1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * 6 * This file is part of the SCTP kernel reference Implementation 7 * 8 * These functions work with the state functions in sctp_sm_statefuns.c 9 * to implement that state operations. These functions implement the 10 * steps which require modifying existing data structures. 11 * 12 * The SCTP reference implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * The SCTP reference implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@austin.ibm.com> 40 * Hui Huang <hui.huang@nokia.com> 41 * Dajiang Zhang <dajiang.zhang@nokia.com> 42 * Daisy Chang <daisyc@us.ibm.com> 43 * Sridhar Samudrala <sri@us.ibm.com> 44 * Ardelle Fan <ardelle.fan@intel.com> 45 * 46 * Any bugs reported given to us we will try to fix... any fixes shared will 47 * be incorporated into the next SCTP release. 48 */ 49 50 #include <linux/skbuff.h> 51 #include <linux/types.h> 52 #include <linux/socket.h> 53 #include <linux/ip.h> 54 #include <net/sock.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 58 static int sctp_cmd_interpreter(sctp_event_t event_type, 59 sctp_subtype_t subtype, 60 sctp_state_t state, 61 struct sctp_endpoint *ep, 62 struct sctp_association *asoc, 63 void *event_arg, 64 sctp_disposition_t status, 65 sctp_cmd_seq_t *commands, 66 int gfp); 67 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 68 sctp_state_t state, 69 struct sctp_endpoint *ep, 70 struct sctp_association *asoc, 71 void *event_arg, 72 sctp_disposition_t status, 73 sctp_cmd_seq_t *commands, 74 int gfp); 75 76 /******************************************************************** 77 * Helper functions 78 ********************************************************************/ 79 80 /* A helper function for delayed processing of INET ECN CE bit. */ 81 static void sctp_do_ecn_ce_work(struct sctp_association *asoc, 82 __u32 lowest_tsn) 83 { 84 /* Save the TSN away for comparison when we receive CWR */ 85 86 asoc->last_ecne_tsn = lowest_tsn; 87 asoc->need_ecne = 1; 88 } 89 90 /* Helper function for delayed processing of SCTP ECNE chunk. */ 91 /* RFC 2960 Appendix A 92 * 93 * RFC 2481 details a specific bit for a sender to send in 94 * the header of its next outbound TCP segment to indicate to 95 * its peer that it has reduced its congestion window. This 96 * is termed the CWR bit. For SCTP the same indication is made 97 * by including the CWR chunk. This chunk contains one data 98 * element, i.e. the TSN number that was sent in the ECNE chunk. 99 * This element represents the lowest TSN number in the datagram 100 * that was originally marked with the CE bit. 101 */ 102 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, 103 __u32 lowest_tsn, 104 struct sctp_chunk *chunk) 105 { 106 struct sctp_chunk *repl; 107 108 /* Our previously transmitted packet ran into some congestion 109 * so we should take action by reducing cwnd and ssthresh 110 * and then ACK our peer that we we've done so by 111 * sending a CWR. 112 */ 113 114 /* First, try to determine if we want to actually lower 115 * our cwnd variables. Only lower them if the ECNE looks more 116 * recent than the last response. 117 */ 118 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { 119 struct sctp_transport *transport; 120 121 /* Find which transport's congestion variables 122 * need to be adjusted. 123 */ 124 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); 125 126 /* Update the congestion variables. */ 127 if (transport) 128 sctp_transport_lower_cwnd(transport, 129 SCTP_LOWER_CWND_ECNE); 130 asoc->last_cwr_tsn = lowest_tsn; 131 } 132 133 /* Always try to quiet the other end. In case of lost CWR, 134 * resend last_cwr_tsn. 135 */ 136 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); 137 138 /* If we run out of memory, it will look like a lost CWR. We'll 139 * get back in sync eventually. 140 */ 141 return repl; 142 } 143 144 /* Helper function to do delayed processing of ECN CWR chunk. */ 145 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, 146 __u32 lowest_tsn) 147 { 148 /* Turn off ECNE getting auto-prepended to every outgoing 149 * packet 150 */ 151 asoc->need_ecne = 0; 152 } 153 154 /* Generate SACK if necessary. We call this at the end of a packet. */ 155 static int sctp_gen_sack(struct sctp_association *asoc, int force, 156 sctp_cmd_seq_t *commands) 157 { 158 __u32 ctsn, max_tsn_seen; 159 struct sctp_chunk *sack; 160 int error = 0; 161 162 if (force) 163 asoc->peer.sack_needed = 1; 164 165 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); 166 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); 167 168 /* From 12.2 Parameters necessary per association (i.e. the TCB): 169 * 170 * Ack State : This flag indicates if the next received packet 171 * : is to be responded to with a SACK. ... 172 * : When DATA chunks are out of order, SACK's 173 * : are not delayed (see Section 6). 174 * 175 * [This is actually not mentioned in Section 6, but we 176 * implement it here anyway. --piggy] 177 */ 178 if (max_tsn_seen != ctsn) 179 asoc->peer.sack_needed = 1; 180 181 /* From 6.2 Acknowledgement on Reception of DATA Chunks: 182 * 183 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, 184 * an acknowledgement SHOULD be generated for at least every 185 * second packet (not every second DATA chunk) received, and 186 * SHOULD be generated within 200 ms of the arrival of any 187 * unacknowledged DATA chunk. ... 