xref: /openbmc/linux/net/sctp/socket.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114 
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 static atomic_t sctp_sockets_allocated;
118 
119 static void sctp_enter_memory_pressure(void)
120 {
121 	sctp_memory_pressure = 1;
122 }
123 
124 
125 /* Get the sndbuf space available at the time on the association.  */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 	int amt;
129 
130 	if (asoc->ep->sndbuf_policy)
131 		amt = asoc->sndbuf_used;
132 	else
133 		amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134 
135 	if (amt >= asoc->base.sk->sk_sndbuf) {
136 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 			amt = 0;
138 		else {
139 			amt = sk_stream_wspace(asoc->base.sk);
140 			if (amt < 0)
141 				amt = 0;
142 		}
143 	} else {
144 		amt = asoc->base.sk->sk_sndbuf - amt;
145 	}
146 	return amt;
147 }
148 
149 /* Increment the used sndbuf space count of the corresponding association by
150  * the size of the outgoing data chunk.
151  * Also, set the skb destructor for sndbuf accounting later.
152  *
153  * Since it is always 1-1 between chunk and skb, and also a new skb is always
154  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155  * destructor in the data chunk skb for the purpose of the sndbuf space
156  * tracking.
157  */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 	struct sctp_association *asoc = chunk->asoc;
161 	struct sock *sk = asoc->base.sk;
162 
163 	/* The sndbuf space is tracked per association.  */
164 	sctp_association_hold(asoc);
165 
166 	skb_set_owner_w(chunk->skb, sk);
167 
168 	chunk->skb->destructor = sctp_wfree;
169 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
170 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171 
172 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 				sizeof(struct sk_buff) +
174 				sizeof(struct sctp_chunk);
175 
176 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 	sk_charge_skb(sk, chunk->skb);
178 }
179 
180 /* Verify that this is a valid address. */
181 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
182 				   int len)
183 {
184 	struct sctp_af *af;
185 
186 	/* Verify basic sockaddr. */
187 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
188 	if (!af)
189 		return -EINVAL;
190 
191 	/* Is this a valid SCTP address?  */
192 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
193 		return -EINVAL;
194 
195 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
196 		return -EINVAL;
197 
198 	return 0;
199 }
200 
201 /* Look up the association by its id.  If this is not a UDP-style
202  * socket, the ID field is always ignored.
203  */
204 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
205 {
206 	struct sctp_association *asoc = NULL;
207 
208 	/* If this is not a UDP-style socket, assoc id should be ignored. */
209 	if (!sctp_style(sk, UDP)) {
210 		/* Return NULL if the socket state is not ESTABLISHED. It
211 		 * could be a TCP-style listening socket or a socket which
212 		 * hasn't yet called connect() to establish an association.
213 		 */
214 		if (!sctp_sstate(sk, ESTABLISHED))
215 			return NULL;
216 
217 		/* Get the first and the only association from the list. */
218 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
219 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
220 					  struct sctp_association, asocs);
221 		return asoc;
222 	}
223 
224 	/* Otherwise this is a UDP-style socket. */
225 	if (!id || (id == (sctp_assoc_t)-1))
226 		return NULL;
227 
228 	spin_lock_bh(&sctp_assocs_id_lock);
229 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
230 	spin_unlock_bh(&sctp_assocs_id_lock);
231 
232 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
233 		return NULL;
234 
235 	return asoc;
236 }
237 
238 /* Look up the transport from an address and an assoc id. If both address and
239  * id are specified, the associations matching the address and the id should be
240  * the same.
241  */
242 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
243 					      struct sockaddr_storage *addr,
244 					      sctp_assoc_t id)
245 {
246 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
247 	struct sctp_transport *transport;
248 	union sctp_addr *laddr = (union sctp_addr *)addr;
249 
250 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
251 					       laddr,
252 					       &transport);
253 
254 	if (!addr_asoc)
255 		return NULL;
256 
257 	id_asoc = sctp_id2assoc(sk, id);
258 	if (id_asoc && (id_asoc != addr_asoc))
259 		return NULL;
260 
261 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
262 						(union sctp_addr *)addr);
263 
264 	return transport;
265 }
266 
267 /* API 3.1.2 bind() - UDP Style Syntax
268  * The syntax of bind() is,
269  *
270  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
271  *
272  *   sd      - the socket descriptor returned by socket().
273  *   addr    - the address structure (struct sockaddr_in or struct
274  *             sockaddr_in6 [RFC 2553]),
275  *   addr_len - the size of the address structure.
276  */
277 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
278 {
279 	int retval = 0;
280 
281 	sctp_lock_sock(sk);
282 
283 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
284 			  sk, addr, addr_len);
285 
286 	/* Disallow binding twice. */
287 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
288 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
289 				      addr_len);
290 	else
291 		retval = -EINVAL;
292 
293 	sctp_release_sock(sk);
294 
295 	return retval;
296 }
297 
298 static long sctp_get_port_local(struct sock *, union sctp_addr *);
299 
300 /* Verify this is a valid sockaddr. */
301 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
302 					union sctp_addr *addr, int len)
303 {
304 	struct sctp_af *af;
305 
306 	/* Check minimum size.  */
307 	if (len < sizeof (struct sockaddr))
308 		return NULL;
309 
310 	/* Does this PF support this AF? */
311 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
312 		return NULL;
313 
314 	/* If we get this far, af is valid. */
315 	af = sctp_get_af_specific(addr->sa.sa_family);
316 
317 	if (len < af->sockaddr_len)
318 		return NULL;
319 
320 	return af;
321 }
322 
323 /* Bind a local address either to an endpoint or to an association.  */
324 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
325 {
326 	struct sctp_sock *sp = sctp_sk(sk);
327 	struct sctp_endpoint *ep = sp->ep;
328 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
329 	struct sctp_af *af;
330 	unsigned short snum;
331 	int ret = 0;
332 
333 	/* Common sockaddr verification. */
334 	af = sctp_sockaddr_af(sp, addr, len);
335 	if (!af) {
336 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
337 				  sk, addr, len);
338 		return -EINVAL;
339 	}
340 
341 	snum = ntohs(addr->v4.sin_port);
342 
343 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
344 				 ", port: %d, new port: %d, len: %d)\n",
345 				 sk,
346 				 addr,
347 				 bp->port, snum,
348 				 len);
349 
350 	/* PF specific bind() address verification. */
351 	if (!sp->pf->bind_verify(sp, addr))
352 		return -EADDRNOTAVAIL;
353 
354 	/* We must either be unbound, or bind to the same port.
355 	 * It's OK to allow 0 ports if we are already bound.
356 	 * We'll just inhert an already bound port in this case
357 	 */
358 	if (bp->port) {
359 		if (!snum)
360 			snum = bp->port;
361 		else if (snum != bp->port) {
362 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
363 				  " New port %d does not match existing port "
364 				  "%d.\n", snum, bp->port);
365 			return -EINVAL;
366 		}
367 	}
368 
369 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
370 		return -EACCES;
371 
372 	/* Make sure we are allowed to bind here.
373 	 * The function sctp_get_port_local() does duplicate address
374 	 * detection.
375 	 */
376 	addr->v4.sin_port = htons(snum);
377 	if ((ret = sctp_get_port_local(sk, addr))) {
378 		if (ret == (long) sk) {
379 			/* This endpoint has a conflicting address. */
380 			return -EINVAL;
381 		} else {
382 			return -EADDRINUSE;
383 		}
384 	}
385 
386 	/* Refresh ephemeral port.  */
387 	if (!bp->port)
388 		bp->port = inet_sk(sk)->num;
389 
390 	/* Add the address to the bind address list.
391 	 * Use GFP_ATOMIC since BHs will be disabled.
392 	 */
393 	ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
394 
395 	/* Copy back into socket for getsockname() use. */
396 	if (!ret) {
397 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
398 		af->to_sk_saddr(addr, sk);
399 	}
400 
401 	return ret;
402 }
403 
404  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
405  *
406  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
407  * at any one time.  If a sender, after sending an ASCONF chunk, decides
408  * it needs to transfer another ASCONF Chunk, it MUST wait until the
409  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
410  * subsequent ASCONF. Note this restriction binds each side, so at any
411  * time two ASCONF may be in-transit on any given association (one sent
412  * from each endpoint).
413  */
414 static int sctp_send_asconf(struct sctp_association *asoc,
415 			    struct sctp_chunk *chunk)
416 {
417 	int		retval = 0;
418 
419 	/* If there is an outstanding ASCONF chunk, queue it for later
420 	 * transmission.
421 	 */
422 	if (asoc->addip_last_asconf) {
423 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
424 		goto out;
425 	}
426 
427 	/* Hold the chunk until an ASCONF_ACK is received. */
428 	sctp_chunk_hold(chunk);
429 	retval = sctp_primitive_ASCONF(asoc, chunk);
430 	if (retval)
431 		sctp_chunk_free(chunk);
432 	else
433 		asoc->addip_last_asconf = chunk;
434 
435 out:
436 	return retval;
437 }
438 
439 /* Add a list of addresses as bind addresses to local endpoint or
440  * association.
441  *
442  * Basically run through each address specified in the addrs/addrcnt
443  * array/length pair, determine if it is IPv6 or IPv4 and call
444  * sctp_do_bind() on it.
445  *
446  * If any of them fails, then the operation will be reversed and the
447  * ones that were added will be removed.
448  *
449  * Only sctp_setsockopt_bindx() is supposed to call this function.
450  */
451 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
452 {
453 	int cnt;
454 	int retval = 0;
455 	void *addr_buf;
456 	struct sockaddr *sa_addr;
457 	struct sctp_af *af;
458 
459 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
460 			  sk, addrs, addrcnt);
461 
462 	addr_buf = addrs;
463 	for (cnt = 0; cnt < addrcnt; cnt++) {
464 		/* The list may contain either IPv4 or IPv6 address;
465 		 * determine the address length for walking thru the list.
466 		 */
467 		sa_addr = (struct sockaddr *)addr_buf;
468 		af = sctp_get_af_specific(sa_addr->sa_family);
469 		if (!af) {
470 			retval = -EINVAL;
471 			goto err_bindx_add;
472 		}
473 
474 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
475 				      af->sockaddr_len);
476 
477 		addr_buf += af->sockaddr_len;
478 
479 err_bindx_add:
480 		if (retval < 0) {
481 			/* Failed. Cleanup the ones that have been added */
482 			if (cnt > 0)
483 				sctp_bindx_rem(sk, addrs, cnt);
484 			return retval;
485 		}
486 	}
487 
488 	return retval;
489 }
490 
491 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
492  * associations that are part of the endpoint indicating that a list of local
493  * addresses are added to the endpoint.
494  *
495  * If any of the addresses is already in the bind address list of the
496  * association, we do not send the chunk for that association.  But it will not
497  * affect other associations.
498  *
499  * Only sctp_setsockopt_bindx() is supposed to call this function.
500  */
501 static int sctp_send_asconf_add_ip(struct sock		*sk,
502 				   struct sockaddr	*addrs,
503 				   int 			addrcnt)
504 {
505 	struct sctp_sock		*sp;
506 	struct sctp_endpoint		*ep;
507 	struct sctp_association		*asoc;
508 	struct sctp_bind_addr		*bp;
509 	struct sctp_chunk		*chunk;
510 	struct sctp_sockaddr_entry	*laddr;
511 	union sctp_addr			*addr;
512 	union sctp_addr			saveaddr;
513 	void				*addr_buf;
514 	struct sctp_af			*af;
515 	struct list_head		*pos;
516 	struct list_head		*p;
517 	int 				i;
518 	int 				retval = 0;
519 
520 	if (!sctp_addip_enable)
521 		return retval;
522 
523 	sp = sctp_sk(sk);
524 	ep = sp->ep;
525 
526 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
527 			  __FUNCTION__, sk, addrs, addrcnt);
528 
529 	list_for_each(pos, &ep->asocs) {
530 		asoc = list_entry(pos, struct sctp_association, asocs);
531 
532 		if (!asoc->peer.asconf_capable)
533 			continue;
534 
535 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 			continue;
537 
538 		if (!sctp_state(asoc, ESTABLISHED))
539 			continue;
540 
541 		/* Check if any address in the packed array of addresses is
542 		 * in the bind address list of the association. If so,
543 		 * do not send the asconf chunk to its peer, but continue with
544 		 * other associations.
545 		 */
546 		addr_buf = addrs;
547 		for (i = 0; i < addrcnt; i++) {
548 			addr = (union sctp_addr *)addr_buf;
549 			af = sctp_get_af_specific(addr->v4.sin_family);
550 			if (!af) {
551 				retval = -EINVAL;
552 				goto out;
553 			}
554 
555 			if (sctp_assoc_lookup_laddr(asoc, addr))
556 				break;
557 
558 			addr_buf += af->sockaddr_len;
559 		}
560 		if (i < addrcnt)
561 			continue;
562 
563 		/* Use the first valid address in bind addr list of
564 		 * association as Address Parameter of ASCONF CHUNK.
565 		 */
566 		bp = &asoc->base.bind_addr;
567 		p = bp->address_list.next;
568 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 						   addrcnt, SCTP_PARAM_ADD_IP);
571 		if (!chunk) {
572 			retval = -ENOMEM;
573 			goto out;
574 		}
575 
576 		retval = sctp_send_asconf(asoc, chunk);
577 		if (retval)
578 			goto out;
579 
580 		/* Add the new addresses to the bind address list with
581 		 * use_as_src set to 0.
582 		 */
583 		addr_buf = addrs;
584 		for (i = 0; i < addrcnt; i++) {
585 			addr = (union sctp_addr *)addr_buf;
586 			af = sctp_get_af_specific(addr->v4.sin_family);
587 			memcpy(&saveaddr, addr, af->sockaddr_len);
588 			retval = sctp_add_bind_addr(bp, &saveaddr, 0,
589 						    GFP_ATOMIC);
590 			addr_buf += af->sockaddr_len;
591 		}
592 	}
593 
594 out:
595 	return retval;
596 }
597 
598 /* Remove a list of addresses from bind addresses list.  Do not remove the
599  * last address.
600  *
601  * Basically run through each address specified in the addrs/addrcnt
602  * array/length pair, determine if it is IPv6 or IPv4 and call
603  * sctp_del_bind() on it.
604  *
605  * If any of them fails, then the operation will be reversed and the
606  * ones that were removed will be added back.
607  *
608  * At least one address has to be left; if only one address is
609  * available, the operation will return -EBUSY.
610  *
611  * Only sctp_setsockopt_bindx() is supposed to call this function.
612  */
613 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
614 {
615 	struct sctp_sock *sp = sctp_sk(sk);
616 	struct sctp_endpoint *ep = sp->ep;
617 	int cnt;
618 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
619 	int retval = 0;
620 	void *addr_buf;
621 	union sctp_addr *sa_addr;
622 	struct sctp_af *af;
623 
624 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
625 			  sk, addrs, addrcnt);
626 
627 	addr_buf = addrs;
628 	for (cnt = 0; cnt < addrcnt; cnt++) {
629 		/* If the bind address list is empty or if there is only one
630 		 * bind address, there is nothing more to be removed (we need
631 		 * at least one address here).
632 		 */
633 		if (list_empty(&bp->address_list) ||
634 		    (sctp_list_single_entry(&bp->address_list))) {
635 			retval = -EBUSY;
636 			goto err_bindx_rem;
637 		}
638 
639 		sa_addr = (union sctp_addr *)addr_buf;
640 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
641 		if (!af) {
642 			retval = -EINVAL;
643 			goto err_bindx_rem;
644 		}
645 
646 		if (!af->addr_valid(sa_addr, sp, NULL)) {
647 			retval = -EADDRNOTAVAIL;
648 			goto err_bindx_rem;
649 		}
650 
651 		if (sa_addr->v4.sin_port != htons(bp->port)) {
652 			retval = -EINVAL;
653 			goto err_bindx_rem;
654 		}
655 
656 		/* FIXME - There is probably a need to check if sk->sk_saddr and
657 		 * sk->sk_rcv_addr are currently set to one of the addresses to
658 		 * be removed. This is something which needs to be looked into
659 		 * when we are fixing the outstanding issues with multi-homing
660 		 * socket routing and failover schemes. Refer to comments in
661 		 * sctp_do_bind(). -daisy
662 		 */
663 		retval = sctp_del_bind_addr(bp, sa_addr, call_rcu);
664 
665 		addr_buf += af->sockaddr_len;
666 err_bindx_rem:
667 		if (retval < 0) {
668 			/* Failed. Add the ones that has been removed back */
669 			if (cnt > 0)
670 				sctp_bindx_add(sk, addrs, cnt);
671 			return retval;
672 		}
673 	}
674 
675 	return retval;
676 }
677 
678 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
679  * the associations that are part of the endpoint indicating that a list of
680  * local addresses are removed from the endpoint.
681  *
682  * If any of the addresses is already in the bind address list of the
683  * association, we do not send the chunk for that association.  But it will not
684  * affect other associations.
685  *
686  * Only sctp_setsockopt_bindx() is supposed to call this function.
687  */
688 static int sctp_send_asconf_del_ip(struct sock		*sk,
689 				   struct sockaddr	*addrs,
690 				   int			addrcnt)
691 {
692 	struct sctp_sock	*sp;
693 	struct sctp_endpoint	*ep;
694 	struct sctp_association	*asoc;
695 	struct sctp_transport	*transport;
696 	struct sctp_bind_addr	*bp;
697 	struct sctp_chunk	*chunk;
698 	union sctp_addr		*laddr;
699 	void			*addr_buf;
700 	struct sctp_af		*af;
701 	struct list_head	*pos, *pos1;
702 	struct sctp_sockaddr_entry *saddr;
703 	int 			i;
704 	int 			retval = 0;
705 
706 	if (!sctp_addip_enable)
707 		return retval;
708 
709 	sp = sctp_sk(sk);
710 	ep = sp->ep;
711 
712 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
713 			  __FUNCTION__, sk, addrs, addrcnt);
714 
715 	list_for_each(pos, &ep->asocs) {
716 		asoc = list_entry(pos, struct sctp_association, asocs);
717 
718 		if (!asoc->peer.asconf_capable)
719 			continue;
720 
721 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
722 			continue;
723 
724 		if (!sctp_state(asoc, ESTABLISHED))
725 			continue;
726 
727 		/* Check if any address in the packed array of addresses is
728 		 * not present in the bind address list of the association.
729 		 * If so, do not send the asconf chunk to its peer, but
730 		 * continue with other associations.
731 		 */
732 		addr_buf = addrs;
733 		for (i = 0; i < addrcnt; i++) {
734 			laddr = (union sctp_addr *)addr_buf;
735 			af = sctp_get_af_specific(laddr->v4.sin_family);
736 			if (!af) {
737 				retval = -EINVAL;
738 				goto out;
739 			}
740 
741 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
742 				break;
743 
744 			addr_buf += af->sockaddr_len;
745 		}
746 		if (i < addrcnt)
747 			continue;
748 
749 		/* Find one address in the association's bind address list
750 		 * that is not in the packed array of addresses. This is to
751 		 * make sure that we do not delete all the addresses in the
752 		 * association.
753 		 */
754 		bp = &asoc->base.bind_addr;
755 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
756 					       addrcnt, sp);
757 		if (!laddr)
758 			continue;
759 
760 		/* We do not need RCU protection throughout this loop
761 		 * because this is done under a socket lock from the
762 		 * setsockopt call.
763 		 */
764 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
765 						   SCTP_PARAM_DEL_IP);
766 		if (!chunk) {
767 			retval = -ENOMEM;
768 			goto out;
769 		}
770 
771 		/* Reset use_as_src flag for the addresses in the bind address
772 		 * list that are to be deleted.
773 		 */
774 		addr_buf = addrs;
775 		for (i = 0; i < addrcnt; i++) {
776 			laddr = (union sctp_addr *)addr_buf;
777 			af = sctp_get_af_specific(laddr->v4.sin_family);
778 			list_for_each_entry(saddr, &bp->address_list, list) {
779 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
780 					saddr->use_as_src = 0;
781 			}
782 			addr_buf += af->sockaddr_len;
783 		}
784 
785 		/* Update the route and saddr entries for all the transports
786 		 * as some of the addresses in the bind address list are
787 		 * about to be deleted and cannot be used as source addresses.
788 		 */
789 		list_for_each(pos1, &asoc->peer.transport_addr_list) {
790 			transport = list_entry(pos1, struct sctp_transport,
791 					       transports);
792 			dst_release(transport->dst);
793 			sctp_transport_route(transport, NULL,
794 					     sctp_sk(asoc->base.sk));
795 		}
796 
797 		retval = sctp_send_asconf(asoc, chunk);
798 	}
799 out:
800 	return retval;
801 }
802 
803 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
804  *
805  * API 8.1
806  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
807  *                int flags);
808  *
809  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
810  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
811  * or IPv6 addresses.
812  *
813  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
814  * Section 3.1.2 for this usage.
815  *
816  * addrs is a pointer to an array of one or more socket addresses. Each
817  * address is contained in its appropriate structure (i.e. struct
818  * sockaddr_in or struct sockaddr_in6) the family of the address type
819  * must be used to distinguish the address length (note that this
820  * representation is termed a "packed array" of addresses). The caller
821  * specifies the number of addresses in the array with addrcnt.
822  *
823  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
824  * -1, and sets errno to the appropriate error code.
825  *
826  * For SCTP, the port given in each socket address must be the same, or
827  * sctp_bindx() will fail, setting errno to EINVAL.
828  *
829  * The flags parameter is formed from the bitwise OR of zero or more of
830  * the following currently defined flags:
831  *
832  * SCTP_BINDX_ADD_ADDR
833  *
834  * SCTP_BINDX_REM_ADDR
835  *
836  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
837  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
838  * addresses from the association. The two flags are mutually exclusive;
839  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
840  * not remove all addresses from an association; sctp_bindx() will
841  * reject such an attempt with EINVAL.
842  *
843  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
844  * additional addresses with an endpoint after calling bind().  Or use
845  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
846  * socket is associated with so that no new association accepted will be
847  * associated with those addresses. If the endpoint supports dynamic
848  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
849  * endpoint to send the appropriate message to the peer to change the
850  * peers address lists.
851  *
852  * Adding and removing addresses from a connected association is
853  * optional functionality. Implementations that do not support this
854  * functionality should return EOPNOTSUPP.
855  *
856  * Basically do nothing but copying the addresses from user to kernel
857  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
858  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
859  * from userspace.
860  *
861  * We don't use copy_from_user() for optimization: we first do the
862  * sanity checks (buffer size -fast- and access check-healthy
863  * pointer); if all of those succeed, then we can alloc the memory
864  * (expensive operation) needed to copy the data to kernel. Then we do
865  * the copying without checking the user space area
866  * (__copy_from_user()).
867  *
868  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
869  * it.
870  *
871  * sk        The sk of the socket
872  * addrs     The pointer to the addresses in user land
873  * addrssize Size of the addrs buffer
874  * op        Operation to perform (add or remove, see the flags of
875  *           sctp_bindx)
876  *
877  * Returns 0 if ok, <0 errno code on error.
878  */
879 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
880 				      struct sockaddr __user *addrs,
881 				      int addrs_size, int op)
882 {
883 	struct sockaddr *kaddrs;
884 	int err;
885 	int addrcnt = 0;
886 	int walk_size = 0;
887 	struct sockaddr *sa_addr;
888 	void *addr_buf;
889 	struct sctp_af *af;
890 
891 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
892 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
893 
894 	if (unlikely(addrs_size <= 0))
895 		return -EINVAL;
896 
897 	/* Check the user passed a healthy pointer.  */
898 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
899 		return -EFAULT;
900 
901 	/* Alloc space for the address array in kernel memory.  */
902 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
903 	if (unlikely(!kaddrs))
904 		return -ENOMEM;
905 
906 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
907 		kfree(kaddrs);
908 		return -EFAULT;
909 	}
910 
911 	/* Walk through the addrs buffer and count the number of addresses. */
912 	addr_buf = kaddrs;
913 	while (walk_size < addrs_size) {
914 		sa_addr = (struct sockaddr *)addr_buf;
915 		af = sctp_get_af_specific(sa_addr->sa_family);
916 
917 		/* If the address family is not supported or if this address
918 		 * causes the address buffer to overflow return EINVAL.
919 		 */
920 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
921 			kfree(kaddrs);
922 			return -EINVAL;
923 		}
924 		addrcnt++;
925 		addr_buf += af->sockaddr_len;
926 		walk_size += af->sockaddr_len;
927 	}
928 
929 	/* Do the work. */
930 	switch (op) {
931 	case SCTP_BINDX_ADD_ADDR:
932 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
933 		if (err)
934 			goto out;
935 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
936 		break;
937 
938 	case SCTP_BINDX_REM_ADDR:
939 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
940 		if (err)
941 			goto out;
942 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
943 		break;
944 
945 	default:
946 		err = -EINVAL;
947 		break;
948 	}
949 
950 out:
951 	kfree(kaddrs);
952 
953 	return err;
954 }
955 
956 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
957  *
958  * Common routine for handling connect() and sctp_connectx().
