1 /* SCTP kernel reference Implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel reference Implementation 5 * 6 * The SCTP reference implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * The SCTP reference implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, write to 20 * the Free Software Foundation, 59 Temple Place - Suite 330, 21 * Boston, MA 02111-1307, USA. 22 * 23 * Please send any bug reports or fixes you make to the 24 * email address(es): 25 * lksctp developers <lksctp-developers@lists.sourceforge.net> 26 * 27 * Or submit a bug report through the following website: 28 * http://www.sf.net/projects/lksctp 29 * 30 * Written or modified by: 31 * Vlad Yasevich <vladislav.yasevich@hp.com> 32 * 33 * Any bugs reported given to us we will try to fix... any fixes shared will 34 * be incorporated into the next SCTP release. 35 */ 36 37 #include <linux/types.h> 38 #include <linux/crypto.h> 39 #include <linux/scatterlist.h> 40 #include <net/sctp/sctp.h> 41 #include <net/sctp/auth.h> 42 43 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 44 { 45 /* id 0 is reserved. as all 0 */ 46 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 47 }, 48 { 49 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 50 .hmac_name="hmac(sha1)", 51 .hmac_len = SCTP_SHA1_SIG_SIZE, 52 }, 53 { 54 /* id 2 is reserved as well */ 55 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 56 }, 57 { 58 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 59 .hmac_name="hmac(sha256)", 60 .hmac_len = SCTP_SHA256_SIG_SIZE, 61 } 62 }; 63 64 65 void sctp_auth_key_put(struct sctp_auth_bytes *key) 66 { 67 if (!key) 68 return; 69 70 if (atomic_dec_and_test(&key->refcnt)) { 71 kfree(key); 72 SCTP_DBG_OBJCNT_DEC(keys); 73 } 74 } 75 76 /* Create a new key structure of a given length */ 77 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 78 { 79 struct sctp_auth_bytes *key; 80 81 /* Allocate the shared key */ 82 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 83 if (!key) 84 return NULL; 85 86 key->len = key_len; 87 atomic_set(&key->refcnt, 1); 88 SCTP_DBG_OBJCNT_INC(keys); 89 90 return key; 91 } 92 93 /* Create a new shared key container with a give key id */ 94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 95 { 96 struct sctp_shared_key *new; 97 98 /* Allocate the shared key container */ 99 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 100 if (!new) 101 return NULL; 102 103 INIT_LIST_HEAD(&new->key_list); 104 new->key_id = key_id; 105 106 return new; 107 } 108 109 /* Free the shared key stucture */ 110 void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) 111 { 112 BUG_ON(!list_empty(&sh_key->key_list)); 113 sctp_auth_key_put(sh_key->key); 114 sh_key->key = NULL; 115 kfree(sh_key); 116 } 117 118 /* Destory the entire key list. This is done during the 119 * associon and endpoint free process. 120 */ 121 void sctp_auth_destroy_keys(struct list_head *keys) 122 { 123 struct sctp_shared_key *ep_key; 124 struct sctp_shared_key *tmp; 125 126 if (list_empty(keys)) 127 return; 128 129 key_for_each_safe(ep_key, tmp, keys) { 130 list_del_init(&ep_key->key_list); 131 sctp_auth_shkey_free(ep_key); 132 } 133 } 134 135 /* Compare two byte vectors as numbers. Return values 136 * are: 137 * 0 - vectors are equal 138 * < 0 - vector 1 is smaller then vector2 139 * > 0 - vector 1 is greater then vector2 140 * 141 * Algorithm is: 142 * This is performed by selecting the numerically smaller key vector... 143 * If the key vectors are equal as numbers but differ in length ... 144 * the shorter vector is considered smaller 145 * 146 * Examples (with small values): 147 * 000123456789 > 123456789 (first number is longer) 148 * 000123456789 < 234567891 (second number is larger numerically) 149 * 123456789 > 2345678 (first number is both larger & longer) 150 */ 151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 152 struct sctp_auth_bytes *vector2) 153 { 154 int diff; 155 int i; 156 const __u8 *longer; 157 158 diff = vector1->len - vector2->len; 159 if (diff) { 160 longer = (diff > 0) ? vector1->data : vector2->data; 161 162 /* Check to see if the longer number is 163 * lead-zero padded. If it is not, it 164 * is automatically larger numerically. 