188 */ 189 if (!asoc->peer.sack_needed) { 190 /* We will need a SACK for the next packet. */ 191 asoc->peer.sack_needed = 1; 192 goto out; 193 } else { 194 if (asoc->a_rwnd > asoc->rwnd) 195 asoc->a_rwnd = asoc->rwnd; 196 sack = sctp_make_sack(asoc); 197 if (!sack) 198 goto nomem; 199 200 asoc->peer.sack_needed = 0; 201 202 error = sctp_outq_tail(&asoc->outqueue, sack); 203 204 /* Stop the SACK timer. */ 205 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, 206 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 207 } 208 out: 209 return error; 210 nomem: 211 error = -ENOMEM; 212 return error; 213 } 214 215 /* When the T3-RTX timer expires, it calls this function to create the 216 * relevant state machine event. 217 */ 218 void sctp_generate_t3_rtx_event(unsigned long peer) 219 { 220 int error; 221 struct sctp_transport *transport = (struct sctp_transport *) peer; 222 struct sctp_association *asoc = transport->asoc; 223 224 /* Check whether a task is in the sock. */ 225 226 sctp_bh_lock_sock(asoc->base.sk); 227 if (sock_owned_by_user(asoc->base.sk)) { 228 SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__); 229 230 /* Try again later. */ 231 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) 232 sctp_transport_hold(transport); 233 goto out_unlock; 234 } 235 236 /* Is this transport really dead and just waiting around for 237 * the timer to let go of the reference? 238 */ 239 if (transport->dead) 240 goto out_unlock; 241 242 /* Run through the state machine. */ 243 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 244 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), 245 asoc->state, 246 asoc->ep, asoc, 247 transport, GFP_ATOMIC); 248 249 if (error) 250 asoc->base.sk->sk_err = -error; 251 252 out_unlock: 253 sctp_bh_unlock_sock(asoc->base.sk); 254 sctp_transport_put(transport); 255 } 256 257 /* This is a sa interface for producing timeout events. It works 258 * for timeouts which use the association as their parameter. 259 */ 260 static void sctp_generate_timeout_event(struct sctp_association *asoc, 261 sctp_event_timeout_t timeout_type) 262 { 263 int error = 0; 264 265 sctp_bh_lock_sock(asoc->base.sk); 266 if (sock_owned_by_user(asoc->base.sk)) { 267 SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n", 268 __FUNCTION__, 269 timeout_type); 270 271 /* Try again later. */ 272 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) 273 sctp_association_hold(asoc); 274 goto out_unlock; 275 } 276 277 /* Is this association really dead and just waiting around for 278 * the timer to let go of the reference? 279 */ 280 if (asoc->base.dead) 281 goto out_unlock; 282 283 /* Run through the state machine. */ 284 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 285 SCTP_ST_TIMEOUT(timeout_type), 286 asoc->state, asoc->ep, asoc, 287 (void *)timeout_type, GFP_ATOMIC); 288 289 if (error) 290 asoc->base.sk->sk_err = -error; 291 292 out_unlock: 293 sctp_bh_unlock_sock(asoc->base.sk); 294 sctp_association_put(asoc); 295 } 296 297 static void sctp_generate_t1_cookie_event(unsigned long data) 298 { 299 struct sctp_association *asoc = (struct sctp_association *) data; 300 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); 301 } 302 303 static void sctp_generate_t1_init_event(unsigned long data) 304 { 305 struct sctp_association *asoc = (struct sctp_association *) data; 306 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); 307 } 308 309 static void sctp_generate_t2_shutdown_event(unsigned long data) 310 { 311 struct sctp_association *asoc = (struct sctp_association *) data; 312 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); 313 } 314 315 static void sctp_generate_t4_rto_event(unsigned long data) 316 { 317 struct sctp_association *asoc = (struct sctp_association *) data; 318 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); 319 } 320 321 static void sctp_generate_t5_shutdown_guard_event(unsigned long data) 322 { 323 struct sctp_association *asoc = (struct sctp_association *)data; 324 sctp_generate_timeout_event(asoc, 325 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); 326 327 } /* sctp_generate_t5_shutdown_guard_event() */ 328 329 static void sctp_generate_autoclose_event(unsigned long data) 330 { 331 struct sctp_association *asoc = (struct sctp_association *) data; 332 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); 333 } 334 335 /* Generate a heart beat event. If the sock is busy, reschedule. Make 336 * sure that the transport is still valid. 337 */ 338 void sctp_generate_heartbeat_event(unsigned long data) 339 { 340 int error = 0; 341 struct sctp_transport *transport = (struct sctp_transport *) data; 342 struct sctp_association *asoc = transport->asoc; 343 344 sctp_bh_lock_sock(asoc->base.sk); 345 if (sock_owned_by_user(asoc->base.sk)) { 346 SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__); 347 348 /* Try again later. */ 349 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) 350 sctp_transport_hold(transport); 351 goto out_unlock; 352 } 353 354 /* Is this structure just waiting around for us to actually 355 * get destroyed? 