959  * Connect will come in with just a single address.
960  */
961 static int __sctp_connect(struct sock* sk,
962 			  struct sockaddr *kaddrs,
963 			  int addrs_size)
964 {
965 	struct sctp_sock *sp;
966 	struct sctp_endpoint *ep;
967 	struct sctp_association *asoc = NULL;
968 	struct sctp_association *asoc2;
969 	struct sctp_transport *transport;
970 	union sctp_addr to;
971 	struct sctp_af *af;
972 	sctp_scope_t scope;
973 	long timeo;
974 	int err = 0;
975 	int addrcnt = 0;
976 	int walk_size = 0;
977 	union sctp_addr *sa_addr = NULL;
978 	void *addr_buf;
979 	unsigned short port;
980 	unsigned int f_flags = 0;
981 
982 	sp = sctp_sk(sk);
983 	ep = sp->ep;
984 
985 	/* connect() cannot be done on a socket that is already in ESTABLISHED
986 	 * state - UDP-style peeled off socket or a TCP-style socket that
987 	 * is already connected.
988 	 * It cannot be done even on a TCP-style listening socket.
989 	 */
990 	if (sctp_sstate(sk, ESTABLISHED) ||
991 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
992 		err = -EISCONN;
993 		goto out_free;
994 	}
995 
996 	/* Walk through the addrs buffer and count the number of addresses. */
997 	addr_buf = kaddrs;
998 	while (walk_size < addrs_size) {
999 		sa_addr = (union sctp_addr *)addr_buf;
1000 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1001 		port = ntohs(sa_addr->v4.sin_port);
1002 
1003 		/* If the address family is not supported or if this address
1004 		 * causes the address buffer to overflow return EINVAL.
1005 		 */
1006 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1007 			err = -EINVAL;
1008 			goto out_free;
1009 		}
1010 
1011 		/* Save current address so we can work with it */
1012 		memcpy(&to, sa_addr, af->sockaddr_len);
1013 
1014 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1015 		if (err)
1016 			goto out_free;
1017 
1018 		/* Make sure the destination port is correctly set
1019 		 * in all addresses.
1020 		 */
1021 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1022 			goto out_free;
1023 
1024 
1025 		/* Check if there already is a matching association on the
1026 		 * endpoint (other than the one created here).
1027 		 */
1028 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1029 		if (asoc2 && asoc2 != asoc) {
1030 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1031 				err = -EISCONN;
1032 			else
1033 				err = -EALREADY;
1034 			goto out_free;
1035 		}
1036 
1037 		/* If we could not find a matching association on the endpoint,
1038 		 * make sure that there is no peeled-off association matching
1039 		 * the peer address even on another socket.
1040 		 */
1041 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1042 			err = -EADDRNOTAVAIL;
1043 			goto out_free;
1044 		}
1045 
1046 		if (!asoc) {
1047 			/* If a bind() or sctp_bindx() is not called prior to
1048 			 * an sctp_connectx() call, the system picks an
1049 			 * ephemeral port and will choose an address set
1050 			 * equivalent to binding with a wildcard address.
1051 			 */
1052 			if (!ep->base.bind_addr.port) {
1053 				if (sctp_autobind(sk)) {
1054 					err = -EAGAIN;
1055 					goto out_free;
1056 				}
1057 			} else {
1058 				/*
1059 				 * If an unprivileged user inherits a 1-many
1060 				 * style socket with open associations on a
1061 				 * privileged port, it MAY be permitted to
1062 				 * accept new associations, but it SHOULD NOT
1063 				 * be permitted to open new associations.
1064 				 */
1065 				if (ep->base.bind_addr.port < PROT_SOCK &&
1066 				    !capable(CAP_NET_BIND_SERVICE)) {
1067 					err = -EACCES;
1068 					goto out_free;
1069 				}
1070 			}
1071 
1072 			scope = sctp_scope(&to);
1073 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1074 			if (!asoc) {
1075 				err = -ENOMEM;
1076 				goto out_free;
1077 			}
1078 		}
1079 
1080 		/* Prime the peer's transport structures.  */
1081 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1082 						SCTP_UNKNOWN);
1083 		if (!transport) {
1084 			err = -ENOMEM;
1085 			goto out_free;
1086 		}
1087 
1088 		addrcnt++;
1089 		addr_buf += af->sockaddr_len;
1090 		walk_size += af->sockaddr_len;
1091 	}
1092 
1093 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1094 	if (err < 0) {
1095 		goto out_free;
1096 	}
1097 
1098 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1099 	if (err < 0) {
1100 		goto out_free;
1101 	}
1102 
1103 	/* Initialize sk's dport and daddr for getpeername() */
1104 	inet_sk(sk)->dport = htons(asoc->peer.port);
1105 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1106 	af->to_sk_daddr(sa_addr, sk);
1107 	sk->sk_err = 0;
1108 
1109 	/* in-kernel sockets don't generally have a file allocated to them
1110 	 * if all they do is call sock_create_kern().
1111 	 */
1112 	if (sk->sk_socket->file)
1113 		f_flags = sk->sk_socket->file->f_flags;
1114 
1115 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1116 
1117 	err = sctp_wait_for_connect(asoc, &timeo);
1118 
1119 	/* Don't free association on exit. */
1120 	asoc = NULL;
1121 
1122 out_free:
1123 
1124 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1125 			  " kaddrs: %p err: %d\n",
1126 			  asoc, kaddrs, err);
1127 	if (asoc)
1128 		sctp_association_free(asoc);
1129 	return err;
1130 }
1131 
1132 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1133  *
1134  * API 8.9
1135  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1136  *
1137  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1138  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1139  * or IPv6 addresses.
1140  *
1141  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1142  * Section 3.1.2 for this usage.
1143  *
1144  * addrs is a pointer to an array of one or more socket addresses. Each
1145  * address is contained in its appropriate structure (i.e. struct
1146  * sockaddr_in or struct sockaddr_in6) the family of the address type
1147  * must be used to distengish the address length (note that this
1148  * representation is termed a "packed array" of addresses). The caller
1149  * specifies the number of addresses in the array with addrcnt.
1150  *
1151  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1152  * -1, and sets errno to the appropriate error code.
1153  *
1154  * For SCTP, the port given in each socket address must be the same, or
1155  * sctp_connectx() will fail, setting errno to EINVAL.
1156  *
1157  * An application can use sctp_connectx to initiate an association with
1158  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1159  * allows a caller to specify multiple addresses at which a peer can be
1160  * reached.  The way the SCTP stack uses the list of addresses to set up
1161  * the association is implementation dependant.  This function only
1162  * specifies that the stack will try to make use of all the addresses in
1163  * the list when needed.
1164  *
1165  * Note that the list of addresses passed in is only used for setting up
1166  * the association.  It does not necessarily equal the set of addresses
1167  * the peer uses for the resulting association.  If the caller wants to
1168  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1169  * retrieve them after the association has been set up.
1170  *
1171  * Basically do nothing but copying the addresses from user to kernel
1172  * land and invoking either sctp_connectx(). This is used for tunneling
1173  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1174  *
1175  * We don't use copy_from_user() for optimization: we first do the
1176  * sanity checks (buffer size -fast- and access check-healthy
1177  * pointer); if all of those succeed, then we can alloc the memory
1178  * (expensive operation) needed to copy the data to kernel. Then we do
1179  * the copying without checking the user space area
1180  * (__copy_from_user()).
1181  *
1182  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1183  * it.
1184  *
1185  * sk        The sk of the socket
1186  * addrs     The pointer to the addresses in user land
1187  * addrssize Size of the addrs buffer
1188  *
1189  * Returns 0 if ok, <0 errno code on error.
1190  */
1191 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1192 				      struct sockaddr __user *addrs,
1193 				      int addrs_size)
1194 {
1195 	int err = 0;
1196 	struct sockaddr *kaddrs;
1197 
1198 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1199 			  __FUNCTION__, sk, addrs, addrs_size);
1200 
1201 	if (unlikely(addrs_size <= 0))
1202 		return -EINVAL;
1203 
1204 	/* Check the user passed a healthy pointer.  */
1205 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1206 		return -EFAULT;
1207 
1208 	/* Alloc space for the address array in kernel memory.  */
1209 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1210 	if (unlikely(!kaddrs))
1211 		return -ENOMEM;
1212 
1213 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1214 		err = -EFAULT;
1215 	} else {
1216 		err = __sctp_connect(sk, kaddrs, addrs_size);
1217 	}
1218 
1219 	kfree(kaddrs);
1220 	return err;
1221 }
1222 
1223 /* API 3.1.4 close() - UDP Style Syntax
1224  * Applications use close() to perform graceful shutdown (as described in
1225  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1226  * by a UDP-style socket.
1227  *
1228  * The syntax is
1229  *
1230  *   ret = close(int sd);
1231  *
1232  *   sd      - the socket descriptor of the associations to be closed.
1233  *
1234  * To gracefully shutdown a specific association represented by the
1235  * UDP-style socket, an application should use the sendmsg() call,
1236  * passing no user data, but including the appropriate flag in the
1237  * ancillary data (see Section xxxx).
1238  *
1239  * If sd in the close() call is a branched-off socket representing only
1240  * one association, the shutdown is performed on that association only.
1241  *
1242  * 4.1.6 close() - TCP Style Syntax
1243  *
1244  * Applications use close() to gracefully close down an association.
1245  *
1246  * The syntax is:
1247  *
1248  *    int close(int sd);
1249  *
1250  *      sd      - the socket descriptor of the association to be closed.
1251  *
1252  * After an application calls close() on a socket descriptor, no further
1253  * socket operations will succeed on that descriptor.
1254  *
1255  * API 7.1.4 SO_LINGER
1256  *
1257  * An application using the TCP-style socket can use this option to
1258  * perform the SCTP ABORT primitive.  The linger option structure is:
1259  *
1260  *  struct  linger {
1261  *     int     l_onoff;                // option on/off
1262  *     int     l_linger;               // linger time
1263  * };
1264  *
1265  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1266  * to 0, calling close() is the same as the ABORT primitive.  If the
1267  * value is set to a negative value, the setsockopt() call will return
1268  * an error.  If the value is set to a positive value linger_time, the
1269  * close() can be blocked for at most linger_time ms.  If the graceful
1270  * shutdown phase does not finish during this period, close() will
1271  * return but the graceful shutdown phase continues in the system.
1272  */
1273 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1274 {
1275 	struct sctp_endpoint *ep;
1276 	struct sctp_association *asoc;
1277 	struct list_head *pos, *temp;
1278 
1279 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1280 
1281 	sctp_lock_sock(sk);
1282 	sk->sk_shutdown = SHUTDOWN_MASK;
1283 
1284 	ep = sctp_sk(sk)->ep;
1285 
1286 	/* Walk all associations on an endpoint.  */
1287 	list_for_each_safe(pos, temp, &ep->asocs) {
1288 		asoc = list_entry(pos, struct sctp_association, asocs);
1289 
1290 		if (sctp_style(sk, TCP)) {
1291 			/* A closed association can still be in the list if
1292 			 * it belongs to a TCP-style listening socket that is
1293 			 * not yet accepted. If so, free it. If not, send an
1294 			 * ABORT or SHUTDOWN based on the linger options.
1295 			 */
1296 			if (sctp_state(asoc, CLOSED)) {
1297 				sctp_unhash_established(asoc);
1298 				sctp_association_free(asoc);
1299 				continue;
1300 			}
1301 		}
1302 
1303 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1304 			struct sctp_chunk *chunk;
1305 
1306 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1307 			if (chunk)
1308 				sctp_primitive_ABORT(asoc, chunk);
1309 		} else
1310 			sctp_primitive_SHUTDOWN(asoc, NULL);
1311 	}
1312 
1313 	/* Clean up any skbs sitting on the receive queue.  */
1314 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1315 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1316 
1317 	/* On a TCP-style socket, block for at most linger_time if set. */
1318 	if (sctp_style(sk, TCP) && timeout)
1319 		sctp_wait_for_close(sk, timeout);
1320 
1321 	/* This will run the backlog queue.  */
1322 	sctp_release_sock(sk);
1323 
1324 	/* Supposedly, no process has access to the socket, but
1325 	 * the net layers still may.
1326 	 */
1327 	sctp_local_bh_disable();
1328 	sctp_bh_lock_sock(sk);
1329 
1330 	/* Hold the sock, since sk_common_release() will put sock_put()
1331 	 * and we have just a little more cleanup.
1332 	 */
1333 	sock_hold(sk);
1334 	sk_common_release(sk);
1335 
1336 	sctp_bh_unlock_sock(sk);
1337 	sctp_local_bh_enable();
1338 
1339 	sock_put(sk);
1340 
1341 	SCTP_DBG_OBJCNT_DEC(sock);
1342 }
1343 
1344 /* Handle EPIPE error. */
1345 static int sctp_error(struct sock *sk, int flags, int err)
1346 {
1347 	if (err == -EPIPE)
1348 		err = sock_error(sk) ? : -EPIPE;
1349 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1350 		send_sig(SIGPIPE, current, 0);
1351 	return err;
1352 }
1353 
1354 /* API 3.1.3 sendmsg() - UDP Style Syntax
1355  *
1356  * An application uses sendmsg() and recvmsg() calls to transmit data to
1357  * and receive data from its peer.
1358  *
1359  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1360  *                  int flags);
1361  *
1362  *  socket  - the socket descriptor of the endpoint.
1363  *  message - pointer to the msghdr structure which contains a single
1364  *            user message and possibly some ancillary data.
1365  *
1366  *            See Section 5 for complete description of the data
1367  *            structures.
1368  *
1369  *  flags   - flags sent or received with the user message, see Section
1370  *            5 for complete description of the flags.
1371  *
1372  * Note:  This function could use a rewrite especially when explicit
1373  * connect support comes in.
1374  */
1375 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1376 
1377 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1378 
1379 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1380 			     struct msghdr *msg, size_t msg_len)
1381 {
1382 	struct sctp_sock *sp;
1383 	struct sctp_endpoint *ep;
1384 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1385 	struct sctp_transport *transport, *chunk_tp;
1386 	struct sctp_chunk *chunk;
1387 	union sctp_addr to;
1388 	struct sockaddr *msg_name = NULL;
1389 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1390 	struct sctp_sndrcvinfo *sinfo;
1391 	struct sctp_initmsg *sinit;
1392 	sctp_assoc_t associd = 0;
1393 	sctp_cmsgs_t cmsgs = { NULL };
1394 	int err;
1395 	sctp_scope_t scope;
1396 	long timeo;
1397 	__u16 sinfo_flags = 0;
1398 	struct sctp_datamsg *datamsg;
1399 	struct list_head *pos;
1400 	int msg_flags = msg->msg_flags;
1401 
1402 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1403 			  sk, msg, msg_len);
1404 
1405 	err = 0;
1406 	sp = sctp_sk(sk);
1407 	ep = sp->ep;
1408 
1409 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1410 
1411 	/* We cannot send a message over a TCP-style listening socket. */
1412 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1413 		err = -EPIPE;
1414 		goto out_nounlock;
1415 	}
1416 
1417 	/* Parse out the SCTP CMSGs.  */
1418 	err = sctp_msghdr_parse(msg, &cmsgs);
1419 
1420 	if (err) {
1421 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1422 		goto out_nounlock;
1423 	}
1424 
1425 	/* Fetch the destination address for this packet.  This
1426 	 * address only selects the association--it is not necessarily
1427 	 * the address we will send to.
1428 	 * For a peeled-off socket, msg_name is ignored.
1429 	 */
1430 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1431 		int msg_namelen = msg->msg_namelen;
1432 
1433 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1434 				       msg_namelen);
1435 		if (err)
1436 			return err;
1437 
1438 		if (msg_namelen > sizeof(to))
1439 			msg_namelen = sizeof(to);
1440 		memcpy(&to, msg->msg_name, msg_namelen);
1441 		msg_name = msg->msg_name;
1442 	}
1443 
1444 	sinfo = cmsgs.info;
1445 	sinit = cmsgs.init;
1446 
1447 	/* Did the user specify SNDRCVINFO?  */
1448 	if (sinfo) {
1449 		sinfo_flags = sinfo->sinfo_flags;
1450 		associd = sinfo->sinfo_assoc_id;
1451 	}
1452 
1453 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1454 			  msg_len, sinfo_flags);
1455 
1456 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1457 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1458 		err = -EINVAL;
1459 		goto out_nounlock;
1460 	}
1461 
1462 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1463 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1464 	 * If SCTP_ABORT is set, the message length could be non zero with
1465 	 * the msg_iov set to the user abort reason.
1466 	 */
1467 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1468 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1469 		err = -EINVAL;
1470 		goto out_nounlock;
1471 	}
1472 
1473 	/* If SCTP_ADDR_OVER is set, there must be an address
1474 	 * specified in msg_name.
1475 	 */
1476 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1477 		err = -EINVAL;
1478 		goto out_nounlock;
1479 	}
1480 
1481 	transport = NULL;
1482 
1483 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1484 
1485 	sctp_lock_sock(sk);
1486 
1487 	/* If a msg_name has been specified, assume this is to be used.  */
1488 	if (msg_name) {
1489 		/* Look for a matching association on the endpoint. */
1490 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1491 		if (!asoc) {
1492 			/* If we could not find a matching association on the
1493 			 * endpoint, make sure that it is not a TCP-style
1494 			 * socket that already has an association or there is
1495 			 * no peeled-off association on another socket.
1496 			 */
1497 			if ((sctp_style(sk, TCP) &&
1498 			     sctp_sstate(sk, ESTABLISHED)) ||
1499 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1500 				err = -EADDRNOTAVAIL;
1501 				goto out_unlock;
1502 			}
1503 		}
1504 	} else {
1505 		asoc = sctp_id2assoc(sk, associd);
1506 		if (!asoc) {
1507 			err = -EPIPE;
1508 			goto out_unlock;
1509 		}
1510 	}
1511 
1512 	if (asoc) {
1513 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1514 
1515 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1516 		 * socket that has an association in CLOSED state. This can
1517 		 * happen when an accepted socket has an association that is
1518 		 * already CLOSED.
1519 		 */
1520 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1521 			err = -EPIPE;
1522 			goto out_unlock;
1523 		}
1524 
1525 		if (sinfo_flags & SCTP_EOF) {
1526 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1527 					  asoc);
1528 			sctp_primitive_SHUTDOWN(asoc, NULL);
1529 			err = 0;
1530 			goto out_unlock;
1531 		}
1532 		if (sinfo_flags & SCTP_ABORT) {
1533 
1534 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1535 			if (!chunk) {
1536 				err = -ENOMEM;
1537 				goto out_unlock;
1538 			}
1539 
1540 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1541 			sctp_primitive_ABORT(asoc, chunk);
1542 			err = 0;
1543 			goto out_unlock;
1544 		}
1545 	}
1546 
1547 	/* Do we need to create the association?  */
1548 	if (!asoc) {
1549 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1550 
1551 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1552 			err = -EINVAL;
1553 			goto out_unlock;
1554 		}
1555 
1556 		/* Check for invalid stream against the stream counts,
1557 		 * either the default or the user specified stream counts.
1558 		 */
1559 		if (sinfo) {
1560 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1561 				/* Check against the defaults. */
1562 				if (sinfo->sinfo_stream >=
1563 				    sp->initmsg.sinit_num_ostreams) {
1564 					err = -EINVAL;
1565 					goto out_unlock;
1566 				}
1567 			} else {
1568 				/* Check against the requested.  */
1569 				if (sinfo->sinfo_stream >=
1570 				    sinit->sinit_num_ostreams) {
1571 					err = -EINVAL;
1572 					goto out_unlock;
1573 				}
1574 			}
1575 		}
1576 
1577 		/*
1578 		 * API 3.1.2 bind() - UDP Style Syntax
1579 		 * If a bind() or sctp_bindx() is not called prior to a
1580 		 * sendmsg() call that initiates a new association, the
1581 		 * system picks an ephemeral port and will choose an address
1582 		 * set equivalent to binding with a wildcard address.
1583 		 */
1584 		if (!ep->base.bind_addr.port) {
1585 			if (sctp_autobind(sk)) {
1586 				err = -EAGAIN;
1587 				goto out_unlock;
1588 			}
1589 		} else {
1590 			/*
1591 			 * If an unprivileged user inherits a one-to-many
1592 			 * style socket with open associations on a privileged
1593 			 * port, it MAY be permitted to accept new associations,
1594 			 * but it SHOULD NOT be permitted to open new
1595 			 * associations.
1596 			 */
1597 			if (ep->base.bind_addr.port < PROT_SOCK &&
1598 			    !capable(CAP_NET_BIND_SERVICE)) {
1599 				err = -EACCES;
1600 				goto out_unlock;
1601 			}
1602 		}
1603 
1604 		scope = sctp_scope(&to);
1605 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1606 		if (!new_asoc) {
1607 			err = -ENOMEM;
1608 			goto out_unlock;
1609 		}
1610 		asoc = new_asoc;
1611 
1612 		/* If the SCTP_INIT ancillary data is specified, set all
1613 		 * the association init values accordingly.
1614 		 */
1615 		if (sinit) {
1616 			if (sinit->sinit_num_ostreams) {
1617 				asoc->c.sinit_num_ostreams =
1618 					sinit->sinit_num_ostreams;
1619 			}
1620 			if (sinit->sinit_max_instreams) {
1621 				asoc->c.sinit_max_instreams =
1622 					sinit->sinit_max_instreams;
1623 			}
1624 			if (sinit->sinit_max_attempts) {
1625 				asoc->max_init_attempts
1626 					= sinit->sinit_max_attempts;
1627 			}
1628 			if (sinit->sinit_max_init_timeo) {
1629 				asoc->max_init_timeo =
1630 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1631 			}
1632 		}
1633 
1634 		/* Prime the peer's transport structures.  */
1635 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1636 		if (!transport) {
1637 			err = -ENOMEM;
1638 			goto out_free;
1639 		}
1640 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1641 		if (err < 0) {
1642 			err = -ENOMEM;
1643 			goto out_free;
1644 		}
1645 	}
1646 
1647 	/* ASSERT: we have a valid association at this point.  */
1648 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1649 
1650 	if (!sinfo) {
1651 		/* If the user didn't specify SNDRCVINFO, make up one with
1652 		 * some defaults.
1653 		 */
1654 		default_sinfo.sinfo_stream = asoc->default_stream;
1655 		default_sinfo.sinfo_flags = asoc->default_flags;
1656 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1657 		default_sinfo.sinfo_context = asoc->default_context;
1658 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1659 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1660 		sinfo = &default_sinfo;
1661 	}
1662 
1663 	/* API 7.1.7, the sndbuf size per association bounds the
1664 	 * maximum size of data that can be sent in a single send call.
1665 	 */
1666 	if (msg_len > sk->sk_sndbuf) {
1667 		err = -EMSGSIZE;
1668 		goto out_free;
1669 	}
1670 
1671 	if (asoc->pmtu_pending)
1672 		sctp_assoc_pending_pmtu(asoc);
1673 
1674 	/* If fragmentation is disabled and the message length exceeds the
1675 	 * association fragmentation point, return EMSGSIZE.  The I-D
1676 	 * does not specify what this error is, but this looks like
1677 	 * a great fit.
1678 	 */
1679 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1680 		err = -EMSGSIZE;
1681 		goto out_free;
1682 	}
1683 
1684 	if (sinfo) {
1685 		/* Check for invalid stream. */
1686 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1687 			err = -EINVAL;
1688 			goto out_free;
1689 		}
1690 	}
1691 
1692 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1693 	if (!sctp_wspace(asoc)) {
1694 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1695 		if (err)
1696 			goto out_free;
1697 	}
1698 
1699 	/* If an address is passed with the sendto/sendmsg call, it is used
1700 	 * to override the primary destination address in the TCP model, or
1701 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1702 	 */
1703 	if ((sctp_style(sk, TCP) && msg_name) ||
1704 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1705 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1706 		if (!chunk_tp) {
1707 			err = -EINVAL;
1708 			goto out_free;
1709 		}
1710 	} else
1711 		chunk_tp = NULL;
1712 
1713 	/* Auto-connect, if we aren't connected already. */
1714 	if (sctp_state(asoc, CLOSED)) {
1715 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1716 		if (err < 0)
1717 			goto out_free;
1718 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1719 	}
1720 
1721 	/* Break the message into multiple chunks of maximum size. */
1722 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1723 	if (!datamsg) {
1724 		err = -ENOMEM;
1725 		goto out_free;
1726 	}
1727 
1728 	/* Now send the (possibly) fragmented message. */
1729 	list_for_each(pos, &datamsg->chunks) {
1730 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1731 		sctp_datamsg_track(chunk);
1732 
1733 		/* Do accounting for the write space.  */
1734 		sctp_set_owner_w(chunk);
1735 
1736 		chunk->transport = chunk_tp;
1737 
1738 		/* Send it to the lower layers.  Note:  all chunks
1739 		 * must either fail or succeed.   The lower layer
1740 		 * works that way today.  Keep it that way or this
1741 		 * breaks.
