xref: /openbmc/linux/net/rds/ib_rdma.c (revision b7ff8b1036f0b0df1390ba6b5e9bc7ec458e857a)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37 
38 #include "rds_single_path.h"
39 #include "ib_mr.h"
40 
41 struct workqueue_struct *rds_ib_mr_wq;
42 
43 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
44 #define CLEAN_LIST_BUSY_BIT 0
45 
46 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
47 {
48 	struct rds_ib_device *rds_ibdev;
49 	struct rds_ib_ipaddr *i_ipaddr;
50 
51 	rcu_read_lock();
52 	list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
53 		list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
54 			if (i_ipaddr->ipaddr == ipaddr) {
55 				refcount_inc(&rds_ibdev->refcount);
56 				rcu_read_unlock();
57 				return rds_ibdev;
58 			}
59 		}
60 	}
61 	rcu_read_unlock();
62 
63 	return NULL;
64 }
65 
66 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
67 {
68 	struct rds_ib_ipaddr *i_ipaddr;
69 
70 	i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
71 	if (!i_ipaddr)
72 		return -ENOMEM;
73 
74 	i_ipaddr->ipaddr = ipaddr;
75 
76 	spin_lock_irq(&rds_ibdev->spinlock);
77 	list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
78 	spin_unlock_irq(&rds_ibdev->spinlock);
79 
80 	return 0;
81 }
82 
83 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
84 {
85 	struct rds_ib_ipaddr *i_ipaddr;
86 	struct rds_ib_ipaddr *to_free = NULL;
87 
88 
89 	spin_lock_irq(&rds_ibdev->spinlock);
90 	list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
91 		if (i_ipaddr->ipaddr == ipaddr) {
92 			list_del_rcu(&i_ipaddr->list);
93 			to_free = i_ipaddr;
94 			break;
95 		}
96 	}
97 	spin_unlock_irq(&rds_ibdev->spinlock);
98 
99 	if (to_free)
100 		kfree_rcu(to_free, rcu);
101 }
102 
103 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev,
104 			 struct in6_addr *ipaddr)
105 {
106 	struct rds_ib_device *rds_ibdev_old;
107 
108 	rds_ibdev_old = rds_ib_get_device(ipaddr->s6_addr32[3]);
109 	if (!rds_ibdev_old)
110 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
111 
112 	if (rds_ibdev_old != rds_ibdev) {
113 		rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr->s6_addr32[3]);
114 		rds_ib_dev_put(rds_ibdev_old);
115 		return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
116 	}
117 	rds_ib_dev_put(rds_ibdev_old);
118 
119 	return 0;
120 }
121 
122 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
123 {
124 	struct rds_ib_connection *ic = conn->c_transport_data;
125 
126 	/* conn was previously on the nodev_conns_list */
127 	spin_lock_irq(&ib_nodev_conns_lock);
128 	BUG_ON(list_empty(&ib_nodev_conns));
129 	BUG_ON(list_empty(&ic->ib_node));
130 	list_del(&ic->ib_node);
131 
132 	spin_lock(&rds_ibdev->spinlock);
133 	list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
134 	spin_unlock(&rds_ibdev->spinlock);
135 	spin_unlock_irq(&ib_nodev_conns_lock);
136 
137 	ic->rds_ibdev = rds_ibdev;
138 	refcount_inc(&rds_ibdev->refcount);
139 }
140 
141 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
142 {
143 	struct rds_ib_connection *ic = conn->c_transport_data;
144 
145 	/* place conn on nodev_conns_list */
146 	spin_lock(&ib_nodev_conns_lock);
147 
148 	spin_lock_irq(&rds_ibdev->spinlock);
149 	BUG_ON(list_empty(&ic->ib_node));
150 	list_del(&ic->ib_node);
151 	spin_unlock_irq(&rds_ibdev->spinlock);
152 
153 	list_add_tail(&ic->ib_node, &ib_nodev_conns);
154 
