1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 static atomic_t sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(void) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk_charge_skb(sk, chunk->skb); 178 } 179 180 /* Verify that this is a valid address. */ 181 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 182 int len) 183 { 184 struct sctp_af *af; 185 186 /* Verify basic sockaddr. */ 187 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 188 if (!af) 189 return -EINVAL; 190 191 /* Is this a valid SCTP address? */ 192 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 193 return -EINVAL; 194 195 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 196 return -EINVAL; 197 198 return 0; 199 } 200 201 /* Look up the association by its id. If this is not a UDP-style 202 * socket, the ID field is always ignored. 203 */ 204 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 205 { 206 struct sctp_association *asoc = NULL; 207 208 /* If this is not a UDP-style socket, assoc id should be ignored. */ 209 if (!sctp_style(sk, UDP)) { 210 /* Return NULL if the socket state is not ESTABLISHED. It 211 * could be a TCP-style listening socket or a socket which 212 * hasn't yet called connect() to establish an association. 213 */ 214 if (!sctp_sstate(sk, ESTABLISHED)) 215 return NULL; 216 217 /* Get the first and the only association from the list. */ 218 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 219 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 220 struct sctp_association, asocs); 221 return asoc; 222 } 223 224 /* Otherwise this is a UDP-style socket. */ 225 if (!id || (id == (sctp_assoc_t)-1)) 226 return NULL; 227 228 spin_lock_bh(&sctp_assocs_id_lock); 229 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 230 spin_unlock_bh(&sctp_assocs_id_lock); 231 232 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 233 return NULL; 234 235 return asoc; 236 } 237 238 /* Look up the transport from an address and an assoc id. If both address and 239 * id are specified, the associations matching the address and the id should be 240 * the same. 241 */ 242 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 243 struct sockaddr_storage *addr, 244 sctp_assoc_t id) 245 { 246 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 247 struct sctp_transport *transport; 248 union sctp_addr *laddr = (union sctp_addr *)addr; 249 250 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 251 laddr, 252 &transport); 253 254 if (!addr_asoc) 255 return NULL; 256 257 id_asoc = sctp_id2assoc(sk, id); 258 if (id_asoc && (id_asoc != addr_asoc)) 259 return NULL; 260 261 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 262 (union sctp_addr *)addr); 263 264 return transport; 265 } 266 267 /* API 3.1.2 bind() - UDP Style Syntax 268 * The syntax of bind() is, 269 * 270 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 271 * 272 * sd - the socket descriptor returned by socket(). 273 * addr - the address structure (struct sockaddr_in or struct 274 * sockaddr_in6 [RFC 2553]), 275 * addr_len - the size of the address structure. 276 */ 277 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 278 { 279 int retval = 0; 280 281 sctp_lock_sock(sk); 282 283 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 284 sk, addr, addr_len); 285 286 /* Disallow binding twice. */ 287 if (!sctp_sk(sk)->ep->base.bind_addr.port) 288 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 289 addr_len); 290 else 291 retval = -EINVAL; 292 293 sctp_release_sock(sk); 294 295 return retval; 296 } 297 298 static long sctp_get_port_local(struct sock *, union sctp_addr *); 299 300 /* Verify this is a valid sockaddr. */ 301 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 302 union sctp_addr *addr, int len) 303 { 304 struct sctp_af *af; 305 306 /* Check minimum size. */ 307 if (len < sizeof (struct sockaddr)) 308 return NULL; 309 310 /* Does this PF support this AF? */ 311 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 312 return NULL; 313 314 /* If we get this far, af is valid. */ 315 af = sctp_get_af_specific(addr->sa.sa_family); 316 317 if (len < af->sockaddr_len) 318 return NULL; 319 320 return af; 321 } 322 323 /* Bind a local address either to an endpoint or to an association. */ 324 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 325 { 326 struct sctp_sock *sp = sctp_sk(sk); 327 struct sctp_endpoint *ep = sp->ep; 328 struct sctp_bind_addr *bp = &ep->base.bind_addr; 329 struct sctp_af *af; 330 unsigned short snum; 331 int ret = 0; 332 333 /* Common sockaddr verification. */ 334 af = sctp_sockaddr_af(sp, addr, len); 335 if (!af) { 336 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 337 sk, addr, len); 338 return -EINVAL; 339 } 340 341 snum = ntohs(addr->v4.sin_port); 342 343 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 344 ", port: %d, new port: %d, len: %d)\n", 345 sk, 346 addr, 347 bp->port, snum, 348 len); 349 350 /* PF specific bind() address verification. */ 351 if (!sp->pf->bind_verify(sp, addr)) 352 return -EADDRNOTAVAIL; 353 354 /* We must either be unbound, or bind to the same port. 355 * It's OK to allow 0 ports if we are already bound. 356 * We'll just inhert an already bound port in this case 357 */ 358 if (bp->port) { 359 if (!snum) 360 snum = bp->port; 361 else if (snum != bp->port) { 362 SCTP_DEBUG_PRINTK("sctp_do_bind:" 363 " New port %d does not match existing port " 364 "%d.\n", snum, bp->port); 365 return -EINVAL; 366 } 367 } 368 369 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 370 return -EACCES; 371 372 /* Make sure we are allowed to bind here. 373 * The function sctp_get_port_local() does duplicate address 374 * detection. 375 */ 376 addr->v4.sin_port = htons(snum); 377 if ((ret = sctp_get_port_local(sk, addr))) { 378 if (ret == (long) sk) { 379 /* This endpoint has a conflicting address. */ 380 return -EINVAL; 381 } else { 382 return -EADDRINUSE; 383 } 384 } 385 386 /* Refresh ephemeral port. */ 387 if (!bp->port) 388 bp->port = inet_sk(sk)->num; 389 390 /* Add the address to the bind address list. 391 * Use GFP_ATOMIC since BHs will be disabled. 392 */ 393 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC); 394 395 /* Copy back into socket for getsockname() use. */ 396 if (!ret) { 397 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 398 af->to_sk_saddr(addr, sk); 399 } 400 401 return ret; 402 } 403 404 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 405 * 406 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 407 * at any one time. If a sender, after sending an ASCONF chunk, decides 408 * it needs to transfer another ASCONF Chunk, it MUST wait until the 409 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 410 * subsequent ASCONF. Note this restriction binds each side, so at any 411 * time two ASCONF may be in-transit on any given association (one sent 412 * from each endpoint). 413 */ 414 static int sctp_send_asconf(struct sctp_association *asoc, 415 struct sctp_chunk *chunk) 416 { 417 int retval = 0; 418 419 /* If there is an outstanding ASCONF chunk, queue it for later 420 * transmission. 421 */ 422 if (asoc->addip_last_asconf) { 423 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 424 goto out; 425 } 426 427 /* Hold the chunk until an ASCONF_ACK is received. */ 428 sctp_chunk_hold(chunk); 429 retval = sctp_primitive_ASCONF(asoc, chunk); 430 if (retval) 431 sctp_chunk_free(chunk); 432 else 433 asoc->addip_last_asconf = chunk; 434 435 out: 436 return retval; 437 } 438 439 /* Add a list of addresses as bind addresses to local endpoint or 440 * association. 441 * 442 * Basically run through each address specified in the addrs/addrcnt 443 * array/length pair, determine if it is IPv6 or IPv4 and call 444 * sctp_do_bind() on it. 445 * 446 * If any of them fails, then the operation will be reversed and the 447 * ones that were added will be removed. 448 * 449 * Only sctp_setsockopt_bindx() is supposed to call this function. 450 */ 451 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 452 { 453 int cnt; 454 int retval = 0; 455 void *addr_buf; 456 struct sockaddr *sa_addr; 457 struct sctp_af *af; 458 459 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 460 sk, addrs, addrcnt); 461 462 addr_buf = addrs; 463 for (cnt = 0; cnt < addrcnt; cnt++) { 464 /* The list may contain either IPv4 or IPv6 address; 465 * determine the address length for walking thru the list. 466 */ 467 sa_addr = (struct sockaddr *)addr_buf; 468 af = sctp_get_af_specific(sa_addr->sa_family); 469 if (!af) { 470 retval = -EINVAL; 471 goto err_bindx_add; 472 } 473 474 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 475 af->sockaddr_len); 476 477 addr_buf += af->sockaddr_len; 478 479 err_bindx_add: 480 if (retval < 0) { 481 /* Failed. Cleanup the ones that have been added */ 482 if (cnt > 0) 483 sctp_bindx_rem(sk, addrs, cnt); 484 return retval; 485 } 486 } 487 488 return retval; 489 } 490 491 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 492 * associations that are part of the endpoint indicating that a list of local 493 * addresses are added to the endpoint. 494 * 495 * If any of the addresses is already in the bind address list of the 496 * association, we do not send the chunk for that association. But it will not 497 * affect other associations. 498 * 499 * Only sctp_setsockopt_bindx() is supposed to call this function. 500 */ 501 static int sctp_send_asconf_add_ip(struct sock *sk, 502 struct sockaddr *addrs, 503 int addrcnt) 504 { 505 struct sctp_sock *sp; 506 struct sctp_endpoint *ep; 507 struct sctp_association *asoc; 508 struct sctp_bind_addr *bp; 509 struct sctp_chunk *chunk; 510 struct sctp_sockaddr_entry *laddr; 511 union sctp_addr *addr; 512 union sctp_addr saveaddr; 513 void *addr_buf; 514 struct sctp_af *af; 515 struct list_head *pos; 516 struct list_head *p; 517 int i; 518 int retval = 0; 519 520 if (!sctp_addip_enable) 521 return retval; 522 523 sp = sctp_sk(sk); 524 ep = sp->ep; 525 526 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 527 __FUNCTION__, sk, addrs, addrcnt); 528 529 list_for_each(pos, &ep->asocs) { 530 asoc = list_entry(pos, struct sctp_association, asocs); 531 532 if (!asoc->peer.asconf_capable) 533 continue; 534 535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 536 continue; 537 538 if (!sctp_state(asoc, ESTABLISHED)) 539 continue; 540 541 /* Check if any address in the packed array of addresses is 542 * in the bind address list of the association. If so, 543 * do not send the asconf chunk to its peer, but continue with 544 * other associations. 545 */ 546 addr_buf = addrs; 547 for (i = 0; i < addrcnt; i++) { 548 addr = (union sctp_addr *)addr_buf; 549 af = sctp_get_af_specific(addr->v4.sin_family); 550 if (!af) { 551 retval = -EINVAL; 552 goto out; 553 } 554 555 if (sctp_assoc_lookup_laddr(asoc, addr)) 556 break; 557 558 addr_buf += af->sockaddr_len; 559 } 560 if (i < addrcnt) 561 continue; 562 563 /* Use the first valid address in bind addr list of 564 * association as Address Parameter of ASCONF CHUNK. 565 */ 566 bp = &asoc->base.bind_addr; 567 p = bp->address_list.next; 568 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 570 addrcnt, SCTP_PARAM_ADD_IP); 571 if (!chunk) { 572 retval = -ENOMEM; 573 goto out; 574 } 575 576 retval = sctp_send_asconf(asoc, chunk); 577 if (retval) 578 goto out; 579 580 /* Add the new addresses to the bind address list with 581 * use_as_src set to 0. 582 */ 583 addr_buf = addrs; 584 for (i = 0; i < addrcnt; i++) { 585 addr = (union sctp_addr *)addr_buf; 586 af = sctp_get_af_specific(addr->v4.sin_family); 587 memcpy(&saveaddr, addr, af->sockaddr_len); 588 retval = sctp_add_bind_addr(bp, &saveaddr, 0, 589 GFP_ATOMIC); 590 addr_buf += af->sockaddr_len; 591 } 592 } 593 594 out: 595 return retval; 596 } 597 598 /* Remove a list of addresses from bind addresses list. Do not remove the 599 * last address. 600 * 601 * Basically run through each address specified in the addrs/addrcnt 602 * array/length pair, determine if it is IPv6 or IPv4 and call 603 * sctp_del_bind() on it. 604 * 605 * If any of them fails, then the operation will be reversed and the 606 * ones that were removed will be added back. 607 * 608 * At least one address has to be left; if only one address is 609 * available, the operation will return -EBUSY. 610 * 611 * Only sctp_setsockopt_bindx() is supposed to call this function. 612 */ 613 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 614 { 615 struct sctp_sock *sp = sctp_sk(sk); 616 struct sctp_endpoint *ep = sp->ep; 617 int cnt; 618 struct sctp_bind_addr *bp = &ep->base.bind_addr; 619 int retval = 0; 620 void *addr_buf; 621 union sctp_addr *sa_addr; 622 struct sctp_af *af; 623 624 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 625 sk, addrs, addrcnt); 626 627 addr_buf = addrs; 628 for (cnt = 0; cnt < addrcnt; cnt++) { 629 /* If the bind address list is empty or if there is only one 630 * bind address, there is nothing more to be removed (we need 631 * at least one address here). 632 */ 633 if (list_empty(&bp->address_list) || 634 (sctp_list_single_entry(&bp->address_list))) { 635 retval = -EBUSY; 636 goto err_bindx_rem; 637 } 638 639 sa_addr = (union sctp_addr *)addr_buf; 640 af = sctp_get_af_specific(sa_addr->sa.sa_family); 641 if (!af) { 642 retval = -EINVAL; 643 goto err_bindx_rem; 644 } 645 646 if (!af->addr_valid(sa_addr, sp, NULL)) { 647 retval = -EADDRNOTAVAIL; 648 goto err_bindx_rem; 649 } 650 651 if (sa_addr->v4.sin_port != htons(bp->port)) { 652 retval = -EINVAL; 653 goto err_bindx_rem; 654 } 655 656 /* FIXME - There is probably a need to check if sk->sk_saddr and 657 * sk->sk_rcv_addr are currently set to one of the addresses to 658 * be removed. This is something which needs to be looked into 659 * when we are fixing the outstanding issues with multi-homing 660 * socket routing and failover schemes. Refer to comments in 661 * sctp_do_bind(). -daisy 662 */ 663 retval = sctp_del_bind_addr(bp, sa_addr, call_rcu); 664 665 addr_buf += af->sockaddr_len; 666 err_bindx_rem: 667 if (retval < 0) { 668 /* Failed. Add the ones that has been removed back */ 669 if (cnt > 0) 670 sctp_bindx_add(sk, addrs, cnt); 671 return retval; 672 } 673 } 674 675 return retval; 676 } 677 678 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 679 * the associations that are part of the endpoint indicating that a list of 680 * local addresses are removed from the endpoint. 681 * 682 * If any of the addresses is already in the bind address list of the 683 * association, we do not send the chunk for that association. But it will not 684 * affect other associations. 685 * 686 * Only sctp_setsockopt_bindx() is supposed to call this function. 687 */ 688 static int sctp_send_asconf_del_ip(struct sock *sk, 689 struct sockaddr *addrs, 690 int addrcnt) 691 { 692 struct sctp_sock *sp; 693 struct sctp_endpoint *ep; 694 struct sctp_association *asoc; 695 struct sctp_transport *transport; 696 struct sctp_bind_addr *bp; 697 struct sctp_chunk *chunk; 698 union sctp_addr *laddr; 699 void *addr_buf; 700 struct sctp_af *af; 701 struct list_head *pos, *pos1; 702 struct sctp_sockaddr_entry *saddr; 703 int i; 704 int retval = 0; 705 706 if (!sctp_addip_enable) 707 return retval; 708 709 sp = sctp_sk(sk); 710 ep = sp->ep; 711 712 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 713 __FUNCTION__, sk, addrs, addrcnt); 714 715 list_for_each(pos, &ep->asocs) { 716 asoc = list_entry(pos, struct sctp_association, asocs); 717 718 if (!asoc->peer.asconf_capable) 719 continue; 720 721 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 722 continue; 723 724 if (!sctp_state(asoc, ESTABLISHED)) 725 continue; 726 727 /* Check if any address in the packed array of addresses is 728 * not present in the bind address list of the association. 729 * If so, do not send the asconf chunk to its peer, but 730 * continue with other associations. 731 */ 732 addr_buf = addrs; 733 for (i = 0; i < addrcnt; i++) { 734 laddr = (union sctp_addr *)addr_buf; 735 af = sctp_get_af_specific(laddr->v4.sin_family); 736 if (!af) { 737 retval = -EINVAL; 738 goto out; 739 } 740 741 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 742 break; 743 744 addr_buf += af->sockaddr_len; 745 } 746 if (i < addrcnt) 747 continue; 748 749 /* Find one address in the association's bind address list 750 * that is not in the packed array of addresses. This is to 751 * make sure that we do not delete all the addresses in the 752 * association. 753 */ 754 bp = &asoc->base.bind_addr; 755 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 756 addrcnt, sp); 757 if (!laddr) 758 continue; 759 760 /* We do not need RCU protection throughout this loop 761 * because this is done under a socket lock from the 762 * setsockopt call. 763 */ 764 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 765 SCTP_PARAM_DEL_IP); 766 if (!chunk) { 767 retval = -ENOMEM; 768 goto out; 769 } 770 771 /* Reset use_as_src flag for the addresses in the bind address 772 * list that are to be deleted. 773 */ 774 addr_buf = addrs; 775 for (i = 0; i < addrcnt; i++) { 776 laddr = (union sctp_addr *)addr_buf; 777 af = sctp_get_af_specific(laddr->v4.sin_family); 778 list_for_each_entry(saddr, &bp->address_list, list) { 779 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 780 saddr->use_as_src = 0; 781 } 782 addr_buf += af->sockaddr_len; 783 } 784 785 /* Update the route and saddr entries for all the transports 786 * as some of the addresses in the bind address list are 787 * about to be deleted and cannot be used as source addresses. 788 */ 789 list_for_each(pos1, &asoc->peer.transport_addr_list) { 790 transport = list_entry(pos1, struct sctp_transport, 791 transports); 792 dst_release(transport->dst); 793 sctp_transport_route(transport, NULL, 794 sctp_sk(asoc->base.sk)); 795 } 796 797 retval = sctp_send_asconf(asoc, chunk); 798 } 799 out: 800 return retval; 801 } 802 803 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 804 * 805 * API 8.1 806 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 807 * int flags); 808 * 809 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 810 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 811 * or IPv6 addresses. 812 * 813 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 814 * Section 3.1.2 for this usage. 815 * 816 * addrs is a pointer to an array of one or more socket addresses. Each 817 * address is contained in its appropriate structure (i.e. struct 818 * sockaddr_in or struct sockaddr_in6) the family of the address type 819 * must be used to distinguish the address length (note that this 820 * representation is termed a "packed array" of addresses). The caller 821 * specifies the number of addresses in the array with addrcnt. 822 * 823 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 824 * -1, and sets errno to the appropriate error code. 825 * 826 * For SCTP, the port given in each socket address must be the same, or 827 * sctp_bindx() will fail, setting errno to EINVAL. 828 * 829 * The flags parameter is formed from the bitwise OR of zero or more of 830 * the following currently defined flags: 831 * 832 * SCTP_BINDX_ADD_ADDR 833 * 834 * SCTP_BINDX_REM_ADDR 835 * 836 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 837 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 838 * addresses from the association. The two flags are mutually exclusive; 839 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 840 * not remove all addresses from an association; sctp_bindx() will 841 * reject such an attempt with EINVAL. 842 * 843 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 844 * additional addresses with an endpoint after calling bind(). Or use 845 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 846 * socket is associated with so that no new association accepted will be 847 * associated with those addresses. If the endpoint supports dynamic 848 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 849 * endpoint to send the appropriate message to the peer to change the 850 * peers address lists. 851 * 852 * Adding and removing addresses from a connected association is 853 * optional functionality. Implementations that do not support this 854 * functionality should return EOPNOTSUPP. 855 * 856 * Basically do nothing but copying the addresses from user to kernel 857 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 858 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 859 * from userspace. 860 * 861 * We don't use copy_from_user() for optimization: we first do the 862 * sanity checks (buffer size -fast- and access check-healthy 863 * pointer); if all of those succeed, then we can alloc the memory 864 * (expensive operation) needed to copy the data to kernel. Then we do 865 * the copying without checking the user space area 866 * (__copy_from_user()). 867 * 868 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 869 * it. 870 * 871 * sk The sk of the socket 872 * addrs The pointer to the addresses in user land 873 * addrssize Size of the addrs buffer 874 * op Operation to perform (add or remove, see the flags of 875 * sctp_bindx) 876 * 877 * Returns 0 if ok, <0 errno code on error. 878 */ 879 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 880 struct sockaddr __user *addrs, 881 int addrs_size, int op) 882 { 883 struct sockaddr *kaddrs; 884 int err; 885 int addrcnt = 0; 886 int walk_size = 0; 887 struct sockaddr *sa_addr; 888 void *addr_buf; 889 struct sctp_af *af; 890 891 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 892 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 893 894 if (unlikely(addrs_size <= 0)) 895 return -EINVAL; 896 897 /* Check the user passed a healthy pointer. */ 898 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 899 return -EFAULT; 900 901 /* Alloc space for the address array in kernel memory. */ 902 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 903 if (unlikely(!kaddrs)) 904 return -ENOMEM; 905 906 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 907 kfree(kaddrs); 908 return -EFAULT; 909 } 910 911 /* Walk through the addrs buffer and count the number of addresses. */ 912 addr_buf = kaddrs; 913 while (walk_size < addrs_size) { 914 sa_addr = (struct sockaddr *)addr_buf; 915 af = sctp_get_af_specific(sa_addr->sa_family); 916 917 /* If the address family is not supported or if this address 918 * causes the address buffer to overflow return EINVAL. 919 */ 920 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 921 kfree(kaddrs); 922 return -EINVAL; 923 } 924 addrcnt++; 925 addr_buf += af->sockaddr_len; 926 walk_size += af->sockaddr_len; 927 } 928 929 /* Do the work. */ 930 switch (op) { 931 case SCTP_BINDX_ADD_ADDR: 932 err = sctp_bindx_add(sk, kaddrs, addrcnt); 933 if (err) 934 goto out; 935 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 936 break; 937 938 case SCTP_BINDX_REM_ADDR: 939 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 940 if (err) 941 goto out; 942 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 943 break; 944 945 default: 946 err = -EINVAL; 947 break; 948 } 949 950 out: 951 kfree(kaddrs); 952 953 return err; 954 } 955 956 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 957 * 958 * Common routine for handling connect() and sctp_connectx(). 959 * Connect will come in with just a single address. 960 */ 961 static int __sctp_connect(struct sock* sk, 962 struct sockaddr *kaddrs, 963 int addrs_size) 964 { 965 struct sctp_sock *sp; 966 struct sctp_endpoint *ep; 967 struct sctp_association *asoc = NULL; 968 struct sctp_association *asoc2; 969 struct sctp_transport *transport; 970 union sctp_addr to; 971 struct sctp_af *af; 972 sctp_scope_t scope; 973 long timeo; 974 int err = 0; 975 int addrcnt = 0; 976 int walk_size = 0; 977 union sctp_addr *sa_addr = NULL; 978 void *addr_buf; 979 unsigned short port; 980 unsigned int f_flags = 0; 981 982 sp = sctp_sk(sk); 983 ep = sp->ep; 984 985 /* connect() cannot be done on a socket that is already in ESTABLISHED 986 * state - UDP-style peeled off socket or a TCP-style socket that 987 * is already connected. 