1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007-2017 Nicira, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "flow.h" 9 #include "datapath.h" 10 #include <linux/uaccess.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_ether.h> 14 #include <linux/if_vlan.h> 15 #include <net/llc_pdu.h> 16 #include <linux/kernel.h> 17 #include <linux/jhash.h> 18 #include <linux/jiffies.h> 19 #include <linux/llc.h> 20 #include <linux/module.h> 21 #include <linux/in.h> 22 #include <linux/rcupdate.h> 23 #include <linux/if_arp.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/sctp.h> 27 #include <linux/tcp.h> 28 #include <linux/udp.h> 29 #include <linux/icmp.h> 30 #include <linux/icmpv6.h> 31 #include <linux/rculist.h> 32 #include <net/geneve.h> 33 #include <net/ip.h> 34 #include <net/ipv6.h> 35 #include <net/ndisc.h> 36 #include <net/mpls.h> 37 #include <net/vxlan.h> 38 #include <net/tun_proto.h> 39 #include <net/erspan.h> 40 41 #include "flow_netlink.h" 42 43 struct ovs_len_tbl { 44 int len; 45 const struct ovs_len_tbl *next; 46 }; 47 48 #define OVS_ATTR_NESTED -1 49 #define OVS_ATTR_VARIABLE -2 50 51 static bool actions_may_change_flow(const struct nlattr *actions) 52 { 53 struct nlattr *nla; 54 int rem; 55 56 nla_for_each_nested(nla, actions, rem) { 57 u16 action = nla_type(nla); 58 59 switch (action) { 60 case OVS_ACTION_ATTR_OUTPUT: 61 case OVS_ACTION_ATTR_RECIRC: 62 case OVS_ACTION_ATTR_TRUNC: 63 case OVS_ACTION_ATTR_USERSPACE: 64 break; 65 66 case OVS_ACTION_ATTR_CT: 67 case OVS_ACTION_ATTR_CT_CLEAR: 68 case OVS_ACTION_ATTR_HASH: 69 case OVS_ACTION_ATTR_POP_ETH: 70 case OVS_ACTION_ATTR_POP_MPLS: 71 case OVS_ACTION_ATTR_POP_NSH: 72 case OVS_ACTION_ATTR_POP_VLAN: 73 case OVS_ACTION_ATTR_PUSH_ETH: 74 case OVS_ACTION_ATTR_PUSH_MPLS: 75 case OVS_ACTION_ATTR_PUSH_NSH: 76 case OVS_ACTION_ATTR_PUSH_VLAN: 77 case OVS_ACTION_ATTR_SAMPLE: 78 case OVS_ACTION_ATTR_SET: 79 case OVS_ACTION_ATTR_SET_MASKED: 80 case OVS_ACTION_ATTR_METER: 81 case OVS_ACTION_ATTR_CHECK_PKT_LEN: 82 case OVS_ACTION_ATTR_ADD_MPLS: 83 case OVS_ACTION_ATTR_DEC_TTL: 84 default: 85 return true; 86 } 87 } 88 return false; 89 } 90 91 static void update_range(struct sw_flow_match *match, 92 size_t offset, size_t size, bool is_mask) 93 { 94 struct sw_flow_key_range *range; 95 size_t start = rounddown(offset, sizeof(long)); 96 size_t end = roundup(offset + size, sizeof(long)); 97 98 if (!is_mask) 99 range = &match->range; 100 else 101 range = &match->mask->range; 102 103 if (range->start == range->end) { 104 range->start = start; 105 range->end = end; 106 return; 107 } 108 109 if (range->start > start) 110 range->start = start; 111 112 if (range->end < end) 113 range->end = end; 114 } 115 116 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ 117 do { \ 118 update_range(match, offsetof(struct sw_flow_key, field), \ 119 sizeof((match)->key->field), is_mask); \ 120 if (is_mask) \ 121 (match)->mask->key.field = value; \ 122 else \ 123 (match)->key->field = value; \ 124 } while (0) 125 126 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \ 127 do { \ 128 update_range(match, offset, len, is_mask); \ 129 if (is_mask) \ 130 memcpy((u8 *)&(match)->mask->key + offset, value_p, \ 131 len); \ 132 else \ 133 memcpy((u8 *)(match)->key + offset, value_p, len); \ 134 } while (0) 135 136 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ 137 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \ 138 value_p, len, is_mask) 139 140 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \ 141 do { \ 142 update_range(match, offsetof(struct sw_flow_key, field), \ 143 sizeof((match)->key->field), is_mask); \ 144 if (is_mask) \ 145 memset((u8 *)&(match)->mask->key.field, value, \ 146 sizeof((match)->mask->key.field)); \ 147 else \ 148 memset((u8 *)&(match)->key->field, value, \ 149 sizeof((match)->key->field)); \ 150 } while (0) 151 152 static bool match_validate(const struct sw_flow_match *match, 153 u64 key_attrs, u64 mask_attrs, bool log) 154 { 155 u64 key_expected = 0; 156 u64 mask_allowed = key_attrs; /* At most allow all key attributes */ 157 158 /* The following mask attributes allowed only if they 159 * pass the validation tests. */ 160 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) 161 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) 162 | (1 << OVS_KEY_ATTR_IPV6) 163 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) 164 | (1 << OVS_KEY_ATTR_TCP) 165 | (1 << OVS_KEY_ATTR_TCP_FLAGS) 166 | (1 << OVS_KEY_ATTR_UDP) 167 | (1 << OVS_KEY_ATTR_SCTP) 168 | (1 << OVS_KEY_ATTR_ICMP) 169 | (1 << OVS_KEY_ATTR_ICMPV6) 170 | (1 << OVS_KEY_ATTR_ARP) 171 | (1 << OVS_KEY_ATTR_ND) 172 | (1 << OVS_KEY_ATTR_MPLS) 173 | (1 << OVS_KEY_ATTR_NSH)); 174 175 /* Always allowed mask fields. */ 176 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) 177 | (1 << OVS_KEY_ATTR_IN_PORT) 178 | (1 << OVS_KEY_ATTR_ETHERTYPE)); 179 180 /* Check key attributes. */ 181 if (match->key->eth.type == htons(ETH_P_ARP) 182 || match->key->eth.type == htons(ETH_P_RARP)) { 183 key_expected |= 1 << OVS_KEY_ATTR_ARP; 184 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 185 mask_allowed |= 1 << OVS_KEY_ATTR_ARP; 186 } 187 188 if (eth_p_mpls(match->key->eth.type)) { 189 key_expected |= 1 << OVS_KEY_ATTR_MPLS; 190 if (match->mask && (match->mask->key.eth.type == htons(0xffff))) 191 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS; 192 } 193 194 if (match->key->eth.type == htons(ETH_P_IP)) { 195 key_expected |= 1 << OVS_KEY_ATTR_IPV4; 196 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 197 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; 198 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4; 199 } 200 201 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 202 if (match->key->ip.proto == IPPROTO_UDP) { 203 key_expected |= 1 << OVS_KEY_ATTR_UDP; 204 if (match->mask && (match->mask->key.ip.proto == 0xff)) 205 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 206 } 207 208 if (match->key->ip.proto == IPPROTO_SCTP) { 209 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 210 if (match->mask && (match->mask->key.ip.proto == 0xff)) 211 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 212 } 213 214 if (match->key->ip.proto == IPPROTO_TCP) { 215 key_expected |= 1 << OVS_KEY_ATTR_TCP; 216 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 217 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 218 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 220 } 221 } 222 223 if (match->key->ip.proto == IPPROTO_ICMP) { 224 key_expected |= 1 << OVS_KEY_ATTR_ICMP; 225 if (match->mask && (match->mask->key.ip.proto == 0xff)) 226 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; 227 } 228 } 229 } 230 231 if (match->key->eth.type == htons(ETH_P_IPV6)) { 232 key_expected |= 1 << OVS_KEY_ATTR_IPV6; 233 if (match->mask && match->mask->key.eth.type == htons(0xffff)) { 234 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; 235 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6; 236 } 237 238 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { 239 if (match->key->ip.proto == IPPROTO_UDP) { 240 key_expected |= 1 << OVS_KEY_ATTR_UDP; 241 if (match->mask && (match->mask->key.ip.proto == 0xff)) 242 mask_allowed |= 1 << OVS_KEY_ATTR_UDP; 243 } 244 245 if (match->key->ip.proto == IPPROTO_SCTP) { 246 key_expected |= 1 << OVS_KEY_ATTR_SCTP; 247 if (match->mask && (match->mask->key.ip.proto == 0xff)) 248 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; 249 } 250 251 if (match->key->ip.proto == IPPROTO_TCP) { 252 key_expected |= 1 << OVS_KEY_ATTR_TCP; 253 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 254 if (match->mask && (match->mask->key.ip.proto == 0xff)) { 255 mask_allowed |= 1 << OVS_KEY_ATTR_TCP; 256 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS; 257 } 258 } 259 260 if (match->key->ip.proto == IPPROTO_ICMPV6) { 261 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; 262 if (match->mask && (match->mask->key.ip.proto == 0xff)) 263 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; 264 265 if (match->key->tp.src == 266 htons(NDISC_NEIGHBOUR_SOLICITATION) || 267 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 268 key_expected |= 1 << OVS_KEY_ATTR_ND; 269 /* Original direction conntrack tuple 270 * uses the same space as the ND fields 271 * in the key, so both are not allowed 272 * at the same time. 273 */ 274 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 275 if (match->mask && (match->mask->key.tp.src == htons(0xff))) 276 mask_allowed |= 1 << OVS_KEY_ATTR_ND; 277 } 278 } 279 } 280 } 281 282 if (match->key->eth.type == htons(ETH_P_NSH)) { 283 key_expected |= 1 << OVS_KEY_ATTR_NSH; 284 if (match->mask && 285 match->mask->key.eth.type == htons(0xffff)) { 286 mask_allowed |= 1 << OVS_KEY_ATTR_NSH; 287 } 288 } 289 290 if ((key_attrs & key_expected) != key_expected) { 291 /* Key attributes check failed. */ 292 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)", 293 (unsigned long long)key_attrs, 294 (unsigned long long)key_expected); 295 return false; 296 } 297 298 if ((mask_attrs & mask_allowed) != mask_attrs) { 299 /* Mask attributes check failed. */ 300 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)", 301 (unsigned long long)mask_attrs, 302 (unsigned long long)mask_allowed); 303 return false; 304 } 305 306 return true; 307 } 308 309 size_t ovs_tun_key_attr_size(void) 310 { 311 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider 312 * updating this function. 313 */ 314 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */ 315 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */ 316 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */ 317 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */ 318 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */ 319 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */ 320 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */ 321 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */ 322 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */ 323 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and 324 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with 325 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it. 326 */ 327 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */ 328 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */ 329 } 330 331 static size_t ovs_nsh_key_attr_size(void) 332 { 333 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider 334 * updating this function. 335 */ 336 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */ 337 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are 338 * mutually exclusive, so the bigger one can cover 339 * the small one. 340 */ 341 + nla_total_size(NSH_CTX_HDRS_MAX_LEN); 342 } 343 344 size_t ovs_key_attr_size(void) 345 { 346 /* Whenever adding new OVS_KEY_ FIELDS, we should consider 347 * updating this function. 