1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel reference Implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * The SCTP reference implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * The SCTP reference implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/poll.h> 54 #include <linux/init.h> 55 #include <linux/sched.h> 56 57 #include <linux/slab.h> 58 #include <linux/in.h> 59 #include <net/ipv6.h> 60 #include <net/sctp/sctp.h> 61 #include <net/sctp/sm.h> 62 63 /* Forward declarations for internal functions. */ 64 static void sctp_assoc_bh_rcv(struct sctp_association *asoc); 65 66 67 /* 1st Level Abstractions. */ 68 69 /* Initialize a new association from provided memory. */ 70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 71 const struct sctp_endpoint *ep, 72 const struct sock *sk, 73 sctp_scope_t scope, 74 int gfp) 75 { 76 struct sctp_sock *sp; 77 int i; 78 79 /* Retrieve the SCTP per socket area. */ 80 sp = sctp_sk((struct sock *)sk); 81 82 /* Init all variables to a known value. */ 83 memset(asoc, 0, sizeof(struct sctp_association)); 84 85 /* Discarding const is appropriate here. */ 86 asoc->ep = (struct sctp_endpoint *)ep; 87 sctp_endpoint_hold(asoc->ep); 88 89 /* Hold the sock. */ 90 asoc->base.sk = (struct sock *)sk; 91 sock_hold(asoc->base.sk); 92 93 /* Initialize the common base substructure. */ 94 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 95 96 /* Initialize the object handling fields. */ 97 atomic_set(&asoc->base.refcnt, 1); 98 asoc->base.dead = 0; 99 asoc->base.malloced = 0; 100 101 /* Initialize the bind addr area. */ 102 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 103 rwlock_init(&asoc->base.addr_lock); 104 105 asoc->state = SCTP_STATE_CLOSED; 106 107 /* Set these values from the socket values, a conversion between 108 * millsecons to seconds/microseconds must also be done. 109 */ 110 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 111 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 112 * 1000; 113 asoc->pmtu = 0; 114 asoc->frag_point = 0; 115 116 /* Set the association max_retrans and RTO values from the 117 * socket values. 118 */ 119 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 120 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 121 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 122 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 123 124 asoc->overall_error_count = 0; 125 126 /* Initialize the maximum mumber of new data packets that can be sent 127 * in a burst. 128 */ 129 asoc->max_burst = sctp_max_burst; 130 131 /* Copy things from the endpoint. */ 132 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 133 asoc->timeouts[i] = ep->timeouts[i]; 134 init_timer(&asoc->timers[i]); 135 asoc->timers[i].function = sctp_timer_events[i]; 136 asoc->timers[i].data = (unsigned long) asoc; 137 } 138 139 /* Pull default initialization values from the sock options. 140 * Note: This assumes that the values have already been 141 * validated in the sock. 142 */ 143 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 144 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 145 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 146 147 asoc->max_init_timeo = 148 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 149 150 /* Allocate storage for the ssnmap after the inbound and outbound 151 * streams have been negotiated during Init. 152 */ 153 asoc->ssnmap = NULL; 154 155 /* Set the local window size for receive. 156 * This is also the rcvbuf space per association. 157 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 158 * 1500 bytes in one SCTP packet. 159 */ 160 if (sk->sk_rcvbuf < SCTP_DEFAULT_MINWINDOW) 161 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 162 else 163 asoc->rwnd = sk->sk_rcvbuf; 164 165 asoc->a_rwnd = asoc->rwnd; 166 167 asoc->rwnd_over = 0; 168 169 /* Use my own max window until I learn something better. */ 170 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 171 172 /* Set the sndbuf size for transmit. */ 173 asoc->sndbuf_used = 0; 174 175 init_waitqueue_head(&asoc->wait); 176 177 asoc->c.my_vtag = sctp_generate_tag(ep); 178 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 179 asoc->c.peer_vtag = 0; 180 asoc->c.my_ttag = 0; 181 asoc->c.peer_ttag = 0; 182 asoc->c.my_port = ep->base.bind_addr.port; 183 184 asoc->c.initial_tsn = sctp_generate_tsn(ep); 185 186 asoc->next_tsn = asoc->c.initial_tsn; 187 188 asoc->ctsn_ack_point = asoc->next_tsn - 1; 189 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 190 asoc->highest_sacked = asoc->ctsn_ack_point; 191 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 192 asoc->unack_data = 0; 193 194 SCTP_DEBUG_PRINTK("myctsnap for %s INIT as 0x%x.