xref: /openbmc/linux/net/sctp/associola.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 La Monte H.P. Yarroll
7  *
8  * This file is part of the SCTP kernel reference Implementation
9  *
10  * This module provides the abstraction for an SCTP association.
11  *
12  * The SCTP reference implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * The SCTP reference implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang             <hui.huang@nokia.com>
42  *    Sridhar Samudrala	    <sri@us.ibm.com>
43  *    Daisy Chang	    <daisyc@us.ibm.com>
44  *    Ryan Layer	    <rmlayer@us.ibm.com>
45  *    Kevin Gao             <kevin.gao@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/poll.h>
54 #include <linux/init.h>
55 #include <linux/sched.h>
56 
57 #include <linux/slab.h>
58 #include <linux/in.h>
59 #include <net/ipv6.h>
60 #include <net/sctp/sctp.h>
61 #include <net/sctp/sm.h>
62 
63 /* Forward declarations for internal functions. */
64 static void sctp_assoc_bh_rcv(struct sctp_association *asoc);
65 
66 
67 /* 1st Level Abstractions. */
68 
69 /* Initialize a new association from provided memory. */
70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
71 					  const struct sctp_endpoint *ep,
72 					  const struct sock *sk,
73 					  sctp_scope_t scope,
74 					  int gfp)
75 {
76 	struct sctp_sock *sp;
77 	int i;
78 
79 	/* Retrieve the SCTP per socket area.  */
80 	sp = sctp_sk((struct sock *)sk);
81 
82 	/* Init all variables to a known value.  */
83 	memset(asoc, 0, sizeof(struct sctp_association));
84 
85 	/* Discarding const is appropriate here.  */
86 	asoc->ep = (struct sctp_endpoint *)ep;
87 	sctp_endpoint_hold(asoc->ep);
88 
89 	/* Hold the sock.  */
90 	asoc->base.sk = (struct sock *)sk;
91 	sock_hold(asoc->base.sk);
92 
93 	/* Initialize the common base substructure.  */
94 	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
95 
96 	/* Initialize the object handling fields.  */
97 	atomic_set(&asoc->base.refcnt, 1);
98 	asoc->base.dead = 0;
99 	asoc->base.malloced = 0;
100 
101 	/* Initialize the bind addr area.  */
102 	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
103 	rwlock_init(&asoc->base.addr_lock);
104 
105 	asoc->state = SCTP_STATE_CLOSED;
106 
107 	/* Set these values from the socket values, a conversion between
108 	 * millsecons to seconds/microseconds must also be done.
109 	 */
110 	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
111 	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
112 					* 1000;
113 	asoc->pmtu = 0;
114 	asoc->frag_point = 0;
115 
116 	/* Set the association max_retrans and RTO values from the
117 	 * socket values.
118 	 */
119 	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
120 	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
121 	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
122 	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
123 
124 	asoc->overall_error_count = 0;
125 
126 	/* Initialize the maximum mumber of new data packets that can be sent
127 	 * in a burst.
128 	 */
129 	asoc->max_burst = sctp_max_burst;
130 
131 	/* Copy things from the endpoint.  */
132 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
133 		asoc->timeouts[i] = ep->timeouts[i];
134 		init_timer(&asoc->timers[i]);
135 		asoc->timers[i].function = sctp_timer_events[i];
136 		asoc->timers[i].data = (unsigned long) asoc;
137 	}
138 
139 	/* Pull default initialization values from the sock options.
140 	 * Note: This assumes that the values have already been
141 	 * validated in the sock.
142 	 */
143 	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
144 	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
145 	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
146 
147 	asoc->max_init_timeo =
148 		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
149 
150 	/* Allocate storage for the ssnmap after the inbound and outbound
151 	 * streams have been negotiated during Init.
152 	 */
153 	asoc->ssnmap = NULL;
154 
155 	/* Set the local window size for receive.
156 	 * This is also the rcvbuf space per association.
157 	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
158 	 * 1500 bytes in one SCTP packet.
159 	 */
160 	if (sk->sk_rcvbuf < SCTP_DEFAULT_MINWINDOW)
161 		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
162 	else
163 		asoc->rwnd = sk->sk_rcvbuf;
164 
165 	asoc->a_rwnd = asoc->rwnd;
166 
167 	asoc->rwnd_over = 0;
168 
169 	/* Use my own max window until I learn something better.  */
170 	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
171 
172 	/* Set the sndbuf size for transmit.  */
173 	asoc->sndbuf_used = 0;
174 
175 	init_waitqueue_head(&asoc->wait);
176 
177 	asoc->c.my_vtag = sctp_generate_tag(ep);
178 	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
179 	asoc->c.peer_vtag = 0;
180 	asoc->c.my_ttag   = 0;
181 	asoc->c.peer_ttag = 0;
182 	asoc->c.my_port = ep->base.bind_addr.port;
183 
184 	asoc->c.initial_tsn = sctp_generate_tsn(ep);
185 
186 	asoc->next_tsn = asoc->c.initial_tsn;
187 
188 	asoc->ctsn_ack_point = asoc->next_tsn - 1;
189 	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
190 	asoc->highest_sacked = asoc->ctsn_ack_point;
191 	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
192 	asoc->unack_data = 0;
193 
194 	SCTP_DEBUG_PRINTK("myctsnap for %s INIT as 0x%x.\n",
195 			  asoc->ep->debug_name,
196 			  asoc->ctsn_ack_point);
197 
198 	/* ADDIP Section 4.1 Asconf Chunk Procedures
199 	 *
200 	 * When an endpoint has an ASCONF signaled change to be sent to the
201 	 * remote endpoint it should do the following:
202 	 * ...
