xref: /openbmc/linux/net/sctp/input.c (revision 17bc4815de586d001c82d0ddf75247283c3f002a)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 #include <linux/rhashtable.h>
60 #include <net/sock_reuseport.h>
61 
62 /* Forward declarations for internal helpers. */
63 static int sctp_rcv_ootb(struct sk_buff *);
64 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
65 				      struct sk_buff *skb,
66 				      const union sctp_addr *paddr,
67 				      const union sctp_addr *laddr,
68 				      struct sctp_transport **transportp);
69 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
70 					struct net *net, struct sk_buff *skb,
71 					const union sctp_addr *laddr,
72 					const union sctp_addr *daddr);
73 static struct sctp_association *__sctp_lookup_association(
74 					struct net *net,
75 					const union sctp_addr *local,
76 					const union sctp_addr *peer,
77 					struct sctp_transport **pt);
78 
79 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
80 
81 
82 /* Calculate the SCTP checksum of an SCTP packet.  */
83 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
84 {
85 	struct sctphdr *sh = sctp_hdr(skb);
86 	__le32 cmp = sh->checksum;
87 	__le32 val = sctp_compute_cksum(skb, 0);
88 
89 	if (val != cmp) {
90 		/* CRC failure, dump it. */
91 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
92 		return -1;
93 	}
94 	return 0;
95 }
96 
97 /*
98  * This is the routine which IP calls when receiving an SCTP packet.
99  */
100 int sctp_rcv(struct sk_buff *skb)
101 {
102 	struct sock *sk;
103 	struct sctp_association *asoc;
104 	struct sctp_endpoint *ep = NULL;
105 	struct sctp_ep_common *rcvr;
106 	struct sctp_transport *transport = NULL;
107 	struct sctp_chunk *chunk;
108 	union sctp_addr src;
109 	union sctp_addr dest;
110 	int family;
111 	struct sctp_af *af;
112 	struct net *net = dev_net(skb->dev);
113 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
114 
115 	if (skb->pkt_type != PACKET_HOST)
116 		goto discard_it;
117 
118 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
119 
120 	/* If packet is too small to contain a single chunk, let's not
121 	 * waste time on it anymore.
122 	 */
123 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
124 		       skb_transport_offset(skb))
125 		goto discard_it;
126 
127 	/* If the packet is fragmented and we need to do crc checking,
128 	 * it's better to just linearize it otherwise crc computing
129 	 * takes longer.
130 	 */
131 	if ((!is_gso && skb_linearize(skb)) ||
132 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
133 		goto discard_it;
134 
135 	/* Pull up the IP header. */
136 	__skb_pull(skb, skb_transport_offset(skb));
137 
138 	skb->csum_valid = 0; /* Previous value not applicable */
139 	if (skb_csum_unnecessary(skb))
140 		__skb_decr_checksum_unnecessary(skb);
141 	else if (!sctp_checksum_disable &&
142 		 !is_gso &&
143 		 sctp_rcv_checksum(net, skb) < 0)
144 		goto discard_it;
145 	skb->csum_valid = 1;
146 
147 	__skb_pull(skb, sizeof(struct sctphdr));
148 
149 	family = ipver2af(ip_hdr(skb)->version);
150 	af = sctp_get_af_specific(family);
151 	if (unlikely(!af))
152 		goto discard_it;
153 	SCTP_INPUT_CB(skb)->af = af;
154 
155 	/* Initialize local addresses for lookups. */
156 	af->from_skb(&src, skb, 1);
157 	af->from_skb(&dest, skb, 0);
158 
159 	/* If the packet is to or from a non-unicast address,
160 	 * silently discard the packet.
161 	 *
162 	 * This is not clearly defined in the RFC except in section
163 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
164 	 * Transmission Protocol" 2.1, "It is important to note that the
165 	 * IP address of an SCTP transport address must be a routable
166 	 * unicast address.  In other words, IP multicast addresses and
167 	 * IP broadcast addresses cannot be used in an SCTP transport
168 	 * address."
169 	 */
170 	if (!af->addr_valid(&src, NULL, skb) ||
171 	    !af->addr_valid(&dest, NULL, skb))
172 		goto discard_it;
173 
174 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
175 
176 	if (!asoc)
177 		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
178 
179 	/* Retrieve the common input handling substructure. */
180 	rcvr = asoc ? &asoc->base : &ep->base;
181 	sk = rcvr->sk;
182 
183 	/*
184 	 * If a frame arrives on an interface and the receiving socket is
185 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
186 	 */
187 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
188 		if (transport) {
189 			sctp_transport_put(transport);
190 			asoc = NULL;
191 			transport = NULL;
192 		} else {
193 			sctp_endpoint_put(ep);
194 			ep = NULL;
195 		}
196 		sk = net->sctp.ctl_sock;
197 		ep = sctp_sk(sk)->ep;
198 		sctp_endpoint_hold(ep);
199 		rcvr = &ep->base;
200 	}
201 
202 	/*
203 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
204 	 * An SCTP packet is called an "out of the blue" (OOTB)
205 	 * packet if it is correctly formed, i.e., passed the
206 	 * receiver's checksum check, but the receiver is not
207 	 * able to identify the association to which this
208 	 * packet belongs.