348 */ 349 BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32); 350 351 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */ 352 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */ 353 + ovs_tun_key_attr_size() 354 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */ 355 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */ 356 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */ 357 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */ 358 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */ 359 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */ 360 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */ 361 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */ 362 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */ 363 + nla_total_size(0) /* OVS_KEY_ATTR_NSH */ 364 + ovs_nsh_key_attr_size() 365 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */ 366 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 367 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */ 368 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */ 369 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */ 370 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */ 371 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */ 372 + nla_total_size(28) /* OVS_KEY_ATTR_ND */ 373 + nla_total_size(2); /* OVS_KEY_ATTR_IPV6_EXTHDRS */ 374 } 375 376 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = { 377 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) }, 378 }; 379 380 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { 381 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) }, 382 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) }, 383 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) }, 384 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 }, 385 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 }, 386 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 }, 387 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 }, 388 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) }, 389 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) }, 390 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 }, 391 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE }, 392 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED, 393 .next = ovs_vxlan_ext_key_lens }, 394 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) }, 395 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) }, 396 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE }, 397 [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 }, 398 }; 399 400 static const struct ovs_len_tbl 401 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = { 402 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) }, 403 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) }, 404 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE }, 405 }; 406 407 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ 408 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { 409 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED }, 410 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) }, 411 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) }, 412 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) }, 413 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) }, 414 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) }, 415 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) }, 416 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) }, 417 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) }, 418 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) }, 419 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) }, 420 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) }, 421 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) }, 422 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) }, 423 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) }, 424 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) }, 425 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) }, 426 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) }, 427 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) }, 428 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED, 429 .next = ovs_tunnel_key_lens, }, 430 [OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE }, 431 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) }, 432 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) }, 433 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) }, 434 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) }, 435 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = { 436 .len = sizeof(struct ovs_key_ct_tuple_ipv4) }, 437 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = { 438 .len = sizeof(struct ovs_key_ct_tuple_ipv6) }, 439 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED, 440 .next = ovs_nsh_key_attr_lens, }, 441 [OVS_KEY_ATTR_IPV6_EXTHDRS] = { 442 .len = sizeof(struct ovs_key_ipv6_exthdrs) }, 443 }; 444 445 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len) 446 { 447 return expected_len == attr_len || 448 expected_len == OVS_ATTR_NESTED || 449 expected_len == OVS_ATTR_VARIABLE; 450 } 451 452 static bool is_all_zero(const u8 *fp, size_t size) 453 { 454 int i; 455 456 if (!fp) 457 return false; 458 459 for (i = 0; i < size; i++) 460 if (fp[i]) 461 return false; 462 463 return true; 464 } 465 466 static int __parse_flow_nlattrs(const struct nlattr *attr, 467 const struct nlattr *a[], 468 u64 *attrsp, bool log, bool nz) 469 { 470 const struct nlattr *nla; 471 u64 attrs; 472 int rem; 473 474 attrs = *attrsp; 475 nla_for_each_nested(nla, attr, rem) { 476 u16 type = nla_type(nla); 477 int expected_len; 478 479 if (type > OVS_KEY_ATTR_MAX) { 480 OVS_NLERR(log, "Key type %d is out of range max %d", 481 type, OVS_KEY_ATTR_MAX); 482 return -EINVAL; 483 } 484 485 if (type == OVS_KEY_ATTR_PACKET_TYPE || 486 type == OVS_KEY_ATTR_ND_EXTENSIONS || 487 type == OVS_KEY_ATTR_TUNNEL_INFO) { 488 OVS_NLERR(log, "Key type %d is not supported", type); 489 return -EINVAL; 490 } 491 492 if (attrs & (1ULL << type)) { 493 OVS_NLERR(log, "Duplicate key (type %d).", type); 494 return -EINVAL; 495 } 496 497 expected_len = ovs_key_lens[type].len; 498 if (!check_attr_len(nla_len(nla), expected_len)) { 499 OVS_NLERR(log, "Key %d has unexpected len %d expected %d", 500 type, nla_len(nla), expected_len); 501 return -EINVAL; 502 } 503 504 if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) { 505 attrs |= 1ULL << type; 506 a[type] = nla; 507 } 508 } 509 if (rem) { 510 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 511 return -EINVAL; 512 } 513 514 *attrsp = attrs; 515 return 0; 516 } 517 518 static int parse_flow_mask_nlattrs(const struct nlattr *attr, 519 const struct nlattr *a[], u64 *attrsp, 520 bool log) 521 { 522 return __parse_flow_nlattrs(attr, a, attrsp, log, true); 523 } 524 525 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], 526 u64 *attrsp, bool log) 527 { 528 return __parse_flow_nlattrs(attr, a, attrsp, log, false); 529 } 530 531 static int genev_tun_opt_from_nlattr(const struct nlattr *a, 532 struct sw_flow_match *match, bool is_mask, 533 bool log) 534 { 535 unsigned long opt_key_offset; 536 537 if (nla_len(a) > sizeof(match->key->tun_opts)) { 538 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).", 539 nla_len(a), sizeof(match->key->tun_opts)); 540 return -EINVAL; 541 } 542 543 if (nla_len(a) % 4 != 0) { 544 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.", 545 nla_len(a)); 546 return -EINVAL; 547 } 548 549 /* We need to record the length of the options passed 550 * down, otherwise packets with the same format but 551 * additional options will be silently matched. 552 */ 553 if (!is_mask) { 554 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a), 555 false); 556 } else { 557 /* This is somewhat unusual because it looks at 558 * both the key and mask while parsing the 559 * attributes (and by extension assumes the key 560 * is parsed first). Normally, we would verify 561 * that each is the correct length and that the 562 * attributes line up in the validate function. 563 * However, that is difficult because this is 564 * variable length and we won't have the 565 * information later. 566 */ 567 if (match->key->tun_opts_len != nla_len(a)) { 568 OVS_NLERR(log, "Geneve option len %d != mask len %d", 569 match->key->tun_opts_len, nla_len(a)); 570 return -EINVAL; 571 } 572 573 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 574 } 575 576 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 577 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 578 nla_len(a), is_mask); 579 return 0; 580 } 581 582 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr, 583 struct sw_flow_match *match, bool is_mask, 584 bool log) 585 { 586 struct nlattr *a; 587 int rem; 588 unsigned long opt_key_offset; 589 struct vxlan_metadata opts; 590 591 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts)); 592 593 memset(&opts, 0, sizeof(opts)); 594 nla_for_each_nested(a, attr, rem) { 595 int type = nla_type(a); 596 597 if (type > OVS_VXLAN_EXT_MAX) { 598 OVS_NLERR(log, "VXLAN extension %d out of range max %d", 599 type, OVS_VXLAN_EXT_MAX); 600 return -EINVAL; 601 } 602 603 if (!check_attr_len(nla_len(a), 604 ovs_vxlan_ext_key_lens[type].len)) { 605 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d", 606 type, nla_len(a), 607 ovs_vxlan_ext_key_lens[type].len); 608 return -EINVAL; 609 } 610 611 switch (type) { 612 case OVS_VXLAN_EXT_GBP: 613 opts.gbp = nla_get_u32(a); 614 break; 615 default: 616 OVS_NLERR(log, "Unknown VXLAN extension attribute %d", 617 type); 618 return -EINVAL; 619 } 620 } 621 if (rem) { 622 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.", 623 rem); 624 return -EINVAL; 625 } 626 627 if (!is_mask) 628 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false); 629 else 630 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 631 632 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts)); 633 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts), 634 is_mask); 635 return 0; 636 } 637 638 static int erspan_tun_opt_from_nlattr(const struct nlattr *a, 639 struct sw_flow_match *match, bool is_mask, 640 bool log) 641 { 642 unsigned long opt_key_offset; 643 644 BUILD_BUG_ON(sizeof(struct erspan_metadata) > 645 sizeof(match->key->tun_opts)); 646 647 if (nla_len(a) > sizeof(match->key->tun_opts)) { 648 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).", 649 nla_len(a), sizeof(match->key->tun_opts)); 650 return -EINVAL; 651 } 652 653 if (!is_mask) 654 SW_FLOW_KEY_PUT(match, tun_opts_len, 655 sizeof(struct erspan_metadata), false); 656 else 657 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true); 658 659 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a)); 660 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a), 661 nla_len(a), is_mask); 662 return 0; 663 } 664 665 static int ip_tun_from_nlattr(const struct nlattr *attr, 666 struct sw_flow_match *match, bool is_mask, 667 bool log) 668 { 669 bool ttl = false, ipv4 = false, ipv6 = false; 670 bool info_bridge_mode = false; 671 __be16 tun_flags = 0; 672 int opts_type = 0; 673 struct nlattr *a; 674 int rem; 675 676 nla_for_each_nested(a, attr, rem) { 677 int type = nla_type(a); 678 int err; 679 680 if (type > OVS_TUNNEL_KEY_ATTR_MAX) { 681 OVS_NLERR(log, "Tunnel attr %d out of range max %d", 682 type, OVS_TUNNEL_KEY_ATTR_MAX); 683 return -EINVAL; 684 } 685 686 if (!check_attr_len(nla_len(a), 687 ovs_tunnel_key_lens[type].len)) { 688 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d", 689 type, nla_len(a), ovs_tunnel_key_lens[type].len); 690 return -EINVAL; 691 } 692 693 switch (type) { 694 case OVS_TUNNEL_KEY_ATTR_ID: 695 SW_FLOW_KEY_PUT(match, tun_key.tun_id, 696 nla_get_be64(a), is_mask); 697 tun_flags |= TUNNEL_KEY; 698 break; 699 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: 700 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src, 701 nla_get_in_addr(a), is_mask); 702 ipv4 = true; 703 break; 704 case OVS_TUNNEL_KEY_ATTR_IPV4_DST: 705 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst, 706 nla_get_in_addr(a), is_mask); 707 ipv4 = true; 708 break; 709 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC: 710 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src, 711 nla_get_in6_addr(a), is_mask); 712 ipv6 = true; 713 break; 714 case OVS_TUNNEL_KEY_ATTR_IPV6_DST: 715 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst, 716 nla_get_in6_addr(a), is_mask); 717 ipv6 = true; 718 break; 719 case OVS_TUNNEL_KEY_ATTR_TOS: 720 SW_FLOW_KEY_PUT(match, tun_key.tos, 721 nla_get_u8(a), is_mask); 722 break; 723 case OVS_TUNNEL_KEY_ATTR_TTL: 724 SW_FLOW_KEY_PUT(match, tun_key.ttl, 725 nla_get_u8(a), is_mask); 726 ttl = true; 727 break; 728 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: 729 tun_flags |= TUNNEL_DONT_FRAGMENT; 730 break; 731 case OVS_TUNNEL_KEY_ATTR_CSUM: 732 tun_flags |= TUNNEL_CSUM; 733 break; 734 case OVS_TUNNEL_KEY_ATTR_TP_SRC: 735 SW_FLOW_KEY_PUT(match, tun_key.tp_src, 736 nla_get_be16(a), is_mask); 