988 * It cannot be done even on a TCP-style listening socket. 989 */ 990 if (sctp_sstate(sk, ESTABLISHED) || 991 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 992 err = -EISCONN; 993 goto out_free; 994 } 995 996 /* Walk through the addrs buffer and count the number of addresses. */ 997 addr_buf = kaddrs; 998 while (walk_size < addrs_size) { 999 sa_addr = (union sctp_addr *)addr_buf; 1000 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1001 port = ntohs(sa_addr->v4.sin_port); 1002 1003 /* If the address family is not supported or if this address 1004 * causes the address buffer to overflow return EINVAL. 1005 */ 1006 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1007 err = -EINVAL; 1008 goto out_free; 1009 } 1010 1011 /* Save current address so we can work with it */ 1012 memcpy(&to, sa_addr, af->sockaddr_len); 1013 1014 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1015 if (err) 1016 goto out_free; 1017 1018 /* Make sure the destination port is correctly set 1019 * in all addresses. 1020 */ 1021 if (asoc && asoc->peer.port && asoc->peer.port != port) 1022 goto out_free; 1023 1024 1025 /* Check if there already is a matching association on the 1026 * endpoint (other than the one created here). 1027 */ 1028 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1029 if (asoc2 && asoc2 != asoc) { 1030 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1031 err = -EISCONN; 1032 else 1033 err = -EALREADY; 1034 goto out_free; 1035 } 1036 1037 /* If we could not find a matching association on the endpoint, 1038 * make sure that there is no peeled-off association matching 1039 * the peer address even on another socket. 1040 */ 1041 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1042 err = -EADDRNOTAVAIL; 1043 goto out_free; 1044 } 1045 1046 if (!asoc) { 1047 /* If a bind() or sctp_bindx() is not called prior to 1048 * an sctp_connectx() call, the system picks an 1049 * ephemeral port and will choose an address set 1050 * equivalent to binding with a wildcard address. 1051 */ 1052 if (!ep->base.bind_addr.port) { 1053 if (sctp_autobind(sk)) { 1054 err = -EAGAIN; 1055 goto out_free; 1056 } 1057 } else { 1058 /* 1059 * If an unprivileged user inherits a 1-many 1060 * style socket with open associations on a 1061 * privileged port, it MAY be permitted to 1062 * accept new associations, but it SHOULD NOT 1063 * be permitted to open new associations. 1064 */ 1065 if (ep->base.bind_addr.port < PROT_SOCK && 1066 !capable(CAP_NET_BIND_SERVICE)) { 1067 err = -EACCES; 1068 goto out_free; 1069 } 1070 } 1071 1072 scope = sctp_scope(&to); 1073 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1074 if (!asoc) { 1075 err = -ENOMEM; 1076 goto out_free; 1077 } 1078 } 1079 1080 /* Prime the peer's transport structures. */ 1081 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1082 SCTP_UNKNOWN); 1083 if (!transport) { 1084 err = -ENOMEM; 1085 goto out_free; 1086 } 1087 1088 addrcnt++; 1089 addr_buf += af->sockaddr_len; 1090 walk_size += af->sockaddr_len; 1091 } 1092 1093 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1094 if (err < 0) { 1095 goto out_free; 1096 } 1097 1098 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1099 if (err < 0) { 1100 goto out_free; 1101 } 1102 1103 /* Initialize sk's dport and daddr for getpeername() */ 1104 inet_sk(sk)->dport = htons(asoc->peer.port); 1105 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1106 af->to_sk_daddr(sa_addr, sk); 1107 sk->sk_err = 0; 1108 1109 /* in-kernel sockets don't generally have a file allocated to them 1110 * if all they do is call sock_create_kern(). 1111 */ 1112 if (sk->sk_socket->file) 1113 f_flags = sk->sk_socket->file->f_flags; 1114 1115 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1116 1117 err = sctp_wait_for_connect(asoc, &timeo); 1118 1119 /* Don't free association on exit. */ 1120 asoc = NULL; 1121 1122 out_free: 1123 1124 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1125 " kaddrs: %p err: %d\n", 1126 asoc, kaddrs, err); 1127 if (asoc) 1128 sctp_association_free(asoc); 1129 return err; 1130 } 1131 1132 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1133 * 1134 * API 8.9 1135 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1136 * 1137 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1138 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1139 * or IPv6 addresses. 1140 * 1141 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1142 * Section 3.1.2 for this usage. 1143 * 1144 * addrs is a pointer to an array of one or more socket addresses. Each 1145 * address is contained in its appropriate structure (i.e. struct 1146 * sockaddr_in or struct sockaddr_in6) the family of the address type 1147 * must be used to distengish the address length (note that this 1148 * representation is termed a "packed array" of addresses). The caller 1149 * specifies the number of addresses in the array with addrcnt. 1150 * 1151 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1152 * -1, and sets errno to the appropriate error code. 1153 * 1154 * For SCTP, the port given in each socket address must be the same, or 1155 * sctp_connectx() will fail, setting errno to EINVAL. 1156 * 1157 * An application can use sctp_connectx to initiate an association with 1158 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1159 * allows a caller to specify multiple addresses at which a peer can be 1160 * reached. The way the SCTP stack uses the list of addresses to set up 1161 * the association is implementation dependant. This function only 1162 * specifies that the stack will try to make use of all the addresses in 1163 * the list when needed. 1164 * 1165 * Note that the list of addresses passed in is only used for setting up 1166 * the association. It does not necessarily equal the set of addresses 1167 * the peer uses for the resulting association. If the caller wants to 1168 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1169 * retrieve them after the association has been set up. 1170 * 1171 * Basically do nothing but copying the addresses from user to kernel 1172 * land and invoking either sctp_connectx(). This is used for tunneling 1173 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1174 * 1175 * We don't use copy_from_user() for optimization: we first do the 1176 * sanity checks (buffer size -fast- and access check-healthy 1177 * pointer); if all of those succeed, then we can alloc the memory 1178 * (expensive operation) needed to copy the data to kernel. Then we do 1179 * the copying without checking the user space area 1180 * (__copy_from_user()). 1181 * 1182 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1183 * it. 1184 * 1185 * sk The sk of the socket 1186 * addrs The pointer to the addresses in user land 1187 * addrssize Size of the addrs buffer 1188 * 1189 * Returns 0 if ok, <0 errno code on error. 1190 */ 1191 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1192 struct sockaddr __user *addrs, 1193 int addrs_size) 1194 { 1195 int err = 0; 1196 struct sockaddr *kaddrs; 1197 1198 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1199 __FUNCTION__, sk, addrs, addrs_size); 1200 1201 if (unlikely(addrs_size <= 0)) 1202 return -EINVAL; 1203 1204 /* Check the user passed a healthy pointer. */ 1205 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1206 return -EFAULT; 1207 1208 /* Alloc space for the address array in kernel memory. */ 1209 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1210 if (unlikely(!kaddrs)) 1211 return -ENOMEM; 1212 1213 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1214 err = -EFAULT; 1215 } else { 1216 err = __sctp_connect(sk, kaddrs, addrs_size); 1217 } 1218 1219 kfree(kaddrs); 1220 return err; 1221 } 1222 1223 /* API 3.1.4 close() - UDP Style Syntax 1224 * Applications use close() to perform graceful shutdown (as described in 1225 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1226 * by a UDP-style socket. 1227 * 1228 * The syntax is 1229 * 1230 * ret = close(int sd); 1231 * 1232 * sd - the socket descriptor of the associations to be closed. 1233 * 1234 * To gracefully shutdown a specific association represented by the 1235 * UDP-style socket, an application should use the sendmsg() call, 1236 * passing no user data, but including the appropriate flag in the 1237 * ancillary data (see Section xxxx). 1238 * 1239 * If sd in the close() call is a branched-off socket representing only 1240 * one association, the shutdown is performed on that association only. 1241 * 1242 * 4.1.6 close() - TCP Style Syntax 1243 * 1244 * Applications use close() to gracefully close down an association. 1245 * 1246 * The syntax is: 1247 * 1248 * int close(int sd); 1249 * 1250 * sd - the socket descriptor of the association to be closed. 1251 * 1252 * After an application calls close() on a socket descriptor, no further 1253 * socket operations will succeed on that descriptor. 1254 * 1255 * API 7.1.4 SO_LINGER 1256 * 1257 * An application using the TCP-style socket can use this option to 1258 * perform the SCTP ABORT primitive. The linger option structure is: 1259 * 1260 * struct linger { 1261 * int l_onoff; // option on/off 1262 * int l_linger; // linger time 1263 * }; 1264 * 1265 * To enable the option, set l_onoff to 1. If the l_linger value is set 1266 * to 0, calling close() is the same as the ABORT primitive. If the 1267 * value is set to a negative value, the setsockopt() call will return 1268 * an error. If the value is set to a positive value linger_time, the 1269 * close() can be blocked for at most linger_time ms. If the graceful 1270 * shutdown phase does not finish during this period, close() will 1271 * return but the graceful shutdown phase continues in the system. 1272 */ 1273 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1274 { 1275 struct sctp_endpoint *ep; 1276 struct sctp_association *asoc; 1277 struct list_head *pos, *temp; 1278 1279 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1280 1281 sctp_lock_sock(sk); 1282 sk->sk_shutdown = SHUTDOWN_MASK; 1283 1284 ep = sctp_sk(sk)->ep; 1285 1286 /* Walk all associations on an endpoint. */ 1287 list_for_each_safe(pos, temp, &ep->asocs) { 1288 asoc = list_entry(pos, struct sctp_association, asocs); 1289 1290 if (sctp_style(sk, TCP)) { 1291 /* A closed association can still be in the list if 1292 * it belongs to a TCP-style listening socket that is 1293 * not yet accepted. If so, free it. If not, send an 1294 * ABORT or SHUTDOWN based on the linger options. 1295 */ 1296 if (sctp_state(asoc, CLOSED)) { 1297 sctp_unhash_established(asoc); 1298 sctp_association_free(asoc); 1299 continue; 1300 } 1301 } 1302 1303 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1304 struct sctp_chunk *chunk; 1305 1306 chunk = sctp_make_abort_user(asoc, NULL, 0); 1307 if (chunk) 1308 sctp_primitive_ABORT(asoc, chunk); 1309 } else 1310 sctp_primitive_SHUTDOWN(asoc, NULL); 1311 } 1312 1313 /* Clean up any skbs sitting on the receive queue. */ 1314 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1315 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1316 1317 /* On a TCP-style socket, block for at most linger_time if set. */ 1318 if (sctp_style(sk, TCP) && timeout) 1319 sctp_wait_for_close(sk, timeout); 1320 1321 /* This will run the backlog queue. */ 1322 sctp_release_sock(sk); 1323 1324 /* Supposedly, no process has access to the socket, but 1325 * the net layers still may. 1326 */ 1327 sctp_local_bh_disable(); 1328 sctp_bh_lock_sock(sk); 1329 1330 /* Hold the sock, since sk_common_release() will put sock_put() 1331 * and we have just a little more cleanup. 1332 */ 1333 sock_hold(sk); 1334 sk_common_release(sk); 1335 1336 sctp_bh_unlock_sock(sk); 1337 sctp_local_bh_enable(); 1338 1339 sock_put(sk); 1340 1341 SCTP_DBG_OBJCNT_DEC(sock); 1342 } 1343 1344 /* Handle EPIPE error. */ 1345 static int sctp_error(struct sock *sk, int flags, int err) 1346 { 1347 if (err == -EPIPE) 1348 err = sock_error(sk) ? : -EPIPE; 1349 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1350 send_sig(SIGPIPE, current, 0); 1351 return err; 1352 } 1353 1354 /* API 3.1.3 sendmsg() - UDP Style Syntax 1355 * 1356 * An application uses sendmsg() and recvmsg() calls to transmit data to 1357 * and receive data from its peer. 1358 * 1359 * ssize_t sendmsg(int socket, const struct msghdr *message, 1360 * int flags); 1361 * 1362 * socket - the socket descriptor of the endpoint. 1363 * message - pointer to the msghdr structure which contains a single 1364 * user message and possibly some ancillary data. 1365 * 1366 * See Section 5 for complete description of the data 1367 * structures. 1368 * 1369 * flags - flags sent or received with the user message, see Section 1370 * 5 for complete description of the flags. 1371 * 1372 * Note: This function could use a rewrite especially when explicit 1373 * connect support comes in. 1374 */ 1375 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1376 1377 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1378 1379 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1380 struct msghdr *msg, size_t msg_len) 1381 { 1382 struct sctp_sock *sp; 1383 struct sctp_endpoint *ep; 1384 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1385 struct sctp_transport *transport, *chunk_tp; 1386 struct sctp_chunk *chunk; 1387 union sctp_addr to; 1388 struct sockaddr *msg_name = NULL; 1389 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1390 struct sctp_sndrcvinfo *sinfo; 1391 struct sctp_initmsg *sinit; 1392 sctp_assoc_t associd = 0; 1393 sctp_cmsgs_t cmsgs = { NULL }; 1394 int err; 1395 sctp_scope_t scope; 1396 long timeo; 1397 __u16 sinfo_flags = 0; 1398 struct sctp_datamsg *datamsg; 1399 struct list_head *pos; 1400 int msg_flags = msg->msg_flags; 1401 1402 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1403 sk, msg, msg_len); 1404 1405 err = 0; 1406 sp = sctp_sk(sk); 1407 ep = sp->ep; 1408 1409 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1410 1411 /* We cannot send a message over a TCP-style listening socket. */ 1412 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1413 err = -EPIPE; 1414 goto out_nounlock; 1415 } 1416 1417 /* Parse out the SCTP CMSGs. */ 1418 err = sctp_msghdr_parse(msg, &cmsgs); 1419 1420 if (err) { 1421 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1422 goto out_nounlock; 1423 } 1424 1425 /* Fetch the destination address for this packet. This 1426 * address only selects the association--it is not necessarily 1427 * the address we will send to. 1428 * For a peeled-off socket, msg_name is ignored. 1429 */ 1430 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1431 int msg_namelen = msg->msg_namelen; 1432 1433 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1434 msg_namelen); 1435 if (err) 1436 return err; 1437 1438 if (msg_namelen > sizeof(to)) 1439 msg_namelen = sizeof(to); 1440 memcpy(&to, msg->msg_name, msg_namelen); 1441 msg_name = msg->msg_name; 1442 } 1443 1444 sinfo = cmsgs.info; 1445 sinit = cmsgs.init; 1446 1447 /* Did the user specify SNDRCVINFO? */ 1448 if (sinfo) { 1449 sinfo_flags = sinfo->sinfo_flags; 1450 associd = sinfo->sinfo_assoc_id; 1451 } 1452 1453 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1454 msg_len, sinfo_flags); 1455 1456 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1457 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1458 err = -EINVAL; 1459 goto out_nounlock; 1460 } 1461 1462 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1463 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1464 * If SCTP_ABORT is set, the message length could be non zero with 1465 * the msg_iov set to the user abort reason. 1466 */ 1467 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1468 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1469 err = -EINVAL; 1470 goto out_nounlock; 1471 } 1472 1473 /* If SCTP_ADDR_OVER is set, there must be an address 1474 * specified in msg_name. 1475 */ 1476 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1477 err = -EINVAL; 1478 goto out_nounlock; 1479 } 1480 1481 transport = NULL; 1482 1483 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1484 1485 sctp_lock_sock(sk); 1486 1487 /* If a msg_name has been specified, assume this is to be used. */ 1488 if (msg_name) { 1489 /* Look for a matching association on the endpoint. */ 1490 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1491 if (!asoc) { 1492 /* If we could not find a matching association on the 1493 * endpoint, make sure that it is not a TCP-style 1494 * socket that already has an association or there is 1495 * no peeled-off association on another socket. 1496 */ 1497 if ((sctp_style(sk, TCP) && 1498 sctp_sstate(sk, ESTABLISHED)) || 1499 sctp_endpoint_is_peeled_off(ep, &to)) { 1500 err = -EADDRNOTAVAIL; 1501 goto out_unlock; 1502 } 1503 } 1504 } else { 1505 asoc = sctp_id2assoc(sk, associd); 1506 if (!asoc) { 1507 err = -EPIPE; 1508 goto out_unlock; 1509 } 1510 } 1511 1512 if (asoc) { 1513 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1514 1515 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1516 * socket that has an association in CLOSED state. This can 1517 * happen when an accepted socket has an association that is 1518 * already CLOSED. 1519 */ 1520 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1521 err = -EPIPE; 1522 goto out_unlock; 1523 } 1524 1525 if (sinfo_flags & SCTP_EOF) { 1526 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1527 asoc); 1528 sctp_primitive_SHUTDOWN(asoc, NULL); 1529 err = 0; 1530 goto out_unlock; 1531 } 1532 if (sinfo_flags & SCTP_ABORT) { 1533 1534 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1535 if (!chunk) { 1536 err = -ENOMEM; 1537 goto out_unlock; 1538 } 1539 1540 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1541 sctp_primitive_ABORT(asoc, chunk); 1542 err = 0; 1543 goto out_unlock; 1544 } 1545 } 1546 1547 /* Do we need to create the association? */ 1548 if (!asoc) { 1549 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1550 1551 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1552 err = -EINVAL; 1553 goto out_unlock; 1554 } 1555 1556 /* Check for invalid stream against the stream counts, 1557 * either the default or the user specified stream counts. 1558 */ 1559 if (sinfo) { 1560 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1561 /* Check against the defaults. */ 1562 if (sinfo->sinfo_stream >= 1563 sp->initmsg.sinit_num_ostreams) { 1564 err = -EINVAL; 1565 goto out_unlock; 1566 } 1567 } else { 1568 /* Check against the requested. */ 1569 if (sinfo->sinfo_stream >= 1570 sinit->sinit_num_ostreams) { 1571 err = -EINVAL; 1572 goto out_unlock; 1573 } 1574 } 1575 } 1576 1577 /* 1578 * API 3.1.2 bind() - UDP Style Syntax 1579 * If a bind() or sctp_bindx() is not called prior to a 1580 * sendmsg() call that initiates a new association, the 1581 * system picks an ephemeral port and will choose an address 1582 * set equivalent to binding with a wildcard address. 1583 */ 1584 if (!ep->base.bind_addr.port) { 1585 if (sctp_autobind(sk)) { 1586 err = -EAGAIN; 1587 goto out_unlock; 1588 } 1589 } else { 1590 /* 1591 * If an unprivileged user inherits a one-to-many 1592 * style socket with open associations on a privileged 1593 * port, it MAY be permitted to accept new associations, 1594 * but it SHOULD NOT be permitted to open new 1595 * associations. 1596 */ 1597 if (ep->base.bind_addr.port < PROT_SOCK && 1598 !capable(CAP_NET_BIND_SERVICE)) { 1599 err = -EACCES; 1600 goto out_unlock; 1601 } 1602 } 1603 1604 scope = sctp_scope(&to); 1605 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1606 if (!new_asoc) { 1607 err = -ENOMEM; 1608 goto out_unlock; 1609 } 1610 asoc = new_asoc; 1611 1612 /* If the SCTP_INIT ancillary data is specified, set all 1613 * the association init values accordingly. 1614 */ 1615 if (sinit) { 1616 if (sinit->sinit_num_ostreams) { 1617 asoc->c.sinit_num_ostreams = 1618 sinit->sinit_num_ostreams; 1619 } 1620 if (sinit->sinit_max_instreams) { 1621 asoc->c.sinit_max_instreams = 1622 sinit->sinit_max_instreams; 1623 } 1624 if (sinit->sinit_max_attempts) { 1625 asoc->max_init_attempts 1626 = sinit->sinit_max_attempts; 1627 } 1628 if (sinit->sinit_max_init_timeo) { 1629 asoc->max_init_timeo = 1630 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1631 } 1632 } 1633 1634 /* Prime the peer's transport structures. */ 1635 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1636 if (!transport) { 1637 err = -ENOMEM; 1638 goto out_free; 1639 } 1640 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1641 if (err < 0) { 1642 err = -ENOMEM; 1643 goto out_free; 1644 } 1645 } 1646 1647 /* ASSERT: we have a valid association at this point. */ 1648 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1649 1650 if (!sinfo) { 1651 /* If the user didn't specify SNDRCVINFO, make up one with 1652 * some defaults. 1653 */ 1654 default_sinfo.sinfo_stream = asoc->default_stream; 1655 default_sinfo.sinfo_flags = asoc->default_flags; 1656 default_sinfo.sinfo_ppid = asoc->default_ppid; 1657 default_sinfo.sinfo_context = asoc->default_context; 1658 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1659 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1660 sinfo = &default_sinfo; 1661 } 1662 1663 /* API 7.1.7, the sndbuf size per association bounds the 1664 * maximum size of data that can be sent in a single send call. 1665 */ 1666 if (msg_len > sk->sk_sndbuf) { 1667 err = -EMSGSIZE; 1668 goto out_free; 1669 } 1670 1671 if (asoc->pmtu_pending) 1672 sctp_assoc_pending_pmtu(asoc); 1673 1674 /* If fragmentation is disabled and the message length exceeds the 1675 * association fragmentation point, return EMSGSIZE. The I-D 1676 * does not specify what this error is, but this looks like 1677 * a great fit. 1678 */ 1679 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1680 err = -EMSGSIZE; 1681 goto out_free; 1682 } 1683 1684 if (sinfo) { 1685 /* Check for invalid stream. */ 1686 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1687 err = -EINVAL; 1688 goto out_free; 1689 } 1690 } 1691 1692 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1693 if (!sctp_wspace(asoc)) { 1694 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1695 if (err) 1696 goto out_free; 1697 } 1698 1699 /* If an address is passed with the sendto/sendmsg call, it is used 1700 * to override the primary destination address in the TCP model, or 1701 * when SCTP_ADDR_OVER flag is set in the UDP model. 1702 */ 1703 if ((sctp_style(sk, TCP) && msg_name) || 1704 (sinfo_flags & SCTP_ADDR_OVER)) { 1705 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1706 if (!chunk_tp) { 1707 err = -EINVAL; 1708 goto out_free; 1709 } 1710 } else 1711 chunk_tp = NULL; 1712 1713 /* Auto-connect, if we aren't connected already. */ 1714 if (sctp_state(asoc, CLOSED)) { 1715 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1716 if (err < 0) 1717 goto out_free; 1718 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1719 } 1720 1721 /* Break the message into multiple chunks of maximum size. */ 1722 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1723 if (!datamsg) { 1724 err = -ENOMEM; 1725 goto out_free; 1726 } 1727 1728 /* Now send the (possibly) fragmented message. */ 1729 list_for_each(pos, &datamsg->chunks) { 1730 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1731 sctp_datamsg_track(chunk); 1732 1733 /* Do accounting for the write space. */ 1734 sctp_set_owner_w(chunk); 1735 1736 chunk->transport = chunk_tp; 1737 1738 /* Send it to the lower layers. Note: all chunks 1739 * must either fail or succeed. The lower layer 1740 * works that way today. Keep it that way or this 1741 * breaks. 1742 */ 1743 err = sctp_primitive_SEND(asoc, chunk); 1744 /* Did the lower layer accept the chunk? */ 1745 if (err) 1746 sctp_chunk_free(chunk); 1747 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1748 } 1749 1750 sctp_datamsg_free(datamsg); 1751 if (err) 1752 goto out_free; 1753 else 1754 err = msg_len; 1755 1756 /* If we are already past ASSOCIATE, the lower 1757 * layers are responsible for association cleanup. 