203 	 * A2) a serial number should be assigned to the chunk. The serial
204 	 * number SHOULD be a monotonically increasing number. The serial
205 	 * numbers SHOULD be initialized at the start of the
206 	 * association to the same value as the initial TSN.
207 	 */
208 	asoc->addip_serial = asoc->c.initial_tsn;
209 
210 	skb_queue_head_init(&asoc->addip_chunks);
211 
212 	/* Make an empty list of remote transport addresses.  */
213 	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
214 
215 	/* RFC 2960 5.1 Normal Establishment of an Association
216 	 *
217 	 * After the reception of the first data chunk in an
218 	 * association the endpoint must immediately respond with a
219 	 * sack to acknowledge the data chunk.  Subsequent
220 	 * acknowledgements should be done as described in Section
221 	 * 6.2.
222 	 *
223 	 * [We implement this by telling a new association that it
224 	 * already received one packet.]
225 	 */
226 	asoc->peer.sack_needed = 1;
227 
228 	/* Assume that the peer recongizes ASCONF until reported otherwise
229 	 * via an ERROR chunk.
230 	 */
231 	asoc->peer.asconf_capable = 1;
232 
233 	/* Create an input queue.  */
234 	sctp_inq_init(&asoc->base.inqueue);
235 	sctp_inq_set_th_handler(&asoc->base.inqueue,
236 				    (void (*)(void *))sctp_assoc_bh_rcv,
237 				    asoc);
238 
239 	/* Create an output queue.  */
240 	sctp_outq_init(asoc, &asoc->outqueue);
241 
242 	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
243 		goto fail_init;
244 
245 	/* Set up the tsn tracking. */
246 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
247 
248 	asoc->need_ecne = 0;
249 
250 	asoc->assoc_id = 0;
251 
252 	/* Assume that peer would support both address types unless we are
253 	 * told otherwise.
254 	 */
255 	asoc->peer.ipv4_address = 1;
256 	asoc->peer.ipv6_address = 1;
257 	INIT_LIST_HEAD(&asoc->asocs);
258 
259 	asoc->autoclose = sp->autoclose;
260 
261 	asoc->default_stream = sp->default_stream;
262 	asoc->default_ppid = sp->default_ppid;
263 	asoc->default_flags = sp->default_flags;
264 	asoc->default_context = sp->default_context;
265 	asoc->default_timetolive = sp->default_timetolive;
266 
267 	return asoc;
268 
269 fail_init:
270 	sctp_endpoint_put(asoc->ep);
271 	sock_put(asoc->base.sk);
272 	return NULL;
273 }
274 
275 /* Allocate and initialize a new association */
276 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
277 					 const struct sock *sk,
278 					 sctp_scope_t scope, int gfp)
279 {
280 	struct sctp_association *asoc;
281 
282 	asoc = t_new(struct sctp_association, gfp);
283 	if (!asoc)
284 		goto fail;
285 
286 	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
287 		goto fail_init;
288 
289 	asoc->base.malloced = 1;
290 	SCTP_DBG_OBJCNT_INC(assoc);
291 
292 	return asoc;
293 
294 fail_init:
295 	kfree(asoc);
296 fail:
297 	return NULL;
298 }
299 
300 /* Free this association if possible.  There may still be users, so
301  * the actual deallocation may be delayed.
302  */
303 void sctp_association_free(struct sctp_association *asoc)
304 {
305 	struct sock *sk = asoc->base.sk;
306 	struct sctp_transport *transport;
307 	struct list_head *pos, *temp;
308 	int i;
309 
310 	list_del(&asoc->asocs);
311 
312 	/* Decrement the backlog value for a TCP-style listening socket. */
313 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
314 		sk->sk_ack_backlog--;
315 
316 	/* Mark as dead, so other users can know this structure is
317 	 * going away.
