xref: /openbmc/linux/net/rds/af_rds.c (revision eee2fa6ab3225192d6d894c54a6fb02ac9efdff6)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/ipv6.h>
39 #include <linux/poll.h>
40 #include <net/sock.h>
41 
42 #include "rds.h"
43 
44 /* this is just used for stats gathering :/ */
45 static DEFINE_SPINLOCK(rds_sock_lock);
46 static unsigned long rds_sock_count;
47 static LIST_HEAD(rds_sock_list);
48 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
49 
50 /*
51  * This is called as the final descriptor referencing this socket is closed.
52  * We have to unbind the socket so that another socket can be bound to the
53  * address it was using.
54  *
55  * We have to be careful about racing with the incoming path.  sock_orphan()
56  * sets SOCK_DEAD and we use that as an indicator to the rx path that new
57  * messages shouldn't be queued.
58  */
59 static int rds_release(struct socket *sock)
60 {
61 	struct sock *sk = sock->sk;
62 	struct rds_sock *rs;
63 
64 	if (!sk)
65 		goto out;
66 
67 	rs = rds_sk_to_rs(sk);
68 
69 	sock_orphan(sk);
70 	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
71 	 * that ensures the recv path has completed messing
72 	 * with the socket. */
73 	rds_clear_recv_queue(rs);
74 	rds_cong_remove_socket(rs);
75 
76 	rds_remove_bound(rs);
77 
78 	rds_send_drop_to(rs, NULL);
79 	rds_rdma_drop_keys(rs);
80 	rds_notify_queue_get(rs, NULL);
81 	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
82 
83 	spin_lock_bh(&rds_sock_lock);
84 	list_del_init(&rs->rs_item);
85 	rds_sock_count--;
86 	spin_unlock_bh(&rds_sock_lock);
87 
88 	rds_trans_put(rs->rs_transport);
89 
90 	sock->sk = NULL;
91 	sock_put(sk);
92 out:
93 	return 0;
94 }
95 
96 /*
97  * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
98  * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
99  * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100  * this seems more conservative.
101  * NB - normally, one would use sk_callback_lock for this, but we can
102  * get here from interrupts, whereas the network code grabs sk_callback_lock
103  * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104  */
105 void rds_wake_sk_sleep(struct rds_sock *rs)
106 {
107 	unsigned long flags;
108 
109 	read_lock_irqsave(&rs->rs_recv_lock, flags);
110 	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
111 	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112 }
113 
114 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115 		       int peer)
116 {
117 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118 	struct sockaddr_in6 *sin6;
119 	struct sockaddr_in *sin;
120 	int uaddr_len;
121 
122 	/* racey, don't care */
123 	if (peer) {
124 		if (ipv6_addr_any(&rs->rs_conn_addr))
125 			return -ENOTCONN;
126 
127 		if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128 			sin = (struct sockaddr_in *)uaddr;
129 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130 			sin->sin_family = AF_INET;
131 			sin->sin_port = rs->rs_conn_port;
132 			sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133 			uaddr_len = sizeof(*sin);
134 		} else {
135 			sin6 = (struct sockaddr_in6 *)uaddr;
136 			sin6->sin6_family = AF_INET6;
137 			sin6->sin6_port = rs->rs_conn_port;
138 			sin6->sin6_addr = rs->rs_conn_addr;
139 			sin6->sin6_flowinfo = 0;
140 			/* scope_id is the same as in the bound address. */
141 			sin6->sin6_scope_id = rs->rs_bound_scope_id;
142 			uaddr_len = sizeof(*sin6);
143 		}
144 	} else {
145 		/* If socket is not yet bound, set the return address family
146 		 * to be AF_UNSPEC (value 0) and the address size to be that
147 		 * of an IPv4 address.