\n", 195 asoc->ep->debug_name, 196 asoc->ctsn_ack_point); 197 198 /* ADDIP Section 4.1 Asconf Chunk Procedures 199 * 200 * When an endpoint has an ASCONF signaled change to be sent to the 201 * remote endpoint it should do the following: 202 * ... 203 * A2) a serial number should be assigned to the chunk. The serial 204 * number SHOULD be a monotonically increasing number. The serial 205 * numbers SHOULD be initialized at the start of the 206 * association to the same value as the initial TSN. 207 */ 208 asoc->addip_serial = asoc->c.initial_tsn; 209 210 skb_queue_head_init(&asoc->addip_chunks); 211 212 /* Make an empty list of remote transport addresses. */ 213 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 214 215 /* RFC 2960 5.1 Normal Establishment of an Association 216 * 217 * After the reception of the first data chunk in an 218 * association the endpoint must immediately respond with a 219 * sack to acknowledge the data chunk. Subsequent 220 * acknowledgements should be done as described in Section 221 * 6.2. 222 * 223 * [We implement this by telling a new association that it 224 * already received one packet.] 225 */ 226 asoc->peer.sack_needed = 1; 227 228 /* Assume that the peer recongizes ASCONF until reported otherwise 229 * via an ERROR chunk. 230 */ 231 asoc->peer.asconf_capable = 1; 232 233 /* Create an input queue. */ 234 sctp_inq_init(&asoc->base.inqueue); 235 sctp_inq_set_th_handler(&asoc->base.inqueue, 236 (void (*)(void *))sctp_assoc_bh_rcv, 237 asoc); 238 239 /* Create an output queue. */ 240 sctp_outq_init(asoc, &asoc->outqueue); 241 242 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 243 goto fail_init; 244 245 /* Set up the tsn tracking. */ 246 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0); 247 248 asoc->need_ecne = 0; 249 250 asoc->assoc_id = 0; 251 252 /* Assume that peer would support both address types unless we are 253 * told otherwise. 254 */ 255 asoc->peer.ipv4_address = 1; 256 asoc->peer.ipv6_address = 1; 257 INIT_LIST_HEAD(&asoc->asocs); 258 259 asoc->autoclose = sp->autoclose; 260 261 asoc->default_stream = sp->default_stream; 262 asoc->default_ppid = sp->default_ppid; 263 asoc->default_flags = sp->default_flags; 264 asoc->default_context = sp->default_context; 265 asoc->default_timetolive = sp->default_timetolive; 266 267 return asoc; 268 269 fail_init: 270 sctp_endpoint_put(asoc->ep); 271 sock_put(asoc->base.sk); 272 return NULL; 273 } 274 275 /* Allocate and initialize a new association */ 276 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 277 const struct sock *sk, 278 sctp_scope_t scope, int gfp) 279 { 280 struct sctp_association *asoc; 281 282 asoc = t_new(struct sctp_association, gfp); 283 if (!asoc) 284 goto fail; 285 286 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 287 goto fail_init; 288 289 asoc->base.malloced = 1; 290 SCTP_DBG_OBJCNT_INC(assoc); 291 292 return asoc; 293 294 fail_init: 295 kfree(asoc); 296 fail: 297 return NULL; 298 } 299 300 /* Free this association if possible. There may still be users, so 301 * the actual deallocation may be delayed. 302 */ 303 void sctp_association_free(struct sctp_association *asoc) 304 { 305 struct sock *sk = asoc->base.sk; 306 struct sctp_transport *transport; 307 struct list_head *pos, *temp; 308 int i; 309 310 list_del(&asoc->asocs); 311 312 /* Decrement the backlog value for a TCP-style listening socket. */ 313 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 314 sk->sk_ack_backlog--; 315 316 /* Mark as dead, so other users can know this structure is 317 * going away. 318 */ 319 asoc->base.dead = 1; 320 321 /* Dispose of any data lying around in the outqueue. */ 322 sctp_outq_free(&asoc->outqueue); 323 324 /* Dispose of any pending messages for the upper layer. */ 325 sctp_ulpq_free(&asoc->ulpq); 326 327 /* Dispose of any pending chunks on the inqueue. */ 328 sctp_inq_free(&asoc->base.inqueue); 329 330 /* Free ssnmap storage. */ 331 sctp_ssnmap_free(asoc->ssnmap); 332 333 /* Clean up the bound address list. */ 334 sctp_bind_addr_free(&asoc->base.bind_addr); 335 336 /* Do we need to go through all of our timers and 337 * delete them? To be safe we will try to delete all, but we 338 * should be able to go through and make a guess based 339 * on our state. 