xref: /openbmc/linux/net/sctp/socket.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/config.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63 #include <linux/wait.h>
64 #include <linux/time.h>
65 #include <linux/ip.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern kmem_cache_t *sctp_bucket_cachep;
111 
112 /* Get the sndbuf space available at the time on the association.  */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 	struct sock *sk = asoc->base.sk;
116 	int amt = 0;
117 
118 	amt = sk->sk_sndbuf - asoc->sndbuf_used;
119 	if (amt < 0)
120 		amt = 0;
121 	return amt;
122 }
123 
124 /* Increment the used sndbuf space count of the corresponding association by
125  * the size of the outgoing data chunk.
126  * Also, set the skb destructor for sndbuf accounting later.
127  *
128  * Since it is always 1-1 between chunk and skb, and also a new skb is always
129  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
130  * destructor in the data chunk skb for the purpose of the sndbuf space
131  * tracking.
132  */
133 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
134 {
135 	struct sctp_association *asoc = chunk->asoc;
136 	struct sock *sk = asoc->base.sk;
137 
138 	/* The sndbuf space is tracked per association.  */
139 	sctp_association_hold(asoc);
140 
141 	chunk->skb->destructor = sctp_wfree;
142 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
143 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
144 
145 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk);
146 	sk->sk_wmem_queued += SCTP_DATA_SNDSIZE(chunk);
147 }
148 
149 /* Verify that this is a valid address. */
150 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
151 				   int len)
152 {
153 	struct sctp_af *af;
154 
155 	/* Verify basic sockaddr. */
156 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
157 	if (!af)
158 		return -EINVAL;
159 
160 	/* Is this a valid SCTP address?  */
161 	if (!af->addr_valid(addr, sctp_sk(sk)))
162 		return -EINVAL;
163 
164 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
165 		return -EINVAL;
166 
167 	return 0;
168 }
169 
170 /* Look up the association by its id.  If this is not a UDP-style
171  * socket, the ID field is always ignored.
172  */
173 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
174 {
175 	struct sctp_association *asoc = NULL;
176 
177 	/* If this is not a UDP-style socket, assoc id should be ignored. */
178 	if (!sctp_style(sk, UDP)) {
179 		/* Return NULL if the socket state is not ESTABLISHED. It
180 		 * could be a TCP-style listening socket or a socket which
181 		 * hasn't yet called connect() to establish an association.
182 		 */
183 		if (!sctp_sstate(sk, ESTABLISHED))
184 			return NULL;
185 
186 		/* Get the first and the only association from the list. */
187 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
188 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
189 					  struct sctp_association, asocs);
190 		return asoc;
191 	}
192 
193 	/* Otherwise this is a UDP-style socket. */
194 	if (!id || (id == (sctp_assoc_t)-1))
195 		return NULL;
196 
197 	spin_lock_bh(&sctp_assocs_id_lock);
198 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
199 	spin_unlock_bh(&sctp_assocs_id_lock);
200 
201 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
202 		return NULL;
203 
204 	return asoc;
205 }
206 
207 /* Look up the transport from an address and an assoc id. If both address and
208  * id are specified, the associations matching the address and the id should be
209  * the same.
210  */
211 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
212 					      struct sockaddr_storage *addr,
213 					      sctp_assoc_t id)
214 {
215 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
216 	struct sctp_transport *transport;
217 	union sctp_addr *laddr = (union sctp_addr *)addr;
218 
219 	laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
220 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
221 					       (union sctp_addr *)addr,
222 					       &transport);
223 	laddr->v4.sin_port = htons(laddr->v4.sin_port);
224 
225 	if (!addr_asoc)
226 		return NULL;
227 
228 	id_asoc = sctp_id2assoc(sk, id);
229 	if (id_asoc && (id_asoc != addr_asoc))
230 		return NULL;
231 
232 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
233 						(union sctp_addr *)addr);
234 
235 	return transport;
236 }
237 
238 /* API 3.1.2 bind() - UDP Style Syntax
239  * The syntax of bind() is,
240  *
241  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
242  *
243  *   sd      - the socket descriptor returned by socket().
244  *   addr    - the address structure (struct sockaddr_in or struct
245  *             sockaddr_in6 [RFC 2553]),
246  *   addr_len - the size of the address structure.
247  */
248 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len)
249 {
250 	int retval = 0;
251 
252 	sctp_lock_sock(sk);
253 
254 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, uaddr: %p, addr_len: %d)\n",
255 			  sk, uaddr, addr_len);
256 
257 	/* Disallow binding twice. */
258 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
259 		retval = sctp_do_bind(sk, (union sctp_addr *)uaddr,
260 				      addr_len);
261 	else
262 		retval = -EINVAL;
263 
264 	sctp_release_sock(sk);
265 
266 	return retval;
267 }
268 
269 static long sctp_get_port_local(struct sock *, union sctp_addr *);
270 
271 /* Verify this is a valid sockaddr. */
272 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
273 					union sctp_addr *addr, int len)
274 {
275 	struct sctp_af *af;
276 
277 	/* Check minimum size.  */
278 	if (len < sizeof (struct sockaddr))
279 		return NULL;
280 
281 	/* Does this PF support this AF? */
282 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
283 		return NULL;
284 
285 	/* If we get this far, af is valid. */
286 	af = sctp_get_af_specific(addr->sa.sa_family);
287 
288 	if (len < af->sockaddr_len)
289 		return NULL;
290 
291 	return af;
292 }
293 
294 /* Bind a local address either to an endpoint or to an association.  */
295 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
296 {
297 	struct sctp_sock *sp = sctp_sk(sk);
298 	struct sctp_endpoint *ep = sp->ep;
299 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
300 	struct sctp_af *af;
301 	unsigned short snum;
302 	int ret = 0;
303 
304 	SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d)\n",
305 			  sk, addr, len);
306 
307 	/* Common sockaddr verification. */
308 	af = sctp_sockaddr_af(sp, addr, len);
309 	if (!af)
310 		return -EINVAL;
311 
312 	/* PF specific bind() address verification. */
313 	if (!sp->pf->bind_verify(sp, addr))
314 		return -EADDRNOTAVAIL;
315 
316 	snum= ntohs(addr->v4.sin_port);
317 
318 	SCTP_DEBUG_PRINTK("sctp_do_bind: port: %d, new port: %d\n",
319 			  bp->port, snum);
320 
321 	/* We must either be unbound, or bind to the same port.  */
322 	if (bp->port && (snum != bp->port)) {
323 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
324 				  " New port %d does not match existing port "
325 				  "%d.\n", snum, bp->port);
326 		return -EINVAL;
327 	}
328 
329 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
330 		return -EACCES;
331 
332 	/* Make sure we are allowed to bind here.
333 	 * The function sctp_get_port_local() does duplicate address
334 	 * detection.
335 	 */
336 	if ((ret = sctp_get_port_local(sk, addr))) {
337 		if (ret == (long) sk) {
338 			/* This endpoint has a conflicting address. */
339 			return -EINVAL;
340 		} else {
341 			return -EADDRINUSE;
342 		}
343 	}
344 
345 	/* Refresh ephemeral port.  */
346 	if (!bp->port)
347 		bp->port = inet_sk(sk)->num;
348 
349 	/* Add the address to the bind address list.  */
350 	sctp_local_bh_disable();
351 	sctp_write_lock(&ep->base.addr_lock);
352 
353 	/* Use GFP_ATOMIC since BHs are disabled.  */
354 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
355 	ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
356 	addr->v4.sin_port = htons(addr->v4.sin_port);
357 	sctp_write_unlock(&ep->base.addr_lock);
358 	sctp_local_bh_enable();
359 
360 	/* Copy back into socket for getsockname() use. */
361 	if (!ret) {
362 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
363 		af->to_sk_saddr(addr, sk);
364 	}
365 
366 	return ret;
367 }
368 
369  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
370  *
371  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
372  * at any one time.  If a sender, after sending an ASCONF chunk, decides
373  * it needs to transfer another ASCONF Chunk, it MUST wait until the
374  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
375  * subsequent ASCONF. Note this restriction binds each side, so at any
376  * time two ASCONF may be in-transit on any given association (one sent
377  * from each endpoint).
378  */
379 static int sctp_send_asconf(struct sctp_association *asoc,
380 			    struct sctp_chunk *chunk)
381 {
382 	int		retval = 0;
383 
384 	/* If there is an outstanding ASCONF chunk, queue it for later
385 	 * transmission.
386 	 */
387 	if (asoc->addip_last_asconf) {
388 		__skb_queue_tail(&asoc->addip_chunks, (struct sk_buff *)chunk);
389 		goto out;
390 	}
391 
392 	/* Hold the chunk until an ASCONF_ACK is received. */
393 	sctp_chunk_hold(chunk);
394 	retval = sctp_primitive_ASCONF(asoc, chunk);
395 	if (retval)
396 		sctp_chunk_free(chunk);
397 	else
398 		asoc->addip_last_asconf = chunk;
399 
400 out:
401 	return retval;
402 }
403 
404 /* Add a list of addresses as bind addresses to local endpoint or
405  * association.
406  *
407  * Basically run through each address specified in the addrs/addrcnt
408  * array/length pair, determine if it is IPv6 or IPv4 and call
409  * sctp_do_bind() on it.
410  *
411  * If any of them fails, then the operation will be reversed and the
412  * ones that were added will be removed.
413  *
414  * Only sctp_setsockopt_bindx() is supposed to call this function.
415  */
416 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
417 {
418 	int cnt;
419 	int retval = 0;
420 	void *addr_buf;
421 	struct sockaddr *sa_addr;
422 	struct sctp_af *af;
423 
424 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
425 			  sk, addrs, addrcnt);
426 
427 	addr_buf = addrs;
428 	for (cnt = 0; cnt < addrcnt; cnt++) {
429 		/* The list may contain either IPv4 or IPv6 address;
430 		 * determine the address length for walking thru the list.
431 		 */
432 		sa_addr = (struct sockaddr *)addr_buf;
433 		af = sctp_get_af_specific(sa_addr->sa_family);
434 		if (!af) {
435 			retval = -EINVAL;
436 			goto err_bindx_add;
437 		}
438 
439 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
440 				      af->sockaddr_len);
441 
442 		addr_buf += af->sockaddr_len;
443 
444 err_bindx_add:
445 		if (retval < 0) {
446 			/* Failed. Cleanup the ones that have been added */
447 			if (cnt > 0)
448 				sctp_bindx_rem(sk, addrs, cnt);
449 			return retval;
450 		}
451 	}
452 
453 	return retval;
454 }
455 
456 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
457  * associations that are part of the endpoint indicating that a list of local
458  * addresses are added to the endpoint.
459  *
460  * If any of the addresses is already in the bind address list of the
461  * association, we do not send the chunk for that association.  But it will not
462  * affect other associations.
463  *
464  * Only sctp_setsockopt_bindx() is supposed to call this function.
465  */
466 static int sctp_send_asconf_add_ip(struct sock		*sk,
467 				   struct sockaddr	*addrs,
468 				   int 			addrcnt)
469 {
470 	struct sctp_sock		*sp;
471 	struct sctp_endpoint		*ep;
472 	struct sctp_association		*asoc;
473 	struct sctp_bind_addr		*bp;
474 	struct sctp_chunk		*chunk;
475 	struct sctp_sockaddr_entry	*laddr;
476 	union sctp_addr			*addr;
477 	void				*addr_buf;
478 	struct sctp_af			*af;
479 	struct list_head		*pos;
480 	struct list_head		*p;
481 	int 				i;
482 	int 				retval = 0;
483 
484 	if (!sctp_addip_enable)
485 		return retval;
486 
487 	sp = sctp_sk(sk);
488 	ep = sp->ep;
489 
490 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
491 			  __FUNCTION__, sk, addrs, addrcnt);
492 
493 	list_for_each(pos, &ep->asocs) {
494 		asoc = list_entry(pos, struct sctp_association, asocs);
495 
496 		if (!asoc->peer.asconf_capable)
497 			continue;
498 
499 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
500 			continue;
501 
502 		if (!sctp_state(asoc, ESTABLISHED))
503 			continue;
504 
505 		/* Check if any address in the packed array of addresses is
506 	         * in the bind address list of the association. If so,
507 		 * do not send the asconf chunk to its peer, but continue with
508 		 * other associations.
509 		 */
510 		addr_buf = addrs;
511 		for (i = 0; i < addrcnt; i++) {
512 			addr = (union sctp_addr *)addr_buf;
513 			af = sctp_get_af_specific(addr->v4.sin_family);
514 			if (!af) {
515 				retval = -EINVAL;
516 				goto out;
517 			}
518 
519 			if (sctp_assoc_lookup_laddr(asoc, addr))
520 				break;
521 
522 			addr_buf += af->sockaddr_len;
523 		}
524 		if (i < addrcnt)
525 			continue;
526 
527 		/* Use the first address in bind addr list of association as
528 		 * Address Parameter of ASCONF CHUNK.
529 		 */
530 		sctp_read_lock(&asoc->base.addr_lock);
531 		bp = &asoc->base.bind_addr;
532 		p = bp->address_list.next;
533 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
534 		sctp_read_unlock(&asoc->base.addr_lock);
535 
536 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
537 						   addrcnt, SCTP_PARAM_ADD_IP);
538 		if (!chunk) {
539 			retval = -ENOMEM;
540 			goto out;
541 		}
542 
543 		retval = sctp_send_asconf(asoc, chunk);
544 
545 		/* FIXME: After sending the add address ASCONF chunk, we
546 		 * cannot append the address to the association's binding
547 		 * address list, because the new address may be used as the
548 		 * source of a message sent to the peer before the ASCONF
549 		 * chunk is received by the peer.  So we should wait until
550 		 * ASCONF_ACK is received.
551 		 */
552 	}
553 
554 out:
555 	return retval;
556 }
557 
558 /* Remove a list of addresses from bind addresses list.  Do not remove the
559  * last address.
560  *
561  * Basically run through each address specified in the addrs/addrcnt
562  * array/length pair, determine if it is IPv6 or IPv4 and call
563  * sctp_del_bind() on it.
564  *
565  * If any of them fails, then the operation will be reversed and the
566  * ones that were removed will be added back.
567  *
568  * At least one address has to be left; if only one address is
569  * available, the operation will return -EBUSY.
570  *
571  * Only sctp_setsockopt_bindx() is supposed to call this function.
572  */
573 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
574 {
575 	struct sctp_sock *sp = sctp_sk(sk);
576 	struct sctp_endpoint *ep = sp->ep;
577 	int cnt;
578 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
579 	int retval = 0;
580 	union sctp_addr saveaddr;
581 	void *addr_buf;
582 	struct sockaddr *sa_addr;
583 	struct sctp_af *af;
584 
585 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
586 			  sk, addrs, addrcnt);
587 
588 	addr_buf = addrs;
589 	for (cnt = 0; cnt < addrcnt; cnt++) {
590 		/* If the bind address list is empty or if there is only one
591 		 * bind address, there is nothing more to be removed (we need
592 		 * at least one address here).
593 		 */
594 		if (list_empty(&bp->address_list) ||
595 		    (sctp_list_single_entry(&bp->address_list))) {
596 			retval = -EBUSY;
597 			goto err_bindx_rem;
598 		}
599 
600 		/* The list may contain either IPv4 or IPv6 address;
601 		 * determine the address length to copy the address to
602 		 * saveaddr.
603 		 */
604 		sa_addr = (struct sockaddr *)addr_buf;
605 		af = sctp_get_af_specific(sa_addr->sa_family);
606 		if (!af) {
607 			retval = -EINVAL;
608 			goto err_bindx_rem;
609 		}
610 		memcpy(&saveaddr, sa_addr, af->sockaddr_len);
611 		saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
612 		if (saveaddr.v4.sin_port != bp->port) {
613 			retval = -EINVAL;
614 			goto err_bindx_rem;
615 		}
616 
617 		/* FIXME - There is probably a need to check if sk->sk_saddr and
618 		 * sk->sk_rcv_addr are currently set to one of the addresses to
619 		 * be removed. This is something which needs to be looked into
620 		 * when we are fixing the outstanding issues with multi-homing
621 		 * socket routing and failover schemes. Refer to comments in
622 		 * sctp_do_bind(). -daisy
623 		 */
624 		sctp_local_bh_disable();
625 		sctp_write_lock(&ep->base.addr_lock);
626 
627 		retval = sctp_del_bind_addr(bp, &saveaddr);
628 
629 		sctp_write_unlock(&ep->base.addr_lock);
630 		sctp_local_bh_enable();
631 
632 		addr_buf += af->sockaddr_len;
633 err_bindx_rem:
634 		if (retval < 0) {
635 			/* Failed. Add the ones that has been removed back */
636 			if (cnt > 0)
637 				sctp_bindx_add(sk, addrs, cnt);
638 			return retval;
639 		}
640 	}
641 
642 	return retval;
643 }
644 
645 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
646  * the associations that are part of the endpoint indicating that a list of
647  * local addresses are removed from the endpoint.
648  *
649  * If any of the addresses is already in the bind address list of the
650  * association, we do not send the chunk for that association.  But it will not
651  * affect other associations.
652  *
653  * Only sctp_setsockopt_bindx() is supposed to call this function.
654  */
655 static int sctp_send_asconf_del_ip(struct sock		*sk,
656 				   struct sockaddr	*addrs,
657 				   int			addrcnt)
658 {
659 	struct sctp_sock	*sp;
660 	struct sctp_endpoint	*ep;
661 	struct sctp_association	*asoc;
662 	struct sctp_bind_addr	*bp;
663 	struct sctp_chunk	*chunk;
664 	union sctp_addr		*laddr;
665 	void			*addr_buf;
666 	struct sctp_af		*af;
667 	struct list_head	*pos;
668 	int 			i;
669 	int 			retval = 0;
670 
671 	if (!sctp_addip_enable)
672 		return retval;
673 
674 	sp = sctp_sk(sk);
675 	ep = sp->ep;
676 
677 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
678 			  __FUNCTION__, sk, addrs, addrcnt);
679 
680 	list_for_each(pos, &ep->asocs) {
681 		asoc = list_entry(pos, struct sctp_association, asocs);
682 
683 		if (!asoc->peer.asconf_capable)
684 			continue;
685 
686 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
687 			continue;
688 
689 		if (!sctp_state(asoc, ESTABLISHED))
690 			continue;
691 
692 		/* Check if any address in the packed array of addresses is
693 	         * not present in the bind address list of the association.
694 		 * If so, do not send the asconf chunk to its peer, but
695 		 * continue with other associations.
696 		 */
697 		addr_buf = addrs;
698 		for (i = 0; i < addrcnt; i++) {
699 			laddr = (union sctp_addr *)addr_buf;
700 			af = sctp_get_af_specific(laddr->v4.sin_family);
701 			if (!af) {
702 				retval = -EINVAL;
703 				goto out;
704 			}
705 
706 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
707 				break;
708 
709 			addr_buf += af->sockaddr_len;
710 		}
711 		if (i < addrcnt)
712 			continue;
713 
714 		/* Find one address in the association's bind address list
715 		 * that is not in the packed array of addresses. This is to
716 		 * make sure that we do not delete all the addresses in the
717 		 * association.