155 	spin_unlock(&ib_nodev_conns_lock);
156 
157 	ic->rds_ibdev = NULL;
158 	rds_ib_dev_put(rds_ibdev);
159 }
160 
161 void rds_ib_destroy_nodev_conns(void)
162 {
163 	struct rds_ib_connection *ic, *_ic;
164 	LIST_HEAD(tmp_list);
165 
166 	/* avoid calling conn_destroy with irqs off */
167 	spin_lock_irq(&ib_nodev_conns_lock);
168 	list_splice(&ib_nodev_conns, &tmp_list);
169 	spin_unlock_irq(&ib_nodev_conns_lock);
170 
171 	list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
172 		rds_conn_destroy(ic->conn);
173 }
174 
175 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
176 {
177 	struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
178 
179 	iinfo->rdma_mr_max = pool_1m->max_items;
180 	iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
181 }
182 
183 void rds6_ib_get_mr_info(struct rds_ib_device *rds_ibdev,
184 			 struct rds6_info_rdma_connection *iinfo6)
185 {
186 	struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
187 
188 	iinfo6->rdma_mr_max = pool_1m->max_items;
189 	iinfo6->rdma_mr_size = pool_1m->fmr_attr.max_pages;
190 }
191 
192 struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool)
193 {
194 	struct rds_ib_mr *ibmr = NULL;
195 	struct llist_node *ret;
196 	unsigned long *flag;
197 
198 	preempt_disable();
199 	flag = this_cpu_ptr(&clean_list_grace);
200 	set_bit(CLEAN_LIST_BUSY_BIT, flag);
201 	ret = llist_del_first(&pool->clean_list);
202 	if (ret) {
203 		ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
204 		if (pool->pool_type == RDS_IB_MR_8K_POOL)
205 			rds_ib_stats_inc(s_ib_rdma_mr_8k_reused);
206 		else
207 			rds_ib_stats_inc(s_ib_rdma_mr_1m_reused);
208 	}
209 
210 	clear_bit(CLEAN_LIST_BUSY_BIT, flag);
211 	preempt_enable();
212 	return ibmr;
213 }
214 
215 static inline void wait_clean_list_grace(void)
216 {
217 	int cpu;
218 	unsigned long *flag;
219 
220 	for_each_online_cpu(cpu) {
221 		flag = &per_cpu(clean_list_grace, cpu);
222 		while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
223 			cpu_relax();
224 	}
225 }
226 
227 void rds_ib_sync_mr(void *trans_private, int direction)
228 {
229 	struct rds_ib_mr *ibmr = trans_private;
230 	struct rds_ib_device *rds_ibdev = ibmr->device;
231 
232 	switch (direction) {
233 	case DMA_FROM_DEVICE:
234 		ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
235 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
236 		break;
237 	case DMA_TO_DEVICE:
238 		ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
239 			ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
240 		break;
241 	}
242 }
243 
244 void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
245 {
246 	struct rds_ib_device *rds_ibdev = ibmr->device;
247 
248 	if (ibmr->sg_dma_len) {
249 		ib_dma_unmap_sg(rds_ibdev->dev,
250 				ibmr->sg, ibmr->sg_len,
251 				DMA_BIDIRECTIONAL);
252 		ibmr->sg_dma_len = 0;
253 	}
254 
255 	/* Release the s/g list */
256 	if (ibmr->sg_len) {
257 		unsigned int i;
258 
259 		for (i = 0; i < ibmr->sg_len; ++i) {
260 			struct page *page = sg_page(&ibmr->sg[i]);
261 
262 			/* FIXME we need a way to tell a r/w MR
263 			 * from a r/o MR */
264 			WARN_ON(!page->mapping && irqs_disabled());
265 			set_page_dirty(page);
266 			put_page(page);
267 		}
268 		kfree(ibmr->sg);
269 
270 		ibmr->sg = NULL;
271 		ibmr->sg_len = 0;
272 	}
273 }
274 
275 void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
276 {
277 	unsigned int pinned = ibmr->sg_len;
