xref: /openbmc/linux/net/sctp/transport.c (revision 9ebdff9aac5ded7bb515e80478afacaaa3abd799)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 International Business Machines Corp.
6  * Copyright (c) 2001 Intel Corp.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * This module provides the abstraction for an SCTP transport representing
12  * a remote transport address.  For local transport addresses, we just use
13  * union sctp_addr.
14  *
15  * Please send any bug reports or fixes you make to the
16  * email address(es):
17  *    lksctp developers <linux-sctp@vger.kernel.org>
18  *
19  * Written or modified by:
20  *    La Monte H.P. Yarroll <piggy@acm.org>
21  *    Karl Knutson          <karl@athena.chicago.il.us>
22  *    Jon Grimm             <jgrimm@us.ibm.com>
23  *    Xingang Guo           <xingang.guo@intel.com>
24  *    Hui Huang             <hui.huang@nokia.com>
25  *    Sridhar Samudrala	    <sri@us.ibm.com>
26  *    Ardelle Fan	    <ardelle.fan@intel.com>
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/random.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/sm.h>
36 
37 /* 1st Level Abstractions.  */
38 
39 /* Initialize a new transport from provided memory.  */
40 static struct sctp_transport *sctp_transport_init(struct net *net,
41 						  struct sctp_transport *peer,
42 						  const union sctp_addr *addr,
43 						  gfp_t gfp)
44 {
45 	/* Copy in the address.  */
46 	peer->af_specific = sctp_get_af_specific(addr->sa.sa_family);
47 	memcpy(&peer->ipaddr, addr, peer->af_specific->sockaddr_len);
48 	memset(&peer->saddr, 0, sizeof(union sctp_addr));
49 
50 	peer->sack_generation = 0;
51 
52 	/* From 6.3.1 RTO Calculation:
53 	 *
54 	 * C1) Until an RTT measurement has been made for a packet sent to the
55 	 * given destination transport address, set RTO to the protocol
56 	 * parameter 'RTO.Initial'.
57 	 */
58 	peer->rto = msecs_to_jiffies(net->sctp.rto_initial);
59 
60 	peer->last_time_heard = 0;
61 	peer->last_time_ecne_reduced = jiffies;
62 
63 	peer->param_flags = SPP_HB_DISABLE |
64 			    SPP_PMTUD_ENABLE |
65 			    SPP_SACKDELAY_ENABLE;
66 
67 	/* Initialize the default path max_retrans.  */
68 	peer->pathmaxrxt  = net->sctp.max_retrans_path;
69 	peer->pf_retrans  = net->sctp.pf_retrans;
70 
71 	INIT_LIST_HEAD(&peer->transmitted);
72 	INIT_LIST_HEAD(&peer->send_ready);
73 	INIT_LIST_HEAD(&peer->transports);
74 
75 	timer_setup(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 0);
76 	timer_setup(&peer->hb_timer, sctp_generate_heartbeat_event, 0);
77 	timer_setup(&peer->reconf_timer, sctp_generate_reconf_event, 0);
78 	timer_setup(&peer->probe_timer, sctp_generate_probe_event, 0);
79 	timer_setup(&peer->proto_unreach_timer,
80 		    sctp_generate_proto_unreach_event, 0);
81 
82 	/* Initialize the 64-bit random nonce sent with heartbeat. */
83 	get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce));
84 
85 	refcount_set(&peer->refcnt, 1);
86 
87 	return peer;
88 }
89 
90 /* Allocate and initialize a new transport.  */
91 struct sctp_transport *sctp_transport_new(struct net *net,
92 					  const union sctp_addr *addr,
93 					  gfp_t gfp)
94 {
95 	struct sctp_transport *transport;
96 
97 	transport = kzalloc(sizeof(*transport), gfp);
98 	if (!transport)
99 		goto fail;
100 
101 	if (!sctp_transport_init(net, transport, addr, gfp))
102 		goto fail_init;
103 
104 	SCTP_DBG_OBJCNT_INC(transport);
105 
106 	return transport;
107 
108 fail_init:
109 	kfree(transport);
110 
111 fail:
112 	return NULL;
113 }
114 
115 /* This transport is no longer needed.  Free up if possible, or
116  * delay until it last reference count.