165 */ 166 for (i = 0; i < abs(diff); i++ ) { 167 if (longer[i] != 0) 168 return diff; 169 } 170 } 171 172 /* lengths are the same, compare numbers */ 173 return memcmp(vector1->data, vector2->data, vector1->len); 174 } 175 176 /* 177 * Create a key vector as described in SCTP-AUTH, Section 6.1 178 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 179 * parameter sent by each endpoint are concatenated as byte vectors. 180 * These parameters include the parameter type, parameter length, and 181 * the parameter value, but padding is omitted; all padding MUST be 182 * removed from this concatenation before proceeding with further 183 * computation of keys. Parameters which were not sent are simply 184 * omitted from the concatenation process. The resulting two vectors 185 * are called the two key vectors. 186 */ 187 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 188 sctp_random_param_t *random, 189 sctp_chunks_param_t *chunks, 190 sctp_hmac_algo_param_t *hmacs, 191 gfp_t gfp) 192 { 193 struct sctp_auth_bytes *new; 194 __u32 len; 195 __u32 offset = 0; 196 197 len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length); 198 if (chunks) 199 len += ntohs(chunks->param_hdr.length); 200 201 new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp); 202 if (!new) 203 return NULL; 204 205 new->len = len; 206 207 memcpy(new->data, random, ntohs(random->param_hdr.length)); 208 offset += ntohs(random->param_hdr.length); 209 210 if (chunks) { 211 memcpy(new->data + offset, chunks, 212 ntohs(chunks->param_hdr.length)); 213 offset += ntohs(chunks->param_hdr.length); 214 } 215 216 memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length)); 217 218 return new; 219 } 220 221 222 /* Make a key vector based on our local parameters */ 223 struct sctp_auth_bytes *sctp_auth_make_local_vector( 224 const struct sctp_association *asoc, 225 gfp_t gfp) 226 { 227 return sctp_auth_make_key_vector( 228 (sctp_random_param_t*)asoc->c.auth_random, 229 (sctp_chunks_param_t*)asoc->c.auth_chunks, 230 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs, 231 gfp); 232 } 233 234 /* Make a key vector based on peer's parameters */ 235 struct sctp_auth_bytes *sctp_auth_make_peer_vector( 236 const struct sctp_association *asoc, 237 gfp_t gfp) 238 { 239 return sctp_auth_make_key_vector(asoc->peer.peer_random, 240 asoc->peer.peer_chunks, 241 asoc->peer.peer_hmacs, 242 gfp); 243 } 244 245 246 /* Set the value of the association shared key base on the parameters 247 * given. The algorithm is: 248 * From the endpoint pair shared keys and the key vectors the 249 * association shared keys are computed. This is performed by selecting 250 * the numerically smaller key vector and concatenating it to the 251 * endpoint pair shared key, and then concatenating the numerically 252 * larger key vector to that. The result of the concatenation is the 253 * association shared key. 254 */ 255 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 256 struct sctp_shared_key *ep_key, 257 struct sctp_auth_bytes *first_vector, 258 struct sctp_auth_bytes *last_vector, 259 gfp_t gfp) 260 { 261 struct sctp_auth_bytes *secret; 262 __u32 offset = 0; 263 __u32 auth_len; 264 265 auth_len = first_vector->len + last_vector->len; 266 if (ep_key->key) 267 auth_len += ep_key->key->len; 268 269 secret = sctp_auth_create_key(auth_len, gfp); 270 if (!secret) 271 return NULL; 272 273 if (ep_key->key) { 274 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 275 offset += ep_key->key->len; 276 } 277 278 memcpy(secret->data + offset, first_vector->data, first_vector->len); 279 offset += first_vector->len; 280 281 memcpy(secret->data + offset, last_vector->data, last_vector->len); 282 283 return secret; 284 } 285 286 /* Create an association shared key. Follow the algorithm 287 * described in SCTP-AUTH, Section 6.1 288 */ 289 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 290 const struct sctp_association *asoc, 291 struct sctp_shared_key *ep_key, 292 gfp_t gfp) 293 { 294 struct sctp_auth_bytes *local_key_vector; 295 struct sctp_auth_bytes *peer_key_vector; 296 struct sctp_auth_bytes *first_vector, 297 *last_vector; 298 struct sctp_auth_bytes *secret = NULL; 299 int cmp; 300 301 302 /* Now we need to build the key vectors 303 * SCTP-AUTH , Section 6.1 304 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 305 * parameter sent by each endpoint are concatenated as byte vectors. 