xref: /openbmc/linux/net/sched/sch_taprio.c (revision 6246ed09111fbb17168619006b4380103c6673c3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <linux/time.h>
22 #include <net/netlink.h>
23 #include <net/pkt_sched.h>
24 #include <net/pkt_cls.h>
25 #include <net/sch_generic.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 
29 static LIST_HEAD(taprio_list);
30 static DEFINE_SPINLOCK(taprio_list_lock);
31 
32 #define TAPRIO_ALL_GATES_OPEN -1
33 
34 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
35 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
36 #define TAPRIO_FLAGS_INVALID U32_MAX
37 
38 struct sched_entry {
39 	struct list_head list;
40 
41 	/* The instant that this entry "closes" and the next one
42 	 * should open, the qdisc will make some effort so that no
43 	 * packet leaves after this time.
44 	 */
45 	ktime_t close_time;
46 	ktime_t next_txtime;
47 	atomic_t budget;
48 	int index;
49 	u32 gate_mask;
50 	u32 interval;
51 	u8 command;
52 };
53 
54 struct sched_gate_list {
55 	struct rcu_head rcu;
56 	struct list_head entries;
57 	size_t num_entries;
58 	ktime_t cycle_close_time;
59 	s64 cycle_time;
60 	s64 cycle_time_extension;
61 	s64 base_time;
62 };
63 
64 struct taprio_sched {
65 	struct Qdisc **qdiscs;
66 	struct Qdisc *root;
67 	u32 flags;
68 	enum tk_offsets tk_offset;
69 	int clockid;
70 	bool offloaded;
71 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
72 				    * speeds it's sub-nanoseconds per byte
73 				    */
74 
75 	/* Protects the update side of the RCU protected current_entry */
76 	spinlock_t current_entry_lock;
77 	struct sched_entry __rcu *current_entry;
78 	struct sched_gate_list __rcu *oper_sched;
79 	struct sched_gate_list __rcu *admin_sched;
80 	struct hrtimer advance_timer;
81 	struct list_head taprio_list;
82 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
83 	struct sk_buff *(*peek)(struct Qdisc *sch);
84 	u32 txtime_delay;
85 };
86 
87 struct __tc_taprio_qopt_offload {
88 	refcount_t users;
89 	struct tc_taprio_qopt_offload offload;
90 };
91 
92 static ktime_t sched_base_time(const struct sched_gate_list *sched)
93 {
94 	if (!sched)
95 		return KTIME_MAX;
96 
97 	return ns_to_ktime(sched->base_time);
98 }
99 
100 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
101 {
102 	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
103 	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
104 
105 	switch (tk_offset) {
106 	case TK_OFFS_MAX:
107 		return mono;
108 	default:
109 		return ktime_mono_to_any(mono, tk_offset);
110 	}
111 }
112 
113 static ktime_t taprio_get_time(const struct taprio_sched *q)
114 {
115 	return taprio_mono_to_any(q, ktime_get());
116 }
117 
118 static void taprio_free_sched_cb(struct rcu_head *head)
119 {
120 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
121 	struct sched_entry *entry, *n;
122 
123 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
124 		list_del(&entry->list);
125 		kfree(entry);
126 	}
127 
128 	kfree(sched);
129 }
130 
131 static void switch_schedules(struct taprio_sched *q,
132 			     struct sched_gate_list **admin,
133 			     struct sched_gate_list **oper)
134 {
135 	rcu_assign_pointer(q->oper_sched, *admin);
136 	rcu_assign_pointer(q->admin_sched, NULL);
137 
138 	if (*oper)
139 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
140 
141 	*oper = *admin;
142 	*admin = NULL;
143 }
144 
145 /* Get how much time has been already elapsed in the current cycle. */
146 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
147 {
148 	ktime_t time_since_sched_start;
149 	s32 time_elapsed;
150 
151 	time_since_sched_start = ktime_sub(time, sched->base_time);
152 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
153 
154 	return time_elapsed;
155 }
156 
157 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
158 				     struct sched_gate_list *admin,
159 				     struct sched_entry *entry,
160 				     ktime_t intv_start)
161 {
162 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
163 	ktime_t intv_end, cycle_ext_end, cycle_end;
164 
165 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
166 	intv_end = ktime_add_ns(intv_start, entry->interval);
167 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
168 
169 	if (ktime_before(intv_end, cycle_end))
170 		return intv_end;
171 	else if (admin && admin != sched &&
172 		 ktime_after(admin->base_time, cycle_end) &&
173 		 ktime_before(admin->base_time, cycle_ext_end))
174 		return admin->base_time;
175 	else
176 		return cycle_end;
177 }
178 
179 static int length_to_duration(struct taprio_sched *q, int len)
180 {
181 	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
182 }
183 
184 /* Returns the entry corresponding to next available interval. If
185  * validate_interval is set, it only validates whether the timestamp occurs
186  * when the gate corresponding to the skb's traffic class is open.
187  */
188 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
189 						  struct Qdisc *sch,
190 						  struct sched_gate_list *sched,
191 						  struct sched_gate_list *admin,
192 						  ktime_t time,
193 						  ktime_t *interval_start,
194 						  ktime_t *interval_end,
195 						  bool validate_interval)
196 {
197 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
198 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
199 	struct sched_entry *entry = NULL, *entry_found = NULL;
200 	struct taprio_sched *q = qdisc_priv(sch);
201 	struct net_device *dev = qdisc_dev(sch);
202 	bool entry_available = false;
203 	s32 cycle_elapsed;
204 	int tc, n;
205 
206 	tc = netdev_get_prio_tc_map(dev, skb->priority);
207 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
208 
209 	*interval_start = 0;
210 	*interval_end = 0;
211 
212 	if (!sched)
213 		return NULL;
214 
215 	cycle = sched->cycle_time;
216 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
217 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
218 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
219 
220 	list_for_each_entry(entry, &sched->entries, list) {
221 		curr_intv_start = curr_intv_end;
222 		curr_intv_end = get_interval_end_time(sched, admin, entry,
223 						      curr_intv_start);
224 
225 		if (ktime_after(curr_intv_start, cycle_end))
226 			break;
227 
228 		if (!(entry->gate_mask & BIT(tc)) ||
229 		    packet_transmit_time > entry->interval)
230 			continue;
231 
232 		txtime = entry->next_txtime;
233 
234 		if (ktime_before(txtime, time) || validate_interval) {
235 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
236 			if ((ktime_before(curr_intv_start, time) &&
237 			     ktime_before(transmit_end_time, curr_intv_end)) ||
238 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
239 				entry_found = entry;
240 				*interval_start = curr_intv_start;
241 				*interval_end = curr_intv_end;
242 				break;
243 			} else if (!entry_available && !validate_interval) {
244 				/* Here, we are just trying to find out the
245 				 * first available interval in the next cycle.