148 		 */
149 		if (ipv6_addr_any(&rs->rs_bound_addr)) {
150 			sin = (struct sockaddr_in *)uaddr;
151 			memset(sin, 0, sizeof(*sin));
152 			sin->sin_family = AF_UNSPEC;
153 			return sizeof(*sin);
154 		}
155 		if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
156 			sin = (struct sockaddr_in *)uaddr;
157 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
158 			sin->sin_family = AF_INET;
159 			sin->sin_port = rs->rs_bound_port;
160 			sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
161 			uaddr_len = sizeof(*sin);
162 		} else {
163 			sin6 = (struct sockaddr_in6 *)uaddr;
164 			sin6->sin6_family = AF_INET6;
165 			sin6->sin6_port = rs->rs_bound_port;
166 			sin6->sin6_addr = rs->rs_bound_addr;
167 			sin6->sin6_flowinfo = 0;
168 			sin6->sin6_scope_id = rs->rs_bound_scope_id;
169 			uaddr_len = sizeof(*sin6);
170 		}
171 	}
172 
173 	return uaddr_len;
174 }
175 
176 /*
177  * RDS' poll is without a doubt the least intuitive part of the interface,
178  * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
179  * a network protocol.
180  *
181  * EPOLLIN is asserted if
182  *  -	there is data on the receive queue.
183  *  -	to signal that a previously congested destination may have become
184  *	uncongested
185  *  -	A notification has been queued to the socket (this can be a congestion
186  *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
187  *
188  * EPOLLOUT is asserted if there is room on the send queue. This does not mean
189  * however, that the next sendmsg() call will succeed. If the application tries
190  * to send to a congested destination, the system call may still fail (and
191  * return ENOBUFS).
192  */
193 static __poll_t rds_poll(struct file *file, struct socket *sock,
194 			     poll_table *wait)
195 {
196 	struct sock *sk = sock->sk;
197 	struct rds_sock *rs = rds_sk_to_rs(sk);
198 	__poll_t mask = 0;
199 	unsigned long flags;
200 
201 	poll_wait(file, sk_sleep(sk), wait);
202 
203 	if (rs->rs_seen_congestion)
204 		poll_wait(file, &rds_poll_waitq, wait);
205 
206 	read_lock_irqsave(&rs->rs_recv_lock, flags);
207 	if (!rs->rs_cong_monitor) {
208 		/* When a congestion map was updated, we signal EPOLLIN for
209 		 * "historical" reasons. Applications can also poll for
210 		 * WRBAND instead. */
211 		if (rds_cong_updated_since(&rs->rs_cong_track))
212 			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
213 	} else {
214 		spin_lock(&rs->rs_lock);
215 		if (rs->rs_cong_notify)
216 			mask |= (EPOLLIN | EPOLLRDNORM);
217 		spin_unlock(&rs->rs_lock);
218 	}
219 	if (!list_empty(&rs->rs_recv_queue) ||
220 	    !list_empty(&rs->rs_notify_queue) ||
221 	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
222 		mask |= (EPOLLIN | EPOLLRDNORM);
223 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
224 		mask |= (EPOLLOUT | EPOLLWRNORM);
225 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
226 		mask |= POLLERR;
227 	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
228 
229 	/* clear state any time we wake a seen-congested socket */
230 	if (mask)
231 		rs->rs_seen_congestion = 0;
232 
233 	return mask;
234 }
235 
236 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
237 {
238 	return -ENOIOCTLCMD;
239 }
240 
241 static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
242 			      int len)