737 break; 738 case OVS_TUNNEL_KEY_ATTR_TP_DST: 739 SW_FLOW_KEY_PUT(match, tun_key.tp_dst, 740 nla_get_be16(a), is_mask); 741 break; 742 case OVS_TUNNEL_KEY_ATTR_OAM: 743 tun_flags |= TUNNEL_OAM; 744 break; 745 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 746 if (opts_type) { 747 OVS_NLERR(log, "Multiple metadata blocks provided"); 748 return -EINVAL; 749 } 750 751 err = genev_tun_opt_from_nlattr(a, match, is_mask, log); 752 if (err) 753 return err; 754 755 tun_flags |= TUNNEL_GENEVE_OPT; 756 opts_type = type; 757 break; 758 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 759 if (opts_type) { 760 OVS_NLERR(log, "Multiple metadata blocks provided"); 761 return -EINVAL; 762 } 763 764 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log); 765 if (err) 766 return err; 767 768 tun_flags |= TUNNEL_VXLAN_OPT; 769 opts_type = type; 770 break; 771 case OVS_TUNNEL_KEY_ATTR_PAD: 772 break; 773 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: 774 if (opts_type) { 775 OVS_NLERR(log, "Multiple metadata blocks provided"); 776 return -EINVAL; 777 } 778 779 err = erspan_tun_opt_from_nlattr(a, match, is_mask, 780 log); 781 if (err) 782 return err; 783 784 tun_flags |= TUNNEL_ERSPAN_OPT; 785 opts_type = type; 786 break; 787 case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE: 788 info_bridge_mode = true; 789 ipv4 = true; 790 break; 791 default: 792 OVS_NLERR(log, "Unknown IP tunnel attribute %d", 793 type); 794 return -EINVAL; 795 } 796 } 797 798 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); 799 if (is_mask) 800 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true); 801 else 802 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET, 803 false); 804 805 if (rem > 0) { 806 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.", 807 rem); 808 return -EINVAL; 809 } 810 811 if (ipv4 && ipv6) { 812 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes"); 813 return -EINVAL; 814 } 815 816 if (!is_mask) { 817 if (!ipv4 && !ipv6) { 818 OVS_NLERR(log, "IP tunnel dst address not specified"); 819 return -EINVAL; 820 } 821 if (ipv4) { 822 if (info_bridge_mode) { 823 if (match->key->tun_key.u.ipv4.src || 824 match->key->tun_key.u.ipv4.dst || 825 match->key->tun_key.tp_src || 826 match->key->tun_key.tp_dst || 827 match->key->tun_key.ttl || 828 match->key->tun_key.tos || 829 tun_flags & ~TUNNEL_KEY) { 830 OVS_NLERR(log, "IPv4 tun info is not correct"); 831 return -EINVAL; 832 } 833 } else if (!match->key->tun_key.u.ipv4.dst) { 834 OVS_NLERR(log, "IPv4 tunnel dst address is zero"); 835 return -EINVAL; 836 } 837 } 838 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) { 839 OVS_NLERR(log, "IPv6 tunnel dst address is zero"); 840 return -EINVAL; 841 } 842 843 if (!ttl && !info_bridge_mode) { 844 OVS_NLERR(log, "IP tunnel TTL not specified."); 845 return -EINVAL; 846 } 847 } 848 849 return opts_type; 850 } 851 852 static int vxlan_opt_to_nlattr(struct sk_buff *skb, 853 const void *tun_opts, int swkey_tun_opts_len) 854 { 855 const struct vxlan_metadata *opts = tun_opts; 856 struct nlattr *nla; 857 858 nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS); 859 if (!nla) 860 return -EMSGSIZE; 861 862 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0) 863 return -EMSGSIZE; 864 865 nla_nest_end(skb, nla); 866 return 0; 867 } 868 869 static int __ip_tun_to_nlattr(struct sk_buff *skb, 870 const struct ip_tunnel_key *output, 871 const void *tun_opts, int swkey_tun_opts_len, 872 unsigned short tun_proto, u8 mode) 873 { 874 if (output->tun_flags & TUNNEL_KEY && 875 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id, 876 OVS_TUNNEL_KEY_ATTR_PAD)) 877 return -EMSGSIZE; 878 879 if (mode & IP_TUNNEL_INFO_BRIDGE) 880 return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE) 881 ? -EMSGSIZE : 0; 882 883 switch (tun_proto) { 884 case AF_INET: 885 if (output->u.ipv4.src && 886 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, 887 output->u.ipv4.src)) 888 return -EMSGSIZE; 889 if (output->u.ipv4.dst && 890 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, 891 output->u.ipv4.dst)) 892 return -EMSGSIZE; 893 break; 894 case AF_INET6: 895 if (!ipv6_addr_any(&output->u.ipv6.src) && 896 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC, 897 &output->u.ipv6.src)) 898 return -EMSGSIZE; 899 if (!ipv6_addr_any(&output->u.ipv6.dst) && 900 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST, 901 &output->u.ipv6.dst)) 902 return -EMSGSIZE; 903 break; 904 } 905 if (output->tos && 906 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos)) 907 return -EMSGSIZE; 908 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl)) 909 return -EMSGSIZE; 910 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && 911 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) 912 return -EMSGSIZE; 913 if ((output->tun_flags & TUNNEL_CSUM) && 914 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) 915 return -EMSGSIZE; 916 if (output->tp_src && 917 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src)) 918 return -EMSGSIZE; 919 if (output->tp_dst && 920 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst)) 921 return -EMSGSIZE; 922 if ((output->tun_flags & TUNNEL_OAM) && 923 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM)) 924 return -EMSGSIZE; 925 if (swkey_tun_opts_len) { 926 if (output->tun_flags & TUNNEL_GENEVE_OPT && 927 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS, 928 swkey_tun_opts_len, tun_opts)) 929 return -EMSGSIZE; 930 else if (output->tun_flags & TUNNEL_VXLAN_OPT && 931 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len)) 932 return -EMSGSIZE; 933 else if (output->tun_flags & TUNNEL_ERSPAN_OPT && 934 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS, 935 swkey_tun_opts_len, tun_opts)) 936 return -EMSGSIZE; 937 } 938 939 return 0; 940 } 941 942 static int ip_tun_to_nlattr(struct sk_buff *skb, 943 const struct ip_tunnel_key *output, 944 const void *tun_opts, int swkey_tun_opts_len, 945 unsigned short tun_proto, u8 mode) 946 { 947 struct nlattr *nla; 948 int err; 949 950 nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL); 951 if (!nla) 952 return -EMSGSIZE; 953 954 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len, 955 tun_proto, mode); 956 if (err) 957 return err; 958 959 nla_nest_end(skb, nla); 960 return 0; 961 } 962 963 int ovs_nla_put_tunnel_info(struct sk_buff *skb, 964 struct ip_tunnel_info *tun_info) 965 { 966 return __ip_tun_to_nlattr(skb, &tun_info->key, 967 ip_tunnel_info_opts(tun_info), 968 tun_info->options_len, 969 ip_tunnel_info_af(tun_info), tun_info->mode); 970 } 971 972 static int encode_vlan_from_nlattrs(struct sw_flow_match *match, 973 const struct nlattr *a[], 974 bool is_mask, bool inner) 975 { 976 __be16 tci = 0; 977 __be16 tpid = 0; 978 979 if (a[OVS_KEY_ATTR_VLAN]) 980 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 981 982 if (a[OVS_KEY_ATTR_ETHERTYPE]) 983 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 984 985 if (likely(!inner)) { 986 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask); 987 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask); 988 } else { 989 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask); 990 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask); 991 } 992 return 0; 993 } 994 995 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match, 996 u64 key_attrs, bool inner, 997 const struct nlattr **a, bool log) 998 { 999 __be16 tci = 0; 1000 1001 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && 1002 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && 1003 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) { 1004 /* Not a VLAN. */ 1005 return 0; 1006 } 1007 1008 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && 1009 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { 1010 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN"); 1011 return -EINVAL; 1012 } 1013 1014 if (a[OVS_KEY_ATTR_VLAN]) 1015 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1016 1017 if (!(tci & htons(VLAN_CFI_MASK))) { 1018 if (tci) { 1019 OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.", 1020 (inner) ? "C-VLAN" : "VLAN"); 1021 return -EINVAL; 1022 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) { 1023 /* Corner case for truncated VLAN header. */ 1024 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.", 1025 (inner) ? "C-VLAN" : "VLAN"); 1026 return -EINVAL; 1027 } 1028 } 1029 1030 return 1; 1031 } 1032 1033 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match, 1034 u64 key_attrs, bool inner, 1035 const struct nlattr **a, bool log) 1036 { 1037 __be16 tci = 0; 1038 __be16 tpid = 0; 1039 bool encap_valid = !!(match->key->eth.vlan.tci & 1040 htons(VLAN_CFI_MASK)); 1041 bool i_encap_valid = !!(match->key->eth.cvlan.tci & 1042 htons(VLAN_CFI_MASK)); 1043 1044 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) { 1045 /* Not a VLAN. */ 1046 return 0; 1047 } 1048 1049 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) { 1050 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.", 1051 (inner) ? "C-VLAN" : "VLAN"); 1052 return -EINVAL; 1053 } 1054 1055 if (a[OVS_KEY_ATTR_VLAN]) 1056 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); 1057 1058 if (a[OVS_KEY_ATTR_ETHERTYPE]) 1059 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1060 1061 if (tpid != htons(0xffff)) { 1062 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).", 1063 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid)); 1064 return -EINVAL; 1065 } 1066 if (!(tci & htons(VLAN_CFI_MASK))) { 1067 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.", 1068 (inner) ? "C-VLAN" : "VLAN"); 1069 return -EINVAL; 1070 } 1071 1072 return 1; 1073 } 1074 1075 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match, 1076 u64 *key_attrs, bool inner, 1077 const struct nlattr **a, bool is_mask, 1078 bool log) 1079 { 1080 int err; 1081 const struct nlattr *encap; 1082 1083 if (!is_mask) 1084 err = validate_vlan_from_nlattrs(match, *key_attrs, inner, 1085 a, log); 1086 else 1087 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner, 1088 a, log); 1089 if (err <= 0) 1090 return err; 1091 1092 err = encode_vlan_from_nlattrs(match, a, is_mask, inner); 1093 if (err) 1094 return err; 1095 1096 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); 1097 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN); 1098 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1099 1100 encap = a[OVS_KEY_ATTR_ENCAP]; 1101 1102 if (!is_mask) 1103 err = parse_flow_nlattrs(encap, a, key_attrs, log); 1104 else 1105 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log); 1106 1107 return err; 1108 } 1109 1110 static int parse_vlan_from_nlattrs(struct sw_flow_match *match, 1111 u64 *key_attrs, const struct nlattr **a, 1112 bool is_mask, bool log) 1113 { 1114 int err; 1115 bool encap_valid = false; 1116 1117 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a, 1118 is_mask, log); 1119 if (err) 1120 return err; 1121 1122 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK)); 1123 if (encap_valid) { 1124 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a, 1125 is_mask, log); 1126 if (err) 1127 return err; 1128 } 1129 1130 return 0; 1131 } 1132 1133 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match, 1134 u64 *attrs, const struct nlattr **a, 1135 bool is_mask, bool log) 1136 { 1137 __be16 eth_type; 1138 1139 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); 1140 if (is_mask) { 1141 /* Always exact match EtherType. */ 1142 eth_type = htons(0xffff); 1143 } else if (!eth_proto_is_802_3(eth_type)) { 1144 OVS_NLERR(log, "EtherType %x is less than min %x", 1145 ntohs(eth_type), ETH_P_802_3_MIN); 1146 return -EINVAL; 1147 } 1148 1149 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); 1150 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); 1151 return 0; 1152 } 1153 1154 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, 1155 u64 *attrs, const struct nlattr **a, 1156 bool is_mask, bool log) 1157 { 1158 