318 	 */
319 	asoc->base.dead = 1;
320 
321 	/* Dispose of any data lying around in the outqueue. */
322 	sctp_outq_free(&asoc->outqueue);
323 
324 	/* Dispose of any pending messages for the upper layer. */
325 	sctp_ulpq_free(&asoc->ulpq);
326 
327 	/* Dispose of any pending chunks on the inqueue. */
328 	sctp_inq_free(&asoc->base.inqueue);
329 
330 	/* Free ssnmap storage. */
331 	sctp_ssnmap_free(asoc->ssnmap);
332 
333 	/* Clean up the bound address list. */
334 	sctp_bind_addr_free(&asoc->base.bind_addr);
335 
336 	/* Do we need to go through all of our timers and
337 	 * delete them?   To be safe we will try to delete all, but we
338 	 * should be able to go through and make a guess based
339 	 * on our state.
340 	 */
341 	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
342 		if (timer_pending(&asoc->timers[i]) &&
343 		    del_timer(&asoc->timers[i]))
344 			sctp_association_put(asoc);
345 	}
346 
347 	/* Free peer's cached cookie. */
348 	if (asoc->peer.cookie) {
349 		kfree(asoc->peer.cookie);
350 	}
351 
352 	/* Release the transport structures. */
353 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
354 		transport = list_entry(pos, struct sctp_transport, transports);
355 		list_del(pos);
356 		sctp_transport_free(transport);
357 	}
358 
359 	/* Free any cached ASCONF_ACK chunk. */
360 	if (asoc->addip_last_asconf_ack)
361 		sctp_chunk_free(asoc->addip_last_asconf_ack);
362 
363 	/* Free any cached ASCONF chunk. */
364 	if (asoc->addip_last_asconf)
365 		sctp_chunk_free(asoc->addip_last_asconf);
366 
367 	sctp_association_put(asoc);
368 }
369 
370 /* Cleanup and free up an association. */
371 static void sctp_association_destroy(struct sctp_association *asoc)
372 {
373 	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
374 
375 	sctp_endpoint_put(asoc->ep);
376 	sock_put(asoc->base.sk);
377 
378 	if (asoc->assoc_id != 0) {
379 		spin_lock_bh(&sctp_assocs_id_lock);
380 		idr_remove(&sctp_assocs_id, asoc->assoc_id);
381 		spin_unlock_bh(&sctp_assocs_id_lock);
382 	}
383 
384 	if (asoc->base.malloced) {
385 		kfree(asoc);
386 		SCTP_DBG_OBJCNT_DEC(assoc);
387 	}
388 }
389 
390 /* Change the primary destination address for the peer. */
391 void sctp_assoc_set_primary(struct sctp_association *asoc,
392 			    struct sctp_transport *transport)
393 {
394 	asoc->peer.primary_path = transport;
395 
396 	/* Set a default msg_name for events. */
397 	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
398 	       sizeof(union sctp_addr));
399 
400 	/* If the primary path is changing, assume that the
401 	 * user wants to use this new path.
402 	 */
403 	if (transport->active)
404 		asoc->peer.active_path = transport;
405 
406 	/*
407 	 * SFR-CACC algorithm:
408 	 * Upon the receipt of a request to change the primary
409 	 * destination address, on the data structure for the new
410 	 * primary destination, the sender MUST do the following:
411 	 *
412 	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
413 	 * to this destination address earlier. The sender MUST set
414 	 * CYCLING_CHANGEOVER to indicate that this switch is a
415 	 * double switch to the same destination address.
416 	 */
417 	if (transport->cacc.changeover_active)
418 		transport->cacc.cycling_changeover = 1;
419 
420 	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
421 	 * a changeover has occurred.
422 	 */
423 	transport->cacc.changeover_active = 1;
424 
425 	/* 3) The sender MUST store the next TSN to be sent in
426 	 * next_tsn_at_change.
427 	 */
428 	transport->cacc.next_tsn_at_change = asoc->next_tsn;
429 }
430 
431 /* Add a transport address to an association.  */
432 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
433 					   const union sctp_addr *addr,
434 					   int gfp)
435 {
436 	struct sctp_transport *peer;
437 	struct sctp_sock *sp;
438 	unsigned short port;
439 
440 	sp = sctp_sk(asoc->base.sk);
441 
442 	/* AF_INET and AF_INET6 share common port field. */
443 	port = addr->v4.sin_port;
444 
445 	/* Set the port if it has not been set yet.  */
446 	if (0 == asoc->peer.port)
447 		asoc->peer.port = port;
448 
449 	/* Check to see if this is a duplicate. */
450 	peer = sctp_assoc_lookup_paddr(asoc, addr);
451 	if (peer)
452 		return peer;
453 
454 	peer = sctp_transport_new(addr, gfp);
455 	if (!peer)
456 		return NULL;
457 
458 	sctp_transport_set_owner(peer, asoc);
459 
460 	/* Initialize the pmtu of the transport. */
461 	sctp_transport_pmtu(peer);
462 
463 	/* If this is the first transport addr on this association,
464 	 * initialize the association PMTU to the peer's PMTU.
