xref: /openbmc/linux/net/sctp/auth.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel reference Implementation
5  *
6  * The SCTP reference implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * The SCTP reference implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, write to
20  * the Free Software Foundation, 59 Temple Place - Suite 330,
21  * Boston, MA 02111-1307, USA.
22  *
23  * Please send any bug reports or fixes you make to the
24  * email address(es):
25  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
26  *
27  * Or submit a bug report through the following website:
28  *    http://www.sf.net/projects/lksctp
29  *
30  * Written or modified by:
31  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
32  *
33  * Any bugs reported given to us we will try to fix... any fixes shared will
34  * be incorporated into the next SCTP release.
35  */
36 
37 #include <linux/types.h>
38 #include <linux/crypto.h>
39 #include <linux/scatterlist.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/auth.h>
42 
43 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
44 	{
45 		/* id 0 is reserved.  as all 0 */
46 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
47 	},
48 	{
49 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
50 		.hmac_name="hmac(sha1)",
51 		.hmac_len = SCTP_SHA1_SIG_SIZE,
52 	},
53 	{
54 		/* id 2 is reserved as well */
55 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
56 	},
57 	{
58 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
59 		.hmac_name="hmac(sha256)",
60 		.hmac_len = SCTP_SHA256_SIG_SIZE,
61 	}
62 };
63 
64 
65 void sctp_auth_key_put(struct sctp_auth_bytes *key)
66 {
67 	if (!key)
68 		return;
69 
70 	if (atomic_dec_and_test(&key->refcnt)) {
71 		kfree(key);
72 		SCTP_DBG_OBJCNT_DEC(keys);
73 	}
74 }
75 
76 /* Create a new key structure of a given length */
77 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
78 {
79 	struct sctp_auth_bytes *key;
80 
81 	/* Allocate the shared key */
82 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 	if (!key)
84 		return NULL;
85 
86 	key->len = key_len;
87 	atomic_set(&key->refcnt, 1);
88 	SCTP_DBG_OBJCNT_INC(keys);
89 
90 	return key;
91 }
92 
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 	struct sctp_shared_key *new;
97 
98 	/* Allocate the shared key container */
99 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 	if (!new)
101 		return NULL;
102 
103 	INIT_LIST_HEAD(&new->key_list);
104 	new->key_id = key_id;
105 
106 	return new;
107 }
108 
109 /* Free the shared key stucture */
110 void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111 {
112 	BUG_ON(!list_empty(&sh_key->key_list));
113 	sctp_auth_key_put(sh_key->key);
114 	sh_key->key = NULL;
115 	kfree(sh_key);
116 }
117 
118 /* Destory the entire key list.  This is done during the
119  * associon and endpoint free process.
120  */
121 void sctp_auth_destroy_keys(struct list_head *keys)
122 {
123 	struct sctp_shared_key *ep_key;
124 	struct sctp_shared_key *tmp;
125 
126 	if (list_empty(keys))
127 		return;
128 
129 	key_for_each_safe(ep_key, tmp, keys) {
130 		list_del_init(&ep_key->key_list);
131 		sctp_auth_shkey_free(ep_key);
132 	}
133 }
134 
135 /* Compare two byte vectors as numbers.  Return values
136  * are:
137  * 	  0 - vectors are equal
138  * 	< 0 - vector 1 is smaller then vector2
139  * 	> 0 - vector 1 is greater then vector2
140  *
141  * Algorithm is:
142  * 	This is performed by selecting the numerically smaller key vector...
143  *	If the key vectors are equal as numbers but differ in length ...