1742 		 */
1743 		err = sctp_primitive_SEND(asoc, chunk);
1744 		/* Did the lower layer accept the chunk? */
1745 		if (err)
1746 			sctp_chunk_free(chunk);
1747 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1748 	}
1749 
1750 	sctp_datamsg_free(datamsg);
1751 	if (err)
1752 		goto out_free;
1753 	else
1754 		err = msg_len;
1755 
1756 	/* If we are already past ASSOCIATE, the lower
1757 	 * layers are responsible for association cleanup.
1758 	 */
1759 	goto out_unlock;
1760 
1761 out_free:
1762 	if (new_asoc)
1763 		sctp_association_free(asoc);
1764 out_unlock:
1765 	sctp_release_sock(sk);
1766 
1767 out_nounlock:
1768 	return sctp_error(sk, msg_flags, err);
1769 
1770 #if 0
1771 do_sock_err:
1772 	if (msg_len)
1773 		err = msg_len;
1774 	else
1775 		err = sock_error(sk);
1776 	goto out;
1777 
1778 do_interrupted:
1779 	if (msg_len)
1780 		err = msg_len;
1781 	goto out;
1782 #endif /* 0 */
1783 }
1784 
1785 /* This is an extended version of skb_pull() that removes the data from the
1786  * start of a skb even when data is spread across the list of skb's in the
1787  * frag_list. len specifies the total amount of data that needs to be removed.
1788  * when 'len' bytes could be removed from the skb, it returns 0.
1789  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1790  * could not be removed.
1791  */
1792 static int sctp_skb_pull(struct sk_buff *skb, int len)
1793 {
1794 	struct sk_buff *list;
1795 	int skb_len = skb_headlen(skb);
1796 	int rlen;
1797 
1798 	if (len <= skb_len) {
1799 		__skb_pull(skb, len);
1800 		return 0;
1801 	}
1802 	len -= skb_len;
1803 	__skb_pull(skb, skb_len);
1804 
1805 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1806 		rlen = sctp_skb_pull(list, len);
1807 		skb->len -= (len-rlen);
1808 		skb->data_len -= (len-rlen);
1809 
1810 		if (!rlen)
1811 			return 0;
1812 
1813 		len = rlen;
1814 	}
1815 
1816 	return len;
1817 }
1818 
1819 /* API 3.1.3  recvmsg() - UDP Style Syntax
1820  *
1821  *  ssize_t recvmsg(int socket, struct msghdr *message,
1822  *                    int flags);
1823  *
1824  *  socket  - the socket descriptor of the endpoint.
1825  *  message - pointer to the msghdr structure which contains a single
1826  *            user message and possibly some ancillary data.
1827  *
1828  *            See Section 5 for complete description of the data
1829  *            structures.
1830  *
1831  *  flags   - flags sent or received with the user message, see Section
1832  *            5 for complete description of the flags.
1833  */
1834 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1835 
1836 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1837 			     struct msghdr *msg, size_t len, int noblock,
1838 			     int flags, int *addr_len)
1839 {
1840 	struct sctp_ulpevent *event = NULL;
1841 	struct sctp_sock *sp = sctp_sk(sk);
1842 	struct sk_buff *skb;
1843 	int copied;
1844 	int err = 0;
1845 	int skb_len;
1846 
1847 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1848 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1849 			  "len", len, "knoblauch", noblock,
1850 			  "flags", flags, "addr_len", addr_len);
1851 
1852 	sctp_lock_sock(sk);
1853 
1854 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1855 		err = -ENOTCONN;
1856 		goto out;
1857 	}
1858 
1859 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1860 	if (!skb)
1861 		goto out;
1862 
1863 	/* Get the total length of the skb including any skb's in the
1864 	 * frag_list.
1865 	 */
1866 	skb_len = skb->len;
1867 
1868 	copied = skb_len;
1869 	if (copied > len)
1870 		copied = len;
1871 
1872 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1873 
1874 	event = sctp_skb2event(skb);
1875 
1876 	if (err)
1877 		goto out_free;
1878 
1879 	sock_recv_timestamp(msg, sk, skb);
1880 	if (sctp_ulpevent_is_notification(event)) {
1881 		msg->msg_flags |= MSG_NOTIFICATION;
1882 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1883 	} else {
1884 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1885 	}
1886 
1887 	/* Check if we allow SCTP_SNDRCVINFO. */
1888 	if (sp->subscribe.sctp_data_io_event)
1889 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1890 #if 0
1891 	/* FIXME: we should be calling IP/IPv6 layers.  */
1892 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1893 		ip_cmsg_recv(msg, skb);
1894 #endif
1895 
1896 	err = copied;
1897 
1898 	/* If skb's length exceeds the user's buffer, update the skb and
1899 	 * push it back to the receive_queue so that the next call to
1900 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1901 	 */
1902 	if (skb_len > copied) {
1903 		msg->msg_flags &= ~MSG_EOR;
1904 		if (flags & MSG_PEEK)
1905 			goto out_free;
1906 		sctp_skb_pull(skb, copied);
1907 		skb_queue_head(&sk->sk_receive_queue, skb);
1908 
1909 		/* When only partial message is copied to the user, increase
1910 		 * rwnd by that amount. If all the data in the skb is read,
1911 		 * rwnd is updated when the event is freed.
1912 		 */
1913 		sctp_assoc_rwnd_increase(event->asoc, copied);
1914 		goto out;
1915 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1916 		   (event->msg_flags & MSG_EOR))
1917 		msg->msg_flags |= MSG_EOR;
1918 	else
1919 		msg->msg_flags &= ~MSG_EOR;
1920 
1921 out_free:
1922 	if (flags & MSG_PEEK) {
1923 		/* Release the skb reference acquired after peeking the skb in
1924 		 * sctp_skb_recv_datagram().
1925 		 */
1926 		kfree_skb(skb);
1927 	} else {
1928 		/* Free the event which includes releasing the reference to
1929 		 * the owner of the skb, freeing the skb and updating the
1930 		 * rwnd.
1931 		 */
1932 		sctp_ulpevent_free(event);
1933 	}
1934 out:
1935 	sctp_release_sock(sk);
1936 	return err;
1937 }
1938 
1939 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1940  *
1941  * This option is a on/off flag.  If enabled no SCTP message
1942  * fragmentation will be performed.  Instead if a message being sent
1943  * exceeds the current PMTU size, the message will NOT be sent and
1944  * instead a error will be indicated to the user.
1945  */
1946 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1947 					    char __user *optval, int optlen)
1948 {
1949 	int val;
1950 
1951 	if (optlen < sizeof(int))
1952 		return -EINVAL;
1953 
1954 	if (get_user(val, (int __user *)optval))
1955 		return -EFAULT;
1956 
1957 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1958 
1959 	return 0;
1960 }
1961 
1962 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1963 					int optlen)
1964 {
1965 	if (optlen != sizeof(struct sctp_event_subscribe))
1966 		return -EINVAL;
1967 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1968 		return -EFAULT;
1969 	return 0;
1970 }
1971 
1972 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1973  *
1974  * This socket option is applicable to the UDP-style socket only.  When
1975  * set it will cause associations that are idle for more than the
1976  * specified number of seconds to automatically close.  An association
1977  * being idle is defined an association that has NOT sent or received
1978  * user data.  The special value of '0' indicates that no automatic
1979  * close of any associations should be performed.  The option expects an
1980  * integer defining the number of seconds of idle time before an
1981  * association is closed.
1982  */
1983 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1984 					    int optlen)
1985 {
1986 	struct sctp_sock *sp = sctp_sk(sk);
1987 
1988 	/* Applicable to UDP-style socket only */
1989 	if (sctp_style(sk, TCP))
1990 		return -EOPNOTSUPP;
1991 	if (optlen != sizeof(int))
1992 		return -EINVAL;
1993 	if (copy_from_user(&sp->autoclose, optval, optlen))
1994 		return -EFAULT;
1995 
1996 	return 0;
1997 }
1998 
1999 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2000  *
2001  * Applications can enable or disable heartbeats for any peer address of
2002  * an association, modify an address's heartbeat interval, force a
2003  * heartbeat to be sent immediately, and adjust the address's maximum
2004  * number of retransmissions sent before an address is considered
2005  * unreachable.  The following structure is used to access and modify an
2006  * address's parameters:
2007  *
2008  *  struct sctp_paddrparams {
2009  *     sctp_assoc_t            spp_assoc_id;
2010  *     struct sockaddr_storage spp_address;
2011  *     uint32_t                spp_hbinterval;
2012  *     uint16_t                spp_pathmaxrxt;
2013  *     uint32_t                spp_pathmtu;
2014  *     uint32_t                spp_sackdelay;
2015  *     uint32_t                spp_flags;
2016  * };
2017  *
2018  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2019  *                     application, and identifies the association for
2020  *                     this query.
2021  *   spp_address     - This specifies which address is of interest.
2022  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2023  *                     in milliseconds.  If a  value of zero
2024  *                     is present in this field then no changes are to
2025  *                     be made to this parameter.
2026  *   spp_pathmaxrxt  - This contains the maximum number of
2027  *                     retransmissions before this address shall be
2028  *                     considered unreachable. If a  value of zero
2029  *                     is present in this field then no changes are to
2030  *                     be made to this parameter.
2031  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2032  *                     specified here will be the "fixed" path mtu.
2033  *                     Note that if the spp_address field is empty
2034  *                     then all associations on this address will
2035  *                     have this fixed path mtu set upon them.
2036  *
2037  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2038  *                     the number of milliseconds that sacks will be delayed
2039  *                     for. This value will apply to all addresses of an
2040  *                     association if the spp_address field is empty. Note
2041  *                     also, that if delayed sack is enabled and this
2042  *                     value is set to 0, no change is made to the last
2043  *                     recorded delayed sack timer value.
2044  *
2045  *   spp_flags       - These flags are used to control various features
2046  *                     on an association. The flag field may contain
2047  *                     zero or more of the following options.
2048  *
2049  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2050  *                     specified address. Note that if the address
2051  *                     field is empty all addresses for the association
2052  *                     have heartbeats enabled upon them.
2053  *
2054  *                     SPP_HB_DISABLE - Disable heartbeats on the
2055  *                     speicifed address. Note that if the address
2056  *                     field is empty all addresses for the association
2057  *                     will have their heartbeats disabled. Note also
2058  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2059  *                     mutually exclusive, only one of these two should
2060  *                     be specified. Enabling both fields will have
2061  *                     undetermined results.
2062  *
2063  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2064  *                     to be made immediately.
2065  *
2066  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2067  *                     heartbeat delayis to be set to the value of 0
2068  *                     milliseconds.
2069  *
2070  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2071  *                     discovery upon the specified address. Note that
2072  *                     if the address feild is empty then all addresses
2073  *                     on the association are effected.
2074  *
2075  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2076  *                     discovery upon the specified address. Note that
2077  *                     if the address feild is empty then all addresses
2078  *                     on the association are effected. Not also that
2079  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2080  *                     exclusive. Enabling both will have undetermined
2081  *                     results.
2082  *
2083  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2084  *                     on delayed sack. The time specified in spp_sackdelay
2085  *                     is used to specify the sack delay for this address. Note
2086  *                     that if spp_address is empty then all addresses will
2087  *                     enable delayed sack and take on the sack delay
2088  *                     value specified in spp_sackdelay.
2089  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2090  *                     off delayed sack. If the spp_address field is blank then
2091  *                     delayed sack is disabled for the entire association. Note
2092  *                     also that this field is mutually exclusive to
2093  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2094  *                     results.
2095  */
2096 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2097 				       struct sctp_transport   *trans,
2098 				       struct sctp_association *asoc,
2099 				       struct sctp_sock        *sp,
2100 				       int                      hb_change,
2101 				       int                      pmtud_change,
2102 				       int                      sackdelay_change)
2103 {
2104 	int error;
2105 
2106 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2107 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2108 		if (error)
2109 			return error;
2110 	}
2111 
2112 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2113 	 * this field is ignored.  Note also that a value of zero indicates
2114 	 * the current setting should be left unchanged.
2115 	 */
2116 	if (params->spp_flags & SPP_HB_ENABLE) {
2117 
2118 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2119 		 * set.  This lets us use 0 value when this flag
2120 		 * is set.
2121 		 */
2122 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2123 			params->spp_hbinterval = 0;
2124 
2125 		if (params->spp_hbinterval ||
2126 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2127 			if (trans) {
2128 				trans->hbinterval =
2129 				    msecs_to_jiffies(params->spp_hbinterval);
2130 			} else if (asoc) {
2131 				asoc->hbinterval =
2132 				    msecs_to_jiffies(params->spp_hbinterval);
2133 			} else {
2134 				sp->hbinterval = params->spp_hbinterval;
2135 			}
2136 		}
2137 	}
2138 
2139 	if (hb_change) {
2140 		if (trans) {
2141 			trans->param_flags =
2142 				(trans->param_flags & ~SPP_HB) | hb_change;
2143 		} else if (asoc) {
2144 			asoc->param_flags =
2145 				(asoc->param_flags & ~SPP_HB) | hb_change;
2146 		} else {
2147 			sp->param_flags =
2148 				(sp->param_flags & ~SPP_HB) | hb_change;
2149 		}
2150 	}
2151 
2152 	/* When Path MTU discovery is disabled the value specified here will
2153 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2154 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2155 	 * effect).
2156 	 */
2157 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2158 		if (trans) {
2159 			trans->pathmtu = params->spp_pathmtu;
2160 			sctp_assoc_sync_pmtu(asoc);
2161 		} else if (asoc) {
2162 			asoc->pathmtu = params->spp_pathmtu;
2163 			sctp_frag_point(sp, params->spp_pathmtu);
2164 		} else {
2165 			sp->pathmtu = params->spp_pathmtu;
2166 		}
2167 	}
2168 
2169 	if (pmtud_change) {
2170 		if (trans) {
2171 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2172 				(params->spp_flags & SPP_PMTUD_ENABLE);
2173 			trans->param_flags =
2174 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2175 			if (update) {
2176 				sctp_transport_pmtu(trans);
2177 				sctp_assoc_sync_pmtu(asoc);
2178 			}
2179 		} else if (asoc) {
2180 			asoc->param_flags =
2181 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2182 		} else {
2183 			sp->param_flags =
2184 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2185 		}
2186 	}
2187 
2188 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2189 	 * value of this field is ignored.  Note also that a value of zero
2190 	 * indicates the current setting should be left unchanged.
2191 	 */
2192 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2193 		if (trans) {
2194 			trans->sackdelay =
2195 				msecs_to_jiffies(params->spp_sackdelay);
2196 		} else if (asoc) {
2197 			asoc->sackdelay =
2198 				msecs_to_jiffies(params->spp_sackdelay);
2199 		} else {
2200 			sp->sackdelay = params->spp_sackdelay;
2201 		}
2202 	}
2203 
2204 	if (sackdelay_change) {
2205 		if (trans) {
2206 			trans->param_flags =
2207 				(trans->param_flags & ~SPP_SACKDELAY) |
2208 				sackdelay_change;
2209 		} else if (asoc) {
2210 			asoc->param_flags =
2211 				(asoc->param_flags & ~SPP_SACKDELAY) |
2212 				sackdelay_change;
2213 		} else {
2214 			sp->param_flags =
2215 				(sp->param_flags & ~SPP_SACKDELAY) |
2216 				sackdelay_change;
2217 		}
2218 	}
2219 
2220 	/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2221 	 * of this field is ignored.  Note also that a value of zero
2222 	 * indicates the current setting should be left unchanged.
2223 	 */
2224 	if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2225 		if (trans) {
2226 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2227 		} else if (asoc) {
2228 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2229 		} else {
2230 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2231 		}
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2238 					    char __user *optval, int optlen)
2239 {
2240 	struct sctp_paddrparams  params;
2241 	struct sctp_transport   *trans = NULL;
2242 	struct sctp_association *asoc = NULL;
2243 	struct sctp_sock        *sp = sctp_sk(sk);
2244 	int error;
2245 	int hb_change, pmtud_change, sackdelay_change;
2246 
2247 	if (optlen != sizeof(struct sctp_paddrparams))
2248 		return - EINVAL;
2249 
2250 	if (copy_from_user(&params, optval, optlen))
2251 		return -EFAULT;
2252 
2253 	/* Validate flags and value parameters. */
2254 	hb_change        = params.spp_flags & SPP_HB;
2255 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2256 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2257 
2258 	if (hb_change        == SPP_HB ||
2259 	    pmtud_change     == SPP_PMTUD ||
2260 	    sackdelay_change == SPP_SACKDELAY ||
2261 	    params.spp_sackdelay > 500 ||
2262 	    (params.spp_pathmtu
2263 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2264 		return -EINVAL;
2265 
2266 	/* If an address other than INADDR_ANY is specified, and
2267 	 * no transport is found, then the request is invalid.
2268 	 */
2269 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2270 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2271 					       params.spp_assoc_id);
2272 		if (!trans)
2273 			return -EINVAL;
2274 	}
2275 
2276 	/* Get association, if assoc_id != 0 and the socket is a one
2277 	 * to many style socket, and an association was not found, then
2278 	 * the id was invalid.
2279 	 */
2280 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2281 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2282 		return -EINVAL;
2283 
2284 	/* Heartbeat demand can only be sent on a transport or
2285 	 * association, but not a socket.
2286 	 */
2287 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2288 		return -EINVAL;
2289 
2290 	/* Process parameters. */
2291 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2292 					    hb_change, pmtud_change,
2293 					    sackdelay_change);
2294 
2295 	if (error)
2296 		return error;
2297 
2298 	/* If changes are for association, also apply parameters to each
2299 	 * transport.
2300 	 */
2301 	if (!trans && asoc) {
2302 		struct list_head *pos;
2303 
2304 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2305 			trans = list_entry(pos, struct sctp_transport,
2306 					   transports);
2307 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2308 						    hb_change, pmtud_change,
2309 						    sackdelay_change);
2310 		}
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2317  *
2318  *   This options will get or set the delayed ack timer.  The time is set
2319  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2320  *   endpoints default delayed ack timer value.  If the assoc_id field is
2321  *   non-zero, then the set or get effects the specified association.
2322  *
2323  *   struct sctp_assoc_value {
2324  *       sctp_assoc_t            assoc_id;
2325  *       uint32_t                assoc_value;
2326  *   };
2327  *
2328  *     assoc_id    - This parameter, indicates which association the
2329  *                   user is preforming an action upon. Note that if
2330  *                   this field's value is zero then the endpoints
2331  *                   default value is changed (effecting future
2332  *                   associations only).
2333  *
2334  *     assoc_value - This parameter contains the number of milliseconds
2335  *                   that the user is requesting the delayed ACK timer
2336  *                   be set to. Note that this value is defined in
2337  *                   the standard to be between 200 and 500 milliseconds.
2338  *
2339  *                   Note: a value of zero will leave the value alone,
2340  *                   but disable SACK delay. A non-zero value will also
2341  *                   enable SACK delay.
2342  */
2343 
2344 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2345 					    char __user *optval, int optlen)
2346 {
2347 	struct sctp_assoc_value  params;
2348 	struct sctp_transport   *trans = NULL;
2349 	struct sctp_association *asoc = NULL;
2350 	struct sctp_sock        *sp = sctp_sk(sk);
2351 
2352 	if (optlen != sizeof(struct sctp_assoc_value))
2353 		return - EINVAL;
2354 
2355 	if (copy_from_user(&params, optval, optlen))
2356 		return -EFAULT;
2357 
2358 	/* Validate value parameter. */
2359 	if (params.assoc_value > 500)
2360 		return -EINVAL;
2361 
2362 	/* Get association, if assoc_id != 0 and the socket is a one
2363 	 * to many style socket, and an association was not found, then
2364 	 * the id was invalid.
2365 	 */
2366 	asoc = sctp_id2assoc(sk, params.assoc_id);
2367 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2368 		return -EINVAL;
2369 
2370 	if (params.assoc_value) {
2371 		if (asoc) {
2372 			asoc->sackdelay =
2373 				msecs_to_jiffies(params.assoc_value);
2374 			asoc->param_flags =
2375 				(asoc->param_flags & ~SPP_SACKDELAY) |
2376 				SPP_SACKDELAY_ENABLE;
2377 		} else {
2378 			sp->sackdelay = params.assoc_value;
2379 			sp->param_flags =
2380 				(sp->param_flags & ~SPP_SACKDELAY) |
2381 				SPP_SACKDELAY_ENABLE;
2382 		}
2383 	} else {
2384 		if (asoc) {
2385 			asoc->param_flags =
2386 				(asoc->param_flags & ~SPP_SACKDELAY) |
2387 				SPP_SACKDELAY_DISABLE;
2388 		} else {
2389 			sp->param_flags =
2390 				(sp->param_flags & ~SPP_SACKDELAY) |
2391 				SPP_SACKDELAY_DISABLE;
2392 		}
2393 	}
2394 
2395 	/* If change is for association, also apply to each transport. */
2396 	if (asoc) {
2397 		struct list_head *pos;
2398 
2399 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2400 			trans = list_entry(pos, struct sctp_transport,
2401 					   transports);
2402 			if (params.assoc_value) {
2403 				trans->sackdelay =
2404 					msecs_to_jiffies(params.assoc_value);
2405 				trans->param_flags =
2406 					(trans->param_flags & ~SPP_SACKDELAY) |
2407 					SPP_SACKDELAY_ENABLE;
2408 			} else {
2409 				trans->param_flags =
2410 					(trans->param_flags & ~SPP_SACKDELAY) |
2411 					SPP_SACKDELAY_DISABLE;
2412 			}
2413 		}
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2420  *
2421  * Applications can specify protocol parameters for the default association
2422  * initialization.  The option name argument to setsockopt() and getsockopt()
2423  * is SCTP_INITMSG.
2424  *
2425  * Setting initialization parameters is effective only on an unconnected
2426  * socket (for UDP-style sockets only future associations are effected
2427  * by the change).  With TCP-style sockets, this option is inherited by
2428  * sockets derived from a listener socket.
2429  */
2430 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2431 {
2432 	struct sctp_initmsg sinit;
2433 	struct sctp_sock *sp = sctp_sk(sk);
2434 
2435 	if (optlen != sizeof(struct sctp_initmsg))
2436 		return -EINVAL;
2437 	if (copy_from_user(&sinit, optval, optlen))
2438 		return -EFAULT;
2439 
2440 	if (sinit.sinit_num_ostreams)
2441 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2442 	if (sinit.sinit_max_instreams)
2443 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2444 	if (sinit.sinit_max_attempts)
2445 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2446 	if (sinit.sinit_max_init_timeo)
2447 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2448 
2449 	return 0;
2450 }
2451 
2452 /*
2453  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2454  *
2455  *   Applications that wish to use the sendto() system call may wish to
2456  *   specify a default set of parameters that would normally be supplied
2457  *   through the inclusion of ancillary data.  This socket option allows
2458  *   such an application to set the default sctp_sndrcvinfo structure.
2459  *   The application that wishes to use this socket option simply passes
2460  *   in to this call the sctp_sndrcvinfo structure defined in Section
2461  *   5.2.2) The input parameters accepted by this call include
2462  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2463  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2464  *   to this call if the caller is using the UDP model.
2465  */
2466 static int sctp_setsockopt_default_send_param(struct sock *sk,
2467 						char __user *optval, int optlen)
2468 {
2469 	struct sctp_sndrcvinfo info;
2470 	struct sctp_association *asoc;
2471 	struct sctp_sock *sp = sctp_sk(sk);
2472 
2473 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2474 		return -EINVAL;
2475 	if (copy_from_user(&info, optval, optlen))
2476 		return -EFAULT;
2477 
2478 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2479 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2480 		return -EINVAL;
2481 
2482 	if (asoc) {
2483 		asoc->default_stream = info.sinfo_stream;
2484 		asoc->default_flags = info.sinfo_flags;
2485 		asoc->default_ppid = info.sinfo_ppid;
2486 		asoc->default_context = info.sinfo_context;
2487 		asoc->default_timetolive = info.sinfo_timetolive;
2488 	} else {
2489 		sp->default_stream = info.sinfo_stream;
2490 		sp->default_flags = info.sinfo_flags;
2491 		sp->default_ppid = info.sinfo_ppid;
2492 		sp->default_context = info.sinfo_context;
2493 		sp->default_timetolive = info.sinfo_timetolive;
2494 	}
2495 
2496 	return 0;
2497 }
2498 
2499 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2500  *
2501  * Requests that the local SCTP stack use the enclosed peer address as
2502  * the association primary.  The enclosed address must be one of the
2503  * association peer's addresses.
