xref: /openbmc/linux/net/rds/ib_cm.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ratelimit.h>
38 #include <net/addrconf.h>
39 #include <rdma/ib_cm.h>
40 
41 #include "rds_single_path.h"
42 #include "rds.h"
43 #include "ib.h"
44 #include "ib_mr.h"
45 
46 /*
47  * Set the selected protocol version
48  */
49 static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version)
50 {
51 	conn->c_version = version;
52 }
53 
54 /*
55  * Set up flow control
56  */
57 static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits)
58 {
59 	struct rds_ib_connection *ic = conn->c_transport_data;
60 
61 	if (rds_ib_sysctl_flow_control && credits != 0) {
62 		/* We're doing flow control */
63 		ic->i_flowctl = 1;
64 		rds_ib_send_add_credits(conn, credits);
65 	} else {
66 		ic->i_flowctl = 0;
67 	}
68 }
69 
70 /*
71  * Tune RNR behavior. Without flow control, we use a rather
72  * low timeout, but not the absolute minimum - this should
73  * be tunable.
74  *
75  * We already set the RNR retry count to 7 (which is the
76  * smallest infinite number :-) above.
77  * If flow control is off, we want to change this back to 0
78  * so that we learn quickly when our credit accounting is
79  * buggy.
80  *
81  * Caller passes in a qp_attr pointer - don't waste stack spacv
82  * by allocation this twice.
83  */
84 static void
85 rds_ib_tune_rnr(struct rds_ib_connection *ic, struct ib_qp_attr *attr)
86 {
87 	int ret;
88 
89 	attr->min_rnr_timer = IB_RNR_TIMER_000_32;
90 	ret = ib_modify_qp(ic->i_cm_id->qp, attr, IB_QP_MIN_RNR_TIMER);
91 	if (ret)
92 		printk(KERN_NOTICE "ib_modify_qp(IB_QP_MIN_RNR_TIMER): err=%d\n", -ret);
93 }
94 
95 /*
96  * Connection established.
97  * We get here for both outgoing and incoming connection.
98  */
99 void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event)
100 {
101 	struct rds_ib_connection *ic = conn->c_transport_data;
102 	const union rds_ib_conn_priv *dp = NULL;
103 	struct ib_qp_attr qp_attr;
104 	__be64 ack_seq = 0;
105 	__be32 credit = 0;
106 	u8 major = 0;
107 	u8 minor = 0;
108 	int err;
109 
110 	dp = event->param.conn.private_data;
111 	if (conn->c_isv6) {
112 		if (event->param.conn.private_data_len >=
113 		    sizeof(struct rds6_ib_connect_private)) {
114 			major = dp->ricp_v6.dp_protocol_major;
115 			minor = dp->ricp_v6.dp_protocol_minor;
116 			credit = dp->ricp_v6.dp_credit;
117 			/* dp structure start is not guaranteed to be 8 bytes
118 			 * aligned.  Since dp_ack_seq is 64-bit extended load
119 			 * operations can be used so go through get_unaligned
120 			 * to avoid unaligned errors.
121 			 */
122 			ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq);
123 		}
124 	} else if (event->param.conn.private_data_len >=
125 		   sizeof(struct rds_ib_connect_private)) {
126 		major = dp->ricp_v4.dp_protocol_major;
127 		minor = dp->ricp_v4.dp_protocol_minor;
128 		credit = dp->ricp_v4.dp_credit;
129 		ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq);
130 	}
131 
132 	/* make sure it isn't empty data */
133 	if (major) {
134 		rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor));
135 		rds_ib_set_flow_control(conn, be32_to_cpu(credit));
136 	}
137 
138 	if (conn->c_version < RDS_PROTOCOL_VERSION) {
139 		if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) {
140 			pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n",
141 				  &conn->c_laddr, &conn->c_faddr,
142 				  RDS_PROTOCOL_MAJOR(conn->c_version),
143 				  RDS_PROTOCOL_MINOR(conn->c_version));
144 			rds_conn_destroy(conn);
145 			return;
146 		}
147 	}
148 
149 	pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n",
150 		  ic->i_active_side ? "Active" : "Passive",
151 		  &conn->c_laddr, &conn->c_faddr, conn->c_tos,
152 		  RDS_PROTOCOL_MAJOR(conn->c_version),
153 		  RDS_PROTOCOL_MINOR(conn->c_version),
154 		  ic->i_flowctl ? ", flow control" : "");
155 
156 	/* receive sl from the peer */
157 	ic->i_sl = ic->i_cm_id->route.path_rec->sl;
158 
159 	atomic_set(&ic->i_cq_quiesce, 0);
160 
161 	/* Init rings and fill recv. this needs to wait until protocol
162 	 * negotiation is complete, since ring layout is different
163 	 * from 3.1 to 4.1.
