xref: /openbmc/linux/net/sched/sch_taprio.c (revision faa5f5da809b690542e1108ba66886574ac57d2c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
23 #include <net/pkt_cls.h>
24 #include <net/sch_generic.h>
25 #include <net/sock.h>
26 #include <net/tcp.h>
27 
28 static LIST_HEAD(taprio_list);
29 static DEFINE_SPINLOCK(taprio_list_lock);
30 
31 #define TAPRIO_ALL_GATES_OPEN -1
32 
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
35 #define TAPRIO_FLAGS_INVALID U32_MAX
36 
37 struct sched_entry {
38 	struct list_head list;
39 
40 	/* The instant that this entry "closes" and the next one
41 	 * should open, the qdisc will make some effort so that no
42 	 * packet leaves after this time.
43 	 */
44 	ktime_t close_time;
45 	ktime_t next_txtime;
46 	atomic_t budget;
47 	int index;
48 	u32 gate_mask;
49 	u32 interval;
50 	u8 command;
51 };
52 
53 struct sched_gate_list {
54 	struct rcu_head rcu;
55 	struct list_head entries;
56 	size_t num_entries;
57 	ktime_t cycle_close_time;
58 	s64 cycle_time;
59 	s64 cycle_time_extension;
60 	s64 base_time;
61 };
62 
63 struct taprio_sched {
64 	struct Qdisc **qdiscs;
65 	struct Qdisc *root;
66 	u32 flags;
67 	enum tk_offsets tk_offset;
68 	int clockid;
69 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
70 				    * speeds it's sub-nanoseconds per byte
71 				    */
72 
73 	/* Protects the update side of the RCU protected current_entry */
74 	spinlock_t current_entry_lock;
75 	struct sched_entry __rcu *current_entry;
76 	struct sched_gate_list __rcu *oper_sched;
77 	struct sched_gate_list __rcu *admin_sched;
78 	struct hrtimer advance_timer;
79 	struct list_head taprio_list;
80 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
81 	struct sk_buff *(*peek)(struct Qdisc *sch);
82 	u32 txtime_delay;
83 };
84 
85 struct __tc_taprio_qopt_offload {
86 	refcount_t users;
87 	struct tc_taprio_qopt_offload offload;
88 };
89 
90 static ktime_t sched_base_time(const struct sched_gate_list *sched)
91 {
92 	if (!sched)
93 		return KTIME_MAX;
94 
95 	return ns_to_ktime(sched->base_time);
96 }
97 
98 static ktime_t taprio_get_time(struct taprio_sched *q)
99 {
100 	ktime_t mono = ktime_get();
101 
102 	switch (q->tk_offset) {
103 	case TK_OFFS_MAX:
104 		return mono;
105 	default:
106 		return ktime_mono_to_any(mono, q->tk_offset);
107 	}
108 
109 	return KTIME_MAX;
110 }
111 
112 static void taprio_free_sched_cb(struct rcu_head *head)
113 {
114 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
115 	struct sched_entry *entry, *n;
116 
117 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
118 		list_del(&entry->list);
119 		kfree(entry);
120 	}
121 
122 	kfree(sched);
123 }
124 
125 static void switch_schedules(struct taprio_sched *q,
126 			     struct sched_gate_list **admin,
127 			     struct sched_gate_list **oper)
128 {
129 	rcu_assign_pointer(q->oper_sched, *admin);
130 	rcu_assign_pointer(q->admin_sched, NULL);
131 
132 	if (*oper)
133 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
134 
135 	*oper = *admin;
136 	*admin = NULL;
137 }
138 
139 /* Get how much time has been already elapsed in the current cycle. */
140 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
141 {
142 	ktime_t time_since_sched_start;
143 	s32 time_elapsed;
144 
145 	time_since_sched_start = ktime_sub(time, sched->base_time);
146 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
147 
148 	return time_elapsed;
149 }
150 
151 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
152 				     struct sched_gate_list *admin,
153 				     struct sched_entry *entry,
154 				     ktime_t intv_start)
155 {
156 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
157 	ktime_t intv_end, cycle_ext_end, cycle_end;
158 
159 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
160 	intv_end = ktime_add_ns(intv_start, entry->interval);
161 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
162 
163 	if (ktime_before(intv_end, cycle_end))
164 		return intv_end;
165 	else if (admin && admin != sched &&
166 		 ktime_after(admin->base_time, cycle_end) &&
167 		 ktime_before(admin->base_time, cycle_ext_end))
168 		return admin->base_time;
169 	else
170 		return cycle_end;
171 }
172 
173 static int length_to_duration(struct taprio_sched *q, int len)
174 {
175 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
176 }
177 
178 /* Returns the entry corresponding to next available interval. If
179  * validate_interval is set, it only validates whether the timestamp occurs
180  * when the gate corresponding to the skb's traffic class is open.
181  */
182 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
183 						  struct Qdisc *sch,
184 						  struct sched_gate_list *sched,
185 						  struct sched_gate_list *admin,
186 						  ktime_t time,
187 						  ktime_t *interval_start,
188 						  ktime_t *interval_end,
189 						  bool validate_interval)
190 {
191 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
192 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
193 	struct sched_entry *entry = NULL, *entry_found = NULL;
194 	struct taprio_sched *q = qdisc_priv(sch);
195 	struct net_device *dev = qdisc_dev(sch);
196 	bool entry_available = false;
197 	s32 cycle_elapsed;
198 	int tc, n;
199 
200 	tc = netdev_get_prio_tc_map(dev, skb->priority);
201 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
202 
203 	*interval_start = 0;
204 	*interval_end = 0;
205 
206 	if (!sched)
207 		return NULL;
208 
209 	cycle = sched->cycle_time;
210 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
211 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
212 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
213 
214 	list_for_each_entry(entry, &sched->entries, list) {
215 		curr_intv_start = curr_intv_end;
216 		curr_intv_end = get_interval_end_time(sched, admin, entry,
217 						      curr_intv_start);
218 
219 		if (ktime_after(curr_intv_start, cycle_end))
220 			break;
221 
222 		if (!(entry->gate_mask & BIT(tc)) ||
223 		    packet_transmit_time > entry->interval)
224 			continue;
225 
226 		txtime = entry->next_txtime;
227 
228 		if (ktime_before(txtime, time) || validate_interval) {
229 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
230 			if ((ktime_before(curr_intv_start, time) &&
231 			     ktime_before(transmit_end_time, curr_intv_end)) ||
232 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
233 				entry_found = entry;
234 				*interval_start = curr_intv_start;
235 				*interval_end = curr_intv_end;
236 				break;
237 			} else if (!entry_available && !validate_interval) {
238 				/* Here, we are just trying to find out the
239 				 * first available interval in the next cycle.