2504  */
2505 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2506 					int optlen)
2507 {
2508 	struct sctp_prim prim;
2509 	struct sctp_transport *trans;
2510 
2511 	if (optlen != sizeof(struct sctp_prim))
2512 		return -EINVAL;
2513 
2514 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2515 		return -EFAULT;
2516 
2517 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2518 	if (!trans)
2519 		return -EINVAL;
2520 
2521 	sctp_assoc_set_primary(trans->asoc, trans);
2522 
2523 	return 0;
2524 }
2525 
2526 /*
2527  * 7.1.5 SCTP_NODELAY
2528  *
2529  * Turn on/off any Nagle-like algorithm.  This means that packets are
2530  * generally sent as soon as possible and no unnecessary delays are
2531  * introduced, at the cost of more packets in the network.  Expects an
2532  *  integer boolean flag.
2533  */
2534 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2535 					int optlen)
2536 {
2537 	int val;
2538 
2539 	if (optlen < sizeof(int))
2540 		return -EINVAL;
2541 	if (get_user(val, (int __user *)optval))
2542 		return -EFAULT;
2543 
2544 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2545 	return 0;
2546 }
2547 
2548 /*
2549  *
2550  * 7.1.1 SCTP_RTOINFO
2551  *
2552  * The protocol parameters used to initialize and bound retransmission
2553  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2554  * and modify these parameters.
2555  * All parameters are time values, in milliseconds.  A value of 0, when
2556  * modifying the parameters, indicates that the current value should not
2557  * be changed.
2558  *
2559  */
2560 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2561 	struct sctp_rtoinfo rtoinfo;
2562 	struct sctp_association *asoc;
2563 
2564 	if (optlen != sizeof (struct sctp_rtoinfo))
2565 		return -EINVAL;
2566 
2567 	if (copy_from_user(&rtoinfo, optval, optlen))
2568 		return -EFAULT;
2569 
2570 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2571 
2572 	/* Set the values to the specific association */
2573 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2574 		return -EINVAL;
2575 
2576 	if (asoc) {
2577 		if (rtoinfo.srto_initial != 0)
2578 			asoc->rto_initial =
2579 				msecs_to_jiffies(rtoinfo.srto_initial);
2580 		if (rtoinfo.srto_max != 0)
2581 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2582 		if (rtoinfo.srto_min != 0)
2583 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2584 	} else {
2585 		/* If there is no association or the association-id = 0
2586 		 * set the values to the endpoint.
2587 		 */
2588 		struct sctp_sock *sp = sctp_sk(sk);
2589 
2590 		if (rtoinfo.srto_initial != 0)
2591 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2592 		if (rtoinfo.srto_max != 0)
2593 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2594 		if (rtoinfo.srto_min != 0)
2595 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2596 	}
2597 
2598 	return 0;
2599 }
2600 
2601 /*
2602  *
2603  * 7.1.2 SCTP_ASSOCINFO
2604  *
2605  * This option is used to tune the maximum retransmission attempts
2606  * of the association.
2607  * Returns an error if the new association retransmission value is
2608  * greater than the sum of the retransmission value  of the peer.
2609  * See [SCTP] for more information.
2610  *
2611  */
2612 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2613 {
2614 
2615 	struct sctp_assocparams assocparams;
2616 	struct sctp_association *asoc;
2617 
2618 	if (optlen != sizeof(struct sctp_assocparams))
2619 		return -EINVAL;
2620 	if (copy_from_user(&assocparams, optval, optlen))
2621 		return -EFAULT;
2622 
2623 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2624 
2625 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2626 		return -EINVAL;
2627 
2628 	/* Set the values to the specific association */
2629 	if (asoc) {
2630 		if (assocparams.sasoc_asocmaxrxt != 0) {
2631 			__u32 path_sum = 0;
2632 			int   paths = 0;
2633 			struct list_head *pos;
2634 			struct sctp_transport *peer_addr;
2635 
2636 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2637 				peer_addr = list_entry(pos,
2638 						struct sctp_transport,
2639 						transports);
2640 				path_sum += peer_addr->pathmaxrxt;
2641 				paths++;
2642 			}
2643 
2644 			/* Only validate asocmaxrxt if we have more then
2645 			 * one path/transport.  We do this because path
2646 			 * retransmissions are only counted when we have more
2647 			 * then one path.
2648 			 */
2649 			if (paths > 1 &&
2650 			    assocparams.sasoc_asocmaxrxt > path_sum)
2651 				return -EINVAL;
2652 
2653 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2654 		}
2655 
2656 		if (assocparams.sasoc_cookie_life != 0) {
2657 			asoc->cookie_life.tv_sec =
2658 					assocparams.sasoc_cookie_life / 1000;
2659 			asoc->cookie_life.tv_usec =
2660 					(assocparams.sasoc_cookie_life % 1000)
2661 					* 1000;
2662 		}
2663 	} else {
2664 		/* Set the values to the endpoint */
2665 		struct sctp_sock *sp = sctp_sk(sk);
2666 
2667 		if (assocparams.sasoc_asocmaxrxt != 0)
2668 			sp->assocparams.sasoc_asocmaxrxt =
2669 						assocparams.sasoc_asocmaxrxt;
2670 		if (assocparams.sasoc_cookie_life != 0)
2671 			sp->assocparams.sasoc_cookie_life =
2672 						assocparams.sasoc_cookie_life;
2673 	}
2674 	return 0;
2675 }
2676 
2677 /*
2678  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2679  *
2680  * This socket option is a boolean flag which turns on or off mapped V4
2681  * addresses.  If this option is turned on and the socket is type
2682  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2683  * If this option is turned off, then no mapping will be done of V4
2684  * addresses and a user will receive both PF_INET6 and PF_INET type
2685  * addresses on the socket.
2686  */
2687 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2688 {
2689 	int val;
2690 	struct sctp_sock *sp = sctp_sk(sk);
2691 
2692 	if (optlen < sizeof(int))
2693 		return -EINVAL;
2694 	if (get_user(val, (int __user *)optval))
2695 		return -EFAULT;
2696 	if (val)
2697 		sp->v4mapped = 1;
2698 	else
2699 		sp->v4mapped = 0;
2700 
2701 	return 0;
2702 }
2703 
2704 /*
2705  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2706  *
2707  * This socket option specifies the maximum size to put in any outgoing
2708  * SCTP chunk.  If a message is larger than this size it will be
2709  * fragmented by SCTP into the specified size.  Note that the underlying
2710  * SCTP implementation may fragment into smaller sized chunks when the
2711  * PMTU of the underlying association is smaller than the value set by
2712  * the user.
2713  */
2714 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2715 {
2716 	struct sctp_association *asoc;
2717 	struct list_head *pos;
2718 	struct sctp_sock *sp = sctp_sk(sk);
2719 	int val;
2720 
2721 	if (optlen < sizeof(int))
2722 		return -EINVAL;
2723 	if (get_user(val, (int __user *)optval))
2724 		return -EFAULT;
2725 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2726 		return -EINVAL;
2727 	sp->user_frag = val;
2728 
2729 	/* Update the frag_point of the existing associations. */
2730 	list_for_each(pos, &(sp->ep->asocs)) {
2731 		asoc = list_entry(pos, struct sctp_association, asocs);
2732 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2733 	}
2734 
2735 	return 0;
2736 }
2737 
2738 
2739 /*
2740  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2741  *
2742  *   Requests that the peer mark the enclosed address as the association
2743  *   primary. The enclosed address must be one of the association's
2744  *   locally bound addresses. The following structure is used to make a
2745  *   set primary request:
2746  */
2747 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2748 					     int optlen)
2749 {
2750 	struct sctp_sock	*sp;
2751 	struct sctp_endpoint	*ep;
2752 	struct sctp_association	*asoc = NULL;
2753 	struct sctp_setpeerprim	prim;
2754 	struct sctp_chunk	*chunk;
2755 	int 			err;
2756 
2757 	sp = sctp_sk(sk);
2758 	ep = sp->ep;
2759 
2760 	if (!sctp_addip_enable)
2761 		return -EPERM;
2762 
2763 	if (optlen != sizeof(struct sctp_setpeerprim))
2764 		return -EINVAL;
2765 
2766 	if (copy_from_user(&prim, optval, optlen))
2767 		return -EFAULT;
2768 
2769 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2770 	if (!asoc)
2771 		return -EINVAL;
2772 
2773 	if (!asoc->peer.asconf_capable)
2774 		return -EPERM;
2775 
2776 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2777 		return -EPERM;
2778 
2779 	if (!sctp_state(asoc, ESTABLISHED))
2780 		return -ENOTCONN;
2781 
2782 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2783 		return -EADDRNOTAVAIL;
2784 
2785 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2786 	chunk = sctp_make_asconf_set_prim(asoc,
2787 					  (union sctp_addr *)&prim.sspp_addr);
2788 	if (!chunk)
2789 		return -ENOMEM;
2790 
2791 	err = sctp_send_asconf(asoc, chunk);
2792 
2793 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2794 
2795 	return err;
2796 }
2797 
2798 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2799 					  int optlen)
2800 {
2801 	struct sctp_setadaptation adaptation;
2802 
2803 	if (optlen != sizeof(struct sctp_setadaptation))
2804 		return -EINVAL;
2805 	if (copy_from_user(&adaptation, optval, optlen))
2806 		return -EFAULT;
2807 
2808 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2809 
2810 	return 0;
2811 }
2812 
2813 /*
2814  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2815  *
2816  * The context field in the sctp_sndrcvinfo structure is normally only
2817  * used when a failed message is retrieved holding the value that was
2818  * sent down on the actual send call.  This option allows the setting of
2819  * a default context on an association basis that will be received on
2820  * reading messages from the peer.  This is especially helpful in the
2821  * one-2-many model for an application to keep some reference to an
2822  * internal state machine that is processing messages on the
2823  * association.  Note that the setting of this value only effects
2824  * received messages from the peer and does not effect the value that is
2825  * saved with outbound messages.
2826  */
2827 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2828 				   int optlen)
2829 {
2830 	struct sctp_assoc_value params;
2831 	struct sctp_sock *sp;
2832 	struct sctp_association *asoc;
2833 
2834 	if (optlen != sizeof(struct sctp_assoc_value))
2835 		return -EINVAL;
2836 	if (copy_from_user(&params, optval, optlen))
2837 		return -EFAULT;
2838 
2839 	sp = sctp_sk(sk);
2840 
2841 	if (params.assoc_id != 0) {
2842 		asoc = sctp_id2assoc(sk, params.assoc_id);
2843 		if (!asoc)
2844 			return -EINVAL;
2845 		asoc->default_rcv_context = params.assoc_value;
2846 	} else {
2847 		sp->default_rcv_context = params.assoc_value;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 /*
2854  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2855  *
2856  * This options will at a minimum specify if the implementation is doing
2857  * fragmented interleave.  Fragmented interleave, for a one to many
2858  * socket, is when subsequent calls to receive a message may return
2859  * parts of messages from different associations.  Some implementations
2860  * may allow you to turn this value on or off.  If so, when turned off,
2861  * no fragment interleave will occur (which will cause a head of line
2862  * blocking amongst multiple associations sharing the same one to many
2863  * socket).  When this option is turned on, then each receive call may
2864  * come from a different association (thus the user must receive data
2865  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2866  * association each receive belongs to.
2867  *
2868  * This option takes a boolean value.  A non-zero value indicates that
2869  * fragmented interleave is on.  A value of zero indicates that
2870  * fragmented interleave is off.
2871  *
2872  * Note that it is important that an implementation that allows this
2873  * option to be turned on, have it off by default.  Otherwise an unaware
2874  * application using the one to many model may become confused and act
2875  * incorrectly.
2876  */
2877 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2878 					       char __user *optval,
2879 					       int optlen)
2880 {
2881 	int val;
2882 
2883 	if (optlen != sizeof(int))
2884 		return -EINVAL;
2885 	if (get_user(val, (int __user *)optval))
2886 		return -EFAULT;
2887 
2888 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2889 
2890 	return 0;
2891 }
2892 
2893 /*
2894  * 7.1.25.  Set or Get the sctp partial delivery point
2895  *       (SCTP_PARTIAL_DELIVERY_POINT)
2896  * This option will set or get the SCTP partial delivery point.  This
2897  * point is the size of a message where the partial delivery API will be
2898  * invoked to help free up rwnd space for the peer.  Setting this to a
2899  * lower value will cause partial delivery's to happen more often.  The
2900  * calls argument is an integer that sets or gets the partial delivery
2901  * point.
2902  */
2903 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2904 						  char __user *optval,
2905 						  int optlen)
2906 {
2907 	u32 val;
2908 
2909 	if (optlen != sizeof(u32))
2910 		return -EINVAL;
2911 	if (get_user(val, (int __user *)optval))
2912 		return -EFAULT;
2913 
2914 	sctp_sk(sk)->pd_point = val;
2915 
2916 	return 0; /* is this the right error code? */
2917 }
2918 
2919 /*
2920  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
2921  *
2922  * This option will allow a user to change the maximum burst of packets
2923  * that can be emitted by this association.  Note that the default value
2924  * is 4, and some implementations may restrict this setting so that it
2925  * can only be lowered.
2926  *
2927  * NOTE: This text doesn't seem right.  Do this on a socket basis with
2928  * future associations inheriting the socket value.
2929  */
2930 static int sctp_setsockopt_maxburst(struct sock *sk,
2931 				    char __user *optval,
2932 				    int optlen)
2933 {
2934 	int val;
2935 
2936 	if (optlen != sizeof(int))
2937 		return -EINVAL;
2938 	if (get_user(val, (int __user *)optval))
2939 		return -EFAULT;
2940 
2941 	if (val < 0)
2942 		return -EINVAL;
2943 
2944 	sctp_sk(sk)->max_burst = val;
2945 
2946 	return 0;
2947 }
2948 
2949 /*
2950  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
2951  *
2952  * This set option adds a chunk type that the user is requesting to be
2953  * received only in an authenticated way.  Changes to the list of chunks
2954  * will only effect future associations on the socket.
2955  */
2956 static int sctp_setsockopt_auth_chunk(struct sock *sk,
2957 				    char __user *optval,
2958 				    int optlen)
2959 {
2960 	struct sctp_authchunk val;
2961 
2962 	if (optlen != sizeof(struct sctp_authchunk))
2963 		return -EINVAL;
2964 	if (copy_from_user(&val, optval, optlen))
2965 		return -EFAULT;
2966 
2967 	switch (val.sauth_chunk) {
2968 		case SCTP_CID_INIT:
2969 		case SCTP_CID_INIT_ACK:
2970 		case SCTP_CID_SHUTDOWN_COMPLETE:
2971 		case SCTP_CID_AUTH:
2972 			return -EINVAL;
2973 	}
2974 
2975 	/* add this chunk id to the endpoint */
2976 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
2977 }
2978 
2979 /*
2980  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
2981  *
2982  * This option gets or sets the list of HMAC algorithms that the local
2983  * endpoint requires the peer to use.
2984  */
2985 static int sctp_setsockopt_hmac_ident(struct sock *sk,
2986 				    char __user *optval,
2987 				    int optlen)
2988 {
2989 	struct sctp_hmacalgo *hmacs;
2990 	int err;
2991 
2992 	if (optlen < sizeof(struct sctp_hmacalgo))
2993 		return -EINVAL;
2994 
2995 	hmacs = kmalloc(optlen, GFP_KERNEL);
2996 	if (!hmacs)
2997 		return -ENOMEM;
2998 
2999 	if (copy_from_user(hmacs, optval, optlen)) {
3000 		err = -EFAULT;
3001 		goto out;
3002 	}
3003 
3004 	if (hmacs->shmac_num_idents == 0 ||
3005 	    hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) {
3006 		err = -EINVAL;
3007 		goto out;
3008 	}
3009 
3010 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3011 out:
3012 	kfree(hmacs);
3013 	return err;
3014 }
3015 
3016 /*
3017  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3018  *
3019  * This option will set a shared secret key which is used to build an
3020  * association shared key.
3021  */
3022 static int sctp_setsockopt_auth_key(struct sock *sk,
3023 				    char __user *optval,
3024 				    int optlen)
3025 {
3026 	struct sctp_authkey *authkey;
3027 	struct sctp_association *asoc;
3028 	int ret;
3029 
3030 	if (optlen <= sizeof(struct sctp_authkey))
3031 		return -EINVAL;
3032 
3033 	authkey = kmalloc(optlen, GFP_KERNEL);
3034 	if (!authkey)
3035 		return -ENOMEM;
3036 
3037 	if (copy_from_user(authkey, optval, optlen)) {
3038 		ret = -EFAULT;
3039 		goto out;
3040 	}
3041 
3042 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3043 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3044 		ret = -EINVAL;
3045 		goto out;
3046 	}
3047 
3048 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3049 out:
3050 	kfree(authkey);
3051 	return ret;
3052 }
3053 
3054 /*
3055  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3056  *
3057  * This option will get or set the active shared key to be used to build
3058  * the association shared key.
3059  */
3060 static int sctp_setsockopt_active_key(struct sock *sk,
3061 					char __user *optval,
3062 					int optlen)
3063 {
3064 	struct sctp_authkeyid val;
3065 	struct sctp_association *asoc;
3066 
3067 	if (optlen != sizeof(struct sctp_authkeyid))
3068 		return -EINVAL;
3069 	if (copy_from_user(&val, optval, optlen))
3070 		return -EFAULT;
3071 
3072 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3073 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3074 		return -EINVAL;
3075 
3076 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3077 					val.scact_keynumber);
3078 }
3079 
3080 /*
3081  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3082  *
3083  * This set option will delete a shared secret key from use.
3084  */
3085 static int sctp_setsockopt_del_key(struct sock *sk,
3086 					char __user *optval,
3087 					int optlen)
3088 {
3089 	struct sctp_authkeyid val;
3090 	struct sctp_association *asoc;
3091 
3092 	if (optlen != sizeof(struct sctp_authkeyid))
3093 		return -EINVAL;
3094 	if (copy_from_user(&val, optval, optlen))
3095 		return -EFAULT;
3096 
3097 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3098 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3099 		return -EINVAL;
3100 
3101 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3102 				    val.scact_keynumber);
3103 
3104 }
3105 
3106 
3107 /* API 6.2 setsockopt(), getsockopt()
3108  *
3109  * Applications use setsockopt() and getsockopt() to set or retrieve
3110  * socket options.  Socket options are used to change the default
3111  * behavior of sockets calls.  They are described in Section 7.
3112  *
3113  * The syntax is:
3114  *
3115  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3116  *                    int __user *optlen);
3117  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3118  *                    int optlen);
3119  *
3120  *   sd      - the socket descript.
3121  *   level   - set to IPPROTO_SCTP for all SCTP options.
3122  *   optname - the option name.
3123  *   optval  - the buffer to store the value of the option.
3124  *   optlen  - the size of the buffer.
3125  */
3126 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3127 				char __user *optval, int optlen)
3128 {
3129 	int retval = 0;
3130 
3131 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3132 			  sk, optname);
3133 
3134 	/* I can hardly begin to describe how wrong this is.  This is
3135 	 * so broken as to be worse than useless.  The API draft
3136 	 * REALLY is NOT helpful here...  I am not convinced that the
3137 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3138 	 * are at all well-founded.
3139 	 */
3140 	if (level != SOL_SCTP) {
3141 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3142 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3143 		goto out_nounlock;
3144 	}
3145 
3146 	sctp_lock_sock(sk);
3147 
3148 	switch (optname) {
3149 	case SCTP_SOCKOPT_BINDX_ADD:
3150 		/* 'optlen' is the size of the addresses buffer. */
3151 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3152 					       optlen, SCTP_BINDX_ADD_ADDR);
3153 		break;
3154 
3155 	case SCTP_SOCKOPT_BINDX_REM:
3156 		/* 'optlen' is the size of the addresses buffer. */
3157 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3158 					       optlen, SCTP_BINDX_REM_ADDR);
3159 		break;
3160 
3161 	case SCTP_SOCKOPT_CONNECTX:
3162 		/* 'optlen' is the size of the addresses buffer. */
3163 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
3164 					       optlen);
3165 		break;
3166 
3167 	case SCTP_DISABLE_FRAGMENTS:
3168 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3169 		break;
3170 
3171 	case SCTP_EVENTS:
3172 		retval = sctp_setsockopt_events(sk, optval, optlen);
3173 		break;
3174 
3175 	case SCTP_AUTOCLOSE:
3176 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3177 		break;
3178 
3179 	case SCTP_PEER_ADDR_PARAMS:
3180 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3181 		break;
3182 
3183 	case SCTP_DELAYED_ACK_TIME:
3184 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3185 		break;
3186 	case SCTP_PARTIAL_DELIVERY_POINT:
3187 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3188 		break;
3189 
3190 	case SCTP_INITMSG:
3191 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3192 		break;
3193 	case SCTP_DEFAULT_SEND_PARAM:
3194 		retval = sctp_setsockopt_default_send_param(sk, optval,
3195 							    optlen);
3196 		break;
3197 	case SCTP_PRIMARY_ADDR:
3198 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3199 		break;
3200 	case SCTP_SET_PEER_PRIMARY_ADDR:
3201 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3202 		break;
3203 	case SCTP_NODELAY:
3204 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3205 		break;
3206 	case SCTP_RTOINFO:
3207 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3208 		break;
3209 	case SCTP_ASSOCINFO:
3210 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3211 		break;
3212 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3213 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3214 		break;
3215 	case SCTP_MAXSEG:
3216 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3217 		break;
3218 	case SCTP_ADAPTATION_LAYER:
3219 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3220 		break;
3221 	case SCTP_CONTEXT:
3222 		retval = sctp_setsockopt_context(sk, optval, optlen);
3223 		break;
3224 	case SCTP_FRAGMENT_INTERLEAVE:
3225 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3226 		break;
3227 	case SCTP_MAX_BURST:
3228 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3229 		break;
3230 	case SCTP_AUTH_CHUNK:
3231 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3232 		break;
3233 	case SCTP_HMAC_IDENT:
3234 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3235 		break;
3236 	case SCTP_AUTH_KEY:
3237 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3238 		break;
3239 	case SCTP_AUTH_ACTIVE_KEY:
3240 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3241 		break;
3242 	case SCTP_AUTH_DELETE_KEY:
3243 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3244 		break;
3245 	default:
3246 		retval = -ENOPROTOOPT;
3247 		break;
3248 	}
3249 
3250 	sctp_release_sock(sk);
3251 
3252 out_nounlock:
3253 	return retval;
3254 }
3255 
3256 /* API 3.1.6 connect() - UDP Style Syntax
3257  *
3258  * An application may use the connect() call in the UDP model to initiate an
3259  * association without sending data.
3260  *
3261  * The syntax is:
3262  *
3263  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3264  *
3265  * sd: the socket descriptor to have a new association added to.
3266  *
3267  * nam: the address structure (either struct sockaddr_in or struct
3268  *    sockaddr_in6 defined in RFC2553 [7]).
3269  *
3270  * len: the size of the address.
3271  */
3272 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3273 			     int addr_len)
3274 {
3275 	int err = 0;
3276 	struct sctp_af *af;
3277 
3278 	sctp_lock_sock(sk);
3279 
3280 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3281 			  __FUNCTION__, sk, addr, addr_len);
3282 
3283 	/* Validate addr_len before calling common connect/connectx routine. */
3284 	af = sctp_get_af_specific(addr->sa_family);
3285 	if (!af || addr_len < af->sockaddr_len) {
3286 		err = -EINVAL;
3287 	} else {
3288 		/* Pass correct addr len to common routine (so it knows there
3289 		 * is only one address being passed.
3290 		 */
3291 		err = __sctp_connect(sk, addr, af->sockaddr_len);
3292 	}
3293 
3294 	sctp_release_sock(sk);
3295 	return err;
3296 }
3297 
3298 /* FIXME: Write comments. */
3299 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3300 {
3301 	return -EOPNOTSUPP; /* STUB */
3302 }
3303 
3304 /* 4.1.4 accept() - TCP Style Syntax
3305  *
3306  * Applications use accept() call to remove an established SCTP
3307  * association from the accept queue of the endpoint.  A new socket
3308  * descriptor will be returned from accept() to represent the newly
3309  * formed association.
3310  */
3311 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3312 {
3313 	struct sctp_sock *sp;
3314 	struct sctp_endpoint *ep;
3315 	struct sock *newsk = NULL;
3316 	struct sctp_association *asoc;
3317 	long timeo;
3318 	int error = 0;
3319 
3320 	sctp_lock_sock(sk);
3321 
3322 	sp = sctp_sk(sk);
3323 	ep = sp->ep;
3324 
3325 	if (!sctp_style(sk, TCP)) {
3326 		error = -EOPNOTSUPP;
3327 		goto out;
3328 	}
3329 
3330 	if (!sctp_sstate(sk, LISTENING)) {
3331 		error = -EINVAL;
3332 		goto out;
3333 	}
3334 
3335 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3336 
3337 	error = sctp_wait_for_accept(sk, timeo);
3338 	if (error)
3339 		goto out;
3340 
3341 	/* We treat the list of associations on the endpoint as the accept
3342 	 * queue and pick the first association on the list.
