 return err; 2080 2081 err = sock_error(sock->sk); 2082 if (err) 2083 goto out_put; 2084 2085 entry = mmsg; 2086 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2087 2088 while (datagrams < vlen) { 2089 /* 2090 * No need to ask LSM for more than the first datagram. 2091 */ 2092 if (MSG_CMSG_COMPAT & flags) { 2093 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2094 &msg_sys, flags, datagrams); 2095 if (err < 0) 2096 break; 2097 err = __put_user(err, &compat_entry->msg_len); 2098 ++compat_entry; 2099 } else { 2100 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2101 &msg_sys, flags, datagrams); 2102 if (err < 0) 2103 break; 2104 err = put_user(err, &entry->msg_len); 2105 ++entry; 2106 } 2107 2108 if (err) 2109 break; 2110 ++datagrams; 2111 2112 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2113 if (flags & MSG_WAITFORONE) 2114 flags |= MSG_DONTWAIT; 2115 2116 if (timeout) { 2117 ktime_get_ts(timeout); 2118 *timeout = timespec_sub(end_time, *timeout); 2119 if (timeout->tv_sec < 0) { 2120 timeout->tv_sec = timeout->tv_nsec = 0; 2121 break; 2122 } 2123 2124 /* Timeout, return less than vlen datagrams */ 2125 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2126 break; 2127 } 2128 2129 /* Out of band data, return right away */ 2130 if (msg_sys.msg_flags & MSG_OOB) 2131 break; 2132 } 2133 2134 out_put: 2135 fput_light(sock->file, fput_needed); 2136 2137 if (err == 0) 2138 return datagrams; 2139 2140 if (datagrams != 0) { 2141 /* 2142 * We may return less entries than requested (vlen) if the 2143 * sock is non block and there aren't enough datagrams... 2144 */ 2145 if (err != -EAGAIN) { 2146 /* 2147 * ... or if recvmsg returns an error after we 2148 * received some datagrams, where we record the 2149 * error to return on the next call or if the 2150 * app asks about it using getsockopt(SO_ERROR). 2151 */ 2152 sock->sk->sk_err = -err; 2153 } 2154 2155 return datagrams; 2156 } 2157 2158 return err; 2159 } 2160 2161 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2162 unsigned int, vlen, unsigned int, flags, 2163 struct timespec __user *, timeout) 2164 { 2165 int datagrams; 2166 struct timespec timeout_sys; 2167 2168 if (!timeout) 2169 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2170 2171 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2172 return -EFAULT; 2173 2174 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2175 2176 if (datagrams > 0 && 2177 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2178 datagrams = -EFAULT; 2179 2180 return datagrams; 2181 } 2182 2183 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2184 /* Argument list sizes for sys_socketcall */ 2185 #define AL(x) ((x) * sizeof(unsigned long)) 2186 static const unsigned char nargs[20] = { 2187 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 2188 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 2189 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3), 2190 AL(4),AL(5) 2191 }; 2192 2193 #undef AL 2194 2195 /* 2196 * System call vectors. 2197 * 2198 * Argument checking cleaned up. Saved 20% in size. 2199 * This function doesn't need to set the kernel lock because 2200 * it is set by the callees. 