718 		 */
719 		sctp_read_lock(&asoc->base.addr_lock);
720 		bp = &asoc->base.bind_addr;
721 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
722 					       addrcnt, sp);
723 		sctp_read_unlock(&asoc->base.addr_lock);
724 		if (!laddr)
725 			continue;
726 
727 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
728 						   SCTP_PARAM_DEL_IP);
729 		if (!chunk) {
730 			retval = -ENOMEM;
731 			goto out;
732 		}
733 
734 		retval = sctp_send_asconf(asoc, chunk);
735 
736 		/* FIXME: After sending the delete address ASCONF chunk, we
737 		 * cannot remove the addresses from the association's bind
738 		 * address list, because there maybe some packet send to
739 		 * the delete addresses, so we should wait until ASCONF_ACK
740 		 * packet is received.
741 		 */
742 	}
743 out:
744 	return retval;
745 }
746 
747 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
748  *
749  * API 8.1
750  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
751  *                int flags);
752  *
753  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
754  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
755  * or IPv6 addresses.
756  *
757  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
758  * Section 3.1.2 for this usage.
759  *
760  * addrs is a pointer to an array of one or more socket addresses. Each
761  * address is contained in its appropriate structure (i.e. struct
762  * sockaddr_in or struct sockaddr_in6) the family of the address type
763  * must be used to distengish the address length (note that this
764  * representation is termed a "packed array" of addresses). The caller
765  * specifies the number of addresses in the array with addrcnt.
766  *
767  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
768  * -1, and sets errno to the appropriate error code.
769  *
770  * For SCTP, the port given in each socket address must be the same, or
771  * sctp_bindx() will fail, setting errno to EINVAL.
772  *
773  * The flags parameter is formed from the bitwise OR of zero or more of
774  * the following currently defined flags:
775  *
776  * SCTP_BINDX_ADD_ADDR
777  *
778  * SCTP_BINDX_REM_ADDR
779  *
780  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
781  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
782  * addresses from the association. The two flags are mutually exclusive;
783  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
784  * not remove all addresses from an association; sctp_bindx() will
785  * reject such an attempt with EINVAL.
786  *
787  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
788  * additional addresses with an endpoint after calling bind().  Or use
789  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
790  * socket is associated with so that no new association accepted will be
791  * associated with those addresses. If the endpoint supports dynamic
792  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
793  * endpoint to send the appropriate message to the peer to change the
794  * peers address lists.
795  *
796  * Adding and removing addresses from a connected association is
797  * optional functionality. Implementations that do not support this
798  * functionality should return EOPNOTSUPP.
799  *
800  * Basically do nothing but copying the addresses from user to kernel
801  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
802  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() * from userspace.
803  *
804  * We don't use copy_from_user() for optimization: we first do the
805  * sanity checks (buffer size -fast- and access check-healthy
806  * pointer); if all of those succeed, then we can alloc the memory
807  * (expensive operation) needed to copy the data to kernel. Then we do
808  * the copying without checking the user space area
809  * (__copy_from_user()).
810  *
811  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
812  * it.
813  *
814  * sk        The sk of the socket
815  * addrs     The pointer to the addresses in user land
816  * addrssize Size of the addrs buffer
817  * op        Operation to perform (add or remove, see the flags of
818  *           sctp_bindx)
819  *
820  * Returns 0 if ok, <0 errno code on error.
821  */
822 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
823 				      struct sockaddr __user *addrs,
824 				      int addrs_size, int op)
825 {
826 	struct sockaddr *kaddrs;
827 	int err;
828 	int addrcnt = 0;
829 	int walk_size = 0;
830 	struct sockaddr *sa_addr;
831 	void *addr_buf;
832 	struct sctp_af *af;
833 
834 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
835 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
836 
837 	if (unlikely(addrs_size <= 0))
838 		return -EINVAL;
839 
840 	/* Check the user passed a healthy pointer.  */
841 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
842 		return -EFAULT;
843 
844 	/* Alloc space for the address array in kernel memory.  */
845 	kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
846 	if (unlikely(!kaddrs))
847 		return -ENOMEM;
848 
849 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
850 		kfree(kaddrs);
851 		return -EFAULT;
852 	}
853 
854 	/* Walk through the addrs buffer and count the number of addresses. */
855 	addr_buf = kaddrs;
856 	while (walk_size < addrs_size) {
857 		sa_addr = (struct sockaddr *)addr_buf;
858 		af = sctp_get_af_specific(sa_addr->sa_family);
859 
860 		/* If the address family is not supported or if this address
861 		 * causes the address buffer to overflow return EINVAL.
862 		 */
863 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
864 			kfree(kaddrs);
865 			return -EINVAL;
866 		}
867 		addrcnt++;
868 		addr_buf += af->sockaddr_len;
869 		walk_size += af->sockaddr_len;
870 	}
871 
872 	/* Do the work. */
873 	switch (op) {
874 	case SCTP_BINDX_ADD_ADDR:
875 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
876 		if (err)
877 			goto out;
878 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
879 		break;
880 
881 	case SCTP_BINDX_REM_ADDR:
882 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
883 		if (err)
884 			goto out;
885 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
886 		break;
887 
888 	default:
889 		err = -EINVAL;
890 		break;
891         };
892 
893 out:
894 	kfree(kaddrs);
895 
896 	return err;
897 }
898 
899 /* API 3.1.4 close() - UDP Style Syntax
900  * Applications use close() to perform graceful shutdown (as described in
901  * Section 10.1 of [SCTP]) on ALL the associations currently represented
902  * by a UDP-style socket.
903  *
904  * The syntax is
905  *
906  *   ret = close(int sd);
907  *
908  *   sd      - the socket descriptor of the associations to be closed.
909  *
910  * To gracefully shutdown a specific association represented by the
911  * UDP-style socket, an application should use the sendmsg() call,
912  * passing no user data, but including the appropriate flag in the
913  * ancillary data (see Section xxxx).
914  *
915  * If sd in the close() call is a branched-off socket representing only
916  * one association, the shutdown is performed on that association only.
917  *
918  * 4.1.6 close() - TCP Style Syntax
919  *
920  * Applications use close() to gracefully close down an association.
921  *
922  * The syntax is:
923  *
924  *    int close(int sd);
925  *
926  *      sd      - the socket descriptor of the association to be closed.
927  *
928  * After an application calls close() on a socket descriptor, no further
929  * socket operations will succeed on that descriptor.
930  *
931  * API 7.1.4 SO_LINGER
932  *
933  * An application using the TCP-style socket can use this option to
934  * perform the SCTP ABORT primitive.  The linger option structure is:
935  *
936  *  struct  linger {
937  *     int     l_onoff;                // option on/off
938  *     int     l_linger;               // linger time
939  * };
940  *
941  * To enable the option, set l_onoff to 1.  If the l_linger value is set
942  * to 0, calling close() is the same as the ABORT primitive.  If the
943  * value is set to a negative value, the setsockopt() call will return
944  * an error.  If the value is set to a positive value linger_time, the
945  * close() can be blocked for at most linger_time ms.  If the graceful
946  * shutdown phase does not finish during this period, close() will
947  * return but the graceful shutdown phase continues in the system.
948  */
949 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
950 {
951 	struct sctp_endpoint *ep;
952 	struct sctp_association *asoc;
953 	struct list_head *pos, *temp;
954 
955 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
956 
957 	sctp_lock_sock(sk);
958 	sk->sk_shutdown = SHUTDOWN_MASK;
959 
960 	ep = sctp_sk(sk)->ep;
961 
962 	/* Walk all associations on a socket, not on an endpoint.  */
963 	list_for_each_safe(pos, temp, &ep->asocs) {
964 		asoc = list_entry(pos, struct sctp_association, asocs);
965 
966 		if (sctp_style(sk, TCP)) {
967 			/* A closed association can still be in the list if
968 			 * it belongs to a TCP-style listening socket that is
969 			 * not yet accepted. If so, free it. If not, send an
970 			 * ABORT or SHUTDOWN based on the linger options.
971 			 */
972 			if (sctp_state(asoc, CLOSED)) {
973 				sctp_unhash_established(asoc);
974 				sctp_association_free(asoc);
975 
976 			} else if (sock_flag(sk, SOCK_LINGER) &&
977 				   !sk->sk_lingertime)
978 				sctp_primitive_ABORT(asoc, NULL);
979 			else
980 				sctp_primitive_SHUTDOWN(asoc, NULL);
981 		} else
982 			sctp_primitive_SHUTDOWN(asoc, NULL);
983 	}
984 
985 	/* Clean up any skbs sitting on the receive queue.  */
986 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
987 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
988 
989 	/* On a TCP-style socket, block for at most linger_time if set. */
990 	if (sctp_style(sk, TCP) && timeout)
991 		sctp_wait_for_close(sk, timeout);
992 
993 	/* This will run the backlog queue.  */
994 	sctp_release_sock(sk);
995 
996 	/* Supposedly, no process has access to the socket, but
997 	 * the net layers still may.
998 	 */
999 	sctp_local_bh_disable();
1000 	sctp_bh_lock_sock(sk);
1001 
1002 	/* Hold the sock, since sk_common_release() will put sock_put()
1003 	 * and we have just a little more cleanup.
1004 	 */
1005 	sock_hold(sk);
1006 	sk_common_release(sk);
1007 
1008 	sctp_bh_unlock_sock(sk);
1009 	sctp_local_bh_enable();
1010 
1011 	sock_put(sk);
1012 
1013 	SCTP_DBG_OBJCNT_DEC(sock);
1014 }
1015 
1016 /* Handle EPIPE error. */
1017 static int sctp_error(struct sock *sk, int flags, int err)
1018 {
1019 	if (err == -EPIPE)
1020 		err = sock_error(sk) ? : -EPIPE;
1021 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1022 		send_sig(SIGPIPE, current, 0);
1023 	return err;
1024 }
1025 
1026 /* API 3.1.3 sendmsg() - UDP Style Syntax
1027  *
1028  * An application uses sendmsg() and recvmsg() calls to transmit data to
1029  * and receive data from its peer.
1030  *
1031  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1032  *                  int flags);
1033  *
1034  *  socket  - the socket descriptor of the endpoint.
1035  *  message - pointer to the msghdr structure which contains a single
1036  *            user message and possibly some ancillary data.
1037  *
1038  *            See Section 5 for complete description of the data
1039  *            structures.
1040  *
1041  *  flags   - flags sent or received with the user message, see Section
1042  *            5 for complete description of the flags.
1043  *
1044  * Note:  This function could use a rewrite especially when explicit
1045  * connect support comes in.
1046  */
1047 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1048 
1049 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1050 
1051 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1052 			     struct msghdr *msg, size_t msg_len)
1053 {
1054 	struct sctp_sock *sp;
1055 	struct sctp_endpoint *ep;
1056 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1057 	struct sctp_transport *transport, *chunk_tp;
1058 	struct sctp_chunk *chunk;
1059 	union sctp_addr to;
1060 	struct sockaddr *msg_name = NULL;
1061 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1062 	struct sctp_sndrcvinfo *sinfo;
1063 	struct sctp_initmsg *sinit;
1064 	sctp_assoc_t associd = 0;
1065 	sctp_cmsgs_t cmsgs = { NULL };
1066 	int err;
1067 	sctp_scope_t scope;
1068 	long timeo;
1069 	__u16 sinfo_flags = 0;
1070 	struct sctp_datamsg *datamsg;
1071 	struct list_head *pos;
1072 	int msg_flags = msg->msg_flags;
1073 
1074 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1075 			  sk, msg, msg_len);
1076 
1077 	err = 0;
1078 	sp = sctp_sk(sk);
1079 	ep = sp->ep;
1080 
1081 	SCTP_DEBUG_PRINTK("Using endpoint: %s.\n", ep->debug_name);
1082 
1083 	/* We cannot send a message over a TCP-style listening socket. */
1084 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1085 		err = -EPIPE;
1086 		goto out_nounlock;
1087 	}
1088 
1089 	/* Parse out the SCTP CMSGs.  */
1090 	err = sctp_msghdr_parse(msg, &cmsgs);
1091 
1092 	if (err) {
1093 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1094 		goto out_nounlock;
1095 	}
1096 
1097 	/* Fetch the destination address for this packet.  This
1098 	 * address only selects the association--it is not necessarily
1099 	 * the address we will send to.
1100 	 * For a peeled-off socket, msg_name is ignored.
1101 	 */
1102 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1103 		int msg_namelen = msg->msg_namelen;
1104 
1105 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1106 				       msg_namelen);
1107 		if (err)
1108 			return err;
1109 
1110 		if (msg_namelen > sizeof(to))
1111 			msg_namelen = sizeof(to);
1112 		memcpy(&to, msg->msg_name, msg_namelen);
1113 		SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1114 				  "0x%x:%u.\n",
1115 				  to.v4.sin_addr.s_addr, to.v4.sin_port);
1116 
1117 		to.v4.sin_port = ntohs(to.v4.sin_port);
1118 		msg_name = msg->msg_name;
1119 	}
1120 
1121 	sinfo = cmsgs.info;
1122 	sinit = cmsgs.init;
1123 
1124 	/* Did the user specify SNDRCVINFO?  */
1125 	if (sinfo) {
1126 		sinfo_flags = sinfo->sinfo_flags;
1127 		associd = sinfo->sinfo_assoc_id;
1128 	}
1129 
1130 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1131 			  msg_len, sinfo_flags);
1132 
1133 	/* MSG_EOF or MSG_ABORT cannot be set on a TCP-style socket. */
1134 	if (sctp_style(sk, TCP) && (sinfo_flags & (MSG_EOF | MSG_ABORT))) {
1135 		err = -EINVAL;
1136 		goto out_nounlock;
1137 	}
1138 
1139 	/* If MSG_EOF is set, no data can be sent. Disallow sending zero
1140 	 * length messages when MSG_EOF|MSG_ABORT is not set.
1141 	 * If MSG_ABORT is set, the message length could be non zero with
1142 	 * the msg_iov set to the user abort reason.
1143  	 */
1144 	if (((sinfo_flags & MSG_EOF) && (msg_len > 0)) ||
1145 	    (!(sinfo_flags & (MSG_EOF|MSG_ABORT)) && (msg_len == 0))) {
1146 		err = -EINVAL;
1147 		goto out_nounlock;
1148 	}
1149 
1150 	/* If MSG_ADDR_OVER is set, there must be an address
1151 	 * specified in msg_name.
1152 	 */
1153 	if ((sinfo_flags & MSG_ADDR_OVER) && (!msg->msg_name)) {
1154 		err = -EINVAL;
1155 		goto out_nounlock;
1156 	}
1157 
1158 	transport = NULL;
1159 
1160 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1161 
1162 	sctp_lock_sock(sk);
1163 
1164 	/* If a msg_name has been specified, assume this is to be used.  */
1165 	if (msg_name) {
1166 		/* Look for a matching association on the endpoint. */
1167 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1168 		if (!asoc) {
1169 			/* If we could not find a matching association on the
1170 			 * endpoint, make sure that it is not a TCP-style
1171 			 * socket that already has an association or there is
1172 			 * no peeled-off association on another socket.
1173 			 */
1174 			if ((sctp_style(sk, TCP) &&
1175 			     sctp_sstate(sk, ESTABLISHED)) ||
1176 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1177 				err = -EADDRNOTAVAIL;
1178 				goto out_unlock;
1179 			}
1180 		}
1181 	} else {
1182 		asoc = sctp_id2assoc(sk, associd);
1183 		if (!asoc) {
1184 			err = -EPIPE;
1185 			goto out_unlock;
1186 		}
1187 	}
1188 
1189 	if (asoc) {
1190 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1191 
1192 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1193 		 * socket that has an association in CLOSED state. This can
1194 		 * happen when an accepted socket has an association that is
1195 		 * already CLOSED.
1196 		 */
1197 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1198 			err = -EPIPE;
1199 			goto out_unlock;
1200 		}
1201 
1202 		if (sinfo_flags & MSG_EOF) {
1203 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1204 					  asoc);
1205 			sctp_primitive_SHUTDOWN(asoc, NULL);
1206 			err = 0;
1207 			goto out_unlock;
1208 		}
1209 		if (sinfo_flags & MSG_ABORT) {
1210 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1211 			sctp_primitive_ABORT(asoc, msg);
1212 			err = 0;
1213 			goto out_unlock;
1214 		}
1215 	}
1216 
1217 	/* Do we need to create the association?  */
1218 	if (!asoc) {
1219 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1220 
1221 		if (sinfo_flags & (MSG_EOF | MSG_ABORT)) {
1222 			err = -EINVAL;
1223 			goto out_unlock;
1224 		}
1225 
1226 		/* Check for invalid stream against the stream counts,
1227 		 * either the default or the user specified stream counts.
1228 		 */
1229 		if (sinfo) {
1230 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1231 				/* Check against the defaults. */
1232 				if (sinfo->sinfo_stream >=
1233 				    sp->initmsg.sinit_num_ostreams) {
1234 					err = -EINVAL;
1235 					goto out_unlock;
1236 				}
1237 			} else {
1238 				/* Check against the requested.  */
1239 				if (sinfo->sinfo_stream >=
1240 				    sinit->sinit_num_ostreams) {
1241 					err = -EINVAL;
1242 					goto out_unlock;
1243 				}
1244 			}
1245 		}
1246 
1247 		/*
1248 		 * API 3.1.2 bind() - UDP Style Syntax
1249 		 * If a bind() or sctp_bindx() is not called prior to a
1250 		 * sendmsg() call that initiates a new association, the
1251 		 * system picks an ephemeral port and will choose an address
1252 		 * set equivalent to binding with a wildcard address.
1253 		 */
1254 		if (!ep->base.bind_addr.port) {
1255 			if (sctp_autobind(sk)) {
1256 				err = -EAGAIN;
1257 				goto out_unlock;
1258 			}
1259 		}
1260 
1261 		scope = sctp_scope(&to);
1262 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1263 		if (!new_asoc) {
1264 			err = -ENOMEM;
1265 			goto out_unlock;
1266 		}
1267 		asoc = new_asoc;
1268 
1269 		/* If the SCTP_INIT ancillary data is specified, set all
1270 		 * the association init values accordingly.
1271 		 */
1272 		if (sinit) {
1273 			if (sinit->sinit_num_ostreams) {
1274 				asoc->c.sinit_num_ostreams =
1275 					sinit->sinit_num_ostreams;
1276 			}
1277 			if (sinit->sinit_max_instreams) {
1278 				asoc->c.sinit_max_instreams =
1279 					sinit->sinit_max_instreams;
1280 			}
1281 			if (sinit->sinit_max_attempts) {
1282 				asoc->max_init_attempts
1283 					= sinit->sinit_max_attempts;
1284 			}
1285 			if (sinit->sinit_max_init_timeo) {
1286 				asoc->max_init_timeo =
1287 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1288 			}
1289 		}
1290 
1291 		/* Prime the peer's transport structures.  */
1292 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL);
1293 		if (!transport) {
1294 			err = -ENOMEM;
1295 			goto out_free;
1296 		}
1297 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1298 		if (err < 0) {
1299 			err = -ENOMEM;
1300 			goto out_free;
1301 		}
1302 	}
1303 
1304 	/* ASSERT: we have a valid association at this point.  */
1305 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1306 
1307 	if (!sinfo) {
1308 		/* If the user didn't specify SNDRCVINFO, make up one with
1309 		 * some defaults.