340 */ 341 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 342 if (timer_pending(&asoc->timers[i]) && 343 del_timer(&asoc->timers[i])) 344 sctp_association_put(asoc); 345 } 346 347 /* Free peer's cached cookie. */ 348 if (asoc->peer.cookie) { 349 kfree(asoc->peer.cookie); 350 } 351 352 /* Release the transport structures. */ 353 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 354 transport = list_entry(pos, struct sctp_transport, transports); 355 list_del(pos); 356 sctp_transport_free(transport); 357 } 358 359 /* Free any cached ASCONF_ACK chunk. */ 360 if (asoc->addip_last_asconf_ack) 361 sctp_chunk_free(asoc->addip_last_asconf_ack); 362 363 /* Free any cached ASCONF chunk. */ 364 if (asoc->addip_last_asconf) 365 sctp_chunk_free(asoc->addip_last_asconf); 366 367 sctp_association_put(asoc); 368 } 369 370 /* Cleanup and free up an association. */ 371 static void sctp_association_destroy(struct sctp_association *asoc) 372 { 373 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 374 375 sctp_endpoint_put(asoc->ep); 376 sock_put(asoc->base.sk); 377 378 if (asoc->assoc_id != 0) { 379 spin_lock_bh(&sctp_assocs_id_lock); 380 idr_remove(&sctp_assocs_id, asoc->assoc_id); 381 spin_unlock_bh(&sctp_assocs_id_lock); 382 } 383 384 if (asoc->base.malloced) { 385 kfree(asoc); 386 SCTP_DBG_OBJCNT_DEC(assoc); 387 } 388 } 389 390 /* Change the primary destination address for the peer. */ 391 void sctp_assoc_set_primary(struct sctp_association *asoc, 392 struct sctp_transport *transport) 393 { 394 asoc->peer.primary_path = transport; 395 396 /* Set a default msg_name for events. */ 397 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 398 sizeof(union sctp_addr)); 399 400 /* If the primary path is changing, assume that the 401 * user wants to use this new path. 402 */ 403 if (transport->active) 404 asoc->peer.active_path = transport; 405 406 /* 407 * SFR-CACC algorithm: 408 * Upon the receipt of a request to change the primary 409 * destination address, on the data structure for the new 410 * primary destination, the sender MUST do the following: 411 * 412 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 413 * to this destination address earlier. The sender MUST set 414 * CYCLING_CHANGEOVER to indicate that this switch is a 415 * double switch to the same destination address. 416 */ 417 if (transport->cacc.changeover_active) 418 transport->cacc.cycling_changeover = 1; 419 420 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 421 * a changeover has occurred. 422 */ 423 transport->cacc.changeover_active = 1; 424 425 /* 3) The sender MUST store the next TSN to be sent in 426 * next_tsn_at_change. 427 */ 428 transport->cacc.next_tsn_at_change = asoc->next_tsn; 429 } 430 431 /* Add a transport address to an association. */ 432 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 433 const union sctp_addr *addr, 434 int gfp) 435 { 436 struct sctp_transport *peer; 437 struct sctp_sock *sp; 438 unsigned short port; 439 440 sp = sctp_sk(asoc->base.sk); 441 442 /* AF_INET and AF_INET6 share common port field. */ 443 port = addr->v4.sin_port; 444 445 /* Set the port if it has not been set yet. */ 446 if (0 == asoc->peer.port) 447 asoc->peer.port = port; 448 449 /* Check to see if this is a duplicate. */ 450 peer = sctp_assoc_lookup_paddr(asoc, addr); 451 if (peer) 452 return peer; 453 454 peer = sctp_transport_new(addr, gfp); 455 if (!peer) 456 return NULL; 457 458 sctp_transport_set_owner(peer, asoc); 459 460 /* Initialize the pmtu of the transport. */ 461 sctp_transport_pmtu(peer); 462 463 /* If this is the first transport addr on this association, 464 * initialize the association PMTU to the peer's PMTU. 465 * If not and the current association PMTU is higher than the new 466 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 467 */ 468 if (asoc->pmtu) 469 asoc->pmtu = min_t(int, peer->pmtu, asoc->pmtu); 470 else 471 asoc->pmtu = peer->pmtu; 472 473 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 474 "%d\n", asoc, asoc->pmtu); 475 476 asoc->frag_point = sctp_frag_point(sp, asoc->pmtu); 477 478 /* The asoc->peer.port might not be meaningful yet, but 479 * initialize the packet structure anyway. 