1758 */ 1759 goto out_unlock; 1760 1761 out_free: 1762 if (new_asoc) 1763 sctp_association_free(asoc); 1764 out_unlock: 1765 sctp_release_sock(sk); 1766 1767 out_nounlock: 1768 return sctp_error(sk, msg_flags, err); 1769 1770 #if 0 1771 do_sock_err: 1772 if (msg_len) 1773 err = msg_len; 1774 else 1775 err = sock_error(sk); 1776 goto out; 1777 1778 do_interrupted: 1779 if (msg_len) 1780 err = msg_len; 1781 goto out; 1782 #endif /* 0 */ 1783 } 1784 1785 /* This is an extended version of skb_pull() that removes the data from the 1786 * start of a skb even when data is spread across the list of skb's in the 1787 * frag_list. len specifies the total amount of data that needs to be removed. 1788 * when 'len' bytes could be removed from the skb, it returns 0. 1789 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1790 * could not be removed. 1791 */ 1792 static int sctp_skb_pull(struct sk_buff *skb, int len) 1793 { 1794 struct sk_buff *list; 1795 int skb_len = skb_headlen(skb); 1796 int rlen; 1797 1798 if (len <= skb_len) { 1799 __skb_pull(skb, len); 1800 return 0; 1801 } 1802 len -= skb_len; 1803 __skb_pull(skb, skb_len); 1804 1805 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1806 rlen = sctp_skb_pull(list, len); 1807 skb->len -= (len-rlen); 1808 skb->data_len -= (len-rlen); 1809 1810 if (!rlen) 1811 return 0; 1812 1813 len = rlen; 1814 } 1815 1816 return len; 1817 } 1818 1819 /* API 3.1.3 recvmsg() - UDP Style Syntax 1820 * 1821 * ssize_t recvmsg(int socket, struct msghdr *message, 1822 * int flags); 1823 * 1824 * socket - the socket descriptor of the endpoint. 1825 * message - pointer to the msghdr structure which contains a single 1826 * user message and possibly some ancillary data. 1827 * 1828 * See Section 5 for complete description of the data 1829 * structures. 1830 * 1831 * flags - flags sent or received with the user message, see Section 1832 * 5 for complete description of the flags. 1833 */ 1834 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1835 1836 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1837 struct msghdr *msg, size_t len, int noblock, 1838 int flags, int *addr_len) 1839 { 1840 struct sctp_ulpevent *event = NULL; 1841 struct sctp_sock *sp = sctp_sk(sk); 1842 struct sk_buff *skb; 1843 int copied; 1844 int err = 0; 1845 int skb_len; 1846 1847 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1848 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1849 "len", len, "knoblauch", noblock, 1850 "flags", flags, "addr_len", addr_len); 1851 1852 sctp_lock_sock(sk); 1853 1854 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1855 err = -ENOTCONN; 1856 goto out; 1857 } 1858 1859 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1860 if (!skb) 1861 goto out; 1862 1863 /* Get the total length of the skb including any skb's in the 1864 * frag_list. 1865 */ 1866 skb_len = skb->len; 1867 1868 copied = skb_len; 1869 if (copied > len) 1870 copied = len; 1871 1872 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1873 1874 event = sctp_skb2event(skb); 1875 1876 if (err) 1877 goto out_free; 1878 1879 sock_recv_timestamp(msg, sk, skb); 1880 if (sctp_ulpevent_is_notification(event)) { 1881 msg->msg_flags |= MSG_NOTIFICATION; 1882 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1883 } else { 1884 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1885 } 1886 1887 /* Check if we allow SCTP_SNDRCVINFO. */ 1888 if (sp->subscribe.sctp_data_io_event) 1889 sctp_ulpevent_read_sndrcvinfo(event, msg); 1890 #if 0 1891 /* FIXME: we should be calling IP/IPv6 layers. */ 1892 if (sk->sk_protinfo.af_inet.cmsg_flags) 1893 ip_cmsg_recv(msg, skb); 1894 #endif 1895 1896 err = copied; 1897 1898 /* If skb's length exceeds the user's buffer, update the skb and 1899 * push it back to the receive_queue so that the next call to 1900 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1901 */ 1902 if (skb_len > copied) { 1903 msg->msg_flags &= ~MSG_EOR; 1904 if (flags & MSG_PEEK) 1905 goto out_free; 1906 sctp_skb_pull(skb, copied); 1907 skb_queue_head(&sk->sk_receive_queue, skb); 1908 1909 /* When only partial message is copied to the user, increase 1910 * rwnd by that amount. If all the data in the skb is read, 1911 * rwnd is updated when the event is freed. 1912 */ 1913 sctp_assoc_rwnd_increase(event->asoc, copied); 1914 goto out; 1915 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1916 (event->msg_flags & MSG_EOR)) 1917 msg->msg_flags |= MSG_EOR; 1918 else 1919 msg->msg_flags &= ~MSG_EOR; 1920 1921 out_free: 1922 if (flags & MSG_PEEK) { 1923 /* Release the skb reference acquired after peeking the skb in 1924 * sctp_skb_recv_datagram(). 1925 */ 1926 kfree_skb(skb); 1927 } else { 1928 /* Free the event which includes releasing the reference to 1929 * the owner of the skb, freeing the skb and updating the 1930 * rwnd. 1931 */ 1932 sctp_ulpevent_free(event); 1933 } 1934 out: 1935 sctp_release_sock(sk); 1936 return err; 1937 } 1938 1939 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1940 * 1941 * This option is a on/off flag. If enabled no SCTP message 1942 * fragmentation will be performed. Instead if a message being sent 1943 * exceeds the current PMTU size, the message will NOT be sent and 1944 * instead a error will be indicated to the user. 1945 */ 1946 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1947 char __user *optval, int optlen) 1948 { 1949 int val; 1950 1951 if (optlen < sizeof(int)) 1952 return -EINVAL; 1953 1954 if (get_user(val, (int __user *)optval)) 1955 return -EFAULT; 1956 1957 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1958 1959 return 0; 1960 } 1961 1962 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1963 int optlen) 1964 { 1965 if (optlen != sizeof(struct sctp_event_subscribe)) 1966 return -EINVAL; 1967 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1968 return -EFAULT; 1969 return 0; 1970 } 1971 1972 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1973 * 1974 * This socket option is applicable to the UDP-style socket only. When 1975 * set it will cause associations that are idle for more than the 1976 * specified number of seconds to automatically close. An association 1977 * being idle is defined an association that has NOT sent or received 1978 * user data. The special value of '0' indicates that no automatic 1979 * close of any associations should be performed. The option expects an 1980 * integer defining the number of seconds of idle time before an 1981 * association is closed. 1982 */ 1983 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1984 int optlen) 1985 { 1986 struct sctp_sock *sp = sctp_sk(sk); 1987 1988 /* Applicable to UDP-style socket only */ 1989 if (sctp_style(sk, TCP)) 1990 return -EOPNOTSUPP; 1991 if (optlen != sizeof(int)) 1992 return -EINVAL; 1993 if (copy_from_user(&sp->autoclose, optval, optlen)) 1994 return -EFAULT; 1995 1996 return 0; 1997 } 1998 1999 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2000 * 2001 * Applications can enable or disable heartbeats for any peer address of 2002 * an association, modify an address's heartbeat interval, force a 2003 * heartbeat to be sent immediately, and adjust the address's maximum 2004 * number of retransmissions sent before an address is considered 2005 * unreachable. The following structure is used to access and modify an 2006 * address's parameters: 2007 * 2008 * struct sctp_paddrparams { 2009 * sctp_assoc_t spp_assoc_id; 2010 * struct sockaddr_storage spp_address; 2011 * uint32_t spp_hbinterval; 2012 * uint16_t spp_pathmaxrxt; 2013 * uint32_t spp_pathmtu; 2014 * uint32_t spp_sackdelay; 2015 * uint32_t spp_flags; 2016 * }; 2017 * 2018 * spp_assoc_id - (one-to-many style socket) This is filled in the 2019 * application, and identifies the association for 2020 * this query. 2021 * spp_address - This specifies which address is of interest. 2022 * spp_hbinterval - This contains the value of the heartbeat interval, 2023 * in milliseconds. If a value of zero 2024 * is present in this field then no changes are to 2025 * be made to this parameter. 2026 * spp_pathmaxrxt - This contains the maximum number of 2027 * retransmissions before this address shall be 2028 * considered unreachable. If a value of zero 2029 * is present in this field then no changes are to 2030 * be made to this parameter. 2031 * spp_pathmtu - When Path MTU discovery is disabled the value 2032 * specified here will be the "fixed" path mtu. 2033 * Note that if the spp_address field is empty 2034 * then all associations on this address will 2035 * have this fixed path mtu set upon them. 2036 * 2037 * spp_sackdelay - When delayed sack is enabled, this value specifies 2038 * the number of milliseconds that sacks will be delayed 2039 * for. This value will apply to all addresses of an 2040 * association if the spp_address field is empty. Note 2041 * also, that if delayed sack is enabled and this 2042 * value is set to 0, no change is made to the last 2043 * recorded delayed sack timer value. 2044 * 2045 * spp_flags - These flags are used to control various features 2046 * on an association. The flag field may contain 2047 * zero or more of the following options. 2048 * 2049 * SPP_HB_ENABLE - Enable heartbeats on the 2050 * specified address. Note that if the address 2051 * field is empty all addresses for the association 2052 * have heartbeats enabled upon them. 2053 * 2054 * SPP_HB_DISABLE - Disable heartbeats on the 2055 * speicifed address. Note that if the address 2056 * field is empty all addresses for the association 2057 * will have their heartbeats disabled. Note also 2058 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2059 * mutually exclusive, only one of these two should 2060 * be specified. Enabling both fields will have 2061 * undetermined results. 2062 * 2063 * SPP_HB_DEMAND - Request a user initiated heartbeat 2064 * to be made immediately. 2065 * 2066 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2067 * heartbeat delayis to be set to the value of 0 2068 * milliseconds. 2069 * 2070 * SPP_PMTUD_ENABLE - This field will enable PMTU 2071 * discovery upon the specified address. Note that 2072 * if the address feild is empty then all addresses 2073 * on the association are effected. 2074 * 2075 * SPP_PMTUD_DISABLE - This field will disable PMTU 2076 * discovery upon the specified address. Note that 2077 * if the address feild is empty then all addresses 2078 * on the association are effected. Not also that 2079 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2080 * exclusive. Enabling both will have undetermined 2081 * results. 2082 * 2083 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2084 * on delayed sack. The time specified in spp_sackdelay 2085 * is used to specify the sack delay for this address. Note 2086 * that if spp_address is empty then all addresses will 2087 * enable delayed sack and take on the sack delay 2088 * value specified in spp_sackdelay. 2089 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2090 * off delayed sack. If the spp_address field is blank then 2091 * delayed sack is disabled for the entire association. Note 2092 * also that this field is mutually exclusive to 2093 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2094 * results. 2095 */ 2096 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2097 struct sctp_transport *trans, 2098 struct sctp_association *asoc, 2099 struct sctp_sock *sp, 2100 int hb_change, 2101 int pmtud_change, 2102 int sackdelay_change) 2103 { 2104 int error; 2105 2106 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2107 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2108 if (error) 2109 return error; 2110 } 2111 2112 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2113 * this field is ignored. Note also that a value of zero indicates 2114 * the current setting should be left unchanged. 2115 */ 2116 if (params->spp_flags & SPP_HB_ENABLE) { 2117 2118 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2119 * set. This lets us use 0 value when this flag 2120 * is set. 2121 */ 2122 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2123 params->spp_hbinterval = 0; 2124 2125 if (params->spp_hbinterval || 2126 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2127 if (trans) { 2128 trans->hbinterval = 2129 msecs_to_jiffies(params->spp_hbinterval); 2130 } else if (asoc) { 2131 asoc->hbinterval = 2132 msecs_to_jiffies(params->spp_hbinterval); 2133 } else { 2134 sp->hbinterval = params->spp_hbinterval; 2135 } 2136 } 2137 } 2138 2139 if (hb_change) { 2140 if (trans) { 2141 trans->param_flags = 2142 (trans->param_flags & ~SPP_HB) | hb_change; 2143 } else if (asoc) { 2144 asoc->param_flags = 2145 (asoc->param_flags & ~SPP_HB) | hb_change; 2146 } else { 2147 sp->param_flags = 2148 (sp->param_flags & ~SPP_HB) | hb_change; 2149 } 2150 } 2151 2152 /* When Path MTU discovery is disabled the value specified here will 2153 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2154 * include the flag SPP_PMTUD_DISABLE for this field to have any 2155 * effect). 2156 */ 2157 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2158 if (trans) { 2159 trans->pathmtu = params->spp_pathmtu; 2160 sctp_assoc_sync_pmtu(asoc); 2161 } else if (asoc) { 2162 asoc->pathmtu = params->spp_pathmtu; 2163 sctp_frag_point(sp, params->spp_pathmtu); 2164 } else { 2165 sp->pathmtu = params->spp_pathmtu; 2166 } 2167 } 2168 2169 if (pmtud_change) { 2170 if (trans) { 2171 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2172 (params->spp_flags & SPP_PMTUD_ENABLE); 2173 trans->param_flags = 2174 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2175 if (update) { 2176 sctp_transport_pmtu(trans); 2177 sctp_assoc_sync_pmtu(asoc); 2178 } 2179 } else if (asoc) { 2180 asoc->param_flags = 2181 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2182 } else { 2183 sp->param_flags = 2184 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2185 } 2186 } 2187 2188 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2189 * value of this field is ignored. Note also that a value of zero 2190 * indicates the current setting should be left unchanged. 2191 */ 2192 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2193 if (trans) { 2194 trans->sackdelay = 2195 msecs_to_jiffies(params->spp_sackdelay); 2196 } else if (asoc) { 2197 asoc->sackdelay = 2198 msecs_to_jiffies(params->spp_sackdelay); 2199 } else { 2200 sp->sackdelay = params->spp_sackdelay; 2201 } 2202 } 2203 2204 if (sackdelay_change) { 2205 if (trans) { 2206 trans->param_flags = 2207 (trans->param_flags & ~SPP_SACKDELAY) | 2208 sackdelay_change; 2209 } else if (asoc) { 2210 asoc->param_flags = 2211 (asoc->param_flags & ~SPP_SACKDELAY) | 2212 sackdelay_change; 2213 } else { 2214 sp->param_flags = 2215 (sp->param_flags & ~SPP_SACKDELAY) | 2216 sackdelay_change; 2217 } 2218 } 2219 2220 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2221 * of this field is ignored. Note also that a value of zero 2222 * indicates the current setting should be left unchanged. 2223 */ 2224 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2225 if (trans) { 2226 trans->pathmaxrxt = params->spp_pathmaxrxt; 2227 } else if (asoc) { 2228 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2229 } else { 2230 sp->pathmaxrxt = params->spp_pathmaxrxt; 2231 } 2232 } 2233 2234 return 0; 2235 } 2236 2237 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2238 char __user *optval, int optlen) 2239 { 2240 struct sctp_paddrparams params; 2241 struct sctp_transport *trans = NULL; 2242 struct sctp_association *asoc = NULL; 2243 struct sctp_sock *sp = sctp_sk(sk); 2244 int error; 2245 int hb_change, pmtud_change, sackdelay_change; 2246 2247 if (optlen != sizeof(struct sctp_paddrparams)) 2248 return - EINVAL; 2249 2250 if (copy_from_user(¶ms, optval, optlen)) 2251 return -EFAULT; 2252 2253 /* Validate flags and value parameters. */ 2254 hb_change = params.spp_flags & SPP_HB; 2255 pmtud_change = params.spp_flags & SPP_PMTUD; 2256 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2257 2258 if (hb_change == SPP_HB || 2259 pmtud_change == SPP_PMTUD || 2260 sackdelay_change == SPP_SACKDELAY || 2261 params.spp_sackdelay > 500 || 2262 (params.spp_pathmtu 2263 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2264 return -EINVAL; 2265 2266 /* If an address other than INADDR_ANY is specified, and 2267 * no transport is found, then the request is invalid. 2268 */ 2269 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2270 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2271 params.spp_assoc_id); 2272 if (!trans) 2273 return -EINVAL; 2274 } 2275 2276 /* Get association, if assoc_id != 0 and the socket is a one 2277 * to many style socket, and an association was not found, then 2278 * the id was invalid. 2279 */ 2280 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2281 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2282 return -EINVAL; 2283 2284 /* Heartbeat demand can only be sent on a transport or 2285 * association, but not a socket. 2286 */ 2287 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2288 return -EINVAL; 2289 2290 /* Process parameters. */ 2291 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2292 hb_change, pmtud_change, 2293 sackdelay_change); 2294 2295 if (error) 2296 return error; 2297 2298 /* If changes are for association, also apply parameters to each 2299 * transport. 2300 */ 2301 if (!trans && asoc) { 2302 struct list_head *pos; 2303 2304 list_for_each(pos, &asoc->peer.transport_addr_list) { 2305 trans = list_entry(pos, struct sctp_transport, 2306 transports); 2307 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2308 hb_change, pmtud_change, 2309 sackdelay_change); 2310 } 2311 } 2312 2313 return 0; 2314 } 2315 2316 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2317 * 2318 * This options will get or set the delayed ack timer. The time is set 2319 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2320 * endpoints default delayed ack timer value. If the assoc_id field is 2321 * non-zero, then the set or get effects the specified association. 2322 * 2323 * struct sctp_assoc_value { 2324 * sctp_assoc_t assoc_id; 2325 * uint32_t assoc_value; 2326 * }; 2327 * 2328 * assoc_id - This parameter, indicates which association the 2329 * user is preforming an action upon. Note that if 2330 * this field's value is zero then the endpoints 2331 * default value is changed (effecting future 2332 * associations only). 2333 * 2334 * assoc_value - This parameter contains the number of milliseconds 2335 * that the user is requesting the delayed ACK timer 2336 * be set to. Note that this value is defined in 2337 * the standard to be between 200 and 500 milliseconds. 2338 * 2339 * Note: a value of zero will leave the value alone, 2340 * but disable SACK delay. A non-zero value will also 2341 * enable SACK delay. 2342 */ 2343 2344 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2345 char __user *optval, int optlen) 2346 { 2347 struct sctp_assoc_value params; 2348 struct sctp_transport *trans = NULL; 2349 struct sctp_association *asoc = NULL; 2350 struct sctp_sock *sp = sctp_sk(sk); 2351 2352 if (optlen != sizeof(struct sctp_assoc_value)) 2353 return - EINVAL; 2354 2355 if (copy_from_user(¶ms, optval, optlen)) 2356 return -EFAULT; 2357 2358 /* Validate value parameter. */ 2359 if (params.assoc_value > 500) 2360 return -EINVAL; 2361 2362 /* Get association, if assoc_id != 0 and the socket is a one 2363 * to many style socket, and an association was not found, then 2364 * the id was invalid. 2365 */ 2366 asoc = sctp_id2assoc(sk, params.assoc_id); 2367 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2368 return -EINVAL; 2369 2370 if (params.assoc_value) { 2371 if (asoc) { 2372 asoc->sackdelay = 2373 msecs_to_jiffies(params.assoc_value); 2374 asoc->param_flags = 2375 (asoc->param_flags & ~SPP_SACKDELAY) | 2376 SPP_SACKDELAY_ENABLE; 2377 } else { 2378 sp->sackdelay = params.assoc_value; 2379 sp->param_flags = 2380 (sp->param_flags & ~SPP_SACKDELAY) | 2381 SPP_SACKDELAY_ENABLE; 2382 } 2383 } else { 2384 if (asoc) { 2385 asoc->param_flags = 2386 (asoc->param_flags & ~SPP_SACKDELAY) | 2387 SPP_SACKDELAY_DISABLE; 2388 } else { 2389 sp->param_flags = 2390 (sp->param_flags & ~SPP_SACKDELAY) | 2391 SPP_SACKDELAY_DISABLE; 2392 } 2393 } 2394 2395 /* If change is for association, also apply to each transport. */ 2396 if (asoc) { 2397 struct list_head *pos; 2398 2399 list_for_each(pos, &asoc->peer.transport_addr_list) { 2400 trans = list_entry(pos, struct sctp_transport, 2401 transports); 2402 if (params.assoc_value) { 2403 trans->sackdelay = 2404 msecs_to_jiffies(params.assoc_value); 2405 trans->param_flags = 2406 (trans->param_flags & ~SPP_SACKDELAY) | 2407 SPP_SACKDELAY_ENABLE; 2408 } else { 2409 trans->param_flags = 2410 (trans->param_flags & ~SPP_SACKDELAY) | 2411 SPP_SACKDELAY_DISABLE; 2412 } 2413 } 2414 } 2415 2416 return 0; 2417 } 2418 2419 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2420 * 2421 * Applications can specify protocol parameters for the default association 2422 * initialization. The option name argument to setsockopt() and getsockopt() 2423 * is SCTP_INITMSG. 2424 * 2425 * Setting initialization parameters is effective only on an unconnected 2426 * socket (for UDP-style sockets only future associations are effected 2427 * by the change). With TCP-style sockets, this option is inherited by 2428 * sockets derived from a listener socket. 2429 */ 2430 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2431 { 2432 struct sctp_initmsg sinit; 2433 struct sctp_sock *sp = sctp_sk(sk); 2434 2435 if (optlen != sizeof(struct sctp_initmsg)) 2436 return -EINVAL; 2437 if (copy_from_user(&sinit, optval, optlen)) 2438 return -EFAULT; 2439 2440 if (sinit.sinit_num_ostreams) 2441 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2442 if (sinit.sinit_max_instreams) 2443 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2444 if (sinit.sinit_max_attempts) 2445 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2446 if (sinit.sinit_max_init_timeo) 2447 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2448 2449 return 0; 2450 } 2451 2452 /* 2453 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2454 * 2455 * Applications that wish to use the sendto() system call may wish to 2456 * specify a default set of parameters that would normally be supplied 2457 * through the inclusion of ancillary data. This socket option allows 2458 * such an application to set the default sctp_sndrcvinfo structure. 2459 * The application that wishes to use this socket option simply passes 2460 * in to this call the sctp_sndrcvinfo structure defined in Section 2461 * 5.2.2) The input parameters accepted by this call include 2462 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2463 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2464 * to this call if the caller is using the UDP model. 2465 */ 2466 static int sctp_setsockopt_default_send_param(struct sock *sk, 2467 char __user *optval, int optlen) 2468 { 2469 struct sctp_sndrcvinfo info; 2470 struct sctp_association *asoc; 2471 struct sctp_sock *sp = sctp_sk(sk); 2472 2473 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2474 return -EINVAL; 2475 if (copy_from_user(&info, optval, optlen)) 2476 return -EFAULT; 2477 2478 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2479 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2480 return -EINVAL; 2481 2482 if (asoc) { 2483 asoc->default_stream = info.sinfo_stream; 2484 asoc->default_flags = info.sinfo_flags; 2485 asoc->default_ppid = info.sinfo_ppid; 2486 asoc->default_context = info.sinfo_context; 2487 asoc->default_timetolive = info.sinfo_timetolive; 2488 } else { 2489 sp->default_stream = info.sinfo_stream; 2490 sp->default_flags = info.sinfo_flags; 2491 sp->default_ppid = info.sinfo_ppid; 2492 sp->default_context = info.sinfo_context; 2493 sp->default_timetolive = info.sinfo_timetolive; 2494 } 2495 2496 return 0; 2497 } 2498 2499 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2500 * 2501 * Requests that the local SCTP stack use the enclosed peer address as 2502 * the association primary. The enclosed address must be one of the 2503 * association peer's addresses. 