1310 		 */
1311 		default_sinfo.sinfo_stream = asoc->default_stream;
1312 		default_sinfo.sinfo_flags = asoc->default_flags;
1313 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1314 		default_sinfo.sinfo_context = asoc->default_context;
1315 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1316 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1317 		sinfo = &default_sinfo;
1318 	}
1319 
1320 	/* API 7.1.7, the sndbuf size per association bounds the
1321 	 * maximum size of data that can be sent in a single send call.
1322 	 */
1323 	if (msg_len > sk->sk_sndbuf) {
1324 		err = -EMSGSIZE;
1325 		goto out_free;
1326 	}
1327 
1328 	/* If fragmentation is disabled and the message length exceeds the
1329 	 * association fragmentation point, return EMSGSIZE.  The I-D
1330 	 * does not specify what this error is, but this looks like
1331 	 * a great fit.
1332 	 */
1333 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1334 		err = -EMSGSIZE;
1335 		goto out_free;
1336 	}
1337 
1338 	if (sinfo) {
1339 		/* Check for invalid stream. */
1340 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1341 			err = -EINVAL;
1342 			goto out_free;
1343 		}
1344 	}
1345 
1346 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1347 	if (!sctp_wspace(asoc)) {
1348 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1349 		if (err)
1350 			goto out_free;
1351 	}
1352 
1353 	/* If an address is passed with the sendto/sendmsg call, it is used
1354 	 * to override the primary destination address in the TCP model, or
1355 	 * when MSG_ADDR_OVER flag is set in the UDP model.
1356 	 */
1357 	if ((sctp_style(sk, TCP) && msg_name) ||
1358 	    (sinfo_flags & MSG_ADDR_OVER)) {
1359 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1360 		if (!chunk_tp) {
1361 			err = -EINVAL;
1362 			goto out_free;
1363 		}
1364 	} else
1365 		chunk_tp = NULL;
1366 
1367 	/* Auto-connect, if we aren't connected already. */
1368 	if (sctp_state(asoc, CLOSED)) {
1369 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1370 		if (err < 0)
1371 			goto out_free;
1372 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1373 	}
1374 
1375 	/* Break the message into multiple chunks of maximum size. */
1376 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1377 	if (!datamsg) {
1378 		err = -ENOMEM;
1379 		goto out_free;
1380 	}
1381 
1382 	/* Now send the (possibly) fragmented message. */
1383 	list_for_each(pos, &datamsg->chunks) {
1384 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1385 		sctp_datamsg_track(chunk);
1386 
1387 		/* Do accounting for the write space.  */
1388 		sctp_set_owner_w(chunk);
1389 
1390 		chunk->transport = chunk_tp;
1391 
1392 		/* Send it to the lower layers.  Note:  all chunks
1393 		 * must either fail or succeed.   The lower layer
1394 		 * works that way today.  Keep it that way or this
1395 		 * breaks.
1396 		 */
1397 		err = sctp_primitive_SEND(asoc, chunk);
1398 		/* Did the lower layer accept the chunk? */
1399 		if (err)
1400 			sctp_chunk_free(chunk);
1401 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1402 	}
1403 
1404 	sctp_datamsg_free(datamsg);
1405 	if (err)
1406 		goto out_free;
1407 	else
1408 		err = msg_len;
1409 
1410 	/* If we are already past ASSOCIATE, the lower
1411 	 * layers are responsible for association cleanup.
1412 	 */
1413 	goto out_unlock;
1414 
1415 out_free:
1416 	if (new_asoc)
1417 		sctp_association_free(asoc);
1418 out_unlock:
1419 	sctp_release_sock(sk);
1420 
1421 out_nounlock:
1422 	return sctp_error(sk, msg_flags, err);
1423 
1424 #if 0
1425 do_sock_err:
1426 	if (msg_len)
1427 		err = msg_len;
1428 	else
1429 		err = sock_error(sk);
1430 	goto out;
1431 
1432 do_interrupted:
1433 	if (msg_len)
1434 		err = msg_len;
1435 	goto out;
1436 #endif /* 0 */
1437 }
1438 
1439 /* This is an extended version of skb_pull() that removes the data from the
1440  * start of a skb even when data is spread across the list of skb's in the
1441  * frag_list. len specifies the total amount of data that needs to be removed.
1442  * when 'len' bytes could be removed from the skb, it returns 0.
1443  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1444  * could not be removed.
1445  */
1446 static int sctp_skb_pull(struct sk_buff *skb, int len)
1447 {
1448 	struct sk_buff *list;
1449 	int skb_len = skb_headlen(skb);
1450 	int rlen;
1451 
1452 	if (len <= skb_len) {
1453 		__skb_pull(skb, len);
1454 		return 0;
1455 	}
1456 	len -= skb_len;
1457 	__skb_pull(skb, skb_len);
1458 
1459 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1460 		rlen = sctp_skb_pull(list, len);
1461 		skb->len -= (len-rlen);
1462 		skb->data_len -= (len-rlen);
1463 
1464 		if (!rlen)
1465 			return 0;
1466 
1467 		len = rlen;
1468 	}
1469 
1470 	return len;
1471 }
1472 
1473 /* API 3.1.3  recvmsg() - UDP Style Syntax
1474  *
1475  *  ssize_t recvmsg(int socket, struct msghdr *message,
1476  *                    int flags);
1477  *
1478  *  socket  - the socket descriptor of the endpoint.
1479  *  message - pointer to the msghdr structure which contains a single
1480  *            user message and possibly some ancillary data.
1481  *
1482  *            See Section 5 for complete description of the data
1483  *            structures.
1484  *
1485  *  flags   - flags sent or received with the user message, see Section
1486  *            5 for complete description of the flags.
1487  */
1488 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1489 
1490 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1491 			     struct msghdr *msg, size_t len, int noblock,
1492 			     int flags, int *addr_len)
1493 {
1494 	struct sctp_ulpevent *event = NULL;
1495 	struct sctp_sock *sp = sctp_sk(sk);
1496 	struct sk_buff *skb;
1497 	int copied;
1498 	int err = 0;
1499 	int skb_len;
1500 
1501 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1502 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1503 			  "len", len, "knoblauch", noblock,
1504 			  "flags", flags, "addr_len", addr_len);
1505 
1506 	sctp_lock_sock(sk);
1507 
1508 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1509 		err = -ENOTCONN;
1510 		goto out;
1511 	}
1512 
1513 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1514 	if (!skb)
1515 		goto out;
1516 
1517 	/* Get the total length of the skb including any skb's in the
1518 	 * frag_list.
1519 	 */
1520 	skb_len = skb->len;
1521 
1522 	copied = skb_len;
1523 	if (copied > len)
1524 		copied = len;
1525 
1526 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1527 
1528 	event = sctp_skb2event(skb);
1529 
1530 	if (err)
1531 		goto out_free;
1532 
1533 	sock_recv_timestamp(msg, sk, skb);
1534 	if (sctp_ulpevent_is_notification(event)) {
1535 		msg->msg_flags |= MSG_NOTIFICATION;
1536 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1537 	} else {
1538 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1539 	}
1540 
1541 	/* Check if we allow SCTP_SNDRCVINFO. */
1542 	if (sp->subscribe.sctp_data_io_event)
1543 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1544 #if 0
1545 	/* FIXME: we should be calling IP/IPv6 layers.  */
1546 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1547 		ip_cmsg_recv(msg, skb);
1548 #endif
1549 
1550 	err = copied;
1551 
1552 	/* If skb's length exceeds the user's buffer, update the skb and
1553 	 * push it back to the receive_queue so that the next call to
1554 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1555 	 */
1556 	if (skb_len > copied) {
1557 		msg->msg_flags &= ~MSG_EOR;
1558 		if (flags & MSG_PEEK)
1559 			goto out_free;
1560 		sctp_skb_pull(skb, copied);
1561 		skb_queue_head(&sk->sk_receive_queue, skb);
1562 
1563 		/* When only partial message is copied to the user, increase
1564 		 * rwnd by that amount. If all the data in the skb is read,
1565 		 * rwnd is updated when the event is freed.
1566 		 */
1567 		sctp_assoc_rwnd_increase(event->asoc, copied);
1568 		goto out;
1569 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1570 		   (event->msg_flags & MSG_EOR))
1571 		msg->msg_flags |= MSG_EOR;
1572 	else
1573 		msg->msg_flags &= ~MSG_EOR;
1574 
1575 out_free:
1576 	if (flags & MSG_PEEK) {
1577 		/* Release the skb reference acquired after peeking the skb in
1578 		 * sctp_skb_recv_datagram().
1579 		 */
1580 		kfree_skb(skb);
1581 	} else {
1582 		/* Free the event which includes releasing the reference to
1583 		 * the owner of the skb, freeing the skb and updating the
1584 		 * rwnd.
1585 		 */
1586 		sctp_ulpevent_free(event);
1587 	}
1588 out:
1589 	sctp_release_sock(sk);
1590 	return err;
1591 }
1592 
1593 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1594  *
1595  * This option is a on/off flag.  If enabled no SCTP message
1596  * fragmentation will be performed.  Instead if a message being sent
1597  * exceeds the current PMTU size, the message will NOT be sent and
1598  * instead a error will be indicated to the user.
1599  */
1600 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1601 					    char __user *optval, int optlen)
1602 {
1603 	int val;
1604 
1605 	if (optlen < sizeof(int))
1606 		return -EINVAL;
1607 
1608 	if (get_user(val, (int __user *)optval))
1609 		return -EFAULT;
1610 
1611 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1612 
1613 	return 0;
1614 }
1615 
1616 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1617 					int optlen)
1618 {
1619 	if (optlen != sizeof(struct sctp_event_subscribe))
1620 		return -EINVAL;
1621 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1622 		return -EFAULT;
1623 	return 0;
1624 }
1625 
1626 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1627  *
1628  * This socket option is applicable to the UDP-style socket only.  When
1629  * set it will cause associations that are idle for more than the
1630  * specified number of seconds to automatically close.  An association
1631  * being idle is defined an association that has NOT sent or received
1632  * user data.  The special value of '0' indicates that no automatic
1633  * close of any associations should be performed.  The option expects an
1634  * integer defining the number of seconds of idle time before an
1635  * association is closed.
1636  */
1637 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1638 					    int optlen)
1639 {
1640 	struct sctp_sock *sp = sctp_sk(sk);
1641 
1642 	/* Applicable to UDP-style socket only */
1643 	if (sctp_style(sk, TCP))
1644 		return -EOPNOTSUPP;
1645 	if (optlen != sizeof(int))
1646 		return -EINVAL;
1647 	if (copy_from_user(&sp->autoclose, optval, optlen))
1648 		return -EFAULT;
1649 
1650 	sp->ep->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
1651 	return 0;
1652 }
1653 
1654 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1655  *
1656  * Applications can enable or disable heartbeats for any peer address of
1657  * an association, modify an address's heartbeat interval, force a
1658  * heartbeat to be sent immediately, and adjust the address's maximum
1659  * number of retransmissions sent before an address is considered
1660  * unreachable.  The following structure is used to access and modify an
1661  * address's parameters:
1662  *
1663  *  struct sctp_paddrparams {
1664  *      sctp_assoc_t            spp_assoc_id;
1665  *      struct sockaddr_storage spp_address;
1666  *      uint32_t                spp_hbinterval;
1667  *      uint16_t                spp_pathmaxrxt;
1668  *  };
1669  *
1670  *   spp_assoc_id    - (UDP style socket) This is filled in the application,
1671  *                     and identifies the association for this query.
1672  *   spp_address     - This specifies which address is of interest.
1673  *   spp_hbinterval  - This contains the value of the heartbeat interval,
1674  *                     in milliseconds.  A value of 0, when modifying the
1675  *                     parameter, specifies that the heartbeat on this
1676  *                     address should be disabled. A value of UINT32_MAX
1677  *                     (4294967295), when modifying the parameter,
1678  *                     specifies that a heartbeat should be sent
1679  *                     immediately to the peer address, and the current
1680  *                     interval should remain unchanged.
1681  *   spp_pathmaxrxt  - This contains the maximum number of
1682  *                     retransmissions before this address shall be
1683  *                     considered unreachable.
1684  */
1685 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
1686 					    char __user *optval, int optlen)
1687 {
1688 	struct sctp_paddrparams params;
1689 	struct sctp_transport *trans;
1690 	int error;
1691 
1692 	if (optlen != sizeof(struct sctp_paddrparams))
1693 		return -EINVAL;
1694 	if (copy_from_user(&params, optval, optlen))
1695 		return -EFAULT;
1696 
1697 	/*
1698 	 * API 7. Socket Options (setting the default value for the endpoint)
1699 	 * All options that support specific settings on an association by
1700 	 * filling in either an association id variable or a sockaddr_storage
1701 	 * SHOULD also support setting of the same value for the entire endpoint
1702 	 * (i.e. future associations). To accomplish this the following logic is
1703 	 * used when setting one of these options:
1704 
1705 	 * c) If neither the sockaddr_storage or association identification is
1706 	 *    set i.e. the sockaddr_storage is set to all 0's (INADDR_ANY) and
1707 	 *    the association identification is 0, the settings are a default
1708 	 *    and to be applied to the endpoint (all future associations).
1709 	 */
1710 
1711 	/* update default value for endpoint (all future associations) */
1712 	if (!params.spp_assoc_id &&
1713 	    sctp_is_any(( union sctp_addr *)&params.spp_address)) {
1714 		/* Manual heartbeat on an endpoint is invalid. */
1715 		if (0xffffffff == params.spp_hbinterval)
1716 			return -EINVAL;
1717 		else if (params.spp_hbinterval)
1718 			sctp_sk(sk)->paddrparam.spp_hbinterval =
1719 						params.spp_hbinterval;
1720 		if (params.spp_pathmaxrxt)
1721 			sctp_sk(sk)->paddrparam.spp_pathmaxrxt =
1722 						params.spp_pathmaxrxt;
1723 		return 0;
1724 	}
1725 
1726 	trans = sctp_addr_id2transport(sk, &params.spp_address,
1727 				       params.spp_assoc_id);
1728 	if (!trans)
1729 		return -EINVAL;
1730 
1731 	/* Applications can enable or disable heartbeats for any peer address
1732 	 * of an association, modify an address's heartbeat interval, force a
1733 	 * heartbeat to be sent immediately, and adjust the address's maximum
1734 	 * number of retransmissions sent before an address is considered
1735 	 * unreachable.
1736 	 *
1737 	 * The value of the heartbeat interval, in milliseconds. A value of
1738 	 * UINT32_MAX (4294967295), when modifying the parameter, specifies
1739 	 * that a heartbeat should be sent immediately to the peer address,
1740 	 * and the current interval should remain unchanged.
1741 	 */
1742 	if (0xffffffff == params.spp_hbinterval) {
1743 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
1744 		if (error)
1745 			return error;
1746 	} else {
1747 	/* The value of the heartbeat interval, in milliseconds. A value of 0,
1748 	 * when modifying the parameter, specifies that the heartbeat on this
1749 	 * address should be disabled.
1750 	 */
1751 		if (params.spp_hbinterval) {
1752 			trans->hb_allowed = 1;
1753 			trans->hb_interval =
1754 				msecs_to_jiffies(params.spp_hbinterval);
1755 		} else
1756 			trans->hb_allowed = 0;
1757 	}
1758 
1759 	/* spp_pathmaxrxt contains the maximum number of retransmissions
1760 	 * before this address shall be considered unreachable.
1761 	 */
1762 	if (params.spp_pathmaxrxt)
1763 		trans->max_retrans = params.spp_pathmaxrxt;
1764 
1765 	return 0;
1766 }
1767 
1768 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
1769  *
1770  * Applications can specify protocol parameters for the default association
1771  * initialization.  The option name argument to setsockopt() and getsockopt()
1772  * is SCTP_INITMSG.
1773  *
1774  * Setting initialization parameters is effective only on an unconnected
1775  * socket (for UDP-style sockets only future associations are effected
1776  * by the change).  With TCP-style sockets, this option is inherited by
1777  * sockets derived from a listener socket.
1778  */
1779 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
1780 {
1781 	struct sctp_initmsg sinit;
1782 	struct sctp_sock *sp = sctp_sk(sk);
1783 
1784 	if (optlen != sizeof(struct sctp_initmsg))
1785 		return -EINVAL;
1786 	if (copy_from_user(&sinit, optval, optlen))
1787 		return -EFAULT;
1788 
1789 	if (sinit.sinit_num_ostreams)
1790 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
1791 	if (sinit.sinit_max_instreams)
1792 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
1793 	if (sinit.sinit_max_attempts)
1794 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
1795 	if (sinit.sinit_max_init_timeo)
1796 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
1797 
1798 	return 0;
1799 }
1800 
1801 /*
1802  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
1803  *
1804  *   Applications that wish to use the sendto() system call may wish to
1805  *   specify a default set of parameters that would normally be supplied
1806  *   through the inclusion of ancillary data.  This socket option allows
1807  *   such an application to set the default sctp_sndrcvinfo structure.
1808  *   The application that wishes to use this socket option simply passes
1809  *   in to this call the sctp_sndrcvinfo structure defined in Section
1810  *   5.2.2) The input parameters accepted by this call include
1811  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
1812  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
1813  *   to this call if the caller is using the UDP model.
1814  */
1815 static int sctp_setsockopt_default_send_param(struct sock *sk,
1816 						char __user *optval, int optlen)
1817 {
1818 	struct sctp_sndrcvinfo info;
1819 	struct sctp_association *asoc;
1820 	struct sctp_sock *sp = sctp_sk(sk);
1821 
1822 	if (optlen != sizeof(struct sctp_sndrcvinfo))
1823 		return -EINVAL;
1824 	if (copy_from_user(&info, optval, optlen))
1825 		return -EFAULT;
1826 
1827 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
1828 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
1829 		return -EINVAL;
1830 
1831 	if (asoc) {
1832 		asoc->default_stream = info.sinfo_stream;
1833 		asoc->default_flags = info.sinfo_flags;
1834 		asoc->default_ppid = info.sinfo_ppid;
1835 		asoc->default_context = info.sinfo_context;
1836 		asoc->default_timetolive = info.sinfo_timetolive;
1837 	} else {
1838 		sp->default_stream = info.sinfo_stream;
1839 		sp->default_flags = info.sinfo_flags;
1840 		sp->default_ppid = info.sinfo_ppid;
1841 		sp->default_context = info.sinfo_context;
1842 		sp->default_timetolive = info.sinfo_timetolive;
1843 	}
1844 
1845 	return 0;
1846 }
1847 
1848 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
1849  *
1850  * Requests that the local SCTP stack use the enclosed peer address as
1851  * the association primary.  The enclosed address must be one of the
1852  * association peer's addresses.