117  */
118 void sctp_transport_free(struct sctp_transport *transport)
119 {
120 	/* Try to delete the heartbeat timer.  */
121 	if (del_timer(&transport->hb_timer))
122 		sctp_transport_put(transport);
123 
124 	/* Delete the T3_rtx timer if it's active.
125 	 * There is no point in not doing this now and letting
126 	 * structure hang around in memory since we know
127 	 * the transport is going away.
128 	 */
129 	if (del_timer(&transport->T3_rtx_timer))
130 		sctp_transport_put(transport);
131 
132 	if (del_timer(&transport->reconf_timer))
133 		sctp_transport_put(transport);
134 
135 	if (del_timer(&transport->probe_timer))
136 		sctp_transport_put(transport);
137 
138 	/* Delete the ICMP proto unreachable timer if it's active. */
139 	if (del_timer(&transport->proto_unreach_timer))
140 		sctp_transport_put(transport);
141 
142 	sctp_transport_put(transport);
143 }
144 
145 static void sctp_transport_destroy_rcu(struct rcu_head *head)
146 {
147 	struct sctp_transport *transport;
148 
149 	transport = container_of(head, struct sctp_transport, rcu);
150 
151 	dst_release(transport->dst);
152 	kfree(transport);
153 	SCTP_DBG_OBJCNT_DEC(transport);
154 }
155 
156 /* Destroy the transport data structure.
157  * Assumes there are no more users of this structure.
158  */
159 static void sctp_transport_destroy(struct sctp_transport *transport)
160 {
161 	if (unlikely(refcount_read(&transport->refcnt))) {
162 		WARN(1, "Attempt to destroy undead transport %p!\n", transport);
163 		return;
164 	}
165 
166 	sctp_packet_free(&transport->packet);
167 
168 	if (transport->asoc)
169 		sctp_association_put(transport->asoc);
170 
171 	call_rcu(&transport->rcu, sctp_transport_destroy_rcu);
172 }
173 
174 /* Start T3_rtx timer if it is not already running and update the heartbeat
175  * timer.  This routine is called every time a DATA chunk is sent.
176  */
177 void sctp_transport_reset_t3_rtx(struct sctp_transport *transport)
178 {
179 	/* RFC 2960 6.3.2 Retransmission Timer Rules
180 	 *
181 	 * R1) Every time a DATA chunk is sent to any address(including a
182 	 * retransmission), if the T3-rtx timer of that address is not running
183 	 * start it running so that it will expire after the RTO of that
184 	 * address.
185 	 */
186 
187 	if (!timer_pending(&transport->T3_rtx_timer))
188 		if (!mod_timer(&transport->T3_rtx_timer,
189 			       jiffies + transport->rto))
190 			sctp_transport_hold(transport);
191 }
192 
193 void sctp_transport_reset_hb_timer(struct sctp_transport *transport)
194 {
195 	unsigned long expires;
196 
197 	/* When a data chunk is sent, reset the heartbeat interval.  */
198 	expires = jiffies + sctp_transport_timeout(transport);
199 	if (!mod_timer(&transport->hb_timer,
200 		       expires + get_random_u32_below(transport->rto)))
201 		sctp_transport_hold(transport);
202 }
203 
204 void sctp_transport_reset_reconf_timer(struct sctp_transport *transport)
205 {
206 	if (!timer_pending(&transport->reconf_timer))
207 		if (!mod_timer(&transport->reconf_timer,
208 			       jiffies + transport->rto))
209 			sctp_transport_hold(transport);
210 }
211 
212 void sctp_transport_reset_probe_timer(struct sctp_transport *transport)
213 {
214 	if (!mod_timer(&transport->probe_timer,
215 		       jiffies + transport->probe_interval))
216 		sctp_transport_hold(transport);
217 }
218 
219 void sctp_transport_reset_raise_timer(struct sctp_transport *transport)
220 {
221 	if (!mod_timer(&transport->probe_timer,
222 		       jiffies + transport->probe_interval * 30))
223 		sctp_transport_hold(transport);
224 }
225 
226 /* This transport has been assigned to an association.
227  * Initialize fields from the association or from the sock itself.
228  * Register the reference count in the association.