480 */ 481 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 482 asoc->peer.port); 483 484 /* 7.2.1 Slow-Start 485 * 486 * o The initial cwnd before DATA transmission or after a sufficiently 487 * long idle period MUST be set to 488 * min(4*MTU, max(2*MTU, 4380 bytes)) 489 * 490 * o The initial value of ssthresh MAY be arbitrarily high 491 * (for example, implementations MAY use the size of the 492 * receiver advertised window). 493 */ 494 peer->cwnd = min(4*asoc->pmtu, max_t(__u32, 2*asoc->pmtu, 4380)); 495 496 /* At this point, we may not have the receiver's advertised window, 497 * so initialize ssthresh to the default value and it will be set 498 * later when we process the INIT. 499 */ 500 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 501 502 peer->partial_bytes_acked = 0; 503 peer->flight_size = 0; 504 505 /* By default, enable heartbeat for peer address. */ 506 peer->hb_allowed = 1; 507 508 /* Initialize the peer's heartbeat interval based on the 509 * sock configured value. 510 */ 511 peer->hb_interval = msecs_to_jiffies(sp->paddrparam.spp_hbinterval); 512 513 /* Set the path max_retrans. */ 514 peer->max_retrans = sp->paddrparam.spp_pathmaxrxt; 515 516 /* Set the transport's RTO.initial value */ 517 peer->rto = asoc->rto_initial; 518 519 /* Attach the remote transport to our asoc. */ 520 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 521 522 /* If we do not yet have a primary path, set one. */ 523 if (!asoc->peer.primary_path) { 524 sctp_assoc_set_primary(asoc, peer); 525 asoc->peer.retran_path = peer; 526 } 527 528 if (asoc->peer.active_path == asoc->peer.retran_path) 529 asoc->peer.retran_path = peer; 530 531 return peer; 532 } 533 534 /* Delete a transport address from an association. */ 535 void sctp_assoc_del_peer(struct sctp_association *asoc, 536 const union sctp_addr *addr) 537 { 538 struct list_head *pos; 539 struct list_head *temp; 540 struct sctp_transport *peer = NULL; 541 struct sctp_transport *transport; 542 543 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 544 transport = list_entry(pos, struct sctp_transport, transports); 545 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 546 peer = transport; 547 list_del(pos); 548 break; 549 } 550 } 551 552 /* The address we want delete is not in the association. */ 553 if (!peer) 554 return; 555 556 /* Get the first transport of asoc. */ 557 pos = asoc->peer.transport_addr_list.next; 558 transport = list_entry(pos, struct sctp_transport, transports); 559 560 /* Update any entries that match the peer to be deleted. */ 561 if (asoc->peer.primary_path == peer) 562 sctp_assoc_set_primary(asoc, transport); 563 if (asoc->peer.active_path == peer) 564 asoc->peer.active_path = transport; 565 if (asoc->peer.retran_path == peer) 566 asoc->peer.retran_path = transport; 567 if (asoc->peer.last_data_from == peer) 568 asoc->peer.last_data_from = transport; 569 570 sctp_transport_free(peer); 571 } 572 573 /* Lookup a transport by address. */ 574 struct sctp_transport *sctp_assoc_lookup_paddr( 575 const struct sctp_association *asoc, 576 const union sctp_addr *address) 577 { 578 struct sctp_transport *t; 579 struct list_head *pos; 580 581 /* Cycle through all transports searching for a peer address. */ 582 583 list_for_each(pos, &asoc->peer.transport_addr_list) { 584 t = list_entry(pos, struct sctp_transport, transports); 585 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 586 return t; 587 } 588 589 return NULL; 590 } 591 592 /* Engage in transport control operations. 593 * Mark the transport up or down and send a notification to the user. 594 * Select and update the new active and retran paths. 