1853  */
1854 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
1855 					int optlen)
1856 {
1857 	struct sctp_prim prim;
1858 	struct sctp_transport *trans;
1859 
1860 	if (optlen != sizeof(struct sctp_prim))
1861 		return -EINVAL;
1862 
1863 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
1864 		return -EFAULT;
1865 
1866 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
1867 	if (!trans)
1868 		return -EINVAL;
1869 
1870 	sctp_assoc_set_primary(trans->asoc, trans);
1871 
1872 	return 0;
1873 }
1874 
1875 /*
1876  * 7.1.5 SCTP_NODELAY
1877  *
1878  * Turn on/off any Nagle-like algorithm.  This means that packets are
1879  * generally sent as soon as possible and no unnecessary delays are
1880  * introduced, at the cost of more packets in the network.  Expects an
1881  *  integer boolean flag.
1882  */
1883 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
1884 					int optlen)
1885 {
1886 	int val;
1887 
1888 	if (optlen < sizeof(int))
1889 		return -EINVAL;
1890 	if (get_user(val, (int __user *)optval))
1891 		return -EFAULT;
1892 
1893 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
1894 	return 0;
1895 }
1896 
1897 /*
1898  *
1899  * 7.1.1 SCTP_RTOINFO
1900  *
1901  * The protocol parameters used to initialize and bound retransmission
1902  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
1903  * and modify these parameters.
1904  * All parameters are time values, in milliseconds.  A value of 0, when
1905  * modifying the parameters, indicates that the current value should not
1906  * be changed.
1907  *
1908  */
1909 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
1910 	struct sctp_rtoinfo rtoinfo;
1911 	struct sctp_association *asoc;
1912 
1913 	if (optlen != sizeof (struct sctp_rtoinfo))
1914 		return -EINVAL;
1915 
1916 	if (copy_from_user(&rtoinfo, optval, optlen))
1917 		return -EFAULT;
1918 
1919 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
1920 
1921 	/* Set the values to the specific association */
1922 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
1923 		return -EINVAL;
1924 
1925 	if (asoc) {
1926 		if (rtoinfo.srto_initial != 0)
1927 			asoc->rto_initial =
1928 				msecs_to_jiffies(rtoinfo.srto_initial);
1929 		if (rtoinfo.srto_max != 0)
1930 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
1931 		if (rtoinfo.srto_min != 0)
1932 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
1933 	} else {
1934 		/* If there is no association or the association-id = 0
1935 		 * set the values to the endpoint.
1936 		 */
1937 		struct sctp_sock *sp = sctp_sk(sk);
1938 
1939 		if (rtoinfo.srto_initial != 0)
1940 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
1941 		if (rtoinfo.srto_max != 0)
1942 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
1943 		if (rtoinfo.srto_min != 0)
1944 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 /*
1951  *
1952  * 7.1.2 SCTP_ASSOCINFO
1953  *
1954  * This option is used to tune the the maximum retransmission attempts
1955  * of the association.
1956  * Returns an error if the new association retransmission value is
1957  * greater than the sum of the retransmission value  of the peer.
1958  * See [SCTP] for more information.
1959  *
1960  */
1961 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
1962 {
1963 
1964 	struct sctp_assocparams assocparams;
1965 	struct sctp_association *asoc;
1966 
1967 	if (optlen != sizeof(struct sctp_assocparams))
1968 		return -EINVAL;
1969 	if (copy_from_user(&assocparams, optval, optlen))
1970 		return -EFAULT;
1971 
1972 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
1973 
1974 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
1975 		return -EINVAL;
1976 
1977 	/* Set the values to the specific association */
1978 	if (asoc) {
1979 		if (assocparams.sasoc_asocmaxrxt != 0)
1980 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
1981 		if (assocparams.sasoc_cookie_life != 0) {
1982 			asoc->cookie_life.tv_sec =
1983 					assocparams.sasoc_cookie_life / 1000;
1984 			asoc->cookie_life.tv_usec =
1985 					(assocparams.sasoc_cookie_life % 1000)
1986 					* 1000;
1987 		}
1988 	} else {
1989 		/* Set the values to the endpoint */
1990 		struct sctp_sock *sp = sctp_sk(sk);
1991 
1992 		if (assocparams.sasoc_asocmaxrxt != 0)
1993 			sp->assocparams.sasoc_asocmaxrxt =
1994 						assocparams.sasoc_asocmaxrxt;
1995 		if (assocparams.sasoc_cookie_life != 0)
1996 			sp->assocparams.sasoc_cookie_life =
1997 						assocparams.sasoc_cookie_life;
1998 	}
1999 	return 0;
2000 }
2001 
2002 /*
2003  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2004  *
2005  * This socket option is a boolean flag which turns on or off mapped V4
2006  * addresses.  If this option is turned on and the socket is type
2007  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2008  * If this option is turned off, then no mapping will be done of V4
2009  * addresses and a user will receive both PF_INET6 and PF_INET type
2010  * addresses on the socket.
2011  */
2012 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2013 {
2014 	int val;
2015 	struct sctp_sock *sp = sctp_sk(sk);
2016 
2017 	if (optlen < sizeof(int))
2018 		return -EINVAL;
2019 	if (get_user(val, (int __user *)optval))
2020 		return -EFAULT;
2021 	if (val)
2022 		sp->v4mapped = 1;
2023 	else
2024 		sp->v4mapped = 0;
2025 
2026 	return 0;
2027 }
2028 
2029 /*
2030  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2031  *
2032  * This socket option specifies the maximum size to put in any outgoing
2033  * SCTP chunk.  If a message is larger than this size it will be
2034  * fragmented by SCTP into the specified size.  Note that the underlying
2035  * SCTP implementation may fragment into smaller sized chunks when the
2036  * PMTU of the underlying association is smaller than the value set by
2037  * the user.
2038  */
2039 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2040 {
2041 	struct sctp_association *asoc;
2042 	struct list_head *pos;
2043 	struct sctp_sock *sp = sctp_sk(sk);
2044 	int val;
2045 
2046 	if (optlen < sizeof(int))
2047 		return -EINVAL;
2048 	if (get_user(val, (int __user *)optval))
2049 		return -EFAULT;
2050 	if ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))
2051 		return -EINVAL;
2052 	sp->user_frag = val;
2053 
2054 	if (val) {
2055 		/* Update the frag_point of the existing associations. */
2056 		list_for_each(pos, &(sp->ep->asocs)) {
2057 			asoc = list_entry(pos, struct sctp_association, asocs);
2058 			asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
2059 		}
2060 	}
2061 
2062 	return 0;
2063 }
2064 
2065 
2066 /*
2067  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2068  *
2069  *   Requests that the peer mark the enclosed address as the association
2070  *   primary. The enclosed address must be one of the association's
2071  *   locally bound addresses. The following structure is used to make a
2072  *   set primary request:
2073  */
2074 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2075 					     int optlen)
2076 {
2077 	struct sctp_sock	*sp;
2078 	struct sctp_endpoint	*ep;
2079 	struct sctp_association	*asoc = NULL;
2080 	struct sctp_setpeerprim	prim;
2081 	struct sctp_chunk	*chunk;
2082 	int 			err;
2083 
2084 	sp = sctp_sk(sk);
2085 	ep = sp->ep;
2086 
2087 	if (!sctp_addip_enable)
2088 		return -EPERM;
2089 
2090 	if (optlen != sizeof(struct sctp_setpeerprim))
2091 		return -EINVAL;
2092 
2093 	if (copy_from_user(&prim, optval, optlen))
2094 		return -EFAULT;
2095 
2096 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2097 	if (!asoc)
2098 		return -EINVAL;
2099 
2100 	if (!asoc->peer.asconf_capable)
2101 		return -EPERM;
2102 
2103 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2104 		return -EPERM;
2105 
2106 	if (!sctp_state(asoc, ESTABLISHED))
2107 		return -ENOTCONN;
2108 
2109 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2110 		return -EADDRNOTAVAIL;
2111 
2112 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2113 	chunk = sctp_make_asconf_set_prim(asoc,
2114 					  (union sctp_addr *)&prim.sspp_addr);
2115 	if (!chunk)
2116 		return -ENOMEM;
2117 
2118 	err = sctp_send_asconf(asoc, chunk);
2119 
2120 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2121 
2122 	return err;
2123 }
2124 
2125 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2126 					  int optlen)
2127 {
2128 	__u32 val;
2129 
2130 	if (optlen < sizeof(__u32))
2131 		return -EINVAL;
2132 	if (copy_from_user(&val, optval, sizeof(__u32)))
2133 		return -EFAULT;
2134 
2135 	sctp_sk(sk)->adaption_ind = val;
2136 
2137 	return 0;
2138 }
2139 
2140 /* API 6.2 setsockopt(), getsockopt()
2141  *
2142  * Applications use setsockopt() and getsockopt() to set or retrieve
2143  * socket options.  Socket options are used to change the default
2144  * behavior of sockets calls.  They are described in Section 7.
2145  *
2146  * The syntax is:
2147  *
2148  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2149  *                    int __user *optlen);
2150  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2151  *                    int optlen);
2152  *
2153  *   sd      - the socket descript.
2154  *   level   - set to IPPROTO_SCTP for all SCTP options.
2155  *   optname - the option name.
2156  *   optval  - the buffer to store the value of the option.
2157  *   optlen  - the size of the buffer.
2158  */
2159 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2160 				char __user *optval, int optlen)
2161 {
2162 	int retval = 0;
2163 
2164 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2165 			  sk, optname);
2166 
2167 	/* I can hardly begin to describe how wrong this is.  This is
2168 	 * so broken as to be worse than useless.  The API draft
2169 	 * REALLY is NOT helpful here...  I am not convinced that the
2170 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2171 	 * are at all well-founded.
2172 	 */
2173 	if (level != SOL_SCTP) {
2174 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2175 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2176 		goto out_nounlock;
2177 	}
2178 
2179 	sctp_lock_sock(sk);
2180 
2181 	switch (optname) {
2182 	case SCTP_SOCKOPT_BINDX_ADD:
2183 		/* 'optlen' is the size of the addresses buffer. */
2184 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2185 					       optlen, SCTP_BINDX_ADD_ADDR);
2186 		break;
2187 
2188 	case SCTP_SOCKOPT_BINDX_REM:
2189 		/* 'optlen' is the size of the addresses buffer. */
2190 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2191 					       optlen, SCTP_BINDX_REM_ADDR);
2192 		break;
2193 
2194 	case SCTP_DISABLE_FRAGMENTS:
2195 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2196 		break;
2197 
2198 	case SCTP_EVENTS:
2199 		retval = sctp_setsockopt_events(sk, optval, optlen);
2200 		break;
2201 
2202 	case SCTP_AUTOCLOSE:
2203 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2204 		break;
2205 
2206 	case SCTP_PEER_ADDR_PARAMS:
2207 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2208 		break;
2209 
2210 	case SCTP_INITMSG:
2211 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2212 		break;
2213 	case SCTP_DEFAULT_SEND_PARAM:
2214 		retval = sctp_setsockopt_default_send_param(sk, optval,
2215 							    optlen);
2216 		break;
2217 	case SCTP_PRIMARY_ADDR:
2218 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2219 		break;
2220 	case SCTP_SET_PEER_PRIMARY_ADDR:
2221 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2222 		break;
2223 	case SCTP_NODELAY:
2224 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2225 		break;
2226 	case SCTP_RTOINFO:
2227 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2228 		break;
2229 	case SCTP_ASSOCINFO:
2230 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2231 		break;
2232 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2233 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2234 		break;
2235 	case SCTP_MAXSEG:
2236 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2237 		break;
2238 	case SCTP_ADAPTION_LAYER:
2239 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2240 		break;
2241 
2242 	default:
2243 		retval = -ENOPROTOOPT;
2244 		break;
2245 	};
2246 
2247 	sctp_release_sock(sk);
2248 
2249 out_nounlock:
2250 	return retval;
2251 }
2252 
2253 /* API 3.1.6 connect() - UDP Style Syntax
2254  *
2255  * An application may use the connect() call in the UDP model to initiate an
2256  * association without sending data.
2257  *
2258  * The syntax is:
2259  *
2260  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2261  *
2262  * sd: the socket descriptor to have a new association added to.
2263  *
2264  * nam: the address structure (either struct sockaddr_in or struct
2265  *    sockaddr_in6 defined in RFC2553 [7]).
2266  *
2267  * len: the size of the address.
2268  */
2269 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *uaddr,
2270 			     int addr_len)
2271 {
2272 	struct sctp_sock *sp;
2273 	struct sctp_endpoint *ep;
2274 	struct sctp_association *asoc;
2275 	struct sctp_transport *transport;
2276 	union sctp_addr to;
2277 	struct sctp_af *af;
2278 	sctp_scope_t scope;
2279 	long timeo;
2280 	int err = 0;
2281 
2282 	sctp_lock_sock(sk);
2283 
2284 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d)\n",
2285 			  __FUNCTION__, sk, uaddr, addr_len);
2286 
2287 	sp = sctp_sk(sk);
2288 	ep = sp->ep;
2289 
2290 	/* connect() cannot be done on a socket that is already in ESTABLISHED
2291 	 * state - UDP-style peeled off socket or a TCP-style socket that
2292 	 * is already connected.
2293 	 * It cannot be done even on a TCP-style listening socket.
2294 	 */
2295 	if (sctp_sstate(sk, ESTABLISHED) ||
2296 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
2297 		err = -EISCONN;
2298 		goto out_unlock;
2299 	}
2300 
2301 	err = sctp_verify_addr(sk, (union sctp_addr *)uaddr, addr_len);
2302 	if (err)
2303 		goto out_unlock;
2304 
2305 	if (addr_len > sizeof(to))
2306 		addr_len = sizeof(to);
2307 	memcpy(&to, uaddr, addr_len);
2308 	to.v4.sin_port = ntohs(to.v4.sin_port);
2309 
2310 	asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
2311 	if (asoc) {
2312 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
2313 			err = -EISCONN;
2314 		else
2315 			err = -EALREADY;
2316 		goto out_unlock;
2317 	}
2318 
2319 	/* If we could not find a matching association on the endpoint,
2320 	 * make sure that there is no peeled-off association matching the
2321 	 * peer address even on another socket.
2322 	 */
2323 	if (sctp_endpoint_is_peeled_off(ep, &to)) {
2324 		err = -EADDRNOTAVAIL;
2325 		goto out_unlock;
2326 	}
2327 
2328 	/* If a bind() or sctp_bindx() is not called prior to a connect()
2329 	 * call, the system picks an ephemeral port and will choose an address
2330 	 * set equivalent to binding with a wildcard address.
2331 	 */
2332 	if (!ep->base.bind_addr.port) {
2333 		if (sctp_autobind(sk)) {
2334 			err = -EAGAIN;
2335 			goto out_unlock;
2336 		}
2337 	}
2338 
2339 	scope = sctp_scope(&to);
2340 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
2341 	if (!asoc) {
2342 		err = -ENOMEM;
2343 		goto out_unlock;
2344   	}
2345 
2346 	/* Prime the peer's transport structures.  */
2347 	transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL);
2348 	if (!transport) {
2349 		sctp_association_free(asoc);
2350 		goto out_unlock;
2351 	}
2352 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
2353 	if (err < 0) {
2354 		sctp_association_free(asoc);
2355 		goto out_unlock;
2356 	}
2357 
2358 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
2359 	if (err < 0) {
2360 		sctp_association_free(asoc);
2361 		goto out_unlock;
2362 	}
2363 
2364 	/* Initialize sk's dport and daddr for getpeername() */
2365 	inet_sk(sk)->dport = htons(asoc->peer.port);
2366 	af = sctp_get_af_specific(to.sa.sa_family);
2367 	af->to_sk_daddr(&to, sk);
2368 
2369 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2370 	err = sctp_wait_for_connect(asoc, &timeo);
2371 
2372 out_unlock:
2373 	sctp_release_sock(sk);
2374 
2375 	return err;
2376 }
2377 
2378 /* FIXME: Write comments. */
2379 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2380 {
2381 	return -EOPNOTSUPP; /* STUB */
2382 }
2383 
2384 /* 4.1.4 accept() - TCP Style Syntax
2385  *
2386  * Applications use accept() call to remove an established SCTP
2387  * association from the accept queue of the endpoint.  A new socket
2388  * descriptor will be returned from accept() to represent the newly
2389  * formed association.
2390  */
2391 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2392 {
2393 	struct sctp_sock *sp;
2394 	struct sctp_endpoint *ep;
2395 	struct sock *newsk = NULL;
2396 	struct sctp_association *asoc;
2397 	long timeo;
2398 	int error = 0;
2399 
2400 	sctp_lock_sock(sk);
2401 
2402 	sp = sctp_sk(sk);
2403 	ep = sp->ep;
2404 
2405 	if (!sctp_style(sk, TCP)) {
2406 		error = -EOPNOTSUPP;
2407 		goto out;
2408 	}
2409 
2410 	if (!sctp_sstate(sk, LISTENING)) {
2411 		error = -EINVAL;
2412 		goto out;
2413 	}
2414 
2415 	timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2416 
2417 	error = sctp_wait_for_accept(sk, timeo);
2418 	if (error)
2419 		goto out;
2420 
2421 	/* We treat the list of associations on the endpoint as the accept
2422 	 * queue and pick the first association on the list.
2423 	 */
2424 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2425 
2426 	newsk = sp->pf->create_accept_sk(sk, asoc);
2427 	if (!newsk) {
2428 		error = -ENOMEM;
2429 		goto out;
2430 	}
2431 
2432 	/* Populate the fields of the newsk from the oldsk and migrate the
2433 	 * asoc to the newsk.
2434 	 */
2435 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2436 
2437 out:
2438 	sctp_release_sock(sk);
2439  	*err = error;
2440 	return newsk;
2441 }
2442 
2443 /* The SCTP ioctl handler. */
2444 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2445 {
2446 	return -ENOIOCTLCMD;
2447 }
2448 
2449 /* This is the function which gets called during socket creation to
2450  * initialized the SCTP-specific portion of the sock.
2451  * The sock structure should already be zero-filled memory.
2452  */
2453 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2454 {
2455 	struct sctp_endpoint *ep;
2456 	struct sctp_sock *sp;
2457 
2458 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2459 
2460 	sp = sctp_sk(sk);
2461 
2462 	/* Initialize the SCTP per socket area.  */
2463 	switch (sk->sk_type) {
2464 	case SOCK_SEQPACKET:
2465 		sp->type = SCTP_SOCKET_UDP;
2466 		break;
2467 	case SOCK_STREAM:
2468 		sp->type = SCTP_SOCKET_TCP;
2469 		break;
2470 	default:
2471 		return -ESOCKTNOSUPPORT;
2472 	}
2473 
2474 	/* Initialize default send parameters. These parameters can be
2475 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2476 	 */
2477 	sp->default_stream = 0;
2478 	sp->default_ppid = 0;
2479 	sp->default_flags = 0;
2480 	sp->default_context = 0;
2481 	sp->default_timetolive = 0;
2482 
2483 	/* Initialize default setup parameters. These parameters
2484 	 * can be modified with the SCTP_INITMSG socket option or
2485 	 * overridden by the SCTP_INIT CMSG.