356 */ 357 if (transport->dead) 358 goto out_unlock; 359 360 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 361 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), 362 asoc->state, asoc->ep, asoc, 363 transport, GFP_ATOMIC); 364 365 if (error) 366 asoc->base.sk->sk_err = -error; 367 368 out_unlock: 369 sctp_bh_unlock_sock(asoc->base.sk); 370 sctp_transport_put(transport); 371 } 372 373 /* Inject a SACK Timeout event into the state machine. */ 374 static void sctp_generate_sack_event(unsigned long data) 375 { 376 struct sctp_association *asoc = (struct sctp_association *) data; 377 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); 378 } 379 380 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { 381 NULL, 382 sctp_generate_t1_cookie_event, 383 sctp_generate_t1_init_event, 384 sctp_generate_t2_shutdown_event, 385 NULL, 386 sctp_generate_t4_rto_event, 387 sctp_generate_t5_shutdown_guard_event, 388 sctp_generate_heartbeat_event, 389 sctp_generate_sack_event, 390 sctp_generate_autoclose_event, 391 }; 392 393 394 /* RFC 2960 8.2 Path Failure Detection 395 * 396 * When its peer endpoint is multi-homed, an endpoint should keep a 397 * error counter for each of the destination transport addresses of the 398 * peer endpoint. 399 * 400 * Each time the T3-rtx timer expires on any address, or when a 401 * HEARTBEAT sent to an idle address is not acknowledged within a RTO, 402 * the error counter of that destination address will be incremented. 403 * When the value in the error counter exceeds the protocol parameter 404 * 'Path.Max.Retrans' of that destination address, the endpoint should 405 * mark the destination transport address as inactive, and a 406 * notification SHOULD be sent to the upper layer. 407 * 408 */ 409 static void sctp_do_8_2_transport_strike(struct sctp_association *asoc, 410 struct sctp_transport *transport) 411 { 412 /* The check for association's overall error counter exceeding the 413 * threshold is done in the state function. 414 */ 415 asoc->overall_error_count++; 416 417 if (transport->active && 418 (transport->error_count++ >= transport->max_retrans)) { 419 SCTP_DEBUG_PRINTK("transport_strike: transport " 420 "IP:%d.%d.%d.%d failed.\n", 421 NIPQUAD(transport->ipaddr.v4.sin_addr)); 422 sctp_assoc_control_transport(asoc, transport, 423 SCTP_TRANSPORT_DOWN, 424 SCTP_FAILED_THRESHOLD); 425 } 426 427 /* E2) For the destination address for which the timer 428 * expires, set RTO <- RTO * 2 ("back off the timer"). The 429 * maximum value discussed in rule C7 above (RTO.max) may be 430 * used to provide an upper bound to this doubling operation. 431 */ 432 transport->rto = min((transport->rto * 2), transport->asoc->rto_max); 433 } 434 435 /* Worker routine to handle INIT command failure. */ 436 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, 437 struct sctp_association *asoc, 438 unsigned error) 439 { 440 struct sctp_ulpevent *event; 441 442 event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC, 443 (__u16)error, 0, 0, 444 GFP_ATOMIC); 445 446 if (event) 447 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 448 SCTP_ULPEVENT(event)); 449 450 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 451 SCTP_STATE(SCTP_STATE_CLOSED)); 452 453 /* SEND_FAILED sent later when cleaning up the association. */ 454 asoc->outqueue.error = error; 455 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 456 } 457 458 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ 459 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, 460 struct sctp_association *asoc, 461 sctp_event_t event_type, 462 sctp_subtype_t subtype, 463 struct sctp_chunk *chunk, 464 unsigned error) 465 { 466 struct sctp_ulpevent *event; 467 468 /* Cancel any partial delivery in progress. */ 469 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 470 471 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 472 (__u16)error, 0, 0, 473 GFP_ATOMIC); 474 if (event) 475 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 476 SCTP_ULPEVENT(event)); 477 478 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 479 SCTP_STATE(SCTP_STATE_CLOSED)); 480 481 /* Set sk_err to ECONNRESET on a 1-1 style socket. */ 482 if (!sctp_style(asoc->base.sk, UDP)) 483 asoc->base.sk->sk_err = ECONNRESET; 484 485 /* SEND_FAILED sent later when cleaning up the association. */ 486 asoc->outqueue.error = error; 487 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 488 } 489 490 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT 491 * inside the cookie. In reality, this is only used for INIT-ACK processing 492 * since all other cases use "temporary" associations and can do all 493 * their work in statefuns directly. 494 */ 495 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, 496 struct sctp_association *asoc, 497 struct sctp_chunk *chunk, 498 sctp_init_chunk_t *peer_init, int gfp) 499 { 500 int error; 501 502 /* We only process the init as a sideeffect in a single 503 * case. This is when we process the INIT-ACK. If we 504 * fail during INIT processing (due to malloc problems), 505 * just return the error and stop processing the stack. 