246 				 */
247 				entry_available = true;
248 				entry_found = entry;
249 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
250 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
251 			}
252 		} else if (ktime_before(txtime, earliest_txtime) &&
253 			   !entry_available) {
254 			earliest_txtime = txtime;
255 			entry_found = entry;
256 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
257 			*interval_start = ktime_add(curr_intv_start, n * cycle);
258 			*interval_end = ktime_add(curr_intv_end, n * cycle);
259 		}
260 	}
261 
262 	return entry_found;
263 }
264 
265 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
266 {
267 	struct taprio_sched *q = qdisc_priv(sch);
268 	struct sched_gate_list *sched, *admin;
269 	ktime_t interval_start, interval_end;
270 	struct sched_entry *entry;
271 
272 	rcu_read_lock();
273 	sched = rcu_dereference(q->oper_sched);
274 	admin = rcu_dereference(q->admin_sched);
275 
276 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
277 				       &interval_start, &interval_end, true);
278 	rcu_read_unlock();
279 
280 	return entry;
281 }
282 
283 static bool taprio_flags_valid(u32 flags)
284 {
285 	/* Make sure no other flag bits are set. */
286 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
287 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
288 		return false;
289 	/* txtime-assist and full offload are mutually exclusive */
290 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
291 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
292 		return false;
293 	return true;
294 }
295 
296 /* This returns the tstamp value set by TCP in terms of the set clock. */
297 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
298 {
299 	unsigned int offset = skb_network_offset(skb);
300 	const struct ipv6hdr *ipv6h;
301 	const struct iphdr *iph;
302 	struct ipv6hdr _ipv6h;
303 
304 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
305 	if (!ipv6h)
306 		return 0;
307 
308 	if (ipv6h->version == 4) {
309 		iph = (struct iphdr *)ipv6h;
310 		offset += iph->ihl * 4;
311 
312 		/* special-case 6in4 tunnelling, as that is a common way to get
313 		 * v6 connectivity in the home
314 		 */
315 		if (iph->protocol == IPPROTO_IPV6) {
316 			ipv6h = skb_header_pointer(skb, offset,
317 						   sizeof(_ipv6h), &_ipv6h);
318 
319 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
320 				return 0;
321 		} else if (iph->protocol != IPPROTO_TCP) {
322 			return 0;
323 		}
324 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
325 		return 0;
326 	}
327 
328 	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
329 }
330 
331 /* There are a few scenarios where we will have to modify the txtime from
332  * what is read from next_txtime in sched_entry. They are:
333  * 1. If txtime is in the past,
334  *    a. The gate for the traffic class is currently open and packet can be
335  *       transmitted before it closes, schedule the packet right away.
336  *    b. If the gate corresponding to the traffic class is going to open later
337  *       in the cycle, set the txtime of packet to the interval start.
338  * 2. If txtime is in the future, there are packets corresponding to the
339  *    current traffic class waiting to be transmitted. So, the following
340  *    possibilities exist:
341  *    a. We can transmit the packet before the window containing the txtime
342  *       closes.
343  *    b. The window might close before the transmission can be completed
344  *       successfully. So, schedule the packet in the next open window.
345  */
346 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
347 {
348 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
349 	struct taprio_sched *q = qdisc_priv(sch);
350 	struct sched_gate_list *sched, *admin;
351 	ktime_t minimum_time, now, txtime;
352 	int len, packet_transmit_time;
353 	struct sched_entry *entry;
354 	bool sched_changed;
355 
356 	now = taprio_get_time(q);
357 	minimum_time = ktime_add_ns(now, q->txtime_delay);
358 
359 	tcp_tstamp = get_tcp_tstamp(q, skb);
360 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
361 
362 	rcu_read_lock();
363 	admin = rcu_dereference(q->admin_sched);
364 	sched = rcu_dereference(q->oper_sched);
365 	if (admin && ktime_after(minimum_time, admin->base_time))
366 		switch_schedules(q, &admin, &sched);
367 
368 	/* Until the schedule starts, all the queues are open */
369 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
370 		txtime = minimum_time;
371 		goto done;
372 	}
373 
374 	len = qdisc_pkt_len(skb);
375 	packet_transmit_time = length_to_duration(q, len);
376 
377 	do {
378 		sched_changed = false;
379 
380 		entry = find_entry_to_transmit(skb, sch, sched, admin,
381 					       minimum_time,
382 					       &interval_start, &interval_end,
383 					       false);
384 		if (!entry) {
385 			txtime = 0;
386 			goto done;
387 		}
388 
389 		txtime = entry->next_txtime;
390 		txtime = max_t(ktime_t, txtime, minimum_time);
391 		txtime = max_t(ktime_t, txtime, interval_start);
392 
393 		if (admin && admin != sched &&
394 		    ktime_after(txtime, admin->base_time)) {
395 			sched = admin;
396 			sched_changed = true;
397 			continue;
398 		}
399 
400 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
401 		minimum_time = transmit_end_time;
402 
403 		/* Update the txtime of current entry to the next time it's
404 		 * interval starts.
405 		 */
406 		if (ktime_after(transmit_end_time, interval_end))
407 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
408 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
409 
410 	entry->next_txtime = transmit_end_time;
411 
412 done:
413 	rcu_read_unlock();
414 	return txtime;
415 }
416 
417 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
418 			      struct Qdisc *child, struct sk_buff **to_free)
419 {
420 	struct taprio_sched *q = qdisc_priv(sch);
421 
422 	/* sk_flags are only safe to use on full sockets. */
423 	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
424 		if (!is_valid_interval(skb, sch))
425 			return qdisc_drop(skb, sch, to_free);
426 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
427 		skb->tstamp = get_packet_txtime(skb, sch);
428 		if (!skb->tstamp)
429 			return qdisc_drop(skb, sch, to_free);
430 	}
431 
432 	qdisc_qstats_backlog_inc(sch, skb);
433 	sch->q.qlen++;
434 
435 	return qdisc_enqueue(skb, child, to_free);
436 }
437 
438 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
439 			  struct sk_buff **to_free)
440 {
441 	struct taprio_sched *q = qdisc_priv(sch);
442 	struct Qdisc *child;
443 	int queue;
444 
445 	if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) {
446 		WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n");
447 		return qdisc_drop(skb, sch, to_free);
448 	}
449 
450 	queue = skb_get_queue_mapping(skb);
451 
452 	child = q->qdiscs[queue];
453 	if (unlikely(!child))
454 		return qdisc_drop(skb, sch, to_free);
455 
456 	/* Large packets might not be transmitted when the transmission duration
457 	 * exceeds any configured interval. Therefore, segment the skb into
458 	 * smaller chunks. Skip it for the full offload case, as the driver
459 	 * and/or the hardware is expected to handle this.