278 
279 	__rds_ib_teardown_mr(ibmr);
280 	if (pinned) {
281 		struct rds_ib_mr_pool *pool = ibmr->pool;
282 
283 		atomic_sub(pinned, &pool->free_pinned);
284 	}
285 }
286 
287 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
288 {
289 	unsigned int item_count;
290 
291 	item_count = atomic_read(&pool->item_count);
292 	if (free_all)
293 		return item_count;
294 
295 	return 0;
296 }
297 
298 /*
299  * given an llist of mrs, put them all into the list_head for more processing
300  */
301 static unsigned int llist_append_to_list(struct llist_head *llist,
302 					 struct list_head *list)
303 {
304 	struct rds_ib_mr *ibmr;
305 	struct llist_node *node;
306 	struct llist_node *next;
307 	unsigned int count = 0;
308 
309 	node = llist_del_all(llist);
310 	while (node) {
311 		next = node->next;
312 		ibmr = llist_entry(node, struct rds_ib_mr, llnode);
313 		list_add_tail(&ibmr->unmap_list, list);
314 		node = next;
315 		count++;
316 	}
317 	return count;
318 }
319 
320 /*
321  * this takes a list head of mrs and turns it into linked llist nodes
322  * of clusters.  Each cluster has linked llist nodes of
323  * MR_CLUSTER_SIZE mrs that are ready for reuse.
324  */
325 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
326 				struct list_head *list,
327 				struct llist_node **nodes_head,
328 				struct llist_node **nodes_tail)
329 {
330 	struct rds_ib_mr *ibmr;
331 	struct llist_node *cur = NULL;
332 	struct llist_node **next = nodes_head;
333 
334 	list_for_each_entry(ibmr, list, unmap_list) {
335 		cur = &ibmr->llnode;
336 		*next = cur;
337 		next = &cur->next;
338 	}
339 	*next = NULL;
340 	*nodes_tail = cur;
341 }
342 
343 /*
344  * Flush our pool of MRs.
345  * At a minimum, all currently unused MRs are unmapped.
346  * If the number of MRs allocated exceeds the limit, we also try
347  * to free as many MRs as needed to get back to this limit.
348  */
349 int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
350 			 int free_all, struct rds_ib_mr **ibmr_ret)
351 {
352 	struct rds_ib_mr *ibmr;
353 	struct llist_node *clean_nodes;
354 	struct llist_node *clean_tail;
355 	LIST_HEAD(unmap_list);
356 	unsigned long unpinned = 0;
357 	unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
358 
359 	if (pool->pool_type == RDS_IB_MR_8K_POOL)
360 		rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
361 	else
362 		rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
363 
364 	if (ibmr_ret) {
365 		DEFINE_WAIT(wait);
366 		while (!mutex_trylock(&pool->flush_lock)) {
367 			ibmr = rds_ib_reuse_mr(pool);
368 			if (ibmr) {
369 				*ibmr_ret = ibmr;
370 				finish_wait(&pool->flush_wait, &wait);
371 				goto out_nolock;
372 			}
373 
374 			prepare_to_wait(&pool->flush_wait, &wait,
375 					TASK_UNINTERRUPTIBLE);
376 			if (llist_empty(&pool->clean_list))
377 				schedule();
378 
379 			ibmr = rds_ib_reuse_mr(pool);
380 			if (ibmr) {
381 				*ibmr_ret = ibmr;
382 				finish_wait(&pool->flush_wait, &wait);
383 				goto out_nolock;
384 			}
385 		}
386 		finish_wait(&pool->flush_wait, &wait);
387 	} else
388 		mutex_lock(&pool->flush_lock);
389 
390 	if (ibmr_ret) {
391 		ibmr = rds_ib_reuse_mr(pool);
392 		if (ibmr) {
393 			*ibmr_ret = ibmr;
394 			goto out;
395 		}
396 	}
397 
398 	/* Get the list of all MRs to be dropped. Ordering matters -
399 	 * we want to put drop_list ahead of free_list.