506 */ 507 if (!sctp_process_init(asoc, chunk->chunk_hdr->type, 508 sctp_source(chunk), peer_init, gfp)) 509 error = -ENOMEM; 510 else 511 error = 0; 512 513 return error; 514 } 515 516 /* Helper function to break out starting up of heartbeat timers. */ 517 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, 518 struct sctp_association *asoc) 519 { 520 struct sctp_transport *t; 521 struct list_head *pos; 522 523 /* Start a heartbeat timer for each transport on the association. 524 * hold a reference on the transport to make sure none of 525 * the needed data structures go away. 526 */ 527 list_for_each(pos, &asoc->peer.transport_addr_list) { 528 t = list_entry(pos, struct sctp_transport, transports); 529 530 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 531 sctp_transport_hold(t); 532 } 533 } 534 535 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, 536 struct sctp_association *asoc) 537 { 538 struct sctp_transport *t; 539 struct list_head *pos; 540 541 /* Stop all heartbeat timers. */ 542 543 list_for_each(pos, &asoc->peer.transport_addr_list) { 544 t = list_entry(pos, struct sctp_transport, transports); 545 if (del_timer(&t->hb_timer)) 546 sctp_transport_put(t); 547 } 548 } 549 550 /* Helper function to stop any pending T3-RTX timers */ 551 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, 552 struct sctp_association *asoc) 553 { 554 struct sctp_transport *t; 555 struct list_head *pos; 556 557 list_for_each(pos, &asoc->peer.transport_addr_list) { 558 t = list_entry(pos, struct sctp_transport, transports); 559 if (timer_pending(&t->T3_rtx_timer) && 560 del_timer(&t->T3_rtx_timer)) { 561 sctp_transport_put(t); 562 } 563 } 564 } 565 566 567 /* Helper function to update the heartbeat timer. */ 568 static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, 569 struct sctp_association *asoc, 570 struct sctp_transport *t) 571 { 572 /* Update the heartbeat timer. */ 573 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 574 sctp_transport_hold(t); 575 } 576 577 /* Helper function to handle the reception of an HEARTBEAT ACK. */ 578 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, 579 struct sctp_association *asoc, 580 struct sctp_transport *t, 581 struct sctp_chunk *chunk) 582 { 583 sctp_sender_hb_info_t *hbinfo; 584 585 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the 586 * HEARTBEAT should clear the error counter of the destination 587 * transport address to which the HEARTBEAT was sent. 588 * The association's overall error count is also cleared. 589 */ 590 t->error_count = 0; 591 t->asoc->overall_error_count = 0; 592 593 /* Mark the destination transport address as active if it is not so 594 * marked. 595 */ 596 if (!t->active) 597 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 598 SCTP_HEARTBEAT_SUCCESS); 599 600 /* The receiver of the HEARTBEAT ACK should also perform an 601 * RTT measurement for that destination transport address 602 * using the time value carried in the HEARTBEAT ACK chunk. 603 */ 604 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; 605 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); 606 } 607 608 /* Helper function to do a transport reset at the expiry of the hearbeat 609 * timer. 610 */ 611 static void sctp_cmd_transport_reset(sctp_cmd_seq_t *cmds, 612 struct sctp_association *asoc, 613 struct sctp_transport *t) 614 { 615 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); 616 617 /* Mark one strike against a transport. */ 618 sctp_do_8_2_transport_strike(asoc, t); 619 } 620 621 /* Helper function to process the process SACK command. */ 622 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, 623 struct sctp_association *asoc, 624 struct sctp_sackhdr *sackh) 625 { 626 int err; 627 628 if (sctp_outq_sack(&asoc->outqueue, sackh)) { 629 /* There are no more TSNs awaiting SACK. */ 630 err = sctp_do_sm(SCTP_EVENT_T_OTHER, 631 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), 632 asoc->state, asoc->ep, asoc, NULL, 633 GFP_ATOMIC); 634 } else { 635 /* Windows may have opened, so we need 636 * to check if we have DATA to transmit 637 */ 638 err = sctp_outq_flush(&asoc->outqueue, 0); 639 } 640 641 return err; 642 } 643 644 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set 645 * the transport for a shutdown chunk. 646 */ 647 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, 648 struct sctp_association *asoc, 649 struct sctp_chunk *chunk) 650 { 651 struct sctp_transport *t; 652 653 t = sctp_assoc_choose_shutdown_transport(asoc); 654 asoc->shutdown_last_sent_to = t; 655 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; 656 chunk->transport = t; 657 } 658 659 /* Helper function to change the state of an association. */ 660 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, 661 struct sctp_association *asoc, 662 sctp_state_t state) 663 { 664 struct sock *sk = asoc->base.sk; 665 666 asoc->state = state; 667 668 if (sctp_style(sk, TCP)) { 669 /* Change the sk->sk_state of a TCP-style socket that has 670 * sucessfully completed a connect() call. 671 */ 672 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) 673 sk->sk_state = SCTP_SS_ESTABLISHED; 674 675 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ 676 if (sctp_state(asoc, SHUTDOWN_RECEIVED) && 677 sctp_sstate(sk, ESTABLISHED)) 678 sk->sk_shutdown |= RCV_SHUTDOWN; 679 } 680 681 if (sctp_state(asoc, ESTABLISHED) || 682 sctp_state(asoc, CLOSED) || 683 sctp_state(asoc, SHUTDOWN_RECEIVED)) { 684 /* Wake up any processes waiting in the asoc's wait queue in 685 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). 