144  *	the shorter vector is considered smaller
145  *
146  * Examples (with small values):
147  * 	000123456789 > 123456789 (first number is longer)
148  * 	000123456789 < 234567891 (second number is larger numerically)
149  * 	123456789 > 2345678 	 (first number is both larger & longer)
150  */
151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152 			      struct sctp_auth_bytes *vector2)
153 {
154 	int diff;
155 	int i;
156 	const __u8 *longer;
157 
158 	diff = vector1->len - vector2->len;
159 	if (diff) {
160 		longer = (diff > 0) ? vector1->data : vector2->data;
161 
162 		/* Check to see if the longer number is
163 		 * lead-zero padded.  If it is not, it
164 		 * is automatically larger numerically.
165 		 */
166 		for (i = 0; i < abs(diff); i++ ) {
167 			if (longer[i] != 0)
168 				return diff;
169 		}
170 	}
171 
172 	/* lengths are the same, compare numbers */
173 	return memcmp(vector1->data, vector2->data, vector1->len);
174 }
175 
176 /*
177  * Create a key vector as described in SCTP-AUTH, Section 6.1
178  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179  *    parameter sent by each endpoint are concatenated as byte vectors.
180  *    These parameters include the parameter type, parameter length, and
181  *    the parameter value, but padding is omitted; all padding MUST be
182  *    removed from this concatenation before proceeding with further
183  *    computation of keys.  Parameters which were not sent are simply
184  *    omitted from the concatenation process.  The resulting two vectors
185  *    are called the two key vectors.
186  */
187 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188 			sctp_random_param_t *random,
189 			sctp_chunks_param_t *chunks,
190 			sctp_hmac_algo_param_t *hmacs,
191 			gfp_t gfp)
192 {
193 	struct sctp_auth_bytes *new;
194 	__u32	len;
195 	__u32	offset = 0;
196 
197 	len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
198         if (chunks)
199 		len += ntohs(chunks->param_hdr.length);
200 
201 	new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
202 	if (!new)
203 		return NULL;
204 
205 	new->len = len;
206 
207 	memcpy(new->data, random, ntohs(random->param_hdr.length));
208 	offset += ntohs(random->param_hdr.length);
209 
210 	if (chunks) {
211 		memcpy(new->data + offset, chunks,
212 			ntohs(chunks->param_hdr.length));
213 		offset += ntohs(chunks->param_hdr.length);
214 	}
215 
216 	memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
217 
218 	return new;
219 }
220 
221 
222 /* Make a key vector based on our local parameters */
223 struct sctp_auth_bytes *sctp_auth_make_local_vector(
224 				    const struct sctp_association *asoc,
225 				    gfp_t gfp)
226 {
227 	return sctp_auth_make_key_vector(
228 				    (sctp_random_param_t*)asoc->c.auth_random,
229 				    (sctp_chunks_param_t*)asoc->c.auth_chunks,
230 				    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
231 				    gfp);
232 }
233 
234 /* Make a key vector based on peer's parameters */
235 struct sctp_auth_bytes *sctp_auth_make_peer_vector(
236 				    const struct sctp_association *asoc,
237 				    gfp_t gfp)
238 {
239 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
240 					 asoc->peer.peer_chunks,
241 					 asoc->peer.peer_hmacs,
242 					 gfp);
243 }
244 
245 
246 /* Set the value of the association shared key base on the parameters
247  * given.  The algorithm is:
248  *    From the endpoint pair shared keys and the key vectors the
249  *    association shared keys are computed.  This is performed by selecting
250  *    the numerically smaller key vector and concatenating it to the
251  *    endpoint pair shared key, and then concatenating the numerically
252  *    larger key vector to that.  The result of the concatenation is the
253  *    association shared key.