209 	 */
210 	if (!asoc) {
211 		if (sctp_rcv_ootb(skb)) {
212 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
213 			goto discard_release;
214 		}
215 	}
216 
217 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
218 		goto discard_release;
219 	nf_reset(skb);
220 
221 	if (sk_filter(sk, skb))
222 		goto discard_release;
223 
224 	/* Create an SCTP packet structure. */
225 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
226 	if (!chunk)
227 		goto discard_release;
228 	SCTP_INPUT_CB(skb)->chunk = chunk;
229 
230 	/* Remember what endpoint is to handle this packet. */
231 	chunk->rcvr = rcvr;
232 
233 	/* Remember the SCTP header. */
234 	chunk->sctp_hdr = sctp_hdr(skb);
235 
236 	/* Set the source and destination addresses of the incoming chunk.  */
237 	sctp_init_addrs(chunk, &src, &dest);
238 
239 	/* Remember where we came from.  */
240 	chunk->transport = transport;
241 
242 	/* Acquire access to the sock lock. Note: We are safe from other
243 	 * bottom halves on this lock, but a user may be in the lock too,
244 	 * so check if it is busy.
245 	 */
246 	bh_lock_sock(sk);
247 
248 	if (sk != rcvr->sk) {
249 		/* Our cached sk is different from the rcvr->sk.  This is
250 		 * because migrate()/accept() may have moved the association
251 		 * to a new socket and released all the sockets.  So now we
252 		 * are holding a lock on the old socket while the user may
253 		 * be doing something with the new socket.  Switch our veiw
254 		 * of the current sk.
255 		 */
256 		bh_unlock_sock(sk);
257 		sk = rcvr->sk;
258 		bh_lock_sock(sk);
259 	}
260 
261 	if (sock_owned_by_user(sk)) {
262 		if (sctp_add_backlog(sk, skb)) {
263 			bh_unlock_sock(sk);
264 			sctp_chunk_free(chunk);
265 			skb = NULL; /* sctp_chunk_free already freed the skb */
266 			goto discard_release;
267 		}
268 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
269 	} else {
270 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
271 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
272 	}
273 
274 	bh_unlock_sock(sk);
275 
276 	/* Release the asoc/ep ref we took in the lookup calls. */
277 	if (transport)
278 		sctp_transport_put(transport);
279 	else
280 		sctp_endpoint_put(ep);
281 
282 	return 0;
283 
284 discard_it:
285 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
286 	kfree_skb(skb);
287 	return 0;
288 
289 discard_release:
290 	/* Release the asoc/ep ref we took in the lookup calls. */
291 	if (transport)
292 		sctp_transport_put(transport);
293 	else
294 		sctp_endpoint_put(ep);
295 
296 	goto discard_it;
297 }
298 
299 /* Process the backlog queue of the socket.  Every skb on
300  * the backlog holds a ref on an association or endpoint.
301  * We hold this ref throughout the state machine to make
302  * sure that the structure we need is still around.
303  */
304 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
305 {
306 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
307 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
308 	struct sctp_transport *t = chunk->transport;
309 	struct sctp_ep_common *rcvr = NULL;
310 	int backloged = 0;
311 
312 	rcvr = chunk->rcvr;
313 
314 	/* If the rcvr is dead then the association or endpoint
315 	 * has been deleted and we can safely drop the chunk
316 	 * and refs that we are holding.
317 	 */
318 	if (rcvr->dead) {
319 		sctp_chunk_free(chunk);
320 		goto done;
321 	}
322 
323 	if (unlikely(rcvr->sk != sk)) {
324 		/* In this case, the association moved from one socket to
325 		 * another.  We are currently sitting on the backlog of the
326 		 * old socket, so we need to move.
327 		 * However, since we are here in the process context we
328 		 * need to take make sure that the user doesn't own
329 		 * the new socket when we process the packet.
330 		 * If the new socket is user-owned, queue the chunk to the
331 		 * backlog of the new socket without dropping any refs.
332 		 * Otherwise, we can safely push the chunk on the inqueue.
333 		 */
334 
335 		sk = rcvr->sk;
336 		local_bh_disable();
337 		bh_lock_sock(sk);
338 
339 		if (sock_owned_by_user(sk)) {
340 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
341 				sctp_chunk_free(chunk);
342 			else
343 				backloged = 1;
344 		} else
345 			sctp_inq_push(inqueue, chunk);
346 
347 		bh_unlock_sock(sk);
348 		local_bh_enable();
349 
350 		/* If the chunk was backloged again, don't drop refs */
351 		if (backloged)
352 			return 0;
353 	} else {
354 		sctp_inq_push(inqueue, chunk);
355 	}
356 
357 done:
358 	/* Release the refs we took in sctp_add_backlog */
359 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
360 		sctp_transport_put(t);
361 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
362 		sctp_endpoint_put(sctp_ep(rcvr));
363 	else
364 		BUG();
365 
366 	return 0;
367 }
368 
369 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
370 {
371 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
372 	struct sctp_transport *t = chunk->transport;
373 	struct sctp_ep_common *rcvr = chunk->rcvr;
374 	int ret;
375 
376 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
377 	if (!ret) {
378 		/* Hold the assoc/ep while hanging on the backlog queue.