164 	 */
165 	rds_ib_send_init_ring(ic);
166 	rds_ib_recv_init_ring(ic);
167 	/* Post receive buffers - as a side effect, this will update
168 	 * the posted credit count. */
169 	rds_ib_recv_refill(conn, 1, GFP_KERNEL);
170 
171 	/* Tune RNR behavior */
172 	rds_ib_tune_rnr(ic, &qp_attr);
173 
174 	qp_attr.qp_state = IB_QPS_RTS;
175 	err = ib_modify_qp(ic->i_cm_id->qp, &qp_attr, IB_QP_STATE);
176 	if (err)
177 		printk(KERN_NOTICE "ib_modify_qp(IB_QP_STATE, RTS): err=%d\n", err);
178 
179 	/* update ib_device with this local ipaddr */
180 	err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr);
181 	if (err)
182 		printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n",
183 			err);
184 
185 	/* If the peer gave us the last packet it saw, process this as if
186 	 * we had received a regular ACK. */
187 	if (dp) {
188 		if (ack_seq)
189 			rds_send_drop_acked(conn, be64_to_cpu(ack_seq),
190 					    NULL);
191 	}
192 
193 	conn->c_proposed_version = conn->c_version;
194 	rds_connect_complete(conn);
195 }
196 
197 static void rds_ib_cm_fill_conn_param(struct rds_connection *conn,
198 				      struct rdma_conn_param *conn_param,
199 				      union rds_ib_conn_priv *dp,
200 				      u32 protocol_version,
201 				      u32 max_responder_resources,
202 				      u32 max_initiator_depth,
203 				      bool isv6)
204 {
205 	struct rds_ib_connection *ic = conn->c_transport_data;
206 	struct rds_ib_device *rds_ibdev = ic->rds_ibdev;
207 
208 	memset(conn_param, 0, sizeof(struct rdma_conn_param));
209 
210 	conn_param->responder_resources =
211 		min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources);
212 	conn_param->initiator_depth =
213 		min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth);
214 	conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7);
215 	conn_param->rnr_retry_count = 7;
216 
217 	if (dp) {
218 		memset(dp, 0, sizeof(*dp));
219 		if (isv6) {
220 			dp->ricp_v6.dp_saddr = conn->c_laddr;
221 			dp->ricp_v6.dp_daddr = conn->c_faddr;
222 			dp->ricp_v6.dp_protocol_major =
223 			    RDS_PROTOCOL_MAJOR(protocol_version);
224 			dp->ricp_v6.dp_protocol_minor =
225 			    RDS_PROTOCOL_MINOR(protocol_version);
226 			dp->ricp_v6.dp_protocol_minor_mask =
227 			    cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS);
228 			dp->ricp_v6.dp_ack_seq =
229 			    cpu_to_be64(rds_ib_piggyb_ack(ic));
230 			dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos;
231 
232 			conn_param->private_data = &dp->ricp_v6;
233 			conn_param->private_data_len = sizeof(dp->ricp_v6);
234 		} else {
235 			dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3];
236 			dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3];
237 			dp->ricp_v4.dp_protocol_major =
238 			    RDS_PROTOCOL_MAJOR(protocol_version);
239 			dp->ricp_v4.dp_protocol_minor =
240 			    RDS_PROTOCOL_MINOR(protocol_version);
241 			dp->ricp_v4.dp_protocol_minor_mask =
242 			    cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS);
243 			dp->ricp_v4.dp_ack_seq =
244 			    cpu_to_be64(rds_ib_piggyb_ack(ic));
245 			dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos;
246 
247 			conn_param->private_data = &dp->ricp_v4;
248 			conn_param->private_data_len = sizeof(dp->ricp_v4);
249 		}
250 
251 		/* Advertise flow control */
252 		if (ic->i_flowctl) {
253 			unsigned int credits;
254 
255 			credits = IB_GET_POST_CREDITS
256 				(atomic_read(&ic->i_credits));
257 			if (isv6)
258 				dp->ricp_v6.dp_credit = cpu_to_be32(credits);
259 			else
260 				dp->ricp_v4.dp_credit = cpu_to_be32(credits);
261 			atomic_sub(IB_SET_POST_CREDITS(credits),
262 				   &ic->i_credits);
263 		}
264 	}
265 }
266 
267 static void rds_ib_cq_event_handler(struct ib_event *event, void *data)
268 {
269 	rdsdebug("event %u (%s) data %p\n",
270 		 event->event, ib_event_msg(event->event), data);
271 }
272 
273 /* Plucking the oldest entry from the ring can be done concurrently with
274  * the thread refilling the ring.  Each ring operation is protected by
275  * spinlocks and the transient state of refilling doesn't change the
276  * recording of which entry is oldest.
277  *
278  * This relies on IB only calling one cq comp_handler for each cq so that
279  * there will only be one caller of rds_recv_incoming() per RDS connection.
280  */
281 static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context)
282 {
283 	struct rds_connection *conn = context;
284 	struct rds_ib_connection *ic = conn->c_transport_data;
285 
286 	rdsdebug("conn %p cq %p\n", conn, cq);
287 
288 	rds_ib_stats_inc(s_ib_evt_handler_call);
289 
290 	tasklet_schedule(&ic->i_recv_tasklet);
291 }
292 
293 static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq,
294 		     struct ib_wc *wcs)
295 {
296 	int nr, i;
297 	struct ib_wc *wc;
298 
299 	while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) {
300 		for (i = 0; i < nr; i++) {
301 			wc = wcs + i;
302 			rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
303 				 (unsigned long long)wc->wr_id, wc->status,
304 				 wc->byte_len, be32_to_cpu(wc->ex.imm_data));
305 
306 			if (wc->wr_id <= ic->i_send_ring.w_nr ||
307 			    wc->wr_id == RDS_IB_ACK_WR_ID)
308 				rds_ib_send_cqe_handler(ic, wc);
309 			else
310 				rds_ib_mr_cqe_handler(ic, wc);
311 
312 		}
313 	}
314 }
315 
316 static void rds_ib_tasklet_fn_send(unsigned long data)
317 {
318 	struct rds_ib_connection *ic = (struct rds_ib_connection *)data;
319 	struct rds_connection *conn = ic->conn;
320 
321 	rds_ib_stats_inc(s_ib_tasklet_call);
322 
323 	/* if cq has been already reaped, ignore incoming cq event */
324 	if (atomic_read(&ic->i_cq_quiesce))
325 		return;
326 
327 	poll_scq(ic, ic->i_send_cq, ic->i_send_wc);
328 	ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP);
329 	poll_scq(ic, ic->i_send_cq, ic->i_send_wc);
330 
331 	if (rds_conn_up(conn) &&
332 	    (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
333 	    test_bit(0, &conn->c_map_queued)))
334 		rds_send_xmit(&ic->conn->c_path[0]);
335 }
336 