3343 	 */
3344 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3345 
3346 	newsk = sp->pf->create_accept_sk(sk, asoc);
3347 	if (!newsk) {
3348 		error = -ENOMEM;
3349 		goto out;
3350 	}
3351 
3352 	/* Populate the fields of the newsk from the oldsk and migrate the
3353 	 * asoc to the newsk.
3354 	 */
3355 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3356 
3357 out:
3358 	sctp_release_sock(sk);
3359 	*err = error;
3360 	return newsk;
3361 }
3362 
3363 /* The SCTP ioctl handler. */
3364 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3365 {
3366 	return -ENOIOCTLCMD;
3367 }
3368 
3369 /* This is the function which gets called during socket creation to
3370  * initialized the SCTP-specific portion of the sock.
3371  * The sock structure should already be zero-filled memory.
3372  */
3373 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3374 {
3375 	struct sctp_endpoint *ep;
3376 	struct sctp_sock *sp;
3377 
3378 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3379 
3380 	sp = sctp_sk(sk);
3381 
3382 	/* Initialize the SCTP per socket area.  */
3383 	switch (sk->sk_type) {
3384 	case SOCK_SEQPACKET:
3385 		sp->type = SCTP_SOCKET_UDP;
3386 		break;
3387 	case SOCK_STREAM:
3388 		sp->type = SCTP_SOCKET_TCP;
3389 		break;
3390 	default:
3391 		return -ESOCKTNOSUPPORT;
3392 	}
3393 
3394 	/* Initialize default send parameters. These parameters can be
3395 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3396 	 */
3397 	sp->default_stream = 0;
3398 	sp->default_ppid = 0;
3399 	sp->default_flags = 0;
3400 	sp->default_context = 0;
3401 	sp->default_timetolive = 0;
3402 
3403 	sp->default_rcv_context = 0;
3404 	sp->max_burst = sctp_max_burst;
3405 
3406 	/* Initialize default setup parameters. These parameters
3407 	 * can be modified with the SCTP_INITMSG socket option or
3408 	 * overridden by the SCTP_INIT CMSG.
3409 	 */
3410 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3411 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3412 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3413 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3414 
3415 	/* Initialize default RTO related parameters.  These parameters can
3416 	 * be modified for with the SCTP_RTOINFO socket option.
3417 	 */
3418 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3419 	sp->rtoinfo.srto_max     = sctp_rto_max;
3420 	sp->rtoinfo.srto_min     = sctp_rto_min;
3421 
3422 	/* Initialize default association related parameters. These parameters
3423 	 * can be modified with the SCTP_ASSOCINFO socket option.
3424 	 */
3425 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3426 	sp->assocparams.sasoc_number_peer_destinations = 0;
3427 	sp->assocparams.sasoc_peer_rwnd = 0;
3428 	sp->assocparams.sasoc_local_rwnd = 0;
3429 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3430 
3431 	/* Initialize default event subscriptions. By default, all the
3432 	 * options are off.
3433 	 */
3434 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3435 
3436 	/* Default Peer Address Parameters.  These defaults can
3437 	 * be modified via SCTP_PEER_ADDR_PARAMS
3438 	 */
3439 	sp->hbinterval  = sctp_hb_interval;
3440 	sp->pathmaxrxt  = sctp_max_retrans_path;
3441 	sp->pathmtu     = 0; // allow default discovery
3442 	sp->sackdelay   = sctp_sack_timeout;
3443 	sp->param_flags = SPP_HB_ENABLE |
3444 			  SPP_PMTUD_ENABLE |
3445 			  SPP_SACKDELAY_ENABLE;
3446 
3447 	/* If enabled no SCTP message fragmentation will be performed.
3448 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3449 	 */
3450 	sp->disable_fragments = 0;
3451 
3452 	/* Enable Nagle algorithm by default.  */
3453 	sp->nodelay           = 0;
3454 
3455 	/* Enable by default. */
3456 	sp->v4mapped          = 1;
3457 
3458 	/* Auto-close idle associations after the configured
3459 	 * number of seconds.  A value of 0 disables this
3460 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3461 	 * for UDP-style sockets only.
3462 	 */
3463 	sp->autoclose         = 0;
3464 
3465 	/* User specified fragmentation limit. */
3466 	sp->user_frag         = 0;
3467 
3468 	sp->adaptation_ind = 0;
3469 
3470 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3471 
3472 	/* Control variables for partial data delivery. */
3473 	atomic_set(&sp->pd_mode, 0);
3474 	skb_queue_head_init(&sp->pd_lobby);
3475 	sp->frag_interleave = 0;
3476 
3477 	/* Create a per socket endpoint structure.  Even if we
3478 	 * change the data structure relationships, this may still
3479 	 * be useful for storing pre-connect address information.
3480 	 */
3481 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3482 	if (!ep)
3483 		return -ENOMEM;
3484 
3485 	sp->ep = ep;
3486 	sp->hmac = NULL;
3487 
3488 	SCTP_DBG_OBJCNT_INC(sock);
3489 	atomic_inc(&sctp_sockets_allocated);
3490 	return 0;
3491 }
3492 
3493 /* Cleanup any SCTP per socket resources.  */
3494 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3495 {
3496 	struct sctp_endpoint *ep;
3497 
3498 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3499 
3500 	/* Release our hold on the endpoint. */
3501 	ep = sctp_sk(sk)->ep;
3502 	sctp_endpoint_free(ep);
3503 	atomic_dec(&sctp_sockets_allocated);
3504 	return 0;
3505 }
3506 
3507 /* API 4.1.7 shutdown() - TCP Style Syntax
3508  *     int shutdown(int socket, int how);
3509  *
3510  *     sd      - the socket descriptor of the association to be closed.
3511  *     how     - Specifies the type of shutdown.  The  values  are
3512  *               as follows:
3513  *               SHUT_RD
3514  *                     Disables further receive operations. No SCTP
3515  *                     protocol action is taken.
3516  *               SHUT_WR
3517  *                     Disables further send operations, and initiates
3518  *                     the SCTP shutdown sequence.
3519  *               SHUT_RDWR
3520  *                     Disables further send  and  receive  operations
3521  *                     and initiates the SCTP shutdown sequence.
3522  */
3523 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3524 {
3525 	struct sctp_endpoint *ep;
3526 	struct sctp_association *asoc;
3527 
3528 	if (!sctp_style(sk, TCP))
3529 		return;
3530 
3531 	if (how & SEND_SHUTDOWN) {
3532 		ep = sctp_sk(sk)->ep;
3533 		if (!list_empty(&ep->asocs)) {
3534 			asoc = list_entry(ep->asocs.next,
3535 					  struct sctp_association, asocs);
3536 			sctp_primitive_SHUTDOWN(asoc, NULL);
3537 		}
3538 	}
3539 }
3540 
3541 /* 7.2.1 Association Status (SCTP_STATUS)
3542 
3543  * Applications can retrieve current status information about an
3544  * association, including association state, peer receiver window size,
3545  * number of unacked data chunks, and number of data chunks pending
3546  * receipt.  This information is read-only.
3547  */
3548 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3549 				       char __user *optval,
3550 				       int __user *optlen)
3551 {
3552 	struct sctp_status status;
3553 	struct sctp_association *asoc = NULL;
3554 	struct sctp_transport *transport;
3555 	sctp_assoc_t associd;
3556 	int retval = 0;
3557 
3558 	if (len < sizeof(status)) {
3559 		retval = -EINVAL;
3560 		goto out;
3561 	}
3562 
3563 	len = sizeof(status);
3564 	if (copy_from_user(&status, optval, len)) {
3565 		retval = -EFAULT;
3566 		goto out;
3567 	}
3568 
3569 	associd = status.sstat_assoc_id;
3570 	asoc = sctp_id2assoc(sk, associd);
3571 	if (!asoc) {
3572 		retval = -EINVAL;
3573 		goto out;
3574 	}
3575 
3576 	transport = asoc->peer.primary_path;
3577 
3578 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3579 	status.sstat_state = asoc->state;
3580 	status.sstat_rwnd =  asoc->peer.rwnd;
3581 	status.sstat_unackdata = asoc->unack_data;
3582 
3583 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3584 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3585 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3586 	status.sstat_fragmentation_point = asoc->frag_point;
3587 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3588 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3589 			transport->af_specific->sockaddr_len);
3590 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3591 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3592 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3593 	status.sstat_primary.spinfo_state = transport->state;
3594 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3595 	status.sstat_primary.spinfo_srtt = transport->srtt;
3596 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3597 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3598 
3599 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3600 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3601 
3602 	if (put_user(len, optlen)) {
3603 		retval = -EFAULT;
3604 		goto out;
3605 	}
3606 
3607 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3608 			  len, status.sstat_state, status.sstat_rwnd,
3609 			  status.sstat_assoc_id);
3610 
3611 	if (copy_to_user(optval, &status, len)) {
3612 		retval = -EFAULT;
3613 		goto out;
3614 	}
3615 
3616 out:
3617 	return (retval);
3618 }
3619 
3620 
3621 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3622  *
3623  * Applications can retrieve information about a specific peer address
3624  * of an association, including its reachability state, congestion
3625  * window, and retransmission timer values.  This information is
3626  * read-only.
3627  */
3628 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3629 					  char __user *optval,
3630 					  int __user *optlen)
3631 {
3632 	struct sctp_paddrinfo pinfo;
3633 	struct sctp_transport *transport;
3634 	int retval = 0;
3635 
3636 	if (len < sizeof(pinfo)) {
3637 		retval = -EINVAL;
3638 		goto out;
3639 	}
3640 
3641 	len = sizeof(pinfo);
3642 	if (copy_from_user(&pinfo, optval, len)) {
3643 		retval = -EFAULT;
3644 		goto out;
3645 	}
3646 
3647 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3648 					   pinfo.spinfo_assoc_id);
3649 	if (!transport)
3650 		return -EINVAL;
3651 
3652 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3653 	pinfo.spinfo_state = transport->state;
3654 	pinfo.spinfo_cwnd = transport->cwnd;
3655 	pinfo.spinfo_srtt = transport->srtt;
3656 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3657 	pinfo.spinfo_mtu = transport->pathmtu;
3658 
3659 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3660 		pinfo.spinfo_state = SCTP_ACTIVE;
3661 
3662 	if (put_user(len, optlen)) {
3663 		retval = -EFAULT;
3664 		goto out;
3665 	}
3666 
3667 	if (copy_to_user(optval, &pinfo, len)) {
3668 		retval = -EFAULT;
3669 		goto out;
3670 	}
3671 
3672 out:
3673 	return (retval);
3674 }
3675 
3676 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3677  *
3678  * This option is a on/off flag.  If enabled no SCTP message
3679  * fragmentation will be performed.  Instead if a message being sent
3680  * exceeds the current PMTU size, the message will NOT be sent and
3681  * instead a error will be indicated to the user.
3682  */
3683 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3684 					char __user *optval, int __user *optlen)
3685 {
3686 	int val;
3687 
3688 	if (len < sizeof(int))
3689 		return -EINVAL;
3690 
3691 	len = sizeof(int);
3692 	val = (sctp_sk(sk)->disable_fragments == 1);
3693 	if (put_user(len, optlen))
3694 		return -EFAULT;
3695 	if (copy_to_user(optval, &val, len))
3696 		return -EFAULT;
3697 	return 0;
3698 }
3699 
3700 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3701  *
3702  * This socket option is used to specify various notifications and
3703  * ancillary data the user wishes to receive.
3704  */
3705 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3706 				  int __user *optlen)
3707 {
3708 	if (len < sizeof(struct sctp_event_subscribe))
3709 		return -EINVAL;
3710 	len = sizeof(struct sctp_event_subscribe);
3711 	if (put_user(len, optlen))
3712 		return -EFAULT;
3713 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3714 		return -EFAULT;
3715 	return 0;
3716 }
3717 
3718 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3719  *
3720  * This socket option is applicable to the UDP-style socket only.  When
3721  * set it will cause associations that are idle for more than the
3722  * specified number of seconds to automatically close.  An association
3723  * being idle is defined an association that has NOT sent or received
3724  * user data.  The special value of '0' indicates that no automatic
3725  * close of any associations should be performed.  The option expects an
3726  * integer defining the number of seconds of idle time before an
3727  * association is closed.
3728  */
3729 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3730 {
3731 	/* Applicable to UDP-style socket only */
3732 	if (sctp_style(sk, TCP))
3733 		return -EOPNOTSUPP;
3734 	if (len < sizeof(int))
3735 		return -EINVAL;
3736 	len = sizeof(int);
3737 	if (put_user(len, optlen))
3738 		return -EFAULT;
3739 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3740 		return -EFAULT;
3741 	return 0;
3742 }
3743 
3744 /* Helper routine to branch off an association to a new socket.  */
3745 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3746 				struct socket **sockp)
3747 {
3748 	struct sock *sk = asoc->base.sk;
3749 	struct socket *sock;
3750 	struct inet_sock *inetsk;
3751 	struct sctp_af *af;
3752 	int err = 0;
3753 
3754 	/* An association cannot be branched off from an already peeled-off
3755 	 * socket, nor is this supported for tcp style sockets.
3756 	 */
3757 	if (!sctp_style(sk, UDP))
3758 		return -EINVAL;
3759 
3760 	/* Create a new socket.  */
3761 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3762 	if (err < 0)
3763 		return err;
3764 
3765 	/* Populate the fields of the newsk from the oldsk and migrate the
3766 	 * asoc to the newsk.
3767 	 */
3768 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3769 
3770 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3771 	 * Set the daddr and initialize id to something more random
3772 	 */
3773 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3774 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3775 	inetsk = inet_sk(sock->sk);
3776 	inetsk->id = asoc->next_tsn ^ jiffies;
3777 
3778 	*sockp = sock;
3779 
3780 	return err;
3781 }
3782 
3783 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3784 {
3785 	sctp_peeloff_arg_t peeloff;
3786 	struct socket *newsock;
3787 	int retval = 0;
3788 	struct sctp_association *asoc;
3789 
3790 	if (len < sizeof(sctp_peeloff_arg_t))
3791 		return -EINVAL;
3792 	len = sizeof(sctp_peeloff_arg_t);
3793 	if (copy_from_user(&peeloff, optval, len))
3794 		return -EFAULT;
3795 
3796 	asoc = sctp_id2assoc(sk, peeloff.associd);
3797 	if (!asoc) {
3798 		retval = -EINVAL;
3799 		goto out;
3800 	}
3801 
3802 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3803 
3804 	retval = sctp_do_peeloff(asoc, &newsock);
3805 	if (retval < 0)
3806 		goto out;
3807 
3808 	/* Map the socket to an unused fd that can be returned to the user.  */
3809 	retval = sock_map_fd(newsock);
3810 	if (retval < 0) {
3811 		sock_release(newsock);
3812 		goto out;
3813 	}
3814 
3815 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3816 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3817 
3818 	/* Return the fd mapped to the new socket.  */
3819 	peeloff.sd = retval;
3820 	if (put_user(len, optlen))
3821 		return -EFAULT;
3822 	if (copy_to_user(optval, &peeloff, len))
3823 		retval = -EFAULT;
3824 
3825 out:
3826 	return retval;
3827 }
3828 
3829 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3830  *
3831  * Applications can enable or disable heartbeats for any peer address of
3832  * an association, modify an address's heartbeat interval, force a
3833  * heartbeat to be sent immediately, and adjust the address's maximum
3834  * number of retransmissions sent before an address is considered
3835  * unreachable.  The following structure is used to access and modify an
3836  * address's parameters:
3837  *
3838  *  struct sctp_paddrparams {
3839  *     sctp_assoc_t            spp_assoc_id;
3840  *     struct sockaddr_storage spp_address;
3841  *     uint32_t                spp_hbinterval;
3842  *     uint16_t                spp_pathmaxrxt;
3843  *     uint32_t                spp_pathmtu;
3844  *     uint32_t                spp_sackdelay;
3845  *     uint32_t                spp_flags;
3846  * };
3847  *
3848  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3849  *                     application, and identifies the association for
3850  *                     this query.
3851  *   spp_address     - This specifies which address is of interest.
3852  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3853  *                     in milliseconds.  If a  value of zero
3854  *                     is present in this field then no changes are to
3855  *                     be made to this parameter.
3856  *   spp_pathmaxrxt  - This contains the maximum number of
3857  *                     retransmissions before this address shall be
3858  *                     considered unreachable. If a  value of zero
3859  *                     is present in this field then no changes are to
3860  *                     be made to this parameter.
3861  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3862  *                     specified here will be the "fixed" path mtu.
3863  *                     Note that if the spp_address field is empty
3864  *                     then all associations on this address will
3865  *                     have this fixed path mtu set upon them.
3866  *
3867  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3868  *                     the number of milliseconds that sacks will be delayed
3869  *                     for. This value will apply to all addresses of an
3870  *                     association if the spp_address field is empty. Note
3871  *                     also, that if delayed sack is enabled and this
3872  *                     value is set to 0, no change is made to the last
3873  *                     recorded delayed sack timer value.
3874  *
3875  *   spp_flags       - These flags are used to control various features
3876  *                     on an association. The flag field may contain
3877  *                     zero or more of the following options.
3878  *
3879  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3880  *                     specified address. Note that if the address
3881  *                     field is empty all addresses for the association
3882  *                     have heartbeats enabled upon them.
3883  *
3884  *                     SPP_HB_DISABLE - Disable heartbeats on the
3885  *                     speicifed address. Note that if the address
3886  *                     field is empty all addresses for the association
3887  *                     will have their heartbeats disabled. Note also
3888  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3889  *                     mutually exclusive, only one of these two should
3890  *                     be specified. Enabling both fields will have
3891  *                     undetermined results.
3892  *
3893  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3894  *                     to be made immediately.
3895  *
3896  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3897  *                     discovery upon the specified address. Note that
3898  *                     if the address feild is empty then all addresses
3899  *                     on the association are effected.
3900  *
3901  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3902  *                     discovery upon the specified address. Note that
3903  *                     if the address feild is empty then all addresses
3904  *                     on the association are effected. Not also that
3905  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3906  *                     exclusive. Enabling both will have undetermined
3907  *                     results.
3908  *
3909  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3910  *                     on delayed sack. The time specified in spp_sackdelay
3911  *                     is used to specify the sack delay for this address. Note
3912  *                     that if spp_address is empty then all addresses will
3913  *                     enable delayed sack and take on the sack delay
3914  *                     value specified in spp_sackdelay.
3915  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3916  *                     off delayed sack. If the spp_address field is blank then
3917  *                     delayed sack is disabled for the entire association. Note
3918  *                     also that this field is mutually exclusive to
3919  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3920  *                     results.
3921  */
3922 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3923 					    char __user *optval, int __user *optlen)
3924 {
3925 	struct sctp_paddrparams  params;
3926 	struct sctp_transport   *trans = NULL;
3927 	struct sctp_association *asoc = NULL;
3928 	struct sctp_sock        *sp = sctp_sk(sk);
3929 
3930 	if (len < sizeof(struct sctp_paddrparams))
3931 		return -EINVAL;
3932 	len = sizeof(struct sctp_paddrparams);
3933 	if (copy_from_user(&params, optval, len))
3934 		return -EFAULT;
3935 
3936 	/* If an address other than INADDR_ANY is specified, and
3937 	 * no transport is found, then the request is invalid.
3938 	 */
3939 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3940 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3941 					       params.spp_assoc_id);
3942 		if (!trans) {
3943 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3944 			return -EINVAL;
3945 		}
3946 	}
3947 
3948 	/* Get association, if assoc_id != 0 and the socket is a one
3949 	 * to many style socket, and an association was not found, then
3950 	 * the id was invalid.
3951 	 */
3952 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3953 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3954 		SCTP_DEBUG_PRINTK("Failed no association\n");
3955 		return -EINVAL;
3956 	}
3957 
3958 	if (trans) {
3959 		/* Fetch transport values. */
3960 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3961 		params.spp_pathmtu    = trans->pathmtu;
3962 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3963 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3964 
3965 		/*draft-11 doesn't say what to return in spp_flags*/
3966 		params.spp_flags      = trans->param_flags;
3967 	} else if (asoc) {
3968 		/* Fetch association values. */
3969 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3970 		params.spp_pathmtu    = asoc->pathmtu;
3971 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3972 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3973 
3974 		/*draft-11 doesn't say what to return in spp_flags*/
3975 		params.spp_flags      = asoc->param_flags;
3976 	} else {
3977 		/* Fetch socket values. */
3978 		params.spp_hbinterval = sp->hbinterval;
3979 		params.spp_pathmtu    = sp->pathmtu;
3980 		params.spp_sackdelay  = sp->sackdelay;
3981 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3982 
3983 		/*draft-11 doesn't say what to return in spp_flags*/
3984 		params.spp_flags      = sp->param_flags;
3985 	}
3986 
3987 	if (copy_to_user(optval, &params, len))
3988 		return -EFAULT;
3989 
3990 	if (put_user(len, optlen))
3991 		return -EFAULT;
3992 
3993 	return 0;
3994 }
3995 
3996 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3997  *
3998  *   This options will get or set the delayed ack timer.  The time is set
3999  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
4000  *   endpoints default delayed ack timer value.  If the assoc_id field is
4001  *   non-zero, then the set or get effects the specified association.
4002  *
4003  *   struct sctp_assoc_value {
4004  *       sctp_assoc_t            assoc_id;
4005  *       uint32_t                assoc_value;
4006  *   };
4007  *
4008  *     assoc_id    - This parameter, indicates which association the
4009  *                   user is preforming an action upon. Note that if
4010  *                   this field's value is zero then the endpoints
4011  *                   default value is changed (effecting future
4012  *                   associations only).
4013  *
4014  *     assoc_value - This parameter contains the number of milliseconds
4015  *                   that the user is requesting the delayed ACK timer
4016  *                   be set to. Note that this value is defined in
4017  *                   the standard to be between 200 and 500 milliseconds.
4018  *
4019  *                   Note: a value of zero will leave the value alone,
4020  *                   but disable SACK delay. A non-zero value will also
4021  *                   enable SACK delay.
4022  */
4023 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
4024 					    char __user *optval,
4025 					    int __user *optlen)
4026 {
4027 	struct sctp_assoc_value  params;
4028 	struct sctp_association *asoc = NULL;
4029 	struct sctp_sock        *sp = sctp_sk(sk);
4030 
4031 	if (len < sizeof(struct sctp_assoc_value))
4032 		return - EINVAL;
4033 
4034 	len = sizeof(struct sctp_assoc_value);
4035 
4036 	if (copy_from_user(&params, optval, len))
4037 		return -EFAULT;
4038 
4039 	/* Get association, if assoc_id != 0 and the socket is a one
4040 	 * to many style socket, and an association was not found, then
4041 	 * the id was invalid.
4042 	 */
4043 	asoc = sctp_id2assoc(sk, params.assoc_id);
4044 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
4045 		return -EINVAL;
4046 
4047 	if (asoc) {
4048 		/* Fetch association values. */
4049 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
4050 			params.assoc_value = jiffies_to_msecs(
4051 				asoc->sackdelay);
4052 		else
4053 			params.assoc_value = 0;
4054 	} else {
4055 		/* Fetch socket values. */
4056 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
4057 			params.assoc_value  = sp->sackdelay;
4058 		else
4059 			params.assoc_value  = 0;
4060 	}
4061 
4062 	if (copy_to_user(optval, &params, len))
4063 		return -EFAULT;
4064 
4065 	if (put_user(len, optlen))
4066 		return -EFAULT;
4067 
4068 	return 0;
4069 }
4070 
4071 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4072  *
4073  * Applications can specify protocol parameters for the default association
4074  * initialization.  The option name argument to setsockopt() and getsockopt()
4075  * is SCTP_INITMSG.
4076  *
4077  * Setting initialization parameters is effective only on an unconnected
4078  * socket (for UDP-style sockets only future associations are effected
4079  * by the change).  With TCP-style sockets, this option is inherited by
4080  * sockets derived from a listener socket.