229  */
230 void sctp_transport_set_owner(struct sctp_transport *transport,
231 			      struct sctp_association *asoc)
232 {
233 	transport->asoc = asoc;
234 	sctp_association_hold(asoc);
235 }
236 
237 /* Initialize the pmtu of a transport. */
238 void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk)
239 {
240 	/* If we don't have a fresh route, look one up */
241 	if (!transport->dst || transport->dst->obsolete) {
242 		sctp_transport_dst_release(transport);
243 		transport->af_specific->get_dst(transport, &transport->saddr,
244 						&transport->fl, sk);
245 	}
246 
247 	if (transport->param_flags & SPP_PMTUD_DISABLE) {
248 		struct sctp_association *asoc = transport->asoc;
249 
250 		if (!transport->pathmtu && asoc && asoc->pathmtu)
251 			transport->pathmtu = asoc->pathmtu;
252 		if (transport->pathmtu)
253 			return;
254 	}
255 
256 	if (transport->dst)
257 		transport->pathmtu = sctp_dst_mtu(transport->dst);
258 	else
259 		transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
260 
261 	sctp_transport_pl_update(transport);
262 }
263 
264 void sctp_transport_pl_send(struct sctp_transport *t)
265 {
266 	if (t->pl.probe_count < SCTP_MAX_PROBES)
267 		goto out;
268 
269 	t->pl.probe_count = 0;
270 	if (t->pl.state == SCTP_PL_BASE) {
271 		if (t->pl.probe_size == SCTP_BASE_PLPMTU) { /* BASE_PLPMTU Confirmation Failed */
272 			t->pl.state = SCTP_PL_ERROR; /* Base -> Error */
273 
274 			t->pl.pmtu = SCTP_BASE_PLPMTU;
275 			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
276 			sctp_assoc_sync_pmtu(t->asoc);
277 		}
278 	} else if (t->pl.state == SCTP_PL_SEARCH) {
279 		if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */
280 			t->pl.state = SCTP_PL_BASE;  /* Search -> Base */
281 			t->pl.probe_size = SCTP_BASE_PLPMTU;
282 			t->pl.probe_high = 0;
283 
284 			t->pl.pmtu = SCTP_BASE_PLPMTU;
285 			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
286 			sctp_assoc_sync_pmtu(t->asoc);
287 		} else { /* Normal probe failure. */
288 			t->pl.probe_high = t->pl.probe_size;
289 			t->pl.probe_size = t->pl.pmtu;
290 		}
291 	} else if (t->pl.state == SCTP_PL_COMPLETE) {
292 		if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */
293 			t->pl.state = SCTP_PL_BASE;  /* Search Complete -> Base */
294 			t->pl.probe_size = SCTP_BASE_PLPMTU;
295 
296 			t->pl.pmtu = SCTP_BASE_PLPMTU;
297 			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
298 			sctp_assoc_sync_pmtu(t->asoc);
299 		}
300 	}
301 
302 out:
303 	pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n",
304 		 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high);
305 	t->pl.probe_count++;
306 }
307 
308 bool sctp_transport_pl_recv(struct sctp_transport *t)
309 {
310 	pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n",
311 		 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high);
312 
313 	t->pl.pmtu = t->pl.probe_size;
314 	t->pl.probe_count = 0;
315 	if (t->pl.state == SCTP_PL_BASE) {
316 		t->pl.state = SCTP_PL_SEARCH; /* Base -> Search */
317 		t->pl.probe_size += SCTP_PL_BIG_STEP;
318 	} else if (t->pl.state == SCTP_PL_ERROR) {
319 		t->pl.state = SCTP_PL_SEARCH; /* Error -> Search */
320 
321 		t->pl.pmtu = t->pl.probe_size;
322 		t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
323 		sctp_assoc_sync_pmtu(t->asoc);
324 		t->pl.probe_size += SCTP_PL_BIG_STEP;
325 	} else if (t->pl.state == SCTP_PL_SEARCH) {
326 		if (!t->pl.probe_high) {
327 			t->pl.probe_size = min(t->pl.probe_size + SCTP_PL_BIG_STEP,
328 					       SCTP_MAX_PLPMTU);
329 			return false;
330 		}
331 		t->pl.probe_size += SCTP_PL_MIN_STEP;
332 		if (t->pl.probe_size >= t->pl.probe_high) {