2486 	 */
2487 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
2488 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
2489 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
2490 	sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2491 
2492 	/* Initialize default RTO related parameters.  These parameters can
2493 	 * be modified for with the SCTP_RTOINFO socket option.
2494 	 */
2495 	sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2496 	sp->rtoinfo.srto_max     = jiffies_to_msecs(sctp_rto_max);
2497 	sp->rtoinfo.srto_min     = jiffies_to_msecs(sctp_rto_min);
2498 
2499 	/* Initialize default association related parameters. These parameters
2500 	 * can be modified with the SCTP_ASSOCINFO socket option.
2501 	 */
2502 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
2503 	sp->assocparams.sasoc_number_peer_destinations = 0;
2504 	sp->assocparams.sasoc_peer_rwnd = 0;
2505 	sp->assocparams.sasoc_local_rwnd = 0;
2506 	sp->assocparams.sasoc_cookie_life =
2507 		jiffies_to_msecs(sctp_valid_cookie_life);
2508 
2509 	/* Initialize default event subscriptions. By default, all the
2510 	 * options are off.
2511 	 */
2512 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
2513 
2514 	/* Default Peer Address Parameters.  These defaults can
2515 	 * be modified via SCTP_PEER_ADDR_PARAMS
2516 	 */
2517 	sp->paddrparam.spp_hbinterval = jiffies_to_msecs(sctp_hb_interval);
2518 	sp->paddrparam.spp_pathmaxrxt = sctp_max_retrans_path;
2519 
2520 	/* If enabled no SCTP message fragmentation will be performed.
2521 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
2522 	 */
2523 	sp->disable_fragments = 0;
2524 
2525 	/* Turn on/off any Nagle-like algorithm.  */
2526 	sp->nodelay           = 1;
2527 
2528 	/* Enable by default. */
2529 	sp->v4mapped          = 1;
2530 
2531 	/* Auto-close idle associations after the configured
2532 	 * number of seconds.  A value of 0 disables this
2533 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
2534 	 * for UDP-style sockets only.
2535 	 */
2536 	sp->autoclose         = 0;
2537 
2538 	/* User specified fragmentation limit. */
2539 	sp->user_frag         = 0;
2540 
2541 	sp->adaption_ind = 0;
2542 
2543 	sp->pf = sctp_get_pf_specific(sk->sk_family);
2544 
2545 	/* Control variables for partial data delivery. */
2546 	sp->pd_mode           = 0;
2547 	skb_queue_head_init(&sp->pd_lobby);
2548 
2549 	/* Create a per socket endpoint structure.  Even if we
2550 	 * change the data structure relationships, this may still
2551 	 * be useful for storing pre-connect address information.
2552 	 */
2553 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
2554 	if (!ep)
2555 		return -ENOMEM;
2556 
2557 	sp->ep = ep;
2558 	sp->hmac = NULL;
2559 
2560 	SCTP_DBG_OBJCNT_INC(sock);
2561 	return 0;
2562 }
2563 
2564 /* Cleanup any SCTP per socket resources.  */
2565 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
2566 {
2567 	struct sctp_endpoint *ep;
2568 
2569 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
2570 
2571 	/* Release our hold on the endpoint. */
2572 	ep = sctp_sk(sk)->ep;
2573 	sctp_endpoint_free(ep);
2574 
2575 	return 0;
2576 }
2577 
2578 /* API 4.1.7 shutdown() - TCP Style Syntax
2579  *     int shutdown(int socket, int how);
2580  *
2581  *     sd      - the socket descriptor of the association to be closed.
2582  *     how     - Specifies the type of shutdown.  The  values  are
2583  *               as follows:
2584  *               SHUT_RD
2585  *                     Disables further receive operations. No SCTP
2586  *                     protocol action is taken.
2587  *               SHUT_WR
2588  *                     Disables further send operations, and initiates
2589  *                     the SCTP shutdown sequence.
2590  *               SHUT_RDWR
2591  *                     Disables further send  and  receive  operations
2592  *                     and initiates the SCTP shutdown sequence.
2593  */
2594 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
2595 {
2596 	struct sctp_endpoint *ep;
2597 	struct sctp_association *asoc;
2598 
2599 	if (!sctp_style(sk, TCP))
2600 		return;
2601 
2602 	if (how & SEND_SHUTDOWN) {
2603 		ep = sctp_sk(sk)->ep;
2604 		if (!list_empty(&ep->asocs)) {
2605 			asoc = list_entry(ep->asocs.next,
2606 					  struct sctp_association, asocs);
2607 			sctp_primitive_SHUTDOWN(asoc, NULL);
2608 		}
2609 	}
2610 }
2611 
2612 /* 7.2.1 Association Status (SCTP_STATUS)
2613 
2614  * Applications can retrieve current status information about an
2615  * association, including association state, peer receiver window size,
2616  * number of unacked data chunks, and number of data chunks pending
2617  * receipt.  This information is read-only.
2618  */
2619 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
2620 				       char __user *optval,
2621 				       int __user *optlen)
2622 {
2623 	struct sctp_status status;
2624 	struct sctp_association *asoc = NULL;
2625 	struct sctp_transport *transport;
2626 	sctp_assoc_t associd;
2627 	int retval = 0;
2628 
2629 	if (len != sizeof(status)) {
2630 		retval = -EINVAL;
2631 		goto out;
2632 	}
2633 
2634 	if (copy_from_user(&status, optval, sizeof(status))) {
2635 		retval = -EFAULT;
2636 		goto out;
2637 	}
2638 
2639 	associd = status.sstat_assoc_id;
2640 	asoc = sctp_id2assoc(sk, associd);
2641 	if (!asoc) {
2642 		retval = -EINVAL;
2643 		goto out;
2644 	}
2645 
2646 	transport = asoc->peer.primary_path;
2647 
2648 	status.sstat_assoc_id = sctp_assoc2id(asoc);
2649 	status.sstat_state = asoc->state;
2650 	status.sstat_rwnd =  asoc->peer.rwnd;
2651 	status.sstat_unackdata = asoc->unack_data;
2652 
2653 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
2654 	status.sstat_instrms = asoc->c.sinit_max_instreams;
2655 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
2656 	status.sstat_fragmentation_point = asoc->frag_point;
2657 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2658 	memcpy(&status.sstat_primary.spinfo_address,
2659 	       &(transport->ipaddr), sizeof(union sctp_addr));
2660 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
2661 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
2662 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
2663 	status.sstat_primary.spinfo_state = transport->active;
2664 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
2665 	status.sstat_primary.spinfo_srtt = transport->srtt;
2666 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
2667 	status.sstat_primary.spinfo_mtu = transport->pmtu;
2668 
2669 	if (put_user(len, optlen)) {
2670 		retval = -EFAULT;
2671 		goto out;
2672 	}
2673 
2674 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
2675 			  len, status.sstat_state, status.sstat_rwnd,
2676 			  status.sstat_assoc_id);
2677 
2678 	if (copy_to_user(optval, &status, len)) {
2679 		retval = -EFAULT;
2680 		goto out;
2681 	}
2682 
2683 out:
2684 	return (retval);
2685 }
2686 
2687 
2688 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
2689  *
2690  * Applications can retrieve information about a specific peer address
2691  * of an association, including its reachability state, congestion
2692  * window, and retransmission timer values.  This information is
2693  * read-only.
2694  */
2695 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
2696 					  char __user *optval,
2697 					  int __user *optlen)
2698 {
2699 	struct sctp_paddrinfo pinfo;
2700 	struct sctp_transport *transport;
2701 	int retval = 0;
2702 
2703 	if (len != sizeof(pinfo)) {
2704 		retval = -EINVAL;
2705 		goto out;
2706 	}
2707 
2708 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
2709 		retval = -EFAULT;
2710 		goto out;
2711 	}
2712 
2713 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
2714 					   pinfo.spinfo_assoc_id);
2715 	if (!transport)
2716 		return -EINVAL;
2717 
2718 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2719 	pinfo.spinfo_state = transport->active;
2720 	pinfo.spinfo_cwnd = transport->cwnd;
2721 	pinfo.spinfo_srtt = transport->srtt;
2722 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
2723 	pinfo.spinfo_mtu = transport->pmtu;
2724 
2725 	if (put_user(len, optlen)) {
2726 		retval = -EFAULT;
2727 		goto out;
2728 	}
2729 
2730 	if (copy_to_user(optval, &pinfo, len)) {
2731 		retval = -EFAULT;
2732 		goto out;
2733 	}
2734 
2735 out:
2736 	return (retval);
2737 }
2738 
2739 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2740  *
2741  * This option is a on/off flag.  If enabled no SCTP message
2742  * fragmentation will be performed.  Instead if a message being sent
2743  * exceeds the current PMTU size, the message will NOT be sent and
2744  * instead a error will be indicated to the user.
2745  */
2746 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
2747 					char __user *optval, int __user *optlen)
2748 {
2749 	int val;
2750 
2751 	if (len < sizeof(int))
2752 		return -EINVAL;
2753 
2754 	len = sizeof(int);
2755 	val = (sctp_sk(sk)->disable_fragments == 1);
2756 	if (put_user(len, optlen))
2757 		return -EFAULT;
2758 	if (copy_to_user(optval, &val, len))
2759 		return -EFAULT;
2760 	return 0;
2761 }
2762 
2763 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
2764  *
2765  * This socket option is used to specify various notifications and
2766  * ancillary data the user wishes to receive.
2767  */
2768 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
2769 				  int __user *optlen)
2770 {
2771 	if (len != sizeof(struct sctp_event_subscribe))
2772 		return -EINVAL;
2773 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
2774 		return -EFAULT;
2775 	return 0;
2776 }
2777 
2778 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2779  *
2780  * This socket option is applicable to the UDP-style socket only.  When
2781  * set it will cause associations that are idle for more than the
2782  * specified number of seconds to automatically close.  An association
2783  * being idle is defined an association that has NOT sent or received
2784  * user data.  The special value of '0' indicates that no automatic
2785  * close of any associations should be performed.  The option expects an
2786  * integer defining the number of seconds of idle time before an
2787  * association is closed.
2788  */
2789 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
2790 {
2791 	/* Applicable to UDP-style socket only */
2792 	if (sctp_style(sk, TCP))
2793 		return -EOPNOTSUPP;
2794 	if (len != sizeof(int))
2795 		return -EINVAL;
2796 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
2797 		return -EFAULT;
2798 	return 0;
2799 }
2800 
2801 /* Helper routine to branch off an association to a new socket.  */
2802 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
2803 				struct socket **sockp)
2804 {
2805 	struct sock *sk = asoc->base.sk;
2806 	struct socket *sock;
2807 	int err = 0;
2808 
2809 	/* An association cannot be branched off from an already peeled-off
2810 	 * socket, nor is this supported for tcp style sockets.
2811 	 */
2812 	if (!sctp_style(sk, UDP))
2813 		return -EINVAL;
2814 
2815 	/* Create a new socket.  */
2816 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
2817 	if (err < 0)
2818 		return err;
2819 
2820 	/* Populate the fields of the newsk from the oldsk and migrate the
2821 	 * asoc to the newsk.
2822 	 */
2823 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
2824 	*sockp = sock;
2825 
2826 	return err;
2827 }
2828 
2829 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
2830 {
2831 	sctp_peeloff_arg_t peeloff;
2832 	struct socket *newsock;
2833 	int retval = 0;
2834 	struct sctp_association *asoc;
2835 
2836 	if (len != sizeof(sctp_peeloff_arg_t))
2837 		return -EINVAL;
2838 	if (copy_from_user(&peeloff, optval, len))
2839 		return -EFAULT;
2840 
2841 	asoc = sctp_id2assoc(sk, peeloff.associd);
2842 	if (!asoc) {
2843 		retval = -EINVAL;
2844 		goto out;
2845 	}
2846 
2847 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
2848 
2849 	retval = sctp_do_peeloff(asoc, &newsock);
2850 	if (retval < 0)
2851 		goto out;
2852 
2853 	/* Map the socket to an unused fd that can be returned to the user.  */
2854 	retval = sock_map_fd(newsock);
2855 	if (retval < 0) {
2856 		sock_release(newsock);
2857 		goto out;
2858 	}
2859 
2860 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
2861 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
2862 
2863 	/* Return the fd mapped to the new socket.  */
2864 	peeloff.sd = retval;
2865 	if (copy_to_user(optval, &peeloff, len))
2866 		retval = -EFAULT;
2867 
2868 out:
2869 	return retval;
2870 }
2871 
2872 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2873  *
2874  * Applications can enable or disable heartbeats for any peer address of
2875  * an association, modify an address's heartbeat interval, force a
2876  * heartbeat to be sent immediately, and adjust the address's maximum
2877  * number of retransmissions sent before an address is considered
2878  * unreachable.  The following structure is used to access and modify an
2879  * address's parameters:
2880  *
2881  *  struct sctp_paddrparams {
2882  *      sctp_assoc_t            spp_assoc_id;
2883  *      struct sockaddr_storage spp_address;
2884  *      uint32_t                spp_hbinterval;
2885  *      uint16_t                spp_pathmaxrxt;
2886  *  };
2887  *
2888  *   spp_assoc_id    - (UDP style socket) This is filled in the application,
2889  *                     and identifies the association for this query.
2890  *   spp_address     - This specifies which address is of interest.
2891  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2892  *                     in milliseconds.  A value of 0, when modifying the
2893  *                     parameter, specifies that the heartbeat on this
2894  *                     address should be disabled. A value of UINT32_MAX
2895  *                     (4294967295), when modifying the parameter,
2896  *                     specifies that a heartbeat should be sent
2897  *                     immediately to the peer address, and the current
2898  *                     interval should remain unchanged.
2899  *   spp_pathmaxrxt  - This contains the maximum number of
2900  *                     retransmissions before this address shall be
2901  *                     considered unreachable.
2902  */
2903 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
2904 						char __user *optval, int __user *optlen)
2905 {
2906 	struct sctp_paddrparams params;
2907 	struct sctp_transport *trans;
2908 
2909 	if (len != sizeof(struct sctp_paddrparams))
2910 		return -EINVAL;
2911 	if (copy_from_user(&params, optval, len))
2912 		return -EFAULT;
2913 
2914 	/* If no association id is specified retrieve the default value
2915 	 * for the endpoint that will be used for all future associations
2916 	 */
2917 	if (!params.spp_assoc_id &&
2918 	    sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2919 		params.spp_hbinterval = sctp_sk(sk)->paddrparam.spp_hbinterval;
2920 		params.spp_pathmaxrxt = sctp_sk(sk)->paddrparam.spp_pathmaxrxt;
2921 
2922 		goto done;
2923 	}
2924 
2925 	trans = sctp_addr_id2transport(sk, &params.spp_address,
2926 				       params.spp_assoc_id);
2927 	if (!trans)
2928 		return -EINVAL;
2929 
2930 	/* The value of the heartbeat interval, in milliseconds. A value of 0,
2931 	 * when modifying the parameter, specifies that the heartbeat on this
2932 	 * address should be disabled.
2933 	 */
2934 	if (!trans->hb_allowed)
2935 		params.spp_hbinterval = 0;
2936 	else
2937 		params.spp_hbinterval = jiffies_to_msecs(trans->hb_interval);
2938 
2939 	/* spp_pathmaxrxt contains the maximum number of retransmissions
2940 	 * before this address shall be considered unreachable.
2941 	 */
2942 	params.spp_pathmaxrxt = trans->max_retrans;
2943 
2944 done:
2945 	if (copy_to_user(optval, &params, len))
2946 		return -EFAULT;
2947 
2948 	if (put_user(len, optlen))
2949 		return -EFAULT;
2950 
2951 	return 0;
2952 }
2953 
2954 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2955  *
2956  * Applications can specify protocol parameters for the default association
2957  * initialization.  The option name argument to setsockopt() and getsockopt()
2958  * is SCTP_INITMSG.
2959  *
2960  * Setting initialization parameters is effective only on an unconnected
2961  * socket (for UDP-style sockets only future associations are effected
2962  * by the change).  With TCP-style sockets, this option is inherited by
2963  * sockets derived from a listener socket.
2964  */
2965 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
2966 {
2967 	if (len != sizeof(struct sctp_initmsg))
2968 		return -EINVAL;
2969 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
2970 		return -EFAULT;
2971 	return 0;
2972 }
2973 
2974 static int sctp_getsockopt_peer_addrs_num(struct sock *sk, int len,
2975 					  char __user *optval, int __user *optlen)
2976 {
2977 	sctp_assoc_t id;
2978 	struct sctp_association *asoc;
2979 	struct list_head *pos;
2980 	int cnt = 0;
2981 
2982 	if (len != sizeof(sctp_assoc_t))
2983 		return -EINVAL;
2984 
2985 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
2986 		return -EFAULT;
2987 
2988 	/* For UDP-style sockets, id specifies the association to query.  */
2989 	asoc = sctp_id2assoc(sk, id);
2990 	if (!asoc)
2991 		return -EINVAL;
2992 
2993 	list_for_each(pos, &asoc->peer.transport_addr_list) {
2994 		cnt ++;
2995 	}
2996 
2997 	return cnt;
2998 }
2999 
3000 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3001 				      char __user *optval, int __user *optlen)
3002 {
3003 	struct sctp_association *asoc;
3004 	struct list_head *pos;
3005 	int cnt = 0;
3006 	struct sctp_getaddrs getaddrs;
3007 	struct sctp_transport *from;
3008 	void __user *to;
3009 	union sctp_addr temp;
3010 	struct sctp_sock *sp = sctp_sk(sk);
3011 	int addrlen;
3012 
3013 	if (len != sizeof(struct sctp_getaddrs))
3014 		return -EINVAL;
3015 
3016 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3017 		return -EFAULT;
3018 
3019 	if (getaddrs.addr_num <= 0) return -EINVAL;
3020 
3021 	/* For UDP-style sockets, id specifies the association to query.  */
3022 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3023 	if (!asoc)
3024 		return -EINVAL;
3025 
3026 	to = (void __user *)getaddrs.addrs;
3027 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3028 		from = list_entry(pos, struct sctp_transport, transports);
3029 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3030 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3031 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3032 		temp.v4.sin_port = htons(temp.v4.sin_port);
3033 		if (copy_to_user(to, &temp, addrlen))
3034 			return -EFAULT;
3035 		to += addrlen ;
3036 		cnt ++;
3037 		if (cnt >= getaddrs.addr_num) break;
3038 	}
3039 	getaddrs.addr_num = cnt;
3040 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs)))
3041 		return -EFAULT;
3042 
3043 	return 0;
3044 }
3045 
3046 static int sctp_getsockopt_local_addrs_num(struct sock *sk, int len,
3047 						char __user *optval,
3048 						int __user *optlen)
3049 {
3050 	sctp_assoc_t id;
3051 	struct sctp_bind_addr *bp;
3052 	struct sctp_association *asoc;
3053 	struct list_head *pos;
3054 	struct sctp_sockaddr_entry *addr;
3055 	rwlock_t *addr_lock;
3056 	unsigned long flags;
3057 	int cnt = 0;
3058 
3059 	if (len != sizeof(sctp_assoc_t))
3060 		return -EINVAL;
3061 
3062 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3063 		return -EFAULT;
3064 
3065 	/*
3066 	 *  For UDP-style sockets, id specifies the association to query.