460 	 */
461 	if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
462 		unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
463 		netdev_features_t features = netif_skb_features(skb);
464 		struct sk_buff *segs, *nskb;
465 		int ret;
466 
467 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
468 		if (IS_ERR_OR_NULL(segs))
469 			return qdisc_drop(skb, sch, to_free);
470 
471 		skb_list_walk_safe(segs, segs, nskb) {
472 			skb_mark_not_on_list(segs);
473 			qdisc_skb_cb(segs)->pkt_len = segs->len;
474 			slen += segs->len;
475 
476 			ret = taprio_enqueue_one(segs, sch, child, to_free);
477 			if (ret != NET_XMIT_SUCCESS) {
478 				if (net_xmit_drop_count(ret))
479 					qdisc_qstats_drop(sch);
480 			} else {
481 				numsegs++;
482 			}
483 		}
484 
485 		if (numsegs > 1)
486 			qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
487 		consume_skb(skb);
488 
489 		return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
490 	}
491 
492 	return taprio_enqueue_one(skb, sch, child, to_free);
493 }
494 
495 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
496 {
497 	struct taprio_sched *q = qdisc_priv(sch);
498 	struct net_device *dev = qdisc_dev(sch);
499 	struct sched_entry *entry;
500 	struct sk_buff *skb;
501 	u32 gate_mask;
502 	int i;
503 
504 	rcu_read_lock();
505 	entry = rcu_dereference(q->current_entry);
506 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
507 	rcu_read_unlock();
508 
509 	if (!gate_mask)
510 		return NULL;
511 
512 	for (i = 0; i < dev->num_tx_queues; i++) {
513 		struct Qdisc *child = q->qdiscs[i];
514 		int prio;
515 		u8 tc;
516 
517 		if (unlikely(!child))
518 			continue;
519 
520 		skb = child->ops->peek(child);
521 		if (!skb)
522 			continue;
523 
524 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
525 			return skb;
526 
527 		prio = skb->priority;
528 		tc = netdev_get_prio_tc_map(dev, prio);
529 
530 		if (!(gate_mask & BIT(tc)))
531 			continue;
532 
533 		return skb;
534 	}
535 
536 	return NULL;
537 }
538 
539 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
540 {
541 	WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n");
542 
543 	return NULL;
544 }
545 
546 static struct sk_buff *taprio_peek(struct Qdisc *sch)
547 {
548 	struct taprio_sched *q = qdisc_priv(sch);
549 
550 	return q->peek(sch);
551 }
552 
553 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
554 {
555 	atomic_set(&entry->budget,
556 		   div64_u64((u64)entry->interval * PSEC_PER_NSEC,
557 			     atomic64_read(&q->picos_per_byte)));
558 }
559 
560 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
561 {
562 	struct taprio_sched *q = qdisc_priv(sch);
563 	struct net_device *dev = qdisc_dev(sch);
564 	struct sk_buff *skb = NULL;
565 	struct sched_entry *entry;
566 	u32 gate_mask;
567 	int i;
568 
569 	rcu_read_lock();
570 	entry = rcu_dereference(q->current_entry);
571 	/* if there's no entry, it means that the schedule didn't
572 	 * start yet, so force all gates to be open, this is in
573 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
574 	 * "AdminGateStates"
575 	 */
576 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
577 
578 	if (!gate_mask)
579 		goto done;
580 
581 	for (i = 0; i < dev->num_tx_queues; i++) {
582 		struct Qdisc *child = q->qdiscs[i];
583 		ktime_t guard;
584 		int prio;
585 		int len;
586 		u8 tc;
587 
588 		if (unlikely(!child))
589 			continue;
590 
591 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
592 			skb = child->ops->dequeue(child);
593 			if (!skb)
594 				continue;
595 			goto skb_found;
596 		}
597 
598 		skb = child->ops->peek(child);
599 		if (!skb)
600 			continue;
601 
602 		prio = skb->priority;
603 		tc = netdev_get_prio_tc_map(dev, prio);
604 
605 		if (!(gate_mask & BIT(tc))) {
606 			skb = NULL;
607 			continue;
608 		}
609 
610 		len = qdisc_pkt_len(skb);
611 		guard = ktime_add_ns(taprio_get_time(q),
612 				     length_to_duration(q, len));
613 
614 		/* In the case that there's no gate entry, there's no
615 		 * guard band ...
616 		 */
617 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
618 		    ktime_after(guard, entry->close_time)) {
619 			skb = NULL;
620 			continue;
621 		}
622 
623 		/* ... and no budget. */
624 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
625 		    atomic_sub_return(len, &entry->budget) < 0) {
626 			skb = NULL;
627 			continue;
628 		}
629 
630 		skb = child->ops->dequeue(child);
631 		if (unlikely(!skb))
632 			goto done;
633 
634 skb_found:
635 		qdisc_bstats_update(sch, skb);
636 		qdisc_qstats_backlog_dec(sch, skb);
637 		sch->q.qlen--;
638 
639 		goto done;
640 	}
641 
642 done:
643 	rcu_read_unlock();
644 
645 	return skb;
646 }
647 
648 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
649 {
650 	WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n");
651 
652 	return NULL;
653 }
654 
655 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
656 {
657 	struct taprio_sched *q = qdisc_priv(sch);
658 
659 	return q->dequeue(sch);
660 }
661 
662 static bool should_restart_cycle(const struct sched_gate_list *oper,
663 				 const struct sched_entry *entry)
664 {
665 	if (list_is_last(&entry->list, &oper->entries))
666 		return true;
667 
668 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
669 		return true;
670 
671 	return false;
672 }
673 
674 static bool should_change_schedules(const struct sched_gate_list *admin,
675 				    const struct sched_gate_list *oper,
676 				    ktime_t close_time)
677 {
678 	ktime_t next_base_time, extension_time;
679 
680 	if (!admin)
681 		return false;
682 
683 	next_base_time = sched_base_time(admin);
684 
685 	/* This is the simple case, the close_time would fall after
686 	 * the next schedule base_time.
687 	 */
688 	if (ktime_compare(next_base_time, close_time) <= 0)
689 		return true;
690 
691 	/* This is the cycle_time_extension case, if the close_time
692 	 * plus the amount that can be extended would fall after the
693 	 * next schedule base_time, we can extend the current schedule
694 	 * for that amount.
695 	 */
696 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
697 
698 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
699 	 * how precisely the extension should be made. So after
700 	 * conformance testing, this logic may change.
701 	 */
702 	if (ktime_compare(next_base_time, extension_time) <= 0)
703 		return true;
704 
705 	return false;
706 }
707 
708 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
709 {
710 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
711 					      advance_timer);
712 	struct sched_gate_list *oper, *admin;
713 	struct sched_entry *entry, *next;
714 	struct Qdisc *sch = q->root;
715 	ktime_t close_time;
716 
717 	spin_lock(&q->current_entry_lock);
718 	entry = rcu_dereference_protected(q->current_entry,
719 					  lockdep_is_held(&q->current_entry_lock));
720 	oper = rcu_dereference_protected(q->oper_sched,
721 					 lockdep_is_held(&q->current_entry_lock));
722 	admin = rcu_dereference_protected(q->admin_sched,
723 					  lockdep_is_held(&q->current_entry_lock));
724 
725 	if (!oper)
726 		switch_schedules(q, &admin, &oper);
727 
728 	/* This can happen in two cases: 1. this is the very first run
729 	 * of this function (i.e. we weren't running any schedule
730 	 * previously); 2. The previous schedule just ended. The first
731 	 * entry of all schedules are pre-calculated during the
732 	 * schedule initialization.
733 	 */
734 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
735 		next = list_first_entry(&oper->entries, struct sched_entry,
736 					list);
737 		close_time = next->close_time;
738 		goto first_run;
739 	}
740 
741 	if (should_restart_cycle(oper, entry)) {
742 		next = list_first_entry(&oper->entries, struct sched_entry,
743 					list);
744 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
745 						      oper->cycle_time);
746 	} else {
747 		next = list_next_entry(entry, list);
748 	}
749 
750 	close_time = ktime_add_ns(entry->close_time, next->interval);
751 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
752 
753 	if (should_change_schedules(admin, oper, close_time)) {
754 		/* Set things so the next time this runs, the new
755 		 * schedule runs.
756 		 */
757 		close_time = sched_base_time(admin);
758 		switch_schedules(q, &admin, &oper);
759 	}
760 
761 	next->close_time = close_time;
762 	taprio_set_budget(q, next);
763 
764 first_run:
765 	rcu_assign_pointer(q->current_entry, next);
766 	spin_unlock(&q->current_entry_lock);
767 
768 	hrtimer_set_expires(&q->advance_timer, close_time);
769 
770 	rcu_read_lock();
771 	__netif_schedule(sch);
772 	rcu_read_unlock();
773 
774 	return HRTIMER_RESTART;
775 }
776 
777 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
778 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
779 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
780 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
781 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
782 };
783 
784 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
785 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
786 		.len = sizeof(struct tc_mqprio_qopt)
787 	},
788 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
789 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
790 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
791 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
792 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
793 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
794 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
795 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
796 };
797 
798 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
799 			    struct sched_entry *entry,
800 			    struct netlink_ext_ack *extack)
801 {
802 	int min_duration = length_to_duration(q, ETH_ZLEN);
803 	u32 interval = 0;
804 
805 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
806 		entry->command = nla_get_u8(
807 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
808 
809 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
810 		entry->gate_mask = nla_get_u32(
811 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
812 
813 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
814 		interval = nla_get_u32(
815 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
816 
817 	/* The interval should allow at least the minimum ethernet
818 	 * frame to go out.