333 			t->pl.probe_high = 0;
334 			t->pl.state = SCTP_PL_COMPLETE; /* Search -> Search Complete */
335 
336 			t->pl.probe_size = t->pl.pmtu;
337 			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
338 			sctp_assoc_sync_pmtu(t->asoc);
339 			sctp_transport_reset_raise_timer(t);
340 		}
341 	} else if (t->pl.state == SCTP_PL_COMPLETE) {
342 		/* Raise probe_size again after 30 * interval in Search Complete */
343 		t->pl.state = SCTP_PL_SEARCH; /* Search Complete -> Search */
344 		t->pl.probe_size += SCTP_PL_MIN_STEP;
345 	}
346 
347 	return t->pl.state == SCTP_PL_COMPLETE;
348 }
349 
350 static bool sctp_transport_pl_toobig(struct sctp_transport *t, u32 pmtu)
351 {
352 	pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, ptb: %d\n",
353 		 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, pmtu);
354 
355 	if (pmtu < SCTP_MIN_PLPMTU || pmtu >= t->pl.probe_size)
356 		return false;
357 
358 	if (t->pl.state == SCTP_PL_BASE) {
359 		if (pmtu >= SCTP_MIN_PLPMTU && pmtu < SCTP_BASE_PLPMTU) {
360 			t->pl.state = SCTP_PL_ERROR; /* Base -> Error */
361 
362 			t->pl.pmtu = SCTP_BASE_PLPMTU;
363 			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
364 			return true;
365 		}
366 	} else if (t->pl.state == SCTP_PL_SEARCH) {
367 		if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) {
368 			t->pl.state = SCTP_PL_BASE;  /* Search -> Base */
369 			t->pl.probe_size = SCTP_BASE_PLPMTU;
370 			t->pl.probe_count = 0;
371 
372 			t->pl.probe_high = 0;
373 			t->pl.pmtu = SCTP_BASE_PLPMTU;
374 			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
375 			return true;
376 		} else if (pmtu > t->pl.pmtu && pmtu < t->pl.probe_size) {
377 			t->pl.probe_size = pmtu;
378 			t->pl.probe_count = 0;
379 		}
380 	} else if (t->pl.state == SCTP_PL_COMPLETE) {
381 		if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) {
382 			t->pl.state = SCTP_PL_BASE;  /* Complete -> Base */
383 			t->pl.probe_size = SCTP_BASE_PLPMTU;
384 			t->pl.probe_count = 0;
385 
386 			t->pl.probe_high = 0;
387 			t->pl.pmtu = SCTP_BASE_PLPMTU;
388 			t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t);
389 			sctp_transport_reset_probe_timer(t);
390 			return true;
391 		}
392 	}
393 
394 	return false;
395 }
396 
397 bool sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu)
398 {
399 	struct sock *sk = t->asoc->base.sk;
400 	struct dst_entry *dst;
401 	bool change = true;
402 
403 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
404 		pr_warn_ratelimited("%s: Reported pmtu %d too low, using default minimum of %d\n",
405 				    __func__, pmtu, SCTP_DEFAULT_MINSEGMENT);
406 		/* Use default minimum segment instead */
407 		pmtu = SCTP_DEFAULT_MINSEGMENT;
408 	}
409 	pmtu = SCTP_TRUNC4(pmtu);
410 
411 	if (sctp_transport_pl_enabled(t))
412 		return sctp_transport_pl_toobig(t, pmtu - sctp_transport_pl_hlen(t));
413 
414 	dst = sctp_transport_dst_check(t);
415 	if (dst) {
416 		struct sctp_pf *pf = sctp_get_pf_specific(dst->ops->family);
417 		union sctp_addr addr;
418 
419 		pf->af->from_sk(&addr, sk);
420 		pf->to_sk_daddr(&t->ipaddr, sk);
421 		dst->ops->update_pmtu(dst, sk, NULL, pmtu, true);
422 		pf->to_sk_daddr(&addr, sk);
423 
424 		dst = sctp_transport_dst_check(t);
425 	}
426 
427 	if (!dst) {
428 		t->af_specific->get_dst(t, &t->saddr, &t->fl, sk);
429 		dst = t->dst;
430 	}
431 
432 	if (dst) {
433 		/* Re-fetch, as under layers may have a higher minimum size */
434 		pmtu = sctp_dst_mtu(dst);
435 		change = t->pathmtu != pmtu;
436 	}
437 	t->pathmtu = pmtu;
438 
439 	return change;
440 }
441 
442 /* Caches the dst entry and source address for a transport's destination
443  * address.