3067 	 *  If the id field is set to the value '0' then the locally bound
3068 	 *  addresses are returned without regard to any particular
3069 	 *  association.
3070 	 */
3071 	if (0 == id) {
3072 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3073 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3074 	} else {
3075 		asoc = sctp_id2assoc(sk, id);
3076 		if (!asoc)
3077 			return -EINVAL;
3078 		bp = &asoc->base.bind_addr;
3079 		addr_lock = &asoc->base.addr_lock;
3080 	}
3081 
3082 	sctp_read_lock(addr_lock);
3083 
3084 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3085 	 * addresses from the global local address list.
3086 	 */
3087 	if (sctp_list_single_entry(&bp->address_list)) {
3088 		addr = list_entry(bp->address_list.next,
3089 				  struct sctp_sockaddr_entry, list);
3090 		if (sctp_is_any(&addr->a)) {
3091 			sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3092 			list_for_each(pos, &sctp_local_addr_list) {
3093 				addr = list_entry(pos,
3094 						  struct sctp_sockaddr_entry,
3095 						  list);
3096 				if ((PF_INET == sk->sk_family) &&
3097 				    (AF_INET6 == addr->a.sa.sa_family))
3098 					continue;
3099 				cnt++;
3100 			}
3101 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3102 						    flags);
3103 		} else {
3104 			cnt = 1;
3105 		}
3106 		goto done;
3107 	}
3108 
3109 	list_for_each(pos, &bp->address_list) {
3110 		cnt ++;
3111 	}
3112 
3113 done:
3114 	sctp_read_unlock(addr_lock);
3115 	return cnt;
3116 }
3117 
3118 /* Helper function that copies local addresses to user and returns the number
3119  * of addresses copied.
3120  */
3121 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, int max_addrs,
3122 				    void __user *to)
3123 {
3124 	struct list_head *pos;
3125 	struct sctp_sockaddr_entry *addr;
3126 	unsigned long flags;
3127 	union sctp_addr temp;
3128 	int cnt = 0;
3129 	int addrlen;
3130 
3131 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3132 	list_for_each(pos, &sctp_local_addr_list) {
3133 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3134 		if ((PF_INET == sk->sk_family) &&
3135 		    (AF_INET6 == addr->a.sa.sa_family))
3136 			continue;
3137 		memcpy(&temp, &addr->a, sizeof(temp));
3138 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3139 								&temp);
3140 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3141 		temp.v4.sin_port = htons(port);
3142 		if (copy_to_user(to, &temp, addrlen)) {
3143 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3144 						    flags);
3145 			return -EFAULT;
3146 		}
3147 		to += addrlen;
3148 		cnt ++;
3149 		if (cnt >= max_addrs) break;
3150 	}
3151 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3152 
3153 	return cnt;
3154 }
3155 
3156 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
3157 				       char __user *optval, int __user *optlen)
3158 {
3159 	struct sctp_bind_addr *bp;
3160 	struct sctp_association *asoc;
3161 	struct list_head *pos;
3162 	int cnt = 0;
3163 	struct sctp_getaddrs getaddrs;
3164 	struct sctp_sockaddr_entry *addr;
3165 	void __user *to;
3166 	union sctp_addr temp;
3167 	struct sctp_sock *sp = sctp_sk(sk);
3168 	int addrlen;
3169 	rwlock_t *addr_lock;
3170 	int err = 0;
3171 
3172 	if (len != sizeof(struct sctp_getaddrs))
3173 		return -EINVAL;
3174 
3175 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3176 		return -EFAULT;
3177 
3178 	if (getaddrs.addr_num <= 0) return -EINVAL;
3179 	/*
3180 	 *  For UDP-style sockets, id specifies the association to query.
3181 	 *  If the id field is set to the value '0' then the locally bound
3182 	 *  addresses are returned without regard to any particular
3183 	 *  association.
3184 	 */
3185 	if (0 == getaddrs.assoc_id) {
3186 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3187 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3188 	} else {
3189 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3190 		if (!asoc)
3191 			return -EINVAL;
3192 		bp = &asoc->base.bind_addr;
3193 		addr_lock = &asoc->base.addr_lock;
3194 	}
3195 
3196 	to = getaddrs.addrs;
3197 
3198 	sctp_read_lock(addr_lock);
3199 
3200 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3201 	 * addresses from the global local address list.
3202 	 */
3203 	if (sctp_list_single_entry(&bp->address_list)) {
3204 		addr = list_entry(bp->address_list.next,
3205 				  struct sctp_sockaddr_entry, list);
3206 		if (sctp_is_any(&addr->a)) {
3207 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
3208 						       getaddrs.addr_num, to);
3209 			if (cnt < 0) {
3210 				err = cnt;
3211 				goto unlock;
3212 			}
3213 			goto copy_getaddrs;
3214 		}
3215 	}
3216 
3217 	list_for_each(pos, &bp->address_list) {
3218 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3219 		memcpy(&temp, &addr->a, sizeof(temp));
3220 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3221 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3222 		temp.v4.sin_port = htons(temp.v4.sin_port);
3223 		if (copy_to_user(to, &temp, addrlen)) {
3224 			err = -EFAULT;
3225 			goto unlock;
3226 		}
3227 		to += addrlen;
3228 		cnt ++;
3229 		if (cnt >= getaddrs.addr_num) break;
3230 	}
3231 
3232 copy_getaddrs:
3233 	getaddrs.addr_num = cnt;
3234 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs)))
3235 		err = -EFAULT;
3236 
3237 unlock:
3238 	sctp_read_unlock(addr_lock);
3239 	return err;
3240 }
3241 
3242 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3243  *
3244  * Requests that the local SCTP stack use the enclosed peer address as
3245  * the association primary.  The enclosed address must be one of the
3246  * association peer's addresses.
3247  */
3248 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
3249 					char __user *optval, int __user *optlen)
3250 {
3251 	struct sctp_prim prim;
3252 	struct sctp_association *asoc;
3253 	struct sctp_sock *sp = sctp_sk(sk);
3254 
3255 	if (len != sizeof(struct sctp_prim))
3256 		return -EINVAL;
3257 
3258 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3259 		return -EFAULT;
3260 
3261 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
3262 	if (!asoc)
3263 		return -EINVAL;
3264 
3265 	if (!asoc->peer.primary_path)
3266 		return -ENOTCONN;
3267 
3268 	asoc->peer.primary_path->ipaddr.v4.sin_port =
3269 		htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
3270 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
3271 	       sizeof(union sctp_addr));
3272 	asoc->peer.primary_path->ipaddr.v4.sin_port =
3273 		ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
3274 
3275 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
3276 			(union sctp_addr *)&prim.ssp_addr);
3277 
3278 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
3279 		return -EFAULT;
3280 
3281 	return 0;
3282 }
3283 
3284 /*
3285  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
3286  *
3287  * Requests that the local endpoint set the specified Adaption Layer
3288  * Indication parameter for all future INIT and INIT-ACK exchanges.
3289  */
3290 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
3291 				  char __user *optval, int __user *optlen)
3292 {
3293 	__u32 val;
3294 
3295 	if (len < sizeof(__u32))
3296 		return -EINVAL;
3297 
3298 	len = sizeof(__u32);
3299 	val = sctp_sk(sk)->adaption_ind;
3300 	if (put_user(len, optlen))
3301 		return -EFAULT;
3302 	if (copy_to_user(optval, &val, len))
3303 		return -EFAULT;
3304 	return 0;
3305 }
3306 
3307 /*
3308  *
3309  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
3310  *
3311  *   Applications that wish to use the sendto() system call may wish to
3312  *   specify a default set of parameters that would normally be supplied
3313  *   through the inclusion of ancillary data.  This socket option allows
3314  *   such an application to set the default sctp_sndrcvinfo structure.
3315 
3316 
3317  *   The application that wishes to use this socket option simply passes
3318  *   in to this call the sctp_sndrcvinfo structure defined in Section
3319  *   5.2.2) The input parameters accepted by this call include
3320  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
3321  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
3322  *   to this call if the caller is using the UDP model.
3323  *
3324  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
3325  */
3326 static int sctp_getsockopt_default_send_param(struct sock *sk,
3327 					int len, char __user *optval,
3328 					int __user *optlen)
3329 {
3330 	struct sctp_sndrcvinfo info;
3331 	struct sctp_association *asoc;
3332 	struct sctp_sock *sp = sctp_sk(sk);
3333 
3334 	if (len != sizeof(struct sctp_sndrcvinfo))
3335 		return -EINVAL;
3336 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
3337 		return -EFAULT;
3338 
3339 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3340 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
3341 		return -EINVAL;
3342 
3343 	if (asoc) {
3344 		info.sinfo_stream = asoc->default_stream;
3345 		info.sinfo_flags = asoc->default_flags;
3346 		info.sinfo_ppid = asoc->default_ppid;
3347 		info.sinfo_context = asoc->default_context;
3348 		info.sinfo_timetolive = asoc->default_timetolive;
3349 	} else {
3350 		info.sinfo_stream = sp->default_stream;
3351 		info.sinfo_flags = sp->default_flags;
3352 		info.sinfo_ppid = sp->default_ppid;
3353 		info.sinfo_context = sp->default_context;
3354 		info.sinfo_timetolive = sp->default_timetolive;
3355 	}
3356 
3357 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
3358 		return -EFAULT;
3359 
3360 	return 0;
3361 }
3362 
3363 /*
3364  *
3365  * 7.1.5 SCTP_NODELAY
3366  *
3367  * Turn on/off any Nagle-like algorithm.  This means that packets are
3368  * generally sent as soon as possible and no unnecessary delays are
3369  * introduced, at the cost of more packets in the network.  Expects an
3370  * integer boolean flag.
3371  */
3372 
3373 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
3374 				   char __user *optval, int __user *optlen)
3375 {
3376 	int val;
3377 
3378 	if (len < sizeof(int))
3379 		return -EINVAL;
3380 
3381 	len = sizeof(int);
3382 	val = (sctp_sk(sk)->nodelay == 1);
3383 	if (put_user(len, optlen))
3384 		return -EFAULT;
3385 	if (copy_to_user(optval, &val, len))
3386 		return -EFAULT;
3387 	return 0;
3388 }
3389 
3390 /*
3391  *
3392  * 7.1.1 SCTP_RTOINFO
3393  *
3394  * The protocol parameters used to initialize and bound retransmission
3395  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3396  * and modify these parameters.
3397  * All parameters are time values, in milliseconds.  A value of 0, when
3398  * modifying the parameters, indicates that the current value should not
3399  * be changed.
3400  *
3401  */
3402 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
3403 				char __user *optval,
3404 				int __user *optlen) {
3405 	struct sctp_rtoinfo rtoinfo;
3406 	struct sctp_association *asoc;
3407 
3408 	if (len != sizeof (struct sctp_rtoinfo))
3409 		return -EINVAL;
3410 
3411 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
3412 		return -EFAULT;
3413 
3414 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3415 
3416 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3417 		return -EINVAL;
3418 
3419 	/* Values corresponding to the specific association. */
3420 	if (asoc) {
3421 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
3422 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
3423 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
3424 	} else {
3425 		/* Values corresponding to the endpoint. */
3426 		struct sctp_sock *sp = sctp_sk(sk);
3427 
3428 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
3429 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
3430 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
3431 	}
3432 
3433 	if (put_user(len, optlen))
3434 		return -EFAULT;
3435 
3436 	if (copy_to_user(optval, &rtoinfo, len))
3437 		return -EFAULT;
3438 
3439 	return 0;
3440 }
3441 
3442 /*
3443  *
3444  * 7.1.2 SCTP_ASSOCINFO
3445  *
3446  * This option is used to tune the the maximum retransmission attempts
3447  * of the association.
3448  * Returns an error if the new association retransmission value is
3449  * greater than the sum of the retransmission value  of the peer.
3450  * See [SCTP] for more information.
3451  *
3452  */
3453 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
3454 				     char __user *optval,
3455 				     int __user *optlen)
3456 {
3457 
3458 	struct sctp_assocparams assocparams;
3459 	struct sctp_association *asoc;
3460 	struct list_head *pos;
3461 	int cnt = 0;
3462 
3463 	if (len != sizeof (struct sctp_assocparams))
3464 		return -EINVAL;
3465 
3466 	if (copy_from_user(&assocparams, optval,
3467 			sizeof (struct sctp_assocparams)))
3468 		return -EFAULT;
3469 
3470 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3471 
3472 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3473 		return -EINVAL;
3474 
3475 	/* Values correspoinding to the specific association */
3476 	if (assocparams.sasoc_assoc_id != 0) {
3477 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
3478 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
3479 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
3480 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
3481 						* 1000) +
3482 						(asoc->cookie_life.tv_usec
3483 						/ 1000);
3484 
3485 		list_for_each(pos, &asoc->peer.transport_addr_list) {
3486 			cnt ++;
3487 		}
3488 
3489 		assocparams.sasoc_number_peer_destinations = cnt;
3490 	} else {
3491 		/* Values corresponding to the endpoint */
3492 		struct sctp_sock *sp = sctp_sk(sk);
3493 
3494 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
3495 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
3496 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
3497 		assocparams.sasoc_cookie_life =
3498 					sp->assocparams.sasoc_cookie_life;
3499 		assocparams.sasoc_number_peer_destinations =
3500 					sp->assocparams.
3501 					sasoc_number_peer_destinations;
3502 	}
3503 
3504 	if (put_user(len, optlen))
3505 		return -EFAULT;
3506 
3507 	if (copy_to_user(optval, &assocparams, len))
3508 		return -EFAULT;
3509 
3510 	return 0;
3511 }
3512 
3513 /*
3514  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3515  *
3516  * This socket option is a boolean flag which turns on or off mapped V4
3517  * addresses.  If this option is turned on and the socket is type
3518  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3519  * If this option is turned off, then no mapping will be done of V4
3520  * addresses and a user will receive both PF_INET6 and PF_INET type
3521  * addresses on the socket.
3522  */
3523 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
3524 				    char __user *optval, int __user *optlen)
3525 {
3526 	int val;
3527 	struct sctp_sock *sp = sctp_sk(sk);
3528 
3529 	if (len < sizeof(int))
3530 		return -EINVAL;
3531 
3532 	len = sizeof(int);
3533 	val = sp->v4mapped;
3534 	if (put_user(len, optlen))
3535 		return -EFAULT;
3536 	if (copy_to_user(optval, &val, len))
3537 		return -EFAULT;
3538 
3539 	return 0;
3540 }
3541 
3542 /*
3543  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
3544  *
3545  * This socket option specifies the maximum size to put in any outgoing
3546  * SCTP chunk.  If a message is larger than this size it will be
3547  * fragmented by SCTP into the specified size.  Note that the underlying
3548  * SCTP implementation may fragment into smaller sized chunks when the
3549  * PMTU of the underlying association is smaller than the value set by
3550  * the user.
3551  */
3552 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
3553 				  char __user *optval, int __user *optlen)
3554 {
3555 	int val;
3556 
3557 	if (len < sizeof(int))
3558 		return -EINVAL;
3559 
3560 	len = sizeof(int);
3561 
3562 	val = sctp_sk(sk)->user_frag;
3563 	if (put_user(len, optlen))
3564 		return -EFAULT;
3565 	if (copy_to_user(optval, &val, len))
3566 		return -EFAULT;
3567 
3568 	return 0;
3569 }
3570 
3571 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
3572 				char __user *optval, int __user *optlen)
3573 {
3574 	int retval = 0;
3575 	int len;
3576 
3577 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p, ...)\n", sk);
3578 
3579 	/* I can hardly begin to describe how wrong this is.  This is
3580 	 * so broken as to be worse than useless.  The API draft
3581 	 * REALLY is NOT helpful here...  I am not convinced that the
3582 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
3583 	 * are at all well-founded.
3584 	 */
3585 	if (level != SOL_SCTP) {
3586 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3587 
3588 		retval = af->getsockopt(sk, level, optname, optval, optlen);
3589 		return retval;
3590 	}
3591 
3592 	if (get_user(len, optlen))
3593 		return -EFAULT;
3594 
3595 	sctp_lock_sock(sk);
3596 
3597 	switch (optname) {
3598 	case SCTP_STATUS:
3599 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
3600 		break;
3601 	case SCTP_DISABLE_FRAGMENTS:
3602 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
3603 							   optlen);
3604 		break;
3605 	case SCTP_EVENTS:
3606 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
3607 		break;
3608 	case SCTP_AUTOCLOSE:
3609 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
3610 		break;
3611 	case SCTP_SOCKOPT_PEELOFF:
3612 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
3613 		break;
3614 	case SCTP_PEER_ADDR_PARAMS:
3615 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
3616 							  optlen);
3617 		break;
3618 	case SCTP_INITMSG:
3619 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
3620 		break;
3621 	case SCTP_GET_PEER_ADDRS_NUM:
3622 		retval = sctp_getsockopt_peer_addrs_num(sk, len, optval,
3623 							optlen);
3624 		break;
3625 	case SCTP_GET_LOCAL_ADDRS_NUM:
3626 		retval = sctp_getsockopt_local_addrs_num(sk, len, optval,
3627 							 optlen);
3628 		break;
3629 	case SCTP_GET_PEER_ADDRS:
3630 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
3631 						    optlen);
3632 		break;
3633 	case SCTP_GET_LOCAL_ADDRS:
3634 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
3635 						     optlen);
3636 		break;
3637 	case SCTP_DEFAULT_SEND_PARAM:
3638 		retval = sctp_getsockopt_default_send_param(sk, len,
3639 							    optval, optlen);
3640 		break;
3641 	case SCTP_PRIMARY_ADDR:
3642 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
3643 		break;
3644 	case SCTP_NODELAY:
3645 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
3646 		break;
3647 	case SCTP_RTOINFO:
3648 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
3649 		break;
3650 	case SCTP_ASSOCINFO:
3651 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
3652 		break;
3653 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3654 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
3655 		break;
3656 	case SCTP_MAXSEG:
3657 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
3658 		break;
3659 	case SCTP_GET_PEER_ADDR_INFO:
3660 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
3661 							optlen);
3662 		break;
3663 	case SCTP_ADAPTION_LAYER:
3664 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
3665 							optlen);
3666 		break;
3667 	default:
3668 		retval = -ENOPROTOOPT;
3669 		break;
3670 	};
3671 
3672 	sctp_release_sock(sk);
3673 	return retval;
3674 }
3675 
3676 static void sctp_hash(struct sock *sk)
3677 {
3678 	/* STUB */
3679 }
3680 
3681 static void sctp_unhash(struct sock *sk)
3682 {
3683 	/* STUB */
3684 }
3685 
3686 /* Check if port is acceptable.  Possibly find first available port.