379 		 * This way, we know structures we need will not disappear
380 		 * from us
381 		 */
382 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
383 			sctp_transport_hold(t);
384 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
385 			sctp_endpoint_hold(sctp_ep(rcvr));
386 		else
387 			BUG();
388 	}
389 	return ret;
390 
391 }
392 
393 /* Handle icmp frag needed error. */
394 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
395 			   struct sctp_transport *t, __u32 pmtu)
396 {
397 	if (!t || (t->pathmtu <= pmtu))
398 		return;
399 
400 	if (sock_owned_by_user(sk)) {
401 		atomic_set(&t->mtu_info, pmtu);
402 		asoc->pmtu_pending = 1;
403 		t->pmtu_pending = 1;
404 		return;
405 	}
406 
407 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
408 		/* We can't allow retransmitting in such case, as the
409 		 * retransmission would be sized just as before, and thus we
410 		 * would get another icmp, and retransmit again.
411 		 */
412 		return;
413 
414 	/* Update transports view of the MTU. Return if no update was needed.
415 	 * If an update wasn't needed/possible, it also doesn't make sense to
416 	 * try to retransmit now.
417 	 */
418 	if (!sctp_transport_update_pmtu(t, pmtu))
419 		return;
420 
421 	/* Update association pmtu. */
422 	sctp_assoc_sync_pmtu(asoc);
423 
424 	/* Retransmit with the new pmtu setting. */
425 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
426 }
427 
428 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
429 			struct sk_buff *skb)
430 {
431 	struct dst_entry *dst;
432 
433 	if (sock_owned_by_user(sk) || !t)
434 		return;
435 	dst = sctp_transport_dst_check(t);
436 	if (dst)
437 		dst->ops->redirect(dst, sk, skb);
438 }
439 
440 /*
441  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
442  *
443  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
444  *        or a "Protocol Unreachable" treat this message as an abort
445  *        with the T bit set.
446  *
447  * This function sends an event to the state machine, which will abort the
448  * association.
449  *
450  */
451 void sctp_icmp_proto_unreachable(struct sock *sk,
452 			   struct sctp_association *asoc,
453 			   struct sctp_transport *t)
454 {
455 	if (sock_owned_by_user(sk)) {
456 		if (timer_pending(&t->proto_unreach_timer))
457 			return;
458 		else {
459 			if (!mod_timer(&t->proto_unreach_timer,
460 						jiffies + (HZ/20)))
461 				sctp_association_hold(asoc);
462 		}
463 	} else {
464 		struct net *net = sock_net(sk);
465 
466 		pr_debug("%s: unrecognized next header type "
467 			 "encountered!\n", __func__);
468 
469 		if (del_timer(&t->proto_unreach_timer))
470 			sctp_association_put(asoc);
471 
472 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
473 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
474 			   asoc->state, asoc->ep, asoc, t,
475 			   GFP_ATOMIC);
476 	}
477 }
478 
479 /* Common lookup code for icmp/icmpv6 error handler. */
480 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
481 			     struct sctphdr *sctphdr,
482 			     struct sctp_association **app,
483 			     struct sctp_transport **tpp)
484 {
485 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
486 	union sctp_addr saddr;
487 	union sctp_addr daddr;
488 	struct sctp_af *af;
489 	struct sock *sk = NULL;
490 	struct sctp_association *asoc;
491 	struct sctp_transport *transport = NULL;
492 	__u32 vtag = ntohl(sctphdr->vtag);
493 
494 	*app = NULL; *tpp = NULL;
495 
496 	af = sctp_get_af_specific(family);
497 	if (unlikely(!af)) {
498 		return NULL;
499 	}
500 
501 	/* Initialize local addresses for lookups. */
502 	af->from_skb(&saddr, skb, 1);
503 	af->from_skb(&daddr, skb, 0);
504 
505 	/* Look for an association that matches the incoming ICMP error
506 	 * packet.
507 	 */
508 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
509 	if (!asoc)
510 		return NULL;
511 
512 	sk = asoc->base.sk;
513 
514 	/* RFC 4960, Appendix C. ICMP Handling
515 	 *
516 	 * ICMP6) An implementation MUST validate that the Verification Tag
517 	 * contained in the ICMP message matches the Verification Tag of
518 	 * the peer.  If the Verification Tag is not 0 and does NOT
519 	 * match, discard the ICMP message.  If it is 0 and the ICMP
520 	 * message contains enough bytes to verify that the chunk type is
521 	 * an INIT chunk and that the Initiate Tag matches the tag of the
522 	 * peer, continue with ICMP7.  If the ICMP message is too short
523 	 * or the chunk type or the Initiate Tag does not match, silently
524 	 * discard the packet.