444  */
445 void sctp_transport_route(struct sctp_transport *transport,
446 			  union sctp_addr *saddr, struct sctp_sock *opt)
447 {
448 	struct sctp_association *asoc = transport->asoc;
449 	struct sctp_af *af = transport->af_specific;
450 
451 	sctp_transport_dst_release(transport);
452 	af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt));
453 
454 	if (saddr)
455 		memcpy(&transport->saddr, saddr, sizeof(union sctp_addr));
456 	else
457 		af->get_saddr(opt, transport, &transport->fl);
458 
459 	sctp_transport_pmtu(transport, sctp_opt2sk(opt));
460 
461 	/* Initialize sk->sk_rcv_saddr, if the transport is the
462 	 * association's active path for getsockname().
463 	 */
464 	if (transport->dst && asoc &&
465 	    (!asoc->peer.primary_path || transport == asoc->peer.active_path))
466 		opt->pf->to_sk_saddr(&transport->saddr, asoc->base.sk);
467 }
468 
469 /* Hold a reference to a transport.  */
470 int sctp_transport_hold(struct sctp_transport *transport)
471 {
472 	return refcount_inc_not_zero(&transport->refcnt);
473 }
474 
475 /* Release a reference to a transport and clean up
476  * if there are no more references.
477  */
478 void sctp_transport_put(struct sctp_transport *transport)
479 {
480 	if (refcount_dec_and_test(&transport->refcnt))
481 		sctp_transport_destroy(transport);
482 }
483 
484 /* Update transport's RTO based on the newly calculated RTT. */
485 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt)
486 {
487 	if (unlikely(!tp->rto_pending))
488 		/* We should not be doing any RTO updates unless rto_pending is set.  */
489 		pr_debug("%s: rto_pending not set on transport %p!\n", __func__, tp);
490 
491 	if (tp->rttvar || tp->srtt) {
492 		struct net *net = tp->asoc->base.net;
493 		/* 6.3.1 C3) When a new RTT measurement R' is made, set
494 		 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|
495 		 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'
496 		 */
497 
498 		/* Note:  The above algorithm has been rewritten to
499 		 * express rto_beta and rto_alpha as inverse powers
500 		 * of two.
501 		 * For example, assuming the default value of RTO.Alpha of
502 		 * 1/8, rto_alpha would be expressed as 3.
503 		 */
504 		tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta)
505 			+ (((__u32)abs((__s64)tp->srtt - (__s64)rtt)) >> net->sctp.rto_beta);
506 		tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha)
507 			+ (rtt >> net->sctp.rto_alpha);
508 	} else {
509 		/* 6.3.1 C2) When the first RTT measurement R is made, set
510 		 * SRTT <- R, RTTVAR <- R/2.
511 		 */
512 		tp->srtt = rtt;
513 		tp->rttvar = rtt >> 1;
514 	}
515 
516 	/* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then
517 	 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY.
518 	 */
519 	if (tp->rttvar == 0)
520 		tp->rttvar = SCTP_CLOCK_GRANULARITY;
521 
522 	/* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */
523 	tp->rto = tp->srtt + (tp->rttvar << 2);
524 
525 	/* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min
526 	 * seconds then it is rounded up to RTO.Min seconds.
527 	 */
528 	if (tp->rto < tp->asoc->rto_min)
529 		tp->rto = tp->asoc->rto_min;
530 
531 	/* 6.3.1 C7) A maximum value may be placed on RTO provided it is
532 	 * at least RTO.max seconds.
533 	 */
534 	if (tp->rto > tp->asoc->rto_max)
535 		tp->rto = tp->asoc->rto_max;
536 
537 	sctp_max_rto(tp->asoc, tp);
538 	tp->rtt = rtt;
539 
540 	/* Reset rto_pending so that a new RTT measurement is started when a
541 	 * new data chunk is sent.
542 	 */
543 	tp->rto_pending = 0;
544 
545 	pr_debug("%s: transport:%p, rtt:%d, srtt:%d rttvar:%d, rto:%ld\n",
546 		 __func__, tp, rtt, tp->srtt, tp->rttvar, tp->rto);
547 }
548 
549 /* This routine updates the transport's cwnd and partial_bytes_acked
550  * parameters based on the bytes acked in the received SACK.