3687  *
3688  * The port hash table (contained in the 'global' SCTP protocol storage
3689  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
3690  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
3691  * list (the list number is the port number hashed out, so as you
3692  * would expect from a hash function, all the ports in a given list have
3693  * such a number that hashes out to the same list number; you were
3694  * expecting that, right?); so each list has a set of ports, with a
3695  * link to the socket (struct sock) that uses it, the port number and
3696  * a fastreuse flag (FIXME: NPI ipg).
3697  */
3698 static struct sctp_bind_bucket *sctp_bucket_create(
3699 	struct sctp_bind_hashbucket *head, unsigned short snum);
3700 
3701 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
3702 {
3703 	struct sctp_bind_hashbucket *head; /* hash list */
3704 	struct sctp_bind_bucket *pp; /* hash list port iterator */
3705 	unsigned short snum;
3706 	int ret;
3707 
3708 	/* NOTE:  Remember to put this back to net order. */
3709 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
3710 	snum = addr->v4.sin_port;
3711 
3712 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
3713 	sctp_local_bh_disable();
3714 
3715 	if (snum == 0) {
3716 		/* Search for an available port.
3717 		 *
3718 		 * 'sctp_port_rover' was the last port assigned, so
3719 		 * we start to search from 'sctp_port_rover +
3720 		 * 1'. What we do is first check if port 'rover' is
3721 		 * already in the hash table; if not, we use that; if
3722 		 * it is, we try next.
3723 		 */
3724 		int low = sysctl_local_port_range[0];
3725 		int high = sysctl_local_port_range[1];
3726 		int remaining = (high - low) + 1;
3727 		int rover;
3728 		int index;
3729 
3730 		sctp_spin_lock(&sctp_port_alloc_lock);
3731 		rover = sctp_port_rover;
3732 		do {
3733 			rover++;
3734 			if ((rover < low) || (rover > high))
3735 				rover = low;
3736 			index = sctp_phashfn(rover);
3737 			head = &sctp_port_hashtable[index];
3738 			sctp_spin_lock(&head->lock);
3739 			for (pp = head->chain; pp; pp = pp->next)
3740 				if (pp->port == rover)
3741 					goto next;
3742 			break;
3743 		next:
3744 			sctp_spin_unlock(&head->lock);
3745 		} while (--remaining > 0);
3746 		sctp_port_rover = rover;
3747 		sctp_spin_unlock(&sctp_port_alloc_lock);
3748 
3749 		/* Exhausted local port range during search? */
3750 		ret = 1;
3751 		if (remaining <= 0)
3752 			goto fail;
3753 
3754 		/* OK, here is the one we will use.  HEAD (the port
3755 		 * hash table list entry) is non-NULL and we hold it's
3756 		 * mutex.
3757 		 */
3758 		snum = rover;
3759 	} else {
3760 		/* We are given an specific port number; we verify
3761 		 * that it is not being used. If it is used, we will
3762 		 * exahust the search in the hash list corresponding
3763 		 * to the port number (snum) - we detect that with the
3764 		 * port iterator, pp being NULL.
3765 		 */
3766 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
3767 		sctp_spin_lock(&head->lock);
3768 		for (pp = head->chain; pp; pp = pp->next) {
3769 			if (pp->port == snum)
3770 				goto pp_found;
3771 		}
3772 	}
3773 	pp = NULL;
3774 	goto pp_not_found;
3775 pp_found:
3776 	if (!hlist_empty(&pp->owner)) {
3777 		/* We had a port hash table hit - there is an
3778 		 * available port (pp != NULL) and it is being
3779 		 * used by other socket (pp->owner not empty); that other
3780 		 * socket is going to be sk2.
3781 		 */
3782 		int reuse = sk->sk_reuse;
3783 		struct sock *sk2;
3784 		struct hlist_node *node;
3785 
3786 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
3787 		if (pp->fastreuse && sk->sk_reuse)
3788 			goto success;
3789 
3790 		/* Run through the list of sockets bound to the port
3791 		 * (pp->port) [via the pointers bind_next and
3792 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
3793 		 * we get the endpoint they describe and run through
3794 		 * the endpoint's list of IP (v4 or v6) addresses,
3795 		 * comparing each of the addresses with the address of
3796 		 * the socket sk. If we find a match, then that means
3797 		 * that this port/socket (sk) combination are already
3798 		 * in an endpoint.
3799 		 */
3800 		sk_for_each_bound(sk2, node, &pp->owner) {
3801 			struct sctp_endpoint *ep2;
3802 			ep2 = sctp_sk(sk2)->ep;
3803 
3804 			if (reuse && sk2->sk_reuse)
3805 				continue;
3806 
3807 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
3808 						 sctp_sk(sk))) {
3809 				ret = (long)sk2;
3810 				goto fail_unlock;
3811 			}
3812 		}
3813 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
3814 	}
3815 pp_not_found:
3816 	/* If there was a hash table miss, create a new port.  */
3817 	ret = 1;
3818 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
3819 		goto fail_unlock;
3820 
3821 	/* In either case (hit or miss), make sure fastreuse is 1 only
3822 	 * if sk->sk_reuse is too (that is, if the caller requested
3823 	 * SO_REUSEADDR on this socket -sk-).
3824 	 */
3825 	if (hlist_empty(&pp->owner))
3826 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
3827 	else if (pp->fastreuse && !sk->sk_reuse)
3828 		pp->fastreuse = 0;
3829 
3830 	/* We are set, so fill up all the data in the hash table
3831 	 * entry, tie the socket list information with the rest of the
3832 	 * sockets FIXME: Blurry, NPI (ipg).
3833 	 */
3834 success:
3835 	inet_sk(sk)->num = snum;
3836 	if (!sctp_sk(sk)->bind_hash) {
3837 		sk_add_bind_node(sk, &pp->owner);
3838 		sctp_sk(sk)->bind_hash = pp;
3839 	}
3840 	ret = 0;
3841 
3842 fail_unlock:
3843 	sctp_spin_unlock(&head->lock);
3844 
3845 fail:
3846 	sctp_local_bh_enable();
3847 	addr->v4.sin_port = htons(addr->v4.sin_port);
3848 	return ret;
3849 }
3850 
3851 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
3852  * port is requested.
3853  */
3854 static int sctp_get_port(struct sock *sk, unsigned short snum)
3855 {
3856 	long ret;
3857 	union sctp_addr addr;
3858 	struct sctp_af *af = sctp_sk(sk)->pf->af;
3859 
3860 	/* Set up a dummy address struct from the sk. */
3861 	af->from_sk(&addr, sk);
3862 	addr.v4.sin_port = htons(snum);
3863 
3864 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
3865 	ret = sctp_get_port_local(sk, &addr);
3866 
3867 	return (ret ? 1 : 0);
3868 }
3869 
3870 /*
3871  * 3.1.3 listen() - UDP Style Syntax
3872  *
3873  *   By default, new associations are not accepted for UDP style sockets.
3874  *   An application uses listen() to mark a socket as being able to
3875  *   accept new associations.
3876  */
3877 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
3878 {
3879 	struct sctp_sock *sp = sctp_sk(sk);
3880 	struct sctp_endpoint *ep = sp->ep;
3881 
3882 	/* Only UDP style sockets that are not peeled off are allowed to
3883 	 * listen().
3884 	 */
3885 	if (!sctp_style(sk, UDP))
3886 		return -EINVAL;
3887 
3888 	/* If backlog is zero, disable listening. */
3889 	if (!backlog) {
3890 		if (sctp_sstate(sk, CLOSED))
3891 			return 0;
3892 
3893 		sctp_unhash_endpoint(ep);
3894 		sk->sk_state = SCTP_SS_CLOSED;
3895 	}
3896 
3897 	/* Return if we are already listening. */
3898 	if (sctp_sstate(sk, LISTENING))
3899 		return 0;
3900 
3901 	/*
3902 	 * If a bind() or sctp_bindx() is not called prior to a listen()
3903 	 * call that allows new associations to be accepted, the system
3904 	 * picks an ephemeral port and will choose an address set equivalent
3905 	 * to binding with a wildcard address.
3906 	 *
3907 	 * This is not currently spelled out in the SCTP sockets
3908 	 * extensions draft, but follows the practice as seen in TCP
3909 	 * sockets.
3910 	 */
3911 	if (!ep->base.bind_addr.port) {
3912 		if (sctp_autobind(sk))
3913 			return -EAGAIN;
3914 	}
3915 	sk->sk_state = SCTP_SS_LISTENING;
3916 	sctp_hash_endpoint(ep);
3917 	return 0;
3918 }
3919 
3920 /*
3921  * 4.1.3 listen() - TCP Style Syntax
3922  *
3923  *   Applications uses listen() to ready the SCTP endpoint for accepting
3924  *   inbound associations.
3925  */
3926 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
3927 {
3928 	struct sctp_sock *sp = sctp_sk(sk);
3929 	struct sctp_endpoint *ep = sp->ep;
3930 
3931 	/* If backlog is zero, disable listening. */
3932 	if (!backlog) {
3933 		if (sctp_sstate(sk, CLOSED))
3934 			return 0;
3935 
3936 		sctp_unhash_endpoint(ep);
3937 		sk->sk_state = SCTP_SS_CLOSED;
3938 	}
3939 
3940 	if (sctp_sstate(sk, LISTENING))
3941 		return 0;
3942 
3943 	/*
3944 	 * If a bind() or sctp_bindx() is not called prior to a listen()
3945 	 * call that allows new associations to be accepted, the system
3946 	 * picks an ephemeral port and will choose an address set equivalent
3947 	 * to binding with a wildcard address.
3948 	 *
3949 	 * This is not currently spelled out in the SCTP sockets
3950 	 * extensions draft, but follows the practice as seen in TCP
3951 	 * sockets.
3952 	 */
3953 	if (!ep->base.bind_addr.port) {
3954 		if (sctp_autobind(sk))
3955 			return -EAGAIN;
3956 	}
3957 	sk->sk_state = SCTP_SS_LISTENING;
3958 	sk->sk_max_ack_backlog = backlog;
3959 	sctp_hash_endpoint(ep);
3960 	return 0;
3961 }
3962 
3963 /*
3964  *  Move a socket to LISTENING state.
3965  */
3966 int sctp_inet_listen(struct socket *sock, int backlog)
3967 {
3968 	struct sock *sk = sock->sk;
3969 	struct crypto_tfm *tfm=NULL;
3970 	int err = -EINVAL;
3971 
3972 	if (unlikely(backlog < 0))
3973 		goto out;
3974 
3975 	sctp_lock_sock(sk);
3976 
3977 	if (sock->state != SS_UNCONNECTED)
3978 		goto out;
3979 
3980 	/* Allocate HMAC for generating cookie. */
3981 	if (sctp_hmac_alg) {
3982 		tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
3983 		if (!tfm) {
3984 			err = -ENOSYS;
3985 			goto out;
3986 		}
3987 	}
3988 
3989 	switch (sock->type) {
3990 	case SOCK_SEQPACKET:
3991 		err = sctp_seqpacket_listen(sk, backlog);
3992 		break;
3993 	case SOCK_STREAM:
3994 		err = sctp_stream_listen(sk, backlog);
3995 		break;
3996 	default:
3997 		break;
3998 	};
3999 	if (err)
4000 		goto cleanup;
4001 
4002 	/* Store away the transform reference. */
4003 	sctp_sk(sk)->hmac = tfm;
4004 out:
4005 	sctp_release_sock(sk);
4006 	return err;
4007 cleanup:
4008 	if (tfm)
4009 		sctp_crypto_free_tfm(tfm);
4010 	goto out;
4011 }
4012 
4013 /*
4014  * This function is done by modeling the current datagram_poll() and the
4015  * tcp_poll().  Note that, based on these implementations, we don't
4016  * lock the socket in this function, even though it seems that,
4017  * ideally, locking or some other mechanisms can be used to ensure
4018  * the integrity of the counters (sndbuf and wmem_queued) used
4019  * in this place.  We assume that we don't need locks either until proven
4020  * otherwise.
4021  *
4022  * Another thing to note is that we include the Async I/O support
4023  * here, again, by modeling the current TCP/UDP code.  We don't have
4024  * a good way to test with it yet.
4025  */
4026 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4027 {
4028 	struct sock *sk = sock->sk;
4029 	struct sctp_sock *sp = sctp_sk(sk);
4030 	unsigned int mask;
4031 
4032 	poll_wait(file, sk->sk_sleep, wait);
4033 
4034 	/* A TCP-style listening socket becomes readable when the accept queue
4035 	 * is not empty.
4036 	 */
4037 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4038 		return (!list_empty(&sp->ep->asocs)) ?
4039 		       	(POLLIN | POLLRDNORM) : 0;
4040 
4041 	mask = 0;
4042 
4043 	/* Is there any exceptional events?  */
4044 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4045 		mask |= POLLERR;
4046 	if (sk->sk_shutdown == SHUTDOWN_MASK)
4047 		mask |= POLLHUP;
4048 
4049 	/* Is it readable?  Reconsider this code with TCP-style support.  */
4050 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
4051 	    (sk->sk_shutdown & RCV_SHUTDOWN))
4052 		mask |= POLLIN | POLLRDNORM;
4053 
4054 	/* The association is either gone or not ready.  */
4055 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4056 		return mask;
4057 
4058 	/* Is it writable?  */
4059 	if (sctp_writeable(sk)) {
4060 		mask |= POLLOUT | POLLWRNORM;
4061 	} else {
4062 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4063 		/*
4064 		 * Since the socket is not locked, the buffer
4065 		 * might be made available after the writeable check and
4066 		 * before the bit is set.  This could cause a lost I/O
4067 		 * signal.  tcp_poll() has a race breaker for this race
4068 		 * condition.  Based on their implementation, we put
4069 		 * in the following code to cover it as well.
4070 		 */
4071 		if (sctp_writeable(sk))
4072 			mask |= POLLOUT | POLLWRNORM;
4073 	}
4074 	return mask;
4075 }
4076 
4077 /********************************************************************
4078  * 2nd Level Abstractions
4079  ********************************************************************/
4080 
4081 static struct sctp_bind_bucket *sctp_bucket_create(
4082 	struct sctp_bind_hashbucket *head, unsigned short snum)
4083 {
4084 	struct sctp_bind_bucket *pp;
4085 
4086 	pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4087 	SCTP_DBG_OBJCNT_INC(bind_bucket);
4088 	if (pp) {
4089 		pp->port = snum;
4090 		pp->fastreuse = 0;
4091 		INIT_HLIST_HEAD(&pp->owner);
4092 		if ((pp->next = head->chain) != NULL)
4093 			pp->next->pprev = &pp->next;
4094 		head->chain = pp;
4095 		pp->pprev = &head->chain;
4096 	}
4097 	return pp;
4098 }
4099 
4100 /* Caller must hold hashbucket lock for this tb with local BH disabled */
4101 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4102 {
4103 	if (hlist_empty(&pp->owner)) {
4104 		if (pp->next)
4105 			pp->next->pprev = pp->pprev;
4106 		*(pp->pprev) = pp->next;
4107 		kmem_cache_free(sctp_bucket_cachep, pp);
4108 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
4109 	}
4110 }
4111 
4112 /* Release this socket's reference to a local port.  */
4113 static inline void __sctp_put_port(struct sock *sk)
4114 {
4115 	struct sctp_bind_hashbucket *head =
4116 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4117 	struct sctp_bind_bucket *pp;
4118 
4119 	sctp_spin_lock(&head->lock);
4120 	pp = sctp_sk(sk)->bind_hash;
4121 	__sk_del_bind_node(sk);
4122 	sctp_sk(sk)->bind_hash = NULL;
4123 	inet_sk(sk)->num = 0;
4124 	sctp_bucket_destroy(pp);
4125 	sctp_spin_unlock(&head->lock);
4126 }
4127 
4128 void sctp_put_port(struct sock *sk)
4129 {
4130 	sctp_local_bh_disable();
4131 	__sctp_put_port(sk);
4132 	sctp_local_bh_enable();
4133 }
4134 
4135 /*
4136  * The system picks an ephemeral port and choose an address set equivalent
4137  * to binding with a wildcard address.
4138  * One of those addresses will be the primary address for the association.
4139  * This automatically enables the multihoming capability of SCTP.
4140  */
4141 static int sctp_autobind(struct sock *sk)
4142 {
4143 	union sctp_addr autoaddr;
4144 	struct sctp_af *af;
4145 	unsigned short port;
4146 
4147 	/* Initialize a local sockaddr structure to INADDR_ANY. */
4148 	af = sctp_sk(sk)->pf->af;
4149 
4150 	port = htons(inet_sk(sk)->num);
4151 	af->inaddr_any(&autoaddr, port);
4152 
4153 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
4154 }
4155 
4156 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
4157  *
4158  * From RFC 2292
4159  * 4.2 The cmsghdr Structure *
4160  *
4161  * When ancillary data is sent or received, any number of ancillary data
4162  * objects can be specified by the msg_control and msg_controllen members of
4163  * the msghdr structure, because each object is preceded by
4164  * a cmsghdr structure defining the object's length (the cmsg_len member).
4165  * Historically Berkeley-derived implementations have passed only one object
4166  * at a time, but this API allows multiple objects to be
4167  * passed in a single call to sendmsg() or recvmsg(). The following example
4168  * shows two ancillary data objects in a control buffer.
4169  *
4170  *   |<--------------------------- msg_controllen -------------------------->|
4171  *   |                                                                       |
4172  *
4173  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
4174  *
4175  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
4176  *   |                                   |                                   |
4177  *
4178  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
4179  *
4180  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
4181  *   |                                |  |                                |  |
4182  *
4183  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4184  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
4185  *
4186  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
4187  *
4188  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4189  *    ^
4190  *    |
4191  *
4192  * msg_control
4193  * points here
4194  */
4195 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
4196 				  sctp_cmsgs_t *cmsgs)
4197 {
4198 	struct cmsghdr *cmsg;
4199 
4200 	for (cmsg = CMSG_FIRSTHDR(msg);
4201 	     cmsg != NULL;
4202 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
4203 		if (!CMSG_OK(msg, cmsg))
4204 			return -EINVAL;
4205 
4206 		/* Should we parse this header or ignore?  */
4207 		if (cmsg->cmsg_level != IPPROTO_SCTP)
4208 			continue;
4209 
4210 		/* Strictly check lengths following example in SCM code.  */
4211 		switch (cmsg->cmsg_type) {
4212 		case SCTP_INIT:
4213 			/* SCTP Socket API Extension
4214 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
4215 			 *
4216 			 * This cmsghdr structure provides information for
4217 			 * initializing new SCTP associations with sendmsg().
4218 			 * The SCTP_INITMSG socket option uses this same data
4219 			 * structure.  This structure is not used for
4220 			 * recvmsg().
4221 			 *
4222 			 * cmsg_level    cmsg_type      cmsg_data[]
4223 			 * ------------  ------------   ----------------------
4224 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
4225 			 */
4226 			if (cmsg->cmsg_len !=
4227 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
4228 				return -EINVAL;
4229 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
4230 			break;
4231 
4232 		case SCTP_SNDRCV:
4233 			/* SCTP Socket API Extension
4234 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
4235 			 *
4236 			 * This cmsghdr structure specifies SCTP options for
4237 			 * sendmsg() and describes SCTP header information
4238 			 * about a received message through recvmsg().