4081  */
4082 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4083 {
4084 	if (len < sizeof(struct sctp_initmsg))
4085 		return -EINVAL;
4086 	len = sizeof(struct sctp_initmsg);
4087 	if (put_user(len, optlen))
4088 		return -EFAULT;
4089 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4090 		return -EFAULT;
4091 	return 0;
4092 }
4093 
4094 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4095 					      char __user *optval,
4096 					      int __user *optlen)
4097 {
4098 	sctp_assoc_t id;
4099 	struct sctp_association *asoc;
4100 	struct list_head *pos;
4101 	int cnt = 0;
4102 
4103 	if (len < sizeof(sctp_assoc_t))
4104 		return -EINVAL;
4105 
4106 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4107 		return -EFAULT;
4108 
4109 	/* For UDP-style sockets, id specifies the association to query.  */
4110 	asoc = sctp_id2assoc(sk, id);
4111 	if (!asoc)
4112 		return -EINVAL;
4113 
4114 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4115 		cnt ++;
4116 	}
4117 
4118 	return cnt;
4119 }
4120 
4121 /*
4122  * Old API for getting list of peer addresses. Does not work for 32-bit
4123  * programs running on a 64-bit kernel
4124  */
4125 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4126 					  char __user *optval,
4127 					  int __user *optlen)
4128 {
4129 	struct sctp_association *asoc;
4130 	struct list_head *pos;
4131 	int cnt = 0;
4132 	struct sctp_getaddrs_old getaddrs;
4133 	struct sctp_transport *from;
4134 	void __user *to;
4135 	union sctp_addr temp;
4136 	struct sctp_sock *sp = sctp_sk(sk);
4137 	int addrlen;
4138 
4139 	if (len < sizeof(struct sctp_getaddrs_old))
4140 		return -EINVAL;
4141 
4142 	len = sizeof(struct sctp_getaddrs_old);
4143 
4144 	if (copy_from_user(&getaddrs, optval, len))
4145 		return -EFAULT;
4146 
4147 	if (getaddrs.addr_num <= 0) return -EINVAL;
4148 
4149 	/* For UDP-style sockets, id specifies the association to query.  */
4150 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4151 	if (!asoc)
4152 		return -EINVAL;
4153 
4154 	to = (void __user *)getaddrs.addrs;
4155 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4156 		from = list_entry(pos, struct sctp_transport, transports);
4157 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4158 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4159 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4160 		if (copy_to_user(to, &temp, addrlen))
4161 			return -EFAULT;
4162 		to += addrlen ;
4163 		cnt ++;
4164 		if (cnt >= getaddrs.addr_num) break;
4165 	}
4166 	getaddrs.addr_num = cnt;
4167 	if (put_user(len, optlen))
4168 		return -EFAULT;
4169 	if (copy_to_user(optval, &getaddrs, len))
4170 		return -EFAULT;
4171 
4172 	return 0;
4173 }
4174 
4175 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4176 				      char __user *optval, int __user *optlen)
4177 {
4178 	struct sctp_association *asoc;
4179 	struct list_head *pos;
4180 	int cnt = 0;
4181 	struct sctp_getaddrs getaddrs;
4182 	struct sctp_transport *from;
4183 	void __user *to;
4184 	union sctp_addr temp;
4185 	struct sctp_sock *sp = sctp_sk(sk);
4186 	int addrlen;
4187 	size_t space_left;
4188 	int bytes_copied;
4189 
4190 	if (len < sizeof(struct sctp_getaddrs))
4191 		return -EINVAL;
4192 
4193 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4194 		return -EFAULT;
4195 
4196 	/* For UDP-style sockets, id specifies the association to query.  */
4197 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4198 	if (!asoc)
4199 		return -EINVAL;
4200 
4201 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4202 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4203 
4204 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4205 		from = list_entry(pos, struct sctp_transport, transports);
4206 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4207 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4208 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4209 		if (space_left < addrlen)
4210 			return -ENOMEM;
4211 		if (copy_to_user(to, &temp, addrlen))
4212 			return -EFAULT;
4213 		to += addrlen;
4214 		cnt++;
4215 		space_left -= addrlen;
4216 	}
4217 
4218 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4219 		return -EFAULT;
4220 	bytes_copied = ((char __user *)to) - optval;
4221 	if (put_user(bytes_copied, optlen))
4222 		return -EFAULT;
4223 
4224 	return 0;
4225 }
4226 
4227 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4228 					       char __user *optval,
4229 					       int __user *optlen)
4230 {
4231 	sctp_assoc_t id;
4232 	struct sctp_bind_addr *bp;
4233 	struct sctp_association *asoc;
4234 	struct sctp_sockaddr_entry *addr;
4235 	int cnt = 0;
4236 
4237 	if (len < sizeof(sctp_assoc_t))
4238 		return -EINVAL;
4239 
4240 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4241 		return -EFAULT;
4242 
4243 	/*
4244 	 *  For UDP-style sockets, id specifies the association to query.
4245 	 *  If the id field is set to the value '0' then the locally bound
4246 	 *  addresses are returned without regard to any particular
4247 	 *  association.
4248 	 */
4249 	if (0 == id) {
4250 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4251 	} else {
4252 		asoc = sctp_id2assoc(sk, id);
4253 		if (!asoc)
4254 			return -EINVAL;
4255 		bp = &asoc->base.bind_addr;
4256 	}
4257 
4258 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4259 	 * addresses from the global local address list.
4260 	 */
4261 	if (sctp_list_single_entry(&bp->address_list)) {
4262 		addr = list_entry(bp->address_list.next,
4263 				  struct sctp_sockaddr_entry, list);
4264 		if (sctp_is_any(&addr->a)) {
4265 			rcu_read_lock();
4266 			list_for_each_entry_rcu(addr,
4267 						&sctp_local_addr_list, list) {
4268 				if (!addr->valid)
4269 					continue;
4270 
4271 				if ((PF_INET == sk->sk_family) &&
4272 				    (AF_INET6 == addr->a.sa.sa_family))
4273 					continue;
4274 
4275 				cnt++;
4276 			}
4277 			rcu_read_unlock();
4278 		} else {
4279 			cnt = 1;
4280 		}
4281 		goto done;
4282 	}
4283 
4284 	/* Protection on the bound address list is not needed,
4285 	 * since in the socket option context we hold the socket lock,
4286 	 * so there is no way that the bound address list can change.
4287 	 */
4288 	list_for_each_entry(addr, &bp->address_list, list) {
4289 		cnt ++;
4290 	}
4291 done:
4292 	return cnt;
4293 }
4294 
4295 /* Helper function that copies local addresses to user and returns the number
4296  * of addresses copied.
4297  */
4298 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4299 					int max_addrs, void *to,
4300 					int *bytes_copied)
4301 {
4302 	struct sctp_sockaddr_entry *addr;
4303 	union sctp_addr temp;
4304 	int cnt = 0;
4305 	int addrlen;
4306 
4307 	rcu_read_lock();
4308 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4309 		if (!addr->valid)
4310 			continue;
4311 
4312 		if ((PF_INET == sk->sk_family) &&
4313 		    (AF_INET6 == addr->a.sa.sa_family))
4314 			continue;
4315 		memcpy(&temp, &addr->a, sizeof(temp));
4316 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4317 								&temp);
4318 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4319 		memcpy(to, &temp, addrlen);
4320 
4321 		to += addrlen;
4322 		*bytes_copied += addrlen;
4323 		cnt ++;
4324 		if (cnt >= max_addrs) break;
4325 	}
4326 	rcu_read_unlock();
4327 
4328 	return cnt;
4329 }
4330 
4331 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4332 			    size_t space_left, int *bytes_copied)
4333 {
4334 	struct sctp_sockaddr_entry *addr;
4335 	union sctp_addr temp;
4336 	int cnt = 0;
4337 	int addrlen;
4338 
4339 	rcu_read_lock();
4340 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4341 		if (!addr->valid)
4342 			continue;
4343 
4344 		if ((PF_INET == sk->sk_family) &&
4345 		    (AF_INET6 == addr->a.sa.sa_family))
4346 			continue;
4347 		memcpy(&temp, &addr->a, sizeof(temp));
4348 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4349 								&temp);
4350 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4351 		if (space_left < addrlen) {
4352 			cnt =  -ENOMEM;
4353 			break;
4354 		}
4355 		memcpy(to, &temp, addrlen);
4356 
4357 		to += addrlen;
4358 		cnt ++;
4359 		space_left -= addrlen;
4360 		*bytes_copied += addrlen;
4361 	}
4362 	rcu_read_unlock();
4363 
4364 	return cnt;
4365 }
4366 
4367 /* Old API for getting list of local addresses. Does not work for 32-bit
4368  * programs running on a 64-bit kernel
4369  */
4370 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4371 					   char __user *optval, int __user *optlen)
4372 {
4373 	struct sctp_bind_addr *bp;
4374 	struct sctp_association *asoc;
4375 	int cnt = 0;
4376 	struct sctp_getaddrs_old getaddrs;
4377 	struct sctp_sockaddr_entry *addr;
4378 	void __user *to;
4379 	union sctp_addr temp;
4380 	struct sctp_sock *sp = sctp_sk(sk);
4381 	int addrlen;
4382 	int err = 0;
4383 	void *addrs;
4384 	void *buf;
4385 	int bytes_copied = 0;
4386 
4387 	if (len < sizeof(struct sctp_getaddrs_old))
4388 		return -EINVAL;
4389 
4390 	len = sizeof(struct sctp_getaddrs_old);
4391 	if (copy_from_user(&getaddrs, optval, len))
4392 		return -EFAULT;
4393 
4394 	if (getaddrs.addr_num <= 0) return -EINVAL;
4395 	/*
4396 	 *  For UDP-style sockets, id specifies the association to query.
4397 	 *  If the id field is set to the value '0' then the locally bound
4398 	 *  addresses are returned without regard to any particular
4399 	 *  association.
4400 	 */
4401 	if (0 == getaddrs.assoc_id) {
4402 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4403 	} else {
4404 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4405 		if (!asoc)
4406 			return -EINVAL;
4407 		bp = &asoc->base.bind_addr;
4408 	}
4409 
4410 	to = getaddrs.addrs;
4411 
4412 	/* Allocate space for a local instance of packed array to hold all
4413 	 * the data.  We store addresses here first and then put write them
4414 	 * to the user in one shot.
4415 	 */
4416 	addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4417 			GFP_KERNEL);
4418 	if (!addrs)
4419 		return -ENOMEM;
4420 
4421 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4422 	 * addresses from the global local address list.
4423 	 */
4424 	if (sctp_list_single_entry(&bp->address_list)) {
4425 		addr = list_entry(bp->address_list.next,
4426 				  struct sctp_sockaddr_entry, list);
4427 		if (sctp_is_any(&addr->a)) {
4428 			cnt = sctp_copy_laddrs_old(sk, bp->port,
4429 						   getaddrs.addr_num,
4430 						   addrs, &bytes_copied);
4431 			goto copy_getaddrs;
4432 		}
4433 	}
4434 
4435 	buf = addrs;
4436 	/* Protection on the bound address list is not needed since
4437 	 * in the socket option context we hold a socket lock and
4438 	 * thus the bound address list can't change.
4439 	 */
4440 	list_for_each_entry(addr, &bp->address_list, list) {
4441 		memcpy(&temp, &addr->a, sizeof(temp));
4442 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4443 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4444 		memcpy(buf, &temp, addrlen);
4445 		buf += addrlen;
4446 		bytes_copied += addrlen;
4447 		cnt ++;
4448 		if (cnt >= getaddrs.addr_num) break;
4449 	}
4450 
4451 copy_getaddrs:
4452 	/* copy the entire address list into the user provided space */
4453 	if (copy_to_user(to, addrs, bytes_copied)) {
4454 		err = -EFAULT;
4455 		goto error;
4456 	}
4457 
4458 	/* copy the leading structure back to user */
4459 	getaddrs.addr_num = cnt;
4460 	if (copy_to_user(optval, &getaddrs, len))
4461 		err = -EFAULT;
4462 
4463 error:
4464 	kfree(addrs);
4465 	return err;
4466 }
4467 
4468 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4469 				       char __user *optval, int __user *optlen)
4470 {
4471 	struct sctp_bind_addr *bp;
4472 	struct sctp_association *asoc;
4473 	int cnt = 0;
4474 	struct sctp_getaddrs getaddrs;
4475 	struct sctp_sockaddr_entry *addr;
4476 	void __user *to;
4477 	union sctp_addr temp;
4478 	struct sctp_sock *sp = sctp_sk(sk);
4479 	int addrlen;
4480 	int err = 0;
4481 	size_t space_left;
4482 	int bytes_copied = 0;
4483 	void *addrs;
4484 	void *buf;
4485 
4486 	if (len < sizeof(struct sctp_getaddrs))
4487 		return -EINVAL;
4488 
4489 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4490 		return -EFAULT;
4491 
4492 	/*
4493 	 *  For UDP-style sockets, id specifies the association to query.
4494 	 *  If the id field is set to the value '0' then the locally bound
4495 	 *  addresses are returned without regard to any particular
4496 	 *  association.
4497 	 */
4498 	if (0 == getaddrs.assoc_id) {
4499 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4500 	} else {
4501 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4502 		if (!asoc)
4503 			return -EINVAL;
4504 		bp = &asoc->base.bind_addr;
4505 	}
4506 
4507 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4508 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4509 
4510 	addrs = kmalloc(space_left, GFP_KERNEL);
4511 	if (!addrs)
4512 		return -ENOMEM;
4513 
4514 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4515 	 * addresses from the global local address list.
4516 	 */
4517 	if (sctp_list_single_entry(&bp->address_list)) {
4518 		addr = list_entry(bp->address_list.next,
4519 				  struct sctp_sockaddr_entry, list);
4520 		if (sctp_is_any(&addr->a)) {
4521 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4522 						space_left, &bytes_copied);
4523 			if (cnt < 0) {
4524 				err = cnt;
4525 				goto out;
4526 			}
4527 			goto copy_getaddrs;
4528 		}
4529 	}
4530 
4531 	buf = addrs;
4532 	/* Protection on the bound address list is not needed since
4533 	 * in the socket option context we hold a socket lock and
4534 	 * thus the bound address list can't change.
4535 	 */
4536 	list_for_each_entry(addr, &bp->address_list, list) {
4537 		memcpy(&temp, &addr->a, sizeof(temp));
4538 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4539 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4540 		if (space_left < addrlen) {
4541 			err =  -ENOMEM; /*fixme: right error?*/
4542 			goto out;
4543 		}
4544 		memcpy(buf, &temp, addrlen);
4545 		buf += addrlen;
4546 		bytes_copied += addrlen;
4547 		cnt ++;
4548 		space_left -= addrlen;
4549 	}
4550 
4551 copy_getaddrs:
4552 	if (copy_to_user(to, addrs, bytes_copied)) {
4553 		err = -EFAULT;
4554 		goto out;
4555 	}
4556 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4557 		err = -EFAULT;
4558 		goto out;
4559 	}
4560 	if (put_user(bytes_copied, optlen))
4561 		err = -EFAULT;
4562 out:
4563 	kfree(addrs);
4564 	return err;
4565 }
4566 
4567 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4568  *
4569  * Requests that the local SCTP stack use the enclosed peer address as
4570  * the association primary.  The enclosed address must be one of the
4571  * association peer's addresses.
4572  */
4573 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4574 					char __user *optval, int __user *optlen)
4575 {
4576 	struct sctp_prim prim;
4577 	struct sctp_association *asoc;
4578 	struct sctp_sock *sp = sctp_sk(sk);
4579 
4580 	if (len < sizeof(struct sctp_prim))
4581 		return -EINVAL;
4582 
4583 	len = sizeof(struct sctp_prim);
4584 
4585 	if (copy_from_user(&prim, optval, len))
4586 		return -EFAULT;
4587 
4588 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4589 	if (!asoc)
4590 		return -EINVAL;
4591 
4592 	if (!asoc->peer.primary_path)
4593 		return -ENOTCONN;
4594 
4595 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4596 		asoc->peer.primary_path->af_specific->sockaddr_len);
4597 
4598 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4599 			(union sctp_addr *)&prim.ssp_addr);
4600 
4601 	if (put_user(len, optlen))
4602 		return -EFAULT;
4603 	if (copy_to_user(optval, &prim, len))
4604 		return -EFAULT;
4605 
4606 	return 0;
4607 }
4608 
4609 /*
4610  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4611  *
4612  * Requests that the local endpoint set the specified Adaptation Layer
4613  * Indication parameter for all future INIT and INIT-ACK exchanges.
4614  */
4615 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4616 				  char __user *optval, int __user *optlen)
4617 {
4618 	struct sctp_setadaptation adaptation;
4619 
4620 	if (len < sizeof(struct sctp_setadaptation))
4621 		return -EINVAL;
4622 
4623 	len = sizeof(struct sctp_setadaptation);
4624 
4625 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4626 
4627 	if (put_user(len, optlen))
4628 		return -EFAULT;
4629 	if (copy_to_user(optval, &adaptation, len))
4630 		return -EFAULT;
4631 
4632 	return 0;
4633 }
4634 
4635 /*
4636  *
4637  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4638  *
4639  *   Applications that wish to use the sendto() system call may wish to
4640  *   specify a default set of parameters that would normally be supplied
4641  *   through the inclusion of ancillary data.  This socket option allows
4642  *   such an application to set the default sctp_sndrcvinfo structure.
4643 
4644 
4645  *   The application that wishes to use this socket option simply passes
4646  *   in to this call the sctp_sndrcvinfo structure defined in Section
4647  *   5.2.2) The input parameters accepted by this call include
4648  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4649  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4650  *   to this call if the caller is using the UDP model.
4651  *
4652  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4653  */
4654 static int sctp_getsockopt_default_send_param(struct sock *sk,
4655 					int len, char __user *optval,
4656 					int __user *optlen)
4657 {
4658 	struct sctp_sndrcvinfo info;
4659 	struct sctp_association *asoc;
4660 	struct sctp_sock *sp = sctp_sk(sk);
4661 
4662 	if (len < sizeof(struct sctp_sndrcvinfo))
4663 		return -EINVAL;
4664 
4665 	len = sizeof(struct sctp_sndrcvinfo);
4666 
4667 	if (copy_from_user(&info, optval, len))
4668 		return -EFAULT;
4669 
4670 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4671 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4672 		return -EINVAL;
4673 
4674 	if (asoc) {
4675 		info.sinfo_stream = asoc->default_stream;
4676 		info.sinfo_flags = asoc->default_flags;
4677 		info.sinfo_ppid = asoc->default_ppid;
4678 		info.sinfo_context = asoc->default_context;
4679 		info.sinfo_timetolive = asoc->default_timetolive;
4680 	} else {
4681 		info.sinfo_stream = sp->default_stream;
4682 		info.sinfo_flags = sp->default_flags;
4683 		info.sinfo_ppid = sp->default_ppid;
4684 		info.sinfo_context = sp->default_context;
4685 		info.sinfo_timetolive = sp->default_timetolive;
4686 	}
4687 
4688 	if (put_user(len, optlen))
4689 		return -EFAULT;
4690 	if (copy_to_user(optval, &info, len))
4691 		return -EFAULT;
4692 
4693 	return 0;
4694 }
4695 
4696 /*
4697  *
4698  * 7.1.5 SCTP_NODELAY
4699  *
4700  * Turn on/off any Nagle-like algorithm.  This means that packets are
4701  * generally sent as soon as possible and no unnecessary delays are
4702  * introduced, at the cost of more packets in the network.  Expects an
4703  * integer boolean flag.
4704  */
4705 
4706 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4707 				   char __user *optval, int __user *optlen)
4708 {
4709 	int val;
4710 
4711 	if (len < sizeof(int))
4712 		return -EINVAL;
4713 
4714 	len = sizeof(int);
4715 	val = (sctp_sk(sk)->nodelay == 1);
4716 	if (put_user(len, optlen))
4717 		return -EFAULT;
4718 	if (copy_to_user(optval, &val, len))
4719 		return -EFAULT;
4720 	return 0;
4721 }
4722 
4723 /*
4724  *
4725  * 7.1.1 SCTP_RTOINFO
4726  *
4727  * The protocol parameters used to initialize and bound retransmission
4728  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4729  * and modify these parameters.
4730  * All parameters are time values, in milliseconds.  A value of 0, when
4731  * modifying the parameters, indicates that the current value should not
4732  * be changed.
4733  *
4734  */
4735 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4736 				char __user *optval,
4737 				int __user *optlen) {
4738 	struct sctp_rtoinfo rtoinfo;
4739 	struct sctp_association *asoc;
4740 
4741 	if (len < sizeof (struct sctp_rtoinfo))
4742 		return -EINVAL;
4743 
4744 	len = sizeof(struct sctp_rtoinfo);
4745 
4746 	if (copy_from_user(&rtoinfo, optval, len))
4747 		return -EFAULT;
4748 
4749 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4750 
4751 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4752 		return -EINVAL;
4753 
4754 	/* Values corresponding to the specific association. */
4755 	if (asoc) {
4756 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4757 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4758 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4759 	} else {
4760 		/* Values corresponding to the endpoint. */
4761 		struct sctp_sock *sp = sctp_sk(sk);
4762 
4763 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4764 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4765 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4766 	}
4767 
4768 	if (put_user(len, optlen))
4769 		return -EFAULT;
4770 
4771 	if (copy_to_user(optval, &rtoinfo, len))
4772 		return -EFAULT;
4773 
4774 	return 0;
4775 }
4776 
4777 /*
4778  *
4779  * 7.1.2 SCTP_ASSOCINFO
4780  *
4781  * This option is used to tune the maximum retransmission attempts
4782  * of the association.
4783  * Returns an error if the new association retransmission value is
4784  * greater than the sum of the retransmission value  of the peer.
4785  * See [SCTP] for more information.
4786  *
4787  */
4788 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4789 				     char __user *optval,
4790 				     int __user *optlen)
4791 {
4792 
4793 	struct sctp_assocparams assocparams;
4794 	struct sctp_association *asoc;
4795 	struct list_head *pos;
4796 	int cnt = 0;
4797 
4798 	if (len < sizeof (struct sctp_assocparams))
4799 		return -EINVAL;
4800 
4801 	len = sizeof(struct sctp_assocparams);
4802 
4803 	if (copy_from_user(&assocparams, optval, len))
4804 		return -EFAULT;
4805 
4806 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4807 
4808 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4809 		return -EINVAL;
4810 
4811 	/* Values correspoinding to the specific association */
4812 	if (asoc) {
4813 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4814 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4815 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4816 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4817 						* 1000) +
4818 						(asoc->cookie_life.tv_usec
4819 						/ 1000);
4820 
4821 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4822 			cnt ++;
4823 		}
4824 
4825 		assocparams.sasoc_number_peer_destinations = cnt;
4826 	} else {
4827 		/* Values corresponding to the endpoint */
4828 		struct sctp_sock *sp = sctp_sk(sk);
4829 
4830 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4831 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4832 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4833 		assocparams.sasoc_cookie_life =
4834 					sp->assocparams.sasoc_cookie_life;
4835 		assocparams.sasoc_number_peer_destinations =
4836 					sp->assocparams.
4837 					sasoc_number_peer_destinations;
4838 	}
4839 
4840 	if (put_user(len, optlen))
4841 		return -EFAULT;
4842 
4843 	if (copy_to_user(optval, &assocparams, len))
4844 		return -EFAULT;
4845 
4846 	return 0;
4847 }
4848 
4849 /*
4850  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4851  *
4852  * This socket option is a boolean flag which turns on or off mapped V4
4853  * addresses.  If this option is turned on and the socket is type
4854  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4855  * If this option is turned off, then no mapping will be done of V4
4856  * addresses and a user will receive both PF_INET6 and PF_INET type
4857  * addresses on the socket.
4858  */
4859 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4860 				    char __user *optval, int __user *optlen)
4861 {
4862 	int val;
4863 	struct sctp_sock *sp = sctp_sk(sk);
4864 
4865 	if (len < sizeof(int))
4866 		return -EINVAL;
4867 
4868 	len = sizeof(int);
4869 	val = sp->v4mapped;
4870 	if (put_user(len, optlen))
4871 		return -EFAULT;
4872 	if (copy_to_user(optval, &val, len))
4873 		return -EFAULT;
4874 
4875 	return 0;
4876 }
4877 
4878 /*
4879  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
4880  * (chapter and verse is quoted at sctp_setsockopt_context())
4881  */
4882 static int sctp_getsockopt_context(struct sock *sk, int len,
4883 				   char __user *optval, int __user *optlen)
4884 {
4885 	struct sctp_assoc_value params;
4886 	struct sctp_sock *sp;
4887 	struct sctp_association *asoc;
4888 
4889 	if (len < sizeof(struct sctp_assoc_value))
4890 		return -EINVAL;
4891 
4892 	len = sizeof(struct sctp_assoc_value);
4893 
4894 	if (copy_from_user(&params, optval, len))
4895 		return -EFAULT;
4896 
4897 	sp = sctp_sk(sk);
4898 
4899 	if (params.assoc_id != 0) {
4900 		asoc = sctp_id2assoc(sk, params.assoc_id);
4901 		if (!asoc)
4902 			return -EINVAL;
4903 		params.assoc_value = asoc->default_rcv_context;
4904 	} else {
4905 		params.assoc_value = sp->default_rcv_context;
4906 	}
4907 
4908 	if (put_user(len, optlen))
4909 		return -EFAULT;
4910 	if (copy_to_user(optval, &params, len))
4911 		return -EFAULT;
4912 
4913 	return 0;
4914 }
4915 
4916 /*
4917  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4918  *
4919  * This socket option specifies the maximum size to put in any outgoing
4920  * SCTP chunk.  If a message is larger than this size it will be
4921  * fragmented by SCTP into the specified size.  Note that the underlying
4922  * SCTP implementation may fragment into smaller sized chunks when the
4923  * PMTU of the underlying association is smaller than the value set by
4924  * the user.