u8 mac_proto = MAC_PROTO_ETHERNET; 1159 1160 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) { 1161 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]); 1162 1163 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask); 1164 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH); 1165 } 1166 1167 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) { 1168 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]); 1169 1170 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask); 1171 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID); 1172 } 1173 1174 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { 1175 SW_FLOW_KEY_PUT(match, phy.priority, 1176 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); 1177 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); 1178 } 1179 1180 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { 1181 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); 1182 1183 if (is_mask) { 1184 in_port = 0xffffffff; /* Always exact match in_port. */ 1185 } else if (in_port >= DP_MAX_PORTS) { 1186 OVS_NLERR(log, "Port %d exceeds max allowable %d", 1187 in_port, DP_MAX_PORTS); 1188 return -EINVAL; 1189 } 1190 1191 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); 1192 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); 1193 } else if (!is_mask) { 1194 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); 1195 } 1196 1197 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { 1198 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); 1199 1200 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); 1201 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); 1202 } 1203 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { 1204 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, 1205 is_mask, log) < 0) 1206 return -EINVAL; 1207 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); 1208 } 1209 1210 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) && 1211 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) { 1212 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]); 1213 1214 if (ct_state & ~CT_SUPPORTED_MASK) { 1215 OVS_NLERR(log, "ct_state flags %08x unsupported", 1216 ct_state); 1217 return -EINVAL; 1218 } 1219 1220 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask); 1221 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE); 1222 } 1223 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) && 1224 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) { 1225 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]); 1226 1227 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask); 1228 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE); 1229 } 1230 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) && 1231 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) { 1232 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]); 1233 1234 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask); 1235 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK); 1236 } 1237 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) && 1238 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) { 1239 const struct ovs_key_ct_labels *cl; 1240 1241 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]); 1242 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels, 1243 sizeof(*cl), is_mask); 1244 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS); 1245 } 1246 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) { 1247 const struct ovs_key_ct_tuple_ipv4 *ct; 1248 1249 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]); 1250 1251 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask); 1252 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask); 1253 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1254 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1255 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask); 1256 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4); 1257 } 1258 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) { 1259 const struct ovs_key_ct_tuple_ipv6 *ct; 1260 1261 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]); 1262 1263 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src, 1264 sizeof(match->key->ipv6.ct_orig.src), 1265 is_mask); 1266 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst, 1267 sizeof(match->key->ipv6.ct_orig.dst), 1268 is_mask); 1269 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask); 1270 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask); 1271 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask); 1272 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6); 1273 } 1274 1275 /* For layer 3 packets the Ethernet type is provided 1276 * and treated as metadata but no MAC addresses are provided. 1277 */ 1278 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) && 1279 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE))) 1280 mac_proto = MAC_PROTO_NONE; 1281 1282 /* Always exact match mac_proto */ 1283 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask); 1284 1285 if (mac_proto == MAC_PROTO_NONE) 1286 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask, 1287 log); 1288 1289 return 0; 1290 } 1291 1292 int nsh_hdr_from_nlattr(const struct nlattr *attr, 1293 struct nshhdr *nh, size_t size) 1294 { 1295 struct nlattr *a; 1296 int rem; 1297 u8 flags = 0; 1298 u8 ttl = 0; 1299 int mdlen = 0; 1300 1301 /* validate_nsh has check this, so we needn't do duplicate check here 1302 */ 1303 if (size < NSH_BASE_HDR_LEN) 1304 return -ENOBUFS; 1305 1306 nla_for_each_nested(a, attr, rem) { 1307 int type = nla_type(a); 1308 1309 switch (type) { 1310 case OVS_NSH_KEY_ATTR_BASE: { 1311 const struct ovs_nsh_key_base *base = nla_data(a); 1312 1313 flags = base->flags; 1314 ttl = base->ttl; 1315 nh->np = base->np; 1316 nh->mdtype = base->mdtype; 1317 nh->path_hdr = base->path_hdr; 1318 break; 1319 } 1320 case OVS_NSH_KEY_ATTR_MD1: 1321 mdlen = nla_len(a); 1322 if (mdlen > size - NSH_BASE_HDR_LEN) 1323 return -ENOBUFS; 1324 memcpy(&nh->md1, nla_data(a), mdlen); 1325 break; 1326 1327 case OVS_NSH_KEY_ATTR_MD2: 1328 mdlen = nla_len(a); 1329 if (mdlen > size - NSH_BASE_HDR_LEN) 1330 return -ENOBUFS; 1331 memcpy(&nh->md2, nla_data(a), mdlen); 1332 break; 1333 1334 default: 1335 return -EINVAL; 1336 } 1337 } 1338 1339 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */ 1340 nh->ver_flags_ttl_len = 0; 1341 nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen); 1342 1343 return 0; 1344 } 1345 1346 int nsh_key_from_nlattr(const struct nlattr *attr, 1347 struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask) 1348 { 1349 struct nlattr *a; 1350 int rem; 1351 1352 /* validate_nsh has check this, so we needn't do duplicate check here 1353 */ 1354 nla_for_each_nested(a, attr, rem) { 1355 int type = nla_type(a); 1356 1357 switch (type) { 1358 case OVS_NSH_KEY_ATTR_BASE: { 1359 const struct ovs_nsh_key_base *base = nla_data(a); 1360 const struct ovs_nsh_key_base *base_mask = base + 1; 1361 1362 nsh->base = *base; 1363 nsh_mask->base = *base_mask; 1364 break; 1365 } 1366 case OVS_NSH_KEY_ATTR_MD1: { 1367 const struct ovs_nsh_key_md1 *md1 = nla_data(a); 1368 const struct ovs_nsh_key_md1 *md1_mask = md1 + 1; 1369 1370 memcpy(nsh->context, md1->context, sizeof(*md1)); 1371 memcpy(nsh_mask->context, md1_mask->context, 1372 sizeof(*md1_mask)); 1373 break; 1374 } 1375 case OVS_NSH_KEY_ATTR_MD2: 1376 /* Not supported yet */ 1377 return -ENOTSUPP; 1378 default: 1379 return -EINVAL; 1380 } 1381 } 1382 1383 return 0; 1384 } 1385 1386 static int nsh_key_put_from_nlattr(const struct nlattr *attr, 1387 struct sw_flow_match *match, bool is_mask, 1388 bool is_push_nsh, bool log) 1389 { 1390 struct nlattr *a; 1391 int rem; 1392 bool has_base = false; 1393 bool has_md1 = false; 1394 bool has_md2 = false; 1395 u8 mdtype = 0; 1396 int mdlen = 0; 1397 1398 if (WARN_ON(is_push_nsh && is_mask)) 1399 return -EINVAL; 1400 1401 nla_for_each_nested(a, attr, rem) { 1402 int type = nla_type(a); 1403 int i; 1404 1405 if (type > OVS_NSH_KEY_ATTR_MAX) { 1406 OVS_NLERR(log, "nsh attr %d is out of range max %d", 1407 type, OVS_NSH_KEY_ATTR_MAX); 1408 return -EINVAL; 1409 } 1410 1411 if (!check_attr_len(nla_len(a), 1412 ovs_nsh_key_attr_lens[type].len)) { 1413 OVS_NLERR( 1414 log, 1415 "nsh attr %d has unexpected len %d expected %d", 1416 type, 1417 nla_len(a), 1418 ovs_nsh_key_attr_lens[type].len 1419 ); 1420 return -EINVAL; 1421 } 1422 1423 switch (type) { 1424 case OVS_NSH_KEY_ATTR_BASE: { 1425 const struct ovs_nsh_key_base *base = nla_data(a); 1426 1427 has_base = true; 1428 mdtype = base->mdtype; 1429 SW_FLOW_KEY_PUT(match, nsh.base.flags, 1430 base->flags, is_mask); 1431 SW_FLOW_KEY_PUT(match, nsh.base.ttl, 1432 base->ttl, is_mask); 1433 SW_FLOW_KEY_PUT(match, nsh.base.mdtype, 1434 base->mdtype, is_mask); 1435 SW_FLOW_KEY_PUT(match, nsh.base.np, 1436 base->np, is_mask); 1437 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr, 1438 base->path_hdr, is_mask); 1439 break; 1440 } 1441 case OVS_NSH_KEY_ATTR_MD1: { 1442 const struct ovs_nsh_key_md1 *md1 = nla_data(a); 1443 1444 has_md1 = true; 1445 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) 1446 SW_FLOW_KEY_PUT(match, nsh.context[i], 1447 md1->context[i], is_mask); 1448 break; 1449 } 1450 case OVS_NSH_KEY_ATTR_MD2: 1451 if (!is_push_nsh) /* Not supported MD type 2 yet */ 1452 return -ENOTSUPP; 1453 1454 has_md2 = true; 1455 mdlen = nla_len(a); 1456 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) { 1457 OVS_NLERR( 1458 log, 1459 "Invalid MD length %d for MD type %d", 1460 mdlen, 1461 mdtype 1462 ); 1463 return -EINVAL; 1464 } 1465 break; 1466 default: 1467 OVS_NLERR(log, "Unknown nsh attribute %d", 1468 type); 1469 return -EINVAL; 1470 } 1471 } 1472 1473 if (rem > 0) { 1474 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem); 1475 return -EINVAL; 1476 } 1477 1478 if (has_md1 && has_md2) { 1479 OVS_NLERR( 1480 1, 1481 "invalid nsh attribute: md1 and md2 are exclusive." 1482 ); 1483 return -EINVAL; 1484 } 1485 1486 if (!is_mask) { 1487 if ((has_md1 && mdtype != NSH_M_TYPE1) || 1488 (has_md2 && mdtype != NSH_M_TYPE2)) { 1489 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.", 1490 mdtype); 1491 return -EINVAL; 1492 } 1493 1494 if (is_push_nsh && 1495 (!has_base || (!has_md1 && !has_md2))) { 1496 OVS_NLERR( 1497 1, 1498 "push_nsh: missing base or metadata attributes" 1499 ); 1500 return -EINVAL; 1501 } 1502 } 1503 1504 return 0; 1505 } 1506 1507 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match, 1508 u64 attrs, const struct nlattr **a, 1509 bool is_mask, bool log) 1510 { 1511 int err; 1512 1513 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log); 1514 if (err) 1515 return err; 1516 1517 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { 1518 const struct ovs_key_ethernet *eth_key; 1519 1520 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); 1521 SW_FLOW_KEY_MEMCPY(match, eth.src, 1522 eth_key->eth_src, ETH_ALEN, is_mask); 1523 SW_FLOW_KEY_MEMCPY(match, eth.dst, 1524 eth_key->eth_dst, ETH_ALEN, is_mask); 1525 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); 1526 1527 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { 1528 /* VLAN attribute is always parsed before getting here since it 1529 * may occur multiple times. 