525 	 */
526 	if (vtag == 0) {
527 		/* chunk header + first 4 octects of init header */
528 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
529 					      sizeof(struct sctphdr),
530 					      sizeof(struct sctp_chunkhdr) +
531 					      sizeof(__be32), &_chunkhdr);
532 		if (!chunkhdr ||
533 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
534 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
535 			goto out;
536 
537 	} else if (vtag != asoc->c.peer_vtag) {
538 		goto out;
539 	}
540 
541 	bh_lock_sock(sk);
542 
543 	/* If too many ICMPs get dropped on busy
544 	 * servers this needs to be solved differently.
545 	 */
546 	if (sock_owned_by_user(sk))
547 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
548 
549 	*app = asoc;
550 	*tpp = transport;
551 	return sk;
552 
553 out:
554 	sctp_transport_put(transport);
555 	return NULL;
556 }
557 
558 /* Common cleanup code for icmp/icmpv6 error handler. */
559 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
560 {
561 	bh_unlock_sock(sk);
562 	sctp_transport_put(t);
563 }
564 
565 /*
566  * This routine is called by the ICMP module when it gets some
567  * sort of error condition.  If err < 0 then the socket should
568  * be closed and the error returned to the user.  If err > 0
569  * it's just the icmp type << 8 | icmp code.  After adjustment
570  * header points to the first 8 bytes of the sctp header.  We need
571  * to find the appropriate port.
572  *
573  * The locking strategy used here is very "optimistic". When
574  * someone else accesses the socket the ICMP is just dropped
575  * and for some paths there is no check at all.
576  * A more general error queue to queue errors for later handling
577  * is probably better.
578  *
579  */
580 int sctp_v4_err(struct sk_buff *skb, __u32 info)
581 {
582 	const struct iphdr *iph = (const struct iphdr *)skb->data;
583 	const int ihlen = iph->ihl * 4;
584 	const int type = icmp_hdr(skb)->type;
585 	const int code = icmp_hdr(skb)->code;
586 	struct sock *sk;
587 	struct sctp_association *asoc = NULL;
588 	struct sctp_transport *transport;
589 	struct inet_sock *inet;
590 	__u16 saveip, savesctp;
591 	int err;
592 	struct net *net = dev_net(skb->dev);
593 
594 	/* Fix up skb to look at the embedded net header. */
595 	saveip = skb->network_header;
596 	savesctp = skb->transport_header;
597 	skb_reset_network_header(skb);
598 	skb_set_transport_header(skb, ihlen);
599 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
600 	/* Put back, the original values. */
601 	skb->network_header = saveip;
602 	skb->transport_header = savesctp;
603 	if (!sk) {
604 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
605 		return -ENOENT;
606 	}
607 	/* Warning:  The sock lock is held.  Remember to call
608 	 * sctp_err_finish!
609 	 */
610 
611 	switch (type) {
612 	case ICMP_PARAMETERPROB:
613 		err = EPROTO;
614 		break;
615 	case ICMP_DEST_UNREACH:
616 		if (code > NR_ICMP_UNREACH)
617 			goto out_unlock;
618 
619 		/* PMTU discovery (RFC1191) */
620 		if (ICMP_FRAG_NEEDED == code) {
621 			sctp_icmp_frag_needed(sk, asoc, transport,
622 					      SCTP_TRUNC4(info));
623 			goto out_unlock;
624 		} else {
625 			if (ICMP_PROT_UNREACH == code) {
626 				sctp_icmp_proto_unreachable(sk, asoc,
627 							    transport);
628 				goto out_unlock;
629 			}
630 		}
631 		err = icmp_err_convert[code].errno;
632 		break;
633 	case ICMP_TIME_EXCEEDED:
634 		/* Ignore any time exceeded errors due to fragment reassembly
635 		 * timeouts.
636 		 */
637 		if (ICMP_EXC_FRAGTIME == code)
638 			goto out_unlock;
639 
640 		err = EHOSTUNREACH;
641 		break;
642 	case ICMP_REDIRECT:
643 		sctp_icmp_redirect(sk, transport, skb);
644 		/* Fall through to out_unlock. */
645 	default:
646 		goto out_unlock;
647 	}
648 
649 	inet = inet_sk(sk);
650 	if (!sock_owned_by_user(sk) && inet->recverr) {
651 		sk->sk_err = err;
652 		sk->sk_error_report(sk);
653 	} else {  /* Only an error on timeout */
654 		sk->sk_err_soft = err;
655 	}
656 
657 out_unlock:
658 	sctp_err_finish(sk, transport);
659 	return 0;
660 }
661 
662 /*
663  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
664  *
665  * This function scans all the chunks in the OOTB packet to determine if
666  * the packet should be discarded right away.  If a response might be needed
667  * for this packet, or, if further processing is possible, the packet will
668  * be queued to a proper inqueue for the next phase of handling.
669  *
670  * Output:
671  * Return 0 - If further processing is needed.
672  * Return 1 - If the packet can be discarded right away.