2201 */ 2202 2203 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2204 { 2205 unsigned long a[6]; 2206 unsigned long a0, a1; 2207 int err; 2208 unsigned int len; 2209 2210 if (call < 1 || call > SYS_RECVMMSG) 2211 return -EINVAL; 2212 2213 len = nargs[call]; 2214 if (len > sizeof(a)) 2215 return -EINVAL; 2216 2217 /* copy_from_user should be SMP safe. */ 2218 if (copy_from_user(a, args, len)) 2219 return -EFAULT; 2220 2221 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2222 2223 a0 = a[0]; 2224 a1 = a[1]; 2225 2226 switch (call) { 2227 case SYS_SOCKET: 2228 err = sys_socket(a0, a1, a[2]); 2229 break; 2230 case SYS_BIND: 2231 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2232 break; 2233 case SYS_CONNECT: 2234 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2235 break; 2236 case SYS_LISTEN: 2237 err = sys_listen(a0, a1); 2238 break; 2239 case SYS_ACCEPT: 2240 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2241 (int __user *)a[2], 0); 2242 break; 2243 case SYS_GETSOCKNAME: 2244 err = 2245 sys_getsockname(a0, (struct sockaddr __user *)a1, 2246 (int __user *)a[2]); 2247 break; 2248 case SYS_GETPEERNAME: 2249 err = 2250 sys_getpeername(a0, (struct sockaddr __user *)a1, 2251 (int __user *)a[2]); 2252 break; 2253 case SYS_SOCKETPAIR: 2254 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2255 break; 2256 case SYS_SEND: 2257 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2258 break; 2259 case SYS_SENDTO: 2260 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2261 (struct sockaddr __user *)a[4], a[5]); 2262 break; 2263 case SYS_RECV: 2264 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2265 break; 2266 case SYS_RECVFROM: 2267 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2268 (struct sockaddr __user *)a[4], 2269 (int __user *)a[5]); 2270 break; 2271 case SYS_SHUTDOWN: 2272 err = sys_shutdown(a0, a1); 2273 break; 2274 case SYS_SETSOCKOPT: 2275 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2276 break; 2277 case SYS_GETSOCKOPT: 2278 err = 2279 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2280 (int __user *)a[4]); 2281 break; 2282 case SYS_SENDMSG: 2283 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2284 break; 2285 case SYS_RECVMSG: 2286 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2287 break; 2288 case SYS_RECVMMSG: 2289 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2290 (struct timespec __user *)a[4]); 2291 break; 2292 case SYS_ACCEPT4: 2293 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2294 (int __user *)a[2], a[3]); 2295 break; 2296 default: 2297 err = -EINVAL; 2298 break; 2299 } 2300 return err; 2301 } 2302 2303 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2304 2305 /** 2306 * sock_register - add a socket protocol handler 2307 * @ops: description of protocol 2308 * 2309 * This function is called by a protocol handler that wants to 2310 * advertise its address family, and have it linked into the 2311 * socket interface. The value ops->family coresponds to the 2312 * socket system call protocol family. 2313 */ 2314 int sock_register(const struct net_proto_family *ops) 2315 { 2316 int err; 2317 2318 if (ops->family >= NPROTO) { 2319 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2320 NPROTO); 2321 return -ENOBUFS; 2322 } 2323 2324 spin_lock(&net_family_lock); 2325 if (net_families[ops->family]) 2326 err = -EEXIST; 2327 else { 2328 net_families[ops->family] = ops; 2329 err = 0; 2330 } 2331 spin_unlock(&net_family_lock); 2332 2333 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2334 return err; 2335 } 2336 2337 /** 2338 * sock_unregister - remove a protocol handler 2339 * @family: protocol family to remove 2340 * 2341 * This function is called by a protocol handler that wants to 2342 * remove its address family, and have it unlinked from the 2343 * new socket creation. 