551  */
552 void sctp_transport_raise_cwnd(struct sctp_transport *transport,
553 			       __u32 sack_ctsn, __u32 bytes_acked)
554 {
555 	struct sctp_association *asoc = transport->asoc;
556 	__u32 cwnd, ssthresh, flight_size, pba, pmtu;
557 
558 	cwnd = transport->cwnd;
559 	flight_size = transport->flight_size;
560 
561 	/* See if we need to exit Fast Recovery first */
562 	if (asoc->fast_recovery &&
563 	    TSN_lte(asoc->fast_recovery_exit, sack_ctsn))
564 		asoc->fast_recovery = 0;
565 
566 	ssthresh = transport->ssthresh;
567 	pba = transport->partial_bytes_acked;
568 	pmtu = transport->asoc->pathmtu;
569 
570 	if (cwnd <= ssthresh) {
571 		/* RFC 4960 7.2.1
572 		 * o  When cwnd is less than or equal to ssthresh, an SCTP
573 		 *    endpoint MUST use the slow-start algorithm to increase
574 		 *    cwnd only if the current congestion window is being fully
575 		 *    utilized, an incoming SACK advances the Cumulative TSN
576 		 *    Ack Point, and the data sender is not in Fast Recovery.
577 		 *    Only when these three conditions are met can the cwnd be
578 		 *    increased; otherwise, the cwnd MUST not be increased.
579 		 *    If these conditions are met, then cwnd MUST be increased
580 		 *    by, at most, the lesser of 1) the total size of the
581 		 *    previously outstanding DATA chunk(s) acknowledged, and
582 		 *    2) the destination's path MTU.  This upper bound protects
583 		 *    against the ACK-Splitting attack outlined in [SAVAGE99].
584 		 */
585 		if (asoc->fast_recovery)
586 			return;
587 
588 		/* The appropriate cwnd increase algorithm is performed
589 		 * if, and only if the congestion window is being fully
590 		 * utilized.  Note that RFC4960 Errata 3.22 removed the
591 		 * other condition on ctsn moving.
592 		 */
593 		if (flight_size < cwnd)
594 			return;
595 
596 		if (bytes_acked > pmtu)
597 			cwnd += pmtu;
598 		else
599 			cwnd += bytes_acked;
600 
601 		pr_debug("%s: slow start: transport:%p, bytes_acked:%d, "
602 			 "cwnd:%d, ssthresh:%d, flight_size:%d, pba:%d\n",
603 			 __func__, transport, bytes_acked, cwnd, ssthresh,
604 			 flight_size, pba);
605 	} else {
606 		/* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh,
607 		 * upon each SACK arrival, increase partial_bytes_acked
608 		 * by the total number of bytes of all new chunks
609 		 * acknowledged in that SACK including chunks
610 		 * acknowledged by the new Cumulative TSN Ack and by Gap
611 		 * Ack Blocks. (updated by RFC4960 Errata 3.22)
612 		 *
613 		 * When partial_bytes_acked is greater than cwnd and
614 		 * before the arrival of the SACK the sender had less
615 		 * bytes of data outstanding than cwnd (i.e., before
616 		 * arrival of the SACK, flightsize was less than cwnd),
617 		 * reset partial_bytes_acked to cwnd. (RFC 4960 Errata
618 		 * 3.26)
619 		 *
620 		 * When partial_bytes_acked is equal to or greater than
621 		 * cwnd and before the arrival of the SACK the sender
622 		 * had cwnd or more bytes of data outstanding (i.e.,
623 		 * before arrival of the SACK, flightsize was greater
624 		 * than or equal to cwnd), partial_bytes_acked is reset
625 		 * to (partial_bytes_acked - cwnd). Next, cwnd is
626 		 * increased by MTU. (RFC 4960 Errata 3.12)
627 		 */
628 		pba += bytes_acked;
629 		if (pba > cwnd && flight_size < cwnd)
630 			pba = cwnd;
631 		if (pba >= cwnd && flight_size >= cwnd) {
632 			pba = pba - cwnd;
633 			cwnd += pmtu;
634 		}
635 
636 		pr_debug("%s: congestion avoidance: transport:%p, "
637 			 "bytes_acked:%d, cwnd:%d, ssthresh:%d, "
638 			 "flight_size:%d, pba:%d\n", __func__,
639 			 transport, bytes_acked, cwnd, ssthresh,
640 			 flight_size, pba);
641 	}
642 
643 	transport->cwnd = cwnd;
644 	transport->partial_bytes_acked = pba;
645 }
646 
647 /* This routine is used to lower the transport's cwnd when congestion is
648  * detected.