254  */
255 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
256 			struct sctp_shared_key *ep_key,
257 			struct sctp_auth_bytes *first_vector,
258 			struct sctp_auth_bytes *last_vector,
259 			gfp_t gfp)
260 {
261 	struct sctp_auth_bytes *secret;
262 	__u32 offset = 0;
263 	__u32 auth_len;
264 
265 	auth_len = first_vector->len + last_vector->len;
266 	if (ep_key->key)
267 		auth_len += ep_key->key->len;
268 
269 	secret = sctp_auth_create_key(auth_len, gfp);
270 	if (!secret)
271 		return NULL;
272 
273 	if (ep_key->key) {
274 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
275 		offset += ep_key->key->len;
276 	}
277 
278 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
279 	offset += first_vector->len;
280 
281 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
282 
283 	return secret;
284 }
285 
286 /* Create an association shared key.  Follow the algorithm
287  * described in SCTP-AUTH, Section 6.1
288  */
289 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
290 				 const struct sctp_association *asoc,
291 				 struct sctp_shared_key *ep_key,
292 				 gfp_t gfp)
293 {
294 	struct sctp_auth_bytes *local_key_vector;
295 	struct sctp_auth_bytes *peer_key_vector;
296 	struct sctp_auth_bytes	*first_vector,
297 				*last_vector;
298 	struct sctp_auth_bytes	*secret = NULL;
299 	int	cmp;
300 
301 
302 	/* Now we need to build the key vectors
303 	 * SCTP-AUTH , Section 6.1
304 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
305 	 *    parameter sent by each endpoint are concatenated as byte vectors.
306 	 *    These parameters include the parameter type, parameter length, and
307 	 *    the parameter value, but padding is omitted; all padding MUST be
308 	 *    removed from this concatenation before proceeding with further
309 	 *    computation of keys.  Parameters which were not sent are simply
310 	 *    omitted from the concatenation process.  The resulting two vectors
311 	 *    are called the two key vectors.
312 	 */
313 
314 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
315 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
316 
317 	if (!peer_key_vector || !local_key_vector)
318 		goto out;
319 
320 	/* Figure out the order in wich the key_vectors will be
321 	 * added to the endpoint shared key.
322 	 * SCTP-AUTH, Section 6.1:
323 	 *   This is performed by selecting the numerically smaller key
324 	 *   vector and concatenating it to the endpoint pair shared
325 	 *   key, and then concatenating the numerically larger key
326 	 *   vector to that.  If the key vectors are equal as numbers
327 	 *   but differ in length, then the concatenation order is the
328 	 *   endpoint shared key, followed by the shorter key vector,
329 	 *   followed by the longer key vector.  Otherwise, the key
330 	 *   vectors are identical, and may be concatenated to the
331 	 *   endpoint pair key in any order.
332 	 */
333 	cmp = sctp_auth_compare_vectors(local_key_vector,
334 					peer_key_vector);
335 	if (cmp < 0) {
336 		first_vector = local_key_vector;
337 		last_vector = peer_key_vector;
338 	} else {
339 		first_vector = peer_key_vector;
340 		last_vector = local_key_vector;
341 	}
342 
343 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
344 					    gfp);
345 out:
346 	kfree(local_key_vector);
347 	kfree(peer_key_vector);
348 
349 	return secret;
350 }
351 
352 /*
353  * Populate the association overlay list with the list
354  * from the endpoint.
355  */
356 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
357 				struct sctp_association *asoc,
358 				gfp_t gfp)
359 {
360 	struct sctp_shared_key *sh_key;
361 	struct sctp_shared_key *new;
362 
363 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
364 
365 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
366 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
367 		if (!new)
368 			goto nomem;
369 
370 		new->key = sh_key->key;
371 		sctp_auth_key_hold(new->key);
372 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
373 	}
374 
375 	return 0;
376 
377 nomem:
378 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
379 	return -ENOMEM;
380 }
381 
382 
383 /* Public interface to creat the association shared key.
384  * See code above for the algorithm.
385  */
386 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
387 {
388 	struct sctp_auth_bytes	*secret;
389 	struct sctp_shared_key *ep_key;
390 
391 	/* If we don't support AUTH, or peer is not capable
392 	 * we don't need to do anything.