673  */
674 static int sctp_rcv_ootb(struct sk_buff *skb)
675 {
676 	struct sctp_chunkhdr *ch, _ch;
677 	int ch_end, offset = 0;
678 
679 	/* Scan through all the chunks in the packet.  */
680 	do {
681 		/* Make sure we have at least the header there */
682 		if (offset + sizeof(_ch) > skb->len)
683 			break;
684 
685 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
686 
687 		/* Break out if chunk length is less then minimal. */
688 		if (ntohs(ch->length) < sizeof(_ch))
689 			break;
690 
691 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
692 		if (ch_end > skb->len)
693 			break;
694 
695 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
696 		 * receiver MUST silently discard the OOTB packet and take no
697 		 * further action.
698 		 */
699 		if (SCTP_CID_ABORT == ch->type)
700 			goto discard;
701 
702 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
703 		 * chunk, the receiver should silently discard the packet
704 		 * and take no further action.
705 		 */
706 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
707 			goto discard;
708 
709 		/* RFC 4460, 2.11.2
710 		 * This will discard packets with INIT chunk bundled as
711 		 * subsequent chunks in the packet.  When INIT is first,
712 		 * the normal INIT processing will discard the chunk.
713 		 */
714 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
715 			goto discard;
716 
717 		offset = ch_end;
718 	} while (ch_end < skb->len);
719 
720 	return 0;
721 
722 discard:
723 	return 1;
724 }
725 
726 /* Insert endpoint into the hash table.  */
727 static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
728 {
729 	struct sock *sk = ep->base.sk;
730 	struct net *net = sock_net(sk);
731 	struct sctp_hashbucket *head;
732 	struct sctp_ep_common *epb;
733 
734 	epb = &ep->base;
735 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
736 	head = &sctp_ep_hashtable[epb->hashent];
737 
738 	if (sk->sk_reuseport) {
739 		bool any = sctp_is_ep_boundall(sk);
740 		struct sctp_ep_common *epb2;
741 		struct list_head *list;
742 		int cnt = 0, err = 1;
743 
744 		list_for_each(list, &ep->base.bind_addr.address_list)
745 			cnt++;
746 
747 		sctp_for_each_hentry(epb2, &head->chain) {
748 			struct sock *sk2 = epb2->sk;
749 
750 			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
751 			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
752 			    !sk2->sk_reuseport)
753 				continue;
754 
755 			err = sctp_bind_addrs_check(sctp_sk(sk2),
756 						    sctp_sk(sk), cnt);
757 			if (!err) {
758 				err = reuseport_add_sock(sk, sk2, any);
759 				if (err)
760 					return err;
761 				break;
762 			} else if (err < 0) {
763 				return err;
764 			}
765 		}
766 
767 		if (err) {
768 			err = reuseport_alloc(sk, any);
769 			if (err)
770 				return err;
771 		}
772 	}
773 
774 	write_lock(&head->lock);
775 	hlist_add_head(&epb->node, &head->chain);
776 	write_unlock(&head->lock);
777 	return 0;
778 }
779 
780 /* Add an endpoint to the hash. Local BH-safe. */
781 int sctp_hash_endpoint(struct sctp_endpoint *ep)
782 {
783 	int err;
784 
785 	local_bh_disable();
786 	err = __sctp_hash_endpoint(ep);
787 	local_bh_enable();
788 
789 	return err;
790 }
791 
792 /* Remove endpoint from the hash table.  */
793 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
794 {
795 	struct sock *sk = ep->base.sk;
796 	struct sctp_hashbucket *head;
797 	struct sctp_ep_common *epb;
798 
799 	epb = &ep->base;
800 
801 	epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
802 
803 	head = &sctp_ep_hashtable[epb->hashent];
804 
805 	if (rcu_access_pointer(sk->sk_reuseport_cb))
806 		reuseport_detach_sock(sk);
807 
808 	write_lock(&head->lock);
809 	hlist_del_init(&epb->node);
810 	write_unlock(&head->lock);
811 }
812 
813 /* Remove endpoint from the hash.  Local BH-safe. */
814 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
815 {
816 	local_bh_disable();
817 	__sctp_unhash_endpoint(ep);
818 	local_bh_enable();
819 }
820 
821 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
822 				const union sctp_addr *paddr, __u32 seed)
823 {
824 	__u32 addr;
825 
826 	if (paddr->sa.sa_family == AF_INET6)
827 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
828 	else
829 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
830 
831 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
832 			     (__force __u32)lport, net_hash_mix(net), seed);
833 }
834 
835 /* Look up an endpoint. */
836 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
837 					struct net *net, struct sk_buff *skb,
838 					const union sctp_addr *laddr,
839 					const union sctp_addr *paddr)
840 {
841 	struct sctp_hashbucket *head;