595 */ 596 void sctp_assoc_control_transport(struct sctp_association *asoc, 597 struct sctp_transport *transport, 598 sctp_transport_cmd_t command, 599 sctp_sn_error_t error) 600 { 601 struct sctp_transport *t = NULL; 602 struct sctp_transport *first; 603 struct sctp_transport *second; 604 struct sctp_ulpevent *event; 605 struct list_head *pos; 606 int spc_state = 0; 607 608 /* Record the transition on the transport. */ 609 switch (command) { 610 case SCTP_TRANSPORT_UP: 611 transport->active = SCTP_ACTIVE; 612 spc_state = SCTP_ADDR_AVAILABLE; 613 break; 614 615 case SCTP_TRANSPORT_DOWN: 616 transport->active = SCTP_INACTIVE; 617 spc_state = SCTP_ADDR_UNREACHABLE; 618 break; 619 620 default: 621 return; 622 }; 623 624 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 625 * user. 626 */ 627 event = sctp_ulpevent_make_peer_addr_change(asoc, 628 (struct sockaddr_storage *) &transport->ipaddr, 629 0, spc_state, error, GFP_ATOMIC); 630 if (event) 631 sctp_ulpq_tail_event(&asoc->ulpq, event); 632 633 /* Select new active and retran paths. */ 634 635 /* Look for the two most recently used active transports. 636 * 637 * This code produces the wrong ordering whenever jiffies 638 * rolls over, but we still get usable transports, so we don't 639 * worry about it. 640 */ 641 first = NULL; second = NULL; 642 643 list_for_each(pos, &asoc->peer.transport_addr_list) { 644 t = list_entry(pos, struct sctp_transport, transports); 645 646 if (!t->active) 647 continue; 648 if (!first || t->last_time_heard > first->last_time_heard) { 649 second = first; 650 first = t; 651 } 652 if (!second || t->last_time_heard > second->last_time_heard) 653 second = t; 654 } 655 656 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 657 * 658 * By default, an endpoint should always transmit to the 659 * primary path, unless the SCTP user explicitly specifies the 660 * destination transport address (and possibly source 661 * transport address) to use. 662 * 663 * [If the primary is active but not most recent, bump the most 664 * recently used transport.] 665 */ 666 if (asoc->peer.primary_path->active && 667 first != asoc->peer.primary_path) { 668 second = first; 669 first = asoc->peer.primary_path; 670 } 671 672 /* If we failed to find a usable transport, just camp on the 673 * primary, even if it is inactive. 674 */ 675 if (!first) { 676 first = asoc->peer.primary_path; 677 second = asoc->peer.primary_path; 678 } 679 680 /* Set the active and retran transports. */ 681 asoc->peer.active_path = first; 682 asoc->peer.retran_path = second; 683 } 684 685 /* Hold a reference to an association. */ 686 void sctp_association_hold(struct sctp_association *asoc) 687 { 688 atomic_inc(&asoc->base.refcnt); 689 } 690 691 /* Release a reference to an association and cleanup 692 * if there are no more references. 693 */ 694 void sctp_association_put(struct sctp_association *asoc) 695 { 696 if (atomic_dec_and_test(&asoc->base.refcnt)) 697 sctp_association_destroy(asoc); 698 } 699 700 /* Allocate the next TSN, Transmission Sequence Number, for the given 701 * association. 702 */ 703 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 704 { 705 /* From Section 1.6 Serial Number Arithmetic: 706 * Transmission Sequence Numbers wrap around when they reach 707 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 708 * after transmitting TSN = 2*32 - 1 is TSN = 0. 709 */ 710 __u32 retval = asoc->next_tsn; 711 asoc->next_tsn++; 712 asoc->unack_data++; 713 714 return retval; 715 } 716 717 /* Compare two addresses to see if they match. Wildcard addresses 718 * only match themselves. 719 */ 720 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 721 const union sctp_addr *ss2) 722 { 723 struct sctp_af *af; 724 725 af = sctp_get_af_specific(ss1->sa.sa_family); 726 if (unlikely(!af)) 727 return 0; 728 729 return af->cmp_addr(ss1, ss2); 730 } 731 732 /* Return an ecne chunk to get prepended to a packet. 733 * Note: We are sly and return a shared, prealloced chunk. FIXME: 734 * No we don't, but we could/should. 735 */ 736 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 737 { 738 struct sctp_chunk *chunk; 739 740 /* Send ECNE if needed. 741 * Not being able to allocate a chunk here is not deadly. 742 */ 743 if (asoc->need_ecne) 744 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 745 else 746 chunk = NULL; 747 748 return chunk; 749 } 750 751 /* 752 * Find which transport this TSN was sent on. 753 */ 754 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 755 __u32 tsn) 756 { 757 struct sctp_transport *active; 758 struct sctp_transport *match; 759 struct list_head *entry, *pos; 760 struct sctp_transport *transport; 761 struct sctp_chunk *chunk; 762 __u32 key = htonl(tsn); 763 764 match = NULL; 765 766 /* 767 * FIXME: In general, find a more efficient data structure for 768 * searching. 