393 	 */
394 	if (!sctp_auth_enable || !asoc->peer.auth_capable)
395 		return 0;
396 
397 	/* If the key_id is non-zero and we couldn't find an
398 	 * endpoint pair shared key, we can't compute the
399 	 * secret.
400 	 * For key_id 0, endpoint pair shared key is a NULL key.
401 	 */
402 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
403 	BUG_ON(!ep_key);
404 
405 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
406 	if (!secret)
407 		return -ENOMEM;
408 
409 	sctp_auth_key_put(asoc->asoc_shared_key);
410 	asoc->asoc_shared_key = secret;
411 
412 	return 0;
413 }
414 
415 
416 /* Find the endpoint pair shared key based on the key_id */
417 struct sctp_shared_key *sctp_auth_get_shkey(
418 				const struct sctp_association *asoc,
419 				__u16 key_id)
420 {
421 	struct sctp_shared_key *key = NULL;
422 
423 	/* First search associations set of endpoint pair shared keys */
424 	key_for_each(key, &asoc->endpoint_shared_keys) {
425 		if (key->key_id == key_id)
426 			break;
427 	}
428 
429 	return key;
430 }
431 
432 /*
433  * Initialize all the possible digest transforms that we can use.  Right now
434  * now, the supported digests are SHA1 and SHA256.  We do this here once
435  * because of the restrictiong that transforms may only be allocated in
436  * user context.  This forces us to pre-allocated all possible transforms
437  * at the endpoint init time.
438  */
439 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
440 {
441 	struct crypto_hash *tfm = NULL;
442 	__u16   id;
443 
444 	/* if the transforms are already allocted, we are done */
445 	if (!sctp_auth_enable) {
446 		ep->auth_hmacs = NULL;
447 		return 0;
448 	}
449 
450 	if (ep->auth_hmacs)
451 		return 0;
452 
453 	/* Allocated the array of pointers to transorms */
454 	ep->auth_hmacs = kzalloc(
455 			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
456 			    gfp);
457 	if (!ep->auth_hmacs)
458 		return -ENOMEM;
459 
460 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
461 
462 		/* See is we support the id.  Supported IDs have name and
463 		 * length fields set, so that we can allocated and use
464 		 * them.  We can safely just check for name, for without the
465 		 * name, we can't allocate the TFM.
466 		 */
467 		if (!sctp_hmac_list[id].hmac_name)
468 			continue;
469 
470 		/* If this TFM has been allocated, we are all set */
471 		if (ep->auth_hmacs[id])
472 			continue;
473 
474 		/* Allocate the ID */
475 		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
476 					CRYPTO_ALG_ASYNC);
477 		if (IS_ERR(tfm))
478 			goto out_err;
479 
480 		ep->auth_hmacs[id] = tfm;
481 	}
482 
483 	return 0;
484 
485 out_err:
486 	/* Clean up any successfull allocations */
487 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
488 	return -ENOMEM;
489 }
490 
491 /* Destroy the hmac tfm array */
492 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
493 {
494 	int i;
495 
496 	if (!auth_hmacs)
497 		return;
498 
499 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
500 	{
501 		if (auth_hmacs[i])
502 			crypto_free_hash(auth_hmacs[i]);
503 	}
504 	kfree(auth_hmacs);
505 }
506 
507 
508 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
509 {
510 	return &sctp_hmac_list[hmac_id];
511 }
512 
513 /* Get an hmac description information that we can use to build
514  * the AUTH chunk
515  */
516 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
517 {
518 	struct sctp_hmac_algo_param *hmacs;
519 	__u16 n_elt;
520 	__u16 id = 0;
521 	int i;
522 
523 	/* If we have a default entry, use it */
524 	if (asoc->default_hmac_id)
525 		return &sctp_hmac_list[asoc->default_hmac_id];
526 
527 	/* Since we do not have a default entry, find the first entry
528 	 * we support and return that.  Do not cache that id.