337 static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq,
338 		     struct ib_wc *wcs,
339 		     struct rds_ib_ack_state *ack_state)
340 {
341 	int nr, i;
342 	struct ib_wc *wc;
343 
344 	while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) {
345 		for (i = 0; i < nr; i++) {
346 			wc = wcs + i;
347 			rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
348 				 (unsigned long long)wc->wr_id, wc->status,
349 				 wc->byte_len, be32_to_cpu(wc->ex.imm_data));
350 
351 			rds_ib_recv_cqe_handler(ic, wc, ack_state);
352 		}
353 	}
354 }
355 
356 static void rds_ib_tasklet_fn_recv(unsigned long data)
357 {
358 	struct rds_ib_connection *ic = (struct rds_ib_connection *)data;
359 	struct rds_connection *conn = ic->conn;
360 	struct rds_ib_device *rds_ibdev = ic->rds_ibdev;
361 	struct rds_ib_ack_state state;
362 
363 	if (!rds_ibdev)
364 		rds_conn_drop(conn);
365 
366 	rds_ib_stats_inc(s_ib_tasklet_call);
367 
368 	/* if cq has been already reaped, ignore incoming cq event */
369 	if (atomic_read(&ic->i_cq_quiesce))
370 		return;
371 
372 	memset(&state, 0, sizeof(state));
373 	poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state);
374 	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
375 	poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state);
376 
377 	if (state.ack_next_valid)
378 		rds_ib_set_ack(ic, state.ack_next, state.ack_required);
379 	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
380 		rds_send_drop_acked(conn, state.ack_recv, NULL);
381 		ic->i_ack_recv = state.ack_recv;
382 	}
383 
384 	if (rds_conn_up(conn))
385 		rds_ib_attempt_ack(ic);
386 }
387 
388 static void rds_ib_qp_event_handler(struct ib_event *event, void *data)
389 {
390 	struct rds_connection *conn = data;
391 	struct rds_ib_connection *ic = conn->c_transport_data;
392 
393 	rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event,
394 		 ib_event_msg(event->event));
395 
396 	switch (event->event) {
397 	case IB_EVENT_COMM_EST:
398 		rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST);
399 		break;
400 	default:
401 		rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n",
402 			 event->event, ib_event_msg(event->event),
403 			 &conn->c_laddr, &conn->c_faddr);
404 		rds_conn_drop(conn);
405 		break;
406 	}
407 }
408 
409 static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context)
410 {
411 	struct rds_connection *conn = context;
412 	struct rds_ib_connection *ic = conn->c_transport_data;
413 
414 	rdsdebug("conn %p cq %p\n", conn, cq);
415 
416 	rds_ib_stats_inc(s_ib_evt_handler_call);
417 
418 	tasklet_schedule(&ic->i_send_tasklet);
419 }
420 
421 static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev)
422 {
423 	int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1];
424 	int index = rds_ibdev->dev->num_comp_vectors - 1;
425 	int i;
426 
427 	for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) {
428 		if (rds_ibdev->vector_load[i] < min) {
429 			index = i;
430 			min = rds_ibdev->vector_load[i];
431 		}
432 	}
433 
434 	rds_ibdev->vector_load[index]++;
435 	return index;
436 }
437 
438 static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index)
439 {
440 	rds_ibdev->vector_load[index]--;
441 }
442 
443 static void rds_dma_hdr_free(struct ib_device *dev, struct rds_header *hdr,
444 		dma_addr_t dma_addr, enum dma_data_direction dir)
445 {
446 	ib_dma_unmap_single(dev, dma_addr, sizeof(*hdr), dir);
447 	kfree(hdr);
448 }
449 
450 static struct rds_header *rds_dma_hdr_alloc(struct ib_device *dev,
451 		dma_addr_t *dma_addr, enum dma_data_direction dir)
452 {
453 	struct rds_header *hdr;
454 
455 	hdr = kzalloc_node(sizeof(*hdr), GFP_KERNEL, ibdev_to_node(dev));
456 	if (!hdr)
457 		return NULL;
458 
459 	*dma_addr = ib_dma_map_single(dev, hdr, sizeof(*hdr),
460 				      DMA_BIDIRECTIONAL);
461 	if (ib_dma_mapping_error(dev, *dma_addr)) {
462 		kfree(hdr);
463 		return NULL;
464 	}
465 
466 	return hdr;
467 }
468 
469 /* Free the DMA memory used to store struct rds_header.
470  *
471  * @dev: the RDS IB device
472  * @hdrs: pointer to the array storing DMA memory pointers
473  * @dma_addrs: pointer to the array storing DMA addresses
474  * @num_hdars: number of headers to free.
475  */
476 static void rds_dma_hdrs_free(struct rds_ib_device *dev,
477 		struct rds_header **hdrs, dma_addr_t *dma_addrs, u32 num_hdrs,
478 		enum dma_data_direction dir)
479 {
480 	u32 i;
481 
482 	for (i = 0; i < num_hdrs; i++)
483 		rds_dma_hdr_free(dev->dev, hdrs[i], dma_addrs[i], dir);
484 	kvfree(hdrs);
485 	kvfree(dma_addrs);
486 }
487 
488 
489 /* Allocate DMA coherent memory to be used to store struct rds_header for
490  * sending/receiving packets.  The pointers to the DMA memory and the
491  * associated DMA addresses are stored in two arrays.
492  *
493  * @dev: the RDS IB device
494  * @dma_addrs: pointer to the array for storing DMA addresses
495  * @num_hdrs: number of headers to allocate
496  *
497  * It returns the pointer to the array storing the DMA memory pointers.  On
498  * error, NULL pointer is returned.
499  */
500 static struct rds_header **rds_dma_hdrs_alloc(struct rds_ib_device *dev,
501 		dma_addr_t **dma_addrs, u32 num_hdrs,
502 		enum dma_data_direction dir)
503 {
504 	struct rds_header **hdrs;
505 	dma_addr_t *hdr_daddrs;
506 	u32 i;
507 
508 	hdrs = kvmalloc_node(sizeof(*hdrs) * num_hdrs, GFP_KERNEL,
509 			     ibdev_to_node(dev->dev));
510 	if (!hdrs)
511 		return NULL;
512 
513 	hdr_daddrs = kvmalloc_node(sizeof(*hdr_daddrs) * num_hdrs, GFP_KERNEL,
514 				   ibdev_to_node(dev->dev));
515 	if (!hdr_daddrs) {
516 		kvfree(hdrs);
517 		return NULL;
518 	}
519 
520 	for (i = 0; i < num_hdrs; i++) {
521 		hdrs[i] = rds_dma_hdr_alloc(dev->dev, &hdr_daddrs[i], dir);
522 		if (!hdrs[i]) {
523 			rds_dma_hdrs_free(dev, hdrs, hdr_daddrs, i, dir);
524 			return NULL;
525 		}
526 	}
527 
528 	*dma_addrs = hdr_daddrs;
529 	return hdrs;
530 }
531 
532 /*
533  * This needs to be very careful to not leave IS_ERR pointers around for
534  * cleanup to trip over.