240 				 */
241 				entry_available = true;
242 				entry_found = entry;
243 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
244 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
245 			}
246 		} else if (ktime_before(txtime, earliest_txtime) &&
247 			   !entry_available) {
248 			earliest_txtime = txtime;
249 			entry_found = entry;
250 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
251 			*interval_start = ktime_add(curr_intv_start, n * cycle);
252 			*interval_end = ktime_add(curr_intv_end, n * cycle);
253 		}
254 	}
255 
256 	return entry_found;
257 }
258 
259 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
260 {
261 	struct taprio_sched *q = qdisc_priv(sch);
262 	struct sched_gate_list *sched, *admin;
263 	ktime_t interval_start, interval_end;
264 	struct sched_entry *entry;
265 
266 	rcu_read_lock();
267 	sched = rcu_dereference(q->oper_sched);
268 	admin = rcu_dereference(q->admin_sched);
269 
270 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
271 				       &interval_start, &interval_end, true);
272 	rcu_read_unlock();
273 
274 	return entry;
275 }
276 
277 static bool taprio_flags_valid(u32 flags)
278 {
279 	/* Make sure no other flag bits are set. */
280 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
281 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
282 		return false;
283 	/* txtime-assist and full offload are mutually exclusive */
284 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
285 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
286 		return false;
287 	return true;
288 }
289 
290 /* This returns the tstamp value set by TCP in terms of the set clock. */
291 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
292 {
293 	unsigned int offset = skb_network_offset(skb);
294 	const struct ipv6hdr *ipv6h;
295 	const struct iphdr *iph;
296 	struct ipv6hdr _ipv6h;
297 
298 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
299 	if (!ipv6h)
300 		return 0;
301 
302 	if (ipv6h->version == 4) {
303 		iph = (struct iphdr *)ipv6h;
304 		offset += iph->ihl * 4;
305 
306 		/* special-case 6in4 tunnelling, as that is a common way to get
307 		 * v6 connectivity in the home
308 		 */
309 		if (iph->protocol == IPPROTO_IPV6) {
310 			ipv6h = skb_header_pointer(skb, offset,
311 						   sizeof(_ipv6h), &_ipv6h);
312 
313 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
314 				return 0;
315 		} else if (iph->protocol != IPPROTO_TCP) {
316 			return 0;
317 		}
318 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
319 		return 0;
320 	}
321 
322 	return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
323 }
324 
325 /* There are a few scenarios where we will have to modify the txtime from
326  * what is read from next_txtime in sched_entry. They are:
327  * 1. If txtime is in the past,
328  *    a. The gate for the traffic class is currently open and packet can be
329  *       transmitted before it closes, schedule the packet right away.
330  *    b. If the gate corresponding to the traffic class is going to open later
331  *       in the cycle, set the txtime of packet to the interval start.
332  * 2. If txtime is in the future, there are packets corresponding to the
333  *    current traffic class waiting to be transmitted. So, the following
334  *    possibilities exist:
335  *    a. We can transmit the packet before the window containing the txtime
336  *       closes.
337  *    b. The window might close before the transmission can be completed
338  *       successfully. So, schedule the packet in the next open window.
339  */
340 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
341 {
342 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
343 	struct taprio_sched *q = qdisc_priv(sch);
344 	struct sched_gate_list *sched, *admin;
345 	ktime_t minimum_time, now, txtime;
346 	int len, packet_transmit_time;
347 	struct sched_entry *entry;
348 	bool sched_changed;
349 
350 	now = taprio_get_time(q);
351 	minimum_time = ktime_add_ns(now, q->txtime_delay);
352 
353 	tcp_tstamp = get_tcp_tstamp(q, skb);
354 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
355 
356 	rcu_read_lock();
357 	admin = rcu_dereference(q->admin_sched);
358 	sched = rcu_dereference(q->oper_sched);
359 	if (admin && ktime_after(minimum_time, admin->base_time))
360 		switch_schedules(q, &admin, &sched);
361 
362 	/* Until the schedule starts, all the queues are open */
363 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
364 		txtime = minimum_time;
365 		goto done;
366 	}
367 
368 	len = qdisc_pkt_len(skb);
369 	packet_transmit_time = length_to_duration(q, len);
370 
371 	do {
372 		sched_changed = false;
373 
374 		entry = find_entry_to_transmit(skb, sch, sched, admin,
375 					       minimum_time,
376 					       &interval_start, &interval_end,
377 					       false);
378 		if (!entry) {
379 			txtime = 0;
380 			goto done;
381 		}
382 
383 		txtime = entry->next_txtime;
384 		txtime = max_t(ktime_t, txtime, minimum_time);
385 		txtime = max_t(ktime_t, txtime, interval_start);
386 
387 		if (admin && admin != sched &&
388 		    ktime_after(txtime, admin->base_time)) {
389 			sched = admin;
390 			sched_changed = true;
391 			continue;
392 		}
393 
394 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
395 		minimum_time = transmit_end_time;
396 
397 		/* Update the txtime of current entry to the next time it's
398 		 * interval starts.
399 		 */
400 		if (ktime_after(transmit_end_time, interval_end))
401 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
402 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
403 
404 	entry->next_txtime = transmit_end_time;
405 
406 done:
407 	rcu_read_unlock();
408 	return txtime;
409 }
410 
411 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
412 			      struct Qdisc *child, struct sk_buff **to_free)
413 {
414 	struct taprio_sched *q = qdisc_priv(sch);
415 
416 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
417 		if (!is_valid_interval(skb, sch))
418 			return qdisc_drop(skb, sch, to_free);
419 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
420 		skb->tstamp = get_packet_txtime(skb, sch);
421 		if (!skb->tstamp)
422 			return qdisc_drop(skb, sch, to_free);
423 	}
424 
425 	qdisc_qstats_backlog_inc(sch, skb);
426 	sch->q.qlen++;
427 
428 	return qdisc_enqueue(skb, child, to_free);
429 }
430 
431 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
432 			  struct sk_buff **to_free)
433 {
434 	struct taprio_sched *q = qdisc_priv(sch);
435 	struct Qdisc *child;
436 	int queue;
437 
438 	queue = skb_get_queue_mapping(skb);
439 
440 	child = q->qdiscs[queue];
441 	if (unlikely(!child))
442 		return qdisc_drop(skb, sch, to_free);
443 
444 	/* Large packets might not be transmitted when the transmission duration
445 	 * exceeds any configured interval. Therefore, segment the skb into
446 	 * smaller chunks. Skip it for the full offload case, as the driver
447 	 * and/or the hardware is expected to handle this.