769 */ 770 771 /* 772 * The general strategy is to search each transport's transmitted 773 * list. Return which transport this TSN lives on. 774 * 775 * Let's be hopeful and check the active_path first. 776 * Another optimization would be to know if there is only one 777 * outbound path and not have to look for the TSN at all. 778 * 779 */ 780 781 active = asoc->peer.active_path; 782 783 list_for_each(entry, &active->transmitted) { 784 chunk = list_entry(entry, struct sctp_chunk, transmitted_list); 785 786 if (key == chunk->subh.data_hdr->tsn) { 787 match = active; 788 goto out; 789 } 790 } 791 792 /* If not found, go search all the other transports. */ 793 list_for_each(pos, &asoc->peer.transport_addr_list) { 794 transport = list_entry(pos, struct sctp_transport, transports); 795 796 if (transport == active) 797 break; 798 list_for_each(entry, &transport->transmitted) { 799 chunk = list_entry(entry, struct sctp_chunk, 800 transmitted_list); 801 if (key == chunk->subh.data_hdr->tsn) { 802 match = transport; 803 goto out; 804 } 805 } 806 } 807 out: 808 return match; 809 } 810 811 /* Is this the association we are looking for? */ 812 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 813 const union sctp_addr *laddr, 814 const union sctp_addr *paddr) 815 { 816 struct sctp_transport *transport; 817 818 sctp_read_lock(&asoc->base.addr_lock); 819 820 if ((asoc->base.bind_addr.port == laddr->v4.sin_port) && 821 (asoc->peer.port == paddr->v4.sin_port)) { 822 transport = sctp_assoc_lookup_paddr(asoc, paddr); 823 if (!transport) 824 goto out; 825 826 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 827 sctp_sk(asoc->base.sk))) 828 goto out; 829 } 830 transport = NULL; 831 832 out: 833 sctp_read_unlock(&asoc->base.addr_lock); 834 return transport; 835 } 836 837 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 838 static void sctp_assoc_bh_rcv(struct sctp_association *asoc) 839 { 840 struct sctp_endpoint *ep; 841 struct sctp_chunk *chunk; 842 struct sock *sk; 843 struct sctp_inq *inqueue; 844 int state; 845 sctp_subtype_t subtype; 846 int error = 0; 847 848 /* The association should be held so we should be safe. */ 849 ep = asoc->ep; 850 sk = asoc->base.sk; 851 852 inqueue = &asoc->base.inqueue; 853 sctp_association_hold(asoc); 854 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 855 state = asoc->state; 856 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 857 858 /* Remember where the last DATA chunk came from so we 859 * know where to send the SACK. 860 */ 861 if (sctp_chunk_is_data(chunk)) 862 asoc->peer.last_data_from = chunk->transport; 863 else 864 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 865 866 if (chunk->transport) 867 chunk->transport->last_time_heard = jiffies; 868 869 /* Run through the state machine. */ 870 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 871 state, ep, asoc, chunk, GFP_ATOMIC); 872 873 /* Check to see if the association is freed in response to 874 * the incoming chunk. If so, get out of the while loop. 875 */ 876 if (asoc->base.dead) 877 break; 878 879 /* If there is an error on chunk, discard this packet. */ 880 if (error && chunk) 881 chunk->pdiscard = 1; 882 } 883 sctp_association_put(asoc); 884 } 885 886 /* This routine moves an association from its old sk to a new sk. */ 887 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 888 { 889 struct sctp_sock *newsp = sctp_sk(newsk); 890 struct sock *oldsk = assoc->base.sk; 891 892 /* Delete the association from the old endpoint's list of 893 * associations. 894 */ 895 list_del_init(&assoc->asocs); 896 897 /* Decrement the backlog value for a TCP-style socket. */ 898 if (sctp_style(oldsk, TCP)) 899 oldsk->sk_ack_backlog--; 900 901 /* Release references to the old endpoint and the sock. */ 902 sctp_endpoint_put(assoc->ep); 903 sock_put(assoc->base.sk); 904 905 /* Get a reference to the new endpoint. */ 906 assoc->ep = newsp->ep; 907 sctp_endpoint_hold(assoc->ep); 908 909 /* Get a reference to the new sock. */ 910 assoc->base.sk = newsk; 911 sock_hold(assoc->base.sk); 912 913 /* Add the association to the new endpoint's list of associations. */ 914 sctp_endpoint_add_asoc(newsp->ep, assoc); 915 } 916 917 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 918 void sctp_assoc_update(struct sctp_association *asoc, 919 struct sctp_association *new) 920 { 921 struct