465 	 * If not and the current association PMTU is higher than the new
466 	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
467 	 */
468 	if (asoc->pmtu)
469 		asoc->pmtu = min_t(int, peer->pmtu, asoc->pmtu);
470 	else
471 		asoc->pmtu = peer->pmtu;
472 
473 	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
474 			  "%d\n", asoc, asoc->pmtu);
475 
476 	asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
477 
478 	/* The asoc->peer.port might not be meaningful yet, but
479 	 * initialize the packet structure anyway.
480 	 */
481 	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
482 			 asoc->peer.port);
483 
484 	/* 7.2.1 Slow-Start
485 	 *
486 	 * o The initial cwnd before DATA transmission or after a sufficiently
487 	 *   long idle period MUST be set to
488 	 *      min(4*MTU, max(2*MTU, 4380 bytes))
489 	 *
490 	 * o The initial value of ssthresh MAY be arbitrarily high
491 	 *   (for example, implementations MAY use the size of the
492 	 *   receiver advertised window).
493 	 */
494 	peer->cwnd = min(4*asoc->pmtu, max_t(__u32, 2*asoc->pmtu, 4380));
495 
496 	/* At this point, we may not have the receiver's advertised window,
497 	 * so initialize ssthresh to the default value and it will be set
498 	 * later when we process the INIT.
499 	 */
500 	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
501 
502 	peer->partial_bytes_acked = 0;
503 	peer->flight_size = 0;
504 
505 	/* By default, enable heartbeat for peer address. */
506 	peer->hb_allowed = 1;
507 
508 	/* Initialize the peer's heartbeat interval based on the
509 	 * sock configured value.
510 	 */
511 	peer->hb_interval = msecs_to_jiffies(sp->paddrparam.spp_hbinterval);
512 
513 	/* Set the path max_retrans.  */
514 	peer->max_retrans = sp->paddrparam.spp_pathmaxrxt;
515 
516 	/* Set the transport's RTO.initial value */
517 	peer->rto = asoc->rto_initial;
518 
519 	/* Attach the remote transport to our asoc.  */
520 	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
521 
522 	/* If we do not yet have a primary path, set one.  */
523 	if (!asoc->peer.primary_path) {
524 		sctp_assoc_set_primary(asoc, peer);
525 		asoc->peer.retran_path = peer;
526 	}
527 
528 	if (asoc->peer.active_path == asoc->peer.retran_path)
529 		asoc->peer.retran_path = peer;
530 
531 	return peer;
532 }
533 
534 /* Delete a transport address from an association.  */
535 void sctp_assoc_del_peer(struct sctp_association *asoc,
536 			 const union sctp_addr *addr)
537 {
538 	struct list_head	*pos;
539 	struct list_head	*temp;
540 	struct sctp_transport	*peer = NULL;
541 	struct sctp_transport	*transport;
542 
543 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
544 		transport = list_entry(pos, struct sctp_transport, transports);
545 		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
546 			peer = transport;
547 			list_del(pos);
548 			break;
549 		}
550 	}
551 
552 	/* The address we want delete is not in the association. */
553 	if (!peer)
554 		return;
555 
556 	/* Get the first transport of asoc. */
557 	pos = asoc->peer.transport_addr_list.next;
558 	transport = list_entry(pos, struct sctp_transport, transports);
559 
560 	/* Update any entries that match the peer to be deleted. */
561 	if (asoc->peer.primary_path == peer)
562 		sctp_assoc_set_primary(asoc, transport);
563 	if (asoc->peer.active_path == peer)
564 		asoc->peer.active_path = transport;
565 	if (asoc->peer.retran_path == peer)
566 		asoc->peer.retran_path = transport;
567 	if (asoc->peer.last_data_from == peer)
568 		asoc->peer.last_data_from = transport;
569 
570 	sctp_transport_free(peer);
571 }
572 
573 /* Lookup a transport by address. */
574 struct sctp_transport *sctp_assoc_lookup_paddr(
575 					const struct sctp_association *asoc,
576 					const union sctp_addr *address)
577 {
578 	struct sctp_transport *t;
579 	struct list_head *pos;
580 
581 	/* Cycle through all transports searching for a peer address. */
582 
583 	list_for_each(pos, &asoc->peer.transport_addr_list) {
584 		t = list_entry(pos, struct sctp_transport, transports);
585 		if (sctp_cmp_addr_exact(address, &t->ipaddr))
586 			return t;
587 	}
588 
589 	return NULL;
590 }
591 
592 /* Engage in transport control operations.
593  * Mark the transport up or down and send a notification to the user.
594  * Select and update the new active and retran paths.