448 	 */
449 	if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
450 		unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
451 		netdev_features_t features = netif_skb_features(skb);
452 		struct sk_buff *segs, *nskb;
453 		int ret;
454 
455 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
456 		if (IS_ERR_OR_NULL(segs))
457 			return qdisc_drop(skb, sch, to_free);
458 
459 		skb_list_walk_safe(segs, segs, nskb) {
460 			skb_mark_not_on_list(segs);
461 			qdisc_skb_cb(segs)->pkt_len = segs->len;
462 			slen += segs->len;
463 
464 			ret = taprio_enqueue_one(segs, sch, child, to_free);
465 			if (ret != NET_XMIT_SUCCESS) {
466 				if (net_xmit_drop_count(ret))
467 					qdisc_qstats_drop(sch);
468 			} else {
469 				numsegs++;
470 			}
471 		}
472 
473 		if (numsegs > 1)
474 			qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
475 		consume_skb(skb);
476 
477 		return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
478 	}
479 
480 	return taprio_enqueue_one(skb, sch, child, to_free);
481 }
482 
483 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
484 {
485 	struct taprio_sched *q = qdisc_priv(sch);
486 	struct net_device *dev = qdisc_dev(sch);
487 	struct sched_entry *entry;
488 	struct sk_buff *skb;
489 	u32 gate_mask;
490 	int i;
491 
492 	rcu_read_lock();
493 	entry = rcu_dereference(q->current_entry);
494 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
495 	rcu_read_unlock();
496 
497 	if (!gate_mask)
498 		return NULL;
499 
500 	for (i = 0; i < dev->num_tx_queues; i++) {
501 		struct Qdisc *child = q->qdiscs[i];
502 		int prio;
503 		u8 tc;
504 
505 		if (unlikely(!child))
506 			continue;
507 
508 		skb = child->ops->peek(child);
509 		if (!skb)
510 			continue;
511 
512 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
513 			return skb;
514 
515 		prio = skb->priority;
516 		tc = netdev_get_prio_tc_map(dev, prio);
517 
518 		if (!(gate_mask & BIT(tc)))
519 			continue;
520 
521 		return skb;
522 	}
523 
524 	return NULL;
525 }
526 
527 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
528 {
529 	struct taprio_sched *q = qdisc_priv(sch);
530 	struct net_device *dev = qdisc_dev(sch);
531 	struct sk_buff *skb;
532 	int i;
533 
534 	for (i = 0; i < dev->num_tx_queues; i++) {
535 		struct Qdisc *child = q->qdiscs[i];
536 
537 		if (unlikely(!child))
538 			continue;
539 
540 		skb = child->ops->peek(child);
541 		if (!skb)
542 			continue;
543 
544 		return skb;
545 	}
546 
547 	return NULL;
548 }
549 
550 static struct sk_buff *taprio_peek(struct Qdisc *sch)
551 {
552 	struct taprio_sched *q = qdisc_priv(sch);
553 
554 	return q->peek(sch);
555 }
556 
557 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
558 {
559 	atomic_set(&entry->budget,
560 		   div64_u64((u64)entry->interval * 1000,
561 			     atomic64_read(&q->picos_per_byte)));
562 }
563 
564 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
565 {
566 	struct taprio_sched *q = qdisc_priv(sch);
567 	struct net_device *dev = qdisc_dev(sch);
568 	struct sk_buff *skb = NULL;
569 	struct sched_entry *entry;
570 	u32 gate_mask;
571 	int i;
572 
573 	rcu_read_lock();
574 	entry = rcu_dereference(q->current_entry);
575 	/* if there's no entry, it means that the schedule didn't
576 	 * start yet, so force all gates to be open, this is in
577 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
578 	 * "AdminGateSates"
579 	 */
580 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
581 
582 	if (!gate_mask)
583 		goto done;
584 
585 	for (i = 0; i < dev->num_tx_queues; i++) {
586 		struct Qdisc *child = q->qdiscs[i];
587 		ktime_t guard;
588 		int prio;
589 		int len;
590 		u8 tc;
591 
592 		if (unlikely(!child))
593 			continue;
594 
595 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
596 			skb = child->ops->dequeue(child);
597 			if (!skb)
598 				continue;
599 			goto skb_found;
600 		}
601 
602 		skb = child->ops->peek(child);
603 		if (!skb)
604 			continue;
605 
606 		prio = skb->priority;
607 		tc = netdev_get_prio_tc_map(dev, prio);
608 
609 		if (!(gate_mask & BIT(tc))) {
610 			skb = NULL;
611 			continue;
612 		}
613 
614 		len = qdisc_pkt_len(skb);
615 		guard = ktime_add_ns(taprio_get_time(q),
616 				     length_to_duration(q, len));
617 
618 		/* In the case that there's no gate entry, there's no
619 		 * guard band ...
620 		 */
621 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
622 		    ktime_after(guard, entry->close_time)) {
623 			skb = NULL;
624 			continue;
625 		}
626 
627 		/* ... and no budget. */
628 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
629 		    atomic_sub_return(len, &entry->budget) < 0) {
630 			skb = NULL;
631 			continue;
632 		}
633 
634 		skb = child->ops->dequeue(child);
635 		if (unlikely(!skb))
636 			goto done;
637 
638 skb_found:
639 		qdisc_bstats_update(sch, skb);
640 		qdisc_qstats_backlog_dec(sch, skb);
641 		sch->q.qlen--;
642 
643 		goto done;
644 	}
645 
646 done:
647 	rcu_read_unlock();
648 
649 	return skb;
650 }
651 
652 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
653 {
654 	struct taprio_sched *q = qdisc_priv(sch);
655 	struct net_device *dev = qdisc_dev(sch);
656 	struct sk_buff *skb;
657 	int i;
658 
659 	for (i = 0; i < dev->num_tx_queues; i++) {
660 		struct Qdisc *child = q->qdiscs[i];
661 
662 		if (unlikely(!child))
663 			continue;
664 
665 		skb = child->ops->dequeue(child);
666 		if (unlikely(!skb))
667 			continue;
668 
669 		qdisc_bstats_update(sch, skb);
670 		qdisc_qstats_backlog_dec(sch, skb);
671 		sch->q.qlen--;
672 
673 		return skb;
674 	}
675 
676 	return NULL;
677 }
678 
679 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
680 {
681 	struct taprio_sched *q = qdisc_priv(sch);
682 
683 	return q->dequeue(sch);
684 }
685 
686 static bool should_restart_cycle(const struct sched_gate_list *oper,
687 				 const struct sched_entry *entry)
688 {
689 	if (list_is_last(&entry->list, &oper->entries))
690 		return true;
691 
692 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
693 		return true;
694 
695 	return false;
696 }
697 
698 static bool should_change_schedules(const struct sched_gate_list *admin,
699 				    const struct sched_gate_list *oper,
700 				    ktime_t close_time)
701 {
702 	ktime_t next_base_time, extension_time;
703 
704 	if (!admin)
705 		return false;
706 
707 	next_base_time = sched_base_time(admin);
708 
709 	/* This is the simple case, the close_time would fall after
710 	 * the next schedule base_time.
711 	 */
712 	if (ktime_compare(next_base_time, close_time) <= 0)
713 		return true;
714 
715 	/* This is the cycle_time_extension case, if the close_time
716 	 * plus the amount that can be extended would fall after the
717 	 * next schedule base_time, we can extend the current schedule
718 	 * for that amount.
719 	 */
720 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
721 
722 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
723 	 * how precisely the extension should be made. So after
724 	 * conformance testing, this logic may change.
725 	 */
726 	if (ktime_compare(next_base_time, extension_time) <= 0)
727 		return true;
728 
729 	return false;
730 }
731 
732 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
733 {
734 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
735 					      advance_timer);
736 	struct sched_gate_list *oper, *admin;
737 	struct sched_entry *entry, *next;
738 	struct Qdisc *sch = q->root;
739 	ktime_t close_time;
740 
741 	spin_lock(&q->current_entry_lock);
742 	entry = rcu_dereference_protected(q->current_entry,
743 					  lockdep_is_held(&q->current_entry_lock));
744 	oper = rcu_dereference_protected(q->oper_sched,
745 					 lockdep_is_held(&q->current_entry_lock));
746 	admin = rcu_dereference_protected(q->admin_sched,
747 					  lockdep_is_held(&q->current_entry_lock));
748 
749 	if (!oper)
750 		switch_schedules(q, &admin, &oper);
751 
752 	/* This can happen in two cases: 1. this is the very first run
753 	 * of this function (i.e. we weren't running any schedule
754 	 * previously); 2. The previous schedule just ended. The first
755 	 * entry of all schedules are pre-calculated during the
756 	 * schedule initialization.