2504 */ 2505 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2506 int optlen) 2507 { 2508 struct sctp_prim prim; 2509 struct sctp_transport *trans; 2510 2511 if (optlen != sizeof(struct sctp_prim)) 2512 return -EINVAL; 2513 2514 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2515 return -EFAULT; 2516 2517 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2518 if (!trans) 2519 return -EINVAL; 2520 2521 sctp_assoc_set_primary(trans->asoc, trans); 2522 2523 return 0; 2524 } 2525 2526 /* 2527 * 7.1.5 SCTP_NODELAY 2528 * 2529 * Turn on/off any Nagle-like algorithm. This means that packets are 2530 * generally sent as soon as possible and no unnecessary delays are 2531 * introduced, at the cost of more packets in the network. Expects an 2532 * integer boolean flag. 2533 */ 2534 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2535 int optlen) 2536 { 2537 int val; 2538 2539 if (optlen < sizeof(int)) 2540 return -EINVAL; 2541 if (get_user(val, (int __user *)optval)) 2542 return -EFAULT; 2543 2544 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2545 return 0; 2546 } 2547 2548 /* 2549 * 2550 * 7.1.1 SCTP_RTOINFO 2551 * 2552 * The protocol parameters used to initialize and bound retransmission 2553 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2554 * and modify these parameters. 2555 * All parameters are time values, in milliseconds. A value of 0, when 2556 * modifying the parameters, indicates that the current value should not 2557 * be changed. 2558 * 2559 */ 2560 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2561 struct sctp_rtoinfo rtoinfo; 2562 struct sctp_association *asoc; 2563 2564 if (optlen != sizeof (struct sctp_rtoinfo)) 2565 return -EINVAL; 2566 2567 if (copy_from_user(&rtoinfo, optval, optlen)) 2568 return -EFAULT; 2569 2570 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2571 2572 /* Set the values to the specific association */ 2573 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2574 return -EINVAL; 2575 2576 if (asoc) { 2577 if (rtoinfo.srto_initial != 0) 2578 asoc->rto_initial = 2579 msecs_to_jiffies(rtoinfo.srto_initial); 2580 if (rtoinfo.srto_max != 0) 2581 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2582 if (rtoinfo.srto_min != 0) 2583 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2584 } else { 2585 /* If there is no association or the association-id = 0 2586 * set the values to the endpoint. 2587 */ 2588 struct sctp_sock *sp = sctp_sk(sk); 2589 2590 if (rtoinfo.srto_initial != 0) 2591 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2592 if (rtoinfo.srto_max != 0) 2593 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2594 if (rtoinfo.srto_min != 0) 2595 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2596 } 2597 2598 return 0; 2599 } 2600 2601 /* 2602 * 2603 * 7.1.2 SCTP_ASSOCINFO 2604 * 2605 * This option is used to tune the maximum retransmission attempts 2606 * of the association. 2607 * Returns an error if the new association retransmission value is 2608 * greater than the sum of the retransmission value of the peer. 2609 * See [SCTP] for more information. 2610 * 2611 */ 2612 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2613 { 2614 2615 struct sctp_assocparams assocparams; 2616 struct sctp_association *asoc; 2617 2618 if (optlen != sizeof(struct sctp_assocparams)) 2619 return -EINVAL; 2620 if (copy_from_user(&assocparams, optval, optlen)) 2621 return -EFAULT; 2622 2623 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2624 2625 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2626 return -EINVAL; 2627 2628 /* Set the values to the specific association */ 2629 if (asoc) { 2630 if (assocparams.sasoc_asocmaxrxt != 0) { 2631 __u32 path_sum = 0; 2632 int paths = 0; 2633 struct list_head *pos; 2634 struct sctp_transport *peer_addr; 2635 2636 list_for_each(pos, &asoc->peer.transport_addr_list) { 2637 peer_addr = list_entry(pos, 2638 struct sctp_transport, 2639 transports); 2640 path_sum += peer_addr->pathmaxrxt; 2641 paths++; 2642 } 2643 2644 /* Only validate asocmaxrxt if we have more then 2645 * one path/transport. We do this because path 2646 * retransmissions are only counted when we have more 2647 * then one path. 2648 */ 2649 if (paths > 1 && 2650 assocparams.sasoc_asocmaxrxt > path_sum) 2651 return -EINVAL; 2652 2653 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2654 } 2655 2656 if (assocparams.sasoc_cookie_life != 0) { 2657 asoc->cookie_life.tv_sec = 2658 assocparams.sasoc_cookie_life / 1000; 2659 asoc->cookie_life.tv_usec = 2660 (assocparams.sasoc_cookie_life % 1000) 2661 * 1000; 2662 } 2663 } else { 2664 /* Set the values to the endpoint */ 2665 struct sctp_sock *sp = sctp_sk(sk); 2666 2667 if (assocparams.sasoc_asocmaxrxt != 0) 2668 sp->assocparams.sasoc_asocmaxrxt = 2669 assocparams.sasoc_asocmaxrxt; 2670 if (assocparams.sasoc_cookie_life != 0) 2671 sp->assocparams.sasoc_cookie_life = 2672 assocparams.sasoc_cookie_life; 2673 } 2674 return 0; 2675 } 2676 2677 /* 2678 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2679 * 2680 * This socket option is a boolean flag which turns on or off mapped V4 2681 * addresses. If this option is turned on and the socket is type 2682 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2683 * If this option is turned off, then no mapping will be done of V4 2684 * addresses and a user will receive both PF_INET6 and PF_INET type 2685 * addresses on the socket. 2686 */ 2687 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2688 { 2689 int val; 2690 struct sctp_sock *sp = sctp_sk(sk); 2691 2692 if (optlen < sizeof(int)) 2693 return -EINVAL; 2694 if (get_user(val, (int __user *)optval)) 2695 return -EFAULT; 2696 if (val) 2697 sp->v4mapped = 1; 2698 else 2699 sp->v4mapped = 0; 2700 2701 return 0; 2702 } 2703 2704 /* 2705 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2706 * 2707 * This socket option specifies the maximum size to put in any outgoing 2708 * SCTP chunk. If a message is larger than this size it will be 2709 * fragmented by SCTP into the specified size. Note that the underlying 2710 * SCTP implementation may fragment into smaller sized chunks when the 2711 * PMTU of the underlying association is smaller than the value set by 2712 * the user. 2713 */ 2714 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2715 { 2716 struct sctp_association *asoc; 2717 struct list_head *pos; 2718 struct sctp_sock *sp = sctp_sk(sk); 2719 int val; 2720 2721 if (optlen < sizeof(int)) 2722 return -EINVAL; 2723 if (get_user(val, (int __user *)optval)) 2724 return -EFAULT; 2725 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2726 return -EINVAL; 2727 sp->user_frag = val; 2728 2729 /* Update the frag_point of the existing associations. */ 2730 list_for_each(pos, &(sp->ep->asocs)) { 2731 asoc = list_entry(pos, struct sctp_association, asocs); 2732 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2733 } 2734 2735 return 0; 2736 } 2737 2738 2739 /* 2740 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2741 * 2742 * Requests that the peer mark the enclosed address as the association 2743 * primary. The enclosed address must be one of the association's 2744 * locally bound addresses. The following structure is used to make a 2745 * set primary request: 2746 */ 2747 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2748 int optlen) 2749 { 2750 struct sctp_sock *sp; 2751 struct sctp_endpoint *ep; 2752 struct sctp_association *asoc = NULL; 2753 struct sctp_setpeerprim prim; 2754 struct sctp_chunk *chunk; 2755 int err; 2756 2757 sp = sctp_sk(sk); 2758 ep = sp->ep; 2759 2760 if (!sctp_addip_enable) 2761 return -EPERM; 2762 2763 if (optlen != sizeof(struct sctp_setpeerprim)) 2764 return -EINVAL; 2765 2766 if (copy_from_user(&prim, optval, optlen)) 2767 return -EFAULT; 2768 2769 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2770 if (!asoc) 2771 return -EINVAL; 2772 2773 if (!asoc->peer.asconf_capable) 2774 return -EPERM; 2775 2776 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2777 return -EPERM; 2778 2779 if (!sctp_state(asoc, ESTABLISHED)) 2780 return -ENOTCONN; 2781 2782 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2783 return -EADDRNOTAVAIL; 2784 2785 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2786 chunk = sctp_make_asconf_set_prim(asoc, 2787 (union sctp_addr *)&prim.sspp_addr); 2788 if (!chunk) 2789 return -ENOMEM; 2790 2791 err = sctp_send_asconf(asoc, chunk); 2792 2793 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2794 2795 return err; 2796 } 2797 2798 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2799 int optlen) 2800 { 2801 struct sctp_setadaptation adaptation; 2802 2803 if (optlen != sizeof(struct sctp_setadaptation)) 2804 return -EINVAL; 2805 if (copy_from_user(&adaptation, optval, optlen)) 2806 return -EFAULT; 2807 2808 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2809 2810 return 0; 2811 } 2812 2813 /* 2814 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2815 * 2816 * The context field in the sctp_sndrcvinfo structure is normally only 2817 * used when a failed message is retrieved holding the value that was 2818 * sent down on the actual send call. This option allows the setting of 2819 * a default context on an association basis that will be received on 2820 * reading messages from the peer. This is especially helpful in the 2821 * one-2-many model for an application to keep some reference to an 2822 * internal state machine that is processing messages on the 2823 * association. Note that the setting of this value only effects 2824 * received messages from the peer and does not effect the value that is 2825 * saved with outbound messages. 2826 */ 2827 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2828 int optlen) 2829 { 2830 struct sctp_assoc_value params; 2831 struct sctp_sock *sp; 2832 struct sctp_association *asoc; 2833 2834 if (optlen != sizeof(struct sctp_assoc_value)) 2835 return -EINVAL; 2836 if (copy_from_user(¶ms, optval, optlen)) 2837 return -EFAULT; 2838 2839 sp = sctp_sk(sk); 2840 2841 if (params.assoc_id != 0) { 2842 asoc = sctp_id2assoc(sk, params.assoc_id); 2843 if (!asoc) 2844 return -EINVAL; 2845 asoc->default_rcv_context = params.assoc_value; 2846 } else { 2847 sp->default_rcv_context = params.assoc_value; 2848 } 2849 2850 return 0; 2851 } 2852 2853 /* 2854 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2855 * 2856 * This options will at a minimum specify if the implementation is doing 2857 * fragmented interleave. Fragmented interleave, for a one to many 2858 * socket, is when subsequent calls to receive a message may return 2859 * parts of messages from different associations. Some implementations 2860 * may allow you to turn this value on or off. If so, when turned off, 2861 * no fragment interleave will occur (which will cause a head of line 2862 * blocking amongst multiple associations sharing the same one to many 2863 * socket). When this option is turned on, then each receive call may 2864 * come from a different association (thus the user must receive data 2865 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2866 * association each receive belongs to. 2867 * 2868 * This option takes a boolean value. A non-zero value indicates that 2869 * fragmented interleave is on. A value of zero indicates that 2870 * fragmented interleave is off. 2871 * 2872 * Note that it is important that an implementation that allows this 2873 * option to be turned on, have it off by default. Otherwise an unaware 2874 * application using the one to many model may become confused and act 2875 * incorrectly. 2876 */ 2877 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2878 char __user *optval, 2879 int optlen) 2880 { 2881 int val; 2882 2883 if (optlen != sizeof(int)) 2884 return -EINVAL; 2885 if (get_user(val, (int __user *)optval)) 2886 return -EFAULT; 2887 2888 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 2889 2890 return 0; 2891 } 2892 2893 /* 2894 * 7.1.25. Set or Get the sctp partial delivery point 2895 * (SCTP_PARTIAL_DELIVERY_POINT) 2896 * This option will set or get the SCTP partial delivery point. This 2897 * point is the size of a message where the partial delivery API will be 2898 * invoked to help free up rwnd space for the peer. Setting this to a 2899 * lower value will cause partial delivery's to happen more often. The 2900 * calls argument is an integer that sets or gets the partial delivery 2901 * point. 2902 */ 2903 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 2904 char __user *optval, 2905 int optlen) 2906 { 2907 u32 val; 2908 2909 if (optlen != sizeof(u32)) 2910 return -EINVAL; 2911 if (get_user(val, (int __user *)optval)) 2912 return -EFAULT; 2913 2914 sctp_sk(sk)->pd_point = val; 2915 2916 return 0; /* is this the right error code? */ 2917 } 2918 2919 /* 2920 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 2921 * 2922 * This option will allow a user to change the maximum burst of packets 2923 * that can be emitted by this association. Note that the default value 2924 * is 4, and some implementations may restrict this setting so that it 2925 * can only be lowered. 2926 * 2927 * NOTE: This text doesn't seem right. Do this on a socket basis with 2928 * future associations inheriting the socket value. 2929 */ 2930 static int sctp_setsockopt_maxburst(struct sock *sk, 2931 char __user *optval, 2932 int optlen) 2933 { 2934 int val; 2935 2936 if (optlen != sizeof(int)) 2937 return -EINVAL; 2938 if (get_user(val, (int __user *)optval)) 2939 return -EFAULT; 2940 2941 if (val < 0) 2942 return -EINVAL; 2943 2944 sctp_sk(sk)->max_burst = val; 2945 2946 return 0; 2947 } 2948 2949 /* 2950 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 2951 * 2952 * This set option adds a chunk type that the user is requesting to be 2953 * received only in an authenticated way. Changes to the list of chunks 2954 * will only effect future associations on the socket. 2955 */ 2956 static int sctp_setsockopt_auth_chunk(struct sock *sk, 2957 char __user *optval, 2958 int optlen) 2959 { 2960 struct sctp_authchunk val; 2961 2962 if (optlen != sizeof(struct sctp_authchunk)) 2963 return -EINVAL; 2964 if (copy_from_user(&val, optval, optlen)) 2965 return -EFAULT; 2966 2967 switch (val.sauth_chunk) { 2968 case SCTP_CID_INIT: 2969 case SCTP_CID_INIT_ACK: 2970 case SCTP_CID_SHUTDOWN_COMPLETE: 2971 case SCTP_CID_AUTH: 2972 return -EINVAL; 2973 } 2974 2975 /* add this chunk id to the endpoint */ 2976 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 2977 } 2978 2979 /* 2980 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 2981 * 2982 * This option gets or sets the list of HMAC algorithms that the local 2983 * endpoint requires the peer to use. 2984 */ 2985 static int sctp_setsockopt_hmac_ident(struct sock *sk, 2986 char __user *optval, 2987 int optlen) 2988 { 2989 struct sctp_hmacalgo *hmacs; 2990 int err; 2991 2992 if (optlen < sizeof(struct sctp_hmacalgo)) 2993 return -EINVAL; 2994 2995 hmacs = kmalloc(optlen, GFP_KERNEL); 2996 if (!hmacs) 2997 return -ENOMEM; 2998 2999 if (copy_from_user(hmacs, optval, optlen)) { 3000 err = -EFAULT; 3001 goto out; 3002 } 3003 3004 if (hmacs->shmac_num_idents == 0 || 3005 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) { 3006 err = -EINVAL; 3007 goto out; 3008 } 3009 3010 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3011 out: 3012 kfree(hmacs); 3013 return err; 3014 } 3015 3016 /* 3017 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3018 * 3019 * This option will set a shared secret key which is used to build an 3020 * association shared key. 3021 */ 3022 static int sctp_setsockopt_auth_key(struct sock *sk, 3023 char __user *optval, 3024 int optlen) 3025 { 3026 struct sctp_authkey *authkey; 3027 struct sctp_association *asoc; 3028 int ret; 3029 3030 if (optlen <= sizeof(struct sctp_authkey)) 3031 return -EINVAL; 3032 3033 authkey = kmalloc(optlen, GFP_KERNEL); 3034 if (!authkey) 3035 return -ENOMEM; 3036 3037 if (copy_from_user(authkey, optval, optlen)) { 3038 ret = -EFAULT; 3039 goto out; 3040 } 3041 3042 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3043 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3044 ret = -EINVAL; 3045 goto out; 3046 } 3047 3048 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3049 out: 3050 kfree(authkey); 3051 return ret; 3052 } 3053 3054 /* 3055 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3056 * 3057 * This option will get or set the active shared key to be used to build 3058 * the association shared key. 3059 */ 3060 static int sctp_setsockopt_active_key(struct sock *sk, 3061 char __user *optval, 3062 int optlen) 3063 { 3064 struct sctp_authkeyid val; 3065 struct sctp_association *asoc; 3066 3067 if (optlen != sizeof(struct sctp_authkeyid)) 3068 return -EINVAL; 3069 if (copy_from_user(&val, optval, optlen)) 3070 return -EFAULT; 3071 3072 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3073 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3074 return -EINVAL; 3075 3076 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3077 val.scact_keynumber); 3078 } 3079 3080 /* 3081 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3082 * 3083 * This set option will delete a shared secret key from use. 3084 */ 3085 static int sctp_setsockopt_del_key(struct sock *sk, 3086 char __user *optval, 3087 int optlen) 3088 { 3089 struct sctp_authkeyid val; 3090 struct sctp_association *asoc; 3091 3092 if (optlen != sizeof(struct sctp_authkeyid)) 3093 return -EINVAL; 3094 if (copy_from_user(&val, optval, optlen)) 3095 return -EFAULT; 3096 3097 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3098 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3099 return -EINVAL; 3100 3101 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3102 val.scact_keynumber); 3103 3104 } 3105 3106 3107 /* API 6.2 setsockopt(), getsockopt() 3108 * 3109 * Applications use setsockopt() and getsockopt() to set or retrieve 3110 * socket options. Socket options are used to change the default 3111 * behavior of sockets calls. They are described in Section 7. 3112 * 3113 * The syntax is: 3114 * 3115 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3116 * int __user *optlen); 3117 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3118 * int optlen); 3119 * 3120 * sd - the socket descript. 3121 * level - set to IPPROTO_SCTP for all SCTP options. 3122 * optname - the option name. 3123 * optval - the buffer to store the value of the option. 3124 * optlen - the size of the buffer. 3125 */ 3126 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3127 char __user *optval, int optlen) 3128 { 3129 int retval = 0; 3130 3131 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3132 sk, optname); 3133 3134 /* I can hardly begin to describe how wrong this is. This is 3135 * so broken as to be worse than useless. The API draft 3136 * REALLY is NOT helpful here... I am not convinced that the 3137 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3138 * are at all well-founded. 3139 */ 3140 if (level != SOL_SCTP) { 3141 struct sctp_af *af = sctp_sk(sk)->pf->af; 3142 retval = af->setsockopt(sk, level, optname, optval, optlen); 3143 goto out_nounlock; 3144 } 3145 3146 sctp_lock_sock(sk); 3147 3148 switch (optname) { 3149 case SCTP_SOCKOPT_BINDX_ADD: 3150 /* 'optlen' is the size of the addresses buffer. */ 3151 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3152 optlen, SCTP_BINDX_ADD_ADDR); 3153 break; 3154 3155 case SCTP_SOCKOPT_BINDX_REM: 3156 /* 'optlen' is the size of the addresses buffer. */ 3157 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3158 optlen, SCTP_BINDX_REM_ADDR); 3159 break; 3160 3161 case SCTP_SOCKOPT_CONNECTX: 3162 /* 'optlen' is the size of the addresses buffer. */ 3163 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 3164 optlen); 3165 break; 3166 3167 case SCTP_DISABLE_FRAGMENTS: 3168 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3169 break; 3170 3171 case SCTP_EVENTS: 3172 retval = sctp_setsockopt_events(sk, optval, optlen); 3173 break; 3174 3175 case SCTP_AUTOCLOSE: 3176 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3177 break; 3178 3179 case SCTP_PEER_ADDR_PARAMS: 3180 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3181 break; 3182 3183 case SCTP_DELAYED_ACK_TIME: 3184 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 3185 break; 3186 case SCTP_PARTIAL_DELIVERY_POINT: 3187 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3188 break; 3189 3190 case SCTP_INITMSG: 3191 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3192 break; 3193 case SCTP_DEFAULT_SEND_PARAM: 3194 retval = sctp_setsockopt_default_send_param(sk, optval, 3195 optlen); 3196 break; 3197 case SCTP_PRIMARY_ADDR: 3198 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3199 break; 3200 case SCTP_SET_PEER_PRIMARY_ADDR: 3201 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3202 break; 3203 case SCTP_NODELAY: 3204 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3205 break; 3206 case SCTP_RTOINFO: 3207 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3208 break; 3209 case SCTP_ASSOCINFO: 3210 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3211 break; 3212 case SCTP_I_WANT_MAPPED_V4_ADDR: 3213 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3214 break; 3215 case SCTP_MAXSEG: 3216 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3217 break; 3218 case SCTP_ADAPTATION_LAYER: 3219 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3220 break; 3221 case SCTP_CONTEXT: 3222 retval = sctp_setsockopt_context(sk, optval, optlen); 3223 break; 3224 case SCTP_FRAGMENT_INTERLEAVE: 3225 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3226 break; 3227 case SCTP_MAX_BURST: 3228 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3229 break; 3230 case SCTP_AUTH_CHUNK: 3231 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3232 break; 3233 case SCTP_HMAC_IDENT: 3234 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3235 break; 3236 case SCTP_AUTH_KEY: 3237 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3238 break; 3239 case SCTP_AUTH_ACTIVE_KEY: 3240 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3241 break; 3242 case SCTP_AUTH_DELETE_KEY: 3243 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3244 break; 3245 default: 3246 retval = -ENOPROTOOPT; 3247 break; 3248 } 3249 3250 sctp_release_sock(sk); 3251 3252 out_nounlock: 3253 return retval; 3254 } 3255 3256 /* API 3.1.6 connect() - UDP Style Syntax 3257 * 3258 * An application may use the connect() call in the UDP model to initiate an 3259 * association without sending data. 3260 * 3261 * The syntax is: 3262 * 3263 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3264 * 3265 * sd: the socket descriptor to have a new association added to. 3266 * 3267 * nam: the address structure (either struct sockaddr_in or struct 3268 * sockaddr_in6 defined in RFC2553 [7]). 3269 * 3270 * len: the size of the address. 3271 */ 3272 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3273 int addr_len) 3274 { 3275 int err = 0; 3276 struct sctp_af *af; 3277 3278 sctp_lock_sock(sk); 3279 3280 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3281 __FUNCTION__, sk, addr, addr_len); 3282 3283 /* Validate addr_len before calling common connect/connectx routine. */ 3284 af = sctp_get_af_specific(addr->sa_family); 3285 if (!af || addr_len < af->sockaddr_len) { 3286 err = -EINVAL; 3287 } else { 3288 /* Pass correct addr len to common routine (so it knows there 3289 * is only one address being passed. 