842 	struct sctp_ep_common *epb;
843 	struct sctp_endpoint *ep;
844 	struct sock *sk;
845 	__be16 lport;
846 	int hash;
847 
848 	lport = laddr->v4.sin_port;
849 	hash = sctp_ep_hashfn(net, ntohs(lport));
850 	head = &sctp_ep_hashtable[hash];
851 	read_lock(&head->lock);
852 	sctp_for_each_hentry(epb, &head->chain) {
853 		ep = sctp_ep(epb);
854 		if (sctp_endpoint_is_match(ep, net, laddr))
855 			goto hit;
856 	}
857 
858 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
859 
860 hit:
861 	sk = ep->base.sk;
862 	if (sk->sk_reuseport) {
863 		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
864 
865 		sk = reuseport_select_sock(sk, phash, skb,
866 					   sizeof(struct sctphdr));
867 		if (sk)
868 			ep = sctp_sk(sk)->ep;
869 	}
870 	sctp_endpoint_hold(ep);
871 	read_unlock(&head->lock);
872 	return ep;
873 }
874 
875 /* rhashtable for transport */
876 struct sctp_hash_cmp_arg {
877 	const union sctp_addr	*paddr;
878 	const struct net	*net;
879 	__be16			lport;
880 };
881 
882 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
883 				const void *ptr)
884 {
885 	struct sctp_transport *t = (struct sctp_transport *)ptr;
886 	const struct sctp_hash_cmp_arg *x = arg->key;
887 	int err = 1;
888 
889 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
890 		return err;
891 	if (!sctp_transport_hold(t))
892 		return err;
893 
894 	if (!net_eq(sock_net(t->asoc->base.sk), x->net))
895 		goto out;
896 	if (x->lport != htons(t->asoc->base.bind_addr.port))
897 		goto out;
898 
899 	err = 0;
900 out:
901 	sctp_transport_put(t);
902 	return err;
903 }
904 
905 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
906 {
907 	const struct sctp_transport *t = data;
908 
909 	return sctp_hashfn(sock_net(t->asoc->base.sk),
910 			   htons(t->asoc->base.bind_addr.port),
911 			   &t->ipaddr, seed);
912 }
913 
914 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
915 {
916 	const struct sctp_hash_cmp_arg *x = data;
917 
918 	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
919 }
920 
921 static const struct rhashtable_params sctp_hash_params = {
922 	.head_offset		= offsetof(struct sctp_transport, node),
923 	.hashfn			= sctp_hash_key,
924 	.obj_hashfn		= sctp_hash_obj,
925 	.obj_cmpfn		= sctp_hash_cmp,
926 	.automatic_shrinking	= true,
927 };
928 
929 int sctp_transport_hashtable_init(void)
930 {
931 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
932 }
933 
934 void sctp_transport_hashtable_destroy(void)
935 {
936 	rhltable_destroy(&sctp_transport_hashtable);
937 }
938 
939 int sctp_hash_transport(struct sctp_transport *t)
940 {
941 	struct sctp_transport *transport;
942 	struct rhlist_head *tmp, *list;
943 	struct sctp_hash_cmp_arg arg;
944 	int err;
945 
946 	if (t->asoc->temp)
947 		return 0;
948 
949 	arg.net   = sock_net(t->asoc->base.sk);
950 	arg.paddr = &t->ipaddr;
951 	arg.lport = htons(t->asoc->base.bind_addr.port);
952 
953 	rcu_read_lock();
954 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
955 			       sctp_hash_params);
956 
957 	rhl_for_each_entry_rcu(transport, tmp, list, node)
958 		if (transport->asoc->ep == t->asoc->ep) {
959 			rcu_read_unlock();
960 			return -EEXIST;
961 		}
962 	rcu_read_unlock();
963 
964 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
965 				  &t->node, sctp_hash_params);
966 	if (err)
967 		pr_err_once("insert transport fail, errno %d\n", err);
968 
969 	return err;
970 }
971 
972 void sctp_unhash_transport(struct sctp_transport *t)
973 {
974 	if (t->asoc->temp)
975 		return;
976 
977 	rhltable_remove(&sctp_transport_hashtable, &t->node,
978 			sctp_hash_params);
979 }
980 
981 /* return a transport with holding it */
982 struct sctp_transport *sctp_addrs_lookup_transport(
983 				struct net *net,
984 				const union sctp_addr *laddr,
985 				const union sctp_addr *paddr)
986 {
987 	struct rhlist_head *tmp, *list;
988 	struct sctp_transport *t;
989 	struct sctp_hash_cmp_arg arg = {
990 		.paddr = paddr,
991 		.net   = net,
992 		.lport = laddr->v4.sin_port,
993 	};
994 
995 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
996 			       sctp_hash_params);
997 
998 	rhl_for_each_entry_rcu(t, tmp, list, node) {
999 		if (!sctp_transport_hold(t))
1000 			continue;
1001 
1002 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
1003 					 laddr, sctp_sk(t->asoc->base.sk)))
1004 			return t;
1005 		sctp_transport_put(t);
1006 	}
1007 
1008 	return NULL;
1009 }
1010 
1011 /* return a transport without holding it, as it's only used under sock lock */
1012 struct sctp_transport *sctp_epaddr_lookup_transport(
1013 				const struct sctp_endpoint *ep,
1014 				const union sctp_addr *paddr)
1015 {
1016 	struct net *net = sock_net(ep->base.sk);