243 {
244 	struct sockaddr_in6 sin6;
245 	struct sockaddr_in sin;
246 	int ret = 0;
247 
248 	/* racing with another thread binding seems ok here */
249 	if (ipv6_addr_any(&rs->rs_bound_addr)) {
250 		ret = -ENOTCONN; /* XXX not a great errno */
251 		goto out;
252 	}
253 
254 	if (len < sizeof(struct sockaddr_in)) {
255 		ret = -EINVAL;
256 		goto out;
257 	} else if (len < sizeof(struct sockaddr_in6)) {
258 		/* Assume IPv4 */
259 		if (copy_from_user(&sin, optval, sizeof(struct sockaddr_in))) {
260 			ret = -EFAULT;
261 			goto out;
262 		}
263 		ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
264 		sin6.sin6_port = sin.sin_port;
265 	} else {
266 		if (copy_from_user(&sin6, optval,
267 				   sizeof(struct sockaddr_in6))) {
268 			ret = -EFAULT;
269 			goto out;
270 		}
271 	}
272 
273 	rds_send_drop_to(rs, &sin6);
274 out:
275 	return ret;
276 }
277 
278 static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
279 			       int optlen)
280 {
281 	int value;
282 
283 	if (optlen < sizeof(int))
284 		return -EINVAL;
285 	if (get_user(value, (int __user *) optval))
286 		return -EFAULT;
287 	*optvar = !!value;
288 	return 0;
289 }
290 
291 static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
292 			    int optlen)
293 {
294 	int ret;
295 
296 	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
297 	if (ret == 0) {
298 		if (rs->rs_cong_monitor) {
299 			rds_cong_add_socket(rs);
300 		} else {
301 			rds_cong_remove_socket(rs);
302 			rs->rs_cong_mask = 0;
303 			rs->rs_cong_notify = 0;
304 		}
305 	}
306 	return ret;
307 }
308 
309 static int rds_set_transport(struct rds_sock *rs, char __user *optval,
310 			     int optlen)
311 {
312 	int t_type;
313 
314 	if (rs->rs_transport)
315 		return -EOPNOTSUPP; /* previously attached to transport */
316 
317 	if (optlen != sizeof(int))
318 		return -EINVAL;
319 
320 	if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
321 		return -EFAULT;
322 
323 	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
324 		return -EINVAL;
325 
326 	rs->rs_transport = rds_trans_get(t_type);
327 
328 	return rs->rs_transport ? 0 : -ENOPROTOOPT;
329 }
330 
331 static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
332 				 int optlen)
333 {
334 	int val, valbool;
335 
336 	if (optlen != sizeof(int))
337 		return -EFAULT;
338 
339 	if (get_user(val, (int __user *)optval))
340 		return -EFAULT;
341 
342 	valbool = val ? 1 : 0;
343 
344 	if (valbool)
345 		sock_set_flag(sk, SOCK_RCVTSTAMP);
346 	else
347 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
348 
349 	return 0;
350 }
351 
352 static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
353 				  int optlen)
354 {
355 	struct rds_rx_trace_so trace;
356 	int i;
357 
358 	if (optlen != sizeof(struct rds_rx_trace_so))
359 		return -EFAULT;
360 
361 	if (copy_from_user(&trace, optval, sizeof(trace)))
362 		return -EFAULT;
363 
364 	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
365 		return -EFAULT;
366 
367 	rs->rs_rx_traces = trace.rx_traces;
368 	for (i = 0; i < rs->rs_rx_traces; i++) {
369 		if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
370 			rs->rs_rx_traces = 0;
371 			return -EFAULT;
372 		}
373 		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
374 	}
375 
376 	return 0;
377 }
378 