595  */
596 void sctp_assoc_control_transport(struct sctp_association *asoc,
597 				  struct sctp_transport *transport,
598 				  sctp_transport_cmd_t command,
599 				  sctp_sn_error_t error)
600 {
601 	struct sctp_transport *t = NULL;
602 	struct sctp_transport *first;
603 	struct sctp_transport *second;
604 	struct sctp_ulpevent *event;
605 	struct list_head *pos;
606 	int spc_state = 0;
607 
608 	/* Record the transition on the transport.  */
609 	switch (command) {
610 	case SCTP_TRANSPORT_UP:
611 		transport->active = SCTP_ACTIVE;
612 		spc_state = SCTP_ADDR_AVAILABLE;
613 		break;
614 
615 	case SCTP_TRANSPORT_DOWN:
616 		transport->active = SCTP_INACTIVE;
617 		spc_state = SCTP_ADDR_UNREACHABLE;
618 		break;
619 
620 	default:
621 		return;
622 	};
623 
624 	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
625 	 * user.
626 	 */
627 	event = sctp_ulpevent_make_peer_addr_change(asoc,
628 				(struct sockaddr_storage *) &transport->ipaddr,
629 				0, spc_state, error, GFP_ATOMIC);
630 	if (event)
631 		sctp_ulpq_tail_event(&asoc->ulpq, event);
632 
633 	/* Select new active and retran paths. */
634 
635 	/* Look for the two most recently used active transports.
636 	 *
637 	 * This code produces the wrong ordering whenever jiffies
638 	 * rolls over, but we still get usable transports, so we don't
639 	 * worry about it.
640 	 */
641 	first = NULL; second = NULL;
642 
643 	list_for_each(pos, &asoc->peer.transport_addr_list) {
644 		t = list_entry(pos, struct sctp_transport, transports);
645 
646 		if (!t->active)
647 			continue;
648 		if (!first || t->last_time_heard > first->last_time_heard) {
649 			second = first;
650 			first = t;
651 		}
652 		if (!second || t->last_time_heard > second->last_time_heard)
653 			second = t;
654 	}
655 
656 	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
657 	 *
658 	 * By default, an endpoint should always transmit to the
659 	 * primary path, unless the SCTP user explicitly specifies the
660 	 * destination transport address (and possibly source
661 	 * transport address) to use.
662 	 *
663 	 * [If the primary is active but not most recent, bump the most
664 	 * recently used transport.]
665 	 */
666 	if (asoc->peer.primary_path->active &&
667 	    first != asoc->peer.primary_path) {
668 		second = first;
669 		first = asoc->peer.primary_path;
670 	}
671 
672 	/* If we failed to find a usable transport, just camp on the
673 	 * primary, even if it is inactive.
674 	 */
675 	if (!first) {
676 		first = asoc->peer.primary_path;
677 		second = asoc->peer.primary_path;
678 	}
679 
680 	/* Set the active and retran transports.  */
681 	asoc->peer.active_path = first;
682 	asoc->peer.retran_path = second;
683 }
684 
685 /* Hold a reference to an association. */
686 void sctp_association_hold(struct sctp_association *asoc)
687 {
688 	atomic_inc(&asoc->base.refcnt);
689 }
690 
691 /* Release a reference to an association and cleanup
692  * if there are no more references.
693  */
694 void sctp_association_put(struct sctp_association *asoc)
695 {
696 	if (atomic_dec_and_test(&asoc->base.refcnt))
697 		sctp_association_destroy(asoc);
698 }
699 
700 /* Allocate the next TSN, Transmission Sequence Number, for the given
701  * association.
702  */
703 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
704 {
705 	/* From Section 1.6 Serial Number Arithmetic:
706 	 * Transmission Sequence Numbers wrap around when they reach
707 	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
708 	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
709 	 */
710 	__u32 retval = asoc->next_tsn;
711 	asoc->next_tsn++;
712 	asoc->unack_data++;
713 
714 	return retval;
715 }
716 
717 /* Compare two addresses to see if they match.  Wildcard addresses
718  * only match themselves.
719  */
720 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
721 			const union sctp_addr *ss2)
722 {
723 	struct sctp_af *af;
724 
725 	af = sctp_get_af_specific(ss1->sa.sa_family);
726 	if (unlikely(!af))
727 		return 0;
728 
729 	return af->cmp_addr(ss1, ss2);
730 }
731 
732 /* Return an ecne chunk to get prepended to a packet.
733  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
734  * No we don't, but we could/should.
735  */
736 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
737 {
738 	struct sctp_chunk *chunk;
739 
740 	/* Send ECNE if needed.
741 	 * Not being able to allocate a chunk here is not deadly.
742 	 */
743 	if (asoc->need_ecne)
744 		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
745 	else
746 		chunk = NULL;
747 
748 	return chunk;
749 }
750 
751 /*
752  * Find which transport this TSN was sent on.