2344 * 2345 * If protocol handler is a module, then it can use module reference 2346 * counts to protect against new references. If protocol handler is not 2347 * a module then it needs to provide its own protection in 2348 * the ops->create routine. 2349 */ 2350 void sock_unregister(int family) 2351 { 2352 BUG_ON(family < 0 || family >= NPROTO); 2353 2354 spin_lock(&net_family_lock); 2355 net_families[family] = NULL; 2356 spin_unlock(&net_family_lock); 2357 2358 synchronize_rcu(); 2359 2360 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2361 } 2362 2363 static int __init sock_init(void) 2364 { 2365 /* 2366 * Initialize sock SLAB cache. 2367 */ 2368 2369 sk_init(); 2370 2371 /* 2372 * Initialize skbuff SLAB cache 2373 */ 2374 skb_init(); 2375 2376 /* 2377 * Initialize the protocols module. 2378 */ 2379 2380 init_inodecache(); 2381 register_filesystem(&sock_fs_type); 2382 sock_mnt = kern_mount(&sock_fs_type); 2383 2384 /* The real protocol initialization is performed in later initcalls. 2385 */ 2386 2387 #ifdef CONFIG_NETFILTER 2388 netfilter_init(); 2389 #endif 2390 2391 return 0; 2392 } 2393 2394 core_initcall(sock_init); /* early initcall */ 2395 2396 #ifdef CONFIG_PROC_FS 2397 void socket_seq_show(struct seq_file *seq) 2398 { 2399 int cpu; 2400 int counter = 0; 2401 2402 for_each_possible_cpu(cpu) 2403 counter += per_cpu(sockets_in_use, cpu); 2404 2405 /* It can be negative, by the way. 8) */ 2406 if (counter < 0) 2407 counter = 0; 2408 2409 seq_printf(seq, "sockets: used %d\n", counter); 2410 } 2411 #endif /* CONFIG_PROC_FS */ 2412 2413 #ifdef CONFIG_COMPAT 2414 static int do_siocgstamp(struct net *net, struct socket *sock, 2415 unsigned int cmd, struct compat_timeval __user *up) 2416 { 2417 mm_segment_t old_fs = get_fs(); 2418 struct timeval ktv; 2419 int err; 2420 2421 set_fs(KERNEL_DS); 2422 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2423 set_fs(old_fs); 2424 if (!err) { 2425 err = put_user(ktv.tv_sec, &up->tv_sec); 2426 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2427 } 2428 return err; 2429 } 2430 2431 static int do_siocgstampns(struct net *net, struct socket *sock, 2432 unsigned int cmd, struct compat_timespec __user *up) 2433 { 2434 mm_segment_t old_fs = get_fs(); 2435 struct timespec kts; 2436 int err; 2437 2438 set_fs(KERNEL_DS); 2439 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2440 set_fs(old_fs); 2441 if (!err) { 2442 err = put_user(kts.tv_sec, &up->tv_sec); 2443 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2444 } 2445 return err; 2446 } 2447 2448 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2449 { 2450 struct ifreq __user *uifr; 2451 int err; 2452 2453 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2454 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2455 return -EFAULT; 2456 2457 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2458 if (err) 2459 return err; 2460 2461 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2462 return -EFAULT; 2463 2464 return 0; 2465 } 2466 2467 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2468 { 2469 struct compat_ifconf ifc32; 2470 struct ifconf ifc; 2471 struct ifconf __user *uifc; 2472 struct compat_ifreq __user *ifr32; 2473 struct ifreq __user *ifr; 2474 unsigned int i, j; 2475 int err; 2476 2477 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2478 return -EFAULT; 2479 2480 if (ifc32.ifcbuf == 0) { 2481 ifc32.ifc_len = 0; 2482 ifc.ifc_len = 0; 2483 ifc.ifc_req = NULL; 2484 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2485 } else { 2486 size_t len =((ifc32.ifc_len / sizeof (struct compat_ifreq)) + 1) * 2487 sizeof (struct ifreq); 2488 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2489 ifc.ifc_len = len; 2490 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2491 ifr32 = compat_ptr(ifc32.ifcbuf); 2492 for (i = 0; i < ifc32.ifc_len; i += sizeof (struct compat_ifreq)) { 2493 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2494 return -EFAULT; 2495 ifr++; 2496 ifr32++; 2497 } 2498 } 2499 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2500 return -EFAULT; 2501 2502 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2503 if (err) 2504 return err; 2505 2506 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2507 return -EFAULT; 2508 2509 ifr = ifc.ifc_req; 2510 ifr32 = compat_ptr(ifc32.ifcbuf); 2511 for (i = 0, j = 0; 2512 i + sizeof (struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2513 i += sizeof (struct compat_ifreq), j += sizeof (struct ifreq)) { 2514 if (copy_in_user(ifr32, ifr, sizeof (struct compat_ifreq))) 2515 return -EFAULT; 2516 ifr32++; 2517 ifr++; 2518 } 2519 2520 if (ifc32.ifcbuf == 0) { 2521 /* Translate from 64-bit structure multiple to 2522 * a 32-bit one. 2523 */ 2524 i = ifc.ifc_len; 2525 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2526 ifc32.ifc_len = i; 2527 } else { 2528 ifc32.ifc_len = i; 2529 } 2530 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2531 return -EFAULT; 2532 2533 return 0; 2534 } 2535 2536 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2537 { 2538 struct ifreq __user *ifr; 2539 u32 data; 2540 void __user *datap; 2541 2542 ifr = compat_alloc_user_space(sizeof(*ifr)); 2543 2544 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2545 return -EFAULT; 2546 2547 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2548 return -EFAULT; 2549 2550 datap = compat_ptr(data); 2551 if (put_user(datap, &ifr->ifr_ifru.ifru_data)) 2552 return -EFAULT; 2553 2554 return dev_ioctl(net, SIOCETHTOOL, ifr); 2555 } 2556 2557 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2558 { 2559 void __user *uptr; 2560 compat_uptr_t uptr32; 2561 struct ifreq __user *uifr; 2562 2563 uifr = compat_alloc_user_space(sizeof (*uifr)); 2564 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2565 return -EFAULT; 2566 2567 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2568 return -EFAULT; 2569 2570 uptr = compat_ptr(uptr32); 2571 2572 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2573 return -EFAULT; 2574 2575 return dev_ioctl(net, SIOCWANDEV, uifr); 2576 } 2577 2578 static int bond_ioctl(struct net *net, unsigned int cmd, 2579 struct compat_ifreq __user *ifr32) 2580 { 2581 struct ifreq kifr; 2582 struct ifreq __user *uifr; 2583 mm_segment_t old_fs; 2584 int err; 2585 u32 data; 2586 void __user *datap; 2587 2588 switch (cmd) { 2589 case SIOCBONDENSLAVE: 2590 case SIOCBONDRELEASE: 2591 case SIOCBONDSETHWADDR: 2592 case SIOCBONDCHANGEACTIVE: 2593 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2594 return -EFAULT; 2595 2596 old_fs = get_fs(); 2597 set_fs (KERNEL_DS); 2598 err = dev_ioctl(net, cmd, &kifr); 2599 set_fs (old_fs); 2600 2601 return err; 2602 case SIOCBONDSLAVEINFOQUERY: 2603 case SIOCBONDINFOQUERY: 2604 uifr = compat_alloc_user_space(sizeof(*uifr)); 2605 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2606 return -EFAULT; 2607 2608 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2609 return -EFAULT; 2610 2611 datap = compat_ptr(data); 2612 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2613 return -EFAULT; 2614 2615 return dev_ioctl(net, cmd, uifr); 