3290 */ 3291 err = __sctp_connect(sk, addr, af->sockaddr_len); 3292 } 3293 3294 sctp_release_sock(sk); 3295 return err; 3296 } 3297 3298 /* FIXME: Write comments. */ 3299 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3300 { 3301 return -EOPNOTSUPP; /* STUB */ 3302 } 3303 3304 /* 4.1.4 accept() - TCP Style Syntax 3305 * 3306 * Applications use accept() call to remove an established SCTP 3307 * association from the accept queue of the endpoint. A new socket 3308 * descriptor will be returned from accept() to represent the newly 3309 * formed association. 3310 */ 3311 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3312 { 3313 struct sctp_sock *sp; 3314 struct sctp_endpoint *ep; 3315 struct sock *newsk = NULL; 3316 struct sctp_association *asoc; 3317 long timeo; 3318 int error = 0; 3319 3320 sctp_lock_sock(sk); 3321 3322 sp = sctp_sk(sk); 3323 ep = sp->ep; 3324 3325 if (!sctp_style(sk, TCP)) { 3326 error = -EOPNOTSUPP; 3327 goto out; 3328 } 3329 3330 if (!sctp_sstate(sk, LISTENING)) { 3331 error = -EINVAL; 3332 goto out; 3333 } 3334 3335 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3336 3337 error = sctp_wait_for_accept(sk, timeo); 3338 if (error) 3339 goto out; 3340 3341 /* We treat the list of associations on the endpoint as the accept 3342 * queue and pick the first association on the list. 3343 */ 3344 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3345 3346 newsk = sp->pf->create_accept_sk(sk, asoc); 3347 if (!newsk) { 3348 error = -ENOMEM; 3349 goto out; 3350 } 3351 3352 /* Populate the fields of the newsk from the oldsk and migrate the 3353 * asoc to the newsk. 3354 */ 3355 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3356 3357 out: 3358 sctp_release_sock(sk); 3359 *err = error; 3360 return newsk; 3361 } 3362 3363 /* The SCTP ioctl handler. */ 3364 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3365 { 3366 return -ENOIOCTLCMD; 3367 } 3368 3369 /* This is the function which gets called during socket creation to 3370 * initialized the SCTP-specific portion of the sock. 3371 * The sock structure should already be zero-filled memory. 3372 */ 3373 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3374 { 3375 struct sctp_endpoint *ep; 3376 struct sctp_sock *sp; 3377 3378 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3379 3380 sp = sctp_sk(sk); 3381 3382 /* Initialize the SCTP per socket area. */ 3383 switch (sk->sk_type) { 3384 case SOCK_SEQPACKET: 3385 sp->type = SCTP_SOCKET_UDP; 3386 break; 3387 case SOCK_STREAM: 3388 sp->type = SCTP_SOCKET_TCP; 3389 break; 3390 default: 3391 return -ESOCKTNOSUPPORT; 3392 } 3393 3394 /* Initialize default send parameters. These parameters can be 3395 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3396 */ 3397 sp->default_stream = 0; 3398 sp->default_ppid = 0; 3399 sp->default_flags = 0; 3400 sp->default_context = 0; 3401 sp->default_timetolive = 0; 3402 3403 sp->default_rcv_context = 0; 3404 sp->max_burst = sctp_max_burst; 3405 3406 /* Initialize default setup parameters. These parameters 3407 * can be modified with the SCTP_INITMSG socket option or 3408 * overridden by the SCTP_INIT CMSG. 3409 */ 3410 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3411 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3412 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3413 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3414 3415 /* Initialize default RTO related parameters. These parameters can 3416 * be modified for with the SCTP_RTOINFO socket option. 3417 */ 3418 sp->rtoinfo.srto_initial = sctp_rto_initial; 3419 sp->rtoinfo.srto_max = sctp_rto_max; 3420 sp->rtoinfo.srto_min = sctp_rto_min; 3421 3422 /* Initialize default association related parameters. These parameters 3423 * can be modified with the SCTP_ASSOCINFO socket option. 3424 */ 3425 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3426 sp->assocparams.sasoc_number_peer_destinations = 0; 3427 sp->assocparams.sasoc_peer_rwnd = 0; 3428 sp->assocparams.sasoc_local_rwnd = 0; 3429 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3430 3431 /* Initialize default event subscriptions. By default, all the 3432 * options are off. 3433 */ 3434 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3435 3436 /* Default Peer Address Parameters. These defaults can 3437 * be modified via SCTP_PEER_ADDR_PARAMS 3438 */ 3439 sp->hbinterval = sctp_hb_interval; 3440 sp->pathmaxrxt = sctp_max_retrans_path; 3441 sp->pathmtu = 0; // allow default discovery 3442 sp->sackdelay = sctp_sack_timeout; 3443 sp->param_flags = SPP_HB_ENABLE | 3444 SPP_PMTUD_ENABLE | 3445 SPP_SACKDELAY_ENABLE; 3446 3447 /* If enabled no SCTP message fragmentation will be performed. 3448 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3449 */ 3450 sp->disable_fragments = 0; 3451 3452 /* Enable Nagle algorithm by default. */ 3453 sp->nodelay = 0; 3454 3455 /* Enable by default. */ 3456 sp->v4mapped = 1; 3457 3458 /* Auto-close idle associations after the configured 3459 * number of seconds. A value of 0 disables this 3460 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3461 * for UDP-style sockets only. 3462 */ 3463 sp->autoclose = 0; 3464 3465 /* User specified fragmentation limit. */ 3466 sp->user_frag = 0; 3467 3468 sp->adaptation_ind = 0; 3469 3470 sp->pf = sctp_get_pf_specific(sk->sk_family); 3471 3472 /* Control variables for partial data delivery. */ 3473 atomic_set(&sp->pd_mode, 0); 3474 skb_queue_head_init(&sp->pd_lobby); 3475 sp->frag_interleave = 0; 3476 3477 /* Create a per socket endpoint structure. Even if we 3478 * change the data structure relationships, this may still 3479 * be useful for storing pre-connect address information. 3480 */ 3481 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3482 if (!ep) 3483 return -ENOMEM; 3484 3485 sp->ep = ep; 3486 sp->hmac = NULL; 3487 3488 SCTP_DBG_OBJCNT_INC(sock); 3489 atomic_inc(&sctp_sockets_allocated); 3490 return 0; 3491 } 3492 3493 /* Cleanup any SCTP per socket resources. */ 3494 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3495 { 3496 struct sctp_endpoint *ep; 3497 3498 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3499 3500 /* Release our hold on the endpoint. */ 3501 ep = sctp_sk(sk)->ep; 3502 sctp_endpoint_free(ep); 3503 atomic_dec(&sctp_sockets_allocated); 3504 return 0; 3505 } 3506 3507 /* API 4.1.7 shutdown() - TCP Style Syntax 3508 * int shutdown(int socket, int how); 3509 * 3510 * sd - the socket descriptor of the association to be closed. 3511 * how - Specifies the type of shutdown. The values are 3512 * as follows: 3513 * SHUT_RD 3514 * Disables further receive operations. No SCTP 3515 * protocol action is taken. 3516 * SHUT_WR 3517 * Disables further send operations, and initiates 3518 * the SCTP shutdown sequence. 3519 * SHUT_RDWR 3520 * Disables further send and receive operations 3521 * and initiates the SCTP shutdown sequence. 3522 */ 3523 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3524 { 3525 struct sctp_endpoint *ep; 3526 struct sctp_association *asoc; 3527 3528 if (!sctp_style(sk, TCP)) 3529 return; 3530 3531 if (how & SEND_SHUTDOWN) { 3532 ep = sctp_sk(sk)->ep; 3533 if (!list_empty(&ep->asocs)) { 3534 asoc = list_entry(ep->asocs.next, 3535 struct sctp_association, asocs); 3536 sctp_primitive_SHUTDOWN(asoc, NULL); 3537 } 3538 } 3539 } 3540 3541 /* 7.2.1 Association Status (SCTP_STATUS) 3542 3543 * Applications can retrieve current status information about an 3544 * association, including association state, peer receiver window size, 3545 * number of unacked data chunks, and number of data chunks pending 3546 * receipt. This information is read-only. 3547 */ 3548 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3549 char __user *optval, 3550 int __user *optlen) 3551 { 3552 struct sctp_status status; 3553 struct sctp_association *asoc = NULL; 3554 struct sctp_transport *transport; 3555 sctp_assoc_t associd; 3556 int retval = 0; 3557 3558 if (len < sizeof(status)) { 3559 retval = -EINVAL; 3560 goto out; 3561 } 3562 3563 len = sizeof(status); 3564 if (copy_from_user(&status, optval, len)) { 3565 retval = -EFAULT; 3566 goto out; 3567 } 3568 3569 associd = status.sstat_assoc_id; 3570 asoc = sctp_id2assoc(sk, associd); 3571 if (!asoc) { 3572 retval = -EINVAL; 3573 goto out; 3574 } 3575 3576 transport = asoc->peer.primary_path; 3577 3578 status.sstat_assoc_id = sctp_assoc2id(asoc); 3579 status.sstat_state = asoc->state; 3580 status.sstat_rwnd = asoc->peer.rwnd; 3581 status.sstat_unackdata = asoc->unack_data; 3582 3583 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3584 status.sstat_instrms = asoc->c.sinit_max_instreams; 3585 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3586 status.sstat_fragmentation_point = asoc->frag_point; 3587 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3588 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3589 transport->af_specific->sockaddr_len); 3590 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3591 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3592 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3593 status.sstat_primary.spinfo_state = transport->state; 3594 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3595 status.sstat_primary.spinfo_srtt = transport->srtt; 3596 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3597 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3598 3599 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3600 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3601 3602 if (put_user(len, optlen)) { 3603 retval = -EFAULT; 3604 goto out; 3605 } 3606 3607 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3608 len, status.sstat_state, status.sstat_rwnd, 3609 status.sstat_assoc_id); 3610 3611 if (copy_to_user(optval, &status, len)) { 3612 retval = -EFAULT; 3613 goto out; 3614 } 3615 3616 out: 3617 return (retval); 3618 } 3619 3620 3621 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3622 * 3623 * Applications can retrieve information about a specific peer address 3624 * of an association, including its reachability state, congestion 3625 * window, and retransmission timer values. This information is 3626 * read-only. 3627 */ 3628 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3629 char __user *optval, 3630 int __user *optlen) 3631 { 3632 struct sctp_paddrinfo pinfo; 3633 struct sctp_transport *transport; 3634 int retval = 0; 3635 3636 if (len < sizeof(pinfo)) { 3637 retval = -EINVAL; 3638 goto out; 3639 } 3640 3641 len = sizeof(pinfo); 3642 if (copy_from_user(&pinfo, optval, len)) { 3643 retval = -EFAULT; 3644 goto out; 3645 } 3646 3647 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3648 pinfo.spinfo_assoc_id); 3649 if (!transport) 3650 return -EINVAL; 3651 3652 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3653 pinfo.spinfo_state = transport->state; 3654 pinfo.spinfo_cwnd = transport->cwnd; 3655 pinfo.spinfo_srtt = transport->srtt; 3656 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3657 pinfo.spinfo_mtu = transport->pathmtu; 3658 3659 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3660 pinfo.spinfo_state = SCTP_ACTIVE; 3661 3662 if (put_user(len, optlen)) { 3663 retval = -EFAULT; 3664 goto out; 3665 } 3666 3667 if (copy_to_user(optval, &pinfo, len)) { 3668 retval = -EFAULT; 3669 goto out; 3670 } 3671 3672 out: 3673 return (retval); 3674 } 3675 3676 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3677 * 3678 * This option is a on/off flag. If enabled no SCTP message 3679 * fragmentation will be performed. Instead if a message being sent 3680 * exceeds the current PMTU size, the message will NOT be sent and 3681 * instead a error will be indicated to the user. 3682 */ 3683 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3684 char __user *optval, int __user *optlen) 3685 { 3686 int val; 3687 3688 if (len < sizeof(int)) 3689 return -EINVAL; 3690 3691 len = sizeof(int); 3692 val = (sctp_sk(sk)->disable_fragments == 1); 3693 if (put_user(len, optlen)) 3694 return -EFAULT; 3695 if (copy_to_user(optval, &val, len)) 3696 return -EFAULT; 3697 return 0; 3698 } 3699 3700 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3701 * 3702 * This socket option is used to specify various notifications and 3703 * ancillary data the user wishes to receive. 3704 */ 3705 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3706 int __user *optlen) 3707 { 3708 if (len < sizeof(struct sctp_event_subscribe)) 3709 return -EINVAL; 3710 len = sizeof(struct sctp_event_subscribe); 3711 if (put_user(len, optlen)) 3712 return -EFAULT; 3713 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3714 return -EFAULT; 3715 return 0; 3716 } 3717 3718 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3719 * 3720 * This socket option is applicable to the UDP-style socket only. When 3721 * set it will cause associations that are idle for more than the 3722 * specified number of seconds to automatically close. An association 3723 * being idle is defined an association that has NOT sent or received 3724 * user data. The special value of '0' indicates that no automatic 3725 * close of any associations should be performed. The option expects an 3726 * integer defining the number of seconds of idle time before an 3727 * association is closed. 3728 */ 3729 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3730 { 3731 /* Applicable to UDP-style socket only */ 3732 if (sctp_style(sk, TCP)) 3733 return -EOPNOTSUPP; 3734 if (len < sizeof(int)) 3735 return -EINVAL; 3736 len = sizeof(int); 3737 if (put_user(len, optlen)) 3738 return -EFAULT; 3739 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3740 return -EFAULT; 3741 return 0; 3742 } 3743 3744 /* Helper routine to branch off an association to a new socket. */ 3745 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3746 struct socket **sockp) 3747 { 3748 struct sock *sk = asoc->base.sk; 3749 struct socket *sock; 3750 struct inet_sock *inetsk; 3751 struct sctp_af *af; 3752 int err = 0; 3753 3754 /* An association cannot be branched off from an already peeled-off 3755 * socket, nor is this supported for tcp style sockets. 3756 */ 3757 if (!sctp_style(sk, UDP)) 3758 return -EINVAL; 3759 3760 /* Create a new socket. */ 3761 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3762 if (err < 0) 3763 return err; 3764 3765 /* Populate the fields of the newsk from the oldsk and migrate the 3766 * asoc to the newsk. 3767 */ 3768 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3769 3770 /* Make peeled-off sockets more like 1-1 accepted sockets. 3771 * Set the daddr and initialize id to something more random 3772 */ 3773 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3774 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3775 inetsk = inet_sk(sock->sk); 3776 inetsk->id = asoc->next_tsn ^ jiffies; 3777 3778 *sockp = sock; 3779 3780 return err; 3781 } 3782 3783 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3784 { 3785 sctp_peeloff_arg_t peeloff; 3786 struct socket *newsock; 3787 int retval = 0; 3788 struct sctp_association *asoc; 3789 3790 if (len < sizeof(sctp_peeloff_arg_t)) 3791 return -EINVAL; 3792 len = sizeof(sctp_peeloff_arg_t); 3793 if (copy_from_user(&peeloff, optval, len)) 3794 return -EFAULT; 3795 3796 asoc = sctp_id2assoc(sk, peeloff.associd); 3797 if (!asoc) { 3798 retval = -EINVAL; 3799 goto out; 3800 } 3801 3802 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3803 3804 retval = sctp_do_peeloff(asoc, &newsock); 3805 if (retval < 0) 3806 goto out; 3807 3808 /* Map the socket to an unused fd that can be returned to the user. */ 3809 retval = sock_map_fd(newsock); 3810 if (retval < 0) { 3811 sock_release(newsock); 3812 goto out; 3813 } 3814 3815 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3816 __FUNCTION__, sk, asoc, newsock->sk, retval); 3817 3818 /* Return the fd mapped to the new socket. */ 3819 peeloff.sd = retval; 3820 if (put_user(len, optlen)) 3821 return -EFAULT; 3822 if (copy_to_user(optval, &peeloff, len)) 3823 retval = -EFAULT; 3824 3825 out: 3826 return retval; 3827 } 3828 3829 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3830 * 3831 * Applications can enable or disable heartbeats for any peer address of 3832 * an association, modify an address's heartbeat interval, force a 3833 * heartbeat to be sent immediately, and adjust the address's maximum 3834 * number of retransmissions sent before an address is considered 3835 * unreachable. The following structure is used to access and modify an 3836 * address's parameters: 3837 * 3838 * struct sctp_paddrparams { 3839 * sctp_assoc_t spp_assoc_id; 3840 * struct sockaddr_storage spp_address; 3841 * uint32_t spp_hbinterval; 3842 * uint16_t spp_pathmaxrxt; 3843 * uint32_t spp_pathmtu; 3844 * uint32_t spp_sackdelay; 3845 * uint32_t spp_flags; 3846 * }; 3847 * 3848 * spp_assoc_id - (one-to-many style socket) This is filled in the 3849 * application, and identifies the association for 3850 * this query. 3851 * spp_address - This specifies which address is of interest. 3852 * spp_hbinterval - This contains the value of the heartbeat interval, 3853 * in milliseconds. If a value of zero 3854 * is present in this field then no changes are to 3855 * be made to this parameter. 3856 * spp_pathmaxrxt - This contains the maximum number of 3857 * retransmissions before this address shall be 3858 * considered unreachable. If a value of zero 3859 * is present in this field then no changes are to 3860 * be made to this parameter. 3861 * spp_pathmtu - When Path MTU discovery is disabled the value 3862 * specified here will be the "fixed" path mtu. 3863 * Note that if the spp_address field is empty 3864 * then all associations on this address will 3865 * have this fixed path mtu set upon them. 3866 * 3867 * spp_sackdelay - When delayed sack is enabled, this value specifies 3868 * the number of milliseconds that sacks will be delayed 3869 * for. This value will apply to all addresses of an 3870 * association if the spp_address field is empty. Note 3871 * also, that if delayed sack is enabled and this 3872 * value is set to 0, no change is made to the last 3873 * recorded delayed sack timer value. 3874 * 3875 * spp_flags - These flags are used to control various features 3876 * on an association. The flag field may contain 3877 * zero or more of the following options. 3878 * 3879 * SPP_HB_ENABLE - Enable heartbeats on the 3880 * specified address. Note that if the address 3881 * field is empty all addresses for the association 3882 * have heartbeats enabled upon them. 3883 * 3884 * SPP_HB_DISABLE - Disable heartbeats on the 3885 * speicifed address. Note that if the address 3886 * field is empty all addresses for the association 3887 * will have their heartbeats disabled. Note also 3888 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3889 * mutually exclusive, only one of these two should 3890 * be specified. Enabling both fields will have 3891 * undetermined results. 3892 * 3893 * SPP_HB_DEMAND - Request a user initiated heartbeat 3894 * to be made immediately. 3895 * 3896 * SPP_PMTUD_ENABLE - This field will enable PMTU 3897 * discovery upon the specified address. Note that 3898 * if the address feild is empty then all addresses 3899 * on the association are effected. 3900 * 3901 * SPP_PMTUD_DISABLE - This field will disable PMTU 3902 * discovery upon the specified address. Note that 3903 * if the address feild is empty then all addresses 3904 * on the association are effected. Not also that 3905 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3906 * exclusive. Enabling both will have undetermined 3907 * results. 3908 * 3909 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3910 * on delayed sack. The time specified in spp_sackdelay 3911 * is used to specify the sack delay for this address. Note 3912 * that if spp_address is empty then all addresses will 3913 * enable delayed sack and take on the sack delay 3914 * value specified in spp_sackdelay. 3915 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3916 * off delayed sack. If the spp_address field is blank then 3917 * delayed sack is disabled for the entire association. Note 3918 * also that this field is mutually exclusive to 3919 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3920 * results. 3921 */ 3922 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3923 char __user *optval, int __user *optlen) 3924 { 3925 struct sctp_paddrparams params; 3926 struct sctp_transport *trans = NULL; 3927 struct sctp_association *asoc = NULL; 3928 struct sctp_sock *sp = sctp_sk(sk); 3929 3930 if (len < sizeof(struct sctp_paddrparams)) 3931 return -EINVAL; 3932 len = sizeof(struct sctp_paddrparams); 3933 if (copy_from_user(¶ms, optval, len)) 3934 return -EFAULT; 3935 3936 /* If an address other than INADDR_ANY is specified, and 3937 * no transport is found, then the request is invalid. 3938 */ 3939 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3940 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3941 params.spp_assoc_id); 3942 if (!trans) { 3943 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3944 return -EINVAL; 3945 } 3946 } 3947 3948 /* Get association, if assoc_id != 0 and the socket is a one 3949 * to many style socket, and an association was not found, then 3950 * the id was invalid. 3951 */ 3952 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3953 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3954 SCTP_DEBUG_PRINTK("Failed no association\n"); 3955 return -EINVAL; 3956 } 3957 3958 if (trans) { 3959 /* Fetch transport values. */ 3960 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3961 params.spp_pathmtu = trans->pathmtu; 3962 params.spp_pathmaxrxt = trans->pathmaxrxt; 3963 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3964 3965 /*draft-11 doesn't say what to return in spp_flags*/ 3966 params.spp_flags = trans->param_flags; 3967 } else if (asoc) { 3968 /* Fetch association values. */ 3969 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3970 params.spp_pathmtu = asoc->pathmtu; 3971 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3972 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3973 3974 /*draft-11 doesn't say what to return in spp_flags*/ 3975 params.spp_flags = asoc->param_flags; 3976 } else { 3977 /* Fetch socket values. */ 3978 params.spp_hbinterval = sp->hbinterval; 3979 params.spp_pathmtu = sp->pathmtu; 3980 params.spp_sackdelay = sp->sackdelay; 3981 params.spp_pathmaxrxt = sp->pathmaxrxt; 3982 3983 /*draft-11 doesn't say what to return in spp_flags*/ 3984 params.spp_flags = sp->param_flags; 3985 } 3986 3987 if (copy_to_user(optval, ¶ms, len)) 3988 return -EFAULT; 3989 3990 if (put_user(len, optlen)) 3991 return -EFAULT; 3992 3993 return 0; 3994 } 3995 3996 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3997 * 3998 * This options will get or set the delayed ack timer. The time is set 3999 * in milliseconds. If the assoc_id is 0, then this sets or gets the 4000 * endpoints default delayed ack timer value. If the assoc_id field is 4001 * non-zero, then the set or get effects the specified association. 4002 * 4003 * struct sctp_assoc_value { 4004 * sctp_assoc_t assoc_id; 4005 * uint32_t assoc_value; 4006 * }; 4007 * 4008 * assoc_id - This parameter, indicates which association the 4009 * user is preforming an action upon. Note that if 4010 * this field's value is zero then the endpoints 4011 * default value is changed (effecting future 4012 * associations only). 4013 * 4014 * assoc_value - This parameter contains the number of milliseconds 4015 * that the user is requesting the delayed ACK timer 4016 * be set to. Note that this value is defined in 4017 * the standard to be between 200 and 500 milliseconds. 4018 * 4019 * Note: a value of zero will leave the value alone, 4020 * but disable SACK delay. A non-zero value will also 4021 * enable SACK delay. 4022 */ 4023 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 4024 char __user *optval, 4025 int __user *optlen) 4026 { 4027 struct sctp_assoc_value params; 4028 struct sctp_association *asoc = NULL; 4029 struct sctp_sock *sp = sctp_sk(sk); 4030 4031 if (len < sizeof(struct sctp_assoc_value)) 4032 return - EINVAL; 4033 4034 len = sizeof(struct sctp_assoc_value); 4035 4036 if (copy_from_user(¶ms, optval, len)) 4037 return -EFAULT; 4038 4039 /* Get association, if assoc_id != 0 and the socket is a one 4040 * to many style socket, and an association was not found, then 4041 * the id was invalid. 