753  */
754 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
755 					     __u32 tsn)
756 {
757 	struct sctp_transport *active;
758 	struct sctp_transport *match;
759 	struct list_head *entry, *pos;
760 	struct sctp_transport *transport;
761 	struct sctp_chunk *chunk;
762 	__u32 key = htonl(tsn);
763 
764 	match = NULL;
765 
766 	/*
767 	 * FIXME: In general, find a more efficient data structure for
768 	 * searching.
769 	 */
770 
771 	/*
772 	 * The general strategy is to search each transport's transmitted
773 	 * list.   Return which transport this TSN lives on.
774 	 *
775 	 * Let's be hopeful and check the active_path first.
776 	 * Another optimization would be to know if there is only one
777 	 * outbound path and not have to look for the TSN at all.
778 	 *
779 	 */
780 
781 	active = asoc->peer.active_path;
782 
783 	list_for_each(entry, &active->transmitted) {
784 		chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
785 
786 		if (key == chunk->subh.data_hdr->tsn) {
787 			match = active;
788 			goto out;
789 		}
790 	}
791 
792 	/* If not found, go search all the other transports. */
793 	list_for_each(pos, &asoc->peer.transport_addr_list) {
794 		transport = list_entry(pos, struct sctp_transport, transports);
795 
796 		if (transport == active)
797 			break;
798 		list_for_each(entry, &transport->transmitted) {
799 			chunk = list_entry(entry, struct sctp_chunk,
800 					   transmitted_list);
801 			if (key == chunk->subh.data_hdr->tsn) {
802 				match = transport;
803 				goto out;
804 			}
805 		}
806 	}
807 out:
808 	return match;
809 }
810 
811 /* Is this the association we are looking for? */
812 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
813 					   const union sctp_addr *laddr,
814 					   const union sctp_addr *paddr)
815 {
816 	struct sctp_transport *transport;
817 
818 	sctp_read_lock(&asoc->base.addr_lock);
819 
820 	if ((asoc->base.bind_addr.port == laddr->v4.sin_port) &&
821 	    (asoc->peer.port == paddr->v4.sin_port)) {
822 		transport = sctp_assoc_lookup_paddr(asoc, paddr);
823 		if (!transport)
824 			goto out;
825 
826 		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
827 					 sctp_sk(asoc->base.sk)))
828 			goto out;
829 	}
830 	transport = NULL;
831 
832 out:
833 	sctp_read_unlock(&asoc->base.addr_lock);
834 	return transport;
835 }
836 
837 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
838 static void sctp_assoc_bh_rcv(struct sctp_association *asoc)
839 {
840 	struct sctp_endpoint *ep;
841 	struct sctp_chunk *chunk;
842 	struct sock *sk;
843 	struct sctp_inq *inqueue;
844 	int state;
845 	sctp_subtype_t subtype;
846 	int error = 0;
847 
848 	/* The association should be held so we should be safe. */
849 	ep = asoc->ep;
850 	sk = asoc->base.sk;
851 
852 	inqueue = &asoc->base.inqueue;
853 	sctp_association_hold(asoc);
854 	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
855 		state = asoc->state;
856 		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
857 
858 		/* Remember where the last DATA chunk came from so we
859 		 * know where to send the SACK.
860 		 */
861 		if (sctp_chunk_is_data(chunk))
862 			asoc->peer.last_data_from = chunk->transport;
863 		else
864 			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
865 
866 		if (chunk->transport)
867 			chunk->transport->last_time_heard = jiffies;
868 
869 		/* Run through the state machine. */
870 		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
871 				   state, ep, asoc, chunk, GFP_ATOMIC);
872 
873 		/* Check to see if the association is freed in response to
874 		 * the incoming chunk.  If so, get out of the while loop.
875 		 */
876 		if (asoc->base.dead)
877 			break;
878 
879 		/* If there is an error on chunk, discard this packet. */
880 		if (error && chunk)
881 			chunk->pdiscard = 1;
882 	}
883 	sctp_association_put(asoc);
884 }
885 
886 /* This routine moves an association from its old sk to a new sk.  */
887 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
888 {
889 	struct sctp_sock *newsp = sctp_sk(newsk);
890 	struct sock *oldsk = assoc->base.sk;
891 
892 	/* Delete the association from the old endpoint's list of
893 	 * associations.