1530 */ 1531 OVS_NLERR(log, "VLAN attribute unexpected."); 1532 return -EINVAL; 1533 } 1534 1535 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { 1536 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask, 1537 log); 1538 if (err) 1539 return err; 1540 } else if (!is_mask) { 1541 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); 1542 } 1543 } else if (!match->key->eth.type) { 1544 OVS_NLERR(log, "Either Ethernet header or EtherType is required."); 1545 return -EINVAL; 1546 } 1547 1548 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { 1549 const struct ovs_key_ipv4 *ipv4_key; 1550 1551 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); 1552 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { 1553 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d", 1554 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); 1555 return -EINVAL; 1556 } 1557 SW_FLOW_KEY_PUT(match, ip.proto, 1558 ipv4_key->ipv4_proto, is_mask); 1559 SW_FLOW_KEY_PUT(match, ip.tos, 1560 ipv4_key->ipv4_tos, is_mask); 1561 SW_FLOW_KEY_PUT(match, ip.ttl, 1562 ipv4_key->ipv4_ttl, is_mask); 1563 SW_FLOW_KEY_PUT(match, ip.frag, 1564 ipv4_key->ipv4_frag, is_mask); 1565 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1566 ipv4_key->ipv4_src, is_mask); 1567 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1568 ipv4_key->ipv4_dst, is_mask); 1569 attrs &= ~(1 << OVS_KEY_ATTR_IPV4); 1570 } 1571 1572 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { 1573 const struct ovs_key_ipv6 *ipv6_key; 1574 1575 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); 1576 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { 1577 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d", 1578 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); 1579 return -EINVAL; 1580 } 1581 1582 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) { 1583 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)", 1584 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1); 1585 return -EINVAL; 1586 } 1587 1588 SW_FLOW_KEY_PUT(match, ipv6.label, 1589 ipv6_key->ipv6_label, is_mask); 1590 SW_FLOW_KEY_PUT(match, ip.proto, 1591 ipv6_key->ipv6_proto, is_mask); 1592 SW_FLOW_KEY_PUT(match, ip.tos, 1593 ipv6_key->ipv6_tclass, is_mask); 1594 SW_FLOW_KEY_PUT(match, ip.ttl, 1595 ipv6_key->ipv6_hlimit, is_mask); 1596 SW_FLOW_KEY_PUT(match, ip.frag, 1597 ipv6_key->ipv6_frag, is_mask); 1598 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, 1599 ipv6_key->ipv6_src, 1600 sizeof(match->key->ipv6.addr.src), 1601 is_mask); 1602 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, 1603 ipv6_key->ipv6_dst, 1604 sizeof(match->key->ipv6.addr.dst), 1605 is_mask); 1606 1607 attrs &= ~(1 << OVS_KEY_ATTR_IPV6); 1608 } 1609 1610 if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) { 1611 const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key; 1612 1613 ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]); 1614 1615 SW_FLOW_KEY_PUT(match, ipv6.exthdrs, 1616 ipv6_exthdrs_key->hdrs, is_mask); 1617 1618 attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS); 1619 } 1620 1621 if (attrs & (1 << OVS_KEY_ATTR_ARP)) { 1622 const struct ovs_key_arp *arp_key; 1623 1624 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); 1625 if (!is_mask && (arp_key->arp_op & htons(0xff00))) { 1626 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).", 1627 arp_key->arp_op); 1628 return -EINVAL; 1629 } 1630 1631 SW_FLOW_KEY_PUT(match, ipv4.addr.src, 1632 arp_key->arp_sip, is_mask); 1633 SW_FLOW_KEY_PUT(match, ipv4.addr.dst, 1634 arp_key->arp_tip, is_mask); 1635 SW_FLOW_KEY_PUT(match, ip.proto, 1636 ntohs(arp_key->arp_op), is_mask); 1637 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, 1638 arp_key->arp_sha, ETH_ALEN, is_mask); 1639 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, 1640 arp_key->arp_tha, ETH_ALEN, is_mask); 1641 1642 attrs &= ~(1 << OVS_KEY_ATTR_ARP); 1643 } 1644 1645 if (attrs & (1 << OVS_KEY_ATTR_NSH)) { 1646 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match, 1647 is_mask, false, log) < 0) 1648 return -EINVAL; 1649 attrs &= ~(1 << OVS_KEY_ATTR_NSH); 1650 } 1651 1652 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) { 1653 const struct ovs_key_mpls *mpls_key; 1654 u32 hdr_len; 1655 u32 label_count, label_count_mask, i; 1656 1657 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]); 1658 hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]); 1659 label_count = hdr_len / sizeof(struct ovs_key_mpls); 1660 1661 if (label_count == 0 || label_count > MPLS_LABEL_DEPTH || 1662 hdr_len % sizeof(struct ovs_key_mpls)) 1663 return -EINVAL; 1664 1665 label_count_mask = GENMASK(label_count - 1, 0); 1666 1667 for (i = 0 ; i < label_count; i++) 1668 SW_FLOW_KEY_PUT(match, mpls.lse[i], 1669 mpls_key[i].mpls_lse, is_mask); 1670 1671 SW_FLOW_KEY_PUT(match, mpls.num_labels_mask, 1672 label_count_mask, is_mask); 1673 1674 attrs &= ~(1 << OVS_KEY_ATTR_MPLS); 1675 } 1676 1677 if (attrs & (1 << OVS_KEY_ATTR_TCP)) { 1678 const struct ovs_key_tcp *tcp_key; 1679 1680 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); 1681 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask); 1682 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask); 1683 attrs &= ~(1 << OVS_KEY_ATTR_TCP); 1684 } 1685 1686 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) { 1687 SW_FLOW_KEY_PUT(match, tp.flags, 1688 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]), 1689 is_mask); 1690 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS); 1691 } 1692 1693 if (attrs & (1 << OVS_KEY_ATTR_UDP)) { 1694 const struct ovs_key_udp *udp_key; 1695 1696 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); 1697 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask); 1698 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask); 1699 attrs &= ~(1 << OVS_KEY_ATTR_UDP); 1700 } 1701 1702 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { 1703 const struct ovs_key_sctp *sctp_key; 1704 1705 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); 1706 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask); 1707 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask); 1708 attrs &= ~(1 << OVS_KEY_ATTR_SCTP); 1709 } 1710 1711 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { 1712 const struct ovs_key_icmp *icmp_key; 1713 1714 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); 1715 SW_FLOW_KEY_PUT(match, tp.src, 1716 htons(icmp_key->icmp_type), is_mask); 1717 SW_FLOW_KEY_PUT(match, tp.dst, 1718 htons(icmp_key->icmp_code), is_mask); 1719 attrs &= ~(1 << OVS_KEY_ATTR_ICMP); 1720 } 1721 1722 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { 1723 const struct ovs_key_icmpv6 *icmpv6_key; 1724 1725 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); 1726 SW_FLOW_KEY_PUT(match, tp.src, 1727 htons(icmpv6_key->icmpv6_type), is_mask); 1728 SW_FLOW_KEY_PUT(match, tp.dst, 1729 htons(icmpv6_key->icmpv6_code), is_mask); 1730 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); 1731 } 1732 1733 if (attrs & (1 << OVS_KEY_ATTR_ND)) { 1734 const struct ovs_key_nd *nd_key; 1735 1736 nd_key = nla_data(a[OVS_KEY_ATTR_ND]); 1737 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, 1738 nd_key->nd_target, 1739 sizeof(match->key->ipv6.nd.target), 1740 is_mask); 1741 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, 1742 nd_key->nd_sll, ETH_ALEN, is_mask); 1743 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, 1744 nd_key->nd_tll, ETH_ALEN, is_mask); 1745 attrs &= ~(1 << OVS_KEY_ATTR_ND); 1746 } 1747 1748 if (attrs != 0) { 1749 OVS_NLERR(log, "Unknown key attributes %llx", 1750 (unsigned long long)attrs); 1751 return -EINVAL; 1752 } 1753 1754 return 0; 1755 } 1756 1757 static void nlattr_set(struct nlattr *attr, u8 val, 1758 const struct ovs_len_tbl *tbl) 1759 { 1760 struct nlattr *nla; 1761 int rem; 1762 1763 /* The nlattr stream should already have been validated */ 1764 nla_for_each_nested(nla, attr, rem) { 1765 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) 1766 nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl); 1767 else 1768 memset(nla_data(nla), val, nla_len(nla)); 1769 1770 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE) 1771 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK; 1772 } 1773 } 1774 1775 static void mask_set_nlattr(struct nlattr *attr, u8 val) 1776 { 1777 nlattr_set(attr, val, ovs_key_lens); 1778 } 1779 1780 /** 1781 * ovs_nla_get_match - parses Netlink attributes into a flow key and 1782 * mask. In case the 'mask' is NULL, the flow is treated as exact match 1783 * flow. Otherwise, it is treated as a wildcarded flow, except the mask 1784 * does not include any don't care bit. 1785 * @net: Used to determine per-namespace field support. 1786 * @match: receives the extracted flow match information. 1787 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute 1788 * sequence. The fields should of the packet that triggered the creation 1789 * of this flow. 1790 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* 1791 * Netlink attribute specifies the mask field of the wildcarded flow. 1792 * @log: Boolean to allow kernel error logging. Normally true, but when 1793 * probing for feature compatibility this should be passed in as false to 1794 * suppress unnecessary error logging. 1795 */ 1796 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match, 1797 const struct nlattr *nla_key, 1798 const struct nlattr *nla_mask, 1799 bool log) 1800 { 1801 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; 1802 struct nlattr *newmask = NULL; 1803 u64 key_attrs = 0; 1804 u64 mask_attrs = 0; 1805 int err; 1806 1807 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); 1808 if (err) 1809 return err; 1810 1811 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log); 1812 if (err) 1813 return err; 1814 1815 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); 1816 if (err) 1817 return err; 1818 1819 if (match->mask) { 1820 if (!nla_mask) { 1821 /* Create an exact match mask. We need to set to 0xff 1822 * all the 'match->mask' fields that have been touched 1823 * in 'match->key'. We cannot simply memset 1824 * 'match->mask', because padding bytes and fields not 1825 * specified in 'match->key' should be left to 0. 1826 * Instead, we use a stream of netlink attributes, 1827 * copied from 'key' and set to 0xff. 1828 * ovs_key_from_nlattrs() will take care of filling 1829 * 'match->mask' appropriately. 1830 */ 1831 newmask = kmemdup(nla_key, 1832 nla_total_size(nla_len(nla_key)), 1833 GFP_KERNEL); 1834 if (!newmask) 1835 return -ENOMEM; 1836 1837 mask_set_nlattr(newmask, 0xff); 1838 1839 /* The userspace does not send tunnel attributes that 1840 * are 0, but we should not wildcard them nonetheless. 1841 */ 1842 if (match->key->tun_proto) 1843 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key, 1844 0xff, true); 1845 1846 nla_mask = newmask; 1847 } 1848 1849 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log); 1850 if (err) 1851 goto free_newmask; 1852 1853 /* Always match on tci. */ 1854 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true); 1855 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true); 1856 1857 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log); 1858 if (err) 1859 goto free_newmask; 1860 1861 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, 1862 log); 1863 if (err) 1864 goto free_newmask; 1865 } 1866 1867 if (!match_validate(match, key_attrs, mask_attrs, log)) 1868 err = -EINVAL; 1869 1870 free_newmask: 1871 kfree(newmask); 1872 return err; 1873 } 1874 1875 static size_t get_ufid_len(const struct nlattr *attr, bool log) 1876 { 1877 size_t len; 1878 1879 if (!attr) 1880 return 0; 1881 1882 len = nla_len(attr); 1883 if (len < 1 || len > MAX_UFID_LENGTH) { 1884 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)", 1885 nla_len(attr), MAX_UFID_LENGTH); 1886 return 0; 1887 } 1888 1889 return len; 1890 } 1891 1892 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID, 1893 * or false otherwise. 1894 */ 1895 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr, 1896 bool log) 1897 { 1898 sfid->ufid_len = get_ufid_len(attr, log); 1899 if (sfid->ufid_len) 1900 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len); 1901 1902 return sfid->ufid_len; 1903 } 1904 1905 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid, 1906 const struct sw_flow_key *key, bool log) 1907 { 1908 struct sw_flow_key *new_key; 1909 1910 if (ovs_nla_get_ufid(sfid, ufid, log)) 1911 return 0; 1912 1913 /* If UFID was not provided, use unmasked key. */ 1914 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL); 1915 if (!new_key) 1916 return -ENOMEM; 1917 memcpy(new_key, key, sizeof(*key)); 1918 sfid->unmasked_key = new_key; 1919 1920 return 0; 1921 } 1922 1923 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr) 1924 { 1925 return attr ? nla_get_u32(attr) : 0; 1926 } 1927 1928 /** 1929 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key. 1930 * @net: Network namespace. 