4042 */ 4043 asoc = sctp_id2assoc(sk, params.assoc_id); 4044 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 4045 return -EINVAL; 4046 4047 if (asoc) { 4048 /* Fetch association values. */ 4049 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 4050 params.assoc_value = jiffies_to_msecs( 4051 asoc->sackdelay); 4052 else 4053 params.assoc_value = 0; 4054 } else { 4055 /* Fetch socket values. */ 4056 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 4057 params.assoc_value = sp->sackdelay; 4058 else 4059 params.assoc_value = 0; 4060 } 4061 4062 if (copy_to_user(optval, ¶ms, len)) 4063 return -EFAULT; 4064 4065 if (put_user(len, optlen)) 4066 return -EFAULT; 4067 4068 return 0; 4069 } 4070 4071 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4072 * 4073 * Applications can specify protocol parameters for the default association 4074 * initialization. The option name argument to setsockopt() and getsockopt() 4075 * is SCTP_INITMSG. 4076 * 4077 * Setting initialization parameters is effective only on an unconnected 4078 * socket (for UDP-style sockets only future associations are effected 4079 * by the change). With TCP-style sockets, this option is inherited by 4080 * sockets derived from a listener socket. 4081 */ 4082 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4083 { 4084 if (len < sizeof(struct sctp_initmsg)) 4085 return -EINVAL; 4086 len = sizeof(struct sctp_initmsg); 4087 if (put_user(len, optlen)) 4088 return -EFAULT; 4089 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4090 return -EFAULT; 4091 return 0; 4092 } 4093 4094 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4095 char __user *optval, 4096 int __user *optlen) 4097 { 4098 sctp_assoc_t id; 4099 struct sctp_association *asoc; 4100 struct list_head *pos; 4101 int cnt = 0; 4102 4103 if (len < sizeof(sctp_assoc_t)) 4104 return -EINVAL; 4105 4106 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4107 return -EFAULT; 4108 4109 /* For UDP-style sockets, id specifies the association to query. */ 4110 asoc = sctp_id2assoc(sk, id); 4111 if (!asoc) 4112 return -EINVAL; 4113 4114 list_for_each(pos, &asoc->peer.transport_addr_list) { 4115 cnt ++; 4116 } 4117 4118 return cnt; 4119 } 4120 4121 /* 4122 * Old API for getting list of peer addresses. Does not work for 32-bit 4123 * programs running on a 64-bit kernel 4124 */ 4125 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4126 char __user *optval, 4127 int __user *optlen) 4128 { 4129 struct sctp_association *asoc; 4130 struct list_head *pos; 4131 int cnt = 0; 4132 struct sctp_getaddrs_old getaddrs; 4133 struct sctp_transport *from; 4134 void __user *to; 4135 union sctp_addr temp; 4136 struct sctp_sock *sp = sctp_sk(sk); 4137 int addrlen; 4138 4139 if (len < sizeof(struct sctp_getaddrs_old)) 4140 return -EINVAL; 4141 4142 len = sizeof(struct sctp_getaddrs_old); 4143 4144 if (copy_from_user(&getaddrs, optval, len)) 4145 return -EFAULT; 4146 4147 if (getaddrs.addr_num <= 0) return -EINVAL; 4148 4149 /* For UDP-style sockets, id specifies the association to query. */ 4150 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4151 if (!asoc) 4152 return -EINVAL; 4153 4154 to = (void __user *)getaddrs.addrs; 4155 list_for_each(pos, &asoc->peer.transport_addr_list) { 4156 from = list_entry(pos, struct sctp_transport, transports); 4157 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4158 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4159 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4160 if (copy_to_user(to, &temp, addrlen)) 4161 return -EFAULT; 4162 to += addrlen ; 4163 cnt ++; 4164 if (cnt >= getaddrs.addr_num) break; 4165 } 4166 getaddrs.addr_num = cnt; 4167 if (put_user(len, optlen)) 4168 return -EFAULT; 4169 if (copy_to_user(optval, &getaddrs, len)) 4170 return -EFAULT; 4171 4172 return 0; 4173 } 4174 4175 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4176 char __user *optval, int __user *optlen) 4177 { 4178 struct sctp_association *asoc; 4179 struct list_head *pos; 4180 int cnt = 0; 4181 struct sctp_getaddrs getaddrs; 4182 struct sctp_transport *from; 4183 void __user *to; 4184 union sctp_addr temp; 4185 struct sctp_sock *sp = sctp_sk(sk); 4186 int addrlen; 4187 size_t space_left; 4188 int bytes_copied; 4189 4190 if (len < sizeof(struct sctp_getaddrs)) 4191 return -EINVAL; 4192 4193 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4194 return -EFAULT; 4195 4196 /* For UDP-style sockets, id specifies the association to query. */ 4197 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4198 if (!asoc) 4199 return -EINVAL; 4200 4201 to = optval + offsetof(struct sctp_getaddrs,addrs); 4202 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4203 4204 list_for_each(pos, &asoc->peer.transport_addr_list) { 4205 from = list_entry(pos, struct sctp_transport, transports); 4206 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4207 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4208 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4209 if (space_left < addrlen) 4210 return -ENOMEM; 4211 if (copy_to_user(to, &temp, addrlen)) 4212 return -EFAULT; 4213 to += addrlen; 4214 cnt++; 4215 space_left -= addrlen; 4216 } 4217 4218 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4219 return -EFAULT; 4220 bytes_copied = ((char __user *)to) - optval; 4221 if (put_user(bytes_copied, optlen)) 4222 return -EFAULT; 4223 4224 return 0; 4225 } 4226 4227 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4228 char __user *optval, 4229 int __user *optlen) 4230 { 4231 sctp_assoc_t id; 4232 struct sctp_bind_addr *bp; 4233 struct sctp_association *asoc; 4234 struct sctp_sockaddr_entry *addr; 4235 int cnt = 0; 4236 4237 if (len < sizeof(sctp_assoc_t)) 4238 return -EINVAL; 4239 4240 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4241 return -EFAULT; 4242 4243 /* 4244 * For UDP-style sockets, id specifies the association to query. 4245 * If the id field is set to the value '0' then the locally bound 4246 * addresses are returned without regard to any particular 4247 * association. 4248 */ 4249 if (0 == id) { 4250 bp = &sctp_sk(sk)->ep->base.bind_addr; 4251 } else { 4252 asoc = sctp_id2assoc(sk, id); 4253 if (!asoc) 4254 return -EINVAL; 4255 bp = &asoc->base.bind_addr; 4256 } 4257 4258 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4259 * addresses from the global local address list. 4260 */ 4261 if (sctp_list_single_entry(&bp->address_list)) { 4262 addr = list_entry(bp->address_list.next, 4263 struct sctp_sockaddr_entry, list); 4264 if (sctp_is_any(&addr->a)) { 4265 rcu_read_lock(); 4266 list_for_each_entry_rcu(addr, 4267 &sctp_local_addr_list, list) { 4268 if (!addr->valid) 4269 continue; 4270 4271 if ((PF_INET == sk->sk_family) && 4272 (AF_INET6 == addr->a.sa.sa_family)) 4273 continue; 4274 4275 cnt++; 4276 } 4277 rcu_read_unlock(); 4278 } else { 4279 cnt = 1; 4280 } 4281 goto done; 4282 } 4283 4284 /* Protection on the bound address list is not needed, 4285 * since in the socket option context we hold the socket lock, 4286 * so there is no way that the bound address list can change. 4287 */ 4288 list_for_each_entry(addr, &bp->address_list, list) { 4289 cnt ++; 4290 } 4291 done: 4292 return cnt; 4293 } 4294 4295 /* Helper function that copies local addresses to user and returns the number 4296 * of addresses copied. 4297 */ 4298 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4299 int max_addrs, void *to, 4300 int *bytes_copied) 4301 { 4302 struct sctp_sockaddr_entry *addr; 4303 union sctp_addr temp; 4304 int cnt = 0; 4305 int addrlen; 4306 4307 rcu_read_lock(); 4308 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4309 if (!addr->valid) 4310 continue; 4311 4312 if ((PF_INET == sk->sk_family) && 4313 (AF_INET6 == addr->a.sa.sa_family)) 4314 continue; 4315 memcpy(&temp, &addr->a, sizeof(temp)); 4316 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4317 &temp); 4318 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4319 memcpy(to, &temp, addrlen); 4320 4321 to += addrlen; 4322 *bytes_copied += addrlen; 4323 cnt ++; 4324 if (cnt >= max_addrs) break; 4325 } 4326 rcu_read_unlock(); 4327 4328 return cnt; 4329 } 4330 4331 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4332 size_t space_left, int *bytes_copied) 4333 { 4334 struct sctp_sockaddr_entry *addr; 4335 union sctp_addr temp; 4336 int cnt = 0; 4337 int addrlen; 4338 4339 rcu_read_lock(); 4340 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4341 if (!addr->valid) 4342 continue; 4343 4344 if ((PF_INET == sk->sk_family) && 4345 (AF_INET6 == addr->a.sa.sa_family)) 4346 continue; 4347 memcpy(&temp, &addr->a, sizeof(temp)); 4348 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4349 &temp); 4350 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4351 if (space_left < addrlen) { 4352 cnt = -ENOMEM; 4353 break; 4354 } 4355 memcpy(to, &temp, addrlen); 4356 4357 to += addrlen; 4358 cnt ++; 4359 space_left -= addrlen; 4360 *bytes_copied += addrlen; 4361 } 4362 rcu_read_unlock(); 4363 4364 return cnt; 4365 } 4366 4367 /* Old API for getting list of local addresses. Does not work for 32-bit 4368 * programs running on a 64-bit kernel 4369 */ 4370 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4371 char __user *optval, int __user *optlen) 4372 { 4373 struct sctp_bind_addr *bp; 4374 struct sctp_association *asoc; 4375 int cnt = 0; 4376 struct sctp_getaddrs_old getaddrs; 4377 struct sctp_sockaddr_entry *addr; 4378 void __user *to; 4379 union sctp_addr temp; 4380 struct sctp_sock *sp = sctp_sk(sk); 4381 int addrlen; 4382 int err = 0; 4383 void *addrs; 4384 void *buf; 4385 int bytes_copied = 0; 4386 4387 if (len < sizeof(struct sctp_getaddrs_old)) 4388 return -EINVAL; 4389 4390 len = sizeof(struct sctp_getaddrs_old); 4391 if (copy_from_user(&getaddrs, optval, len)) 4392 return -EFAULT; 4393 4394 if (getaddrs.addr_num <= 0) return -EINVAL; 4395 /* 4396 * For UDP-style sockets, id specifies the association to query. 4397 * If the id field is set to the value '0' then the locally bound 4398 * addresses are returned without regard to any particular 4399 * association. 4400 */ 4401 if (0 == getaddrs.assoc_id) { 4402 bp = &sctp_sk(sk)->ep->base.bind_addr; 4403 } else { 4404 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4405 if (!asoc) 4406 return -EINVAL; 4407 bp = &asoc->base.bind_addr; 4408 } 4409 4410 to = getaddrs.addrs; 4411 4412 /* Allocate space for a local instance of packed array to hold all 4413 * the data. We store addresses here first and then put write them 4414 * to the user in one shot. 4415 */ 4416 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4417 GFP_KERNEL); 4418 if (!addrs) 4419 return -ENOMEM; 4420 4421 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4422 * addresses from the global local address list. 4423 */ 4424 if (sctp_list_single_entry(&bp->address_list)) { 4425 addr = list_entry(bp->address_list.next, 4426 struct sctp_sockaddr_entry, list); 4427 if (sctp_is_any(&addr->a)) { 4428 cnt = sctp_copy_laddrs_old(sk, bp->port, 4429 getaddrs.addr_num, 4430 addrs, &bytes_copied); 4431 goto copy_getaddrs; 4432 } 4433 } 4434 4435 buf = addrs; 4436 /* Protection on the bound address list is not needed since 4437 * in the socket option context we hold a socket lock and 4438 * thus the bound address list can't change. 4439 */ 4440 list_for_each_entry(addr, &bp->address_list, list) { 4441 memcpy(&temp, &addr->a, sizeof(temp)); 4442 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4443 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4444 memcpy(buf, &temp, addrlen); 4445 buf += addrlen; 4446 bytes_copied += addrlen; 4447 cnt ++; 4448 if (cnt >= getaddrs.addr_num) break; 4449 } 4450 4451 copy_getaddrs: 4452 /* copy the entire address list into the user provided space */ 4453 if (copy_to_user(to, addrs, bytes_copied)) { 4454 err = -EFAULT; 4455 goto error; 4456 } 4457 4458 /* copy the leading structure back to user */ 4459 getaddrs.addr_num = cnt; 4460 if (copy_to_user(optval, &getaddrs, len)) 4461 err = -EFAULT; 4462 4463 error: 4464 kfree(addrs); 4465 return err; 4466 } 4467 4468 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4469 char __user *optval, int __user *optlen) 4470 { 4471 struct sctp_bind_addr *bp; 4472 struct sctp_association *asoc; 4473 int cnt = 0; 4474 struct sctp_getaddrs getaddrs; 4475 struct sctp_sockaddr_entry *addr; 4476 void __user *to; 4477 union sctp_addr temp; 4478 struct sctp_sock *sp = sctp_sk(sk); 4479 int addrlen; 4480 int err = 0; 4481 size_t space_left; 4482 int bytes_copied = 0; 4483 void *addrs; 4484 void *buf; 4485 4486 if (len < sizeof(struct sctp_getaddrs)) 4487 return -EINVAL; 4488 4489 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4490 return -EFAULT; 4491 4492 /* 4493 * For UDP-style sockets, id specifies the association to query. 4494 * If the id field is set to the value '0' then the locally bound 4495 * addresses are returned without regard to any particular 4496 * association. 4497 */ 4498 if (0 == getaddrs.assoc_id) { 4499 bp = &sctp_sk(sk)->ep->base.bind_addr; 4500 } else { 4501 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4502 if (!asoc) 4503 return -EINVAL; 4504 bp = &asoc->base.bind_addr; 4505 } 4506 4507 to = optval + offsetof(struct sctp_getaddrs,addrs); 4508 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4509 4510 addrs = kmalloc(space_left, GFP_KERNEL); 4511 if (!addrs) 4512 return -ENOMEM; 4513 4514 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4515 * addresses from the global local address list. 4516 */ 4517 if (sctp_list_single_entry(&bp->address_list)) { 4518 addr = list_entry(bp->address_list.next, 4519 struct sctp_sockaddr_entry, list); 4520 if (sctp_is_any(&addr->a)) { 4521 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4522 space_left, &bytes_copied); 4523 if (cnt < 0) { 4524 err = cnt; 4525 goto out; 4526 } 4527 goto copy_getaddrs; 4528 } 4529 } 4530 4531 buf = addrs; 4532 /* Protection on the bound address list is not needed since 4533 * in the socket option context we hold a socket lock and 4534 * thus the bound address list can't change. 4535 */ 4536 list_for_each_entry(addr, &bp->address_list, list) { 4537 memcpy(&temp, &addr->a, sizeof(temp)); 4538 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4539 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4540 if (space_left < addrlen) { 4541 err = -ENOMEM; /*fixme: right error?*/ 4542 goto out; 4543 } 4544 memcpy(buf, &temp, addrlen); 4545 buf += addrlen; 4546 bytes_copied += addrlen; 4547 cnt ++; 4548 space_left -= addrlen; 4549 } 4550 4551 copy_getaddrs: 4552 if (copy_to_user(to, addrs, bytes_copied)) { 4553 err = -EFAULT; 4554 goto out; 4555 } 4556 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4557 err = -EFAULT; 4558 goto out; 4559 } 4560 if (put_user(bytes_copied, optlen)) 4561 err = -EFAULT; 4562 out: 4563 kfree(addrs); 4564 return err; 4565 } 4566 4567 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4568 * 4569 * Requests that the local SCTP stack use the enclosed peer address as 4570 * the association primary. The enclosed address must be one of the 4571 * association peer's addresses. 4572 */ 4573 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4574 char __user *optval, int __user *optlen) 4575 { 4576 struct sctp_prim prim; 4577 struct sctp_association *asoc; 4578 struct sctp_sock *sp = sctp_sk(sk); 4579 4580 if (len < sizeof(struct sctp_prim)) 4581 return -EINVAL; 4582 4583 len = sizeof(struct sctp_prim); 4584 4585 if (copy_from_user(&prim, optval, len)) 4586 return -EFAULT; 4587 4588 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4589 if (!asoc) 4590 return -EINVAL; 4591 4592 if (!asoc->peer.primary_path) 4593 return -ENOTCONN; 4594 4595 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4596 asoc->peer.primary_path->af_specific->sockaddr_len); 4597 4598 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4599 (union sctp_addr *)&prim.ssp_addr); 4600 4601 if (put_user(len, optlen)) 4602 return -EFAULT; 4603 if (copy_to_user(optval, &prim, len)) 4604 return -EFAULT; 4605 4606 return 0; 4607 } 4608 4609 /* 4610 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4611 * 4612 * Requests that the local endpoint set the specified Adaptation Layer 4613 * Indication parameter for all future INIT and INIT-ACK exchanges. 4614 */ 4615 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4616 char __user *optval, int __user *optlen) 4617 { 4618 struct sctp_setadaptation adaptation; 4619 4620 if (len < sizeof(struct sctp_setadaptation)) 4621 return -EINVAL; 4622 4623 len = sizeof(struct sctp_setadaptation); 4624 4625 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4626 4627 if (put_user(len, optlen)) 4628 return -EFAULT; 4629 if (copy_to_user(optval, &adaptation, len)) 4630 return -EFAULT; 4631 4632 return 0; 4633 } 4634 4635 /* 4636 * 4637 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4638 * 4639 * Applications that wish to use the sendto() system call may wish to 4640 * specify a default set of parameters that would normally be supplied 4641 * through the inclusion of ancillary data. This socket option allows 4642 * such an application to set the default sctp_sndrcvinfo structure. 4643 4644 4645 * The application that wishes to use this socket option simply passes 4646 * in to this call the sctp_sndrcvinfo structure defined in Section 4647 * 5.2.2) The input parameters accepted by this call include 4648 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4649 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4650 * to this call if the caller is using the UDP model. 4651 * 4652 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4653 */ 4654 static int sctp_getsockopt_default_send_param(struct sock *sk, 4655 int len, char __user *optval, 4656 int __user *optlen) 4657 { 4658 struct sctp_sndrcvinfo info; 4659 struct sctp_association *asoc; 4660 struct sctp_sock *sp = sctp_sk(sk); 4661 4662 if (len < sizeof(struct sctp_sndrcvinfo)) 4663 return -EINVAL; 4664 4665 len = sizeof(struct sctp_sndrcvinfo); 4666 4667 if (copy_from_user(&info, optval, len)) 4668 return -EFAULT; 4669 4670 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4671 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4672 return -EINVAL; 4673 4674 if (asoc) { 4675 info.sinfo_stream = asoc->default_stream; 4676 info.sinfo_flags = asoc->default_flags; 4677 info.sinfo_ppid = asoc->default_ppid; 4678 info.sinfo_context = asoc->default_context; 4679 info.sinfo_timetolive = asoc->default_timetolive; 4680 } else { 4681 info.sinfo_stream = sp->default_stream; 4682 info.sinfo_flags = sp->default_flags; 4683 info.sinfo_ppid = sp->default_ppid; 4684 info.sinfo_context = sp->default_context; 4685 info.sinfo_timetolive = sp->default_timetolive; 4686 } 4687 4688 if (put_user(len, optlen)) 4689 return -EFAULT; 4690 if (copy_to_user(optval, &info, len)) 4691 return -EFAULT; 4692 4693 return 0; 4694 } 4695 4696 /* 4697 * 4698 * 7.1.5 SCTP_NODELAY 4699 * 4700 * Turn on/off any Nagle-like algorithm. This means that packets are 4701 * generally sent as soon as possible and no unnecessary delays are 4702 * introduced, at the cost of more packets in the network. Expects an 4703 * integer boolean flag. 4704 */ 4705 4706 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4707 char __user *optval, int __user *optlen) 4708 { 4709 int val; 4710 4711 if (len < sizeof(int)) 4712 return -EINVAL; 4713 4714 len = sizeof(int); 4715 val = (sctp_sk(sk)->nodelay == 1); 4716 if (put_user(len, optlen)) 4717 return -EFAULT; 4718 if (copy_to_user(optval, &val, len)) 4719 return -EFAULT; 4720 return 0; 4721 } 4722 4723 /* 4724 * 4725 * 7.1.1 SCTP_RTOINFO 4726 * 4727 * The protocol parameters used to initialize and bound retransmission 4728 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4729 * and modify these parameters. 4730 * All parameters are time values, in milliseconds. A value of 0, when 4731 * modifying the parameters, indicates that the current value should not 4732 * be changed. 4733 * 4734 */ 4735 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4736 char __user *optval, 4737 int __user *optlen) { 4738 struct sctp_rtoinfo rtoinfo; 4739 struct sctp_association *asoc; 4740 4741 if (len < sizeof (struct sctp_rtoinfo)) 4742 return -EINVAL; 4743 4744 len = sizeof(struct sctp_rtoinfo); 4745 4746 if (copy_from_user(&rtoinfo, optval, len)) 4747 return -EFAULT; 4748 4749 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4750 4751 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4752 return -EINVAL; 4753 4754 /* Values corresponding to the specific association. */ 4755 if (asoc) { 4756 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4757 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4758 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4759 } else { 4760 /* Values corresponding to the endpoint. */ 4761 struct sctp_sock *sp = sctp_sk(sk); 4762 4763 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4764 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4765 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4766 } 4767 4768 if (put_user(len, optlen)) 4769 return -EFAULT; 4770 4771 if (copy_to_user(optval, &rtoinfo, len)) 4772 return -EFAULT; 4773 4774 return 0; 4775 } 4776 4777 /* 4778 * 4779 * 7.1.2 SCTP_ASSOCINFO 4780 * 4781 * This option is used to tune the maximum retransmission attempts 4782 * of the association. 4783 * Returns an error if the new association retransmission value is 4784 * greater than the sum of the retransmission value of the peer. 4785 * See [SCTP] for more information. 4786 * 4787 */ 4788 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4789 char __user *optval, 4790 int __user *optlen) 4791 { 4792 4793 struct sctp_assocparams assocparams; 4794 struct sctp_association *asoc; 4795 struct list_head *pos; 4796 int cnt = 0; 4797 4798 if (len < sizeof (struct sctp_assocparams)) 4799 return -EINVAL; 4800 4801 len = sizeof(struct sctp_assocparams); 4802 4803 if (copy_from_user(&assocparams, optval, len)) 4804 return -EFAULT; 4805 4806 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4807 4808 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4809 return -EINVAL; 4810 4811 /* Values correspoinding to the specific association */ 4812 if (asoc) { 4813 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4814 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4815 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4816 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4817 * 1000) + 4818 (asoc->cookie_life.tv_usec 4819 / 1000); 4820 4821 list_for_each(pos, &asoc->peer.transport_addr_list) { 4822 cnt ++; 4823 } 4824 4825 assocparams.sasoc_number_peer_destinations = cnt; 4826 } else { 4827 /* Values corresponding to the endpoint */ 4828 struct sctp_sock *sp = sctp_sk(sk); 4829 4830 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4831 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4832 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4833 assocparams.sasoc_cookie_life = 4834 sp->assocparams.sasoc_cookie_life; 4835 assocparams.sasoc_number_peer_destinations = 4836 sp->assocparams. 4837 sasoc_number_peer_destinations; 4838 } 4839 4840 if (put_user(len, optlen)) 4841 return -EFAULT; 4842 4843 if (copy_to_user(optval, &assocparams, len)) 4844 return -EFAULT; 4845 4846 return 0; 4847 } 4848 4849 /* 4850 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4851 * 4852 * This socket option is a boolean flag which turns on or off mapped V4 4853 * addresses. If this option is turned on and the socket is type 4854 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4855 * If this option is turned off, then no mapping will be done of V4 4856 * addresses and a user will receive both PF_INET6 and PF_INET type 4857 * addresses on the socket. 