535  */
536 static int rds_ib_setup_qp(struct rds_connection *conn)
537 {
538 	struct rds_ib_connection *ic = conn->c_transport_data;
539 	struct ib_device *dev = ic->i_cm_id->device;
540 	struct ib_qp_init_attr attr;
541 	struct ib_cq_init_attr cq_attr = {};
542 	struct rds_ib_device *rds_ibdev;
543 	unsigned long max_wrs;
544 	int ret, fr_queue_space;
545 
546 	/*
547 	 * It's normal to see a null device if an incoming connection races
548 	 * with device removal, so we don't print a warning.
549 	 */
550 	rds_ibdev = rds_ib_get_client_data(dev);
551 	if (!rds_ibdev)
552 		return -EOPNOTSUPP;
553 
554 	/* The fr_queue_space is currently set to 512, to add extra space on
555 	 * completion queue and send queue. This extra space is used for FRWR
556 	 * registration and invalidation work requests
557 	 */
558 	fr_queue_space = RDS_IB_DEFAULT_FR_WR;
559 
560 	/* add the conn now so that connection establishment has the dev */
561 	rds_ib_add_conn(rds_ibdev, conn);
562 
563 	max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_send_wr + 1 ?
564 		rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_send_wr;
565 	if (ic->i_send_ring.w_nr != max_wrs)
566 		rds_ib_ring_resize(&ic->i_send_ring, max_wrs);
567 
568 	max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_recv_wr + 1 ?
569 		rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_recv_wr;
570 	if (ic->i_recv_ring.w_nr != max_wrs)
571 		rds_ib_ring_resize(&ic->i_recv_ring, max_wrs);
572 
573 	/* Protection domain and memory range */
574 	ic->i_pd = rds_ibdev->pd;
575 
576 	ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev);
577 	cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1;
578 	cq_attr.comp_vector = ic->i_scq_vector;
579 	ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send,
580 				     rds_ib_cq_event_handler, conn,
581 				     &cq_attr);
582 	if (IS_ERR(ic->i_send_cq)) {
583 		ret = PTR_ERR(ic->i_send_cq);
584 		ic->i_send_cq = NULL;
585 		ibdev_put_vector(rds_ibdev, ic->i_scq_vector);
586 		rdsdebug("ib_create_cq send failed: %d\n", ret);
587 		goto rds_ibdev_out;
588 	}
589 
590 	ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev);
591 	cq_attr.cqe = ic->i_recv_ring.w_nr;
592 	cq_attr.comp_vector = ic->i_rcq_vector;
593 	ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv,
594 				     rds_ib_cq_event_handler, conn,
595 				     &cq_attr);
596 	if (IS_ERR(ic->i_recv_cq)) {
597 		ret = PTR_ERR(ic->i_recv_cq);
598 		ic->i_recv_cq = NULL;
599 		ibdev_put_vector(rds_ibdev, ic->i_rcq_vector);
600 		rdsdebug("ib_create_cq recv failed: %d\n", ret);
601 		goto send_cq_out;
602 	}
603 
604 	ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP);
605 	if (ret) {
606 		rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
607 		goto recv_cq_out;
608 	}
609 
610 	ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
611 	if (ret) {
612 		rdsdebug("ib_req_notify_cq recv failed: %d\n", ret);
613 		goto recv_cq_out;
614 	}
615 
616 	/* XXX negotiate max send/recv with remote? */
617 	memset(&attr, 0, sizeof(attr));
618 	attr.event_handler = rds_ib_qp_event_handler;
619 	attr.qp_context = conn;
620 	/* + 1 to allow for the single ack message */
621 	attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1;
622 	attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1;
623 	attr.cap.max_send_sge = rds_ibdev->max_sge;
624 	attr.cap.max_recv_sge = RDS_IB_RECV_SGE;
625 	attr.sq_sig_type = IB_SIGNAL_REQ_WR;
626 	attr.qp_type = IB_QPT_RC;
627 	attr.send_cq = ic->i_send_cq;
628 	attr.recv_cq = ic->i_recv_cq;
629 
630 	/*
631 	 * XXX this can fail if max_*_wr is too large?  Are we supposed
632 	 * to back off until we get a value that the hardware can support?
633 	 */
634 	ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr);
635 	if (ret) {
636 		rdsdebug("rdma_create_qp failed: %d\n", ret);
637 		goto recv_cq_out;
638 	}
639 
640 	ic->i_send_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_send_hdrs_dma,
641 					     ic->i_send_ring.w_nr,
642 					     DMA_TO_DEVICE);
643 	if (!ic->i_send_hdrs) {
644 		ret = -ENOMEM;
645 		rdsdebug("DMA send hdrs alloc failed\n");
646 		goto qp_out;
647 	}
648 
649 	ic->i_recv_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_recv_hdrs_dma,
650 					     ic->i_recv_ring.w_nr,
651 					     DMA_FROM_DEVICE);
652 	if (!ic->i_recv_hdrs) {
653 		ret = -ENOMEM;
654 		rdsdebug("DMA recv hdrs alloc failed\n");
655 		goto send_hdrs_dma_out;
656 	}
657 
658 	ic->i_ack = rds_dma_hdr_alloc(rds_ibdev->dev, &ic->i_ack_dma,
659 				      DMA_TO_DEVICE);
660 	if (!ic->i_ack) {
661 		ret = -ENOMEM;
662 		rdsdebug("DMA ack header alloc failed\n");
663 		goto recv_hdrs_dma_out;
664 	}
665 
666 	ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work),
667 					      ic->i_send_ring.w_nr),
668 				   ibdev_to_node(dev));
669 	if (!ic->i_sends) {
670 		ret = -ENOMEM;
671 		rdsdebug("send allocation failed\n");
672 		goto ack_dma_out;
673 	}
674 
675 	ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work),
676 					      ic->i_recv_ring.w_nr),
677 				   ibdev_to_node(dev));
678 	if (!ic->i_recvs) {
679 		ret = -ENOMEM;
680 		rdsdebug("recv allocation failed\n");
681 		goto sends_out;
682 	}
683 
684 	rds_ib_recv_init_ack(ic);
685 
686 	rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd,
687 		 ic->i_send_cq, ic->i_recv_cq);
688 
689 	goto out;
690 
691 sends_out:
692 	vfree(ic->i_sends);
693 
694 ack_dma_out:
695 	rds_dma_hdr_free(rds_ibdev->dev, ic->i_ack, ic->i_ack_dma,
696 			 DMA_TO_DEVICE);
697 	ic->i_ack = NULL;
698 
699 recv_hdrs_dma_out:
700 	rds_dma_hdrs_free(rds_ibdev, ic->i_recv_hdrs, ic->i_recv_hdrs_dma,
701 			  ic->i_recv_ring.w_nr, DMA_FROM_DEVICE);
702 	ic->i_recv_hdrs = NULL;
703 	ic->i_recv_hdrs_dma = NULL;
704 
705 send_hdrs_dma_out:
706 	rds_dma_hdrs_free(rds_ibdev, ic->i_send_hdrs, ic->i_send_hdrs_dma,
707 			  ic->i_send_ring.w_nr, DMA_TO_DEVICE);
708 	ic->i_send_hdrs = NULL;
709 	ic->i_send_hdrs_dma = NULL;
710 
711 qp_out:
712 	rdma_destroy_qp(ic->i_cm_id);
713 recv_cq_out:
714 	ib_destroy_cq(ic->i_recv_cq);
715 	ic->i_recv_cq = NULL;
716 send_cq_out:
717 	ib_destroy_cq(ic->i_send_cq);
718 	ic->i_send_cq = NULL;
719 rds_ibdev_out:
720 	rds_ib_remove_conn(rds_ibdev, conn);
721 out:
722 	rds_ib_dev_put(rds_ibdev);
723 
724 	return ret;
725 }
726 
727 static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6)
728 {
729 	const union rds_ib_conn_priv *dp = event->param.conn.private_data;
730 	u8 data_len, major, minor;
731 	u32 version = 0;
732 	__be16 mask;
733 	u16 common;
734 
735 	/*
736 	 * rdma_cm private data is odd - when there is any private data in the
737 	 * request, we will be given a pretty large buffer without telling us the
738 	 * original size. The only way to tell the difference is by looking at
739 	 * the contents, which are initialized to zero.
740 	 * If the protocol version fields aren't set, this is a connection attempt
741 	 * from an older version. This could be 3.0 or 2.0 - we can't tell.
742 	 * We really should have changed this for OFED 1.3 :-(
743 	 */
744 
745 	/* Be paranoid. RDS always has privdata */
746 	if (!event->param.conn.private_data_len) {
747 		printk(KERN_NOTICE "RDS incoming connection has no private data, "
748 			"rejecting\n");
749 		return 0;
750 	}
751 
752 	if (isv6) {
753 		data_len = sizeof(struct rds6_ib_connect_private);
754 		major = dp->ricp_v6.dp_protocol_major;
755 		minor = dp->ricp_v6.dp_protocol_minor;
756 		mask = dp->ricp_v6.dp_protocol_minor_mask;
757 	} else {
758 		data_len = sizeof(struct rds_ib_connect_private);
759 		major = dp->ricp_v4.dp_protocol_major;
760 		minor = dp->ricp_v4.dp_protocol_minor;
761 		mask = dp->ricp_v4.dp_protocol_minor_mask;
762 	}
763 
764 	/* Even if len is crap *now* I still want to check it. -ASG */
765 	if (event->param.conn.private_data_len < data_len || major == 0)
766 		return RDS_PROTOCOL_4_0;
767 
768 	common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS;
769 	if (major == 4 && common) {
770 		version = RDS_PROTOCOL_4_0;
771 		while ((common >>= 1) != 0)
772 			version++;
773 	} else if (RDS_PROTOCOL_COMPAT_VERSION ==
774 		   RDS_PROTOCOL(major, minor)) {
775 		version = RDS_PROTOCOL_COMPAT_VERSION;
776 	} else {
777 		if (isv6)
778 			printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n",
779 					   &dp->ricp_v6.dp_saddr, major, minor);
780 		else
781 			printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n",
782 					   &dp->ricp_v4.dp_saddr, major, minor);
783 	}
784 	return version;
785 }
786 
787 #if IS_ENABLED(CONFIG_IPV6)
788 /* Given an IPv6 address, find the net_device which hosts that address and
789  * return its index.  This is used by the rds_ib_cm_handle_connect() code to
790  * find the interface index of where an incoming request comes from when
791  * the request is using a link local address.
792  *
793  * Note one problem in this search.  It is possible that two interfaces have
794  * the same link local address.  Unfortunately, this cannot be solved unless
795  * the underlying layer gives us the interface which an incoming RDMA connect
796  * request comes from.
797  */
798 static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr)
799 {
800 	struct net_device *dev;
801 	int idx = 0;
802 
803 	rcu_read_lock();
804 	for_each_netdev_rcu(net, dev) {
805 		if (ipv6_chk_addr(net, addr, dev, 1)) {
806 			idx = dev->ifindex;
807 			break;
808 		}
809 	}
810 	rcu_read_unlock();
811 
812 	return idx;
813 }
814 #endif
815 
816 int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id,
817 			     struct rdma_cm_event *event, bool isv6)
818 {
819 	__be64 lguid = cm_id->route.path_rec->sgid.global.interface_id;
820 	__be64 fguid = cm_id->route.path_rec->dgid.global.interface_id;
821 	const struct rds_ib_conn_priv_cmn *dp_cmn;
822 	struct rds_connection *conn = NULL;
823 	struct rds_ib_connection *ic = NULL;
824 	struct rdma_conn_param conn_param;
825 	const union rds_ib_conn_priv *dp;
826 	union rds_ib_conn_priv dp_rep;
827 	struct in6_addr s_mapped_addr;
828 	struct in6_addr d_mapped_addr;
829 	const struct in6_addr *saddr6;
830 	const struct in6_addr *daddr6;
831 	int destroy = 1;
832 	u32 ifindex = 0;
833 	u32 version;
834 	int err = 1;
835 
836 	/* Check whether the remote protocol version matches ours. */
837 	version = rds_ib_protocol_compatible(event, isv6);
838 	if (!version) {
839 		err = RDS_RDMA_REJ_INCOMPAT;
840 		goto out;
841 	}
842 
843 	dp = event->param.conn.private_data;
844 	if (isv6) {
845 #if IS_ENABLED(CONFIG_IPV6)
846 		dp_cmn = &dp->ricp_v6.dp_cmn;
847 		saddr6 = &dp->ricp_v6.dp_saddr;
848 		daddr6 = &dp->ricp_v6.dp_daddr;
849 		/* If either address is link local, need to find the
850 		 * interface index in order to create a proper RDS
851 		 * connection.