1931 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack 1932 * metadata. 1933 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink 1934 * attributes. 1935 * @attrs: Bit mask for the netlink attributes included in @a. 1936 * @log: Boolean to allow kernel error logging. Normally true, but when 1937 * probing for feature compatibility this should be passed in as false to 1938 * suppress unnecessary error logging. 1939 * 1940 * This parses a series of Netlink attributes that form a flow key, which must 1941 * take the same form accepted by flow_from_nlattrs(), but only enough of it to 1942 * get the metadata, that is, the parts of the flow key that cannot be 1943 * extracted from the packet itself. 1944 * 1945 * This must be called before the packet key fields are filled in 'key'. 1946 */ 1947 1948 int ovs_nla_get_flow_metadata(struct net *net, 1949 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1], 1950 u64 attrs, struct sw_flow_key *key, bool log) 1951 { 1952 struct sw_flow_match match; 1953 1954 memset(&match, 0, sizeof(match)); 1955 match.key = key; 1956 1957 key->ct_state = 0; 1958 key->ct_zone = 0; 1959 key->ct_orig_proto = 0; 1960 memset(&key->ct, 0, sizeof(key->ct)); 1961 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig)); 1962 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig)); 1963 1964 key->phy.in_port = DP_MAX_PORTS; 1965 1966 return metadata_from_nlattrs(net, &match, &attrs, a, false, log); 1967 } 1968 1969 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh, 1970 bool is_mask) 1971 { 1972 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff); 1973 1974 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || 1975 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci)) 1976 return -EMSGSIZE; 1977 return 0; 1978 } 1979 1980 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask, 1981 struct sk_buff *skb) 1982 { 1983 struct nlattr *start; 1984 1985 start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH); 1986 if (!start) 1987 return -EMSGSIZE; 1988 1989 if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base)) 1990 goto nla_put_failure; 1991 1992 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) { 1993 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1, 1994 sizeof(nsh->context), nsh->context)) 1995 goto nla_put_failure; 1996 } 1997 1998 /* Don't support MD type 2 yet */ 1999 2000 nla_nest_end(skb, start); 2001 2002 return 0; 2003 2004 nla_put_failure: 2005 return -EMSGSIZE; 2006 } 2007 2008 static int __ovs_nla_put_key(const struct sw_flow_key *swkey, 2009 const struct sw_flow_key *output, bool is_mask, 2010 struct sk_buff *skb) 2011 { 2012 struct ovs_key_ethernet *eth_key; 2013 struct nlattr *nla; 2014 struct nlattr *encap = NULL; 2015 struct nlattr *in_encap = NULL; 2016 2017 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) 2018 goto nla_put_failure; 2019 2020 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash)) 2021 goto nla_put_failure; 2022 2023 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) 2024 goto nla_put_failure; 2025 2026 if ((swkey->tun_proto || is_mask)) { 2027 const void *opts = NULL; 2028 2029 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT) 2030 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len); 2031 2032 if (ip_tun_to_nlattr(skb, &output->tun_key, opts, 2033 swkey->tun_opts_len, swkey->tun_proto, 0)) 2034 goto nla_put_failure; 2035 } 2036 2037 if (swkey->phy.in_port == DP_MAX_PORTS) { 2038 if (is_mask && (output->phy.in_port == 0xffff)) 2039 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) 2040 goto nla_put_failure; 2041 } else { 2042 u16 upper_u16; 2043 upper_u16 = !is_mask ? 0 : 0xffff; 2044 2045 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 2046 (upper_u16 << 16) | output->phy.in_port)) 2047 goto nla_put_failure; 2048 } 2049 2050 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) 2051 goto nla_put_failure; 2052 2053 if (ovs_ct_put_key(swkey, output, skb)) 2054 goto nla_put_failure; 2055 2056 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) { 2057 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); 2058 if (!nla) 2059 goto nla_put_failure; 2060 2061 eth_key = nla_data(nla); 2062 ether_addr_copy(eth_key->eth_src, output->eth.src); 2063 ether_addr_copy(eth_key->eth_dst, output->eth.dst); 2064 2065 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) { 2066 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask)) 2067 goto nla_put_failure; 2068 encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP); 2069 if (!swkey->eth.vlan.tci) 2070 goto unencap; 2071 2072 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) { 2073 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask)) 2074 goto nla_put_failure; 2075 in_encap = nla_nest_start_noflag(skb, 2076 OVS_KEY_ATTR_ENCAP); 2077 if (!swkey->eth.cvlan.tci) 2078 goto unencap; 2079 } 2080 } 2081 2082 if (swkey->eth.type == htons(ETH_P_802_2)) { 2083 /* 2084 * Ethertype 802.2 is represented in the netlink with omitted 2085 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and 2086 * 0xffff in the mask attribute. Ethertype can also 2087 * be wildcarded. 2088 */ 2089 if (is_mask && output->eth.type) 2090 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, 2091 output->eth.type)) 2092 goto nla_put_failure; 2093 goto unencap; 2094 } 2095 } 2096 2097 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) 2098 goto nla_put_failure; 2099 2100 if (eth_type_vlan(swkey->eth.type)) { 2101 /* There are 3 VLAN tags, we don't know anything about the rest 2102 * of the packet, so truncate here. 2103 */ 2104 WARN_ON_ONCE(!(encap && in_encap)); 2105 goto unencap; 2106 } 2107 2108 if (swkey->eth.type == htons(ETH_P_IP)) { 2109 struct ovs_key_ipv4 *ipv4_key; 2110 2111 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); 2112 if (!nla) 2113 goto nla_put_failure; 2114 ipv4_key = nla_data(nla); 2115 ipv4_key->ipv4_src = output->ipv4.addr.src; 2116 ipv4_key->ipv4_dst = output->ipv4.addr.dst; 2117 ipv4_key->ipv4_proto = output->ip.proto; 2118 ipv4_key->ipv4_tos = output->ip.tos; 2119 ipv4_key->ipv4_ttl = output->ip.ttl; 2120 ipv4_key->ipv4_frag = output->ip.frag; 2121 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 2122 struct ovs_key_ipv6 *ipv6_key; 2123 struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key; 2124 2125 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); 2126 if (!nla) 2127 goto nla_put_failure; 2128 ipv6_key = nla_data(nla); 2129 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, 2130 sizeof(ipv6_key->ipv6_src)); 2131 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, 2132 sizeof(ipv6_key->ipv6_dst)); 2133 ipv6_key->ipv6_label = output->ipv6.label; 2134 ipv6_key->ipv6_proto = output->ip.proto; 2135 ipv6_key->ipv6_tclass = output->ip.tos; 2136 ipv6_key->ipv6_hlimit = output->ip.ttl; 2137 ipv6_key->ipv6_frag = output->ip.frag; 2138 2139 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS, 2140 sizeof(*ipv6_exthdrs_key)); 2141 if (!nla) 2142 goto nla_put_failure; 2143 ipv6_exthdrs_key = nla_data(nla); 2144 ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs; 2145 } else if (swkey->eth.type == htons(ETH_P_NSH)) { 2146 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb)) 2147 goto nla_put_failure; 2148 } else if (swkey->eth.type == htons(ETH_P_ARP) || 2149 swkey->eth.type == htons(ETH_P_RARP)) { 2150 struct ovs_key_arp *arp_key; 2151 2152 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); 2153 if (!nla) 2154 goto nla_put_failure; 2155 arp_key = nla_data(nla); 2156 memset(arp_key, 0, sizeof(struct ovs_key_arp)); 2157 arp_key->arp_sip = output->ipv4.addr.src; 2158 arp_key->arp_tip = output->ipv4.addr.dst; 2159 arp_key->arp_op = htons(output->ip.proto); 2160 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha); 2161 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha); 2162 } else if (eth_p_mpls(swkey->eth.type)) { 2163 u8 i, num_labels; 2164 struct ovs_key_mpls *mpls_key; 2165 2166 num_labels = hweight_long(output->mpls.num_labels_mask); 2167 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, 2168 num_labels * sizeof(*mpls_key)); 2169 if (!nla) 2170 goto nla_put_failure; 2171 2172 mpls_key = nla_data(nla); 2173 for (i = 0; i < num_labels; i++) 2174 mpls_key[i].mpls_lse = output->mpls.lse[i]; 2175 } 2176 2177 if ((swkey->eth.type == htons(ETH_P_IP) || 2178 swkey->eth.type == htons(ETH_P_IPV6)) && 2179 swkey->ip.frag != OVS_FRAG_TYPE_LATER) { 2180 2181 if (swkey->ip.proto == IPPROTO_TCP) { 2182 struct ovs_key_tcp *tcp_key; 2183 2184 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); 2185 if (!nla) 2186 goto nla_put_failure; 2187 tcp_key = nla_data(nla); 2188 tcp_key->tcp_src = output->tp.src; 2189 tcp_key->tcp_dst = output->tp.dst; 2190 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS, 2191 output->tp.flags)) 2192 goto nla_put_failure; 2193 } else if (swkey->ip.proto == IPPROTO_UDP) { 2194 struct ovs_key_udp *udp_key; 2195 2196 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); 2197 if (!nla) 2198 goto nla_put_failure; 2199 udp_key = nla_data(nla); 2200 udp_key->udp_src = output->tp.src; 2201 udp_key->udp_dst = output->tp.dst; 2202 } else if (swkey->ip.proto == IPPROTO_SCTP) { 2203 struct ovs_key_sctp *sctp_key; 2204 2205 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); 2206 if (!nla) 2207 goto nla_put_failure; 2208 sctp_key = nla_data(nla); 2209 sctp_key->sctp_src = output->tp.src; 2210 sctp_key->sctp_dst = output->tp.dst; 2211 } else if (swkey->eth.type == htons(ETH_P_IP) && 2212 swkey->ip.proto == IPPROTO_ICMP) { 2213 struct ovs_key_icmp *icmp_key; 2214 2215 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); 2216 if (!nla) 2217 goto nla_put_failure; 2218 icmp_key = nla_data(nla); 2219 icmp_key->icmp_type = ntohs(output->tp.src); 2220 icmp_key->icmp_code = ntohs(output->tp.dst); 2221 } else if (swkey->eth.type == htons(ETH_P_IPV6) && 2222 swkey->ip.proto == IPPROTO_ICMPV6) { 2223 struct ovs_key_icmpv6 *icmpv6_key; 2224 2225 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, 2226 sizeof(*icmpv6_key)); 2227 if (!nla) 2228 goto nla_put_failure; 2229 icmpv6_key = nla_data(nla); 2230 icmpv6_key->icmpv6_type = ntohs(output->tp.src); 2231 icmpv6_key->icmpv6_code = ntohs(output->tp.dst); 2232 2233 if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || 2234 swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { 2235 struct ovs_key_nd *nd_key; 2236 2237 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); 2238 if (!nla) 2239 goto nla_put_failure; 2240 nd_key = nla_data(nla); 2241 memcpy(nd_key->nd_target, &output->ipv6.nd.target, 2242 sizeof(nd_key->nd_target)); 2243 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll); 2244 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll); 2245 } 2246 } 2247 } 2248 2249 unencap: 2250 if (in_encap) 2251 nla_nest_end(skb, in_encap); 2252 if (encap) 2253 nla_nest_end(skb, encap); 2254 2255 return 0; 2256 2257 nla_put_failure: 2258 return -EMSGSIZE; 2259 } 2260 2261 int ovs_nla_put_key(const struct sw_flow_key *swkey, 2262 const struct sw_flow_key *output, int attr, bool is_mask, 2263 struct sk_buff *skb) 2264 { 2265 int err; 2266 struct nlattr *nla; 2267 2268 nla = nla_nest_start_noflag(skb, attr); 2269 if (!nla) 2270 return -EMSGSIZE; 2271 err = __ovs_nla_put_key(swkey, output, is_mask, skb); 2272 if (err) 2273 return err; 2274 nla_nest_end(skb, nla); 2275 2276 return 0; 2277 } 2278 2279 /* Called with ovs_mutex or RCU read lock. */ 2280 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb) 2281 { 2282 if (ovs_identifier_is_ufid(&flow->id)) 2283 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len, 2284 flow->id.ufid); 2285 2286 