379 static int rds_setsockopt(struct socket *sock, int level, int optname,
380 			  char __user *optval, unsigned int optlen)
381 {
382 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
383 	int ret;
384 
385 	if (level != SOL_RDS) {
386 		ret = -ENOPROTOOPT;
387 		goto out;
388 	}
389 
390 	switch (optname) {
391 	case RDS_CANCEL_SENT_TO:
392 		ret = rds_cancel_sent_to(rs, optval, optlen);
393 		break;
394 	case RDS_GET_MR:
395 		ret = rds_get_mr(rs, optval, optlen);
396 		break;
397 	case RDS_GET_MR_FOR_DEST:
398 		ret = rds_get_mr_for_dest(rs, optval, optlen);
399 		break;
400 	case RDS_FREE_MR:
401 		ret = rds_free_mr(rs, optval, optlen);
402 		break;
403 	case RDS_RECVERR:
404 		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
405 		break;
406 	case RDS_CONG_MONITOR:
407 		ret = rds_cong_monitor(rs, optval, optlen);
408 		break;
409 	case SO_RDS_TRANSPORT:
410 		lock_sock(sock->sk);
411 		ret = rds_set_transport(rs, optval, optlen);
412 		release_sock(sock->sk);
413 		break;
414 	case SO_TIMESTAMP:
415 		lock_sock(sock->sk);
416 		ret = rds_enable_recvtstamp(sock->sk, optval, optlen);
417 		release_sock(sock->sk);
418 		break;
419 	case SO_RDS_MSG_RXPATH_LATENCY:
420 		ret = rds_recv_track_latency(rs, optval, optlen);
421 		break;
422 	default:
423 		ret = -ENOPROTOOPT;
424 	}
425 out:
426 	return ret;
427 }
428 
429 static int rds_getsockopt(struct socket *sock, int level, int optname,
430 			  char __user *optval, int __user *optlen)
431 {
432 	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
433 	int ret = -ENOPROTOOPT, len;
434 	int trans;
435 
436 	if (level != SOL_RDS)
437 		goto out;
438 
439 	if (get_user(len, optlen)) {
440 		ret = -EFAULT;
441 		goto out;
442 	}
443 
444 	switch (optname) {
445 	case RDS_INFO_FIRST ... RDS_INFO_LAST:
446 		ret = rds_info_getsockopt(sock, optname, optval,
447 					  optlen);
448 		break;
449 
450 	case RDS_RECVERR:
451 		if (len < sizeof(int))
452 			ret = -EINVAL;
453 		else
454 		if (put_user(rs->rs_recverr, (int __user *) optval) ||
455 		    put_user(sizeof(int), optlen))
456 			ret = -EFAULT;
457 		else
458 			ret = 0;
459 		break;
460 	case SO_RDS_TRANSPORT:
461 		if (len < sizeof(int)) {
462 			ret = -EINVAL;
463 			break;
464 		}
465 		trans = (rs->rs_transport ? rs->rs_transport->t_type :
466 			 RDS_TRANS_NONE); /* unbound */
467 		if (put_user(trans, (int __user *)optval) ||
468 		    put_user(sizeof(int), optlen))
469 			ret = -EFAULT;
470 		else
471 			ret = 0;
472 		break;
473 	default:
474 		break;
475 	}
476 
477 out:
478 	return ret;
479 
480 }
481 
482 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
483 		       int addr_len, int flags)
484 {
485 	struct sock *sk = sock->sk;
486 	struct sockaddr_in *sin;
487 	struct rds_sock *rs = rds_sk_to_rs(sk);
488 	int ret = 0;
489 
490 	lock_sock(sk);
491 
492 	switch (addr_len) {
493 	case sizeof(struct sockaddr_in):
494 		sin = (struct sockaddr_in *)uaddr;
495 		if (sin->sin_family != AF_INET) {
496 			ret = -EAFNOSUPPORT;
497 			break;
498 		}
499 		if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
500 			ret = -EDESTADDRREQ;
501 			break;
502 		}
503 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) ||
504 		    sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
505 			ret = -EINVAL;
506 			break;
507 		}