852 		 */
853 		if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) {
854 			/* Using init_net for now ..  */
855 			ifindex = __rds_find_ifindex(&init_net, daddr6);
856 			/* No index found...  Need to bail out. */
857 			if (ifindex == 0) {
858 				err = -EOPNOTSUPP;
859 				goto out;
860 			}
861 		} else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) {
862 			/* Use our address to find the correct index. */
863 			ifindex = __rds_find_ifindex(&init_net, daddr6);
864 			/* No index found...  Need to bail out. */
865 			if (ifindex == 0) {
866 				err = -EOPNOTSUPP;
867 				goto out;
868 			}
869 		}
870 #else
871 		err = -EOPNOTSUPP;
872 		goto out;
873 #endif
874 	} else {
875 		dp_cmn = &dp->ricp_v4.dp_cmn;
876 		ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr);
877 		ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr);
878 		saddr6 = &s_mapped_addr;
879 		daddr6 = &d_mapped_addr;
880 	}
881 
882 	rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n",
883 		 saddr6, daddr6, RDS_PROTOCOL_MAJOR(version),
884 		 RDS_PROTOCOL_MINOR(version),
885 		 (unsigned long long)be64_to_cpu(lguid),
886 		 (unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss);
887 
888 	/* RDS/IB is not currently netns aware, thus init_net */
889 	conn = rds_conn_create(&init_net, daddr6, saddr6,
890 			       &rds_ib_transport, dp_cmn->ricpc_dp_toss,
891 			       GFP_KERNEL, ifindex);
892 	if (IS_ERR(conn)) {
893 		rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn));
894 		conn = NULL;
895 		goto out;
896 	}
897 
898 	/*
899 	 * The connection request may occur while the
900 	 * previous connection exist, e.g. in case of failover.
901 	 * But as connections may be initiated simultaneously
902 	 * by both hosts, we have a random backoff mechanism -
903 	 * see the comment above rds_queue_reconnect()
904 	 */
905 	mutex_lock(&conn->c_cm_lock);
906 	if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) {
907 		if (rds_conn_state(conn) == RDS_CONN_UP) {
908 			rdsdebug("incoming connect while connecting\n");
909 			rds_conn_drop(conn);
910 			rds_ib_stats_inc(s_ib_listen_closed_stale);
911 		} else
912 		if (rds_conn_state(conn) == RDS_CONN_CONNECTING) {
913 			/* Wait and see - our connect may still be succeeding */
914 			rds_ib_stats_inc(s_ib_connect_raced);
915 		}
916 		goto out;
917 	}
918 
919 	ic = conn->c_transport_data;
920 
921 	rds_ib_set_protocol(conn, version);
922 	rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit));
923 
924 	/* If the peer gave us the last packet it saw, process this as if
925 	 * we had received a regular ACK. */
926 	if (dp_cmn->ricpc_ack_seq)
927 		rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq),
928 				    NULL);
929 
930 	BUG_ON(cm_id->context);
931 	BUG_ON(ic->i_cm_id);
932 
933 	ic->i_cm_id = cm_id;
934 	cm_id->context = conn;
935 
936 	/* We got halfway through setting up the ib_connection, if we
937 	 * fail now, we have to take the long route out of this mess. */
938 	destroy = 0;
939 
940 	err = rds_ib_setup_qp(conn);
941 	if (err) {
942 		rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err);
943 		goto out;
944 	}
945 
946 	rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version,
947 				  event->param.conn.responder_resources,
948 				  event->param.conn.initiator_depth, isv6);
949 
950 	/* rdma_accept() calls rdma_reject() internally if it fails */
951 	if (rdma_accept(cm_id, &conn_param))
952 		rds_ib_conn_error(conn, "rdma_accept failed\n");
953 
954 out:
955 	if (conn)
956 		mutex_unlock(&conn->c_cm_lock);
957 	if (err)
958 		rdma_reject(cm_id, &err, sizeof(int),
959 			    IB_CM_REJ_CONSUMER_DEFINED);
960 	return destroy;
961 }
962 
963 
964 int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6)
965 {
966 	struct rds_connection *conn = cm_id->context;
967 	struct rds_ib_connection *ic = conn->c_transport_data;
968 	struct rdma_conn_param conn_param;
969 	union rds_ib_conn_priv dp;
970 	int ret;
971 
972 	/* If the peer doesn't do protocol negotiation, we must
973 	 * default to RDSv3.0 */
974 	rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1);
975 	ic->i_flowctl = rds_ib_sysctl_flow_control;	/* advertise flow control */
976 
977 	ret = rds_ib_setup_qp(conn);
978 	if (ret) {
979 		rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret);
980 		goto out;
981 	}
982 
983 	rds_ib_cm_fill_conn_param(conn, &conn_param, &dp,
984 				  conn->c_proposed_version,
985 				  UINT_MAX, UINT_MAX, isv6);
986 	ret = rdma_connect_locked(cm_id, &conn_param);
987 	if (ret)
988 		rds_ib_conn_error(conn, "rdma_connect_locked failed (%d)\n",
989 				  ret);
990 
991 out:
992 	/* Beware - returning non-zero tells the rdma_cm to destroy
993 	 * the cm_id. We should certainly not do it as long as we still
994 	 * "own" the cm_id. */
995 	if (ret) {
996 		if (ic->i_cm_id == cm_id)
997 			ret = 0;
998 	}
999 	ic->i_active_side = true;
1000 	return ret;
1001 }
1002 
1003 int rds_ib_conn_path_connect(struct rds_conn_path *cp)
1004 {
1005 	struct rds_connection *conn = cp->cp_conn;
1006 	struct sockaddr_storage src, dest;
1007 	rdma_cm_event_handler handler;
1008 	struct rds_ib_connection *ic;
1009 	int ret;
1010 
1011 	ic = conn->c_transport_data;
1012 
1013 	/* XXX I wonder what affect the port space has */
1014 	/* delegate cm event handler to rdma_transport */
1015 #if IS_ENABLED(CONFIG_IPV6)
1016 	if (conn->c_isv6)
1017 		handler = rds6_rdma_cm_event_handler;