649  */
650 void sctp_transport_lower_cwnd(struct sctp_transport *transport,
651 			       enum sctp_lower_cwnd reason)
652 {
653 	struct sctp_association *asoc = transport->asoc;
654 
655 	switch (reason) {
656 	case SCTP_LOWER_CWND_T3_RTX:
657 		/* RFC 2960 Section 7.2.3, sctpimpguide
658 		 * When the T3-rtx timer expires on an address, SCTP should
659 		 * perform slow start by:
660 		 *      ssthresh = max(cwnd/2, 4*MTU)
661 		 *      cwnd = 1*MTU
662 		 *      partial_bytes_acked = 0
663 		 */
664 		transport->ssthresh = max(transport->cwnd/2,
665 					  4*asoc->pathmtu);
666 		transport->cwnd = asoc->pathmtu;
667 
668 		/* T3-rtx also clears fast recovery */
669 		asoc->fast_recovery = 0;
670 		break;
671 
672 	case SCTP_LOWER_CWND_FAST_RTX:
673 		/* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the
674 		 * destination address(es) to which the missing DATA chunks
675 		 * were last sent, according to the formula described in
676 		 * Section 7.2.3.
677 		 *
678 		 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet
679 		 * losses from SACK (see Section 7.2.4), An endpoint
680 		 * should do the following:
681 		 *      ssthresh = max(cwnd/2, 4*MTU)
682 		 *      cwnd = ssthresh
683 		 *      partial_bytes_acked = 0
684 		 */
685 		if (asoc->fast_recovery)
686 			return;
687 
688 		/* Mark Fast recovery */
689 		asoc->fast_recovery = 1;
690 		asoc->fast_recovery_exit = asoc->next_tsn - 1;
691 
692 		transport->ssthresh = max(transport->cwnd/2,
693 					  4*asoc->pathmtu);
694 		transport->cwnd = transport->ssthresh;
695 		break;
696 
697 	case SCTP_LOWER_CWND_ECNE:
698 		/* RFC 2481 Section 6.1.2.
699 		 * If the sender receives an ECN-Echo ACK packet
700 		 * then the sender knows that congestion was encountered in the
701 		 * network on the path from the sender to the receiver. The
702 		 * indication of congestion should be treated just as a
703 		 * congestion loss in non-ECN Capable TCP. That is, the TCP
704 		 * source halves the congestion window "cwnd" and reduces the
705 		 * slow start threshold "ssthresh".
706 		 * A critical condition is that TCP does not react to
707 		 * congestion indications more than once every window of
708 		 * data (or more loosely more than once every round-trip time).
709 		 */
710 		if (time_after(jiffies, transport->last_time_ecne_reduced +
711 					transport->rtt)) {
712 			transport->ssthresh = max(transport->cwnd/2,
713 						  4*asoc->pathmtu);
714 			transport->cwnd = transport->ssthresh;
715 			transport->last_time_ecne_reduced = jiffies;
716 		}
717 		break;
718 
719 	case SCTP_LOWER_CWND_INACTIVE:
720 		/* RFC 2960 Section 7.2.1, sctpimpguide
721 		 * When the endpoint does not transmit data on a given
722 		 * transport address, the cwnd of the transport address
723 		 * should be adjusted to max(cwnd/2, 4*MTU) per RTO.
724 		 * NOTE: Although the draft recommends that this check needs
725 		 * to be done every RTO interval, we do it every hearbeat
726 		 * interval.