sctp_transport *trans; 922 struct list_head *pos, *temp; 923 924 /* Copy in new parameters of peer. */ 925 asoc->c = new->c; 926 asoc->peer.rwnd = new->peer.rwnd; 927 asoc->peer.sack_needed = new->peer.sack_needed; 928 asoc->peer.i = new->peer.i; 929 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 930 asoc->peer.i.initial_tsn); 931 932 /* Remove any peer addresses not present in the new association. */ 933 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 934 trans = list_entry(pos, struct sctp_transport, transports); 935 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) 936 sctp_assoc_del_peer(asoc, &trans->ipaddr); 937 } 938 939 /* If the case is A (association restart), use 940 * initial_tsn as next_tsn. If the case is B, use 941 * current next_tsn in case data sent to peer 942 * has been discarded and needs retransmission. 943 */ 944 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 945 asoc->next_tsn = new->next_tsn; 946 asoc->ctsn_ack_point = new->ctsn_ack_point; 947 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 948 949 /* Reinitialize SSN for both local streams 950 * and peer's streams. 951 */ 952 sctp_ssnmap_clear(asoc->ssnmap); 953 954 } else { 955 /* Add any peer addresses from the new association. */ 956 list_for_each(pos, &new->peer.transport_addr_list) { 957 trans = list_entry(pos, struct sctp_transport, 958 transports); 959 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 960 sctp_assoc_add_peer(asoc, &trans->ipaddr, 961 GFP_ATOMIC); 962 } 963 964 asoc->ctsn_ack_point = asoc->next_tsn - 1; 965 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 966 if (!asoc->ssnmap) { 967 /* Move the ssnmap. */ 968 asoc->ssnmap = new->ssnmap; 969 new->ssnmap = NULL; 970 } 971 } 972 } 973 974 /* Update the retran path for sending a retransmitted packet. 975 * Round-robin through the active transports, else round-robin 976 * through the inactive transports as this is the next best thing 977 * we can try. 978 */ 979 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 980 { 981 struct sctp_transport *t, *next; 982 struct list_head *head = &asoc->peer.transport_addr_list; 983 struct list_head *pos; 984 985 /* Find the next transport in a round-robin fashion. */ 986 t = asoc->peer.retran_path; 987 pos = &t->transports; 988 next = NULL; 989 990 while (1) { 991 /* Skip the head. */ 992 if (pos->next == head) 993 pos = head->next; 994 else 995 pos = pos->next; 996 997 t = list_entry(pos, struct sctp_transport, transports); 998 999 /* Try to find an active transport. */ 1000 1001 if (t->active) { 1002 break; 1003 } else { 1004 /* Keep track of the next transport in case 1005 * we don't find any active transport. 1006 */ 1007 if (!next) 1008 next = t; 1009 } 1010 1011 /* We have exhausted the list, but didn't find any 1012 * other active transports. If so, use the next 1013 * transport. 1014 */ 1015 if (t == asoc->peer.retran_path) { 1016 t = next; 1017 break; 1018 } 1019 } 1020 1021 asoc->peer.retran_path = t; 1022 } 1023 1024 /* Choose the transport for sending a SHUTDOWN packet. */ 1025 struct sctp_transport *sctp_assoc_choose_shutdown_transport( 1026 struct sctp_association *asoc) 1027 { 1028 /* If this is the first time SHUTDOWN is sent, use the active path, 1029 * else use the retran path. If the last SHUTDOWN was sent over the 1030 * retran path, update the retran path and use it. 1031 */ 1032 if (!asoc->shutdown_last_sent_to) 1033 return asoc->peer.active_path; 1034 else { 1035 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path) 1036 sctp_assoc_update_retran_path(asoc); 1037 return asoc->peer.retran_path; 1038 } 1039 1040 } 1041 1042 /* Update the association's pmtu and frag_point by going through all the 1043 * transports. This routine is called when a transport's PMTU has changed. 