1018 	else
1019 #endif
1020 		handler = rds_rdma_cm_event_handler;
1021 	ic->i_cm_id = rdma_create_id(&init_net, handler, conn,
1022 				     RDMA_PS_TCP, IB_QPT_RC);
1023 	if (IS_ERR(ic->i_cm_id)) {
1024 		ret = PTR_ERR(ic->i_cm_id);
1025 		ic->i_cm_id = NULL;
1026 		rdsdebug("rdma_create_id() failed: %d\n", ret);
1027 		goto out;
1028 	}
1029 
1030 	rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn);
1031 
1032 	if (ipv6_addr_v4mapped(&conn->c_faddr)) {
1033 		struct sockaddr_in *sin;
1034 
1035 		sin = (struct sockaddr_in *)&src;
1036 		sin->sin_family = AF_INET;
1037 		sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3];
1038 		sin->sin_port = 0;
1039 
1040 		sin = (struct sockaddr_in *)&dest;
1041 		sin->sin_family = AF_INET;
1042 		sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3];
1043 		sin->sin_port = htons(RDS_PORT);
1044 	} else {
1045 		struct sockaddr_in6 *sin6;
1046 
1047 		sin6 = (struct sockaddr_in6 *)&src;
1048 		sin6->sin6_family = AF_INET6;
1049 		sin6->sin6_addr = conn->c_laddr;
1050 		sin6->sin6_port = 0;
1051 		sin6->sin6_scope_id = conn->c_dev_if;
1052 
1053 		sin6 = (struct sockaddr_in6 *)&dest;
1054 		sin6->sin6_family = AF_INET6;
1055 		sin6->sin6_addr = conn->c_faddr;
1056 		sin6->sin6_port = htons(RDS_CM_PORT);
1057 		sin6->sin6_scope_id = conn->c_dev_if;
1058 	}
1059 
1060 	ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src,
1061 				(struct sockaddr *)&dest,
1062 				RDS_RDMA_RESOLVE_TIMEOUT_MS);
1063 	if (ret) {
1064 		rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id,
1065 			 ret);
1066 		rdma_destroy_id(ic->i_cm_id);
1067 		ic->i_cm_id = NULL;
1068 	}
1069 
1070 out:
1071 	return ret;
1072 }
1073 
1074 /*
1075  * This is so careful about only cleaning up resources that were built up
1076  * so that it can be called at any point during startup.  In fact it
1077  * can be called multiple times for a given connection.
1078  */
1079 void rds_ib_conn_path_shutdown(struct rds_conn_path *cp)
1080 {
1081 	struct rds_connection *conn = cp->cp_conn;
1082 	struct rds_ib_connection *ic = conn->c_transport_data;
1083 	int err = 0;
1084 
1085 	rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id,
1086 		 ic->i_pd, ic->i_send_cq, ic->i_recv_cq,
1087 		 ic->i_cm_id ? ic->i_cm_id->qp : NULL);
1088 
1089 	if (ic->i_cm_id) {
1090 		rdsdebug("disconnecting cm %p\n", ic->i_cm_id);
1091 		err = rdma_disconnect(ic->i_cm_id);
1092 		if (err) {
1093 			/* Actually this may happen quite frequently, when
1094 			 * an outgoing connect raced with an incoming connect.
1095 			 */
1096 			rdsdebug("failed to disconnect, cm: %p err %d\n",
1097 				ic->i_cm_id, err);
1098 		}
1099 
1100 		/* kick off "flush_worker" for all pools in order to reap
1101 		 * all FRMR registrations that are still marked "FRMR_IS_INUSE"
1102 		 */
1103 		rds_ib_flush_mrs();
1104 
1105 		/*
1106 		 * We want to wait for tx and rx completion to finish
1107 		 * before we tear down the connection, but we have to be
1108 		 * careful not to get stuck waiting on a send ring that
1109 		 * only has unsignaled sends in it.  We've shutdown new
1110 		 * sends before getting here so by waiting for signaled
1111 		 * sends to complete we're ensured that there will be no
1112 		 * more tx processing.
1113 		 */
1114 		wait_event(rds_ib_ring_empty_wait,
1115 			   rds_ib_ring_empty(&ic->i_recv_ring) &&
1116 			   (atomic_read(&ic->i_signaled_sends) == 0) &&
1117 			   (atomic_read(&ic->i_fastreg_inuse_count) == 0) &&
1118 			   (atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR));
1119 		tasklet_kill(&ic->i_send_tasklet);
1120 		tasklet_kill(&ic->i_recv_tasklet);
1121 
1122 		atomic_set(&ic->i_cq_quiesce, 1);
1123 
1124 		/* first destroy the ib state that generates callbacks */
1125 		if (ic->i_cm_id->qp)
1126 			rdma_destroy_qp(ic->i_cm_id);
1127 		if (ic->i_send_cq) {
1128 			if (ic->rds_ibdev)
1129 				ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector);
1130 			ib_destroy_cq(ic->i_send_cq);
1131 		}
1132 
1133 		if (ic->i_recv_cq) {
1134 			if (ic->rds_ibdev)
1135 				ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector);
1136 			ib_destroy_cq(ic->i_recv_cq);
1137 		}
1138 
1139 		if (ic->rds_ibdev) {
1140 			/* then free the resources that ib callbacks use */
1141 			if (ic->i_send_hdrs) {
1142 				rds_dma_hdrs_free(ic->rds_ibdev,
1143 						  ic->i_send_hdrs,
1144 						  ic->i_send_hdrs_dma,
1145 						  ic->i_send_ring.w_nr,
1146 						  DMA_TO_DEVICE);
1147 				ic->i_send_hdrs = NULL;
1148 				ic->i_send_hdrs_dma = NULL;
1149 			}
1150 
1151 			if (ic->i_recv_hdrs) {
1152 				rds_dma_hdrs_free(ic->rds_ibdev,
1153 						  ic->i_recv_hdrs,
1154 						  ic->i_recv_hdrs_dma,
1155 						  ic->i_recv_ring.w_nr,
1156 						  DMA_FROM_DEVICE);
1157 				ic->i_recv_hdrs = NULL;
1158 				ic->i_recv_hdrs_dma = NULL;
1159 			}
1160 
1161 			if (ic->i_ack) {
1162 				rds_dma_hdr_free(ic->rds_ibdev->dev, ic->i_ack,
1163 						 ic->i_ack_dma, DMA_TO_DEVICE);
1164 				ic->i_ack = NULL;
1165 			}
1166 		} else {
1167 			WARN_ON(ic->i_send_hdrs);
1168 			WARN_ON(ic->i_send_hdrs_dma);
1169 			WARN_ON(ic->i_recv_hdrs);
1170 			WARN_ON(ic->i_recv_hdrs_dma);
1171 			WARN_ON(ic->i_ack);
1172 		}
1173 
1174 		if (ic->i_sends)
1175 			rds_ib_send_clear_ring(ic);
1176 		if (ic->i_recvs)
1177 			rds_ib_recv_clear_ring(ic);
1178 
1179 		rdma_destroy_id(ic->i_cm_id);
1180 
1181 		/*
1182 		 * Move connection back to the nodev list.