4925  */
4926 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4927 				  char __user *optval, int __user *optlen)
4928 {
4929 	int val;
4930 
4931 	if (len < sizeof(int))
4932 		return -EINVAL;
4933 
4934 	len = sizeof(int);
4935 
4936 	val = sctp_sk(sk)->user_frag;
4937 	if (put_user(len, optlen))
4938 		return -EFAULT;
4939 	if (copy_to_user(optval, &val, len))
4940 		return -EFAULT;
4941 
4942 	return 0;
4943 }
4944 
4945 /*
4946  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4947  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4948  */
4949 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4950 					       char __user *optval, int __user *optlen)
4951 {
4952 	int val;
4953 
4954 	if (len < sizeof(int))
4955 		return -EINVAL;
4956 
4957 	len = sizeof(int);
4958 
4959 	val = sctp_sk(sk)->frag_interleave;
4960 	if (put_user(len, optlen))
4961 		return -EFAULT;
4962 	if (copy_to_user(optval, &val, len))
4963 		return -EFAULT;
4964 
4965 	return 0;
4966 }
4967 
4968 /*
4969  * 7.1.25.  Set or Get the sctp partial delivery point
4970  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4971  */
4972 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4973 						  char __user *optval,
4974 						  int __user *optlen)
4975 {
4976 	u32 val;
4977 
4978 	if (len < sizeof(u32))
4979 		return -EINVAL;
4980 
4981 	len = sizeof(u32);
4982 
4983 	val = sctp_sk(sk)->pd_point;
4984 	if (put_user(len, optlen))
4985 		return -EFAULT;
4986 	if (copy_to_user(optval, &val, len))
4987 		return -EFAULT;
4988 
4989 	return -ENOTSUPP;
4990 }
4991 
4992 /*
4993  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
4994  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
4995  */
4996 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
4997 				    char __user *optval,
4998 				    int __user *optlen)
4999 {
5000 	int val;
5001 
5002 	if (len < sizeof(int))
5003 		return -EINVAL;
5004 
5005 	len = sizeof(int);
5006 
5007 	val = sctp_sk(sk)->max_burst;
5008 	if (put_user(len, optlen))
5009 		return -EFAULT;
5010 	if (copy_to_user(optval, &val, len))
5011 		return -EFAULT;
5012 
5013 	return -ENOTSUPP;
5014 }
5015 
5016 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5017 				    char __user *optval, int __user *optlen)
5018 {
5019 	struct sctp_hmac_algo_param *hmacs;
5020 	__u16 param_len;
5021 
5022 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5023 	param_len = ntohs(hmacs->param_hdr.length);
5024 
5025 	if (len < param_len)
5026 		return -EINVAL;
5027 	if (put_user(len, optlen))
5028 		return -EFAULT;
5029 	if (copy_to_user(optval, hmacs->hmac_ids, len))
5030 		return -EFAULT;
5031 
5032 	return 0;
5033 }
5034 
5035 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5036 				    char __user *optval, int __user *optlen)
5037 {
5038 	struct sctp_authkeyid val;
5039 	struct sctp_association *asoc;
5040 
5041 	if (len < sizeof(struct sctp_authkeyid))
5042 		return -EINVAL;
5043 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5044 		return -EFAULT;
5045 
5046 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5047 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5048 		return -EINVAL;
5049 
5050 	if (asoc)
5051 		val.scact_keynumber = asoc->active_key_id;
5052 	else
5053 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5054 
5055 	return 0;
5056 }
5057 
5058 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5059 				    char __user *optval, int __user *optlen)
5060 {
5061 	struct sctp_authchunks __user *p = (void __user *)optval;
5062 	struct sctp_authchunks val;
5063 	struct sctp_association *asoc;
5064 	struct sctp_chunks_param *ch;
5065 	char __user *to;
5066 
5067 	if (len <= sizeof(struct sctp_authchunks))
5068 		return -EINVAL;
5069 
5070 	if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5071 		return -EFAULT;
5072 
5073 	to = p->gauth_chunks;
5074 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5075 	if (!asoc)
5076 		return -EINVAL;
5077 
5078 	ch = asoc->peer.peer_chunks;
5079 
5080 	/* See if the user provided enough room for all the data */
5081 	if (len < ntohs(ch->param_hdr.length))
5082 		return -EINVAL;
5083 
5084 	len = ntohs(ch->param_hdr.length);
5085 	if (put_user(len, optlen))
5086 		return -EFAULT;
5087 	if (copy_to_user(to, ch->chunks, len))
5088 		return -EFAULT;
5089 
5090 	return 0;
5091 }
5092 
5093 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5094 				    char __user *optval, int __user *optlen)
5095 {
5096 	struct sctp_authchunks __user *p = (void __user *)optval;
5097 	struct sctp_authchunks val;
5098 	struct sctp_association *asoc;
5099 	struct sctp_chunks_param *ch;
5100 	char __user *to;
5101 
5102 	if (len <= sizeof(struct sctp_authchunks))
5103 		return -EINVAL;
5104 
5105 	if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5106 		return -EFAULT;
5107 
5108 	to = p->gauth_chunks;
5109 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5110 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5111 		return -EINVAL;
5112 
5113 	if (asoc)
5114 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5115 	else
5116 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5117 
5118 	if (len < ntohs(ch->param_hdr.length))
5119 		return -EINVAL;
5120 
5121 	len = ntohs(ch->param_hdr.length);
5122 	if (put_user(len, optlen))
5123 		return -EFAULT;
5124 	if (copy_to_user(to, ch->chunks, len))
5125 		return -EFAULT;
5126 
5127 	return 0;
5128 }
5129 
5130 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5131 				char __user *optval, int __user *optlen)
5132 {
5133 	int retval = 0;
5134 	int len;
5135 
5136 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5137 			  sk, optname);
5138 
5139 	/* I can hardly begin to describe how wrong this is.  This is
5140 	 * so broken as to be worse than useless.  The API draft
5141 	 * REALLY is NOT helpful here...  I am not convinced that the
5142 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5143 	 * are at all well-founded.
5144 	 */
5145 	if (level != SOL_SCTP) {
5146 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5147 
5148 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5149 		return retval;
5150 	}
5151 
5152 	if (get_user(len, optlen))
5153 		return -EFAULT;
5154 
5155 	sctp_lock_sock(sk);
5156 
5157 	switch (optname) {
5158 	case SCTP_STATUS:
5159 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5160 		break;
5161 	case SCTP_DISABLE_FRAGMENTS:
5162 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5163 							   optlen);
5164 		break;
5165 	case SCTP_EVENTS:
5166 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5167 		break;
5168 	case SCTP_AUTOCLOSE:
5169 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5170 		break;
5171 	case SCTP_SOCKOPT_PEELOFF:
5172 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5173 		break;
5174 	case SCTP_PEER_ADDR_PARAMS:
5175 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5176 							  optlen);
5177 		break;
5178 	case SCTP_DELAYED_ACK_TIME:
5179 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
5180 							  optlen);
5181 		break;
5182 	case SCTP_INITMSG:
5183 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5184 		break;
5185 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
5186 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5187 							    optlen);
5188 		break;
5189 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5190 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5191 							     optlen);
5192 		break;
5193 	case SCTP_GET_PEER_ADDRS_OLD:
5194 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5195 							optlen);
5196 		break;
5197 	case SCTP_GET_LOCAL_ADDRS_OLD:
5198 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5199 							 optlen);
5200 		break;
5201 	case SCTP_GET_PEER_ADDRS:
5202 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5203 						    optlen);
5204 		break;
5205 	case SCTP_GET_LOCAL_ADDRS:
5206 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5207 						     optlen);
5208 		break;
5209 	case SCTP_DEFAULT_SEND_PARAM:
5210 		retval = sctp_getsockopt_default_send_param(sk, len,
5211 							    optval, optlen);
5212 		break;
5213 	case SCTP_PRIMARY_ADDR:
5214 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5215 		break;
5216 	case SCTP_NODELAY:
5217 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5218 		break;
5219 	case SCTP_RTOINFO:
5220 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5221 		break;
5222 	case SCTP_ASSOCINFO:
5223 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5224 		break;
5225 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5226 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5227 		break;
5228 	case SCTP_MAXSEG:
5229 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5230 		break;
5231 	case SCTP_GET_PEER_ADDR_INFO:
5232 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5233 							optlen);
5234 		break;
5235 	case SCTP_ADAPTATION_LAYER:
5236 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5237 							optlen);
5238 		break;
5239 	case SCTP_CONTEXT:
5240 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5241 		break;
5242 	case SCTP_FRAGMENT_INTERLEAVE:
5243 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5244 							     optlen);
5245 		break;
5246 	case SCTP_PARTIAL_DELIVERY_POINT:
5247 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5248 								optlen);
5249 		break;
5250 	case SCTP_MAX_BURST:
5251 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5252 		break;
5253 	case SCTP_AUTH_KEY:
5254 	case SCTP_AUTH_CHUNK:
5255 	case SCTP_AUTH_DELETE_KEY:
5256 		retval = -EOPNOTSUPP;
5257 		break;
5258 	case SCTP_HMAC_IDENT:
5259 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5260 		break;
5261 	case SCTP_AUTH_ACTIVE_KEY:
5262 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5263 		break;
5264 	case SCTP_PEER_AUTH_CHUNKS:
5265 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5266 							optlen);
5267 		break;
5268 	case SCTP_LOCAL_AUTH_CHUNKS:
5269 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5270 							optlen);
5271 		break;
5272 	default:
5273 		retval = -ENOPROTOOPT;
5274 		break;
5275 	}
5276 
5277 	sctp_release_sock(sk);
5278 	return retval;
5279 }
5280 
5281 static void sctp_hash(struct sock *sk)
5282 {
5283 	/* STUB */
5284 }
5285 
5286 static void sctp_unhash(struct sock *sk)
5287 {
5288 	/* STUB */
5289 }
5290 
5291 /* Check if port is acceptable.  Possibly find first available port.
5292  *
5293  * The port hash table (contained in the 'global' SCTP protocol storage
5294  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5295  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5296  * list (the list number is the port number hashed out, so as you
5297  * would expect from a hash function, all the ports in a given list have
5298  * such a number that hashes out to the same list number; you were
5299  * expecting that, right?); so each list has a set of ports, with a
5300  * link to the socket (struct sock) that uses it, the port number and
5301  * a fastreuse flag (FIXME: NPI ipg).
5302  */
5303 static struct sctp_bind_bucket *sctp_bucket_create(
5304 	struct sctp_bind_hashbucket *head, unsigned short snum);
5305 
5306 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5307 {
5308 	struct sctp_bind_hashbucket *head; /* hash list */
5309 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5310 	unsigned short snum;
5311 	int ret;
5312 
5313 	snum = ntohs(addr->v4.sin_port);
5314 
5315 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5316 	sctp_local_bh_disable();
5317 
5318 	if (snum == 0) {
5319 		/* Search for an available port. */
5320 		int low, high, remaining, index;
5321 		unsigned int rover;
5322 
5323 		inet_get_local_port_range(&low, &high);
5324 		remaining = (high - low) + 1;
5325 		rover = net_random() % remaining + low;
5326 
5327 		do {
5328 			rover++;
5329 			if ((rover < low) || (rover > high))
5330 				rover = low;
5331 			index = sctp_phashfn(rover);
5332 			head = &sctp_port_hashtable[index];
5333 			sctp_spin_lock(&head->lock);
5334 			for (pp = head->chain; pp; pp = pp->next)
5335 				if (pp->port == rover)
5336 					goto next;
5337 			break;
5338 		next:
5339 			sctp_spin_unlock(&head->lock);
5340 		} while (--remaining > 0);
5341 
5342 		/* Exhausted local port range during search? */
5343 		ret = 1;
5344 		if (remaining <= 0)
5345 			goto fail;
5346 
5347 		/* OK, here is the one we will use.  HEAD (the port
5348 		 * hash table list entry) is non-NULL and we hold it's
5349 		 * mutex.
5350 		 */
5351 		snum = rover;
5352 	} else {
5353 		/* We are given an specific port number; we verify
5354 		 * that it is not being used. If it is used, we will
5355 		 * exahust the search in the hash list corresponding
5356 		 * to the port number (snum) - we detect that with the
5357 		 * port iterator, pp being NULL.
5358 		 */
5359 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5360 		sctp_spin_lock(&head->lock);
5361 		for (pp = head->chain; pp; pp = pp->next) {
5362 			if (pp->port == snum)
5363 				goto pp_found;
5364 		}
5365 	}
5366 	pp = NULL;
5367 	goto pp_not_found;
5368 pp_found:
5369 	if (!hlist_empty(&pp->owner)) {
5370 		/* We had a port hash table hit - there is an
5371 		 * available port (pp != NULL) and it is being
5372 		 * used by other socket (pp->owner not empty); that other
5373 		 * socket is going to be sk2.
5374 		 */
5375 		int reuse = sk->sk_reuse;
5376 		struct sock *sk2;
5377 		struct hlist_node *node;
5378 
5379 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5380 		if (pp->fastreuse && sk->sk_reuse &&
5381 			sk->sk_state != SCTP_SS_LISTENING)
5382 			goto success;
5383 
5384 		/* Run through the list of sockets bound to the port
5385 		 * (pp->port) [via the pointers bind_next and
5386 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5387 		 * we get the endpoint they describe and run through
5388 		 * the endpoint's list of IP (v4 or v6) addresses,
5389 		 * comparing each of the addresses with the address of
5390 		 * the socket sk. If we find a match, then that means
5391 		 * that this port/socket (sk) combination are already
5392 		 * in an endpoint.
5393 		 */
5394 		sk_for_each_bound(sk2, node, &pp->owner) {
5395 			struct sctp_endpoint *ep2;
5396 			ep2 = sctp_sk(sk2)->ep;
5397 
5398 			if (reuse && sk2->sk_reuse &&
5399 			    sk2->sk_state != SCTP_SS_LISTENING)
5400 				continue;
5401 
5402 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5403 						 sctp_sk(sk))) {
5404 				ret = (long)sk2;
5405 				goto fail_unlock;
5406 			}
5407 		}
5408 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5409 	}
5410 pp_not_found:
5411 	/* If there was a hash table miss, create a new port.  */
5412 	ret = 1;
5413 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5414 		goto fail_unlock;
5415 
5416 	/* In either case (hit or miss), make sure fastreuse is 1 only
5417 	 * if sk->sk_reuse is too (that is, if the caller requested
5418 	 * SO_REUSEADDR on this socket -sk-).
5419 	 */
5420 	if (hlist_empty(&pp->owner)) {
5421 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5422 			pp->fastreuse = 1;
5423 		else
5424 			pp->fastreuse = 0;
5425 	} else if (pp->fastreuse &&
5426 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5427 		pp->fastreuse = 0;
5428 
5429 	/* We are set, so fill up all the data in the hash table
5430 	 * entry, tie the socket list information with the rest of the
5431 	 * sockets FIXME: Blurry, NPI (ipg).
5432 	 */
5433 success:
5434 	if (!sctp_sk(sk)->bind_hash) {
5435 		inet_sk(sk)->num = snum;
5436 		sk_add_bind_node(sk, &pp->owner);
5437 		sctp_sk(sk)->bind_hash = pp;
5438 	}
5439 	ret = 0;
5440 
5441 fail_unlock:
5442 	sctp_spin_unlock(&head->lock);
5443 
5444 fail:
5445 	sctp_local_bh_enable();
5446 	return ret;
5447 }
5448 
5449 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5450  * port is requested.
5451  */
5452 static int sctp_get_port(struct sock *sk, unsigned short snum)
5453 {
5454 	long ret;
5455 	union sctp_addr addr;
5456 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5457 
5458 	/* Set up a dummy address struct from the sk. */
5459 	af->from_sk(&addr, sk);
5460 	addr.v4.sin_port = htons(snum);
5461 
5462 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5463 	ret = sctp_get_port_local(sk, &addr);
5464 
5465 	return (ret ? 1 : 0);
5466 }
5467 
5468 /*
5469  * 3.1.3 listen() - UDP Style Syntax
5470  *
5471  *   By default, new associations are not accepted for UDP style sockets.
5472  *   An application uses listen() to mark a socket as being able to
5473  *   accept new associations.
5474  */
5475 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5476 {
5477 	struct sctp_sock *sp = sctp_sk(sk);
5478 	struct sctp_endpoint *ep = sp->ep;
5479 
5480 	/* Only UDP style sockets that are not peeled off are allowed to
5481 	 * listen().
5482 	 */
5483 	if (!sctp_style(sk, UDP))
5484 		return -EINVAL;
5485 
5486 	/* If backlog is zero, disable listening. */
5487 	if (!backlog) {
5488 		if (sctp_sstate(sk, CLOSED))
5489 			return 0;
5490 
5491 		sctp_unhash_endpoint(ep);
5492 		sk->sk_state = SCTP_SS_CLOSED;
5493 		return 0;
5494 	}
5495 
5496 	/* Return if we are already listening. */
5497 	if (sctp_sstate(sk, LISTENING))
5498 		return 0;
5499 
5500 	/*
5501 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5502 	 * call that allows new associations to be accepted, the system
5503 	 * picks an ephemeral port and will choose an address set equivalent
5504 	 * to binding with a wildcard address.
5505 	 *
5506 	 * This is not currently spelled out in the SCTP sockets
5507 	 * extensions draft, but follows the practice as seen in TCP
5508 	 * sockets.
5509 	 *
5510 	 * Additionally, turn off fastreuse flag since we are not listening
5511 	 */
5512 	sk->sk_state = SCTP_SS_LISTENING;
5513 	if (!ep->base.bind_addr.port) {
5514 		if (sctp_autobind(sk))
5515 			return -EAGAIN;
5516 	} else
5517 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5518 
5519 	sctp_hash_endpoint(ep);
5520 	return 0;
5521 }
5522 
5523 /*
5524  * 4.1.3 listen() - TCP Style Syntax
5525  *
5526  *   Applications uses listen() to ready the SCTP endpoint for accepting
5527  *   inbound associations.
5528  */
5529 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5530 {
5531 	struct sctp_sock *sp = sctp_sk(sk);
5532 	struct sctp_endpoint *ep = sp->ep;
5533 
5534 	/* If backlog is zero, disable listening. */
5535 	if (!backlog) {
5536 		if (sctp_sstate(sk, CLOSED))
5537 			return 0;
5538 
5539 		sctp_unhash_endpoint(ep);
5540 		sk->sk_state = SCTP_SS_CLOSED;
5541 		return 0;
5542 	}
5543 
5544 	if (sctp_sstate(sk, LISTENING))
5545 		return 0;
5546 
5547 	/*
5548 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5549 	 * call that allows new associations to be accepted, the system
5550 	 * picks an ephemeral port and will choose an address set equivalent
5551 	 * to binding with a wildcard address.
5552 	 *
5553 	 * This is not currently spelled out in the SCTP sockets
5554 	 * extensions draft, but follows the practice as seen in TCP
5555 	 * sockets.
5556 	 */
5557 	sk->sk_state = SCTP_SS_LISTENING;
5558 	if (!ep->base.bind_addr.port) {
5559 		if (sctp_autobind(sk))
5560 			return -EAGAIN;
5561 	} else
5562 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5563 
5564 	sk->sk_max_ack_backlog = backlog;
5565 	sctp_hash_endpoint(ep);
5566 	return 0;
5567 }
5568 
5569 /*
5570  *  Move a socket to LISTENING state.
5571  */
5572 int sctp_inet_listen(struct socket *sock, int backlog)
5573 {
5574 	struct sock *sk = sock->sk;
5575 	struct crypto_hash *tfm = NULL;
5576 	int err = -EINVAL;
5577 
5578 	if (unlikely(backlog < 0))
5579 		goto out;
5580 
5581 	sctp_lock_sock(sk);
5582 
5583 	if (sock->state != SS_UNCONNECTED)
5584 		goto out;
5585 
5586 	/* Allocate HMAC for generating cookie. */
5587 	if (sctp_hmac_alg) {
5588 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5589 		if (IS_ERR(tfm)) {
5590 			if (net_ratelimit()) {
5591 				printk(KERN_INFO
5592 				       "SCTP: failed to load transform for %s: %ld\n",
5593 					sctp_hmac_alg, PTR_ERR(tfm));
5594 			}
5595 			err = -ENOSYS;
5596 			goto out;
5597 		}
5598 	}
5599 
5600 	switch (sock->type) {
5601 	case SOCK_SEQPACKET:
5602 		err = sctp_seqpacket_listen(sk, backlog);
5603 		break;
5604 	case SOCK_STREAM:
5605 		err = sctp_stream_listen(sk, backlog);
5606 		break;
5607 	default:
5608 		break;
5609 	}
5610 
5611 	if (err)
5612 		goto cleanup;
5613 
5614 	/* Store away the transform reference. */
5615 	sctp_sk(sk)->hmac = tfm;
5616 out:
5617 	sctp_release_sock(sk);
5618 	return err;
5619 cleanup:
5620 	crypto_free_hash(tfm);
5621 	goto out;
5622 }
5623 
5624 /*
5625  * This function is done by modeling the current datagram_poll() and the
5626  * tcp_poll().  Note that, based on these implementations, we don't
5627  * lock the socket in this function, even though it seems that,
5628  * ideally, locking or some other mechanisms can be used to ensure
5629  * the integrity of the counters (sndbuf and wmem_alloc) used
5630  * in this place.  We assume that we don't need locks either until proven
5631  * otherwise.
5632  *
5633  * Another thing to note is that we include the Async I/O support
5634  * here, again, by modeling the current TCP/UDP code.  We don't have
5635  * a good way to test with it yet.
5636  */
5637 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5638 {
5639 	struct sock *sk = sock->sk;
5640 	struct sctp_sock *sp = sctp_sk(sk);
5641 	unsigned int mask;
5642 
5643 	poll_wait(file, sk->sk_sleep, wait);
5644 
5645 	/* A TCP-style listening socket becomes readable when the accept queue
5646 	 * is not empty.
5647 	 */
5648 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5649 		return (!list_empty(&sp->ep->asocs)) ?
5650 			(POLLIN | POLLRDNORM) : 0;
5651 
5652 	mask = 0;
5653 
5654 	/* Is there any exceptional events?  */
5655 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5656 		mask |= POLLERR;
5657 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5658 		mask |= POLLRDHUP;
5659 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5660 		mask |= POLLHUP;
5661 
5662 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5663 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
5664 	    (sk->sk_shutdown & RCV_SHUTDOWN))
5665 		mask |= POLLIN | POLLRDNORM;
5666 
5667 	/* The association is either gone or not ready.  */
5668 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5669 		return mask;
5670 
5671 	/* Is it writable?  */
5672 	if (sctp_writeable(sk)) {
5673 		mask |= POLLOUT | POLLWRNORM;
5674 	} else {
5675 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5676 		/*
5677 		 * Since the socket is not locked, the buffer
5678 		 * might be made available after the writeable check and
5679 		 * before the bit is set.  This could cause a lost I/O
5680 		 * signal.  tcp_poll() has a race breaker for this race
5681 		 * condition.  Based on their implementation, we put
5682 		 * in the following code to cover it as well.
5683 		 */
5684 		if (sctp_writeable(sk))
5685 			mask |= POLLOUT | POLLWRNORM;
5686 	}
5687 	return mask;
5688 }
5689 
5690 /********************************************************************
5691  * 2nd Level Abstractions
5692  ********************************************************************/
5693 
5694 static struct sctp_bind_bucket *sctp_bucket_create(
5695 	struct sctp_bind_hashbucket *head, unsigned short snum)
5696 {
5697 	struct sctp_bind_bucket *pp;
5698 
5699 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5700 	SCTP_DBG_OBJCNT_INC(bind_bucket);
5701 	if (pp) {
5702 		pp->port = snum;
5703 		pp->fastreuse = 0;
5704 		INIT_HLIST_HEAD(&pp->owner);
5705 		if ((pp->next = head->chain) != NULL)
5706 			pp->next->pprev = &pp->next;
5707 		head->chain = pp;
5708 		pp->pprev = &head->chain;
5709 	}
5710 	return pp;
5711 }
5712 
5713 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5714 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5715 {
5716 	if (pp && hlist_empty(&pp->owner)) {
5717 		if (pp->next)
5718 			pp->next->pprev = pp->pprev;
5719 		*(pp->pprev) = pp->next;
5720 		kmem_cache_free(sctp_bucket_cachep, pp);
5721 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5722 	}
5723 }
5724 
5725 /* Release this socket's reference to a local port.  */
5726 static inline void __sctp_put_port(struct sock *sk)
5727 {
5728 	struct sctp_bind_hashbucket *head =
5729 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5730 	struct sctp_bind_bucket *pp;
5731 
5732 	sctp_spin_lock(&head->lock);
5733 	pp = sctp_sk(sk)->bind_hash;
5734 	__sk_del_bind_node(sk);
5735 	sctp_sk(sk)->bind_hash = NULL;
5736 	inet_sk(sk)->num = 0;
5737 	sctp_bucket_destroy(pp);
5738 	sctp_spin_unlock(&head->lock);
5739 }
5740 
5741 void sctp_put_port(struct sock *sk)
5742 {
5743 	sctp_local_bh_disable();
5744 	__sctp_put_port(sk);
5745 	sctp_local_bh_enable();
5746 }
5747 
5748 /*
5749  * The system picks an ephemeral port and choose an address set equivalent
5750  * to binding with a wildcard address.