306 * These parameters include the parameter type, parameter length, and 307 * the parameter value, but padding is omitted; all padding MUST be 308 * removed from this concatenation before proceeding with further 309 * computation of keys. Parameters which were not sent are simply 310 * omitted from the concatenation process. The resulting two vectors 311 * are called the two key vectors. 312 */ 313 314 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 315 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 316 317 if (!peer_key_vector || !local_key_vector) 318 goto out; 319 320 /* Figure out the order in wich the key_vectors will be 321 * added to the endpoint shared key. 322 * SCTP-AUTH, Section 6.1: 323 * This is performed by selecting the numerically smaller key 324 * vector and concatenating it to the endpoint pair shared 325 * key, and then concatenating the numerically larger key 326 * vector to that. If the key vectors are equal as numbers 327 * but differ in length, then the concatenation order is the 328 * endpoint shared key, followed by the shorter key vector, 329 * followed by the longer key vector. Otherwise, the key 330 * vectors are identical, and may be concatenated to the 331 * endpoint pair key in any order. 332 */ 333 cmp = sctp_auth_compare_vectors(local_key_vector, 334 peer_key_vector); 335 if (cmp < 0) { 336 first_vector = local_key_vector; 337 last_vector = peer_key_vector; 338 } else { 339 first_vector = peer_key_vector; 340 last_vector = local_key_vector; 341 } 342 343 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 344 gfp); 345 out: 346 kfree(local_key_vector); 347 kfree(peer_key_vector); 348 349 return secret; 350 } 351 352 /* 353 * Populate the association overlay list with the list 354 * from the endpoint. 355 */ 356 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 357 struct sctp_association *asoc, 358 gfp_t gfp) 359 { 360 struct sctp_shared_key *sh_key; 361 struct sctp_shared_key *new; 362 363 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 364 365 key_for_each(sh_key, &ep->endpoint_shared_keys) { 366 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 367 if (!new) 368 goto nomem; 369 370 new->key = sh_key->key; 371 sctp_auth_key_hold(new->key); 372 list_add(&new->key_list, &asoc->endpoint_shared_keys); 373 } 374 375 return 0; 376 377 nomem: 378 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 379 return -ENOMEM; 380 } 381 382 383 /* Public interface to creat the association shared key. 384 * See code above for the algorithm. 385 */ 386 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 387 { 388 struct sctp_auth_bytes *secret; 389 struct sctp_shared_key *ep_key; 390 391 /* If we don't support AUTH, or peer is not capable 392 * we don't need to do anything. 393 */ 394 if (!sctp_auth_enable || !asoc->peer.auth_capable) 395 return 0; 396 397 /* If the key_id is non-zero and we couldn't find an 398 * endpoint pair shared key, we can't compute the 399 * secret. 400 * For key_id 0, endpoint pair shared key is a NULL key. 401 */ 402 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 403 BUG_ON(!ep_key); 404 405 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 406 if (!secret) 407 return -ENOMEM; 408 409 sctp_auth_key_put(asoc->asoc_shared_key); 410 asoc->asoc_shared_key = secret; 411 412 return 0; 413 } 414 415 416 /* Find the endpoint pair shared key based on the key_id */ 417 struct sctp_shared_key *sctp_auth_get_shkey( 418 const struct sctp_association *asoc, 419 __u16 key_id) 420 { 421 struct sctp_shared_key *key = NULL; 422 423 /* First search associations set of endpoint pair shared keys */ 424 key_for_each(key, &asoc->endpoint_shared_keys) { 425 if (key->key_id == key_id) 426 break; 427 } 428 429 return key; 430 } 431 432 /* 433 * Initialize all the possible digest transforms that we can use. Right now 434 * now, the supported digests are SHA1 and SHA256. We do this here once 435 * because of the restrictiong that transforms may only be allocated in 436 * user context. This forces