686 */ 687 if (waitqueue_active(&asoc->wait)) 688 wake_up_interruptible(&asoc->wait); 689 690 /* Wake up any processes waiting in the sk's sleep queue of 691 * a TCP-style or UDP-style peeled-off socket in 692 * sctp_wait_for_accept() or sctp_wait_for_packet(). 693 * For a UDP-style socket, the waiters are woken up by the 694 * notifications. 695 */ 696 if (!sctp_style(sk, UDP)) 697 sk->sk_state_change(sk); 698 } 699 } 700 701 /* Helper function to delete an association. */ 702 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, 703 struct sctp_association *asoc) 704 { 705 struct sock *sk = asoc->base.sk; 706 707 /* If it is a non-temporary association belonging to a TCP-style 708 * listening socket that is not closed, do not free it so that accept() 709 * can pick it up later. 710 */ 711 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && 712 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) 713 return; 714 715 sctp_unhash_established(asoc); 716 sctp_association_free(asoc); 717 } 718 719 /* 720 * ADDIP Section 4.1 ASCONF Chunk Procedures 721 * A4) Start a T-4 RTO timer, using the RTO value of the selected 722 * destination address (we use active path instead of primary path just 723 * because primary path may be inactive. 724 */ 725 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, 726 struct sctp_association *asoc, 727 struct sctp_chunk *chunk) 728 { 729 struct sctp_transport *t; 730 731 t = asoc->peer.active_path; 732 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; 733 chunk->transport = t; 734 } 735 736 /* Process an incoming Operation Error Chunk. */ 737 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, 738 struct sctp_association *asoc, 739 struct sctp_chunk *chunk) 740 { 741 struct sctp_operr_chunk *operr_chunk; 742 struct sctp_errhdr *err_hdr; 743 744 operr_chunk = (struct sctp_operr_chunk *)chunk->chunk_hdr; 745 err_hdr = &operr_chunk->err_hdr; 746 747 switch (err_hdr->cause) { 748 case SCTP_ERROR_UNKNOWN_CHUNK: 749 { 750 struct sctp_chunkhdr *unk_chunk_hdr; 751 752 unk_chunk_hdr = (struct sctp_chunkhdr *)err_hdr->variable; 753 switch (unk_chunk_hdr->type) { 754 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with an 755 * ERROR chunk reporting that it did not recognized the ASCONF 756 * chunk type, the sender of the ASCONF MUST NOT send any 757 * further ASCONF chunks and MUST stop its T-4 timer. 758 */ 759 case SCTP_CID_ASCONF: 760 asoc->peer.asconf_capable = 0; 761 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, 762 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); 763 break; 764 default: 765 break; 766 } 767 break; 768 } 769 default: 770 break; 771 } 772 } 773 774 /* Process variable FWDTSN chunk information. */ 775 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, 776 struct sctp_chunk *chunk) 777 { 778 struct sctp_fwdtsn_skip *skip; 779 /* Walk through all the skipped SSNs */ 780 sctp_walk_fwdtsn(skip, chunk) { 781 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); 782 } 783 784 return; 785 } 786 787 /* Helper function to remove the association non-primary peer 788 * transports. 789 */ 790 static void sctp_cmd_del_non_primary(struct sctp_association *asoc) 791 { 792 struct sctp_transport *t; 793 struct list_head *pos; 794 struct list_head *temp; 795 796 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 797 t = list_entry(pos, struct sctp_transport, transports); 798 if (!sctp_cmp_addr_exact(&t->ipaddr, 799 &asoc->peer.primary_addr)) { 800 sctp_assoc_del_peer(asoc, &t->ipaddr); 801 } 802 } 803 804 return; 805 } 806 807 /* These three macros allow us to pull the debugging code out of the 808 * main flow of sctp_do_sm() to keep attention focused on the real 809 * functionality there. 810 */ 811 #define DEBUG_PRE \ 812 SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \ 813 "ep %p, %s, %s, asoc %p[%s], %s\n", \ 814 ep, sctp_evttype_tbl[event_type], \ 815 (*debug_fn)(subtype), asoc, \ 816 sctp_state_tbl[state], state_fn->name) 817 818 #define DEBUG_POST \ 819 SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \ 820 "asoc %p, status: %s\n", \ 821 asoc, sctp_status_tbl[status]) 822 823 #define DEBUG_POST_SFX \ 824 SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \ 825 error, asoc, \ 826 sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ 827 sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED]) 828 829 /* 830 * This is the master state machine processing function. 831 * 832 * If you want to understand all of lksctp, this is a 833 * good place to start. 