819 	 */
820 	if (interval < min_duration) {
821 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
822 		return -EINVAL;
823 	}
824 
825 	entry->interval = interval;
826 
827 	return 0;
828 }
829 
830 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
831 			     struct sched_entry *entry, int index,
832 			     struct netlink_ext_ack *extack)
833 {
834 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
835 	int err;
836 
837 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
838 					  entry_policy, NULL);
839 	if (err < 0) {
840 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
841 		return -EINVAL;
842 	}
843 
844 	entry->index = index;
845 
846 	return fill_sched_entry(q, tb, entry, extack);
847 }
848 
849 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
850 			    struct sched_gate_list *sched,
851 			    struct netlink_ext_ack *extack)
852 {
853 	struct nlattr *n;
854 	int err, rem;
855 	int i = 0;
856 
857 	if (!list)
858 		return -EINVAL;
859 
860 	nla_for_each_nested(n, list, rem) {
861 		struct sched_entry *entry;
862 
863 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
864 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
865 			continue;
866 		}
867 
868 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
869 		if (!entry) {
870 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
871 			return -ENOMEM;
872 		}
873 
874 		err = parse_sched_entry(q, n, entry, i, extack);
875 		if (err < 0) {
876 			kfree(entry);
877 			return err;
878 		}
879 
880 		list_add_tail(&entry->list, &sched->entries);
881 		i++;
882 	}
883 
884 	sched->num_entries = i;
885 
886 	return i;
887 }
888 
889 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
890 				 struct sched_gate_list *new,
891 				 struct netlink_ext_ack *extack)
892 {
893 	int err = 0;
894 
895 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
896 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
897 		return -ENOTSUPP;
898 	}
899 
900 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
901 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
902 
903 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
904 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
905 
906 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
907 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
908 
909 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
910 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
911 				       new, extack);
912 	if (err < 0)
913 		return err;
914 
915 	if (!new->cycle_time) {
916 		struct sched_entry *entry;
917 		ktime_t cycle = 0;
918 
919 		list_for_each_entry(entry, &new->entries, list)
920 			cycle = ktime_add_ns(cycle, entry->interval);
921 
922 		if (!cycle) {
923 			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
924 			return -EINVAL;
925 		}
926 
927 		new->cycle_time = cycle;
928 	}
929 
930 	return 0;
931 }
932 
933 static int taprio_parse_mqprio_opt(struct net_device *dev,
934 				   struct tc_mqprio_qopt *qopt,
935 				   struct netlink_ext_ack *extack,
936 				   u32 taprio_flags)
937 {
938 	int i, j;
939 
940 	if (!qopt && !dev->num_tc) {
941 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
942 		return -EINVAL;
943 	}
944 
945 	/* If num_tc is already set, it means that the user already
946 	 * configured the mqprio part
947 	 */
948 	if (dev->num_tc)
949 		return 0;
950 
951 	/* Verify num_tc is not out of max range */
952 	if (qopt->num_tc > TC_MAX_QUEUE) {
953 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
954 		return -EINVAL;
955 	}
956 
957 	/* taprio imposes that traffic classes map 1:n to tx queues */
958 	if (qopt->num_tc > dev->num_tx_queues) {
959 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
960 		return -EINVAL;
961 	}
962 
963 	/* Verify priority mapping uses valid tcs */
964 	for (i = 0; i <= TC_BITMASK; i++) {
965 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
966 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
967 			return -EINVAL;
968 		}
969 	}
970 
971 	for (i = 0; i < qopt->num_tc; i++) {
972 		unsigned int last = qopt->offset[i] + qopt->count[i];
973 
974 		/* Verify the queue count is in tx range being equal to the
975 		 * real_num_tx_queues indicates the last queue is in use.
976 		 */
977 		if (qopt->offset[i] >= dev->num_tx_queues ||
978 		    !qopt->count[i] ||
979 		    last > dev->real_num_tx_queues) {
980 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
981 			return -EINVAL;
982 		}
983 
984 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
985 			continue;
986 
987 		/* Verify that the offset and counts do not overlap */
988 		for (j = i + 1; j < qopt->num_tc; j++) {
989 			if (last > qopt->offset[j]) {
990 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
991 				return -EINVAL;
992 			}
993 		}
994 	}
995 
996 	return 0;
997 }
998 
999 static int taprio_get_start_time(struct Qdisc *sch,
1000 				 struct sched_gate_list *sched,
1001 				 ktime_t *start)
1002 {
1003 	struct taprio_sched *q = qdisc_priv(sch);
1004 	ktime_t now, base, cycle;
1005 	s64 n;
1006 
1007 	base = sched_base_time(sched);
1008 	now = taprio_get_time(q);
1009 
1010 	if (ktime_after(base, now)) {
1011 		*start = base;
1012 		return 0;
1013 	}
1014 
1015 	cycle = sched->cycle_time;
1016 
1017 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1018 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1019 	 * something went really wrong. In that case, we should warn about this
1020 	 * inconsistent state and return error.
1021 	 */
1022 	if (WARN_ON(!cycle))
1023 		return -EFAULT;
1024 
1025 	/* Schedule the start time for the beginning of the next
1026 	 * cycle.
1027 	 */
1028 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1029 	*start = ktime_add_ns(base, (n + 1) * cycle);
1030 	return 0;
1031 }
1032 
1033 static void setup_first_close_time(struct taprio_sched *q,
1034 				   struct sched_gate_list *sched, ktime_t base)
1035 {
1036 	struct sched_entry *first;
1037 	ktime_t cycle;
1038 
1039 	first = list_first_entry(&sched->entries,
1040 				 struct sched_entry, list);
1041 
1042 	cycle = sched->cycle_time;
1043 
1044 	/* FIXME: find a better place to do this */
1045 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1046 
1047 	first->close_time = ktime_add_ns(base, first->interval);
1048 	taprio_set_budget(q, first);
1049 	rcu_assign_pointer(q->current_entry, NULL);
1050 }
1051 
1052 static void taprio_start_sched(struct Qdisc *sch,
1053 			       ktime_t start, struct sched_gate_list *new)
1054 {
1055 	struct taprio_sched *q = qdisc_priv(sch);
1056 	ktime_t expires;
1057 
1058 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1059 		return;
1060 
1061 	expires = hrtimer_get_expires(&q->advance_timer);
1062 	if (expires == 0)
1063 		expires = KTIME_MAX;
1064 
1065 	/* If the new schedule starts before the next expiration, we
1066 	 * reprogram it to the earliest one, so we change the admin
1067 	 * schedule to the operational one at the right time.