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key, 2287 OVS_FLOW_ATTR_KEY, false, skb); 2288 } 2289 2290 /* Called with ovs_mutex or RCU read lock. */ 2291 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb) 2292 { 2293 return ovs_nla_put_key(&flow->key, &flow->key, 2294 OVS_FLOW_ATTR_KEY, false, skb); 2295 } 2296 2297 /* Called with ovs_mutex or RCU read lock. */ 2298 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb) 2299 { 2300 return ovs_nla_put_key(&flow->key, &flow->mask->key, 2301 OVS_FLOW_ATTR_MASK, true, skb); 2302 } 2303 2304 #define MAX_ACTIONS_BUFSIZE (32 * 1024) 2305 2306 static struct sw_flow_actions *nla_alloc_flow_actions(int size) 2307 { 2308 struct sw_flow_actions *sfa; 2309 2310 WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE); 2311 2312 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); 2313 if (!sfa) 2314 return ERR_PTR(-ENOMEM); 2315 2316 sfa->actions_len = 0; 2317 return sfa; 2318 } 2319 2320 static void ovs_nla_free_set_action(const struct nlattr *a) 2321 { 2322 const struct nlattr *ovs_key = nla_data(a); 2323 struct ovs_tunnel_info *ovs_tun; 2324 2325 switch (nla_type(ovs_key)) { 2326 case OVS_KEY_ATTR_TUNNEL_INFO: 2327 ovs_tun = nla_data(ovs_key); 2328 dst_release((struct dst_entry *)ovs_tun->tun_dst); 2329 break; 2330 } 2331 } 2332 2333 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts) 2334 { 2335 const struct nlattr *a; 2336 int rem; 2337 2338 if (!sf_acts) 2339 return; 2340 2341 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) { 2342 switch (nla_type(a)) { 2343 case OVS_ACTION_ATTR_SET: 2344 ovs_nla_free_set_action(a); 2345 break; 2346 case OVS_ACTION_ATTR_CT: 2347 ovs_ct_free_action(a); 2348 break; 2349 } 2350 } 2351 2352 kfree(sf_acts); 2353 } 2354 2355 static void __ovs_nla_free_flow_actions(struct rcu_head *head) 2356 { 2357 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu)); 2358 } 2359 2360 /* Schedules 'sf_acts' to be freed after the next RCU grace period. 2361 * The caller must hold rcu_read_lock for this to be sensible. */ 2362 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts) 2363 { 2364 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions); 2365 } 2366 2367 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa, 2368 int attr_len, bool log) 2369 { 2370 2371 struct sw_flow_actions *acts; 2372 int new_acts_size; 2373 size_t req_size = NLA_ALIGN(attr_len); 2374 int next_offset = offsetof(struct sw_flow_actions, actions) + 2375 (*sfa)->actions_len; 2376 2377 if (req_size <= (ksize(*sfa) - next_offset)) 2378 goto out; 2379 2380 new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2); 2381 2382 if (new_acts_size > MAX_ACTIONS_BUFSIZE) { 2383 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) { 2384 OVS_NLERR(log, "Flow action size exceeds max %u", 2385 MAX_ACTIONS_BUFSIZE); 2386 return ERR_PTR(-EMSGSIZE); 2387 } 2388 new_acts_size = MAX_ACTIONS_BUFSIZE; 2389 } 2390 2391 acts = nla_alloc_flow_actions(new_acts_size); 2392 if (IS_ERR(acts)) 2393 return (void *)acts; 2394 2395 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len); 2396 acts->actions_len = (*sfa)->actions_len; 2397 acts->orig_len = (*sfa)->orig_len; 2398 kfree(*sfa); 2399 *sfa = acts; 2400 2401 out: 2402 (*sfa)->actions_len += req_size; 2403 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset); 2404 } 2405 2406 static struct nlattr *__add_action(struct sw_flow_actions **sfa, 2407 int attrtype, void *data, int len, bool log) 2408 { 2409 struct nlattr *a; 2410 2411 a = reserve_sfa_size(sfa, nla_attr_size(len), log); 2412 if (IS_ERR(a)) 2413 return a; 2414 2415 a->nla_type = attrtype; 2416 a->nla_len = nla_attr_size(len); 2417 2418 if (data) 2419 memcpy(nla_data(a), data, len); 2420 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len)); 2421 2422 return a; 2423 } 2424 2425 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data, 2426 int len, bool log) 2427 { 2428 struct nlattr *a; 2429 2430 a = __add_action(sfa, attrtype, data, len, log); 2431 2432 return PTR_ERR_OR_ZERO(a); 2433 } 2434 2435 static inline int add_nested_action_start(struct sw_flow_actions **sfa, 2436 int attrtype, bool log) 2437 { 2438 int used = (*sfa)->actions_len; 2439 int err; 2440 2441 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log); 2442 if (err) 2443 return err; 2444 2445 return used; 2446 } 2447 2448 static inline void add_nested_action_end(struct sw_flow_actions *sfa, 2449 int st_offset) 2450 { 2451 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions + 2452 st_offset); 2453 2454 a->nla_len = sfa->actions_len - st_offset; 2455 } 2456 2457 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 2458 const struct sw_flow_key *key, 2459 struct sw_flow_actions **sfa, 2460 __be16 eth_type, __be16 vlan_tci, 2461 u32 mpls_label_count, bool log); 2462 2463 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr, 2464 const struct sw_flow_key *key, 2465 struct sw_flow_actions **sfa, 2466 __be16 eth_type, __be16 vlan_tci, 2467 u32 mpls_label_count, bool log, bool last) 2468 { 2469 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1]; 2470 const struct nlattr *probability, *actions; 2471 const struct nlattr *a; 2472 int rem, start, err; 2473 struct sample_arg arg; 2474 2475 memset(attrs, 0, sizeof(attrs)); 2476 nla_for_each_nested(a, attr, rem) { 2477 int type = nla_type(a); 2478 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type]) 2479 return -EINVAL; 2480 attrs[type] = a; 2481 } 2482 if (rem) 2483 return -EINVAL; 2484 2485 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY]; 2486 if (!probability || nla_len(probability) != sizeof(u32)) 2487 return -EINVAL; 2488 2489 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS]; 2490 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) 2491 return -EINVAL; 2492 2493 /* validation done, copy sample action. */ 2494 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log); 2495 if (start < 0) 2496 return start; 2497 2498 /* When both skb and flow may be changed, put the sample 2499 * into a deferred fifo. On the other hand, if only skb 2500 * may be modified, the actions can be executed in place. 2501 * 2502 * Do this analysis at the flow installation time. 2503 * Set 'clone_action->exec' to true if the actions can be 2504 * executed without being deferred. 2505 * 2506 * If the sample is the last action, it can always be excuted 2507 * rather than deferred. 2508 */ 2509 arg.exec = last || !actions_may_change_flow(actions); 2510 arg.probability = nla_get_u32(probability); 2511 2512 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg), 2513 log); 2514 if (err) 2515 return err; 2516 2517 err = __ovs_nla_copy_actions(net, actions, key, sfa, 2518 eth_type, vlan_tci, mpls_label_count, log); 2519 2520 if (err) 2521 return err; 2522 2523 add_nested_action_end(*sfa, start); 2524 2525 return 0; 2526 } 2527 2528 static int validate_and_copy_dec_ttl(struct net *net, 2529 const struct nlattr *attr, 2530 const struct sw_flow_key *key, 2531 struct sw_flow_actions **sfa, 2532 __be16 eth_type, __be16 vlan_tci, 2533 u32 mpls_label_count, bool log) 2534 { 2535 const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1]; 2536 int start, action_start, err, rem; 2537 const struct nlattr *a, *actions; 2538 2539 memset(attrs, 0, sizeof(attrs)); 2540 nla_for_each_nested(a, attr, rem) { 2541 int type = nla_type(a); 2542 2543 /* Ignore unknown attributes to be future proof. */ 2544 if (type > OVS_DEC_TTL_ATTR_MAX) 2545 continue; 2546 2547 if (!type || attrs[type]) { 2548 OVS_NLERR(log, "Duplicate or invalid key (type %d).", 2549 type); 2550 return -EINVAL; 2551 } 2552 2553 attrs[type] = a; 2554 } 2555 2556 if (rem) { 2557 OVS_NLERR(log, "Message has %d unknown bytes.", rem); 2558 return -EINVAL; 2559 } 2560 2561 actions = attrs[OVS_DEC_TTL_ATTR_ACTION]; 2562 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) { 2563 OVS_NLERR(log, "Missing valid actions attribute."); 2564 return -EINVAL; 2565 } 2566 2567 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log); 2568 if (start < 0) 2569 return start; 2570 2571 action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log); 2572 if (action_start < 0) 2573 return action_start; 2574 2575 err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type, 2576 vlan_tci, mpls_label_count, log); 2577 if (err) 2578 return err; 2579 2580 add_nested_action_end(*sfa, action_start); 2581 add_nested_action_end(*sfa, start); 2582 return 0; 2583 } 2584 2585 static int validate_and_copy_clone(struct net *net, 2586 const struct nlattr *attr, 2587 const struct sw_flow_key *key, 2588 struct sw_flow_actions **sfa, 2589 __be16 eth_type, __be16 vlan_tci, 2590 u32 mpls_label_count, bool log, bool last) 2591 { 2592 int start, err; 2593 u32 exec; 2594 2595 if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN) 2596 return -EINVAL; 2597 2598 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log); 2599 if (start < 0) 2600 return start; 2601 2602 exec = last || !actions_may_change_flow(attr); 2603 2604 err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec, 2605 sizeof(exec), log); 2606 if (err) 2607 return err; 2608 2609 err = __ovs_nla_copy_actions(net, attr, key, sfa, 2610 eth_type, vlan_tci, mpls_label_count, log); 2611 if (err) 2612 return err; 2613 2614 add_nested_action_end(*sfa, start); 2615 2616 return 0; 2617 } 2618 2619 void ovs_match_init(struct sw_flow_match *match, 2620 struct sw_flow_key *key, 2621 bool reset_key, 2622 struct sw_flow_mask *mask) 2623 { 2624 memset(match, 0, sizeof(*match)); 2625 match->key = key; 2626 match->mask = mask; 2627 2628 if (reset_key) 2629 memset(key, 0, sizeof(*key)); 2630 2631 if (mask) { 2632 memset(&mask->key, 0, sizeof(mask->key)); 2633 mask->range.start = mask->range.end = 0; 2634 } 2635 } 2636 2637 static int validate_geneve_opts(struct sw_flow_key *key) 2638 { 2639 struct geneve_opt *option; 2640 int opts_len = key->tun_opts_len; 2641 bool crit_opt = false; 2642 2643 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len); 2644 while (opts_len > 0) { 2645 int len; 2646 2647 if (opts_len < sizeof(*option)) 2648 return -EINVAL; 2649 2650 len = sizeof(*option) + option->length * 4; 2651 if (len > opts_len) 2652 return -EINVAL; 2653 2654 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE); 2655 2656 option = (struct geneve_opt *)((u8 *)option + len); 2657 opts_len -= len; 2658 } 2659 2660 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0; 2661 2662 return 0; 2663 } 2664 2665 static int validate_and_copy_set_tun(const struct nlattr *attr, 2666 struct sw_flow_actions **sfa, bool log) 2667 { 2668 struct sw_flow_match match; 2669 struct sw_flow_key key; 2670 struct metadata_dst *tun_dst; 2671 struct ip_tunnel_info *tun_info; 2672 struct ovs_tunnel_info *ovs_tun; 2673 struct nlattr *a; 2674 int err = 0, start, opts_type; 2675 __be16 dst_opt_type; 2676 2677 dst_opt_type = 0; 2678 ovs_match_init(&match, &key, true, NULL); 2679 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log); 2680 if (opts_type < 0) 2681 return opts_type; 2682 2683 if (key.tun_opts_len) { 2684 switch (opts_type) { 2685 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: 2686 err = validate_geneve_opts(&key); 2687 if (err < 0) 2688 return err; 2689 dst_opt_type = TUNNEL_GENEVE_OPT; 2690 break; 2691 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS: 2692 dst_opt_type = TUNNEL_VXLAN_OPT; 2693 break; 2694 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS: 2695 dst_opt_type = TUNNEL_ERSPAN_OPT; 2696 break; 2697 } 2698 } 2699 2700 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log); 2701 if (start < 0) 2702 return start; 2703 2704 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL, 2705 GFP_KERNEL); 2706 2707 if (!tun_dst) 2708 return -ENOMEM; 2709 2710 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL); 2711 if (err) { 2712 dst_release((struct dst_entry *)tun_dst); 2713 return err; 2714 } 2715 2716 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL, 2717 sizeof(*ovs_tun), log); 2718 if (IS_ERR(a)) { 2719 dst_release((struct dst_entry *)tun_dst); 2720 return PTR_ERR(a); 2721 } 2722 2723 ovs_tun = nla_data(a); 2724 ovs_tun->tun_dst = tun_dst; 2725 2726 tun_info = &tun_dst->u.tun_info; 2727 tun_info->mode = IP_TUNNEL_INFO_TX; 2728 if (key.tun_proto == AF_INET6) 2729 tun_info->mode |= IP_TUNNEL_INFO_IPV6; 2730 else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0) 2731 tun_info->mode |= IP_TUNNEL_INFO_BRIDGE; 2732 tun_info->key = key.tun_key; 2733 2734 /* We need to store the options in the action itself since 2735 * everything else will go away after flow setup. We can append 2736 * it to tun_info and then point there. 