529 	 */
530 	hmacs = asoc->peer.peer_hmacs;
531 	if (!hmacs)
532 		return NULL;
533 
534 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
535 	for (i = 0; i < n_elt; i++) {
536 		id = ntohs(hmacs->hmac_ids[i]);
537 
538 		/* Check the id is in the supported range */
539 		if (id > SCTP_AUTH_HMAC_ID_MAX)
540 			continue;
541 
542 		/* See is we support the id.  Supported IDs have name and
543 		 * length fields set, so that we can allocated and use
544 		 * them.  We can safely just check for name, for without the
545 		 * name, we can't allocate the TFM.
546 		 */
547 		if (!sctp_hmac_list[id].hmac_name)
548 			continue;
549 
550 		break;
551 	}
552 
553 	if (id == 0)
554 		return NULL;
555 
556 	return &sctp_hmac_list[id];
557 }
558 
559 static int __sctp_auth_find_hmacid(__u16 *hmacs, int n_elts, __u16 hmac_id)
560 {
561 	int  found = 0;
562 	int  i;
563 
564 	for (i = 0; i < n_elts; i++) {
565 		if (hmac_id == hmacs[i]) {
566 			found = 1;
567 			break;
568 		}
569 	}
570 
571 	return found;
572 }
573 
574 /* See if the HMAC_ID is one that we claim as supported */
575 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
576 				    __u16 hmac_id)
577 {
578 	struct sctp_hmac_algo_param *hmacs;
579 	__u16 n_elt;
580 
581 	if (!asoc)
582 		return 0;
583 
584 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
585 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
586 
587 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
588 }
589 
590 
591 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
592  * Section 6.1:
593  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
594  *   algorithm it supports.
595  */
596 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
597 				     struct sctp_hmac_algo_param *hmacs)
598 {
599 	struct sctp_endpoint *ep;
600 	__u16   id;
601 	int	i;
602 	int	n_params;
603 
604 	/* if the default id is already set, use it */
605 	if (asoc->default_hmac_id)
606 		return;
607 
608 	n_params = (ntohs(hmacs->param_hdr.length)
609 				- sizeof(sctp_paramhdr_t)) >> 1;
610 	ep = asoc->ep;
611 	for (i = 0; i < n_params; i++) {
612 		id = ntohs(hmacs->hmac_ids[i]);
613 
614 		/* Check the id is in the supported range */
615 		if (id > SCTP_AUTH_HMAC_ID_MAX)
616 			continue;
617 
618 		/* If this TFM has been allocated, use this id */
619 		if (ep->auth_hmacs[id]) {
620 			asoc->default_hmac_id = id;
621 			break;
622 		}
623 	}
624 }
625 
626 
627 /* Check to see if the given chunk is supposed to be authenticated */
628 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
629 {
630 	unsigned short len;
631 	int found = 0;
632 	int i;
633 
634 	if (!param)
635 		return 0;
636 
637 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
638 
639 	/* SCTP-AUTH, Section 3.2
640 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
641 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
642 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
643 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
644 	 */
645 	for (i = 0; !found && i < len; i++) {
646 		switch (param->chunks[i]) {
647 		    case SCTP_CID_INIT:
648 		    case SCTP_CID_INIT_ACK:
649 		    case SCTP_CID_SHUTDOWN_COMPLETE:
650 		    case SCTP_CID_AUTH:
651 			break;
652 
653 		    default:
654 			if (param->chunks[i] == chunk)
655 			    found = 1;
656 			break;
657 		}
658 	}
659 
660 	return found;
661 }
662 
663 /* Check if peer requested that this chunk is authenticated */
664 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
665 {
666 	if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
667 		return 0;
668 
669 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
670 }
671 
672 /* Check if we requested that peer authenticate this chunk. */
673 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
674 {
675 	if (!sctp_auth_enable || !asoc)
676 		return 0;
677 
678 	return __sctp_auth_cid(chunk,
679 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
680 }
681 
682 /* SCTP-AUTH: Section 6.2:
683  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
684  *    the hash function H as described by the MAC Identifier and the shared
685  *    association key K based on the endpoint pair shared key described by
686  *    the shared key identifier.  The 'data' used for the computation of
687  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
688  *    zero (as shown in Figure 6) followed by all chunks that are placed
689  *    after the AUTH chunk in the SCTP packet.