1183 		 */
1184 		if (ic->rds_ibdev)
1185 			rds_ib_remove_conn(ic->rds_ibdev, conn);
1186 
1187 		ic->i_cm_id = NULL;
1188 		ic->i_pd = NULL;
1189 		ic->i_send_cq = NULL;
1190 		ic->i_recv_cq = NULL;
1191 	}
1192 	BUG_ON(ic->rds_ibdev);
1193 
1194 	/* Clear pending transmit */
1195 	if (ic->i_data_op) {
1196 		struct rds_message *rm;
1197 
1198 		rm = container_of(ic->i_data_op, struct rds_message, data);
1199 		rds_message_put(rm);
1200 		ic->i_data_op = NULL;
1201 	}
1202 
1203 	/* Clear the ACK state */
1204 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
1205 #ifdef KERNEL_HAS_ATOMIC64
1206 	atomic64_set(&ic->i_ack_next, 0);
1207 #else
1208 	ic->i_ack_next = 0;
1209 #endif
1210 	ic->i_ack_recv = 0;
1211 
1212 	/* Clear flow control state */
1213 	ic->i_flowctl = 0;
1214 	atomic_set(&ic->i_credits, 0);
1215 
1216 	/* Re-init rings, but retain sizes. */
1217 	rds_ib_ring_init(&ic->i_send_ring, ic->i_send_ring.w_nr);
1218 	rds_ib_ring_init(&ic->i_recv_ring, ic->i_recv_ring.w_nr);
1219 
1220 	if (ic->i_ibinc) {
1221 		rds_inc_put(&ic->i_ibinc->ii_inc);
1222 		ic->i_ibinc = NULL;
1223 	}
1224 
1225 	vfree(ic->i_sends);
1226 	ic->i_sends = NULL;
1227 	vfree(ic->i_recvs);
1228 	ic->i_recvs = NULL;
1229 	ic->i_active_side = false;
1230 }
1231 
1232 int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp)
1233 {
1234 	struct rds_ib_connection *ic;
1235 	unsigned long flags;
1236 	int ret;
1237 
1238 	/* XXX too lazy? */
1239 	ic = kzalloc(sizeof(struct rds_ib_connection), gfp);
1240 	if (!ic)
1241 		return -ENOMEM;
1242 
1243 	ret = rds_ib_recv_alloc_caches(ic, gfp);
1244 	if (ret) {
1245 		kfree(ic);
1246 		return ret;
1247 	}
1248 
1249 	INIT_LIST_HEAD(&ic->ib_node);
1250 	tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send,
1251 		     (unsigned long)ic);
1252 	tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv,
1253 		     (unsigned long)ic);
1254 	mutex_init(&ic->i_recv_mutex);
1255 #ifndef KERNEL_HAS_ATOMIC64
1256 	spin_lock_init(&ic->i_ack_lock);
1257 #endif
1258 	atomic_set(&ic->i_signaled_sends, 0);
1259 	atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR);
1260 
1261 	/*
1262 	 * rds_ib_conn_shutdown() waits for these to be emptied so they
1263 	 * must be initialized before it can be called.
1264 	 */
1265 	rds_ib_ring_init(&ic->i_send_ring, 0);
1266 	rds_ib_ring_init(&ic->i_recv_ring, 0);
1267 
1268 	ic->conn = conn;
1269 	conn->c_transport_data = ic;
1270 
1271 	spin_lock_irqsave(&ib_nodev_conns_lock, flags);
1272 	list_add_tail(&ic->ib_node, &ib_nodev_conns);
1273 	spin_unlock_irqrestore(&ib_nodev_conns_lock, flags);
1274 
1275 
1276 	rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data);
1277 	return 0;
1278 }
1279 
1280 /*
1281  * Free a connection. Connection must be shut down and not set for reconnect.
1282  */
1283 void rds_ib_conn_free(void *arg)
1284 {
1285 	struct rds_ib_connection *ic = arg;
1286 	spinlock_t	*lock_ptr;
1287 
1288 	rdsdebug("ic %p\n", ic);
1289 
1290 	/*
1291 	 * Conn is either on a dev's list or on the nodev list.
1292 	 * A race with shutdown() or connect() would cause problems
1293 	 * (since rds_ibdev would change) but that should never happen.
1294 	 */
1295 	lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock;
1296 
1297 	spin_lock_irq(lock_ptr);
1298 	list_del(&ic->ib_node);
1299 	spin_unlock_irq(lock_ptr);
1300 
1301 	rds_ib_recv_free_caches(ic);
1302 
1303 	kfree(ic);
1304 }
1305 
1306 
1307 /*
1308  * An error occurred on the connection
1309  */
1310 void
1311 __rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...)
1312 {
1313 	va_list ap;
1314 
1315 	rds_conn_drop(conn);
1316 
1317 	va_start(ap, fmt);
1318 	vprintk(fmt, ap);
1319 	va_end(ap);
1320 }
1321