5751  * One of those addresses will be the primary address for the association.
5752  * This automatically enables the multihoming capability of SCTP.
5753  */
5754 static int sctp_autobind(struct sock *sk)
5755 {
5756 	union sctp_addr autoaddr;
5757 	struct sctp_af *af;
5758 	__be16 port;
5759 
5760 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5761 	af = sctp_sk(sk)->pf->af;
5762 
5763 	port = htons(inet_sk(sk)->num);
5764 	af->inaddr_any(&autoaddr, port);
5765 
5766 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5767 }
5768 
5769 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5770  *
5771  * From RFC 2292
5772  * 4.2 The cmsghdr Structure *
5773  *
5774  * When ancillary data is sent or received, any number of ancillary data
5775  * objects can be specified by the msg_control and msg_controllen members of
5776  * the msghdr structure, because each object is preceded by
5777  * a cmsghdr structure defining the object's length (the cmsg_len member).
5778  * Historically Berkeley-derived implementations have passed only one object
5779  * at a time, but this API allows multiple objects to be
5780  * passed in a single call to sendmsg() or recvmsg(). The following example
5781  * shows two ancillary data objects in a control buffer.
5782  *
5783  *   |<--------------------------- msg_controllen -------------------------->|
5784  *   |                                                                       |
5785  *
5786  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5787  *
5788  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5789  *   |                                   |                                   |
5790  *
5791  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5792  *
5793  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5794  *   |                                |  |                                |  |
5795  *
5796  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5797  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5798  *
5799  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5800  *
5801  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5802  *    ^
5803  *    |
5804  *
5805  * msg_control
5806  * points here
5807  */
5808 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5809 				  sctp_cmsgs_t *cmsgs)
5810 {
5811 	struct cmsghdr *cmsg;
5812 
5813 	for (cmsg = CMSG_FIRSTHDR(msg);
5814 	     cmsg != NULL;
5815 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5816 		if (!CMSG_OK(msg, cmsg))
5817 			return -EINVAL;
5818 
5819 		/* Should we parse this header or ignore?  */
5820 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5821 			continue;
5822 
5823 		/* Strictly check lengths following example in SCM code.  */
5824 		switch (cmsg->cmsg_type) {
5825 		case SCTP_INIT:
5826 			/* SCTP Socket API Extension
5827 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5828 			 *
5829 			 * This cmsghdr structure provides information for
5830 			 * initializing new SCTP associations with sendmsg().
5831 			 * The SCTP_INITMSG socket option uses this same data
5832 			 * structure.  This structure is not used for
5833 			 * recvmsg().
5834 			 *
5835 			 * cmsg_level    cmsg_type      cmsg_data[]
5836 			 * ------------  ------------   ----------------------
5837 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5838 			 */
5839 			if (cmsg->cmsg_len !=
5840 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5841 				return -EINVAL;
5842 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5843 			break;
5844 
5845 		case SCTP_SNDRCV:
5846 			/* SCTP Socket API Extension
5847 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5848 			 *
5849 			 * This cmsghdr structure specifies SCTP options for
5850 			 * sendmsg() and describes SCTP header information
5851 			 * about a received message through recvmsg().
5852 			 *
5853 			 * cmsg_level    cmsg_type      cmsg_data[]
5854 			 * ------------  ------------   ----------------------
5855 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5856 			 */
5857 			if (cmsg->cmsg_len !=
5858 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5859 				return -EINVAL;
5860 
5861 			cmsgs->info =
5862 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5863 
5864 			/* Minimally, validate the sinfo_flags. */
5865 			if (cmsgs->info->sinfo_flags &
5866 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5867 			      SCTP_ABORT | SCTP_EOF))
5868 				return -EINVAL;
5869 			break;
5870 
5871 		default:
5872 			return -EINVAL;
5873 		}
5874 	}
5875 	return 0;
5876 }
5877 
5878 /*
5879  * Wait for a packet..
5880  * Note: This function is the same function as in core/datagram.c
5881  * with a few modifications to make lksctp work.
5882  */
5883 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5884 {
5885 	int error;
5886 	DEFINE_WAIT(wait);
5887 
5888 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5889 
5890 	/* Socket errors? */
5891 	error = sock_error(sk);
5892 	if (error)
5893 		goto out;
5894 
5895 	if (!skb_queue_empty(&sk->sk_receive_queue))
5896 		goto ready;
5897 
5898 	/* Socket shut down?  */
5899 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5900 		goto out;
5901 
5902 	/* Sequenced packets can come disconnected.  If so we report the
5903 	 * problem.
5904 	 */
5905 	error = -ENOTCONN;
5906 
5907 	/* Is there a good reason to think that we may receive some data?  */
5908 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5909 		goto out;
5910 
5911 	/* Handle signals.  */
5912 	if (signal_pending(current))
5913 		goto interrupted;
5914 
5915 	/* Let another process have a go.  Since we are going to sleep
5916 	 * anyway.  Note: This may cause odd behaviors if the message
5917 	 * does not fit in the user's buffer, but this seems to be the
5918 	 * only way to honor MSG_DONTWAIT realistically.
5919 	 */
5920 	sctp_release_sock(sk);
5921 	*timeo_p = schedule_timeout(*timeo_p);
5922 	sctp_lock_sock(sk);
5923 
5924 ready:
5925 	finish_wait(sk->sk_sleep, &wait);
5926 	return 0;
5927 
5928 interrupted:
5929 	error = sock_intr_errno(*timeo_p);
5930 
5931 out:
5932 	finish_wait(sk->sk_sleep, &wait);
5933 	*err = error;
5934 	return error;
5935 }
5936 
5937 /* Receive a datagram.
5938  * Note: This is pretty much the same routine as in core/datagram.c
5939  * with a few changes to make lksctp work.
5940  */
5941 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5942 					      int noblock, int *err)
5943 {
5944 	int error;
5945 	struct sk_buff *skb;
5946 	long timeo;
5947 
5948 	timeo = sock_rcvtimeo(sk, noblock);
5949 
5950 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5951 			  timeo, MAX_SCHEDULE_TIMEOUT);
5952 
5953 	do {
5954 		/* Again only user level code calls this function,
5955 		 * so nothing interrupt level
5956 		 * will suddenly eat the receive_queue.
5957 		 *
5958 		 *  Look at current nfs client by the way...
5959 		 *  However, this function was corrent in any case. 8)
5960 		 */
5961 		if (flags & MSG_PEEK) {
5962 			spin_lock_bh(&sk->sk_receive_queue.lock);
5963 			skb = skb_peek(&sk->sk_receive_queue);
5964 			if (skb)
5965 				atomic_inc(&skb->users);
5966 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5967 		} else {
5968 			skb = skb_dequeue(&sk->sk_receive_queue);
5969 		}
5970 
5971 		if (skb)
5972 			return skb;
5973 
5974 		/* Caller is allowed not to check sk->sk_err before calling. */
5975 		error = sock_error(sk);
5976 		if (error)
5977 			goto no_packet;
5978 
5979 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5980 			break;
5981 
5982 		/* User doesn't want to wait.  */
5983 		error = -EAGAIN;
5984 		if (!timeo)
5985 			goto no_packet;
5986 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5987 
5988 	return NULL;
5989 
5990 no_packet:
5991 	*err = error;
5992 	return NULL;
5993 }
5994 
5995 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5996 static void __sctp_write_space(struct sctp_association *asoc)
5997 {
5998 	struct sock *sk = asoc->base.sk;
5999 	struct socket *sock = sk->sk_socket;
6000 
6001 	if ((sctp_wspace(asoc) > 0) && sock) {
6002 		if (waitqueue_active(&asoc->wait))
6003 			wake_up_interruptible(&asoc->wait);
6004 
6005 		if (sctp_writeable(sk)) {
6006 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6007 				wake_up_interruptible(sk->sk_sleep);
6008 
6009 			/* Note that we try to include the Async I/O support
6010 			 * here by modeling from the current TCP/UDP code.
6011 			 * We have not tested with it yet.
6012 			 */
6013 			if (sock->fasync_list &&
6014 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
6015 				sock_wake_async(sock, 2, POLL_OUT);
6016 		}
6017 	}
6018 }
6019 
6020 /* Do accounting for the sndbuf space.
6021  * Decrement the used sndbuf space of the corresponding association by the
6022  * data size which was just transmitted(freed).
6023  */
6024 static void sctp_wfree(struct sk_buff *skb)
6025 {
6026 	struct sctp_association *asoc;
6027 	struct sctp_chunk *chunk;
6028 	struct sock *sk;
6029 
6030 	/* Get the saved chunk pointer.  */
6031 	chunk = *((struct sctp_chunk **)(skb->cb));
6032 	asoc = chunk->asoc;
6033 	sk = asoc->base.sk;
6034 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6035 				sizeof(struct sk_buff) +
6036 				sizeof(struct sctp_chunk);
6037 
6038 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6039 
6040 	/*
6041 	 * This undoes what is done via sk_charge_skb
6042 	 */
6043 	sk->sk_wmem_queued   -= skb->truesize;
6044 	sk->sk_forward_alloc += skb->truesize;
6045 
6046 	sock_wfree(skb);
6047 	__sctp_write_space(asoc);
6048 
6049 	sctp_association_put(asoc);
6050 }
6051 
6052 /* Do accounting for the receive space on the socket.
6053  * Accounting for the association is done in ulpevent.c
6054  * We set this as a destructor for the cloned data skbs so that
6055  * accounting is done at the correct time.
6056  */
6057 void sctp_sock_rfree(struct sk_buff *skb)
6058 {
6059 	struct sock *sk = skb->sk;
6060 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6061 
6062 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6063 
6064 	/*
6065 	 * Mimic the behavior of sk_stream_rfree
6066 	 */
6067 	sk->sk_forward_alloc += event->rmem_len;
6068 }
6069 
6070 
6071 /* Helper function to wait for space in the sndbuf.  */
6072 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6073 				size_t msg_len)
6074 {
6075 	struct sock *sk = asoc->base.sk;
6076 	int err = 0;
6077 	long current_timeo = *timeo_p;
6078 	DEFINE_WAIT(wait);
6079 
6080 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6081 			  asoc, (long)(*timeo_p), msg_len);
6082 
6083 	/* Increment the association's refcnt.  */
6084 	sctp_association_hold(asoc);
6085 
6086 	/* Wait on the association specific sndbuf space. */
6087 	for (;;) {
6088 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6089 					  TASK_INTERRUPTIBLE);
6090 		if (!*timeo_p)
6091 			goto do_nonblock;
6092 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6093 		    asoc->base.dead)
6094 			goto do_error;
6095 		if (signal_pending(current))
6096 			goto do_interrupted;
6097 		if (msg_len <= sctp_wspace(asoc))
6098 			break;
6099 
6100 		/* Let another process have a go.  Since we are going
6101 		 * to sleep anyway.
6102 		 */
6103 		sctp_release_sock(sk);
6104 		current_timeo = schedule_timeout(current_timeo);
6105 		BUG_ON(sk != asoc->base.sk);
6106 		sctp_lock_sock(sk);
6107 
6108 		*timeo_p = current_timeo;
6109 	}
6110 
6111 out:
6112 	finish_wait(&asoc->wait, &wait);
6113 
6114 	/* Release the association's refcnt.  */
6115 	sctp_association_put(asoc);
6116 
6117 	return err;
6118 
6119 do_error:
6120 	err = -EPIPE;
6121 	goto out;
6122 
6123 do_interrupted:
6124 	err = sock_intr_errno(*timeo_p);
6125 	goto out;
6126 
6127 do_nonblock:
6128 	err = -EAGAIN;
6129 	goto out;
6130 }
6131 
6132 /* If socket sndbuf has changed, wake up all per association waiters.  */
6133 void sctp_write_space(struct sock *sk)
6134 {
6135 	struct sctp_association *asoc;
6136 	struct list_head *pos;
6137 
6138 	/* Wake up the tasks in each wait queue.  */
6139 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
6140 		asoc = list_entry(pos, struct sctp_association, asocs);
6141 		__sctp_write_space(asoc);
6142 	}
6143 }
6144 
6145 /* Is there any sndbuf space available on the socket?
6146  *
6147  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6148  * associations on the same socket.  For a UDP-style socket with
6149  * multiple associations, it is possible for it to be "unwriteable"
6150  * prematurely.  I assume that this is acceptable because
6151  * a premature "unwriteable" is better than an accidental "writeable" which
6152  * would cause an unwanted block under certain circumstances.  For the 1-1
6153  * UDP-style sockets or TCP-style sockets, this code should work.
6154  *  - Daisy
6155  */
6156 static int sctp_writeable(struct sock *sk)
6157 {
6158 	int amt = 0;
6159 
6160 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6161 	if (amt < 0)
6162 		amt = 0;
6163 	return amt;
6164 }
6165 
6166 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6167  * returns immediately with EINPROGRESS.
6168  */
6169 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6170 {
6171 	struct sock *sk = asoc->base.sk;
6172 	int err = 0;
6173 	long current_timeo = *timeo_p;
6174 	DEFINE_WAIT(wait);
6175 
6176 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
6177 			  (long)(*timeo_p));
6178 
6179 	/* Increment the association's refcnt.  */
6180 	sctp_association_hold(asoc);
6181 
6182 	for (;;) {
6183 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6184 					  TASK_INTERRUPTIBLE);
6185 		if (!*timeo_p)
6186 			goto do_nonblock;
6187 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6188 			break;
6189 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6190 		    asoc->base.dead)
6191 			goto do_error;
6192 		if (signal_pending(current))
6193 			goto do_interrupted;
6194 
6195 		if (sctp_state(asoc, ESTABLISHED))
6196 			break;
6197 
6198 		/* Let another process have a go.  Since we are going
6199 		 * to sleep anyway.
6200 		 */
6201 		sctp_release_sock(sk);
6202 		current_timeo = schedule_timeout(current_timeo);
6203 		sctp_lock_sock(sk);
6204 
6205 		*timeo_p = current_timeo;
6206 	}
6207 
6208 out:
6209 	finish_wait(&asoc->wait, &wait);
6210 
6211 	/* Release the association's refcnt.  */
6212 	sctp_association_put(asoc);
6213 
6214 	return err;
6215 
6216 do_error:
6217 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6218 		err = -ETIMEDOUT;
6219 	else
6220 		err = -ECONNREFUSED;
6221 	goto out;
6222 
6223 do_interrupted:
6224 	err = sock_intr_errno(*timeo_p);
6225 	goto out;
6226 
6227 do_nonblock:
6228 	err = -EINPROGRESS;
6229 	goto out;
6230 }
6231 
6232 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6233 {
6234 	struct sctp_endpoint *ep;
6235 	int err = 0;
6236 	DEFINE_WAIT(wait);
6237 
6238 	ep = sctp_sk(sk)->ep;
6239 
6240 
6241 	for (;;) {
6242 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6243 					  TASK_INTERRUPTIBLE);
6244 
6245 		if (list_empty(&ep->asocs)) {
6246 			sctp_release_sock(sk);
6247 			timeo = schedule_timeout(timeo);
6248 			sctp_lock_sock(sk);
6249 		}
6250 
6251 		err = -EINVAL;
6252 		if (!sctp_sstate(sk, LISTENING))
6253 			break;
6254 
6255 		err = 0;
6256 		if (!list_empty(&ep->asocs))
6257 			break;
6258 
6259 		err = sock_intr_errno(timeo);
6260 		if (signal_pending(current))
6261 			break;
6262 
6263 		err = -EAGAIN;
6264 		if (!timeo)
6265 			break;
6266 	}
6267 
6268 	finish_wait(sk->sk_sleep, &wait);
6269 
6270 	return err;
6271 }
6272 
6273 static void sctp_wait_for_close(struct sock *sk, long timeout)
6274 {
6275 	DEFINE_WAIT(wait);
6276 
6277 	do {
6278 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6279 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6280 			break;
6281 		sctp_release_sock(sk);
6282 		timeout = schedule_timeout(timeout);
6283 		sctp_lock_sock(sk);
6284 	} while (!signal_pending(current) && timeout);
6285 
6286 	finish_wait(sk->sk_sleep, &wait);
6287 }
6288 
6289 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6290 {
6291 	struct sk_buff *frag;
6292 
6293 	if (!skb->data_len)
6294 		goto done;
6295 
6296 	/* Don't forget the fragments. */
6297 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6298 		sctp_sock_rfree_frag(frag);
6299 
6300 done:
6301 	sctp_sock_rfree(skb);
6302 }
6303 
6304 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6305 {
6306 	struct sk_buff *frag;
6307 
6308 	if (!skb->data_len)
6309 		goto done;
6310 
6311 	/* Don't forget the fragments. */
6312 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6313 		sctp_skb_set_owner_r_frag(frag, sk);
6314 
6315 done:
6316 	sctp_skb_set_owner_r(skb, sk);
6317 }
6318 
6319 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6320  * and its messages to the newsk.
6321  */
6322 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6323 			      struct sctp_association *assoc,
6324 			      sctp_socket_type_t type)
6325 {
6326 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6327 	struct sctp_sock *newsp = sctp_sk(newsk);
6328 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6329 	struct sctp_endpoint *newep = newsp->ep;
6330 	struct sk_buff *skb, *tmp;
6331 	struct sctp_ulpevent *event;
6332 	int flags = 0;
6333 
6334 	/* Migrate socket buffer sizes and all the socket level options to the
6335 	 * new socket.
6336 	 */
6337 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6338 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6339 	/* Brute force copy old sctp opt. */
6340 	inet_sk_copy_descendant(newsk, oldsk);
6341 
6342 	/* Restore the ep value that was overwritten with the above structure
6343 	 * copy.
6344 	 */
6345 	newsp->ep = newep;
6346 	newsp->hmac = NULL;
6347 
6348 	/* Hook this new socket in to the bind_hash list. */
6349 	pp = sctp_sk(oldsk)->bind_hash;
6350 	sk_add_bind_node(newsk, &pp->owner);
6351 	sctp_sk(newsk)->bind_hash = pp;
6352 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
6353 
6354 	/* Copy the bind_addr list from the original endpoint to the new
6355 	 * endpoint so that we can handle restarts properly
6356 	 */
6357 	if (PF_INET6 == assoc->base.sk->sk_family)
6358 		flags = SCTP_ADDR6_ALLOWED;
6359 	if (assoc->peer.ipv4_address)
6360 		flags |= SCTP_ADDR4_PEERSUPP;
6361 	if (assoc->peer.ipv6_address)
6362 		flags |= SCTP_ADDR6_PEERSUPP;
6363 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
6364 			     &oldsp->ep->base.bind_addr,
6365 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
6366 
6367 	/* Move any messages in the old socket's receive queue that are for the
6368 	 * peeled off association to the new socket's receive queue.
6369 	 */
6370 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6371 		event = sctp_skb2event(skb);
6372 		if (event->asoc == assoc) {
6373 			sctp_sock_rfree_frag(skb);
6374 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6375 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6376 			sctp_skb_set_owner_r_frag(skb, newsk);
6377 		}
6378 	}
6379 
6380 	/* Clean up any messages pending delivery due to partial
6381 	 * delivery.   Three cases:
6382 	 * 1) No partial deliver;  no work.
6383 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6384 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6385 	 */
6386 	skb_queue_head_init(&newsp->pd_lobby);
6387 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6388 
6389 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6390 		struct sk_buff_head *queue;
6391 
6392 		/* Decide which queue to move pd_lobby skbs to. */
6393 		if (assoc->ulpq.pd_mode) {
6394 			queue = &newsp->pd_lobby;
6395 		} else
6396 			queue = &newsk->sk_receive_queue;
6397 
6398 		/* Walk through the pd_lobby, looking for skbs that
6399 		 * need moved to the new socket.
6400 		 */
6401 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6402 			event = sctp_skb2event(skb);
6403 			if (event->asoc == assoc) {
6404 				sctp_sock_rfree_frag(skb);
6405 				__skb_unlink(skb, &oldsp->pd_lobby);
6406 				__skb_queue_tail(queue, skb);
6407 				sctp_skb_set_owner_r_frag(skb, newsk);
6408 			}
6409 		}
6410 
6411 		/* Clear up any skbs waiting for the partial
6412 		 * delivery to finish.
6413 		 */
6414 		if (assoc->ulpq.pd_mode)
6415 			sctp_clear_pd(oldsk, NULL);
6416 
6417 	}
6418 
6419 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6420 		sctp_sock_rfree_frag(skb);
6421 		sctp_skb_set_owner_r_frag(skb, newsk);
6422 	}
6423 
6424 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6425 		sctp_sock_rfree_frag(skb);
6426 		sctp_skb_set_owner_r_frag(skb, newsk);
6427 	}
6428 
6429 	/* Set the type of socket to indicate that it is peeled off from the
6430 	 * original UDP-style socket or created with the accept() call on a
6431 	 * TCP-style socket..
6432 	 */
6433 	newsp->type = type;
6434 
6435 	/* Mark the new socket "in-use" by the user so that any packets
6436 	 * that may arrive on the association after we've moved it are
6437 	 * queued to the backlog.  This prevents a potential race between
6438 	 * backlog processing on the old socket and new-packet processing
6439 	 * on the new socket.
6440 	 *
6441 	 * The caller has just allocated newsk so we can guarantee that other
6442 	 * paths won't try to lock it and then oldsk.
6443 	 */
6444 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6445 	sctp_assoc_migrate(assoc, newsk);
6446 
6447 	/* If the association on the newsk is already closed before accept()
6448 	 * is called, set RCV_SHUTDOWN flag.
6449 	 */
6450 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6451 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6452 
6453 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6454 	sctp_release_sock(newsk);
6455 }
6456 
6457 
6458 /* This proto struct describes the ULP interface for SCTP.  */
6459 struct proto sctp_prot = {
6460 	.name        =	"SCTP",
6461 	.owner       =	THIS_MODULE,
6462 	.close       =	sctp_close,
6463 	.connect     =	sctp_connect,
6464 	.disconnect  =	sctp_disconnect,
6465 	.accept      =	sctp_accept,
6466 	.ioctl       =	sctp_ioctl,
6467 	.init        =	sctp_init_sock,
6468 	.destroy     =	sctp_destroy_sock,
6469 	.shutdown    =	sctp_shutdown,
6470 	.setsockopt  =	sctp_setsockopt,
6471 	.getsockopt  =	sctp_getsockopt,
6472 	.sendmsg     =	sctp_sendmsg,
6473 	.recvmsg     =	sctp_recvmsg,
6474 	.bind        =	sctp_bind,
6475 	.backlog_rcv =	sctp_backlog_rcv,
6476 	.hash        =	sctp_hash,
6477 	.unhash      =	sctp_unhash,
6478 	.get_port    =	sctp_get_port,
6479 	.obj_size    =  sizeof(struct sctp_sock),
6480 	.sysctl_mem  =  sysctl_sctp_mem,
6481 	.sysctl_rmem =  sysctl_sctp_rmem,
6482 	.sysctl_wmem =  sysctl_sctp_wmem,
6483 	.memory_pressure = &sctp_memory_pressure,
6484 	.enter_memory_pressure = sctp_enter_memory_pressure,
6485 	.memory_allocated = &sctp_memory_allocated,
6486 };
6487 
6488 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6489 struct proto sctpv6_prot = {
6490 	.name		= "SCTPv6",
6491 	.owner		= THIS_MODULE,
6492 	.close		= sctp_close,
6493 	.connect	= sctp_connect,
6494 	.disconnect	= sctp_disconnect,
6495 	.accept		= sctp_accept,
6496 	.ioctl		= sctp_ioctl,
6497 	.init		= sctp_init_sock,
6498 	.destroy	= sctp_destroy_sock,
6499 	.shutdown	= sctp_shutdown,
6500 	.setsockopt	= sctp_setsockopt,
6501 	.getsockopt	= sctp_getsockopt,
6502 	.sendmsg	= sctp_sendmsg,
6503 	.recvmsg	= sctp_recvmsg,
6504 	.bind		= sctp_bind,
6505 	.backlog_rcv	= sctp_backlog_rcv,
6506 	.hash		= sctp_hash,
6507 	.unhash		= sctp_unhash,
6508 	.get_port	= sctp_get_port,
6509 	.obj_size	= sizeof(struct sctp6_sock),
6510 	.sysctl_mem	= sysctl_sctp_mem,
6511 	.sysctl_rmem	= sysctl_sctp_rmem,
6512 	.sysctl_wmem	= sysctl_sctp_wmem,
6513 	.memory_pressure = &sctp_memory_pressure,
6514 	.enter_memory_pressure = sctp_enter_memory_pressure,
6515 	.memory_allocated = &sctp_memory_allocated,
6516 };
6517 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6518