690  */
691 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
692 			      struct sk_buff *skb,
693 			      struct sctp_auth_chunk *auth,
694 			      gfp_t gfp)
695 {
696 	struct scatterlist sg;
697 	struct hash_desc desc;
698 	struct sctp_auth_bytes *asoc_key;
699 	__u16 key_id, hmac_id;
700 	__u8 *digest;
701 	unsigned char *end;
702 	int free_key = 0;
703 
704 	/* Extract the info we need:
705 	 * - hmac id
706 	 * - key id
707 	 */
708 	key_id = ntohs(auth->auth_hdr.shkey_id);
709 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
710 
711 	if (key_id == asoc->active_key_id)
712 		asoc_key = asoc->asoc_shared_key;
713 	else {
714 		struct sctp_shared_key *ep_key;
715 
716 		ep_key = sctp_auth_get_shkey(asoc, key_id);
717 		if (!ep_key)
718 			return;
719 
720 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
721 		if (!asoc_key)
722 			return;
723 
724 		free_key = 1;
725 	}
726 
727 	/* set up scatter list */
728 	end = skb_tail_pointer(skb);
729 	sg.page = virt_to_page(auth);
730 	sg.offset = (unsigned long)(auth) % PAGE_SIZE;
731 	sg.length = end - (unsigned char *)auth;
732 
733 	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
734 	desc.flags = 0;
735 
736 	digest = auth->auth_hdr.hmac;
737 	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
738 		goto free;
739 
740 	crypto_hash_digest(&desc, &sg, sg.length, digest);
741 
742 free:
743 	if (free_key)
744 		sctp_auth_key_put(asoc_key);
745 }
746 
747 /* API Helpers */
748 
749 /* Add a chunk to the endpoint authenticated chunk list */
750 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
751 {
752 	struct sctp_chunks_param *p = ep->auth_chunk_list;
753 	__u16 nchunks;
754 	__u16 param_len;
755 
756 	/* If this chunk is already specified, we are done */
757 	if (__sctp_auth_cid(chunk_id, p))
758 		return 0;
759 
760 	/* Check if we can add this chunk to the array */
761 	param_len = ntohs(p->param_hdr.length);
762 	nchunks = param_len - sizeof(sctp_paramhdr_t);
763 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
764 		return -EINVAL;
765 
766 	p->chunks[nchunks] = chunk_id;
767 	p->param_hdr.length = htons(param_len + 1);
768 	return 0;
769 }
770 
771 /* Add hmac identifires to the endpoint list of supported hmac ids */
772 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
773 			   struct sctp_hmacalgo *hmacs)
774 {
775 	int has_sha1 = 0;
776 	__u16 id;
777 	int i;
778 
779 	/* Scan the list looking for unsupported id.  Also make sure that
780 	 * SHA1 is specified.
781 	 */
782 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
783 		id = hmacs->shmac_idents[i];
784 
785 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
786 			has_sha1 = 1;
787 
788 		if (!sctp_hmac_list[id].hmac_name)
789 			return -EOPNOTSUPP;
790 	}
791 
792 	if (!has_sha1)
793 		return -EINVAL;
794 
795 	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
796 		hmacs->shmac_num_idents * sizeof(__u16));
797 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
798 				hmacs->shmac_num_idents * sizeof(__u16));
799 	return 0;
800 }
801 
802 /* Set a new shared key on either endpoint or association.  If the
803  * the key with a same ID already exists, replace the key (remove the
804  * old key and add a new one).