757 	 */
758 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
759 		next = list_first_entry(&oper->entries, struct sched_entry,
760 					list);
761 		close_time = next->close_time;
762 		goto first_run;
763 	}
764 
765 	if (should_restart_cycle(oper, entry)) {
766 		next = list_first_entry(&oper->entries, struct sched_entry,
767 					list);
768 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
769 						      oper->cycle_time);
770 	} else {
771 		next = list_next_entry(entry, list);
772 	}
773 
774 	close_time = ktime_add_ns(entry->close_time, next->interval);
775 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
776 
777 	if (should_change_schedules(admin, oper, close_time)) {
778 		/* Set things so the next time this runs, the new
779 		 * schedule runs.
780 		 */
781 		close_time = sched_base_time(admin);
782 		switch_schedules(q, &admin, &oper);
783 	}
784 
785 	next->close_time = close_time;
786 	taprio_set_budget(q, next);
787 
788 first_run:
789 	rcu_assign_pointer(q->current_entry, next);
790 	spin_unlock(&q->current_entry_lock);
791 
792 	hrtimer_set_expires(&q->advance_timer, close_time);
793 
794 	rcu_read_lock();
795 	__netif_schedule(sch);
796 	rcu_read_unlock();
797 
798 	return HRTIMER_RESTART;
799 }
800 
801 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
802 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
803 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
804 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
805 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
806 };
807 
808 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
809 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
810 		.len = sizeof(struct tc_mqprio_qopt)
811 	},
812 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
813 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
814 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
815 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
816 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
817 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
818 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
819 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
820 };
821 
822 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
823 			    struct sched_entry *entry,
824 			    struct netlink_ext_ack *extack)
825 {
826 	int min_duration = length_to_duration(q, ETH_ZLEN);
827 	u32 interval = 0;
828 
829 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
830 		entry->command = nla_get_u8(
831 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
832 
833 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
834 		entry->gate_mask = nla_get_u32(
835 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
836 
837 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
838 		interval = nla_get_u32(
839 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
840 
841 	/* The interval should allow at least the minimum ethernet
842 	 * frame to go out.
843 	 */
844 	if (interval < min_duration) {
845 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
846 		return -EINVAL;
847 	}
848 
849 	entry->interval = interval;
850 
851 	return 0;
852 }
853 
854 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
855 			     struct sched_entry *entry, int index,
856 			     struct netlink_ext_ack *extack)
857 {
858 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
859 	int err;
860 
861 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
862 					  entry_policy, NULL);
863 	if (err < 0) {
864 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
865 		return -EINVAL;
866 	}
867 
868 	entry->index = index;
869 
870 	return fill_sched_entry(q, tb, entry, extack);
871 }
872 
873 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
874 			    struct sched_gate_list *sched,
875 			    struct netlink_ext_ack *extack)
876 {
877 	struct nlattr *n;
878 	int err, rem;
879 	int i = 0;
880 
881 	if (!list)
882 		return -EINVAL;
883 
884 	nla_for_each_nested(n, list, rem) {
885 		struct sched_entry *entry;
886 
887 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
888 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
889 			continue;
890 		}
891 
892 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
893 		if (!entry) {
894 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
895 			return -ENOMEM;
896 		}
897 
898 		err = parse_sched_entry(q, n, entry, i, extack);
899 		if (err < 0) {
900 			kfree(entry);
901 			return err;
902 		}
903 
904 		list_add_tail(&entry->list, &sched->entries);
905 		i++;
906 	}
907 
908 	sched->num_entries = i;
909 
910 	return i;
911 }
912 
913 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
914 				 struct sched_gate_list *new,
915 				 struct netlink_ext_ack *extack)
916 {
917 	int err = 0;
918 
919 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
920 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
921 		return -ENOTSUPP;
922 	}
923 
924 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
925 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
926 
927 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
928 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
929 
930 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
931 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
932 
933 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
934 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
935 				       new, extack);
936 	if (err < 0)
937 		return err;
938 
939 	if (!new->cycle_time) {
940 		struct sched_entry *entry;
941 		ktime_t cycle = 0;
942 
943 		list_for_each_entry(entry, &new->entries, list)
944 			cycle = ktime_add_ns(cycle, entry->interval);
945 
946 		if (!cycle) {
947 			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
948 			return -EINVAL;
949 		}
950 
951 		new->cycle_time = cycle;
952 	}
953 
954 	return 0;
955 }
956 
957 static int taprio_parse_mqprio_opt(struct net_device *dev,
958 				   struct tc_mqprio_qopt *qopt,
959 				   struct netlink_ext_ack *extack,
960 				   u32 taprio_flags)
961 {
962 	int i, j;
963 
964 	if (!qopt && !dev->num_tc) {
965 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
966 		return -EINVAL;
967 	}
968 
969 	/* If num_tc is already set, it means that the user already
970 	 * configured the mqprio part
971 	 */
972 	if (dev->num_tc)
973 		return 0;
974 
975 	/* Verify num_tc is not out of max range */
976 	if (qopt->num_tc > TC_MAX_QUEUE) {
977 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
978 		return -EINVAL;
979 	}
980 
981 	/* taprio imposes that traffic classes map 1:n to tx queues */
982 	if (qopt->num_tc > dev->num_tx_queues) {
983 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
984 		return -EINVAL;
985 	}
986 
987 	/* Verify priority mapping uses valid tcs */
988 	for (i = 0; i <= TC_BITMASK; i++) {
989 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
990 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
991 			return -EINVAL;
992 		}
993 	}
994 
995 	for (i = 0; i < qopt->num_tc; i++) {
996 		unsigned int last = qopt->offset[i] + qopt->count[i];
997 
998 		/* Verify the queue count is in tx range being equal to the
999 		 * real_num_tx_queues indicates the last queue is in use.
1000 		 */
1001 		if (qopt->offset[i] >= dev->num_tx_queues ||
1002 		    !qopt->count[i] ||
1003 		    last > dev->real_num_tx_queues) {
1004 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
1005 			return -EINVAL;
1006 		}
1007 
1008 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
1009 			continue;
1010 
1011 		/* Verify that the offset and counts do not overlap */
1012 		for (j = i + 1; j < qopt->num_tc; j++) {
1013 			if (last > qopt->offset[j]) {
1014 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
1015 				return -EINVAL;
1016 			}
1017 		}
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int taprio_get_start_time(struct Qdisc *sch,
1024 				 struct sched_gate_list *sched,
1025 				 ktime_t *start)
1026 {
1027 	struct taprio_sched *q = qdisc_priv(sch);
1028 	ktime_t now, base, cycle;
1029 	s64 n;
1030 
1031 	base = sched_base_time(sched);
1032 	now = taprio_get_time(q);
1033 
1034 	if (ktime_after(base, now)) {
1035 		*start = base;
1036 		return 0;
1037 	}
1038 
1039 	cycle = sched->cycle_time;
1040 
1041 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1042 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1043 	 * something went really wrong. In that case, we should warn about this
1044 	 * inconsistent state and return error.
1045 	 */
1046 	if (WARN_ON(!cycle))
1047 		return -EFAULT;
1048 
1049 	/* Schedule the start time for the beginning of the next
1050 	 * cycle.