4858 */ 4859 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4860 char __user *optval, int __user *optlen) 4861 { 4862 int val; 4863 struct sctp_sock *sp = sctp_sk(sk); 4864 4865 if (len < sizeof(int)) 4866 return -EINVAL; 4867 4868 len = sizeof(int); 4869 val = sp->v4mapped; 4870 if (put_user(len, optlen)) 4871 return -EFAULT; 4872 if (copy_to_user(optval, &val, len)) 4873 return -EFAULT; 4874 4875 return 0; 4876 } 4877 4878 /* 4879 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4880 * (chapter and verse is quoted at sctp_setsockopt_context()) 4881 */ 4882 static int sctp_getsockopt_context(struct sock *sk, int len, 4883 char __user *optval, int __user *optlen) 4884 { 4885 struct sctp_assoc_value params; 4886 struct sctp_sock *sp; 4887 struct sctp_association *asoc; 4888 4889 if (len < sizeof(struct sctp_assoc_value)) 4890 return -EINVAL; 4891 4892 len = sizeof(struct sctp_assoc_value); 4893 4894 if (copy_from_user(¶ms, optval, len)) 4895 return -EFAULT; 4896 4897 sp = sctp_sk(sk); 4898 4899 if (params.assoc_id != 0) { 4900 asoc = sctp_id2assoc(sk, params.assoc_id); 4901 if (!asoc) 4902 return -EINVAL; 4903 params.assoc_value = asoc->default_rcv_context; 4904 } else { 4905 params.assoc_value = sp->default_rcv_context; 4906 } 4907 4908 if (put_user(len, optlen)) 4909 return -EFAULT; 4910 if (copy_to_user(optval, ¶ms, len)) 4911 return -EFAULT; 4912 4913 return 0; 4914 } 4915 4916 /* 4917 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4918 * 4919 * This socket option specifies the maximum size to put in any outgoing 4920 * SCTP chunk. If a message is larger than this size it will be 4921 * fragmented by SCTP into the specified size. Note that the underlying 4922 * SCTP implementation may fragment into smaller sized chunks when the 4923 * PMTU of the underlying association is smaller than the value set by 4924 * the user. 4925 */ 4926 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4927 char __user *optval, int __user *optlen) 4928 { 4929 int val; 4930 4931 if (len < sizeof(int)) 4932 return -EINVAL; 4933 4934 len = sizeof(int); 4935 4936 val = sctp_sk(sk)->user_frag; 4937 if (put_user(len, optlen)) 4938 return -EFAULT; 4939 if (copy_to_user(optval, &val, len)) 4940 return -EFAULT; 4941 4942 return 0; 4943 } 4944 4945 /* 4946 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 4947 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 4948 */ 4949 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 4950 char __user *optval, int __user *optlen) 4951 { 4952 int val; 4953 4954 if (len < sizeof(int)) 4955 return -EINVAL; 4956 4957 len = sizeof(int); 4958 4959 val = sctp_sk(sk)->frag_interleave; 4960 if (put_user(len, optlen)) 4961 return -EFAULT; 4962 if (copy_to_user(optval, &val, len)) 4963 return -EFAULT; 4964 4965 return 0; 4966 } 4967 4968 /* 4969 * 7.1.25. Set or Get the sctp partial delivery point 4970 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 4971 */ 4972 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 4973 char __user *optval, 4974 int __user *optlen) 4975 { 4976 u32 val; 4977 4978 if (len < sizeof(u32)) 4979 return -EINVAL; 4980 4981 len = sizeof(u32); 4982 4983 val = sctp_sk(sk)->pd_point; 4984 if (put_user(len, optlen)) 4985 return -EFAULT; 4986 if (copy_to_user(optval, &val, len)) 4987 return -EFAULT; 4988 4989 return -ENOTSUPP; 4990 } 4991 4992 /* 4993 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 4994 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 4995 */ 4996 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 4997 char __user *optval, 4998 int __user *optlen) 4999 { 5000 int val; 5001 5002 if (len < sizeof(int)) 5003 return -EINVAL; 5004 5005 len = sizeof(int); 5006 5007 val = sctp_sk(sk)->max_burst; 5008 if (put_user(len, optlen)) 5009 return -EFAULT; 5010 if (copy_to_user(optval, &val, len)) 5011 return -EFAULT; 5012 5013 return -ENOTSUPP; 5014 } 5015 5016 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5017 char __user *optval, int __user *optlen) 5018 { 5019 struct sctp_hmac_algo_param *hmacs; 5020 __u16 param_len; 5021 5022 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5023 param_len = ntohs(hmacs->param_hdr.length); 5024 5025 if (len < param_len) 5026 return -EINVAL; 5027 if (put_user(len, optlen)) 5028 return -EFAULT; 5029 if (copy_to_user(optval, hmacs->hmac_ids, len)) 5030 return -EFAULT; 5031 5032 return 0; 5033 } 5034 5035 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5036 char __user *optval, int __user *optlen) 5037 { 5038 struct sctp_authkeyid val; 5039 struct sctp_association *asoc; 5040 5041 if (len < sizeof(struct sctp_authkeyid)) 5042 return -EINVAL; 5043 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5044 return -EFAULT; 5045 5046 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5047 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5048 return -EINVAL; 5049 5050 if (asoc) 5051 val.scact_keynumber = asoc->active_key_id; 5052 else 5053 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5054 5055 return 0; 5056 } 5057 5058 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5059 char __user *optval, int __user *optlen) 5060 { 5061 struct sctp_authchunks __user *p = (void __user *)optval; 5062 struct sctp_authchunks val; 5063 struct sctp_association *asoc; 5064 struct sctp_chunks_param *ch; 5065 char __user *to; 5066 5067 if (len <= sizeof(struct sctp_authchunks)) 5068 return -EINVAL; 5069 5070 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5071 return -EFAULT; 5072 5073 to = p->gauth_chunks; 5074 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5075 if (!asoc) 5076 return -EINVAL; 5077 5078 ch = asoc->peer.peer_chunks; 5079 5080 /* See if the user provided enough room for all the data */ 5081 if (len < ntohs(ch->param_hdr.length)) 5082 return -EINVAL; 5083 5084 len = ntohs(ch->param_hdr.length); 5085 if (put_user(len, optlen)) 5086 return -EFAULT; 5087 if (copy_to_user(to, ch->chunks, len)) 5088 return -EFAULT; 5089 5090 return 0; 5091 } 5092 5093 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5094 char __user *optval, int __user *optlen) 5095 { 5096 struct sctp_authchunks __user *p = (void __user *)optval; 5097 struct sctp_authchunks val; 5098 struct sctp_association *asoc; 5099 struct sctp_chunks_param *ch; 5100 char __user *to; 5101 5102 if (len <= sizeof(struct sctp_authchunks)) 5103 return -EINVAL; 5104 5105 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5106 return -EFAULT; 5107 5108 to = p->gauth_chunks; 5109 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5110 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5111 return -EINVAL; 5112 5113 if (asoc) 5114 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5115 else 5116 ch = sctp_sk(sk)->ep->auth_chunk_list; 5117 5118 if (len < ntohs(ch->param_hdr.length)) 5119 return -EINVAL; 5120 5121 len = ntohs(ch->param_hdr.length); 5122 if (put_user(len, optlen)) 5123 return -EFAULT; 5124 if (copy_to_user(to, ch->chunks, len)) 5125 return -EFAULT; 5126 5127 return 0; 5128 } 5129 5130 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5131 char __user *optval, int __user *optlen) 5132 { 5133 int retval = 0; 5134 int len; 5135 5136 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5137 sk, optname); 5138 5139 /* I can hardly begin to describe how wrong this is. This is 5140 * so broken as to be worse than useless. The API draft 5141 * REALLY is NOT helpful here... I am not convinced that the 5142 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5143 * are at all well-founded. 5144 */ 5145 if (level != SOL_SCTP) { 5146 struct sctp_af *af = sctp_sk(sk)->pf->af; 5147 5148 retval = af->getsockopt(sk, level, optname, optval, optlen); 5149 return retval; 5150 } 5151 5152 if (get_user(len, optlen)) 5153 return -EFAULT; 5154 5155 sctp_lock_sock(sk); 5156 5157 switch (optname) { 5158 case SCTP_STATUS: 5159 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5160 break; 5161 case SCTP_DISABLE_FRAGMENTS: 5162 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5163 optlen); 5164 break; 5165 case SCTP_EVENTS: 5166 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5167 break; 5168 case SCTP_AUTOCLOSE: 5169 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5170 break; 5171 case SCTP_SOCKOPT_PEELOFF: 5172 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5173 break; 5174 case SCTP_PEER_ADDR_PARAMS: 5175 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5176 optlen); 5177 break; 5178 case SCTP_DELAYED_ACK_TIME: 5179 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 5180 optlen); 5181 break; 5182 case SCTP_INITMSG: 5183 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5184 break; 5185 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5186 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5187 optlen); 5188 break; 5189 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5190 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5191 optlen); 5192 break; 5193 case SCTP_GET_PEER_ADDRS_OLD: 5194 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5195 optlen); 5196 break; 5197 case SCTP_GET_LOCAL_ADDRS_OLD: 5198 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5199 optlen); 5200 break; 5201 case SCTP_GET_PEER_ADDRS: 5202 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5203 optlen); 5204 break; 5205 case SCTP_GET_LOCAL_ADDRS: 5206 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5207 optlen); 5208 break; 5209 case SCTP_DEFAULT_SEND_PARAM: 5210 retval = sctp_getsockopt_default_send_param(sk, len, 5211 optval, optlen); 5212 break; 5213 case SCTP_PRIMARY_ADDR: 5214 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5215 break; 5216 case SCTP_NODELAY: 5217 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5218 break; 5219 case SCTP_RTOINFO: 5220 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5221 break; 5222 case SCTP_ASSOCINFO: 5223 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5224 break; 5225 case SCTP_I_WANT_MAPPED_V4_ADDR: 5226 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5227 break; 5228 case SCTP_MAXSEG: 5229 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5230 break; 5231 case SCTP_GET_PEER_ADDR_INFO: 5232 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5233 optlen); 5234 break; 5235 case SCTP_ADAPTATION_LAYER: 5236 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5237 optlen); 5238 break; 5239 case SCTP_CONTEXT: 5240 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5241 break; 5242 case SCTP_FRAGMENT_INTERLEAVE: 5243 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5244 optlen); 5245 break; 5246 case SCTP_PARTIAL_DELIVERY_POINT: 5247 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5248 optlen); 5249 break; 5250 case SCTP_MAX_BURST: 5251 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5252 break; 5253 case SCTP_AUTH_KEY: 5254 case SCTP_AUTH_CHUNK: 5255 case SCTP_AUTH_DELETE_KEY: 5256 retval = -EOPNOTSUPP; 5257 break; 5258 case SCTP_HMAC_IDENT: 5259 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5260 break; 5261 case SCTP_AUTH_ACTIVE_KEY: 5262 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5263 break; 5264 case SCTP_PEER_AUTH_CHUNKS: 5265 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5266 optlen); 5267 break; 5268 case SCTP_LOCAL_AUTH_CHUNKS: 5269 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5270 optlen); 5271 break; 5272 default: 5273 retval = -ENOPROTOOPT; 5274 break; 5275 } 5276 5277 sctp_release_sock(sk); 5278 return retval; 5279 } 5280 5281 static void sctp_hash(struct sock *sk) 5282 { 5283 /* STUB */ 5284 } 5285 5286 static void sctp_unhash(struct sock *sk) 5287 { 5288 /* STUB */ 5289 } 5290 5291 /* Check if port is acceptable. Possibly find first available port. 5292 * 5293 * The port hash table (contained in the 'global' SCTP protocol storage 5294 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5295 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5296 * list (the list number is the port number hashed out, so as you 5297 * would expect from a hash function, all the ports in a given list have 5298 * such a number that hashes out to the same list number; you were 5299 * expecting that, right?); so each list has a set of ports, with a 5300 * link to the socket (struct sock) that uses it, the port number and 5301 * a fastreuse flag (FIXME: NPI ipg). 5302 */ 5303 static struct sctp_bind_bucket *sctp_bucket_create( 5304 struct sctp_bind_hashbucket *head, unsigned short snum); 5305 5306 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5307 { 5308 struct sctp_bind_hashbucket *head; /* hash list */ 5309 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5310 unsigned short snum; 5311 int ret; 5312 5313 snum = ntohs(addr->v4.sin_port); 5314 5315 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5316 sctp_local_bh_disable(); 5317 5318 if (snum == 0) { 5319 /* Search for an available port. */ 5320 int low, high, remaining, index; 5321 unsigned int rover; 5322 5323 inet_get_local_port_range(&low, &high); 5324 remaining = (high - low) + 1; 5325 rover = net_random() % remaining + low; 5326 5327 do { 5328 rover++; 5329 if ((rover < low) || (rover > high)) 5330 rover = low; 5331 index = sctp_phashfn(rover); 5332 head = &sctp_port_hashtable[index]; 5333 sctp_spin_lock(&head->lock); 5334 for (pp = head->chain; pp; pp = pp->next) 5335 if (pp->port == rover) 5336 goto next; 5337 break; 5338 next: 5339 sctp_spin_unlock(&head->lock); 5340 } while (--remaining > 0); 5341 5342 /* Exhausted local port range during search? */ 5343 ret = 1; 5344 if (remaining <= 0) 5345 goto fail; 5346 5347 /* OK, here is the one we will use. HEAD (the port 5348 * hash table list entry) is non-NULL and we hold it's 5349 * mutex. 5350 */ 5351 snum = rover; 5352 } else { 5353 /* We are given an specific port number; we verify 5354 * that it is not being used. If it is used, we will 5355 * exahust the search in the hash list corresponding 5356 * to the port number (snum) - we detect that with the 5357 * port iterator, pp being NULL. 5358 */ 5359 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5360 sctp_spin_lock(&head->lock); 5361 for (pp = head->chain; pp; pp = pp->next) { 5362 if (pp->port == snum) 5363 goto pp_found; 5364 } 5365 } 5366 pp = NULL; 5367 goto pp_not_found; 5368 pp_found: 5369 if (!hlist_empty(&pp->owner)) { 5370 /* We had a port hash table hit - there is an 5371 * available port (pp != NULL) and it is being 5372 * used by other socket (pp->owner not empty); that other 5373 * socket is going to be sk2. 5374 */ 5375 int reuse = sk->sk_reuse; 5376 struct sock *sk2; 5377 struct hlist_node *node; 5378 5379 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5380 if (pp->fastreuse && sk->sk_reuse && 5381 sk->sk_state != SCTP_SS_LISTENING) 5382 goto success; 5383 5384 /* Run through the list of sockets bound to the port 5385 * (pp->port) [via the pointers bind_next and 5386 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5387 * we get the endpoint they describe and run through 5388 * the endpoint's list of IP (v4 or v6) addresses, 5389 * comparing each of the addresses with the address of 5390 * the socket sk. If we find a match, then that means 5391 * that this port/socket (sk) combination are already 5392 * in an endpoint. 5393 */ 5394 sk_for_each_bound(sk2, node, &pp->owner) { 5395 struct sctp_endpoint *ep2; 5396 ep2 = sctp_sk(sk2)->ep; 5397 5398 if (reuse && sk2->sk_reuse && 5399 sk2->sk_state != SCTP_SS_LISTENING) 5400 continue; 5401 5402 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 5403 sctp_sk(sk))) { 5404 ret = (long)sk2; 5405 goto fail_unlock; 5406 } 5407 } 5408 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5409 } 5410 pp_not_found: 5411 /* If there was a hash table miss, create a new port. */ 5412 ret = 1; 5413 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5414 goto fail_unlock; 5415 5416 /* In either case (hit or miss), make sure fastreuse is 1 only 5417 * if sk->sk_reuse is too (that is, if the caller requested 5418 * SO_REUSEADDR on this socket -sk-). 5419 */ 5420 if (hlist_empty(&pp->owner)) { 5421 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5422 pp->fastreuse = 1; 5423 else 5424 pp->fastreuse = 0; 5425 } else if (pp->fastreuse && 5426 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5427 pp->fastreuse = 0; 5428 5429 /* We are set, so fill up all the data in the hash table 5430 * entry, tie the socket list information with the rest of the 5431 * sockets FIXME: Blurry, NPI (ipg). 5432 */ 5433 success: 5434 if (!sctp_sk(sk)->bind_hash) { 5435 inet_sk(sk)->num = snum; 5436 sk_add_bind_node(sk, &pp->owner); 5437 sctp_sk(sk)->bind_hash = pp; 5438 } 5439 ret = 0; 5440 5441 fail_unlock: 5442 sctp_spin_unlock(&head->lock); 5443 5444 fail: 5445 sctp_local_bh_enable(); 5446 return ret; 5447 } 5448 5449 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5450 * port is requested. 5451 */ 5452 static int sctp_get_port(struct sock *sk, unsigned short snum) 5453 { 5454 long ret; 5455 union sctp_addr addr; 5456 struct sctp_af *af = sctp_sk(sk)->pf->af; 5457 5458 /* Set up a dummy address struct from the sk. */ 5459 af->from_sk(&addr, sk); 5460 addr.v4.sin_port = htons(snum); 5461 5462 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5463 ret = sctp_get_port_local(sk, &addr); 5464 5465 return (ret ? 1 : 0); 5466 } 5467 5468 /* 5469 * 3.1.3 listen() - UDP Style Syntax 5470 * 5471 * By default, new associations are not accepted for UDP style sockets. 5472 * An application uses listen() to mark a socket as being able to 5473 * accept new associations. 5474 */ 5475 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 5476 { 5477 struct sctp_sock *sp = sctp_sk(sk); 5478 struct sctp_endpoint *ep = sp->ep; 5479 5480 /* Only UDP style sockets that are not peeled off are allowed to 5481 * listen(). 5482 */ 5483 if (!sctp_style(sk, UDP)) 5484 return -EINVAL; 5485 5486 /* If backlog is zero, disable listening. */ 5487 if (!backlog) { 5488 if (sctp_sstate(sk, CLOSED)) 5489 return 0; 5490 5491 sctp_unhash_endpoint(ep); 5492 sk->sk_state = SCTP_SS_CLOSED; 5493 return 0; 5494 } 5495 5496 /* Return if we are already listening. */ 5497 if (sctp_sstate(sk, LISTENING)) 5498 return 0; 5499 5500 /* 5501 * If a bind() or sctp_bindx() is not called prior to a listen() 5502 * call that allows new associations to be accepted, the system 5503 * picks an ephemeral port and will choose an address set equivalent 5504 * to binding with a wildcard address. 5505 * 5506 * This is not currently spelled out in the SCTP sockets 5507 * extensions draft, but follows the practice as seen in TCP 5508 * sockets. 5509 * 5510 * Additionally, turn off fastreuse flag since we are not listening 5511 */ 5512 sk->sk_state = SCTP_SS_LISTENING; 5513 if (!ep->base.bind_addr.port) { 5514 if (sctp_autobind(sk)) 5515 return -EAGAIN; 5516 } else 5517 sctp_sk(sk)->bind_hash->fastreuse = 0; 5518 5519 sctp_hash_endpoint(ep); 5520 return 0; 5521 } 5522 5523 /* 5524 * 4.1.3 listen() - TCP Style Syntax 5525 * 5526 * Applications uses listen() to ready the SCTP endpoint for accepting 5527 * inbound associations. 5528 */ 5529 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 5530 { 5531 struct sctp_sock *sp = sctp_sk(sk); 5532 struct sctp_endpoint *ep = sp->ep; 5533 5534 /* If backlog is zero, disable listening. */ 5535 if (!backlog) { 5536 if (sctp_sstate(sk, CLOSED)) 5537 return 0; 5538 5539 sctp_unhash_endpoint(ep); 5540 sk->sk_state = SCTP_SS_CLOSED; 5541 return 0; 5542 } 5543 5544 if (sctp_sstate(sk, LISTENING)) 5545 return 0; 5546 5547 /* 5548 * If a bind() or sctp_bindx() is not called prior to a listen() 5549 * call that allows new associations to be accepted, the system 5550 * picks an ephemeral port and will choose an address set equivalent 5551 * to binding with a wildcard address. 5552 * 5553 * This is not currently spelled out in the SCTP sockets 5554 * extensions draft, but follows the practice as seen in TCP 5555 * sockets. 5556 */ 5557 sk->sk_state = SCTP_SS_LISTENING; 5558 if (!ep->base.bind_addr.port) { 5559 if (sctp_autobind(sk)) 5560 return -EAGAIN; 5561 } else 5562 sctp_sk(sk)->bind_hash->fastreuse = 0; 5563 5564 sk->sk_max_ack_backlog = backlog; 5565 sctp_hash_endpoint(ep); 5566 return 0; 5567 } 5568 5569 /* 5570 * Move a socket to LISTENING state. 5571 */ 5572 int sctp_inet_listen(struct socket *sock, int backlog) 5573 { 5574 struct sock *sk = sock->sk; 5575 struct crypto_hash *tfm = NULL; 5576 int err = -EINVAL; 5577 5578 if (unlikely(backlog < 0)) 5579 goto out; 5580 5581 sctp_lock_sock(sk); 5582 5583 if (sock->state != SS_UNCONNECTED) 5584 goto out; 5585 5586 /* Allocate HMAC for generating cookie. */ 5587 if (sctp_hmac_alg) { 5588 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5589 if (IS_ERR(tfm)) { 5590 if (net_ratelimit()) { 5591 printk(KERN_INFO 5592 "SCTP: failed to load transform for %s: %ld\n", 5593 sctp_hmac_alg, PTR_ERR(tfm)); 5594 } 5595 err = -ENOSYS; 5596 goto out; 5597 } 5598 } 5599 5600 switch (sock->type) { 5601 case SOCK_SEQPACKET: 5602 err = sctp_seqpacket_listen(sk, backlog); 5603 break; 5604 case SOCK_STREAM: 5605 err = sctp_stream_listen(sk, backlog); 5606 break; 5607 default: 5608 break; 5609 } 5610 5611 if (err) 5612 goto cleanup; 5613 5614 /* Store away the transform reference. */ 5615 sctp_sk(sk)->hmac = tfm; 5616 out: 5617 sctp_release_sock(sk); 5618 return err; 5619 cleanup: 5620 crypto_free_hash(tfm); 5621 goto out; 5622 } 5623 5624 /* 5625 * This function is done by modeling the current datagram_poll() and the 5626 * tcp_poll(). Note that, based on these implementations, we don't 5627 * lock the socket in this function, even though it seems that, 5628 * ideally, locking or some other mechanisms can be used to ensure 5629 * the integrity of the counters (sndbuf and wmem_alloc) used 5630 * in this place. We assume that we don't need locks either until proven 5631 * otherwise. 5632 * 5633 * Another thing to note is that we include the Async I/O support 5634 * here, again, by modeling the current TCP/UDP code. We don't have 5635 * a good way to test with it yet. 5636 */ 5637 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5638 { 5639 struct sock *sk = sock->sk; 5640 struct sctp_sock *sp = sctp_sk(sk); 5641 unsigned int mask; 5642 5643 poll_wait(file, sk->sk_sleep, wait); 5644 5645 /* A TCP-style listening socket becomes readable when the accept queue 5646 * is not empty. 5647 */ 5648 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5649 return (!list_empty(&sp->ep->asocs)) ? 