us to pre-allocated all possible transforms 437 * at the endpoint init time. 438 */ 439 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 440 { 441 struct crypto_hash *tfm = NULL; 442 __u16 id; 443 444 /* if the transforms are already allocted, we are done */ 445 if (!sctp_auth_enable) { 446 ep->auth_hmacs = NULL; 447 return 0; 448 } 449 450 if (ep->auth_hmacs) 451 return 0; 452 453 /* Allocated the array of pointers to transorms */ 454 ep->auth_hmacs = kzalloc( 455 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS, 456 gfp); 457 if (!ep->auth_hmacs) 458 return -ENOMEM; 459 460 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 461 462 /* See is we support the id. Supported IDs have name and 463 * length fields set, so that we can allocated and use 464 * them. We can safely just check for name, for without the 465 * name, we can't allocate the TFM. 466 */ 467 if (!sctp_hmac_list[id].hmac_name) 468 continue; 469 470 /* If this TFM has been allocated, we are all set */ 471 if (ep->auth_hmacs[id]) 472 continue; 473 474 /* Allocate the ID */ 475 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0, 476 CRYPTO_ALG_ASYNC); 477 if (IS_ERR(tfm)) 478 goto out_err; 479 480 ep->auth_hmacs[id] = tfm; 481 } 482 483 return 0; 484 485 out_err: 486 /* Clean up any successfull allocations */ 487 sctp_auth_destroy_hmacs(ep->auth_hmacs); 488 return -ENOMEM; 489 } 490 491 /* Destroy the hmac tfm array */ 492 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[]) 493 { 494 int i; 495 496 if (!auth_hmacs) 497 return; 498 499 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) 500 { 501 if (auth_hmacs[i]) 502 crypto_free_hash(auth_hmacs[i]); 503 } 504 kfree(auth_hmacs); 505 } 506 507 508 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 509 { 510 return &sctp_hmac_list[hmac_id]; 511 } 512 513 /* Get an hmac description information that we can use to build 514 * the AUTH chunk 515 */ 516 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 517 { 518 struct sctp_hmac_algo_param *hmacs; 519 __u16 n_elt; 520 __u16 id = 0; 521 int i; 522 523 /* If we have a default entry, use it */ 524 if (asoc->default_hmac_id) 525 return &sctp_hmac_list[asoc->default_hmac_id]; 526 527 /* Since we do not have a default entry, find the first entry 528 * we support and return that. Do not cache that id. 529 */ 530 hmacs = asoc->peer.peer_hmacs; 531 if (!hmacs) 532 return NULL; 533 534 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 535 for (i = 0; i < n_elt; i++) { 536 id = ntohs(hmacs->hmac_ids[i]); 537 538 /* Check the id is in the supported range */ 539 if (id > SCTP_AUTH_HMAC_ID_MAX) 540 continue; 541 542 /* See is we support the id. Supported IDs have name and 543 * length fields set, so that we can allocated and use 544 * them. We can safely just check for name, for without the 545 * name, we can't allocate the TFM. 546 */ 547 if (!sctp_hmac_list[id].hmac_name) 548 continue; 549 550 break; 551 } 552 553 if (id == 0) 554 return NULL; 555 556 return &sctp_hmac_list[id]; 557 } 558 559 static int __sctp_auth_find_hmacid(__u16 *hmacs, int n_elts, __u16 hmac_id) 560 { 561 int found = 0; 562 int i; 563 564 for (i = 0; i < n_elts; i++) { 565 if (hmac_id == hmacs[i]) { 566 found = 1; 567 break; 568 } 569 } 570 571 return found; 572 } 573 574 /* See if the HMAC_ID is one that we claim as supported */ 575 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 576 __u16 hmac_id) 577 { 578 struct sctp_hmac_algo_param *hmacs; 579 __u16 n_elt; 580 581 if (!asoc) 582 return 0; 583 584 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 585 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 586 587 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 588 } 589 590 591 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 592 * Section 6.1: 593 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 594 * algorithm it supports. 