727 		 */
728 		transport->cwnd = max(transport->cwnd/2,
729 					 4*asoc->pathmtu);
730 		/* RFC 4960 Errata 3.27.2: also adjust sshthresh */
731 		transport->ssthresh = transport->cwnd;
732 		break;
733 	}
734 
735 	transport->partial_bytes_acked = 0;
736 
737 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d\n",
738 		 __func__, transport, reason, transport->cwnd,
739 		 transport->ssthresh);
740 }
741 
742 /* Apply Max.Burst limit to the congestion window:
743  * sctpimpguide-05 2.14.2
744  * D) When the time comes for the sender to
745  * transmit new DATA chunks, the protocol parameter Max.Burst MUST
746  * first be applied to limit how many new DATA chunks may be sent.
747  * The limit is applied by adjusting cwnd as follows:
748  * 	if ((flightsize+ Max.Burst * MTU) < cwnd)
749  * 		cwnd = flightsize + Max.Burst * MTU
750  */
751 
752 void sctp_transport_burst_limited(struct sctp_transport *t)
753 {
754 	struct sctp_association *asoc = t->asoc;
755 	u32 old_cwnd = t->cwnd;
756 	u32 max_burst_bytes;
757 
758 	if (t->burst_limited || asoc->max_burst == 0)
759 		return;
760 
761 	max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu);
762 	if (max_burst_bytes < old_cwnd) {
763 		t->cwnd = max_burst_bytes;
764 		t->burst_limited = old_cwnd;
765 	}
766 }
767 
768 /* Restore the old cwnd congestion window, after the burst had it's
769  * desired effect.
770  */
771 void sctp_transport_burst_reset(struct sctp_transport *t)
772 {
773 	if (t->burst_limited) {
774 		t->cwnd = t->burst_limited;
775 		t->burst_limited = 0;
776 	}
777 }
778 
779 /* What is the next timeout value for this transport? */
780 unsigned long sctp_transport_timeout(struct sctp_transport *trans)
781 {
782 	/* RTO + timer slack +/- 50% of RTO */
783 	unsigned long timeout = trans->rto >> 1;
784 
785 	if (trans->state != SCTP_UNCONFIRMED &&
786 	    trans->state != SCTP_PF)
787 		timeout += trans->hbinterval;
788 
789 	return max_t(unsigned long, timeout, HZ / 5);
790 }
791 
792 /* Reset transport variables to their initial values */
793 void sctp_transport_reset(struct sctp_transport *t)
794 {
795 	struct sctp_association *asoc = t->asoc;
796 
797 	/* RFC 2960 (bis), Section 5.2.4
798 	 * All the congestion control parameters (e.g., cwnd, ssthresh)
799 	 * related to this peer MUST be reset to their initial values
800 	 * (see Section 6.2.1)
801 	 */
802 	t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
803 	t->burst_limited = 0;
804 	t->ssthresh = asoc->peer.i.a_rwnd;
805 	t->rto = asoc->rto_initial;
806 	sctp_max_rto(asoc, t);
807 	t->rtt = 0;
808 	t->srtt = 0;
809 	t->rttvar = 0;
810 
811 	/* Reset these additional variables so that we have a clean slate. */
812 	t->partial_bytes_acked = 0;
813 	t->flight_size = 0;
814 	t->error_count = 0;
815 	t->rto_pending = 0;
816 	t->hb_sent = 0;
817 
818 	/* Initialize the state information for SFR-CACC */
819 	t->cacc.changeover_active = 0;
820 	t->cacc.cycling_changeover = 0;
821 	t->cacc.next_tsn_at_change = 0;
822 	t->cacc.cacc_saw_newack = 0;
823 }
824 
825 /* Schedule retransmission on the given transport */
826 void sctp_transport_immediate_rtx(struct sctp_transport *t)
827 {
828 	/* Stop pending T3_rtx_timer */
829 	if (del_timer(&t->T3_rtx_timer))
830 		sctp_transport_put(t);
831 
832 	sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX);
833 	if (!timer_pending(&t->T3_rtx_timer)) {
834 		if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto))
835 			sctp_transport_hold(t);
836 	}
837 }
838 
839 /* Drop dst */
840 void sctp_transport_dst_release(struct sctp_transport *t)
841 {
842 	dst_release(t->dst);
843 	t->dst = NULL;
844 	t->dst_pending_confirm = 0;
845 }
846 
847 /* Schedule neighbour confirm */
848 void sctp_transport_dst_confirm(struct sctp_transport *t)
849 {
850 	t->dst_pending_confirm = 1;
851 }
852