2616 default: 2617 return -EINVAL; 2618 } 2619 } 2620 2621 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2622 struct compat_ifreq __user *u_ifreq32) 2623 { 2624 struct ifreq __user *u_ifreq64; 2625 char tmp_buf[IFNAMSIZ]; 2626 void __user *data64; 2627 u32 data32; 2628 2629 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2630 IFNAMSIZ)) 2631 return -EFAULT; 2632 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2633 return -EFAULT; 2634 data64 = compat_ptr(data32); 2635 2636 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2637 2638 /* Don't check these user accesses, just let that get trapped 2639 * in the ioctl handler instead. 2640 */ 2641 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2642 IFNAMSIZ)) 2643 return -EFAULT; 2644 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2645 return -EFAULT; 2646 2647 return dev_ioctl(net, cmd, u_ifreq64); 2648 } 2649 2650 static int dev_ifsioc(struct net *net, struct socket *sock, 2651 unsigned int cmd, struct compat_ifreq __user *uifr32) 2652 { 2653 struct ifreq __user *uifr; 2654 int err; 2655 2656 uifr = compat_alloc_user_space(sizeof(*uifr)); 2657 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2658 return -EFAULT; 2659 2660 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2661 2662 if (!err) { 2663 switch (cmd) { 2664 case SIOCGIFFLAGS: 2665 case SIOCGIFMETRIC: 2666 case SIOCGIFMTU: 2667 case SIOCGIFMEM: 2668 case SIOCGIFHWADDR: 2669 case SIOCGIFINDEX: 2670 case SIOCGIFADDR: 2671 case SIOCGIFBRDADDR: 2672 case SIOCGIFDSTADDR: 2673 case SIOCGIFNETMASK: 2674 case SIOCGIFPFLAGS: 2675 case SIOCGIFTXQLEN: 2676 case SIOCGMIIPHY: 2677 case SIOCGMIIREG: 2678 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2679 err = -EFAULT; 2680 break; 2681 } 2682 } 2683 return err; 2684 } 2685 2686 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2687 struct compat_ifreq __user *uifr32) 2688 { 2689 struct ifreq ifr; 2690 struct compat_ifmap __user *uifmap32; 2691 mm_segment_t old_fs; 2692 int err; 2693 2694 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2695 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2696 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2697 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2698 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2699 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2700 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2701 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2702 if (err) 2703 return -EFAULT; 2704 2705 old_fs = get_fs(); 2706 set_fs (KERNEL_DS); 2707 err = dev_ioctl(net, cmd, (void __user *)&ifr); 2708 set_fs (old_fs); 2709 2710 if (cmd == SIOCGIFMAP && !err) { 2711 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2712 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2713 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2714 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2715 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2716 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2717 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2718 if (err) 2719 err = -EFAULT; 2720 } 2721 return err; 2722 } 2723 2724 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2725 { 2726 void __user *uptr; 2727 compat_uptr_t uptr32; 2728 struct ifreq __user *uifr; 2729 2730 uifr = compat_alloc_user_space(sizeof (*uifr)); 2731 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2732 return -EFAULT; 2733 2734 if (get_user(uptr32, &uifr32->ifr_data)) 2735 return -EFAULT; 2736 2737 uptr = compat_ptr(uptr32); 2738 2739 if (put_user(uptr, &uifr->ifr_data)) 2740 return -EFAULT; 2741 2742 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2743 } 2744 2745 struct rtentry32 { 2746 u32 rt_pad1; 2747 struct sockaddr rt_dst; /* target address */ 2748 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2749 struct sockaddr rt_genmask; /* target network mask (IP) */ 2750 unsigned short rt_flags; 2751 short rt_pad2; 2752 u32 rt_pad3; 2753 unsigned char rt_tos; 2754 unsigned char rt_class; 2755 short rt_pad4; 2756 short rt_metric; /* +1 for binary compatibility! */ 2757 /* char * */ u32 rt_dev; /* forcing the device at add */ 2758 u32 rt_mtu; /* per route MTU/Window */ 2759 u32 rt_window; /* Window clamping */ 2760 unsigned short rt_irtt; /* Initial RTT */ 2761 }; 2762 2763 struct in6_rtmsg32 { 2764 struct in6_addr rtmsg_dst; 2765 struct in6_addr rtmsg_src; 2766 struct in6_addr rtmsg_gateway; 2767 u32 rtmsg_type; 2768 u16 rtmsg_dst_len; 2769 u16 rtmsg_src_len; 2770 u32 rtmsg_metric; 2771 u32 rtmsg_info; 2772 u32 rtmsg_flags; 2773 s32 rtmsg_ifindex; 2774 }; 2775 2776 static int routing_ioctl(struct net *net, struct socket *sock, 2777 unsigned int cmd, void __user *argp) 2778 { 2779 int ret; 2780 void *r = NULL; 2781 struct in6_rtmsg r6; 2782 struct rtentry r4; 2783 char devname[16]; 2784 u32 rtdev; 2785 mm_segment_t old_fs = get_fs(); 2786 2787 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2788 struct in6_rtmsg32 __user *ur6 = argp; 2789 ret = copy_from_user (&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2790 3 * sizeof(struct in6_addr)); 2791 ret |= __get_user (r6.rtmsg_type, &(ur6->rtmsg_type)); 2792 ret |= __get_user (r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2793 ret |= __get_user (r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2794 ret |= __get_user (r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2795 ret |= __get_user (r6.rtmsg_info, &(ur6->rtmsg_info)); 2796 ret |= __get_user (r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2797 ret |= __get_user (r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2798 2799 r = (void *) &r6; 2800 } else { /* ipv4 */ 2801 struct rtentry32 __user *ur4 = argp; 2802 ret = copy_from_user (&r4.rt_dst, &(ur4->rt_dst), 2803 3 * sizeof(struct sockaddr)); 2804 ret |= __get_user (r4.rt_flags, &(ur4->rt_flags)); 2805 ret |= __get_user (r4.rt_metric, &(ur4->rt_metric)); 2806 ret |= __get_user (r4.rt_mtu, &(ur4->rt_mtu)); 2807 ret |= __get_user (r4.rt_window, &(ur4->rt_window)); 2808 ret |= __get_user (r4.rt_irtt, &(ur4->rt_irtt)); 2809 ret |= __get_user (rtdev, &(ur4->rt_dev)); 2810 if (rtdev) { 2811 ret |= copy_from_user (devname, compat_ptr(rtdev), 15); 2812 r4.rt_dev = devname; devname[15] = 0; 2813 } else 2814 r4.rt_dev = NULL; 2815 2816 r = (void *) &r4; 2817 } 2818 2819 if (ret) { 2820 ret = -EFAULT; 2821 goto out; 2822 } 2823 2824 set_fs (KERNEL_DS); 2825 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2826 set_fs (old_fs); 2827 2828 out: 2829 return ret; 2830 } 2831 2832 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2833 * for some operations; this forces use of the newer bridge-utils that 2834 * use compatiable ioctls 2835 */ 2836 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2837 { 2838 compat_ulong_t tmp; 2839 2840 if (get_user(tmp, argp)) 2841 return -EFAULT; 2842 if (tmp == BRCTL_GET_VERSION) 2843 return BRCTL_VERSION + 1; 2844 return -EINVAL; 2845 } 2846 2847 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 2848 unsigned int cmd, unsigned long arg) 