5650 (POLLIN | POLLRDNORM) : 0; 5651 5652 mask = 0; 5653 5654 /* Is there any exceptional events? */ 5655 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5656 mask |= POLLERR; 5657 if (sk->sk_shutdown & RCV_SHUTDOWN) 5658 mask |= POLLRDHUP; 5659 if (sk->sk_shutdown == SHUTDOWN_MASK) 5660 mask |= POLLHUP; 5661 5662 /* Is it readable? Reconsider this code with TCP-style support. */ 5663 if (!skb_queue_empty(&sk->sk_receive_queue) || 5664 (sk->sk_shutdown & RCV_SHUTDOWN)) 5665 mask |= POLLIN | POLLRDNORM; 5666 5667 /* The association is either gone or not ready. */ 5668 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5669 return mask; 5670 5671 /* Is it writable? */ 5672 if (sctp_writeable(sk)) { 5673 mask |= POLLOUT | POLLWRNORM; 5674 } else { 5675 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5676 /* 5677 * Since the socket is not locked, the buffer 5678 * might be made available after the writeable check and 5679 * before the bit is set. This could cause a lost I/O 5680 * signal. tcp_poll() has a race breaker for this race 5681 * condition. Based on their implementation, we put 5682 * in the following code to cover it as well. 5683 */ 5684 if (sctp_writeable(sk)) 5685 mask |= POLLOUT | POLLWRNORM; 5686 } 5687 return mask; 5688 } 5689 5690 /******************************************************************** 5691 * 2nd Level Abstractions 5692 ********************************************************************/ 5693 5694 static struct sctp_bind_bucket *sctp_bucket_create( 5695 struct sctp_bind_hashbucket *head, unsigned short snum) 5696 { 5697 struct sctp_bind_bucket *pp; 5698 5699 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5700 SCTP_DBG_OBJCNT_INC(bind_bucket); 5701 if (pp) { 5702 pp->port = snum; 5703 pp->fastreuse = 0; 5704 INIT_HLIST_HEAD(&pp->owner); 5705 if ((pp->next = head->chain) != NULL) 5706 pp->next->pprev = &pp->next; 5707 head->chain = pp; 5708 pp->pprev = &head->chain; 5709 } 5710 return pp; 5711 } 5712 5713 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5714 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5715 { 5716 if (pp && hlist_empty(&pp->owner)) { 5717 if (pp->next) 5718 pp->next->pprev = pp->pprev; 5719 *(pp->pprev) = pp->next; 5720 kmem_cache_free(sctp_bucket_cachep, pp); 5721 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5722 } 5723 } 5724 5725 /* Release this socket's reference to a local port. */ 5726 static inline void __sctp_put_port(struct sock *sk) 5727 { 5728 struct sctp_bind_hashbucket *head = 5729 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5730 struct sctp_bind_bucket *pp; 5731 5732 sctp_spin_lock(&head->lock); 5733 pp = sctp_sk(sk)->bind_hash; 5734 __sk_del_bind_node(sk); 5735 sctp_sk(sk)->bind_hash = NULL; 5736 inet_sk(sk)->num = 0; 5737 sctp_bucket_destroy(pp); 5738 sctp_spin_unlock(&head->lock); 5739 } 5740 5741 void sctp_put_port(struct sock *sk) 5742 { 5743 sctp_local_bh_disable(); 5744 __sctp_put_port(sk); 5745 sctp_local_bh_enable(); 5746 } 5747 5748 /* 5749 * The system picks an ephemeral port and choose an address set equivalent 5750 * to binding with a wildcard address. 5751 * One of those addresses will be the primary address for the association. 5752 * This automatically enables the multihoming capability of SCTP. 5753 */ 5754 static int sctp_autobind(struct sock *sk) 5755 { 5756 union sctp_addr autoaddr; 5757 struct sctp_af *af; 5758 __be16 port; 5759 5760 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5761 af = sctp_sk(sk)->pf->af; 5762 5763 port = htons(inet_sk(sk)->num); 5764 af->inaddr_any(&autoaddr, port); 5765 5766 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5767 } 5768 5769 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5770 * 5771 * From RFC 2292 5772 * 4.2 The cmsghdr Structure * 5773 * 5774 * When ancillary data is sent or received, any number of ancillary data 5775 * objects can be specified by the msg_control and msg_controllen members of 5776 * the msghdr structure, because each object is preceded by 5777 * a cmsghdr structure defining the object's length (the cmsg_len member). 5778 * Historically Berkeley-derived implementations have passed only one object 5779 * at a time, but this API allows multiple objects to be 5780 * passed in a single call to sendmsg() or recvmsg(). The following example 5781 * shows two ancillary data objects in a control buffer. 5782 * 5783 * |<--------------------------- msg_controllen -------------------------->| 5784 * | | 5785 * 5786 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5787 * 5788 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5789 * | | | 5790 * 5791 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5792 * 5793 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5794 * | | | | | 5795 * 5796 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5797 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5798 * 5799 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5800 * 5801 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5802 * ^ 5803 * | 5804 * 5805 * msg_control 5806 * points here 5807 */ 5808 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5809 sctp_cmsgs_t *cmsgs) 5810 { 5811 struct cmsghdr *cmsg; 5812 5813 for (cmsg = CMSG_FIRSTHDR(msg); 5814 cmsg != NULL; 5815 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5816 if (!CMSG_OK(msg, cmsg)) 5817 return -EINVAL; 5818 5819 /* Should we parse this header or ignore? */ 5820 if (cmsg->cmsg_level != IPPROTO_SCTP) 5821 continue; 5822 5823 /* Strictly check lengths following example in SCM code. */ 5824 switch (cmsg->cmsg_type) { 5825 case SCTP_INIT: 5826 /* SCTP Socket API Extension 5827 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5828 * 5829 * This cmsghdr structure provides information for 5830 * initializing new SCTP associations with sendmsg(). 5831 * The SCTP_INITMSG socket option uses this same data 5832 * structure. This structure is not used for 5833 * recvmsg(). 5834 * 5835 * cmsg_level cmsg_type cmsg_data[] 5836 * ------------ ------------ ---------------------- 5837 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5838 */ 5839 if (cmsg->cmsg_len != 5840 CMSG_LEN(sizeof(struct sctp_initmsg))) 5841 return -EINVAL; 5842 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5843 break; 5844 5845 case SCTP_SNDRCV: 5846 /* SCTP Socket API Extension 5847 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5848 * 5849 * This cmsghdr structure specifies SCTP options for 5850 * sendmsg() and describes SCTP header information 5851 * about a received message through recvmsg(). 5852 * 5853 * cmsg_level cmsg_type cmsg_data[] 5854 * ------------ ------------ ---------------------- 5855 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5856 */ 5857 if (cmsg->cmsg_len != 5858 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5859 return -EINVAL; 5860 5861 cmsgs->info = 5862 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5863 5864 /* Minimally, validate the sinfo_flags. */ 5865 if (cmsgs->info->sinfo_flags & 5866 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5867 SCTP_ABORT | SCTP_EOF)) 5868 return -EINVAL; 5869 break; 5870 5871 default: 5872 return -EINVAL; 5873 } 5874 } 5875 return 0; 5876 } 5877 5878 /* 5879 * Wait for a packet.. 5880 * Note: This function is the same function as in core/datagram.c 5881 * with a few modifications to make lksctp work. 5882 */ 5883 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5884 { 5885 int error; 5886 DEFINE_WAIT(wait); 5887 5888 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5889 5890 /* Socket errors? */ 5891 error = sock_error(sk); 5892 if (error) 5893 goto out; 5894 5895 if (!skb_queue_empty(&sk->sk_receive_queue)) 5896 goto ready; 5897 5898 /* Socket shut down? */ 5899 if (sk->sk_shutdown & RCV_SHUTDOWN) 5900 goto out; 5901 5902 /* Sequenced packets can come disconnected. If so we report the 5903 * problem. 5904 */ 5905 error = -ENOTCONN; 5906 5907 /* Is there a good reason to think that we may receive some data? */ 5908 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5909 goto out; 5910 5911 /* Handle signals. */ 5912 if (signal_pending(current)) 5913 goto interrupted; 5914 5915 /* Let another process have a go. Since we are going to sleep 5916 * anyway. Note: This may cause odd behaviors if the message 5917 * does not fit in the user's buffer, but this seems to be the 5918 * only way to honor MSG_DONTWAIT realistically. 5919 */ 5920 sctp_release_sock(sk); 5921 *timeo_p = schedule_timeout(*timeo_p); 5922 sctp_lock_sock(sk); 5923 5924 ready: 5925 finish_wait(sk->sk_sleep, &wait); 5926 return 0; 5927 5928 interrupted: 5929 error = sock_intr_errno(*timeo_p); 5930 5931 out: 5932 finish_wait(sk->sk_sleep, &wait); 5933 *err = error; 5934 return error; 5935 } 5936 5937 /* Receive a datagram. 5938 * Note: This is pretty much the same routine as in core/datagram.c 5939 * with a few changes to make lksctp work. 5940 */ 5941 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5942 int noblock, int *err) 5943 { 5944 int error; 5945 struct sk_buff *skb; 5946 long timeo; 5947 5948 timeo = sock_rcvtimeo(sk, noblock); 5949 5950 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5951 timeo, MAX_SCHEDULE_TIMEOUT); 5952 5953 do { 5954 /* Again only user level code calls this function, 5955 * so nothing interrupt level 5956 * will suddenly eat the receive_queue. 5957 * 5958 * Look at current nfs client by the way... 5959 * However, this function was corrent in any case. 8) 5960 */ 5961 if (flags & MSG_PEEK) { 5962 spin_lock_bh(&sk->sk_receive_queue.lock); 5963 skb = skb_peek(&sk->sk_receive_queue); 5964 if (skb) 5965 atomic_inc(&skb->users); 5966 spin_unlock_bh(&sk->sk_receive_queue.lock); 5967 } else { 5968 skb = skb_dequeue(&sk->sk_receive_queue); 5969 } 5970 5971 if (skb) 5972 return skb; 5973 5974 /* Caller is allowed not to check sk->sk_err before calling. */ 5975 error = sock_error(sk); 5976 if (error) 5977 goto no_packet; 5978 5979 if (sk->sk_shutdown & RCV_SHUTDOWN) 5980 break; 5981 5982 /* User doesn't want to wait. */ 5983 error = -EAGAIN; 5984 if (!timeo) 5985 goto no_packet; 5986 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5987 5988 return NULL; 5989 5990 no_packet: 5991 *err = error; 5992 return NULL; 5993 } 5994 5995 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 5996 static void __sctp_write_space(struct sctp_association *asoc) 5997 { 5998 struct sock *sk = asoc->base.sk; 5999 struct socket *sock = sk->sk_socket; 6000 6001 if ((sctp_wspace(asoc) > 0) && sock) { 6002 if (waitqueue_active(&asoc->wait)) 6003 wake_up_interruptible(&asoc->wait); 6004 6005 if (sctp_writeable(sk)) { 6006 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6007 wake_up_interruptible(sk->sk_sleep); 6008 6009 /* Note that we try to include the Async I/O support 6010 * here by modeling from the current TCP/UDP code. 6011 * We have not tested with it yet. 6012 */ 6013 if (sock->fasync_list && 6014 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6015 sock_wake_async(sock, 2, POLL_OUT); 6016 } 6017 } 6018 } 6019 6020 /* Do accounting for the sndbuf space. 6021 * Decrement the used sndbuf space of the corresponding association by the 6022 * data size which was just transmitted(freed). 6023 */ 6024 static void sctp_wfree(struct sk_buff *skb) 6025 { 6026 struct sctp_association *asoc; 6027 struct sctp_chunk *chunk; 6028 struct sock *sk; 6029 6030 /* Get the saved chunk pointer. */ 6031 chunk = *((struct sctp_chunk **)(skb->cb)); 6032 asoc = chunk->asoc; 6033 sk = asoc->base.sk; 6034 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6035 sizeof(struct sk_buff) + 6036 sizeof(struct sctp_chunk); 6037 6038 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6039 6040 /* 6041 * This undoes what is done via sk_charge_skb 6042 */ 6043 sk->sk_wmem_queued -= skb->truesize; 6044 sk->sk_forward_alloc += skb->truesize; 6045 6046 sock_wfree(skb); 6047 __sctp_write_space(asoc); 6048 6049 sctp_association_put(asoc); 6050 } 6051 6052 /* Do accounting for the receive space on the socket. 6053 * Accounting for the association is done in ulpevent.c 6054 * We set this as a destructor for the cloned data skbs so that 6055 * accounting is done at the correct time. 6056 */ 6057 void sctp_sock_rfree(struct sk_buff *skb) 6058 { 6059 struct sock *sk = skb->sk; 6060 struct sctp_ulpevent *event = sctp_skb2event(skb); 6061 6062 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6063 6064 /* 6065 * Mimic the behavior of sk_stream_rfree 6066 */ 6067 sk->sk_forward_alloc += event->rmem_len; 6068 } 6069 6070 6071 /* Helper function to wait for space in the sndbuf. */ 6072 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6073 size_t msg_len) 6074 { 6075 struct sock *sk = asoc->base.sk; 6076 int err = 0; 6077 long current_timeo = *timeo_p; 6078 DEFINE_WAIT(wait); 6079 6080 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6081 asoc, (long)(*timeo_p), msg_len); 6082 6083 /* Increment the association's refcnt. */ 6084 sctp_association_hold(asoc); 6085 6086 /* Wait on the association specific sndbuf space. */ 6087 for (;;) { 6088 prepare_to_wait_exclusive(&asoc->wait, &wait, 6089 TASK_INTERRUPTIBLE); 6090 if (!*timeo_p) 6091 goto do_nonblock; 6092 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6093 asoc->base.dead) 6094 goto do_error; 6095 if (signal_pending(current)) 6096 goto do_interrupted; 6097 if (msg_len <= sctp_wspace(asoc)) 6098 break; 6099 6100 /* Let another process have a go. Since we are going 6101 * to sleep anyway. 6102 */ 6103 sctp_release_sock(sk); 6104 current_timeo = schedule_timeout(current_timeo); 6105 BUG_ON(sk != asoc->base.sk); 6106 sctp_lock_sock(sk); 6107 6108 *timeo_p = current_timeo; 6109 } 6110 6111 out: 6112 finish_wait(&asoc->wait, &wait); 6113 6114 /* Release the association's refcnt. */ 6115 sctp_association_put(asoc); 6116 6117 return err; 6118 6119 do_error: 6120 err = -EPIPE; 6121 goto out; 6122 6123 do_interrupted: 6124 err = sock_intr_errno(*timeo_p); 6125 goto out; 6126 6127 do_nonblock: 6128 err = -EAGAIN; 6129 goto out; 6130 } 6131 6132 /* If socket sndbuf has changed, wake up all per association waiters. */ 6133 void sctp_write_space(struct sock *sk) 6134 { 6135 struct sctp_association *asoc; 6136 struct list_head *pos; 6137 6138 /* Wake up the tasks in each wait queue. */ 6139 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 6140 asoc = list_entry(pos, struct sctp_association, asocs); 6141 __sctp_write_space(asoc); 6142 } 6143 } 6144 6145 /* Is there any sndbuf space available on the socket? 6146 * 6147 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6148 * associations on the same socket. For a UDP-style socket with 6149 * multiple associations, it is possible for it to be "unwriteable" 6150 * prematurely. I assume that this is acceptable because 6151 * a premature "unwriteable" is better than an accidental "writeable" which 6152 * would cause an unwanted block under certain circumstances. For the 1-1 6153 * UDP-style sockets or TCP-style sockets, this code should work. 6154 * - Daisy 6155 */ 6156 static int sctp_writeable(struct sock *sk) 6157 { 6158 int amt = 0; 6159 6160 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 6161 if (amt < 0) 6162 amt = 0; 6163 return amt; 6164 } 6165 6166 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6167 * returns immediately with EINPROGRESS. 6168 */ 6169 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6170 { 6171 struct sock *sk = asoc->base.sk; 6172 int err = 0; 6173 long current_timeo = *timeo_p; 6174 DEFINE_WAIT(wait); 6175 6176 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 6177 (long)(*timeo_p)); 6178 6179 /* Increment the association's refcnt. */ 6180 sctp_association_hold(asoc); 6181 6182 for (;;) { 6183 prepare_to_wait_exclusive(&asoc->wait, &wait, 6184 TASK_INTERRUPTIBLE); 6185 if (!*timeo_p) 6186 goto do_nonblock; 6187 if (sk->sk_shutdown & RCV_SHUTDOWN) 6188 break; 6189 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6190 asoc->base.dead) 6191 goto do_error; 6192 if (signal_pending(current)) 6193 goto do_interrupted; 6194 6195 if (sctp_state(asoc, ESTABLISHED)) 6196 break; 6197 6198 /* Let another process have a go. Since we are going 6199 * to sleep anyway. 6200 */ 6201 sctp_release_sock(sk); 6202 current_timeo = schedule_timeout(current_timeo); 6203 sctp_lock_sock(sk); 6204 6205 *timeo_p = current_timeo; 6206 } 6207 6208 out: 6209 finish_wait(&asoc->wait, &wait); 6210 6211 /* Release the association's refcnt. */ 6212 sctp_association_put(asoc); 6213 6214 return err; 6215 6216 do_error: 6217 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6218 err = -ETIMEDOUT; 6219 else 6220 err = -ECONNREFUSED; 6221 goto out; 6222 6223 do_interrupted: 6224 err = sock_intr_errno(*timeo_p); 6225 goto out; 6226 6227 do_nonblock: 6228 err = -EINPROGRESS; 6229 goto out; 6230 } 6231 6232 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6233 { 6234 struct sctp_endpoint *ep; 6235 int err = 0; 6236 DEFINE_WAIT(wait); 6237 6238 ep = sctp_sk(sk)->ep; 6239 6240 6241 for (;;) { 6242 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6243 TASK_INTERRUPTIBLE); 6244 6245 if (list_empty(&ep->asocs)) { 6246 sctp_release_sock(sk); 6247 timeo = schedule_timeout(timeo); 6248 sctp_lock_sock(sk); 6249 } 6250 6251 err = -EINVAL; 6252 if (!sctp_sstate(sk, LISTENING)) 6253 break; 6254 6255 err = 0; 6256 if (!list_empty(&ep->asocs)) 6257 break; 6258 6259 err = sock_intr_errno(timeo); 6260 if (signal_pending(current)) 6261 break; 6262 6263 err = -EAGAIN; 6264 if (!timeo) 6265 break; 6266 } 6267 6268 finish_wait(sk->sk_sleep, &wait); 6269 6270 return err; 6271 } 6272 6273 static void sctp_wait_for_close(struct sock *sk, long timeout) 6274 { 6275 DEFINE_WAIT(wait); 6276 6277 do { 6278 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6279 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6280 break; 6281 sctp_release_sock(sk); 6282 timeout = schedule_timeout(timeout); 6283 sctp_lock_sock(sk); 6284 } while (!signal_pending(current) && timeout); 6285 6286 finish_wait(sk->sk_sleep, &wait); 6287 } 6288 6289 static void sctp_sock_rfree_frag(struct sk_buff *skb) 6290 { 6291 struct sk_buff *frag; 6292 6293 if (!skb->data_len) 6294 goto done; 6295 6296 /* Don't forget the fragments. */ 6297 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6298 sctp_sock_rfree_frag(frag); 6299 6300 done: 6301 sctp_sock_rfree(skb); 6302 } 6303 6304 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6305 { 6306 struct sk_buff *frag; 6307 6308 if (!skb->data_len) 6309 goto done; 6310 6311 /* Don't forget the fragments. */ 6312 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6313 sctp_skb_set_owner_r_frag(frag, sk); 6314 6315 done: 6316 sctp_skb_set_owner_r(skb, sk); 6317 } 6318 6319 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6320 * and its messages to the newsk. 6321 */ 6322 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6323 struct sctp_association *assoc, 6324 sctp_socket_type_t type) 6325 { 6326 struct sctp_sock *oldsp = sctp_sk(oldsk); 6327 struct sctp_sock *newsp = sctp_sk(newsk); 6328 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6329 struct sctp_endpoint *newep = newsp->ep; 6330 struct sk_buff *skb, *tmp; 6331 struct sctp_ulpevent *event; 6332 int flags = 0; 6333 6334 /* Migrate socket buffer sizes and all the socket level options to the 6335 * new socket. 6336 */ 6337 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6338 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6339 /* Brute force copy old sctp opt. */ 6340 inet_sk_copy_descendant(newsk, oldsk); 6341 6342 /* Restore the ep value that was overwritten with the above structure 6343 * copy. 6344 */ 6345 newsp->ep = newep; 6346 newsp->hmac = NULL; 6347 6348 /* Hook this new socket in to the bind_hash list. */ 6349 pp = sctp_sk(oldsk)->bind_hash; 6350 sk_add_bind_node(newsk, &pp->owner); 6351 sctp_sk(newsk)->bind_hash = pp; 6352 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6353 6354 /* Copy the bind_addr list from the original endpoint to the new 6355 * endpoint so that we can handle restarts properly 6356 */ 6357 if (PF_INET6 == assoc->base.sk->sk_family) 6358 flags = SCTP_ADDR6_ALLOWED; 6359 if (assoc->peer.ipv4_address) 6360 flags |= SCTP_ADDR4_PEERSUPP; 6361 if (assoc->peer.ipv6_address) 6362 flags |= SCTP_ADDR6_PEERSUPP; 6363 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 6364 &oldsp->ep->base.bind_addr, 6365 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 6366 6367 /* Move any messages in the old socket's receive queue that are for the 6368 * peeled off association to the new socket's receive queue. 6369 */ 6370 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6371 event = sctp_skb2event(skb); 6372 if (event->asoc == assoc) { 6373 sctp_sock_rfree_frag(skb); 6374 __skb_unlink(skb, &oldsk->sk_receive_queue); 6375 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6376 sctp_skb_set_owner_r_frag(skb, newsk); 6377 } 6378 } 6379 6380 /* Clean up any messages pending delivery due to partial 6381 * delivery. Three cases: 6382 * 1) No partial deliver; no work. 6383 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6384 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6385 */ 6386 skb_queue_head_init(&newsp->pd_lobby); 6387 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6388 6389 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6390 struct sk_buff_head *queue; 6391 6392 /* Decide which queue to move pd_lobby skbs to. */ 6393 if (assoc->ulpq.pd_mode) { 6394 queue = &newsp->pd_lobby; 6395 } else 6396 queue = &newsk->sk_receive_queue; 6397 6398 /* Walk through the pd_lobby, looking for skbs that 6399 * need moved to the new socket. 6400 */ 6401 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6402 event = sctp_skb2event(skb); 6403 if (event->asoc == assoc) { 6404 sctp_sock_rfree_frag(skb); 6405 __skb_unlink(skb, &oldsp->pd_lobby); 6406 __skb_queue_tail(queue, skb); 6407 sctp_skb_set_owner_r_frag(skb, newsk); 6408 } 6409 } 6410 6411 /* Clear up any skbs waiting for the partial 6412 * delivery to finish. 6413 */ 6414 if (assoc->ulpq.pd_mode) 6415 sctp_clear_pd(oldsk, NULL); 6416 6417 } 6418 6419 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6420 sctp_sock_rfree_frag(skb); 6421 sctp_skb_set_owner_r_frag(skb, newsk); 6422 } 6423 6424 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6425 sctp_sock_rfree_frag(skb); 6426 sctp_skb_set_owner_r_frag(skb, newsk); 6427 } 6428 6429 /* Set the type of socket to indicate that it is peeled off from the 6430 * original UDP-style socket or created with the accept() call on a 6431 * TCP-style socket.. 6432 */ 6433 newsp->type = type; 6434 6435 /* Mark the new socket "in-use" by the user so that any packets 6436 * that may arrive on the association after we've moved it are 6437 * queued to the backlog. This prevents a potential race between 6438 * backlog processing on the old socket and new-packet processing 6439 * on the new socket. 6440 * 6441 * The caller has just allocated newsk so we can guarantee that other 6442 * paths won't try to lock it and then oldsk. 6443 */ 6444 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6445 sctp_assoc_migrate(assoc, newsk); 6446 6447 /* If the association on the newsk is already closed before accept() 6448 * is called, set RCV_SHUTDOWN flag. 6449 */ 6450 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6451 newsk->sk_shutdown |= RCV_SHUTDOWN; 6452 6453 newsk->sk_state = SCTP_SS_ESTABLISHED; 6454 sctp_release_sock(newsk); 6455 } 6456 6457 6458 /* This proto struct describes the ULP interface for SCTP. */ 6459 struct proto sctp_prot = { 6460 .name = "SCTP", 6461 .owner = THIS_MODULE, 6462 .close = sctp_close, 6463 .connect = sctp_connect, 6464 .disconnect = sctp_disconnect, 6465 .accept = sctp_accept, 6466 .ioctl = sctp_ioctl, 6467 .init = sctp_init_sock, 6468 .destroy = sctp_destroy_sock, 6469 .shutdown = sctp_shutdown, 6470 .setsockopt = sctp_setsockopt, 6471 .getsockopt = sctp_getsockopt, 6472 .sendmsg = sctp_sendmsg, 6473 .recvmsg = sctp_recvmsg, 6474 .bind = sctp_bind, 6475 .backlog_rcv = sctp_backlog_rcv, 6476 .hash = sctp_hash, 6477 .unhash = sctp_unhash, 6478 .get_port = sctp_get_port, 6479 .obj_size = sizeof(struct sctp_sock), 6480 .sysctl_mem = sysctl_sctp_mem, 6481 .sysctl_rmem = sysctl_sctp_rmem, 6482 .sysctl_wmem = sysctl_sctp_wmem, 6483 .memory_pressure = &sctp_memory_pressure, 6484 .enter_memory_pressure = sctp_enter_memory_pressure, 6485 .memory_allocated = &sctp_memory_allocated, 6486 }; 6487 6488 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6489 struct proto sctpv6_prot = { 6490 .name = "SCTPv6", 6491 .owner = THIS_MODULE, 6492 .close = sctp_close, 6493 .connect = sctp_connect, 6494 .disconnect = sctp_disconnect, 6495 .accept = sctp_accept, 6496 .ioctl = sctp_ioctl, 6497 .init = sctp_init_sock, 6498 .destroy = sctp_destroy_sock, 6499 .shutdown = sctp_shutdown, 6500 .setsockopt = sctp_setsockopt, 6501 .getsockopt = sctp_getsockopt, 6502 .sendmsg = sctp_sendmsg, 6503 .recvmsg = sctp_recvmsg, 6504 .bind = sctp_bind, 6505 .backlog_rcv = sctp_backlog_rcv, 6506 .hash = sctp_hash, 6507 .unhash = sctp_unhash, 6508 .get_port = sctp_get_port, 6509 .obj_size = sizeof(struct sctp6_sock), 6510 .sysctl_mem = sysctl_sctp_mem, 6511 .sysctl_rmem = sysctl_sctp_rmem, 6512 .sysctl_wmem = sysctl_sctp_wmem, 6513 .memory_pressure = &sctp_memory_pressure, 6514 .enter_memory_pressure = sctp_enter_memory_pressure, 6515 .memory_allocated = &sctp_memory_allocated, 6516 }; 6517 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6518