400 	 */
401 	dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
402 	dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
403 	if (free_all)
404 		llist_append_to_list(&pool->clean_list, &unmap_list);
405 
406 	free_goal = rds_ib_flush_goal(pool, free_all);
407 
408 	if (list_empty(&unmap_list))
409 		goto out;
410 
411 	if (pool->use_fastreg)
412 		rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal);
413 	else
414 		rds_ib_unreg_fmr(&unmap_list, &nfreed, &unpinned, free_goal);
415 
416 	if (!list_empty(&unmap_list)) {
417 		/* we have to make sure that none of the things we're about
418 		 * to put on the clean list would race with other cpus trying
419 		 * to pull items off.  The llist would explode if we managed to
420 		 * remove something from the clean list and then add it back again
421 		 * while another CPU was spinning on that same item in llist_del_first.
422 		 *
423 		 * This is pretty unlikely, but just in case  wait for an llist grace period
424 		 * here before adding anything back into the clean list.
425 		 */
426 		wait_clean_list_grace();
427 
428 		list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
429 		if (ibmr_ret)
430 			*ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
431 
432 		/* more than one entry in llist nodes */
433 		if (clean_nodes->next)
434 			llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
435 
436 	}
437 
438 	atomic_sub(unpinned, &pool->free_pinned);
439 	atomic_sub(dirty_to_clean, &pool->dirty_count);
440 	atomic_sub(nfreed, &pool->item_count);
441 
442 out:
443 	mutex_unlock(&pool->flush_lock);
444 	if (waitqueue_active(&pool->flush_wait))
445 		wake_up(&pool->flush_wait);
446 out_nolock:
447 	return 0;
448 }
449 
450 struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool)
451 {
452 	struct rds_ib_mr *ibmr = NULL;
453 	int iter = 0;
454 
455 	if (atomic_read(&pool->dirty_count) >= pool->max_items_soft / 10)
456 		queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
457 
458 	while (1) {
459 		ibmr = rds_ib_reuse_mr(pool);
460 		if (ibmr)
461 			return ibmr;
462 
463 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
464 			break;
465 
466 		atomic_dec(&pool->item_count);
467 
468 		if (++iter > 2) {
469 			if (pool->pool_type == RDS_IB_MR_8K_POOL)
470 				rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
471 			else
472 				rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
473 			return ERR_PTR(-EAGAIN);
474 		}
475 
476 		/* We do have some empty MRs. Flush them out. */
477 		if (pool->pool_type == RDS_IB_MR_8K_POOL)
478 			rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
479 		else
480 			rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
481 
482 		rds_ib_flush_mr_pool(pool, 0, &ibmr);
483 		if (ibmr)
484 			return ibmr;
485 	}
486 
487 	return ibmr;
488 }
489 
490 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
491 {
492 	struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
493 
494 	rds_ib_flush_mr_pool(pool, 0, NULL);
495 }
496 
497 void rds_ib_free_mr(void *trans_private, int invalidate)
498 {
499 	struct rds_ib_mr *ibmr = trans_private;
500 	struct rds_ib_mr_pool *pool = ibmr->pool;
501 	struct rds_ib_device *rds_ibdev = ibmr->device;
502 
503 	rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
504 
505 	/* Return it to the pool's free list */
506 	if (rds_ibdev->use_fastreg)
507 		rds_ib_free_frmr_list(ibmr);
508 	else
509 		rds_ib_free_fmr_list(ibmr);
510 
511 	atomic_add(ibmr->sg_len, &pool->free_pinned);
512 	atomic_inc(&pool->dirty_count);
513 
514 	/* If we've pinned too many pages, request a flush */
515 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
516 	    atomic_read(&pool->dirty_count) >= pool->max_items / 5)
517 		queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
518 
519 	if (invalidate) {
520 		if (likely(!in_interrupt())) {
521 			rds_ib_flush_mr_pool(pool, 0, NULL);
522 		} else {
523 			/* We get here if the user created a MR marked
524 			 * as use_once and invalidate at the same time.