1068 	 */
1069 	start = min_t(ktime_t, start, expires);
1070 
1071 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1072 }
1073 
1074 static void taprio_set_picos_per_byte(struct net_device *dev,
1075 				      struct taprio_sched *q)
1076 {
1077 	struct ethtool_link_ksettings ecmd;
1078 	int speed = SPEED_10;
1079 	int picos_per_byte;
1080 	int err;
1081 
1082 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1083 	if (err < 0)
1084 		goto skip;
1085 
1086 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1087 		speed = ecmd.base.speed;
1088 
1089 skip:
1090 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1091 
1092 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1093 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1094 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1095 		   ecmd.base.speed);
1096 }
1097 
1098 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1099 			       void *ptr)
1100 {
1101 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1102 	struct net_device *qdev;
1103 	struct taprio_sched *q;
1104 	bool found = false;
1105 
1106 	ASSERT_RTNL();
1107 
1108 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1109 		return NOTIFY_DONE;
1110 
1111 	spin_lock(&taprio_list_lock);
1112 	list_for_each_entry(q, &taprio_list, taprio_list) {
1113 		qdev = qdisc_dev(q->root);
1114 		if (qdev == dev) {
1115 			found = true;
1116 			break;
1117 		}
1118 	}
1119 	spin_unlock(&taprio_list_lock);
1120 
1121 	if (found)
1122 		taprio_set_picos_per_byte(dev, q);
1123 
1124 	return NOTIFY_DONE;
1125 }
1126 
1127 static void setup_txtime(struct taprio_sched *q,
1128 			 struct sched_gate_list *sched, ktime_t base)
1129 {
1130 	struct sched_entry *entry;
1131 	u32 interval = 0;
1132 
1133 	list_for_each_entry(entry, &sched->entries, list) {
1134 		entry->next_txtime = ktime_add_ns(base, interval);
1135 		interval += entry->interval;
1136 	}
1137 }
1138 
1139 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1140 {
1141 	struct __tc_taprio_qopt_offload *__offload;
1142 
1143 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1144 			    GFP_KERNEL);
1145 	if (!__offload)
1146 		return NULL;
1147 
1148 	refcount_set(&__offload->users, 1);
1149 
1150 	return &__offload->offload;
1151 }
1152 
1153 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1154 						  *offload)
1155 {
1156 	struct __tc_taprio_qopt_offload *__offload;
1157 
1158 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1159 				 offload);
1160 
1161 	refcount_inc(&__offload->users);
1162 
1163 	return offload;
1164 }
1165 EXPORT_SYMBOL_GPL(taprio_offload_get);
1166 
1167 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1168 {
1169 	struct __tc_taprio_qopt_offload *__offload;
1170 
1171 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1172 				 offload);
1173 
1174 	if (!refcount_dec_and_test(&__offload->users))
1175 		return;
1176 
1177 	kfree(__offload);
1178 }
1179 EXPORT_SYMBOL_GPL(taprio_offload_free);
1180 
1181 /* The function will only serve to keep the pointers to the "oper" and "admin"
1182  * schedules valid in relation to their base times, so when calling dump() the
1183  * users looks at the right schedules.
1184  * When using full offload, the admin configuration is promoted to oper at the
1185  * base_time in the PHC time domain.  But because the system time is not
1186  * necessarily in sync with that, we can't just trigger a hrtimer to call
1187  * switch_schedules at the right hardware time.
1188  * At the moment we call this by hand right away from taprio, but in the future
1189  * it will be useful to create a mechanism for drivers to notify taprio of the
1190  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1191  * This is left as TODO.
1192  */
1193 static void taprio_offload_config_changed(struct taprio_sched *q)
1194 {
1195 	struct sched_gate_list *oper, *admin;
1196 
1197 	spin_lock(&q->current_entry_lock);
1198 
1199 	oper = rcu_dereference_protected(q->oper_sched,
1200 					 lockdep_is_held(&q->current_entry_lock));
1201 	admin = rcu_dereference_protected(q->admin_sched,
1202 					  lockdep_is_held(&q->current_entry_lock));
1203 
1204 	switch_schedules(q, &admin, &oper);
1205 
1206 	spin_unlock(&q->current_entry_lock);
1207 }
1208 
1209 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1210 {
1211 	u32 i, queue_mask = 0;
1212 
1213 	for (i = 0; i < dev->num_tc; i++) {
1214 		u32 offset, count;
1215 
1216 		if (!(tc_mask & BIT(i)))
1217 			continue;
1218 
1219 		offset = dev->tc_to_txq[i].offset;
1220 		count = dev->tc_to_txq[i].count;
1221 
1222 		queue_mask |= GENMASK(offset + count - 1, offset);
1223 	}
1224 
1225 	return queue_mask;
1226 }
1227 
1228 static void taprio_sched_to_offload(struct net_device *dev,
1229 				    struct sched_gate_list *sched,
1230 				    struct tc_taprio_qopt_offload *offload)
1231 {
1232 	struct sched_entry *entry;
1233 	int i = 0;
1234 
1235 	offload->base_time = sched->base_time;
1236 	offload->cycle_time = sched->cycle_time;
1237 	offload->cycle_time_extension = sched->cycle_time_extension;
1238 
1239 	list_for_each_entry(entry, &sched->entries, list) {
1240 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1241 
1242 		e->command = entry->command;
1243 		e->interval = entry->interval;
1244 		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1245 
1246 		i++;
1247 	}
1248 
1249 	offload->num_entries = i;
1250 }
1251 
1252 static int taprio_enable_offload(struct net_device *dev,
1253 				 struct taprio_sched *q,
1254 				 struct sched_gate_list *sched,
1255 				 struct netlink_ext_ack *extack)
1256 {
1257 	const struct net_device_ops *ops = dev->netdev_ops;
1258 	struct tc_taprio_qopt_offload *offload;
1259 	int err = 0;
1260 
1261 	if (!ops->ndo_setup_tc) {
1262 		NL_SET_ERR_MSG(extack,
1263 			       "Device does not support taprio offload");
1264 		return -EOPNOTSUPP;
1265 	}
1266 
1267 	offload = taprio_offload_alloc(sched->num_entries);
1268 	if (!offload) {
1269 		NL_SET_ERR_MSG(extack,
1270 			       "Not enough memory for enabling offload mode");
1271 		return -ENOMEM;
1272 	}
1273 	offload->enable = 1;
1274 	taprio_sched_to_offload(dev, sched, offload);
1275 
1276 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1277 	if (err < 0) {
1278 		NL_SET_ERR_MSG(extack,
1279 			       "Device failed to setup taprio offload");
1280 		goto done;
1281 	}
1282 
1283 	q->offloaded = true;
1284 
1285 done:
1286 	taprio_offload_free(offload);
1287 
1288 	return err;
1289 }
1290 
1291 static int taprio_disable_offload(struct net_device *dev,
1292 				  struct taprio_sched *q,
1293 				  struct netlink_ext_ack *extack)
1294 {
1295 	const struct net_device_ops *ops = dev->netdev_ops;
1296 	struct tc_taprio_qopt_offload *offload;
1297 	int err;
1298 
1299 	if (!q->offloaded)
1300 		return 0;
1301 
1302 	offload = taprio_offload_alloc(0);
1303 	if (!offload) {
1304 		NL_SET_ERR_MSG(extack,
1305 			       "Not enough memory to disable offload mode");
1306 		return -ENOMEM;
1307 	}
1308 	offload->enable = 0;
1309 
1310 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1311 	if (err < 0) {
1312 		NL_SET_ERR_MSG(extack,
1313 			       "Device failed to disable offload");
1314 		goto out;
1315 	}
1316 
1317 	q->offloaded = false;
1318 
1319 out:
1320 	taprio_offload_free(offload);
1321 
1322 	return err;
1323 }
1324 
1325 /* If full offload is enabled, the only possible clockid is the net device's
1326  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1327  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1328  * in sync with the specified clockid via a user space daemon such as phc2sys.