834 */ 835 int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype, 836 sctp_state_t state, 837 struct sctp_endpoint *ep, 838 struct sctp_association *asoc, 839 void *event_arg, 840 int gfp) 841 { 842 sctp_cmd_seq_t commands; 843 const sctp_sm_table_entry_t *state_fn; 844 sctp_disposition_t status; 845 int error = 0; 846 typedef const char *(printfn_t)(sctp_subtype_t); 847 848 static printfn_t *table[] = { 849 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, 850 }; 851 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; 852 853 /* Look up the state function, run it, and then process the 854 * side effects. These three steps are the heart of lksctp. 855 */ 856 state_fn = sctp_sm_lookup_event(event_type, state, subtype); 857 858 sctp_init_cmd_seq(&commands); 859 860 DEBUG_PRE; 861 status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands); 862 DEBUG_POST; 863 864 error = sctp_side_effects(event_type, subtype, state, 865 ep, asoc, event_arg, status, 866 &commands, gfp); 867 DEBUG_POST_SFX; 868 869 return error; 870 } 871 872 #undef DEBUG_PRE 873 #undef DEBUG_POST 874 875 /***************************************************************** 876 * This the master state function side effect processing function. 877 *****************************************************************/ 878 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 879 sctp_state_t state, 880 struct sctp_endpoint *ep, 881 struct sctp_association *asoc, 882 void *event_arg, 883 sctp_disposition_t status, 884 sctp_cmd_seq_t *commands, 885 int gfp) 886 { 887 int error; 888 889 /* FIXME - Most of the dispositions left today would be categorized 890 * as "exceptional" dispositions. For those dispositions, it 891 * may not be proper to run through any of the commands at all. 892 * For example, the command interpreter might be run only with 893 * disposition SCTP_DISPOSITION_CONSUME. 894 */ 895 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, 896 ep, asoc, 897 event_arg, status, 898 commands, gfp))) 899 goto bail; 900 901 switch (status) { 902 case SCTP_DISPOSITION_DISCARD: 903 SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, " 904 "event_type %d, event_id %d\n", 905 state, event_type, subtype.chunk); 906 break; 907 908 case SCTP_DISPOSITION_NOMEM: 909 /* We ran out of memory, so we need to discard this 910 * packet. 911 */ 912 /* BUG--we should now recover some memory, probably by 913 * reneging... 914 */ 915 error = -ENOMEM; 916 break; 917 918 case SCTP_DISPOSITION_DELETE_TCB: 919 /* This should now be a command. */ 920 break; 921 922 case SCTP_DISPOSITION_CONSUME: 923 case SCTP_DISPOSITION_ABORT: 924 /* 925 * We should no longer have much work to do here as the 926 * real work has been done as explicit commands above. 927 */ 928 break; 929 930 case SCTP_DISPOSITION_VIOLATION: 931 printk(KERN_ERR "sctp protocol violation state %d " 932 "chunkid %d\n", state, subtype.chunk); 933 break; 934 935 case SCTP_DISPOSITION_NOT_IMPL: 936 printk(KERN_WARNING "sctp unimplemented feature in state %d, " 937 "event_type %d, event_id %d\n", 938 state, event_type, subtype.chunk); 939 break; 940 941 case SCTP_DISPOSITION_BUG: 942 printk(KERN_ERR "sctp bug in state %d, " 943 "event_type %d, event_id %d\n", 944 state, event_type, subtype.chunk); 945 BUG(); 946 break; 947 948 default: 949 printk(KERN_ERR "sctp impossible disposition %d " 950 "in state %d, event_type %d, event_id %d\n", 951 status, state, event_type, subtype.chunk); 952 BUG(); 953 break; 954 }; 955 956 bail: 957 return error; 958 } 959 960 /******************************************************************** 961 * 2nd Level Abstractions 962 ********************************************************************/ 963 964 /* This is the side-effect interpreter. */ 965 static int sctp_cmd_interpreter(sctp_event_t event_type, 966 sctp_subtype_t subtype, 967 sctp_state_t state, 968 struct sctp_endpoint *ep, 969 struct sctp_association *asoc, 970 void *event_arg, 971 sctp_disposition_t status, 972 sctp_cmd_seq_t *commands, 973 int gfp) 974 { 975 int error = 0; 976 int force; 977 sctp_cmd_t *cmd; 978 struct sctp_chunk *new_obj; 979 struct sctp_chunk *chunk = NULL; 980 struct sctp_packet *packet; 981 struct list_head *pos; 982 struct timer_list *timer; 983 unsigned long timeout; 984 struct sctp_transport *t; 985 struct sctp_sackhdr sackh; 986 int local_cork = 0; 987 988 if (SCTP_EVENT_T_TIMEOUT != event_type) 989 chunk = (struct sctp_chunk *) event_arg; 990 991 /* Note: This whole file is a huge candidate for rework. 992 * For example, each command could either have its own handler, so 993 * the loop would look like: 994 * while (cmds) 995 * cmd->handle(x, y, z) 996 * --jgrimm 997 */ 998 while (NULL != (cmd = sctp_next_cmd(commands))) { 999 switch (cmd->verb) { 1000 case SCTP_CMD_NOP: 1001 /* Do nothing. */ 1002 break; 1003 1004 case SCTP_CMD_NEW_ASOC: 1005 /* Register a new association. */ 1006 if (local_cork) { 1007 sctp_outq_uncork(&asoc->outqueue); 1008 local_cork = 0; 1009 } 1010 asoc = cmd->obj.ptr; 1011 /* Register with the endpoint. */ 1012 sctp_endpoint_add_asoc(ep, asoc); 1013 sctp_hash_established(asoc); 1014 break; 1015 1016 case SCTP_CMD_UPDATE_ASSOC: 1017 sctp_assoc_update(asoc, cmd->obj.ptr); 1018 break; 1019 1020 case SCTP_CMD_PURGE_OUTQUEUE: 1021 sctp_outq_teardown(&asoc->outqueue); 1022 break; 1023 1024 case SCTP_CMD_DELETE_TCB: 1025 if (local_cork) { 1026 