508 		ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
509 		rs->rs_conn_port = sin->sin_port;
510 		break;
511 
512 	case sizeof(struct sockaddr_in6):
513 		ret = -EPROTONOSUPPORT;
514 		break;
515 
516 	default:
517 		ret = -EINVAL;
518 		break;
519 	}
520 
521 	release_sock(sk);
522 	return ret;
523 }
524 
525 static struct proto rds_proto = {
526 	.name	  = "RDS",
527 	.owner	  = THIS_MODULE,
528 	.obj_size = sizeof(struct rds_sock),
529 };
530 
531 static const struct proto_ops rds_proto_ops = {
532 	.family =	AF_RDS,
533 	.owner =	THIS_MODULE,
534 	.release =	rds_release,
535 	.bind =		rds_bind,
536 	.connect =	rds_connect,
537 	.socketpair =	sock_no_socketpair,
538 	.accept =	sock_no_accept,
539 	.getname =	rds_getname,
540 	.poll =		rds_poll,
541 	.ioctl =	rds_ioctl,
542 	.listen =	sock_no_listen,
543 	.shutdown =	sock_no_shutdown,
544 	.setsockopt =	rds_setsockopt,
545 	.getsockopt =	rds_getsockopt,
546 	.sendmsg =	rds_sendmsg,
547 	.recvmsg =	rds_recvmsg,
548 	.mmap =		sock_no_mmap,
549 	.sendpage =	sock_no_sendpage,
550 };
551 
552 static void rds_sock_destruct(struct sock *sk)
553 {
554 	struct rds_sock *rs = rds_sk_to_rs(sk);
555 
556 	WARN_ON((&rs->rs_item != rs->rs_item.next ||
557 		 &rs->rs_item != rs->rs_item.prev));
558 }
559 
560 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
561 {
562 	struct rds_sock *rs;
563 
564 	sock_init_data(sock, sk);
565 	sock->ops		= &rds_proto_ops;
566 	sk->sk_protocol		= protocol;
567 	sk->sk_destruct		= rds_sock_destruct;
568 
569 	rs = rds_sk_to_rs(sk);
570 	spin_lock_init(&rs->rs_lock);
571 	rwlock_init(&rs->rs_recv_lock);
572 	INIT_LIST_HEAD(&rs->rs_send_queue);
573 	INIT_LIST_HEAD(&rs->rs_recv_queue);
574 	INIT_LIST_HEAD(&rs->rs_notify_queue);
575 	INIT_LIST_HEAD(&rs->rs_cong_list);
576 	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
577 	spin_lock_init(&rs->rs_rdma_lock);
578 	rs->rs_rdma_keys = RB_ROOT;
579 	rs->rs_rx_traces = 0;
580 
581 	spin_lock_bh(&rds_sock_lock);
582 	list_add_tail(&rs->rs_item, &rds_sock_list);
583 	rds_sock_count++;
584 	spin_unlock_bh(&rds_sock_lock);
585 
586 	return 0;
587 }
588 
589 static int rds_create(struct net *net, struct socket *sock, int protocol,
590 		      int kern)
591 {
592 	struct sock *sk;
593 
594 	if (sock->type != SOCK_SEQPACKET || protocol)
595 		return -ESOCKTNOSUPPORT;
596 
597 	sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
598 	if (!sk)
599 		return -ENOMEM;
600 
601 	return __rds_create(sock, sk, protocol);
602 }
603 
604 void rds_sock_addref(struct rds_sock *rs)
605 {
606 	sock_hold(rds_rs_to_sk(rs));
607 }
608 
609 void rds_sock_put(struct rds_sock *rs)
610 {
611 	sock_put(rds_rs_to_sk(rs));
612 }
613 
614 static const struct net_proto_family rds_family_ops = {
615 	.family =	AF_RDS,
616 	.create =	rds_create,
617 	.owner	=	THIS_MODULE,
618 };
619 
620 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
621 			      struct rds_info_iterator *iter,
622 			      struct rds_info_lengths *lens)
623 {
624 	struct rds_sock *rs;
625 	struct rds_incoming *inc;
626 	unsigned int total = 0;
627 
628 	len /= sizeof(struct rds_info_message);
629 
630 	spin_lock_bh(&rds_sock_lock);
631 
632 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
633 		read_lock(&rs->rs_recv_lock);
634 
635 		/* XXX too lazy to maintain counts.. */