2849 { 2850 void __user *argp = compat_ptr(arg); 2851 struct sock *sk = sock->sk; 2852 struct net *net = sock_net(sk); 2853 2854 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 2855 return siocdevprivate_ioctl(net, cmd, argp); 2856 2857 switch (cmd) { 2858 case SIOCSIFBR: 2859 case SIOCGIFBR: 2860 return old_bridge_ioctl(argp); 2861 case SIOCGIFNAME: 2862 return dev_ifname32(net, argp); 2863 case SIOCGIFCONF: 2864 return dev_ifconf(net, argp); 2865 case SIOCETHTOOL: 2866 return ethtool_ioctl(net, argp); 2867 case SIOCWANDEV: 2868 return compat_siocwandev(net, argp); 2869 case SIOCGIFMAP: 2870 case SIOCSIFMAP: 2871 return compat_sioc_ifmap(net, cmd, argp); 2872 case SIOCBONDENSLAVE: 2873 case SIOCBONDRELEASE: 2874 case SIOCBONDSETHWADDR: 2875 case SIOCBONDSLAVEINFOQUERY: 2876 case SIOCBONDINFOQUERY: 2877 case SIOCBONDCHANGEACTIVE: 2878 return bond_ioctl(net, cmd, argp); 2879 case SIOCADDRT: 2880 case SIOCDELRT: 2881 return routing_ioctl(net, sock, cmd, argp); 2882 case SIOCGSTAMP: 2883 return do_siocgstamp(net, sock, cmd, argp); 2884 case SIOCGSTAMPNS: 2885 return do_siocgstampns(net, sock, cmd, argp); 2886 case SIOCSHWTSTAMP: 2887 return compat_siocshwtstamp(net, argp); 2888 2889 case FIOSETOWN: 2890 case SIOCSPGRP: 2891 case FIOGETOWN: 2892 case SIOCGPGRP: 2893 case SIOCBRADDBR: 2894 case SIOCBRDELBR: 2895 case SIOCGIFVLAN: 2896 case SIOCSIFVLAN: 2897 case SIOCADDDLCI: 2898 case SIOCDELDLCI: 2899 return sock_ioctl(file, cmd, arg); 2900 2901 case SIOCGIFFLAGS: 2902 case SIOCSIFFLAGS: 2903 case SIOCGIFMETRIC: 2904 case SIOCSIFMETRIC: 2905 case SIOCGIFMTU: 2906 case SIOCSIFMTU: 2907 case SIOCGIFMEM: 2908 case SIOCSIFMEM: 2909 case SIOCGIFHWADDR: 2910 case SIOCSIFHWADDR: 2911 case SIOCADDMULTI: 2912 case SIOCDELMULTI: 2913 case SIOCGIFINDEX: 2914 case SIOCGIFADDR: 2915 case SIOCSIFADDR: 2916 case SIOCSIFHWBROADCAST: 2917 case SIOCDIFADDR: 2918 case SIOCGIFBRDADDR: 2919 case SIOCSIFBRDADDR: 2920 case SIOCGIFDSTADDR: 2921 case SIOCSIFDSTADDR: 2922 case SIOCGIFNETMASK: 2923 case SIOCSIFNETMASK: 2924 case SIOCSIFPFLAGS: 2925 case SIOCGIFPFLAGS: 2926 case SIOCGIFTXQLEN: 2927 case SIOCSIFTXQLEN: 2928 case SIOCBRADDIF: 2929 case SIOCBRDELIF: 2930 case SIOCSIFNAME: 2931 case SIOCGMIIPHY: 2932 case SIOCGMIIREG: 2933 case SIOCSMIIREG: 2934 return dev_ifsioc(net, sock, cmd, argp); 2935 2936 case SIOCSARP: 2937 case SIOCGARP: 2938 case SIOCDARP: 2939 case SIOCATMARK: 2940 return sock_do_ioctl(net, sock, cmd, arg); 2941 } 2942 2943 /* Prevent warning from compat_sys_ioctl, these always 2944 * result in -EINVAL in the native case anyway. */ 2945 switch (cmd) { 2946 case SIOCRTMSG: 2947 case SIOCGIFCOUNT: 2948 case SIOCSRARP: 2949 case SIOCGRARP: 2950 case SIOCDRARP: 2951 case SIOCSIFLINK: 2952 case SIOCGIFSLAVE: 2953 case SIOCSIFSLAVE: 2954 return -EINVAL; 2955 } 2956 2957 return -ENOIOCTLCMD; 2958 } 2959 2960 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2961 unsigned long arg) 2962 { 2963 struct socket *sock = file->private_data; 2964 int ret = -ENOIOCTLCMD; 2965 struct sock *sk; 2966 struct net *net; 2967 2968 sk = sock->sk; 2969 net = sock_net(sk); 2970 2971 if (sock->ops->compat_ioctl) 2972 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2973 2974 if (ret == -ENOIOCTLCMD && 2975 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2976 ret = compat_wext_handle_ioctl(net, cmd, arg); 2977 2978 if (ret == -ENOIOCTLCMD) 2979 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 2980 2981 return ret; 2982 } 2983 #endif 2984 2985 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2986 { 2987 return sock->ops->bind(sock, addr, addrlen); 2988 } 2989 2990 int kernel_listen(struct socket *sock, int backlog) 2991 { 2992 return sock->ops->listen(sock, backlog); 2993 } 2994 2995 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2996 { 2997 struct sock *sk = sock->sk; 2998 int err; 2999 3000 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3001 newsock); 3002 if (err < 0) 3003 goto done; 3004 3005 err = sock->ops->accept(sock, *newsock, flags); 3006 if (err < 0) { 3007 sock_release(*newsock); 3008 *newsock = NULL; 3009 goto done; 3010 } 3011 3012 (*newsock)->ops = sock->ops; 3013 __module_get((*newsock)->ops->owner); 3014 3015 done: 3016 return err; 3017 } 3018 3019 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3020 int flags) 3021 { 3022 return sock->ops->connect(sock, addr, addrlen, flags); 3023 } 3024 3025 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3026 int *addrlen) 3027 { 3028 return sock->ops->getname(sock, addr, addrlen, 0); 3029 } 3030 3031 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3032 int *addrlen) 3033 { 3034 return sock->ops->getname(sock, addr, addrlen, 1); 3035 } 3036 3037 int kernel_getsockopt(struct socket *sock, int level, int optname, 3038 char *optval, int *optlen) 3039 { 3040 mm_segment_t oldfs = get_fs(); 3041 int err; 3042 3043 set_fs(KERNEL_DS); 3044 if (level == SOL_SOCKET) 3045 err = sock_getsockopt(sock, level, optname, optval, optlen); 3046 else 3047 err = sock->ops->getsockopt(sock, level, optname, optval, 3048 optlen); 3049 set_fs(oldfs); 3050 return err; 3051 } 3052 3053 int kernel_setsockopt(struct socket *sock, int level, int optname, 3054 char *optval, unsigned int optlen) 3055 { 3056 mm_segment_t oldfs = get_fs(); 3057 int err; 3058 3059 set_fs(KERNEL_DS); 3060 if (level == SOL_SOCKET) 3061 err = sock_setsockopt(sock, level, optname, optval, optlen); 3062 else 3063 err = sock->ops->setsockopt(sock, level, optname, optval, 3064 optlen); 3065 set_fs(oldfs); 3066 return err; 3067 } 3068 3069 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3070 size_t size, int flags) 3071 { 3072 if (sock->ops->sendpage) 3073 return sock->ops->sendpage(sock, page, offset, size, flags); 3074 3075 return sock_no_sendpage(sock, page, offset, size, flags); 3076 } 3077 3078 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3079 { 3080 mm_segment_t oldfs = get_fs(); 3081 int err; 3082 3083 set_fs(KERNEL_DS); 3084 err = sock->ops->ioctl(sock, cmd, arg); 3085 set_fs(oldfs); 3086 3087 return err; 3088 } 3089 3090 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3091 { 3092 return sock->ops->shutdown(sock, how); 3093 } 3094 3095 EXPORT_SYMBOL(sock_create); 3096 EXPORT_SYMBOL(sock_create_kern); 3097 EXPORT_SYMBOL(sock_create_lite); 3098 EXPORT_SYMBOL(sock_map_fd); 3099 EXPORT_SYMBOL(sock_recvmsg); 3100 EXPORT_SYMBOL(sock_register); 3101 EXPORT_SYMBOL(sock_release); 3102 EXPORT_SYMBOL(sock_sendmsg); 3103 EXPORT_SYMBOL(sock_unregister); 3104 EXPORT_SYMBOL(sock_wake_async); 3105 EXPORT_SYMBOL(sockfd_lookup); 3106 EXPORT_SYMBOL(kernel_sendmsg); 3107 EXPORT_SYMBOL(kernel_recvmsg); 3108 EXPORT_SYMBOL(kernel_bind); 3109 EXPORT_SYMBOL(kernel_listen); 3110 EXPORT_SYMBOL(kernel_accept); 3111 EXPORT_SYMBOL(kernel_connect); 3112 EXPORT_SYMBOL(kernel_getsockname); 3113 EXPORT_SYMBOL(kernel_getpeername); 3114 EXPORT_SYMBOL(kernel_getsockopt); 3115 EXPORT_SYMBOL(kernel_setsockopt); 3116 EXPORT_SYMBOL(kernel_sendpage); 3117 EXPORT_SYMBOL(kernel_sock_ioctl); 3118 EXPORT_SYMBOL(kernel_sock_shutdown); 3119