805  */
806 int sctp_auth_set_key(struct sctp_endpoint *ep,
807 		      struct sctp_association *asoc,
808 		      struct sctp_authkey *auth_key)
809 {
810 	struct sctp_shared_key *cur_key = NULL;
811 	struct sctp_auth_bytes *key;
812 	struct list_head *sh_keys;
813 	int replace = 0;
814 
815 	/* Try to find the given key id to see if
816 	 * we are doing a replace, or adding a new key
817 	 */
818 	if (asoc)
819 		sh_keys = &asoc->endpoint_shared_keys;
820 	else
821 		sh_keys = &ep->endpoint_shared_keys;
822 
823 	key_for_each(cur_key, sh_keys) {
824 		if (cur_key->key_id == auth_key->sca_keynumber) {
825 			replace = 1;
826 			break;
827 		}
828 	}
829 
830 	/* If we are not replacing a key id, we need to allocate
831 	 * a shared key.
832 	 */
833 	if (!replace) {
834 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
835 						 GFP_KERNEL);
836 		if (!cur_key)
837 			return -ENOMEM;
838 	}
839 
840 	/* Create a new key data based on the info passed in */
841 	key = sctp_auth_create_key(auth_key->sca_keylen, GFP_KERNEL);
842 	if (!key)
843 		goto nomem;
844 
845 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylen);
846 
847 	/* If we are replacing, remove the old keys data from the
848 	 * key id.  If we are adding new key id, add it to the
849 	 * list.
850 	 */
851 	if (replace)
852 		sctp_auth_key_put(cur_key->key);
853 	else
854 		list_add(&cur_key->key_list, sh_keys);
855 
856 	cur_key->key = key;
857 	sctp_auth_key_hold(key);
858 
859 	return 0;
860 nomem:
861 	if (!replace)
862 		sctp_auth_shkey_free(cur_key);
863 
864 	return -ENOMEM;
865 }
866 
867 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
868 			     struct sctp_association *asoc,
869 			     __u16  key_id)
870 {
871 	struct sctp_shared_key *key;
872 	struct list_head *sh_keys;
873 	int found = 0;
874 
875 	/* The key identifier MUST correst to an existing key */
876 	if (asoc)
877 		sh_keys = &asoc->endpoint_shared_keys;
878 	else
879 		sh_keys = &ep->endpoint_shared_keys;
880 
881 	key_for_each(key, sh_keys) {
882 		if (key->key_id == key_id) {
883 			found = 1;
884 			break;
885 		}
886 	}
887 
888 	if (!found)
889 		return -EINVAL;
890 
891 	if (asoc) {
892 		asoc->active_key_id = key_id;
893 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
894 	} else
895 		ep->active_key_id = key_id;
896 
897 	return 0;
898 }
899 
900 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
901 			 struct sctp_association *asoc,
902 			 __u16  key_id)
903 {
904 	struct sctp_shared_key *key;
905 	struct list_head *sh_keys;
906 	int found = 0;
907 
908 	/* The key identifier MUST NOT be the current active key
909 	 * The key identifier MUST correst to an existing key
910 	 */
911 	if (asoc) {
912 		if (asoc->active_key_id == key_id)
913 			return -EINVAL;
914 
915 		sh_keys = &asoc->endpoint_shared_keys;
916 	} else {
917 		if (ep->active_key_id == key_id)
918 			return -EINVAL;
919 
920 		sh_keys = &ep->endpoint_shared_keys;
921 	}
922 
923 	key_for_each(key, sh_keys) {
924 		if (key->key_id == key_id) {
925 			found = 1;
926 			break;
927 		}
928 	}
929 
930 	if (!found)
931 		return -EINVAL;
932 
933 	/* Delete the shared key */
934 	list_del_init(&key->key_list);
935 	sctp_auth_shkey_free(key);
936 
937 	return 0;
938 }
939