1017 	struct rhlist_head *tmp, *list;
1018 	struct sctp_transport *t;
1019 	struct sctp_hash_cmp_arg arg = {
1020 		.paddr = paddr,
1021 		.net   = net,
1022 		.lport = htons(ep->base.bind_addr.port),
1023 	};
1024 
1025 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1026 			       sctp_hash_params);
1027 
1028 	rhl_for_each_entry_rcu(t, tmp, list, node)
1029 		if (ep == t->asoc->ep)
1030 			return t;
1031 
1032 	return NULL;
1033 }
1034 
1035 /* Look up an association. */
1036 static struct sctp_association *__sctp_lookup_association(
1037 					struct net *net,
1038 					const union sctp_addr *local,
1039 					const union sctp_addr *peer,
1040 					struct sctp_transport **pt)
1041 {
1042 	struct sctp_transport *t;
1043 	struct sctp_association *asoc = NULL;
1044 
1045 	t = sctp_addrs_lookup_transport(net, local, peer);
1046 	if (!t)
1047 		goto out;
1048 
1049 	asoc = t->asoc;
1050 	*pt = t;
1051 
1052 out:
1053 	return asoc;
1054 }
1055 
1056 /* Look up an association. protected by RCU read lock */
1057 static
1058 struct sctp_association *sctp_lookup_association(struct net *net,
1059 						 const union sctp_addr *laddr,
1060 						 const union sctp_addr *paddr,
1061 						 struct sctp_transport **transportp)
1062 {
1063 	struct sctp_association *asoc;
1064 
1065 	rcu_read_lock();
1066 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1067 	rcu_read_unlock();
1068 
1069 	return asoc;
1070 }
1071 
1072 /* Is there an association matching the given local and peer addresses? */
1073 bool sctp_has_association(struct net *net,
1074 			  const union sctp_addr *laddr,
1075 			  const union sctp_addr *paddr)
1076 {
1077 	struct sctp_transport *transport;
1078 
1079 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1080 		sctp_transport_put(transport);
1081 		return true;
1082 	}
1083 
1084 	return false;
1085 }
1086 
1087 /*
1088  * SCTP Implementors Guide, 2.18 Handling of address
1089  * parameters within the INIT or INIT-ACK.
1090  *
1091  * D) When searching for a matching TCB upon reception of an INIT
1092  *    or INIT-ACK chunk the receiver SHOULD use not only the
1093  *    source address of the packet (containing the INIT or
1094  *    INIT-ACK) but the receiver SHOULD also use all valid
1095  *    address parameters contained within the chunk.
1096  *
1097  * 2.18.3 Solution description
1098  *
1099  * This new text clearly specifies to an implementor the need
1100  * to look within the INIT or INIT-ACK. Any implementation that
1101  * does not do this, may not be able to establish associations
1102  * in certain circumstances.
1103  *
1104  */
1105 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1106 	struct sk_buff *skb,
1107 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1108 {
1109 	struct sctp_association *asoc;
1110 	union sctp_addr addr;
1111 	union sctp_addr *paddr = &addr;
1112 	struct sctphdr *sh = sctp_hdr(skb);
1113 	union sctp_params params;
1114 	struct sctp_init_chunk *init;
1115 	struct sctp_af *af;
1116 
1117 	/*
1118 	 * This code will NOT touch anything inside the chunk--it is
1119 	 * strictly READ-ONLY.
1120 	 *
1121 	 * RFC 2960 3  SCTP packet Format
1122 	 *
1123 	 * Multiple chunks can be bundled into one SCTP packet up to
1124 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1125 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1126 	 * other chunk in a packet.  See Section 6.10 for more details
1127 	 * on chunk bundling.
1128 	 */
1129 
1130 	/* Find the start of the TLVs and the end of the chunk.  This is
1131 	 * the region we search for address parameters.
1132 	 */
1133 	init = (struct sctp_init_chunk *)skb->data;
1134 
1135 	/* Walk the parameters looking for embedded addresses. */
1136 	sctp_walk_params(params, init, init_hdr.params) {
1137 
1138 		/* Note: Ignoring hostname addresses. */
1139 		af = sctp_get_af_specific(param_type2af(params.p->type));
1140 		if (!af)
1141 			continue;
1142 
1143 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1144 
1145 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1146 		if (asoc)
1147 			return asoc;
1148 	}
1149 
1150 	return NULL;
1151 }
1152 
1153 /* ADD-IP, Section 5.2
1154  * When an endpoint receives an ASCONF Chunk from the remote peer
1155  * special procedures may be needed to identify the association the
1156  * ASCONF Chunk is associated with. To properly find the association
1157  * the following procedures SHOULD be followed:
1158  *
1159  * D2) If the association is not found, use the address found in the
1160  * Address Parameter TLV combined with the port number found in the
1161  * SCTP common header. If found proceed to rule D4.