sctp_outq_uncork(&asoc->outqueue); 1027 local_cork = 0; 1028 } 1029 /* Delete the current association. */ 1030 sctp_cmd_delete_tcb(commands, asoc); 1031 asoc = NULL; 1032 break; 1033 1034 case SCTP_CMD_NEW_STATE: 1035 /* Enter a new state. */ 1036 sctp_cmd_new_state(commands, asoc, cmd->obj.state); 1037 break; 1038 1039 case SCTP_CMD_REPORT_TSN: 1040 /* Record the arrival of a TSN. */ 1041 sctp_tsnmap_mark(&asoc->peer.tsn_map, cmd->obj.u32); 1042 break; 1043 1044 case SCTP_CMD_REPORT_FWDTSN: 1045 /* Move the Cumulattive TSN Ack ahead. */ 1046 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); 1047 1048 /* Abort any in progress partial delivery. */ 1049 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 1050 break; 1051 1052 case SCTP_CMD_PROCESS_FWDTSN: 1053 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.ptr); 1054 break; 1055 1056 case SCTP_CMD_GEN_SACK: 1057 /* Generate a Selective ACK. 1058 * The argument tells us whether to just count 1059 * the packet and MAYBE generate a SACK, or 1060 * force a SACK out. 1061 */ 1062 force = cmd->obj.i32; 1063 error = sctp_gen_sack(asoc, force, commands); 1064 break; 1065 1066 case SCTP_CMD_PROCESS_SACK: 1067 /* Process an inbound SACK. */ 1068 error = sctp_cmd_process_sack(commands, asoc, 1069 cmd->obj.ptr); 1070 break; 1071 1072 case SCTP_CMD_GEN_INIT_ACK: 1073 /* Generate an INIT ACK chunk. */ 1074 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 1075 0); 1076 if (!new_obj) 1077 goto nomem; 1078 1079 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1080 SCTP_CHUNK(new_obj)); 1081 break; 1082 1083 case SCTP_CMD_PEER_INIT: 1084 /* Process a unified INIT from the peer. 1085 * Note: Only used during INIT-ACK processing. If 1086 * there is an error just return to the outter 1087 * layer which will bail. 1088 */ 1089 error = sctp_cmd_process_init(commands, asoc, chunk, 1090 cmd->obj.ptr, gfp); 1091 break; 1092 1093 case SCTP_CMD_GEN_COOKIE_ECHO: 1094 /* Generate a COOKIE ECHO chunk. */ 1095 new_obj = sctp_make_cookie_echo(asoc, chunk); 1096 if (!new_obj) { 1097 if (cmd->obj.ptr) 1098 sctp_chunk_free(cmd->obj.ptr); 1099 goto nomem; 1100 } 1101 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1102 SCTP_CHUNK(new_obj)); 1103 1104 /* If there is an ERROR chunk to be sent along with 1105 * the COOKIE_ECHO, send it, too. 1106 */ 1107 if (cmd->obj.ptr) 1108 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1109 SCTP_CHUNK(cmd->obj.ptr)); 1110 1111 /* FIXME - Eventually come up with a cleaner way to 1112 * enabling COOKIE-ECHO + DATA bundling during 1113 * multihoming stale cookie scenarios, the following 1114 * command plays with asoc->peer.retran_path to 1115 * avoid the problem of sending the COOKIE-ECHO and 1116 * DATA in different paths, which could result 1117 * in the association being ABORTed if the DATA chunk 1118 * is processed first by the server. Checking the 1119 * init error counter simply causes this command 1120 * to be executed only during failed attempts of 1121 * association establishment. 1122 */ 1123 if ((asoc->peer.retran_path != 1124 asoc->peer.primary_path) && 1125 (asoc->counters[SCTP_COUNTER_INIT_ERROR] > 0)) { 1126 sctp_add_cmd_sf(commands, 1127 SCTP_CMD_FORCE_PRIM_RETRAN, 1128 SCTP_NULL()); 1129 } 1130 1131 break; 1132 1133 case SCTP_CMD_GEN_SHUTDOWN: 1134 /* Generate SHUTDOWN when in SHUTDOWN_SENT state. 1135 * Reset error counts. 1136 */ 1137 asoc->overall_error_count = 0; 1138 1139 /* Generate a SHUTDOWN chunk. */ 1140 new_obj = sctp_make_shutdown(asoc, chunk); 1141 if (!new_obj) 1142 goto nomem; 1143 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1144 SCTP_CHUNK(new_obj)); 1145 break; 1146 1147 case SCTP_CMD_CHUNK_ULP: 1148 /* Send a chunk to the sockets layer. */ 1149 SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", 1150 "chunk_up:", cmd->obj.ptr, 1151 "ulpq:", &asoc->ulpq); 1152 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr, 1153 GFP_ATOMIC); 1154 break; 1155 1156 case SCTP_CMD_EVENT_ULP: 1157 /* Send a notification to the sockets layer. */ 1158 SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", 1159 "event_up:",cmd->obj.ptr, 1160 "ulpq:",&asoc->ulpq); 1161 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr); 1162 break; 1163 1164 case SCTP_CMD_REPLY: 1165 /* If an caller has not already corked, do cork. */ 1166 if (!asoc->outqueue.cork) { 1167 sctp_outq_cork(&asoc->outqueue); 1168 local_cork = 1; 1169 } 1170 /* Send a chunk to our peer. */ 1171 error = sctp_outq_tail(&asoc->outqueue, cmd->obj.ptr); 1172 break; 1173 1174 case SCTP_CMD_SEND_PKT: 1175 /* Send a full packet to our peer. */ 1176 packet = cmd->obj.ptr; 1177 sctp_packet_transmit(packet); 1178 sctp_ootb_pkt_free(packet); 1179 break; 1180 1181 case SCTP_CMD_RETRAN: 1182 /* Mark a transport for retransmission. */ 1183 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1184 SCTP_RTXR_T3_RTX); 1185 break; 1186 1187 case SCTP_CMD_TRANSMIT: 1188 /* Kick start transmission. */ 1189 error = sctp_outq_uncork(&asoc->outqueue); 1190 local_cork = 0; 1191 break; 1192 1193 case SCTP_CMD_ECN_CE: 1194 /* Do delayed CE processing. */ 1195 sctp_do_ecn_ce_work(asoc, cmd->obj.u32); 1196 break; 1197 1198 case SCTP_CMD_ECN_ECNE: 1199 /* Do