1051 	 */
1052 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1053 	*start = ktime_add_ns(base, (n + 1) * cycle);
1054 	return 0;
1055 }
1056 
1057 static void setup_first_close_time(struct taprio_sched *q,
1058 				   struct sched_gate_list *sched, ktime_t base)
1059 {
1060 	struct sched_entry *first;
1061 	ktime_t cycle;
1062 
1063 	first = list_first_entry(&sched->entries,
1064 				 struct sched_entry, list);
1065 
1066 	cycle = sched->cycle_time;
1067 
1068 	/* FIXME: find a better place to do this */
1069 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1070 
1071 	first->close_time = ktime_add_ns(base, first->interval);
1072 	taprio_set_budget(q, first);
1073 	rcu_assign_pointer(q->current_entry, NULL);
1074 }
1075 
1076 static void taprio_start_sched(struct Qdisc *sch,
1077 			       ktime_t start, struct sched_gate_list *new)
1078 {
1079 	struct taprio_sched *q = qdisc_priv(sch);
1080 	ktime_t expires;
1081 
1082 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1083 		return;
1084 
1085 	expires = hrtimer_get_expires(&q->advance_timer);
1086 	if (expires == 0)
1087 		expires = KTIME_MAX;
1088 
1089 	/* If the new schedule starts before the next expiration, we
1090 	 * reprogram it to the earliest one, so we change the admin
1091 	 * schedule to the operational one at the right time.
1092 	 */
1093 	start = min_t(ktime_t, start, expires);
1094 
1095 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1096 }
1097 
1098 static void taprio_set_picos_per_byte(struct net_device *dev,
1099 				      struct taprio_sched *q)
1100 {
1101 	struct ethtool_link_ksettings ecmd;
1102 	int speed = SPEED_10;
1103 	int picos_per_byte;
1104 	int err;
1105 
1106 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1107 	if (err < 0)
1108 		goto skip;
1109 
1110 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1111 		speed = ecmd.base.speed;
1112 
1113 skip:
1114 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1115 
1116 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1117 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1118 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1119 		   ecmd.base.speed);
1120 }
1121 
1122 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1123 			       void *ptr)
1124 {
1125 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1126 	struct net_device *qdev;
1127 	struct taprio_sched *q;
1128 	bool found = false;
1129 
1130 	ASSERT_RTNL();
1131 
1132 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1133 		return NOTIFY_DONE;
1134 
1135 	spin_lock(&taprio_list_lock);
1136 	list_for_each_entry(q, &taprio_list, taprio_list) {
1137 		qdev = qdisc_dev(q->root);
1138 		if (qdev == dev) {
1139 			found = true;
1140 			break;
1141 		}
1142 	}
1143 	spin_unlock(&taprio_list_lock);
1144 
1145 	if (found)
1146 		taprio_set_picos_per_byte(dev, q);
1147 
1148 	return NOTIFY_DONE;
1149 }
1150 
1151 static void setup_txtime(struct taprio_sched *q,
1152 			 struct sched_gate_list *sched, ktime_t base)
1153 {
1154 	struct sched_entry *entry;
1155 	u32 interval = 0;
1156 
1157 	list_for_each_entry(entry, &sched->entries, list) {
1158 		entry->next_txtime = ktime_add_ns(base, interval);
1159 		interval += entry->interval;
1160 	}
1161 }
1162 
1163 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1164 {
1165 	struct __tc_taprio_qopt_offload *__offload;
1166 
1167 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1168 			    GFP_KERNEL);
1169 	if (!__offload)
1170 		return NULL;
1171 
1172 	refcount_set(&__offload->users, 1);
1173 
1174 	return &__offload->offload;
1175 }
1176 
1177 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1178 						  *offload)
1179 {
1180 	struct __tc_taprio_qopt_offload *__offload;
1181 
1182 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1183 				 offload);
1184 
1185 	refcount_inc(&__offload->users);
1186 
1187 	return offload;
1188 }
1189 EXPORT_SYMBOL_GPL(taprio_offload_get);
1190 
1191 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1192 {
1193 	struct __tc_taprio_qopt_offload *__offload;
1194 
1195 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1196 				 offload);
1197 
1198 	if (!refcount_dec_and_test(&__offload->users))
1199 		return;
1200 
1201 	kfree(__offload);
1202 }
1203 EXPORT_SYMBOL_GPL(taprio_offload_free);
1204 
1205 /* The function will only serve to keep the pointers to the "oper" and "admin"
1206  * schedules valid in relation to their base times, so when calling dump() the
1207  * users looks at the right schedules.
1208  * When using full offload, the admin configuration is promoted to oper at the
1209  * base_time in the PHC time domain.  But because the system time is not
1210  * necessarily in sync with that, we can't just trigger a hrtimer to call
1211  * switch_schedules at the right hardware time.
1212  * At the moment we call this by hand right away from taprio, but in the future
1213  * it will be useful to create a mechanism for drivers to notify taprio of the
1214  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1215  * This is left as TODO.
1216  */
1217 static void taprio_offload_config_changed(struct taprio_sched *q)
1218 {
1219 	struct sched_gate_list *oper, *admin;
1220 
1221 	spin_lock(&q->current_entry_lock);
1222 
1223 	oper = rcu_dereference_protected(q->oper_sched,
1224 					 lockdep_is_held(&q->current_entry_lock));
1225 	admin = rcu_dereference_protected(q->admin_sched,
1226 					  lockdep_is_held(&q->current_entry_lock));
1227 
1228 	switch_schedules(q, &admin, &oper);
1229 
1230 	spin_unlock(&q->current_entry_lock);
1231 }
1232 
1233 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1234 {
1235 	u32 i, queue_mask = 0;
1236 
1237 	for (i = 0; i < dev->num_tc; i++) {
1238 		u32 offset, count;
1239 
1240 		if (!(tc_mask & BIT(i)))
1241 			continue;
1242 
1243 		offset = dev->tc_to_txq[i].offset;
1244 		count = dev->tc_to_txq[i].count;
1245 
1246 		queue_mask |= GENMASK(offset + count - 1, offset);
1247 	}
1248 
1249 	return queue_mask;
1250 }
1251 
1252 static void taprio_sched_to_offload(struct net_device *dev,
1253 				    struct sched_gate_list *sched,
1254 				    struct tc_taprio_qopt_offload *offload)
1255 {
1256 	struct sched_entry *entry;
1257 	int i = 0;
1258 
1259 	offload->base_time = sched->base_time;
1260 	offload->cycle_time = sched->cycle_time;
1261 	offload->cycle_time_extension = sched->cycle_time_extension;
1262 
1263 	list_for_each_entry(entry, &sched->entries, list) {
1264 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1265 
1266 		e->command = entry->command;
1267 		e->interval = entry->interval;
1268 		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1269 
1270 		i++;
1271 	}
1272 
1273 	offload->num_entries = i;
1274 }
1275 
1276 static int taprio_enable_offload(struct net_device *dev,
1277 				 struct taprio_sched *q,
1278 				 struct sched_gate_list *sched,
1279 				 struct netlink_ext_ack *extack)
1280 {
1281 	const struct net_device_ops *ops = dev->netdev_ops;
1282 	struct tc_taprio_qopt_offload *offload;
1283 	int err = 0;
1284 
1285 	if (!ops->ndo_setup_tc) {
1286 		NL_SET_ERR_MSG(extack,
1287 			       "Device does not support taprio offload");
1288 		return -EOPNOTSUPP;
1289 	}
1290 
1291 	offload = taprio_offload_alloc(sched->num_entries);
1292 	if (!offload) {
1293 		NL_SET_ERR_MSG(extack,
1294 			       "Not enough memory for enabling offload mode");
1295 		return -ENOMEM;
1296 	}
1297 	offload->enable = 1;
1298 	taprio_sched_to_offload(dev, sched, offload);
1299 
1300 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1301 	if (err < 0) {
1302 		NL_SET_ERR_MSG(extack,
1303 			       "Device failed to setup taprio offload");
1304 		goto done;
1305 	}
1306 
1307 done:
1308 	taprio_offload_free(offload);
1309 
1310 	return err;
1311 }
1312 
1313 static int taprio_disable_offload(struct net_device *dev,
1314 				  struct taprio_sched *q,
1315 				  struct netlink_ext_ack *extack)
1316 {
1317 	const struct net_device_ops *ops = dev->netdev_ops;
1318 	struct tc_taprio_qopt_offload *offload;
1319 	int err;
1320 
1321 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1322 		return 0;
1323 
1324 	if (!ops->ndo_setup_tc)
1325 		return -EOPNOTSUPP;
1326 
1327 	offload = taprio_offload_alloc(0);
1328 	if (!offload) {
1329 		NL_SET_ERR_MSG(extack,
1330 			       "Not enough memory to disable offload mode");
1331 		return -ENOMEM;
1332 	}
1333 	offload->enable = 0;
1334 
1335 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1336 	if (err < 0) {
1337 		NL_SET_ERR_MSG(extack,
1338 			       "Device failed to disable offload");
1339 		goto out;
1340 	}
1341 
1342 out:
1343 	taprio_offload_free(offload);
1344 
1345 	return err;
1346 }
1347 
1348 /* If full offload is enabled, the only possible clockid is the net device's
1349  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1350  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1351  * in sync with the specified clockid via a user space daemon such as phc2sys.