1329  * For both software taprio and txtime-assist, the clockid is used for the
1330  * hrtimer that advances the schedule and hence mandatory.
1331  */
1332 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1333 				struct netlink_ext_ack *extack)
1334 {
1335 	struct taprio_sched *q = qdisc_priv(sch);
1336 	struct net_device *dev = qdisc_dev(sch);
1337 	int err = -EINVAL;
1338 
1339 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1340 		const struct ethtool_ops *ops = dev->ethtool_ops;
1341 		struct ethtool_ts_info info = {
1342 			.cmd = ETHTOOL_GET_TS_INFO,
1343 			.phc_index = -1,
1344 		};
1345 
1346 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1347 			NL_SET_ERR_MSG(extack,
1348 				       "The 'clockid' cannot be specified for full offload");
1349 			goto out;
1350 		}
1351 
1352 		if (ops && ops->get_ts_info)
1353 			err = ops->get_ts_info(dev, &info);
1354 
1355 		if (err || info.phc_index < 0) {
1356 			NL_SET_ERR_MSG(extack,
1357 				       "Device does not have a PTP clock");
1358 			err = -ENOTSUPP;
1359 			goto out;
1360 		}
1361 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1362 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1363 		enum tk_offsets tk_offset;
1364 
1365 		/* We only support static clockids and we don't allow
1366 		 * for it to be modified after the first init.
1367 		 */
1368 		if (clockid < 0 ||
1369 		    (q->clockid != -1 && q->clockid != clockid)) {
1370 			NL_SET_ERR_MSG(extack,
1371 				       "Changing the 'clockid' of a running schedule is not supported");
1372 			err = -ENOTSUPP;
1373 			goto out;
1374 		}
1375 
1376 		switch (clockid) {
1377 		case CLOCK_REALTIME:
1378 			tk_offset = TK_OFFS_REAL;
1379 			break;
1380 		case CLOCK_MONOTONIC:
1381 			tk_offset = TK_OFFS_MAX;
1382 			break;
1383 		case CLOCK_BOOTTIME:
1384 			tk_offset = TK_OFFS_BOOT;
1385 			break;
1386 		case CLOCK_TAI:
1387 			tk_offset = TK_OFFS_TAI;
1388 			break;
1389 		default:
1390 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1391 			err = -EINVAL;
1392 			goto out;
1393 		}
1394 		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1395 		WRITE_ONCE(q->tk_offset, tk_offset);
1396 
1397 		q->clockid = clockid;
1398 	} else {
1399 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1400 		goto out;
1401 	}
1402 
1403 	/* Everything went ok, return success. */
1404 	err = 0;
1405 
1406 out:
1407 	return err;
1408 }
1409 
1410 static int taprio_mqprio_cmp(const struct net_device *dev,
1411 			     const struct tc_mqprio_qopt *mqprio)
1412 {
1413 	int i;
1414 
1415 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1416 		return -1;
1417 
1418 	for (i = 0; i < mqprio->num_tc; i++)
1419 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1420 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1421 			return -1;
1422 
1423 	for (i = 0; i <= TC_BITMASK; i++)
1424 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1425 			return -1;
1426 
1427 	return 0;
1428 }
1429 
1430 /* The semantics of the 'flags' argument in relation to 'change()'
1431  * requests, are interpreted following two rules (which are applied in
1432  * this order): (1) an omitted 'flags' argument is interpreted as
1433  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1434  * changed.
1435  */
1436 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1437 			    struct netlink_ext_ack *extack)
1438 {
1439 	u32 new = 0;
1440 
1441 	if (attr)
1442 		new = nla_get_u32(attr);
1443 
1444 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1445 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1446 		return -EOPNOTSUPP;
1447 	}
1448 
1449 	if (!taprio_flags_valid(new)) {
1450 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1451 		return -EINVAL;
1452 	}
1453 
1454 	return new;
1455 }
1456 
1457 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1458 			 struct netlink_ext_ack *extack)
1459 {
1460 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1461 	struct sched_gate_list *oper, *admin, *new_admin;
1462 	struct taprio_sched *q = qdisc_priv(sch);
1463 	struct net_device *dev = qdisc_dev(sch);
1464 	struct tc_mqprio_qopt *mqprio = NULL;
1465 	unsigned long flags;
1466 	ktime_t start;
1467 	int i, err;
1468 
1469 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1470 					  taprio_policy, extack);
1471 	if (err < 0)
1472 		return err;
1473 
1474 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1475 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1476 
1477 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1478 			       q->flags, extack);
1479 	if (err < 0)
1480 		return err;
1481 
1482 	q->flags = err;
1483 
1484 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1485 	if (err < 0)
1486 		return err;
1487 
1488 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1489 	if (!new_admin) {
1490 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1491 		return -ENOMEM;
1492 	}
1493 	INIT_LIST_HEAD(&new_admin->entries);
1494 
1495 	rcu_read_lock();
1496 	oper = rcu_dereference(q->oper_sched);
1497 	admin = rcu_dereference(q->admin_sched);
1498 	rcu_read_unlock();
1499 
1500 	/* no changes - no new mqprio settings */
1501 	if (!taprio_mqprio_cmp(dev, mqprio))
1502 		mqprio = NULL;
1503 
1504 	if (mqprio && (oper || admin)) {
1505 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1506 		err = -ENOTSUPP;
1507 		goto free_sched;
1508 	}
1509 
1510 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1511 	if (err < 0)
1512 		goto free_sched;
1513 
1514 	if (new_admin->num_entries == 0) {
1515 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1516 		err = -EINVAL;
1517 		goto free_sched;
1518 	}
1519 
1520 	err = taprio_parse_clockid(sch, tb, extack);
1521 	if (err < 0)
1522 		goto free_sched;
1523 
1524 	taprio_set_picos_per_byte(dev, q);
1525 
1526 	if (mqprio) {
1527 		err = netdev_set_num_tc(dev, mqprio->num_tc);
1528 		if (err)
1529 			goto free_sched;
1530 		for (i = 0; i < mqprio->num_tc; i++)
1531 			netdev_set_tc_queue(dev, i,
1532 					    mqprio->count[i],
1533 					    mqprio->offset[i]);
1534 
1535 		/* Always use supplied priority mappings */
1536 		for (i = 0; i <= TC_BITMASK; i++)
1537 			netdev_set_prio_tc_map(dev, i,
1538 					       mqprio->prio_tc_map[i]);
1539 	}
1540 
1541 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1542 		err = taprio_enable_offload(dev, q, new_admin, extack);
1543 	else
1544 		err = taprio_disable_offload(dev, q, extack);
1545 	if (err)
1546 		goto free_sched;
1547 
1548 	/* Protects against enqueue()/dequeue() */
1549 	spin_lock_bh(qdisc_lock(sch));
1550 
1551 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1552 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1553 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1554 			err = -EINVAL;
1555 			goto unlock;
1556 		}
1557 
1558 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1559 	}
1560 
1561 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1562 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1563 	    !hrtimer_active(&q->advance_timer)) {
1564 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1565 		q->advance_timer.function = advance_sched;
1566 	}
1567 
1568 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1569 		q->dequeue = taprio_dequeue_offload;
1570 		q->peek = taprio_peek_offload;
1571 	} else {
1572 		/* Be sure to always keep the function pointers
1573 		 * in a consistent state.