1162  *
1163  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1164  * address found in the ASCONF Address Parameter TLV of each of the
1165  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1166  */
1167 static struct sctp_association *__sctp_rcv_asconf_lookup(
1168 					struct net *net,
1169 					struct sctp_chunkhdr *ch,
1170 					const union sctp_addr *laddr,
1171 					__be16 peer_port,
1172 					struct sctp_transport **transportp)
1173 {
1174 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1175 	struct sctp_af *af;
1176 	union sctp_addr_param *param;
1177 	union sctp_addr paddr;
1178 
1179 	/* Skip over the ADDIP header and find the Address parameter */
1180 	param = (union sctp_addr_param *)(asconf + 1);
1181 
1182 	af = sctp_get_af_specific(param_type2af(param->p.type));
1183 	if (unlikely(!af))
1184 		return NULL;
1185 
1186 	af->from_addr_param(&paddr, param, peer_port, 0);
1187 
1188 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1189 }
1190 
1191 
1192 /* SCTP-AUTH, Section 6.3:
1193 *    If the receiver does not find a STCB for a packet containing an AUTH
1194 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1195 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1196 *    association.
1197 *
1198 * This means that any chunks that can help us identify the association need
1199 * to be looked at to find this association.
1200 */
1201 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1202 				      struct sk_buff *skb,
1203 				      const union sctp_addr *laddr,
1204 				      struct sctp_transport **transportp)
1205 {
1206 	struct sctp_association *asoc = NULL;
1207 	struct sctp_chunkhdr *ch;
1208 	int have_auth = 0;
1209 	unsigned int chunk_num = 1;
1210 	__u8 *ch_end;
1211 
1212 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1213 	 * to help us find the association.
1214 	 */
1215 	ch = (struct sctp_chunkhdr *)skb->data;
1216 	do {
1217 		/* Break out if chunk length is less then minimal. */
1218 		if (ntohs(ch->length) < sizeof(*ch))
1219 			break;
1220 
1221 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1222 		if (ch_end > skb_tail_pointer(skb))
1223 			break;
1224 
1225 		switch (ch->type) {
1226 		case SCTP_CID_AUTH:
1227 			have_auth = chunk_num;
1228 			break;
1229 
1230 		case SCTP_CID_COOKIE_ECHO:
1231 			/* If a packet arrives containing an AUTH chunk as
1232 			 * a first chunk, a COOKIE-ECHO chunk as the second
1233 			 * chunk, and possibly more chunks after them, and
1234 			 * the receiver does not have an STCB for that
1235 			 * packet, then authentication is based on
1236 			 * the contents of the COOKIE- ECHO chunk.
1237 			 */
1238 			if (have_auth == 1 && chunk_num == 2)
1239 				return NULL;
1240 			break;
1241 
1242 		case SCTP_CID_ASCONF:
1243 			if (have_auth || net->sctp.addip_noauth)
1244 				asoc = __sctp_rcv_asconf_lookup(
1245 						net, ch, laddr,
1246 						sctp_hdr(skb)->source,
1247 						transportp);
1248 		default:
1249 			break;
1250 		}
1251 
1252 		if (asoc)
1253 			break;
1254 
1255 		ch = (struct sctp_chunkhdr *)ch_end;
1256 		chunk_num++;
1257 	} while (ch_end < skb_tail_pointer(skb));
1258 
1259 	return asoc;
1260 }
1261 
1262 /*
1263  * There are circumstances when we need to look inside the SCTP packet
1264  * for information to help us find the association.   Examples
1265  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1266  * chunks.
1267  */
1268 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1269 				      struct sk_buff *skb,
1270 				      const union sctp_addr *laddr,
1271 				      struct sctp_transport **transportp)
1272 {
1273 	struct sctp_chunkhdr *ch;
1274 
1275 	/* We do not allow GSO frames here as we need to linearize and
1276 	 * then cannot guarantee frame boundaries. This shouldn't be an
1277 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1278 	 * those cannot be on GSO-style anyway.
1279 	 */
1280 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1281 		return NULL;
1282 
1283 	ch = (struct sctp_chunkhdr *)skb->data;
1284 
1285 	/* The code below will attempt to walk the chunk and extract
1286 	 * parameter information.  Before we do that, we need to verify
1287 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1288 	 * walk off the end.
1289 	 */
1290 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1291 		return NULL;
1292 
1293 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1294 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1295 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1296 
1297 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1298 }
1299 
1300 /* Lookup an association for an inbound skb. */
1301 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1302 				      struct sk_buff *skb,
1303 				      const union sctp_addr *paddr,
1304 				      const union sctp_addr *laddr,
1305 				      struct sctp_transport **transportp)
1306 {
1307 	struct sctp_association *asoc;
1308 
1309 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1310 	if (asoc)
1311 		goto out;
1312 
1313 	/* Further lookup for INIT/INIT-ACK packets.
1314 	 * SCTP Implementors Guide, 2.18 Handling of address
1315 	 * parameters within the INIT or INIT-ACK.
1316 	 */
1317 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1318 	if (asoc)
1319 		goto out;
1320 
1321 	if (paddr->sa.sa_family == AF_INET)
1322 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1323 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1324 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1325 	else
1326 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1327 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1328 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1329 
1330 out:
1331 	return asoc;
1332 }
1333