595 */ 596 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 597 struct sctp_hmac_algo_param *hmacs) 598 { 599 struct sctp_endpoint *ep; 600 __u16 id; 601 int i; 602 int n_params; 603 604 /* if the default id is already set, use it */ 605 if (asoc->default_hmac_id) 606 return; 607 608 n_params = (ntohs(hmacs->param_hdr.length) 609 - sizeof(sctp_paramhdr_t)) >> 1; 610 ep = asoc->ep; 611 for (i = 0; i < n_params; i++) { 612 id = ntohs(hmacs->hmac_ids[i]); 613 614 /* Check the id is in the supported range */ 615 if (id > SCTP_AUTH_HMAC_ID_MAX) 616 continue; 617 618 /* If this TFM has been allocated, use this id */ 619 if (ep->auth_hmacs[id]) { 620 asoc->default_hmac_id = id; 621 break; 622 } 623 } 624 } 625 626 627 /* Check to see if the given chunk is supposed to be authenticated */ 628 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) 629 { 630 unsigned short len; 631 int found = 0; 632 int i; 633 634 if (!param) 635 return 0; 636 637 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); 638 639 /* SCTP-AUTH, Section 3.2 640 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 641 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 642 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 643 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 644 */ 645 for (i = 0; !found && i < len; i++) { 646 switch (param->chunks[i]) { 647 case SCTP_CID_INIT: 648 case SCTP_CID_INIT_ACK: 649 case SCTP_CID_SHUTDOWN_COMPLETE: 650 case SCTP_CID_AUTH: 651 break; 652 653 default: 654 if (param->chunks[i] == chunk) 655 found = 1; 656 break; 657 } 658 } 659 660 return found; 661 } 662 663 /* Check if peer requested that this chunk is authenticated */ 664 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 665 { 666 if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable) 667 return 0; 668 669 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 670 } 671 672 /* Check if we requested that peer authenticate this chunk. */ 673 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 674 { 675 if (!sctp_auth_enable || !asoc) 676 return 0; 677 678 return __sctp_auth_cid(chunk, 679 (struct sctp_chunks_param *)asoc->c.auth_chunks); 680 } 681 682 /* SCTP-AUTH: Section 6.2: 683 * The sender MUST calculate the MAC as described in RFC2104 [2] using 684 * the hash function H as described by the MAC Identifier and the shared 685 * association key K based on the endpoint pair shared key described by 686 * the shared key identifier. The 'data' used for the computation of 687 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 688 * zero (as shown in Figure 6) followed by all chunks that are placed 689 * after the AUTH chunk in the SCTP packet. 690 */ 691 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 692 struct sk_buff *skb, 693 struct sctp_auth_chunk *auth, 694 gfp_t gfp) 695 { 696 struct scatterlist sg; 697 struct hash_desc desc; 698 struct sctp_auth_bytes *asoc_key; 699 __u16 key_id, hmac_id; 700 __u8 *digest; 701 unsigned char *end; 702 int free_key = 0; 703 704 /* Extract the info we need: 705 * - hmac id 706 * - key id 707 */ 708 key_id = ntohs(auth->auth_hdr.shkey_id); 709 hmac_id = ntohs(auth->auth_hdr.hmac_id); 710 711 if (key_id == asoc->active_key_id) 712 asoc_key = asoc->asoc_shared_key; 713 else { 714 struct sctp_shared_key *ep_key; 715 716 ep_key = sctp_auth_get_shkey(asoc, key_id); 717 if (!ep_key) 718 return; 719 720 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 721 if (!asoc_key) 722 return; 723 724 free_key = 1; 725 } 726 727 /* set up scatter list */ 728 end = skb_tail_pointer(skb); 729 sg.page = virt_to_page(auth); 730 sg.offset = (unsigned long)(auth) % PAGE_SIZE; 731 sg.length = end - (unsigned char *)auth; 732 733 desc.tfm = asoc->ep->auth_hmacs[hmac_id]; 734 desc.flags = 0; 735 736 digest = auth->auth_hdr.hmac; 737 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len)) 738 goto free; 739 740 crypto_hash_digest(&desc, &sg, sg.length, digest); 741 742 free: 743 if (free_key) 744 sctp_auth_key_put(asoc_key); 745 } 746 747 /* API Helpers */ 748 749 /* Add a chunk to the endpoint authenticated chunk list */ 750 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 751 { 752 struct sctp_chunks_param *p = ep->auth_chunk_list; 753 __u16 nchunks; 754 __u16 param_len; 755 756 /* If this chunk is already specified, we are done */ 757 if (__sctp_auth_cid(chunk_id, p)) 758 return 0; 759 760 /* Check if we can add this chunk to the array */ 761 param_len = ntohs(p->param_hdr.length); 762 nchunks = param_len - sizeof(sctp_paramhdr_t); 763 if (nchunks == SCTP_NUM_CHUNK_TYPES) 764 return -EINVAL; 765 766 p->chunks[nchunks] = chunk_id; 767 p->param_hdr.length = htons(param_len + 1); 768 return 0; 769 } 770 771 /* Add hmac identifires to the endpoint list of supported hmac ids */ 772 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 773 struct sctp_hmacalgo *hmacs) 774 { 775 int has_sha1 = 0; 776 __u16 id; 777 int i; 778 779 /* Scan the list looking for unsupported id. Also make sure that 780 * SHA1 is specified. 