894 	 */
895 	list_del_init(&assoc->asocs);
896 
897 	/* Decrement the backlog value for a TCP-style socket. */
898 	if (sctp_style(oldsk, TCP))
899 		oldsk->sk_ack_backlog--;
900 
901 	/* Release references to the old endpoint and the sock.  */
902 	sctp_endpoint_put(assoc->ep);
903 	sock_put(assoc->base.sk);
904 
905 	/* Get a reference to the new endpoint.  */
906 	assoc->ep = newsp->ep;
907 	sctp_endpoint_hold(assoc->ep);
908 
909 	/* Get a reference to the new sock.  */
910 	assoc->base.sk = newsk;
911 	sock_hold(assoc->base.sk);
912 
913 	/* Add the association to the new endpoint's list of associations.  */
914 	sctp_endpoint_add_asoc(newsp->ep, assoc);
915 }
916 
917 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
918 void sctp_assoc_update(struct sctp_association *asoc,
919 		       struct sctp_association *new)
920 {
921 	struct sctp_transport *trans;
922 	struct list_head *pos, *temp;
923 
924 	/* Copy in new parameters of peer. */
925 	asoc->c = new->c;
926 	asoc->peer.rwnd = new->peer.rwnd;
927 	asoc->peer.sack_needed = new->peer.sack_needed;
928 	asoc->peer.i = new->peer.i;
929 	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
930 			 asoc->peer.i.initial_tsn);
931 
932 	/* Remove any peer addresses not present in the new association. */
933 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
934 		trans = list_entry(pos, struct sctp_transport, transports);
935 		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
936 			sctp_assoc_del_peer(asoc, &trans->ipaddr);
937 	}
938 
939 	/* If the case is A (association restart), use
940 	 * initial_tsn as next_tsn. If the case is B, use
941 	 * current next_tsn in case data sent to peer
942 	 * has been discarded and needs retransmission.
943 	 */
944 	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
945 		asoc->next_tsn = new->next_tsn;
946 		asoc->ctsn_ack_point = new->ctsn_ack_point;
947 		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
948 
949 		/* Reinitialize SSN for both local streams
950 		 * and peer's streams.
951 		 */
952 		sctp_ssnmap_clear(asoc->ssnmap);
953 
954 	} else {
955 		/* Add any peer addresses from the new association. */
956 		list_for_each(pos, &new->peer.transport_addr_list) {
957 			trans = list_entry(pos, struct sctp_transport,
958 					   transports);
959 			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
960 				sctp_assoc_add_peer(asoc, &trans->ipaddr,
961 						    GFP_ATOMIC);
962 		}
963 
964 		asoc->ctsn_ack_point = asoc->next_tsn - 1;
965 		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
966 		if (!asoc->ssnmap) {
967 			/* Move the ssnmap. */
968 			asoc->ssnmap = new->ssnmap;
969 			new->ssnmap = NULL;
970 		}
971 	}
972 }
973 
974 /* Update the retran path for sending a retransmitted packet.
975  * Round-robin through the active transports, else round-robin
976  * through the inactive transports as this is the next best thing
977  * we can try.
978  */
979 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
980 {
981 	struct sctp_transport *t, *next;
982 	struct list_head *head = &asoc->peer.transport_addr_list;
983 	struct list_head *pos;
984 
985 	/* Find the next transport in a round-robin fashion. */
986 	t = asoc->peer.retran_path;
987 	pos = &t->transports;
988 	next = NULL;
989 
990 	while (1) {
991 		/* Skip the head. */
992 		if (pos->next == head)
993 			pos = head->next;
994 		else
995 			pos = pos->next;
996 
997 		t = list_entry(pos, struct sctp_transport, transports);
998 
999 		/* Try to find an active transport. */
1000 
1001 		if (t->active) {
1002 			break;
1003 		} else {
1004 			/* Keep track of the next transport in case
1005 			 * we don't find any active transport.
1006 			 */
1007 			if (!next)
1008 				next = t;
1009 		}
1010 
1011 		/* We have exhausted the list, but didn't find any
1012 		 * other active transports.  If so, use the next
1013 		 * transport.
1014 		 */
1015 		if (t == asoc->peer.retran_path) {
1016 			t = next;
1017 			break;
1018 		}
1019 	}
1020 
1021 	asoc->peer.retran_path = t;
1022 }
1023 
1024 /* Choose the transport for sending a SHUTDOWN packet.  */
1025 struct sctp_transport *sctp_assoc_choose_shutdown_transport(
1026 	struct sctp_association *asoc)
1027 {
1028 	/* If this is the first time SHUTDOWN is sent, use the active path,
1029 	 * else use the retran path. If the last SHUTDOWN was sent over the
1030 	 * retran path, update the retran path and use it.
1031 	 */
1032 	if (!asoc->shutdown_last_sent_to)
1033 		return asoc->peer.active_path;
1034 	else {
1035 		if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
1036 			sctp_assoc_update_retran_path(asoc);
1037 		return asoc->peer.retran_path;
1038 	}
1039 
1040 }
1041 
1042 /* Update the association's pmtu and frag_point by going through all the
1043  * transports. This routine is called when a transport's PMTU has changed.