1044 */ 1045 void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1046 { 1047 struct sctp_transport *t; 1048 struct list_head *pos; 1049 __u32 pmtu = 0; 1050 1051 if (!asoc) 1052 return; 1053 1054 /* Get the lowest pmtu of all the transports. */ 1055 list_for_each(pos, &asoc->peer.transport_addr_list) { 1056 t = list_entry(pos, struct sctp_transport, transports); 1057 if (!pmtu || (t->pmtu < pmtu)) 1058 pmtu = t->pmtu; 1059 } 1060 1061 if (pmtu) { 1062 struct sctp_sock *sp = sctp_sk(asoc->base.sk); 1063 asoc->pmtu = pmtu; 1064 asoc->frag_point = sctp_frag_point(sp, pmtu); 1065 } 1066 1067 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1068 __FUNCTION__, asoc, asoc->pmtu, asoc->frag_point); 1069 } 1070 1071 /* Should we send a SACK to update our peer? */ 1072 static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1073 { 1074 switch (asoc->state) { 1075 case SCTP_STATE_ESTABLISHED: 1076 case SCTP_STATE_SHUTDOWN_PENDING: 1077 case SCTP_STATE_SHUTDOWN_RECEIVED: 1078 case SCTP_STATE_SHUTDOWN_SENT: 1079 if ((asoc->rwnd > asoc->a_rwnd) && 1080 ((asoc->rwnd - asoc->a_rwnd) >= 1081 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pmtu))) 1082 return 1; 1083 break; 1084 default: 1085 break; 1086 } 1087 return 0; 1088 } 1089 1090 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1091 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1092 { 1093 struct sctp_chunk *sack; 1094 struct timer_list *timer; 1095 1096 if (asoc->rwnd_over) { 1097 if (asoc->rwnd_over >= len) { 1098 asoc->rwnd_over -= len; 1099 } else { 1100 asoc->rwnd += (len - asoc->rwnd_over); 1101 asoc->rwnd_over = 0; 1102 } 1103 } else { 1104 asoc->rwnd += len; 1105 } 1106 1107 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1108 "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd, 1109 asoc->rwnd_over, asoc->a_rwnd); 1110 1111 /* Send a window update SACK if the rwnd has increased by at least the 1112 * minimum of the association's PMTU and half of the receive buffer. 1113 * The algorithm used is similar to the one described in 1114 * Section 4.2.3.3 of RFC 1122. 1115 */ 1116 if (sctp_peer_needs_update(asoc)) { 1117 asoc->a_rwnd = asoc->rwnd; 1118 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1119 "rwnd: %u a_rwnd: %u\n", __FUNCTION__, 1120 asoc, asoc->rwnd, asoc->a_rwnd); 1121 sack = sctp_make_sack(asoc); 1122 if (!sack) 1123 return; 1124 1125 asoc->peer.sack_needed = 0; 1126 1127 sctp_outq_tail(&asoc->outqueue, sack); 1128 1129 /* Stop the SACK timer. */ 1130 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1131 if (timer_pending(timer) && del_timer(timer)) 1132 sctp_association_put(asoc); 1133 } 1134 } 1135 1136 /* Decrease asoc's rwnd by len. */ 1137 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1138 { 1139 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1140 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1141 if (asoc->rwnd >= len) { 1142 asoc->rwnd -= len; 1143 } else { 1144 asoc->rwnd_over = len - asoc->rwnd; 1145 asoc->rwnd = 0; 1146 } 1147 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n", 1148 __FUNCTION__, asoc, len, asoc->rwnd, 1149 asoc->rwnd_over); 1150 } 1151 1152 /* Build the bind address list for the association based on info from the 1153 * local endpoint and the remote peer. 1154 */ 1155 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, int gfp) 1156 { 1157 sctp_scope_t scope; 1158 int flags; 1159 1160 /* Use scoping rules to determine the subset of addresses from 1161 * the endpoint. 1162 */ 1163 scope = sctp_scope(&asoc->peer.active_path->ipaddr); 1164 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1165 if (asoc->peer.ipv4_address) 1166 flags |= SCTP_ADDR4_PEERSUPP; 1167 if (asoc->peer.ipv6_address) 1168 flags |= SCTP_ADDR6_PEERSUPP; 1169 1170 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1171 &asoc->ep->base.bind_addr, 1172 scope, gfp, flags); 1173 } 1174 1175 /* Build the association's bind address list from the cookie. */ 1176 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1177 struct sctp_cookie *cookie, int gfp) 1178 { 1179 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1180 int var_size3 = cookie->raw_addr_list_len; 1181 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1182 1183 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1184 asoc->ep->base.bind_addr.port, gfp); 1185 } 1186 1187 /* Lookup laddr in the bind address list of an association. */ 1188 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1189 const union sctp_addr *laddr) 1190 { 1191 int found; 1192 1193 sctp_read_lock(&asoc->base.addr_lock); 1194 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1195 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1196 sctp_sk(asoc->base.sk))) { 1197 found = 1; 1198 goto out; 1199 } 1200 1201 found = 0; 1202 out: 1203 sctp_read_unlock(&asoc->base.addr_lock); 1204 return found; 1205 } 1206