636 		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
637 			total++;
638 			if (total <= len)
639 				rds_inc_info_copy(inc, iter,
640 						  inc->i_saddr.s6_addr32[3],
641 						  rs->rs_bound_addr_v4,
642 						  1);
643 		}
644 
645 		read_unlock(&rs->rs_recv_lock);
646 	}
647 
648 	spin_unlock_bh(&rds_sock_lock);
649 
650 	lens->nr = total;
651 	lens->each = sizeof(struct rds_info_message);
652 }
653 
654 static void rds_sock_info(struct socket *sock, unsigned int len,
655 			  struct rds_info_iterator *iter,
656 			  struct rds_info_lengths *lens)
657 {
658 	struct rds_info_socket sinfo;
659 	struct rds_sock *rs;
660 
661 	len /= sizeof(struct rds_info_socket);
662 
663 	spin_lock_bh(&rds_sock_lock);
664 
665 	if (len < rds_sock_count)
666 		goto out;
667 
668 	list_for_each_entry(rs, &rds_sock_list, rs_item) {
669 		sinfo.sndbuf = rds_sk_sndbuf(rs);
670 		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
671 		sinfo.bound_addr = rs->rs_bound_addr_v4;
672 		sinfo.connected_addr = rs->rs_conn_addr_v4;
673 		sinfo.bound_port = rs->rs_bound_port;
674 		sinfo.connected_port = rs->rs_conn_port;
675 		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
676 
677 		rds_info_copy(iter, &sinfo, sizeof(sinfo));
678 	}
679 
680 out:
681 	lens->nr = rds_sock_count;
682 	lens->each = sizeof(struct rds_info_socket);
683 
684 	spin_unlock_bh(&rds_sock_lock);
685 }
686 
687 static void rds_exit(void)
688 {
689 	sock_unregister(rds_family_ops.family);
690 	proto_unregister(&rds_proto);
691 	rds_conn_exit();
692 	rds_cong_exit();
693 	rds_sysctl_exit();
694 	rds_threads_exit();
695 	rds_stats_exit();
696 	rds_page_exit();
697 	rds_bind_lock_destroy();
698 	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
699 	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
700 }
701 module_exit(rds_exit);
702 
703 u32 rds_gen_num;
704 
705 static int rds_init(void)
706 {
707 	int ret;
708 
709 	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
710 
711 	ret = rds_bind_lock_init();
712 	if (ret)
713 		goto out;
714 
715 	ret = rds_conn_init();
716 	if (ret)
717 		goto out_bind;
718 
719 	ret = rds_threads_init();
720 	if (ret)
721 		goto out_conn;
722 	ret = rds_sysctl_init();
723 	if (ret)
724 		goto out_threads;
725 	ret = rds_stats_init();
726 	if (ret)
727 		goto out_sysctl;
728 	ret = proto_register(&rds_proto, 1);
729 	if (ret)
730 		goto out_stats;
731 	ret = sock_register(&rds_family_ops);
732 	if (ret)
733 		goto out_proto;
734 
735 	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
736 	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
737 
738 	goto out;
739 
740 out_proto:
741 	proto_unregister(&rds_proto);
742 out_stats:
743 	rds_stats_exit();
744 out_sysctl:
745 	rds_sysctl_exit();
746 out_threads:
747 	rds_threads_exit();
748 out_conn:
749 	rds_conn_exit();
750 	rds_cong_exit();
751 	rds_page_exit();
752 out_bind:
753 	rds_bind_lock_destroy();
754 out:
755 	return ret;
756 }
757 module_init(rds_init);
758 
759 #define DRV_VERSION     "4.0"
760 #define DRV_RELDATE     "Feb 12, 2009"
761 
762 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
763 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
764 		   " v" DRV_VERSION " (" DRV_RELDATE ")");
765 MODULE_VERSION(DRV_VERSION);
766 MODULE_LICENSE("Dual BSD/GPL");
767 MODULE_ALIAS_NETPROTO(PF_RDS);
768