1044  */
1045 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1046 {
1047 	struct sctp_transport *t;
1048 	struct list_head *pos;
1049 	__u32 pmtu = 0;
1050 
1051 	if (!asoc)
1052 		return;
1053 
1054 	/* Get the lowest pmtu of all the transports. */
1055 	list_for_each(pos, &asoc->peer.transport_addr_list) {
1056 		t = list_entry(pos, struct sctp_transport, transports);
1057 		if (!pmtu || (t->pmtu < pmtu))
1058 			pmtu = t->pmtu;
1059 	}
1060 
1061 	if (pmtu) {
1062 		struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1063 		asoc->pmtu = pmtu;
1064 		asoc->frag_point = sctp_frag_point(sp, pmtu);
1065 	}
1066 
1067 	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1068 			  __FUNCTION__, asoc, asoc->pmtu, asoc->frag_point);
1069 }
1070 
1071 /* Should we send a SACK to update our peer? */
1072 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1073 {
1074 	switch (asoc->state) {
1075 	case SCTP_STATE_ESTABLISHED:
1076 	case SCTP_STATE_SHUTDOWN_PENDING:
1077 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1078 	case SCTP_STATE_SHUTDOWN_SENT:
1079 		if ((asoc->rwnd > asoc->a_rwnd) &&
1080 		    ((asoc->rwnd - asoc->a_rwnd) >=
1081 		     min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pmtu)))
1082 			return 1;
1083 		break;
1084 	default:
1085 		break;
1086 	}
1087 	return 0;
1088 }
1089 
1090 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1091 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1092 {
1093 	struct sctp_chunk *sack;
1094 	struct timer_list *timer;
1095 
1096 	if (asoc->rwnd_over) {
1097 		if (asoc->rwnd_over >= len) {
1098 			asoc->rwnd_over -= len;
1099 		} else {
1100 			asoc->rwnd += (len - asoc->rwnd_over);
1101 			asoc->rwnd_over = 0;
1102 		}
1103 	} else {
1104 		asoc->rwnd += len;
1105 	}
1106 
1107 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1108 			  "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
1109 			  asoc->rwnd_over, asoc->a_rwnd);
1110 
1111 	/* Send a window update SACK if the rwnd has increased by at least the
1112 	 * minimum of the association's PMTU and half of the receive buffer.
1113 	 * The algorithm used is similar to the one described in
1114 	 * Section 4.2.3.3 of RFC 1122.
1115 	 */
1116 	if (sctp_peer_needs_update(asoc)) {
1117 		asoc->a_rwnd = asoc->rwnd;
1118 		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1119 				  "rwnd: %u a_rwnd: %u\n", __FUNCTION__,
1120 				  asoc, asoc->rwnd, asoc->a_rwnd);
1121 		sack = sctp_make_sack(asoc);
1122 		if (!sack)
1123 			return;
1124 
1125 		asoc->peer.sack_needed = 0;
1126 
1127 		sctp_outq_tail(&asoc->outqueue, sack);
1128 
1129 		/* Stop the SACK timer.  */
1130 		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1131 		if (timer_pending(timer) && del_timer(timer))
1132 			sctp_association_put(asoc);
1133 	}
1134 }
1135 
1136 /* Decrease asoc's rwnd by len. */
1137 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1138 {
1139 	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1140 	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1141 	if (asoc->rwnd >= len) {
1142 		asoc->rwnd -= len;
1143 	} else {
1144 		asoc->rwnd_over = len - asoc->rwnd;
1145 		asoc->rwnd = 0;
1146 	}
1147 	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1148 			  __FUNCTION__, asoc, len, asoc->rwnd,
1149 			  asoc->rwnd_over);
1150 }
1151 
1152 /* Build the bind address list for the association based on info from the
1153  * local endpoint and the remote peer.
1154  */
1155 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, int gfp)
1156 {
1157 	sctp_scope_t scope;
1158 	int flags;
1159 
1160 	/* Use scoping rules to determine the subset of addresses from
1161 	 * the endpoint.
1162 	 */
1163 	scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1164 	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1165 	if (asoc->peer.ipv4_address)
1166 		flags |= SCTP_ADDR4_PEERSUPP;
1167 	if (asoc->peer.ipv6_address)
1168 		flags |= SCTP_ADDR6_PEERSUPP;
1169 
1170 	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1171 				   &asoc->ep->base.bind_addr,
1172 				   scope, gfp, flags);
1173 }
1174 
1175 /* Build the association's bind address list from the cookie.  */
1176 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1177 					 struct sctp_cookie *cookie, int gfp)
1178 {
1179 	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1180 	int var_size3 = cookie->raw_addr_list_len;
1181 	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1182 
1183 	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1184 				      asoc->ep->base.bind_addr.port, gfp);
1185 }
1186 
1187 /* Lookup laddr in the bind address list of an association. */
1188 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1189 			    const union sctp_addr *laddr)
1190 {
1191 	int found;
1192 
1193 	sctp_read_lock(&asoc->base.addr_lock);
1194 	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1195 	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1196 			         sctp_sk(asoc->base.sk))) {
1197 		found = 1;
1198 		goto out;
1199 	}
1200 
1201 	found = 0;
1202 out:
1203 	sctp_read_unlock(&asoc->base.addr_lock);
1204 	return found;
1205 }
1206