781 */ 782 for (i = 0; i < hmacs->shmac_num_idents; i++) { 783 id = hmacs->shmac_idents[i]; 784 785 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 786 has_sha1 = 1; 787 788 if (!sctp_hmac_list[id].hmac_name) 789 return -EOPNOTSUPP; 790 } 791 792 if (!has_sha1) 793 return -EINVAL; 794 795 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0], 796 hmacs->shmac_num_idents * sizeof(__u16)); 797 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + 798 hmacs->shmac_num_idents * sizeof(__u16)); 799 return 0; 800 } 801 802 /* Set a new shared key on either endpoint or association. If the 803 * the key with a same ID already exists, replace the key (remove the 804 * old key and add a new one). 805 */ 806 int sctp_auth_set_key(struct sctp_endpoint *ep, 807 struct sctp_association *asoc, 808 struct sctp_authkey *auth_key) 809 { 810 struct sctp_shared_key *cur_key = NULL; 811 struct sctp_auth_bytes *key; 812 struct list_head *sh_keys; 813 int replace = 0; 814 815 /* Try to find the given key id to see if 816 * we are doing a replace, or adding a new key 817 */ 818 if (asoc) 819 sh_keys = &asoc->endpoint_shared_keys; 820 else 821 sh_keys = &ep->endpoint_shared_keys; 822 823 key_for_each(cur_key, sh_keys) { 824 if (cur_key->key_id == auth_key->sca_keynumber) { 825 replace = 1; 826 break; 827 } 828 } 829 830 /* If we are not replacing a key id, we need to allocate 831 * a shared key. 832 */ 833 if (!replace) { 834 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, 835 GFP_KERNEL); 836 if (!cur_key) 837 return -ENOMEM; 838 } 839 840 /* Create a new key data based on the info passed in */ 841 key = sctp_auth_create_key(auth_key->sca_keylen, GFP_KERNEL); 842 if (!key) 843 goto nomem; 844 845 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylen); 846 847 /* If we are replacing, remove the old keys data from the 848 * key id. If we are adding new key id, add it to the 849 * list. 850 */ 851 if (replace) 852 sctp_auth_key_put(cur_key->key); 853 else 854 list_add(&cur_key->key_list, sh_keys); 855 856 cur_key->key = key; 857 sctp_auth_key_hold(key); 858 859 return 0; 860 nomem: 861 if (!replace) 862 sctp_auth_shkey_free(cur_key); 863 864 return -ENOMEM; 865 } 866 867 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 868 struct sctp_association *asoc, 869 __u16 key_id) 870 { 871 struct sctp_shared_key *key; 872 struct list_head *sh_keys; 873 int found = 0; 874 875 /* The key identifier MUST correst to an existing key */ 876 if (asoc) 877 sh_keys = &asoc->endpoint_shared_keys; 878 else 879 sh_keys = &ep->endpoint_shared_keys; 880 881 key_for_each(key, sh_keys) { 882 if (key->key_id == key_id) { 883 found = 1; 884 break; 885 } 886 } 887 888 if (!found) 889 return -EINVAL; 890 891 if (asoc) { 892 asoc->active_key_id = key_id; 893 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 894 } else 895 ep->active_key_id = key_id; 896 897 return 0; 898 } 899 900 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 901 struct sctp_association *asoc, 902 __u16 key_id) 903 { 904 struct sctp_shared_key *key; 905 struct list_head *sh_keys; 906 int found = 0; 907 908 /* The key identifier MUST NOT be the current active key 909 * The key identifier MUST correst to an existing key 910 */ 911 if (asoc) { 912 if (asoc->active_key_id == key_id) 913 return -EINVAL; 914 915 sh_keys = &asoc->endpoint_shared_keys; 916 } else { 917 if (ep->active_key_id == key_id) 918 return -EINVAL; 919 920 sh_keys = &ep->endpoint_shared_keys; 921 } 922 923 key_for_each(key, sh_keys) { 924 if (key->key_id == key_id) { 925 found = 1; 926 break; 927 } 928 } 929 930 if (!found) 931 return -EINVAL; 932 933 /* Delete the shared key */ 934 list_del_init(&key->key_list); 935 sctp_auth_shkey_free(key); 936 937 return 0; 938 } 939