525 			 */
526 			queue_delayed_work(rds_ib_mr_wq,
527 					   &pool->flush_worker, 10);
528 		}
529 	}
530 
531 	rds_ib_dev_put(rds_ibdev);
532 }
533 
534 void rds_ib_flush_mrs(void)
535 {
536 	struct rds_ib_device *rds_ibdev;
537 
538 	down_read(&rds_ib_devices_lock);
539 	list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
540 		if (rds_ibdev->mr_8k_pool)
541 			rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
542 
543 		if (rds_ibdev->mr_1m_pool)
544 			rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
545 	}
546 	up_read(&rds_ib_devices_lock);
547 }
548 
549 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
550 		    struct rds_sock *rs, u32 *key_ret)
551 {
552 	struct rds_ib_device *rds_ibdev;
553 	struct rds_ib_mr *ibmr = NULL;
554 	struct rds_ib_connection *ic = rs->rs_conn->c_transport_data;
555 	int ret;
556 
557 	rds_ibdev = rds_ib_get_device(rs->rs_bound_addr.s6_addr32[3]);
558 	if (!rds_ibdev) {
559 		ret = -ENODEV;
560 		goto out;
561 	}
562 
563 	if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
564 		ret = -ENODEV;
565 		goto out;
566 	}
567 
568 	if (rds_ibdev->use_fastreg)
569 		ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret);
570 	else
571 		ibmr = rds_ib_reg_fmr(rds_ibdev, sg, nents, key_ret);
572 	if (ibmr)
573 		rds_ibdev = NULL;
574 
575  out:
576 	if (!ibmr)
577 		pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret);
578 
579 	if (rds_ibdev)
580 		rds_ib_dev_put(rds_ibdev);
581 
582 	return ibmr;
583 }
584 
585 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
586 {
587 	cancel_delayed_work_sync(&pool->flush_worker);
588 	rds_ib_flush_mr_pool(pool, 1, NULL);
589 	WARN_ON(atomic_read(&pool->item_count));
590 	WARN_ON(atomic_read(&pool->free_pinned));
591 	kfree(pool);
592 }
593 
594 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
595 					     int pool_type)
596 {
597 	struct rds_ib_mr_pool *pool;
598 
599 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
600 	if (!pool)
601 		return ERR_PTR(-ENOMEM);
602 
603 	pool->pool_type = pool_type;
604 	init_llist_head(&pool->free_list);
605 	init_llist_head(&pool->drop_list);
606 	init_llist_head(&pool->clean_list);
607 	mutex_init(&pool->flush_lock);
608 	init_waitqueue_head(&pool->flush_wait);
609 	INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
610 
611 	if (pool_type == RDS_IB_MR_1M_POOL) {
612 		/* +1 allows for unaligned MRs */
613 		pool->fmr_attr.max_pages = RDS_MR_1M_MSG_SIZE + 1;
614 		pool->max_items = rds_ibdev->max_1m_mrs;
615 	} else {
616 		/* pool_type == RDS_IB_MR_8K_POOL */
617 		pool->fmr_attr.max_pages = RDS_MR_8K_MSG_SIZE + 1;
618 		pool->max_items = rds_ibdev->max_8k_mrs;
619 	}
620 
621 	pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
622 	pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
623 	pool->fmr_attr.page_shift = PAGE_SHIFT;
624 	pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4;
625 	pool->use_fastreg = rds_ibdev->use_fastreg;
626 
627 	return pool;
628 }
629 
630 int rds_ib_mr_init(void)
631 {
632 	rds_ib_mr_wq = alloc_workqueue("rds_mr_flushd", WQ_MEM_RECLAIM, 0);
633 	if (!rds_ib_mr_wq)
634 		return -ENOMEM;
635 	return 0;
636 }
637 
638 /* By the time this is called all the IB devices should have been torn down and
639  * had their pools freed.  As each pool is freed its work struct is waited on,
640  * so the pool flushing work queue should be idle by the time we get here.
641  */
642 void rds_ib_mr_exit(void)
643 {
644 	destroy_workqueue(rds_ib_mr_wq);
645 }
646