1352  * For both software taprio and txtime-assist, the clockid is used for the
1353  * hrtimer that advances the schedule and hence mandatory.
1354  */
1355 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1356 				struct netlink_ext_ack *extack)
1357 {
1358 	struct taprio_sched *q = qdisc_priv(sch);
1359 	struct net_device *dev = qdisc_dev(sch);
1360 	int err = -EINVAL;
1361 
1362 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1363 		const struct ethtool_ops *ops = dev->ethtool_ops;
1364 		struct ethtool_ts_info info = {
1365 			.cmd = ETHTOOL_GET_TS_INFO,
1366 			.phc_index = -1,
1367 		};
1368 
1369 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1370 			NL_SET_ERR_MSG(extack,
1371 				       "The 'clockid' cannot be specified for full offload");
1372 			goto out;
1373 		}
1374 
1375 		if (ops && ops->get_ts_info)
1376 			err = ops->get_ts_info(dev, &info);
1377 
1378 		if (err || info.phc_index < 0) {
1379 			NL_SET_ERR_MSG(extack,
1380 				       "Device does not have a PTP clock");
1381 			err = -ENOTSUPP;
1382 			goto out;
1383 		}
1384 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1385 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1386 
1387 		/* We only support static clockids and we don't allow
1388 		 * for it to be modified after the first init.
1389 		 */
1390 		if (clockid < 0 ||
1391 		    (q->clockid != -1 && q->clockid != clockid)) {
1392 			NL_SET_ERR_MSG(extack,
1393 				       "Changing the 'clockid' of a running schedule is not supported");
1394 			err = -ENOTSUPP;
1395 			goto out;
1396 		}
1397 
1398 		switch (clockid) {
1399 		case CLOCK_REALTIME:
1400 			q->tk_offset = TK_OFFS_REAL;
1401 			break;
1402 		case CLOCK_MONOTONIC:
1403 			q->tk_offset = TK_OFFS_MAX;
1404 			break;
1405 		case CLOCK_BOOTTIME:
1406 			q->tk_offset = TK_OFFS_BOOT;
1407 			break;
1408 		case CLOCK_TAI:
1409 			q->tk_offset = TK_OFFS_TAI;
1410 			break;
1411 		default:
1412 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1413 			err = -EINVAL;
1414 			goto out;
1415 		}
1416 
1417 		q->clockid = clockid;
1418 	} else {
1419 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1420 		goto out;
1421 	}
1422 
1423 	/* Everything went ok, return success. */
1424 	err = 0;
1425 
1426 out:
1427 	return err;
1428 }
1429 
1430 static int taprio_mqprio_cmp(const struct net_device *dev,
1431 			     const struct tc_mqprio_qopt *mqprio)
1432 {
1433 	int i;
1434 
1435 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1436 		return -1;
1437 
1438 	for (i = 0; i < mqprio->num_tc; i++)
1439 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1440 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1441 			return -1;
1442 
1443 	for (i = 0; i <= TC_BITMASK; i++)
1444 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1445 			return -1;
1446 
1447 	return 0;
1448 }
1449 
1450 /* The semantics of the 'flags' argument in relation to 'change()'
1451  * requests, are interpreted following two rules (which are applied in
1452  * this order): (1) an omitted 'flags' argument is interpreted as
1453  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1454  * changed.
1455  */
1456 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1457 			    struct netlink_ext_ack *extack)
1458 {
1459 	u32 new = 0;
1460 
1461 	if (attr)
1462 		new = nla_get_u32(attr);
1463 
1464 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1465 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1466 		return -EOPNOTSUPP;
1467 	}
1468 
1469 	if (!taprio_flags_valid(new)) {
1470 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1471 		return -EINVAL;
1472 	}
1473 
1474 	return new;
1475 }
1476 
1477 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1478 			 struct netlink_ext_ack *extack)
1479 {
1480 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1481 	struct sched_gate_list *oper, *admin, *new_admin;
1482 	struct taprio_sched *q = qdisc_priv(sch);
1483 	struct net_device *dev = qdisc_dev(sch);
1484 	struct tc_mqprio_qopt *mqprio = NULL;
1485 	unsigned long flags;
1486 	ktime_t start;
1487 	int i, err;
1488 
1489 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1490 					  taprio_policy, extack);
1491 	if (err < 0)
1492 		return err;
1493 
1494 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1495 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1496 
1497 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1498 			       q->flags, extack);
1499 	if (err < 0)
1500 		return err;
1501 
1502 	q->flags = err;
1503 
1504 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1505 	if (err < 0)
1506 		return err;
1507 
1508 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1509 	if (!new_admin) {
1510 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1511 		return -ENOMEM;
1512 	}
1513 	INIT_LIST_HEAD(&new_admin->entries);
1514 
1515 	rcu_read_lock();
1516 	oper = rcu_dereference(q->oper_sched);
1517 	admin = rcu_dereference(q->admin_sched);
1518 	rcu_read_unlock();
1519 
1520 	/* no changes - no new mqprio settings */
1521 	if (!taprio_mqprio_cmp(dev, mqprio))
1522 		mqprio = NULL;
1523 
1524 	if (mqprio && (oper || admin)) {
1525 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1526 		err = -ENOTSUPP;
1527 		goto free_sched;
1528 	}
1529 
1530 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1531 	if (err < 0)
1532 		goto free_sched;
1533 
1534 	if (new_admin->num_entries == 0) {
1535 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1536 		err = -EINVAL;
1537 		goto free_sched;
1538 	}
1539 
1540 	err = taprio_parse_clockid(sch, tb, extack);
1541 	if (err < 0)
1542 		goto free_sched;
1543 
1544 	taprio_set_picos_per_byte(dev, q);
1545 
1546 	if (mqprio) {
1547 		netdev_set_num_tc(dev, mqprio->num_tc);
1548 		for (i = 0; i < mqprio->num_tc; i++)
1549 			netdev_set_tc_queue(dev, i,
1550 					    mqprio->count[i],
1551 					    mqprio->offset[i]);
1552 
1553 		/* Always use supplied priority mappings */
1554 		for (i = 0; i <= TC_BITMASK; i++)
1555 			netdev_set_prio_tc_map(dev, i,
1556 					       mqprio->prio_tc_map[i]);
1557 	}
1558 
1559 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1560 		err = taprio_enable_offload(dev, q, new_admin, extack);
1561 	else
1562 		err = taprio_disable_offload(dev, q, extack);
1563 	if (err)
1564 		goto free_sched;
1565 
1566 	/* Protects against enqueue()/dequeue() */
1567 	spin_lock_bh(qdisc_lock(sch));
1568 
1569 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1570 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1571 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1572 			err = -EINVAL;
1573 			goto unlock;
1574 		}
1575 
1576 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1577 	}
1578 
1579 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1580 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1581 	    !hrtimer_active(&q->advance_timer)) {
1582 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1583 		q->advance_timer.function = advance_sched;
1584 	}
1585 
1586 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1587 		q->dequeue = taprio_dequeue_offload;
1588 		q->peek = taprio_peek_offload;
1589 	} else {
1590 		/* Be sure to always keep the function pointers
1591 		 * in a consistent state.