1574 		 */
1575 		q->dequeue = taprio_dequeue_soft;
1576 		q->peek = taprio_peek_soft;
1577 	}
1578 
1579 	err = taprio_get_start_time(sch, new_admin, &start);
1580 	if (err < 0) {
1581 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1582 		goto unlock;
1583 	}
1584 
1585 	setup_txtime(q, new_admin, start);
1586 
1587 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1588 		if (!oper) {
1589 			rcu_assign_pointer(q->oper_sched, new_admin);
1590 			err = 0;
1591 			new_admin = NULL;
1592 			goto unlock;
1593 		}
1594 
1595 		rcu_assign_pointer(q->admin_sched, new_admin);
1596 		if (admin)
1597 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1598 	} else {
1599 		setup_first_close_time(q, new_admin, start);
1600 
1601 		/* Protects against advance_sched() */
1602 		spin_lock_irqsave(&q->current_entry_lock, flags);
1603 
1604 		taprio_start_sched(sch, start, new_admin);
1605 
1606 		rcu_assign_pointer(q->admin_sched, new_admin);
1607 		if (admin)
1608 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1609 
1610 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1611 
1612 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1613 			taprio_offload_config_changed(q);
1614 	}
1615 
1616 	new_admin = NULL;
1617 	err = 0;
1618 
1619 unlock:
1620 	spin_unlock_bh(qdisc_lock(sch));
1621 
1622 free_sched:
1623 	if (new_admin)
1624 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1625 
1626 	return err;
1627 }
1628 
1629 static void taprio_reset(struct Qdisc *sch)
1630 {
1631 	struct taprio_sched *q = qdisc_priv(sch);
1632 	struct net_device *dev = qdisc_dev(sch);
1633 	int i;
1634 
1635 	hrtimer_cancel(&q->advance_timer);
1636 	if (q->qdiscs) {
1637 		for (i = 0; i < dev->num_tx_queues; i++)
1638 			if (q->qdiscs[i])
1639 				qdisc_reset(q->qdiscs[i]);
1640 	}
1641 	sch->qstats.backlog = 0;
1642 	sch->q.qlen = 0;
1643 }
1644 
1645 static void taprio_destroy(struct Qdisc *sch)
1646 {
1647 	struct taprio_sched *q = qdisc_priv(sch);
1648 	struct net_device *dev = qdisc_dev(sch);
1649 	unsigned int i;
1650 
1651 	spin_lock(&taprio_list_lock);
1652 	list_del(&q->taprio_list);
1653 	spin_unlock(&taprio_list_lock);
1654 
1655 	/* Note that taprio_reset() might not be called if an error
1656 	 * happens in qdisc_create(), after taprio_init() has been called.
1657 	 */
1658 	hrtimer_cancel(&q->advance_timer);
1659 
1660 	taprio_disable_offload(dev, q, NULL);
1661 
1662 	if (q->qdiscs) {
1663 		for (i = 0; i < dev->num_tx_queues; i++)
1664 			qdisc_put(q->qdiscs[i]);
1665 
1666 		kfree(q->qdiscs);
1667 	}
1668 	q->qdiscs = NULL;
1669 
1670 	netdev_reset_tc(dev);
1671 
1672 	if (q->oper_sched)
1673 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1674 
1675 	if (q->admin_sched)
1676 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1677 }
1678 
1679 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1680 		       struct netlink_ext_ack *extack)
1681 {
1682 	struct taprio_sched *q = qdisc_priv(sch);
1683 	struct net_device *dev = qdisc_dev(sch);
1684 	int i;
1685 
1686 	spin_lock_init(&q->current_entry_lock);
1687 
1688 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1689 	q->advance_timer.function = advance_sched;
1690 
1691 	q->dequeue = taprio_dequeue_soft;
1692 	q->peek = taprio_peek_soft;
1693 
1694 	q->root = sch;
1695 
1696 	/* We only support static clockids. Use an invalid value as default
1697 	 * and get the valid one on taprio_change().
1698 	 */
1699 	q->clockid = -1;
1700 	q->flags = TAPRIO_FLAGS_INVALID;
1701 
1702 	spin_lock(&taprio_list_lock);
1703 	list_add(&q->taprio_list, &taprio_list);
1704 	spin_unlock(&taprio_list_lock);
1705 
1706 	if (sch->parent != TC_H_ROOT)
1707 		return -EOPNOTSUPP;
1708 
1709 	if (!netif_is_multiqueue(dev))
1710 		return -EOPNOTSUPP;
1711 
1712 	/* pre-allocate qdisc, attachment can't fail */
1713 	q->qdiscs = kcalloc(dev->num_tx_queues,
1714 			    sizeof(q->qdiscs[0]),
1715 			    GFP_KERNEL);
1716 
1717 	if (!q->qdiscs)
1718 		return -ENOMEM;
1719 
1720 	if (!opt)
1721 		return -EINVAL;
1722 
1723 	for (i = 0; i < dev->num_tx_queues; i++) {
1724 		struct netdev_queue *dev_queue;
1725 		struct Qdisc *qdisc;
1726 
1727 		dev_queue = netdev_get_tx_queue(dev, i);
1728 		qdisc = qdisc_create_dflt(dev_queue,
1729 					  &pfifo_qdisc_ops,
1730 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1731 						    TC_H_MIN(i + 1)),
1732 					  extack);
1733 		if (!qdisc)
1734 			return -ENOMEM;
1735 
1736 		if (i < dev->real_num_tx_queues)
1737 			qdisc_hash_add(qdisc, false);
1738 
1739 		q->qdiscs[i] = qdisc;
1740 	}
1741 
1742 	return taprio_change(sch, opt, extack);
1743 }
1744 
1745 static void taprio_attach(struct Qdisc *sch)
1746 {
1747 	struct taprio_sched *q = qdisc_priv(sch);
1748 	struct net_device *dev = qdisc_dev(sch);
1749 	unsigned int ntx;
1750 
1751 	/* Attach underlying qdisc */
1752 	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1753 		struct Qdisc *qdisc = q->qdiscs[ntx];
1754 		struct Qdisc *old;
1755 
1756 		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1757 			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1758 			old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1759 		} else {
1760 			old = dev_graft_qdisc(qdisc->dev_queue, sch);
1761 			qdisc_refcount_inc(sch);
1762 		}
1763 		if (old)
1764 			qdisc_put(old);
1765 	}
1766 
1767 	/* access to the child qdiscs is not needed in offload mode */
1768 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1769 		kfree(q->qdiscs);
1770 		q->qdiscs = NULL;
1771 	}
1772 }
1773 
1774 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1775 					     unsigned long cl)
1776 {
1777 	struct net_device *dev = qdisc_dev(sch);
1778 	unsigned long ntx = cl - 1;
1779 
1780 	if (ntx >= dev->num_tx_queues)
1781 		return NULL;
1782 
1783 	return netdev_get_tx_queue(dev, ntx);
1784 }
1785 
1786 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1787 			struct Qdisc *new, struct Qdisc **old,
1788 			struct netlink_ext_ack *extack)
1789 {
1790 	struct taprio_sched *q = qdisc_priv(sch);
1791 	struct net_device *dev = qdisc_dev(sch);
1792 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1793 
1794 	if (!dev_queue)
1795 		return -EINVAL;
1796 
1797 	if (dev->flags & IFF_UP)
1798 		dev_deactivate(dev);
1799 
1800 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1801 		*old = dev_graft_qdisc(dev_queue, new);
1802 	} else {
1803 		*old = q->qdiscs[cl - 1];
1804 		q->qdiscs[cl - 1] = new;
1805 	}
1806 
1807 	if (new)
1808 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1809 
1810 	if (dev->flags & IFF_UP)
1811 		dev_activate(dev);
1812 
1813 	return 0;
1814 }
1815 
1816 static int dump_entry(struct sk_buff *msg,
1817 		      const struct sched_entry *entry)
1818 {
1819 	struct nlattr *item;
1820 