delayed ECNE processing. */ 1200 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, 1201 chunk); 1202 if (new_obj) 1203 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1204 SCTP_CHUNK(new_obj)); 1205 break; 1206 1207 case SCTP_CMD_ECN_CWR: 1208 /* Do delayed CWR processing. */ 1209 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); 1210 break; 1211 1212 case SCTP_CMD_SETUP_T2: 1213 sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr); 1214 break; 1215 1216 case SCTP_CMD_TIMER_START: 1217 timer = &asoc->timers[cmd->obj.to]; 1218 timeout = asoc->timeouts[cmd->obj.to]; 1219 if (!timeout) 1220 BUG(); 1221 1222 timer->expires = jiffies + timeout; 1223 sctp_association_hold(asoc); 1224 add_timer(timer); 1225 break; 1226 1227 case SCTP_CMD_TIMER_RESTART: 1228 timer = &asoc->timers[cmd->obj.to]; 1229 timeout = asoc->timeouts[cmd->obj.to]; 1230 if (!mod_timer(timer, jiffies + timeout)) 1231 sctp_association_hold(asoc); 1232 break; 1233 1234 case SCTP_CMD_TIMER_STOP: 1235 timer = &asoc->timers[cmd->obj.to]; 1236 if (timer_pending(timer) && del_timer(timer)) 1237 sctp_association_put(asoc); 1238 break; 1239 1240 case SCTP_CMD_INIT_RESTART: 1241 /* Do the needed accounting and updates 1242 * associated with restarting an initialization 1243 * timer. 1244 */ 1245 asoc->counters[SCTP_COUNTER_INIT_ERROR]++; 1246 asoc->timeouts[cmd->obj.to] *= 2; 1247 if (asoc->timeouts[cmd->obj.to] > 1248 asoc->max_init_timeo) { 1249 asoc->timeouts[cmd->obj.to] = 1250 asoc->max_init_timeo; 1251 } 1252 1253 /* If we've sent any data bundled with 1254 * COOKIE-ECHO we need to resend. 1255 */ 1256 list_for_each(pos, &asoc->peer.transport_addr_list) { 1257 t = list_entry(pos, struct sctp_transport, 1258 transports); 1259 sctp_retransmit_mark(&asoc->outqueue, t, 0); 1260 } 1261 1262 sctp_add_cmd_sf(commands, 1263 SCTP_CMD_TIMER_RESTART, 1264 SCTP_TO(cmd->obj.to)); 1265 break; 1266 1267 case SCTP_CMD_INIT_FAILED: 1268 sctp_cmd_init_failed(commands, asoc, cmd->obj.u32); 1269 break; 1270 1271 case SCTP_CMD_ASSOC_FAILED: 1272 sctp_cmd_assoc_failed(commands, asoc, event_type, 1273 subtype, chunk, cmd->obj.u32); 1274 break; 1275 1276 case SCTP_CMD_COUNTER_INC: 1277 asoc->counters[cmd->obj.counter]++; 1278 break; 1279 1280 case SCTP_CMD_COUNTER_RESET: 1281 asoc->counters[cmd->obj.counter] = 0; 1282 break; 1283 1284 case SCTP_CMD_REPORT_DUP: 1285 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, 1286 cmd->obj.u32); 1287 break; 1288 1289 case SCTP_CMD_REPORT_BAD_TAG: 1290 SCTP_DEBUG_PRINTK("vtag mismatch!\n"); 1291 break; 1292 1293 case SCTP_CMD_STRIKE: 1294 /* Mark one strike against a transport. */ 1295 sctp_do_8_2_transport_strike(asoc, cmd->obj.transport); 1296 break; 1297 1298 case SCTP_CMD_TRANSPORT_RESET: 1299 t = cmd->obj.transport; 1300 sctp_cmd_transport_reset(commands, asoc, t); 1301 break; 1302 1303 case SCTP_CMD_TRANSPORT_ON: 1304 t = cmd->obj.transport; 1305 sctp_cmd_transport_on(commands, asoc, t, chunk); 1306 break; 1307 1308 case SCTP_CMD_HB_TIMERS_START: 1309 sctp_cmd_hb_timers_start(commands, asoc); 1310 break; 1311 1312 case SCTP_CMD_HB_TIMER_UPDATE: 1313 t = cmd->obj.transport; 1314 sctp_cmd_hb_timer_update(commands, asoc, t); 1315 break; 1316 1317 case SCTP_CMD_HB_TIMERS_STOP: 1318 sctp_cmd_hb_timers_stop(commands, asoc); 1319 break; 1320 1321 case SCTP_CMD_REPORT_ERROR: 1322 error = cmd->obj.error; 1323 break; 1324 1325 case SCTP_CMD_PROCESS_CTSN: 1326 /* Dummy up a SACK for processing. */ 1327 sackh.cum_tsn_ack = cmd->obj.u32; 1328 sackh.a_rwnd = 0; 1329 sackh.num_gap_ack_blocks = 0; 1330 sackh.num_dup_tsns = 0; 1331 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, 1332 SCTP_SACKH(&sackh)); 1333 break; 1334 1335 case SCTP_CMD_DISCARD_PACKET: 1336 /* We need to discard the whole packet. */ 1337 chunk->pdiscard = 1; 1338 break; 1339 1340 case SCTP_CMD_RTO_PENDING: 1341 t = cmd->obj.transport; 1342 t->rto_pending = 1; 1343 break; 1344 1345 case SCTP_CMD_PART_DELIVER: 1346 sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr, 1347 GFP_ATOMIC); 1348 break; 1349 1350 case SCTP_CMD_RENEGE: 1351 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr, 1352 GFP_ATOMIC); 1353 break; 1354 1355 case SCTP_CMD_SETUP_T4: 1356 sctp_cmd_setup_t4(commands, asoc, cmd->obj.ptr); 1357 break; 1358 1359 case SCTP_CMD_PROCESS_OPERR: 1360 sctp_cmd_process_operr(commands, asoc, chunk); 1361 break; 1362 case SCTP_CMD_CLEAR_INIT_TAG: 1363 asoc->peer.i.init_tag = 0; 1364 break; 1365 case SCTP_CMD_DEL_NON_PRIMARY: 1366 sctp_cmd_del_non_primary(asoc); 1367 break; 1368 case SCTP_CMD_T3_RTX_TIMERS_STOP: 1369 sctp_cmd_t3_rtx_timers_stop(commands, asoc); 1370 break; 1371 case SCTP_CMD_FORCE_PRIM_RETRAN: 1372 t = asoc->peer.retran_path; 1373 asoc->peer.retran_path = asoc->peer.primary_path; 1374 error = sctp_outq_uncork(&asoc->outqueue); 1375 local_cork = 0; 1376 asoc->peer.retran_path = t; 1377 break; 1378 default: 1379 printk(KERN_WARNING "Impossible command: %u, %p\n", 1380 cmd->verb, cmd->obj.ptr); 1381 break; 1382 }; 1383 if (error) 1384 break; 1385 } 1386 1387 out: 1388 if (local_cork) 1389 sctp_outq_uncork(&asoc->outqueue); 1390 return error; 1391 nomem: 1392 error = -ENOMEM; 1393 goto out; 1394 } 1395 1396