1592 		 */
1593 		q->dequeue = taprio_dequeue_soft;
1594 		q->peek = taprio_peek_soft;
1595 	}
1596 
1597 	err = taprio_get_start_time(sch, new_admin, &start);
1598 	if (err < 0) {
1599 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1600 		goto unlock;
1601 	}
1602 
1603 	setup_txtime(q, new_admin, start);
1604 
1605 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1606 		if (!oper) {
1607 			rcu_assign_pointer(q->oper_sched, new_admin);
1608 			err = 0;
1609 			new_admin = NULL;
1610 			goto unlock;
1611 		}
1612 
1613 		rcu_assign_pointer(q->admin_sched, new_admin);
1614 		if (admin)
1615 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1616 	} else {
1617 		setup_first_close_time(q, new_admin, start);
1618 
1619 		/* Protects against advance_sched() */
1620 		spin_lock_irqsave(&q->current_entry_lock, flags);
1621 
1622 		taprio_start_sched(sch, start, new_admin);
1623 
1624 		rcu_assign_pointer(q->admin_sched, new_admin);
1625 		if (admin)
1626 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1627 
1628 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1629 
1630 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1631 			taprio_offload_config_changed(q);
1632 	}
1633 
1634 	new_admin = NULL;
1635 	err = 0;
1636 
1637 unlock:
1638 	spin_unlock_bh(qdisc_lock(sch));
1639 
1640 free_sched:
1641 	if (new_admin)
1642 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1643 
1644 	return err;
1645 }
1646 
1647 static void taprio_reset(struct Qdisc *sch)
1648 {
1649 	struct taprio_sched *q = qdisc_priv(sch);
1650 	struct net_device *dev = qdisc_dev(sch);
1651 	int i;
1652 
1653 	hrtimer_cancel(&q->advance_timer);
1654 	if (q->qdiscs) {
1655 		for (i = 0; i < dev->num_tx_queues; i++)
1656 			if (q->qdiscs[i])
1657 				qdisc_reset(q->qdiscs[i]);
1658 	}
1659 	sch->qstats.backlog = 0;
1660 	sch->q.qlen = 0;
1661 }
1662 
1663 static void taprio_destroy(struct Qdisc *sch)
1664 {
1665 	struct taprio_sched *q = qdisc_priv(sch);
1666 	struct net_device *dev = qdisc_dev(sch);
1667 	unsigned int i;
1668 
1669 	spin_lock(&taprio_list_lock);
1670 	list_del(&q->taprio_list);
1671 	spin_unlock(&taprio_list_lock);
1672 
1673 
1674 	taprio_disable_offload(dev, q, NULL);
1675 
1676 	if (q->qdiscs) {
1677 		for (i = 0; i < dev->num_tx_queues; i++)
1678 			qdisc_put(q->qdiscs[i]);
1679 
1680 		kfree(q->qdiscs);
1681 	}
1682 	q->qdiscs = NULL;
1683 
1684 	netdev_reset_tc(dev);
1685 
1686 	if (q->oper_sched)
1687 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1688 
1689 	if (q->admin_sched)
1690 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1691 }
1692 
1693 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1694 		       struct netlink_ext_ack *extack)
1695 {
1696 	struct taprio_sched *q = qdisc_priv(sch);
1697 	struct net_device *dev = qdisc_dev(sch);
1698 	int i;
1699 
1700 	spin_lock_init(&q->current_entry_lock);
1701 
1702 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1703 	q->advance_timer.function = advance_sched;
1704 
1705 	q->dequeue = taprio_dequeue_soft;
1706 	q->peek = taprio_peek_soft;
1707 
1708 	q->root = sch;
1709 
1710 	/* We only support static clockids. Use an invalid value as default
1711 	 * and get the valid one on taprio_change().
1712 	 */
1713 	q->clockid = -1;
1714 	q->flags = TAPRIO_FLAGS_INVALID;
1715 
1716 	spin_lock(&taprio_list_lock);
1717 	list_add(&q->taprio_list, &taprio_list);
1718 	spin_unlock(&taprio_list_lock);
1719 
1720 	if (sch->parent != TC_H_ROOT)
1721 		return -EOPNOTSUPP;
1722 
1723 	if (!netif_is_multiqueue(dev))
1724 		return -EOPNOTSUPP;
1725 
1726 	/* pre-allocate qdisc, attachment can't fail */
1727 	q->qdiscs = kcalloc(dev->num_tx_queues,
1728 			    sizeof(q->qdiscs[0]),
1729 			    GFP_KERNEL);
1730 
1731 	if (!q->qdiscs)
1732 		return -ENOMEM;
1733 
1734 	if (!opt)
1735 		return -EINVAL;
1736 
1737 	for (i = 0; i < dev->num_tx_queues; i++) {
1738 		struct netdev_queue *dev_queue;
1739 		struct Qdisc *qdisc;
1740 
1741 		dev_queue = netdev_get_tx_queue(dev, i);
1742 		qdisc = qdisc_create_dflt(dev_queue,
1743 					  &pfifo_qdisc_ops,
1744 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1745 						    TC_H_MIN(i + 1)),
1746 					  extack);
1747 		if (!qdisc)
1748 			return -ENOMEM;
1749 
1750 		if (i < dev->real_num_tx_queues)
1751 			qdisc_hash_add(qdisc, false);
1752 
1753 		q->qdiscs[i] = qdisc;
1754 	}
1755 
1756 	return taprio_change(sch, opt, extack);
1757 }
1758 
1759 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1760 					     unsigned long cl)
1761 {
1762 	struct net_device *dev = qdisc_dev(sch);
1763 	unsigned long ntx = cl - 1;
1764 
1765 	if (ntx >= dev->num_tx_queues)
1766 		return NULL;
1767 
1768 	return netdev_get_tx_queue(dev, ntx);
1769 }
1770 
1771 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1772 			struct Qdisc *new, struct Qdisc **old,
1773 			struct netlink_ext_ack *extack)
1774 {
1775 	struct taprio_sched *q = qdisc_priv(sch);
1776 	struct net_device *dev = qdisc_dev(sch);
1777 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1778 
1779 	if (!dev_queue)
1780 		return -EINVAL;
1781 
1782 	if (dev->flags & IFF_UP)
1783 		dev_deactivate(dev);
1784 
1785 	*old = q->qdiscs[cl - 1];
1786 	q->qdiscs[cl - 1] = new;
1787 
1788 	if (new)
1789 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1790 
1791 	if (dev->flags & IFF_UP)
1792 		dev_activate(dev);
1793 
1794 	return 0;
1795 }
1796 
1797 static int dump_entry(struct sk_buff *msg,
1798 		      const struct sched_entry *entry)
1799 {
1800 	struct nlattr *item;
1801 
1802 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1803 	if (!item)
1804 		return -ENOSPC;
1805 
1806 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1807 		goto nla_put_failure;
1808 
1809 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1810 		goto nla_put_failure;
1811 
1812 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1813 			entry->gate_mask))
1814 		goto nla_put_failure;
1815 
1816 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1817 			entry->interval))
1818 		goto nla_put_failure;
1819 
1820 	return nla_nest_end(msg, item);
1821 
1822 nla_put_failure:
1823 	nla_nest_cancel(msg, item);
1824 	return -1;
1825 }
1826 
1827 static int dump_schedule(struct sk_buff *msg,
1828 			 const struct sched_gate_list *root)
1829 {
1830 	struct nlattr *entry_list;
1831 	struct sched_entry *entry;
1832 
1833 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1834 			root->base_time, TCA_TAPRIO_PAD))
1835 		return -1;
1836 
1837 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1838 			root->cycle_time, TCA_TAPRIO_PAD))
1839 		return -1;
1840 
1841 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1842 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1843 		return -1;
1844 
1845 	entry_list = nla_nest_start_noflag(msg,
1846 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1847 	if (!entry_list)
1848 		goto error_nest;
1849 
1850 	list_for_each_entry(entry, &root->entries, list) {
1851 		if (dump_entry(msg, entry) < 0)
1852 			goto error_nest;
1853 	}
1854 
1855 	nla_nest_end(msg, entry_list);
1856 	return 0;
1857 
1858 error_nest:
1859 	nla_nest_cancel(msg, entry_list);
1860 	return -1;
1861 }
1862 
1863 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1864 {
1865 	struct taprio_sched *q = qdisc_priv(sch);
1866 	struct net_device *dev = qdisc_dev(sch);
1867 	struct sched_gate_list *oper, *admin;
1868 	struct tc_mqprio_qopt opt = { 0 };
1869 	struct nlattr *nest, *sched_nest;
1870 	unsigned int i;
1871 
1872 	rcu_read_lock();
1873 	oper = rcu_dereference(q->oper_sched);
1874 	admin = rcu_dereference(q->admin_sched);
1875 
1876 	opt.num_tc = netdev_get_num_tc(dev);
1877 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1878 
1879 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1880 		opt.count[i] = dev->tc_to_txq[i].count;
1881 		opt.offset[i] = dev->tc_to_txq[i].offset;
1882 	}
1883 
1884 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1885 	if (!nest)
1886 		goto start_error;
1887 
1888 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1889 		goto options_error;
1890 
1891 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1892 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1893 		goto options_error;
1894 
1895 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1896 		goto options_error;
1897 
1898 	if (q->txtime_delay &&
1899 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1900 		goto options_error;
1901 
1902 	if (oper && dump_schedule(skb, oper))
1903 		goto options_error;
1904 
1905 	if (!admin)
1906 		goto done;
1907 
1908 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1909 	if (!sched_nest)
1910 		goto options_error;
1911 
1912 	if (dump_schedule(skb, admin))
1913 		goto admin_error;
1914 
1915 	nla_nest_end(skb, sched_nest);
1916 
1917 done:
1918 	rcu_read_unlock();
1919 
1920 	return nla_nest_end(skb, nest);
1921 
1922 admin_error:
1923 	nla_nest_cancel(skb, sched_nest);
1924 
1925 options_error:
1926 	nla_nest_cancel(skb, nest);
1927 
1928 start_error:
1929 	rcu_read_unlock();
1930 	return -ENOSPC;
1931 }
1932 
1933 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1934 {
1935 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1936 
1937 	if (!dev_queue)
1938 		return NULL;
1939 
1940 	return dev_queue->qdisc_sleeping;
1941 }
1942 
1943 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1944 {
1945 	unsigned int ntx = TC_H_MIN(classid);
1946 
1947 	if (!taprio_queue_get(sch, ntx))
1948 		return 0;
1949 	return ntx;
1950 }
1951 
1952 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1953 			     struct sk_buff *skb, struct tcmsg *tcm)
1954 {
1955 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1956 
1957 	tcm->tcm_parent = TC_H_ROOT;
1958 	tcm->tcm_handle |= TC_H_MIN(cl);
1959 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1960 
1961 	return 0;
1962 }
1963 
1964 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1965 				   struct gnet_dump *d)
1966 	__releases(d->lock)
1967 	__acquires(d->lock)
1968 {
1969 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1970 
1971 	sch = dev_queue->qdisc_sleeping;
1972 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1973 	    qdisc_qstats_copy(d, sch) < 0)
1974 		return -1;
1975 	return 0;
1976 }
1977 
1978 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1979 {
1980 	struct net_device *dev = qdisc_dev(sch);
1981 	unsigned long ntx;
1982 
1983 	if (arg->stop)
1984 		return;
1985 
1986 	arg->count = arg->skip;
1987 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1988 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1989 			arg->stop = 1;
1990 			break;
1991 		}
1992 		arg->count++;
1993 	}
1994 }
1995 
1996 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1997 						struct tcmsg *tcm)
1998 {
1999 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2000 }
2001 
2002 static const struct Qdisc_class_ops taprio_class_ops = {
2003 	.graft		= taprio_graft,
2004 	.leaf		= taprio_leaf,
2005 	.find		= taprio_find,
2006 	.walk		= taprio_walk,
2007 	.dump		= taprio_dump_class,
2008 	.dump_stats	= taprio_dump_class_stats,
2009 	.select_queue	= taprio_select_queue,
2010 };
2011 
2012 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2013 	.cl_ops		= &taprio_class_ops,
2014 	.id		= "taprio",
2015 	.priv_size	= sizeof(struct taprio_sched),
2016 	.init		= taprio_init,
2017 	.change		= taprio_change,
2018 	.destroy	= taprio_destroy,
2019 	.reset		= taprio_reset,
2020 	.peek		= taprio_peek,
2021 	.dequeue	= taprio_dequeue,
2022 	.enqueue	= taprio_enqueue,
2023 	.dump		= taprio_dump,
2024 	.owner		= THIS_MODULE,
2025 };
2026 
2027 static struct notifier_block taprio_device_notifier = {
2028 	.notifier_call = taprio_dev_notifier,
2029 };
2030 
2031 static int __init taprio_module_init(void)
2032 {
2033 	int err = register_netdevice_notifier(&taprio_device_notifier);
2034 
2035 	if (err)
2036 		return err;
2037 
2038 	return register_qdisc(&taprio_qdisc_ops);
2039 }
2040 
2041 static void __exit taprio_module_exit(void)
2042 {
2043 	unregister_qdisc(&taprio_qdisc_ops);
2044 	unregister_netdevice_notifier(&taprio_device_notifier);
2045 }
2046 
2047 module_init(taprio_module_init);
2048 module_exit(taprio_module_exit);
2049 MODULE_LICENSE("GPL");
2050