4239 			 *
4240 			 * cmsg_level    cmsg_type      cmsg_data[]
4241 			 * ------------  ------------   ----------------------
4242 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
4243 			 */
4244 			if (cmsg->cmsg_len !=
4245 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
4246 				return -EINVAL;
4247 
4248 			cmsgs->info =
4249 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
4250 
4251 			/* Minimally, validate the sinfo_flags. */
4252 			if (cmsgs->info->sinfo_flags &
4253 			    ~(MSG_UNORDERED | MSG_ADDR_OVER |
4254 			      MSG_ABORT | MSG_EOF))
4255 				return -EINVAL;
4256 			break;
4257 
4258 		default:
4259 			return -EINVAL;
4260 		};
4261 	}
4262 	return 0;
4263 }
4264 
4265 /*
4266  * Wait for a packet..
4267  * Note: This function is the same function as in core/datagram.c
4268  * with a few modifications to make lksctp work.
4269  */
4270 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
4271 {
4272 	int error;
4273 	DEFINE_WAIT(wait);
4274 
4275 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
4276 
4277 	/* Socket errors? */
4278 	error = sock_error(sk);
4279 	if (error)
4280 		goto out;
4281 
4282 	if (!skb_queue_empty(&sk->sk_receive_queue))
4283 		goto ready;
4284 
4285 	/* Socket shut down?  */
4286 	if (sk->sk_shutdown & RCV_SHUTDOWN)
4287 		goto out;
4288 
4289 	/* Sequenced packets can come disconnected.  If so we report the
4290 	 * problem.
4291 	 */
4292 	error = -ENOTCONN;
4293 
4294 	/* Is there a good reason to think that we may receive some data?  */
4295 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
4296 		goto out;
4297 
4298 	/* Handle signals.  */
4299 	if (signal_pending(current))
4300 		goto interrupted;
4301 
4302 	/* Let another process have a go.  Since we are going to sleep
4303 	 * anyway.  Note: This may cause odd behaviors if the message
4304 	 * does not fit in the user's buffer, but this seems to be the
4305 	 * only way to honor MSG_DONTWAIT realistically.
4306 	 */
4307 	sctp_release_sock(sk);
4308 	*timeo_p = schedule_timeout(*timeo_p);
4309 	sctp_lock_sock(sk);
4310 
4311 ready:
4312 	finish_wait(sk->sk_sleep, &wait);
4313 	return 0;
4314 
4315 interrupted:
4316 	error = sock_intr_errno(*timeo_p);
4317 
4318 out:
4319 	finish_wait(sk->sk_sleep, &wait);
4320 	*err = error;
4321 	return error;
4322 }
4323 
4324 /* Receive a datagram.
4325  * Note: This is pretty much the same routine as in core/datagram.c
4326  * with a few changes to make lksctp work.
4327  */
4328 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
4329 					      int noblock, int *err)
4330 {
4331 	int error;
4332 	struct sk_buff *skb;
4333 	long timeo;
4334 
4335 	/* Caller is allowed not to check sk->sk_err before calling.  */
4336 	error = sock_error(sk);
4337 	if (error)
4338 		goto no_packet;
4339 
4340 	timeo = sock_rcvtimeo(sk, noblock);
4341 
4342 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
4343 			  timeo, MAX_SCHEDULE_TIMEOUT);
4344 
4345 	do {
4346 		/* Again only user level code calls this function,
4347 		 * so nothing interrupt level
4348 		 * will suddenly eat the receive_queue.
4349 		 *
4350 		 *  Look at current nfs client by the way...
4351 		 *  However, this function was corrent in any case. 8)
4352 		 */
4353 		if (flags & MSG_PEEK) {
4354 			unsigned long cpu_flags;
4355 
4356 			sctp_spin_lock_irqsave(&sk->sk_receive_queue.lock,
4357 					       cpu_flags);
4358 			skb = skb_peek(&sk->sk_receive_queue);
4359 			if (skb)
4360 				atomic_inc(&skb->users);
4361 			sctp_spin_unlock_irqrestore(&sk->sk_receive_queue.lock,
4362 						    cpu_flags);
4363 		} else {
4364 			skb = skb_dequeue(&sk->sk_receive_queue);
4365 		}
4366 
4367 		if (skb)
4368 			return skb;
4369 
4370 		if (sk->sk_shutdown & RCV_SHUTDOWN)
4371 			break;
4372 
4373 		/* User doesn't want to wait.  */
4374 		error = -EAGAIN;
4375 		if (!timeo)
4376 			goto no_packet;
4377 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
4378 
4379 	return NULL;
4380 
4381 no_packet:
4382 	*err = error;
4383 	return NULL;
4384 }
4385 
4386 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
4387 static void __sctp_write_space(struct sctp_association *asoc)
4388 {
4389 	struct sock *sk = asoc->base.sk;
4390 	struct socket *sock = sk->sk_socket;
4391 
4392 	if ((sctp_wspace(asoc) > 0) && sock) {
4393 		if (waitqueue_active(&asoc->wait))
4394 			wake_up_interruptible(&asoc->wait);
4395 
4396 		if (sctp_writeable(sk)) {
4397 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
4398 				wake_up_interruptible(sk->sk_sleep);
4399 
4400 			/* Note that we try to include the Async I/O support
4401 			 * here by modeling from the current TCP/UDP code.
4402 			 * We have not tested with it yet.
4403 			 */
4404 			if (sock->fasync_list &&
4405 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
4406 				sock_wake_async(sock, 2, POLL_OUT);
4407 		}
4408 	}
4409 }
4410 
4411 /* Do accounting for the sndbuf space.
4412  * Decrement the used sndbuf space of the corresponding association by the
4413  * data size which was just transmitted(freed).
4414  */
4415 static void sctp_wfree(struct sk_buff *skb)
4416 {
4417 	struct sctp_association *asoc;
4418 	struct sctp_chunk *chunk;
4419 	struct sock *sk;
4420 
4421 	/* Get the saved chunk pointer.  */
4422 	chunk = *((struct sctp_chunk **)(skb->cb));
4423 	asoc = chunk->asoc;
4424 	sk = asoc->base.sk;
4425 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk);
4426 	sk->sk_wmem_queued -= SCTP_DATA_SNDSIZE(chunk);
4427 	__sctp_write_space(asoc);
4428 
4429 	sctp_association_put(asoc);
4430 }
4431 
4432 /* Helper function to wait for space in the sndbuf.  */
4433 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
4434 				size_t msg_len)
4435 {
4436 	struct sock *sk = asoc->base.sk;
4437 	int err = 0;
4438 	long current_timeo = *timeo_p;
4439 	DEFINE_WAIT(wait);
4440 
4441 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
4442 	                  asoc, (long)(*timeo_p), msg_len);
4443 
4444 	/* Increment the association's refcnt.  */
4445 	sctp_association_hold(asoc);
4446 
4447 	/* Wait on the association specific sndbuf space. */
4448 	for (;;) {
4449 		prepare_to_wait_exclusive(&asoc->wait, &wait,
4450 					  TASK_INTERRUPTIBLE);
4451 		if (!*timeo_p)
4452 			goto do_nonblock;
4453 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4454 		    asoc->base.dead)
4455 			goto do_error;
4456 		if (signal_pending(current))
4457 			goto do_interrupted;
4458 		if (msg_len <= sctp_wspace(asoc))
4459 			break;
4460 
4461 		/* Let another process have a go.  Since we are going
4462 		 * to sleep anyway.
4463 		 */
4464 		sctp_release_sock(sk);
4465 		current_timeo = schedule_timeout(current_timeo);
4466 		sctp_lock_sock(sk);
4467 
4468 		*timeo_p = current_timeo;
4469 	}
4470 
4471 out:
4472 	finish_wait(&asoc->wait, &wait);
4473 
4474 	/* Release the association's refcnt.  */
4475 	sctp_association_put(asoc);
4476 
4477 	return err;
4478 
4479 do_error:
4480 	err = -EPIPE;
4481 	goto out;
4482 
4483 do_interrupted:
4484 	err = sock_intr_errno(*timeo_p);
4485 	goto out;
4486 
4487 do_nonblock:
4488 	err = -EAGAIN;
4489 	goto out;
4490 }
4491 
4492 /* If socket sndbuf has changed, wake up all per association waiters.  */
4493 void sctp_write_space(struct sock *sk)
4494 {
4495 	struct sctp_association *asoc;
4496 	struct list_head *pos;
4497 
4498 	/* Wake up the tasks in each wait queue.  */
4499 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
4500 		asoc = list_entry(pos, struct sctp_association, asocs);
4501 		__sctp_write_space(asoc);
4502 	}
4503 }
4504 
4505 /* Is there any sndbuf space available on the socket?
4506  *
4507  * Note that wmem_queued is the sum of the send buffers on all of the
4508  * associations on the same socket.  For a UDP-style socket with
4509  * multiple associations, it is possible for it to be "unwriteable"
4510  * prematurely.  I assume that this is acceptable because
4511  * a premature "unwriteable" is better than an accidental "writeable" which
4512  * would cause an unwanted block under certain circumstances.  For the 1-1
4513  * UDP-style sockets or TCP-style sockets, this code should work.
4514  *  - Daisy
4515  */
4516 static int sctp_writeable(struct sock *sk)
4517 {
4518 	int amt = 0;
4519 
4520 	amt = sk->sk_sndbuf - sk->sk_wmem_queued;
4521 	if (amt < 0)
4522 		amt = 0;
4523 	return amt;
4524 }
4525 
4526 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
4527  * returns immediately with EINPROGRESS.
4528  */
4529 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
4530 {
4531 	struct sock *sk = asoc->base.sk;
4532 	int err = 0;
4533 	long current_timeo = *timeo_p;
4534 	DEFINE_WAIT(wait);
4535 
4536 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
4537 			  (long)(*timeo_p));
4538 
4539 	/* Increment the association's refcnt.  */
4540 	sctp_association_hold(asoc);
4541 
4542 	for (;;) {
4543 		prepare_to_wait_exclusive(&asoc->wait, &wait,
4544 					  TASK_INTERRUPTIBLE);
4545 		if (!*timeo_p)
4546 			goto do_nonblock;
4547 		if (sk->sk_shutdown & RCV_SHUTDOWN)
4548 			break;
4549 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4550 		    asoc->base.dead)
4551 			goto do_error;
4552 		if (signal_pending(current))
4553 			goto do_interrupted;
4554 
4555 		if (sctp_state(asoc, ESTABLISHED))
4556 			break;
4557 
4558 		/* Let another process have a go.  Since we are going
4559 		 * to sleep anyway.
4560 		 */
4561 		sctp_release_sock(sk);
4562 		current_timeo = schedule_timeout(current_timeo);
4563 		sctp_lock_sock(sk);
4564 
4565 		*timeo_p = current_timeo;
4566 	}
4567 
4568 out:
4569 	finish_wait(&asoc->wait, &wait);
4570 
4571 	/* Release the association's refcnt.  */
4572 	sctp_association_put(asoc);
4573 
4574 	return err;
4575 
4576 do_error:
4577 	if (asoc->counters[SCTP_COUNTER_INIT_ERROR] + 1 >=
4578 					 	asoc->max_init_attempts)
4579 		err = -ETIMEDOUT;
4580 	else
4581 		err = -ECONNREFUSED;
4582 	goto out;
4583 
4584 do_interrupted:
4585 	err = sock_intr_errno(*timeo_p);
4586 	goto out;
4587 
4588 do_nonblock:
4589 	err = -EINPROGRESS;
4590 	goto out;
4591 }
4592 
4593 static int sctp_wait_for_accept(struct sock *sk, long timeo)
4594 {
4595 	struct sctp_endpoint *ep;
4596 	int err = 0;
4597 	DEFINE_WAIT(wait);
4598 
4599 	ep = sctp_sk(sk)->ep;
4600 
4601 
4602 	for (;;) {
4603 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
4604 					  TASK_INTERRUPTIBLE);
4605 
4606 		if (list_empty(&ep->asocs)) {
4607 			sctp_release_sock(sk);
4608 			timeo = schedule_timeout(timeo);
4609 			sctp_lock_sock(sk);
4610 		}
4611 
4612 		err = -EINVAL;
4613 		if (!sctp_sstate(sk, LISTENING))
4614 			break;
4615 
4616 		err = 0;
4617 		if (!list_empty(&ep->asocs))
4618 			break;
4619 
4620 		err = sock_intr_errno(timeo);
4621 		if (signal_pending(current))
4622 			break;
4623 
4624 		err = -EAGAIN;
4625 		if (!timeo)
4626 			break;
4627 	}
4628 
4629 	finish_wait(sk->sk_sleep, &wait);
4630 
4631 	return err;
4632 }
4633 
4634 void sctp_wait_for_close(struct sock *sk, long timeout)
4635 {
4636 	DEFINE_WAIT(wait);
4637 
4638 	do {
4639 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
4640 		if (list_empty(&sctp_sk(sk)->ep->asocs))
4641 			break;
4642 		sctp_release_sock(sk);
4643 		timeout = schedule_timeout(timeout);
4644 		sctp_lock_sock(sk);
4645 	} while (!signal_pending(current) && timeout);
4646 
4647 	finish_wait(sk->sk_sleep, &wait);
4648 }
4649 
4650 /* Populate the fields of the newsk from the oldsk and migrate the assoc
4651  * and its messages to the newsk.
4652  */
4653 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
4654 			      struct sctp_association *assoc,
4655 			      sctp_socket_type_t type)
4656 {
4657 	struct sctp_sock *oldsp = sctp_sk(oldsk);
4658 	struct sctp_sock *newsp = sctp_sk(newsk);
4659 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4660 	struct sctp_endpoint *newep = newsp->ep;
4661 	struct sk_buff *skb, *tmp;
4662 	struct sctp_ulpevent *event;
4663 
4664 	/* Migrate socket buffer sizes and all the socket level options to the
4665 	 * new socket.
4666 	 */
4667 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
4668 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
4669 	/* Brute force copy old sctp opt. */
4670 	inet_sk_copy_descendant(newsk, oldsk);
4671 
4672 	/* Restore the ep value that was overwritten with the above structure
4673 	 * copy.
4674 	 */
4675 	newsp->ep = newep;
4676 	newsp->hmac = NULL;
4677 
4678 	/* Hook this new socket in to the bind_hash list. */
4679 	pp = sctp_sk(oldsk)->bind_hash;
4680 	sk_add_bind_node(newsk, &pp->owner);
4681 	sctp_sk(newsk)->bind_hash = pp;
4682 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
4683 
4684 	/* Move any messages in the old socket's receive queue that are for the
4685 	 * peeled off association to the new socket's receive queue.
4686 	 */
4687 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
4688 		event = sctp_skb2event(skb);
4689 		if (event->asoc == assoc) {
4690 			__skb_unlink(skb, skb->list);
4691 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
4692 		}
4693 	}
4694 
4695 	/* Clean up any messages pending delivery due to partial
4696 	 * delivery.   Three cases:
4697 	 * 1) No partial deliver;  no work.
4698 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
4699 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
4700 	 */
4701 	skb_queue_head_init(&newsp->pd_lobby);
4702 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
4703 
4704 	if (sctp_sk(oldsk)->pd_mode) {
4705 		struct sk_buff_head *queue;
4706 
4707 		/* Decide which queue to move pd_lobby skbs to. */
4708 		if (assoc->ulpq.pd_mode) {
4709 			queue = &newsp->pd_lobby;
4710 		} else
4711 			queue = &newsk->sk_receive_queue;
4712 
4713 		/* Walk through the pd_lobby, looking for skbs that
4714 		 * need moved to the new socket.
4715 		 */
4716 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
4717 			event = sctp_skb2event(skb);
4718 			if (event->asoc == assoc) {
4719 				__skb_unlink(skb, skb->list);
4720 				__skb_queue_tail(queue, skb);
4721 			}
4722 		}
4723 
4724 		/* Clear up any skbs waiting for the partial
4725 		 * delivery to finish.
4726 		 */
4727 		if (assoc->ulpq.pd_mode)
4728 			sctp_clear_pd(oldsk);
4729 
4730 	}
4731 
4732 	/* Set the type of socket to indicate that it is peeled off from the
4733 	 * original UDP-style socket or created with the accept() call on a
4734 	 * TCP-style socket..
4735 	 */
4736 	newsp->type = type;
4737 
4738 	/* Migrate the association to the new socket. */
4739 	sctp_assoc_migrate(assoc, newsk);
4740 
4741 	/* If the association on the newsk is already closed before accept()
4742 	 * is called, set RCV_SHUTDOWN flag.
4743 	 */
4744 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
4745 		newsk->sk_shutdown |= RCV_SHUTDOWN;
4746 
4747 	newsk->sk_state = SCTP_SS_ESTABLISHED;
4748 }
4749 
4750 /* This proto struct describes the ULP interface for SCTP.  */
4751 struct proto sctp_prot = {
4752 	.name        =	"SCTP",
4753 	.owner       =	THIS_MODULE,
4754 	.close       =	sctp_close,
4755 	.connect     =	sctp_connect,
4756 	.disconnect  =	sctp_disconnect,
4757 	.accept      =	sctp_accept,
4758 	.ioctl       =	sctp_ioctl,
4759 	.init        =	sctp_init_sock,
4760 	.destroy     =	sctp_destroy_sock,
4761 	.shutdown    =	sctp_shutdown,
4762 	.setsockopt  =	sctp_setsockopt,
4763 	.getsockopt  =	sctp_getsockopt,
4764 	.sendmsg     =	sctp_sendmsg,
4765 	.recvmsg     =	sctp_recvmsg,
4766 	.bind        =	sctp_bind,
4767 	.backlog_rcv =	sctp_backlog_rcv,
4768 	.hash        =	sctp_hash,
4769 	.unhash      =	sctp_unhash,
4770 	.get_port    =	sctp_get_port,
4771 	.obj_size    =  sizeof(struct sctp_sock),
4772 };
4773 
4774 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4775 struct proto sctpv6_prot = {
4776 	.name		= "SCTPv6",
4777 	.owner		= THIS_MODULE,
4778 	.close		= sctp_close,
4779 	.connect	= sctp_connect,
4780 	.disconnect	= sctp_disconnect,
4781 	.accept		= sctp_accept,
4782 	.ioctl		= sctp_ioctl,
4783 	.init		= sctp_init_sock,
4784 	.destroy	= sctp_destroy_sock,
4785 	.shutdown	= sctp_shutdown,
4786 	.setsockopt	= sctp_setsockopt,
4787 	.getsockopt	= sctp_getsockopt,
4788 	.sendmsg	= sctp_sendmsg,
4789 	.recvmsg	= sctp_recvmsg,
4790 	.bind		= sctp_bind,
4791 	.backlog_rcv	= sctp_backlog_rcv,
4792 	.hash		= sctp_hash,
4793 	.unhash		= sctp_unhash,
4794 	.get_port	= sctp_get_port,
4795 	.obj_size	= sizeof(struct sctp6_sock),
4796 };
4797 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
4798