1821 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1822 	if (!item)
1823 		return -ENOSPC;
1824 
1825 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1826 		goto nla_put_failure;
1827 
1828 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1829 		goto nla_put_failure;
1830 
1831 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1832 			entry->gate_mask))
1833 		goto nla_put_failure;
1834 
1835 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1836 			entry->interval))
1837 		goto nla_put_failure;
1838 
1839 	return nla_nest_end(msg, item);
1840 
1841 nla_put_failure:
1842 	nla_nest_cancel(msg, item);
1843 	return -1;
1844 }
1845 
1846 static int dump_schedule(struct sk_buff *msg,
1847 			 const struct sched_gate_list *root)
1848 {
1849 	struct nlattr *entry_list;
1850 	struct sched_entry *entry;
1851 
1852 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1853 			root->base_time, TCA_TAPRIO_PAD))
1854 		return -1;
1855 
1856 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1857 			root->cycle_time, TCA_TAPRIO_PAD))
1858 		return -1;
1859 
1860 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1861 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1862 		return -1;
1863 
1864 	entry_list = nla_nest_start_noflag(msg,
1865 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1866 	if (!entry_list)
1867 		goto error_nest;
1868 
1869 	list_for_each_entry(entry, &root->entries, list) {
1870 		if (dump_entry(msg, entry) < 0)
1871 			goto error_nest;
1872 	}
1873 
1874 	nla_nest_end(msg, entry_list);
1875 	return 0;
1876 
1877 error_nest:
1878 	nla_nest_cancel(msg, entry_list);
1879 	return -1;
1880 }
1881 
1882 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1883 {
1884 	struct taprio_sched *q = qdisc_priv(sch);
1885 	struct net_device *dev = qdisc_dev(sch);
1886 	struct sched_gate_list *oper, *admin;
1887 	struct tc_mqprio_qopt opt = { 0 };
1888 	struct nlattr *nest, *sched_nest;
1889 	unsigned int i;
1890 
1891 	rcu_read_lock();
1892 	oper = rcu_dereference(q->oper_sched);
1893 	admin = rcu_dereference(q->admin_sched);
1894 
1895 	opt.num_tc = netdev_get_num_tc(dev);
1896 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1897 
1898 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1899 		opt.count[i] = dev->tc_to_txq[i].count;
1900 		opt.offset[i] = dev->tc_to_txq[i].offset;
1901 	}
1902 
1903 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1904 	if (!nest)
1905 		goto start_error;
1906 
1907 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1908 		goto options_error;
1909 
1910 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1911 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1912 		goto options_error;
1913 
1914 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1915 		goto options_error;
1916 
1917 	if (q->txtime_delay &&
1918 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1919 		goto options_error;
1920 
1921 	if (oper && dump_schedule(skb, oper))
1922 		goto options_error;
1923 
1924 	if (!admin)
1925 		goto done;
1926 
1927 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1928 	if (!sched_nest)
1929 		goto options_error;
1930 
1931 	if (dump_schedule(skb, admin))
1932 		goto admin_error;
1933 
1934 	nla_nest_end(skb, sched_nest);
1935 
1936 done:
1937 	rcu_read_unlock();
1938 
1939 	return nla_nest_end(skb, nest);
1940 
1941 admin_error:
1942 	nla_nest_cancel(skb, sched_nest);
1943 
1944 options_error:
1945 	nla_nest_cancel(skb, nest);
1946 
1947 start_error:
1948 	rcu_read_unlock();
1949 	return -ENOSPC;
1950 }
1951 
1952 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1953 {
1954 	struct taprio_sched *q = qdisc_priv(sch);
1955 	struct net_device *dev = qdisc_dev(sch);
1956 	unsigned int ntx = cl - 1;
1957 
1958 	if (ntx >= dev->num_tx_queues)
1959 		return NULL;
1960 
1961 	return q->qdiscs[ntx];
1962 }
1963 
1964 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1965 {
1966 	unsigned int ntx = TC_H_MIN(classid);
1967 
1968 	if (!taprio_queue_get(sch, ntx))
1969 		return 0;
1970 	return ntx;
1971 }
1972 
1973 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1974 			     struct sk_buff *skb, struct tcmsg *tcm)
1975 {
1976 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1977 
1978 	tcm->tcm_parent = TC_H_ROOT;
1979 	tcm->tcm_handle |= TC_H_MIN(cl);
1980 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1981 
1982 	return 0;
1983 }
1984 
1985 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1986 				   struct gnet_dump *d)
1987 	__releases(d->lock)
1988 	__acquires(d->lock)
1989 {
1990 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1991 
1992 	sch = dev_queue->qdisc_sleeping;
1993 	if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
1994 	    qdisc_qstats_copy(d, sch) < 0)
1995 		return -1;
1996 	return 0;
1997 }
1998 
1999 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2000 {
2001 	struct net_device *dev = qdisc_dev(sch);
2002 	unsigned long ntx;
2003 
2004 	if (arg->stop)
2005 		return;
2006 
2007 	arg->count = arg->skip;
2008 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2009 		if (arg->fn(sch, ntx + 1, arg) < 0) {
2010 			arg->stop = 1;
2011 			break;
2012 		}
2013 		arg->count++;
2014 	}
2015 }
2016 
2017 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2018 						struct tcmsg *tcm)
2019 {
2020 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2021 }
2022 
2023 static const struct Qdisc_class_ops taprio_class_ops = {
2024 	.graft		= taprio_graft,
2025 	.leaf		= taprio_leaf,
2026 	.find		= taprio_find,
2027 	.walk		= taprio_walk,
2028 	.dump		= taprio_dump_class,
2029 	.dump_stats	= taprio_dump_class_stats,
2030 	.select_queue	= taprio_select_queue,
2031 };
2032 
2033 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2034 	.cl_ops		= &taprio_class_ops,
2035 	.id		= "taprio",
2036 	.priv_size	= sizeof(struct taprio_sched),
2037 	.init		= taprio_init,
2038 	.change		= taprio_change,
2039 	.destroy	= taprio_destroy,
2040 	.reset		= taprio_reset,
2041 	.attach		= taprio_attach,
2042 	.peek		= taprio_peek,
2043 	.dequeue	= taprio_dequeue,
2044 	.enqueue	= taprio_enqueue,
2045 	.dump		= taprio_dump,
2046 	.owner		= THIS_MODULE,
2047 };
2048 
2049 static struct notifier_block taprio_device_notifier = {
2050 	.notifier_call = taprio_dev_notifier,
2051 };
2052 
2053 static int __init taprio_module_init(void)
2054 {
2055 	int err = register_netdevice_notifier(&taprio_device_notifier);
2056 
2057 	if (err)
2058 		return err;
2059 
2060 	return register_qdisc(&taprio_qdisc_ops);
2061 }
2062 
2063 static void __exit taprio_module_exit(void)
2064 {
2065 	unregister_qdisc(&taprio_qdisc_ops);
2066 	unregister_netdevice_notifier(&taprio_device_notifier);
2067 }
2068 
2069 module_init(taprio_module_init);
2070 module_exit(taprio_module_exit);
2071 MODULE_LICENSE("GPL");
2072