2737 */ 2738 ip_tunnel_info_opts_set(tun_info, 2739 TUN_METADATA_OPTS(&key, key.tun_opts_len), 2740 key.tun_opts_len, dst_opt_type); 2741 add_nested_action_end(*sfa, start); 2742 2743 return err; 2744 } 2745 2746 static bool validate_nsh(const struct nlattr *attr, bool is_mask, 2747 bool is_push_nsh, bool log) 2748 { 2749 struct sw_flow_match match; 2750 struct sw_flow_key key; 2751 int ret = 0; 2752 2753 ovs_match_init(&match, &key, true, NULL); 2754 ret = nsh_key_put_from_nlattr(attr, &match, is_mask, 2755 is_push_nsh, log); 2756 return !ret; 2757 } 2758 2759 /* Return false if there are any non-masked bits set. 2760 * Mask follows data immediately, before any netlink padding. 2761 */ 2762 static bool validate_masked(u8 *data, int len) 2763 { 2764 u8 *mask = data + len; 2765 2766 while (len--) 2767 if (*data++ & ~*mask++) 2768 return false; 2769 2770 return true; 2771 } 2772 2773 static int validate_set(const struct nlattr *a, 2774 const struct sw_flow_key *flow_key, 2775 struct sw_flow_actions **sfa, bool *skip_copy, 2776 u8 mac_proto, __be16 eth_type, bool masked, bool log) 2777 { 2778 const struct nlattr *ovs_key = nla_data(a); 2779 int key_type = nla_type(ovs_key); 2780 size_t key_len; 2781 2782 /* There can be only one key in a action */ 2783 if (nla_total_size(nla_len(ovs_key)) != nla_len(a)) 2784 return -EINVAL; 2785 2786 key_len = nla_len(ovs_key); 2787 if (masked) 2788 key_len /= 2; 2789 2790 if (key_type > OVS_KEY_ATTR_MAX || 2791 !check_attr_len(key_len, ovs_key_lens[key_type].len)) 2792 return -EINVAL; 2793 2794 if (masked && !validate_masked(nla_data(ovs_key), key_len)) 2795 return -EINVAL; 2796 2797 switch (key_type) { 2798 case OVS_KEY_ATTR_PRIORITY: 2799 case OVS_KEY_ATTR_SKB_MARK: 2800 case OVS_KEY_ATTR_CT_MARK: 2801 case OVS_KEY_ATTR_CT_LABELS: 2802 break; 2803 2804 case OVS_KEY_ATTR_ETHERNET: 2805 if (mac_proto != MAC_PROTO_ETHERNET) 2806 return -EINVAL; 2807 break; 2808 2809 case OVS_KEY_ATTR_TUNNEL: { 2810 int err; 2811 2812 if (masked) 2813 return -EINVAL; /* Masked tunnel set not supported. */ 2814 2815 *skip_copy = true; 2816 err = validate_and_copy_set_tun(a, sfa, log); 2817 if (err) 2818 return err; 2819 break; 2820 } 2821 case OVS_KEY_ATTR_IPV4: { 2822 const struct ovs_key_ipv4 *ipv4_key; 2823 2824 if (eth_type != htons(ETH_P_IP)) 2825 return -EINVAL; 2826 2827 ipv4_key = nla_data(ovs_key); 2828 2829 if (masked) { 2830 const struct ovs_key_ipv4 *mask = ipv4_key + 1; 2831 2832 /* Non-writeable fields. */ 2833 if (mask->ipv4_proto || mask->ipv4_frag) 2834 return -EINVAL; 2835 } else { 2836 if (ipv4_key->ipv4_proto != flow_key->ip.proto) 2837 return -EINVAL; 2838 2839 if (ipv4_key->ipv4_frag != flow_key->ip.frag) 2840 return -EINVAL; 2841 } 2842 break; 2843 } 2844 case OVS_KEY_ATTR_IPV6: { 2845 const struct ovs_key_ipv6 *ipv6_key; 2846 2847 if (eth_type != htons(ETH_P_IPV6)) 2848 return -EINVAL; 2849 2850 ipv6_key = nla_data(ovs_key); 2851 2852 if (masked) { 2853 const struct ovs_key_ipv6 *mask = ipv6_key + 1; 2854 2855 /* Non-writeable fields. */ 2856 if (mask->ipv6_proto || mask->ipv6_frag) 2857 return -EINVAL; 2858 2859 /* Invalid bits in the flow label mask? */ 2860 if (ntohl(mask->ipv6_label) & 0xFFF00000) 2861 return -EINVAL; 2862 } else { 2863 if (ipv6_key->ipv6_proto != flow_key->ip.proto) 2864 return -EINVAL; 2865 2866 if (ipv6_key->ipv6_frag != flow_key->ip.frag) 2867 return -EINVAL; 2868 } 2869 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000) 2870 return -EINVAL; 2871 2872 break; 2873 } 2874 case OVS_KEY_ATTR_TCP: 2875 if ((eth_type != htons(ETH_P_IP) && 2876 eth_type != htons(ETH_P_IPV6)) || 2877 flow_key->ip.proto != IPPROTO_TCP) 2878 return -EINVAL; 2879 2880 break; 2881 2882 case OVS_KEY_ATTR_UDP: 2883 if ((eth_type != htons(ETH_P_IP) && 2884 eth_type != htons(ETH_P_IPV6)) || 2885 flow_key->ip.proto != IPPROTO_UDP) 2886 return -EINVAL; 2887 2888 break; 2889 2890 case OVS_KEY_ATTR_MPLS: 2891 if (!eth_p_mpls(eth_type)) 2892 return -EINVAL; 2893 break; 2894 2895 case OVS_KEY_ATTR_SCTP: 2896 if ((eth_type != htons(ETH_P_IP) && 2897 eth_type != htons(ETH_P_IPV6)) || 2898 flow_key->ip.proto != IPPROTO_SCTP) 2899 return -EINVAL; 2900 2901 break; 2902 2903 case OVS_KEY_ATTR_NSH: 2904 if (eth_type != htons(ETH_P_NSH)) 2905 return -EINVAL; 2906 if (!validate_nsh(nla_data(a), masked, false, log)) 2907 return -EINVAL; 2908 break; 2909 2910 default: 2911 return -EINVAL; 2912 } 2913 2914 /* Convert non-masked non-tunnel set actions to masked set actions. */ 2915 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) { 2916 int start, len = key_len * 2; 2917 struct nlattr *at; 2918 2919 *skip_copy = true; 2920 2921 start = add_nested_action_start(sfa, 2922 OVS_ACTION_ATTR_SET_TO_MASKED, 2923 log); 2924 if (start < 0) 2925 return start; 2926 2927 at = __add_action(sfa, key_type, NULL, len, log); 2928 if (IS_ERR(at)) 2929 return PTR_ERR(at); 2930 2931 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */ 2932 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */ 2933 /* Clear non-writeable bits from otherwise writeable fields. */ 2934 if (key_type == OVS_KEY_ATTR_IPV6) { 2935 struct ovs_key_ipv6 *mask = nla_data(at) + key_len; 2936 2937 mask->ipv6_label &= htonl(0x000FFFFF); 2938 } 2939 add_nested_action_end(*sfa, start); 2940 } 2941 2942 return 0; 2943 } 2944 2945 static int validate_userspace(const struct nlattr *attr) 2946 { 2947 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = { 2948 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 }, 2949 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC }, 2950 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 }, 2951 }; 2952 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1]; 2953 int error; 2954 2955 error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr, 2956 userspace_policy, NULL); 2957 if (error) 2958 return error; 2959 2960 if (!a[OVS_USERSPACE_ATTR_PID] || 2961 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID])) 2962 return -EINVAL; 2963 2964 return 0; 2965 } 2966 2967 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = { 2968 [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 }, 2969 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED }, 2970 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED }, 2971 }; 2972 2973 static int validate_and_copy_check_pkt_len(struct net *net, 2974 const struct nlattr *attr, 2975 const struct sw_flow_key *key, 2976 struct sw_flow_actions **sfa, 2977 __be16 eth_type, __be16 vlan_tci, 2978 u32 mpls_label_count, 2979 bool log, bool last) 2980 { 2981 const struct nlattr *acts_if_greater, *acts_if_lesser_eq; 2982 struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1]; 2983 struct check_pkt_len_arg arg; 2984 int nested_acts_start; 2985 int start, err; 2986 2987 err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX, 2988 nla_data(attr), nla_len(attr), 2989 cpl_policy, NULL); 2990 if (err) 2991 return err; 2992 2993 if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] || 2994 !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN])) 2995 return -EINVAL; 2996 2997 acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL]; 2998 acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER]; 2999 3000 /* Both the nested action should be present. */ 3001 if (!acts_if_greater || !acts_if_lesser_eq) 3002 return -EINVAL; 3003 3004 /* validation done, copy the nested actions. */ 3005 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN, 3006 log); 3007 if (start < 0) 3008 return start; 3009 3010 arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]); 3011 arg.exec_for_lesser_equal = 3012 last || !actions_may_change_flow(acts_if_lesser_eq); 3013 arg.exec_for_greater = 3014 last || !actions_may_change_flow(acts_if_greater); 3015 3016 err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg, 3017 sizeof(arg), log); 3018 if (err) 3019 return err; 3020 3021 nested_acts_start = add_nested_action_start(sfa, 3022 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log); 3023 if (nested_acts_start < 0) 3024 return nested_acts_start; 3025 3026 err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa, 3027 eth_type, vlan_tci, mpls_label_count, log); 3028 3029 if (err) 3030 return err; 3031 3032 add_nested_action_end(*sfa, nested_acts_start); 3033 3034 nested_acts_start = add_nested_action_start(sfa, 3035 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log); 3036 if (nested_acts_start < 0) 3037 return nested_acts_start; 3038 3039 err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa, 3040 eth_type, vlan_tci, mpls_label_count, log); 3041 3042 if (err) 3043 return err; 3044 3045 add_nested_action_end(*sfa, nested_acts_start); 3046 add_nested_action_end(*sfa, start); 3047 return 0; 3048 } 3049 3050 static int copy_action(const struct nlattr *from, 3051 struct sw_flow_actions **sfa, bool log) 3052 { 3053 int totlen = NLA_ALIGN(from->nla_len); 3054 struct nlattr *to; 3055 3056 to = reserve_sfa_size(sfa, from->nla_len, log); 3057 if (IS_ERR(to)) 3058 return PTR_ERR(to); 3059 3060 memcpy(to, from, totlen); 3061 return 0; 3062 } 3063 3064 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 3065 const struct sw_flow_key *key, 3066 struct sw_flow_actions **sfa, 3067 __be16 eth_type, __be16 vlan_tci, 3068 u32 mpls_label_count, bool log) 3069 { 3070 u8 mac_proto = ovs_key_mac_proto(key); 3071 const struct nlattr *a; 3072 int rem, err; 3073 3074 nla_for_each_nested(a, attr, rem) { 3075 /* Expected argument lengths, (u32)-1 for variable length. */ 3076 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = { 3077 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32), 3078 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32), 3079 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1, 3080 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls), 3081 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16), 3082 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan), 3083 [OVS_ACTION_ATTR_POP_VLAN] = 0, 3084 [OVS_ACTION_ATTR_SET] = (u32)-1, 3085 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1, 3086 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1, 3087 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash), 3088 [OVS_ACTION_ATTR_CT] = (u32)-1, 3089 [OVS_ACTION_ATTR_CT_CLEAR] = 0, 3090 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc), 3091 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth), 3092 [OVS_ACTION_ATTR_POP_ETH] = 0, 3093 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1, 3094 [OVS_ACTION_ATTR_POP_NSH] = 0, 3095 [OVS_ACTION_ATTR_METER] = sizeof(u32), 3096 [OVS_ACTION_ATTR_CLONE] = (u32)-1, 3097 [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1, 3098 [OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls), 3099 [OVS_ACTION_ATTR_DEC_TTL] = (u32)-1, 3100 }; 3101 const struct ovs_action_push_vlan *vlan; 3102 int type = nla_type(a); 3103 bool skip_copy; 3104 3105 if (type > OVS_ACTION_ATTR_MAX || 3106 (action_lens[type] != nla_len(a) && 3107 action_lens[type] != (u32)-1)) 3108 return -EINVAL; 3109 3110 skip_copy = false; 3111 switch (type) { 3112 case OVS_ACTION_ATTR_UNSPEC: 3113 return -EINVAL; 3114 3115 case OVS_ACTION_ATTR_USERSPACE: 3116 err = validate_userspace(a); 3117 if (err) 3118 return err; 3119 break; 3120 3121 case OVS_ACTION_ATTR_OUTPUT: 3122 if (nla_get_u32(a) >= DP_MAX_PORTS) 3123 return -EINVAL; 3124 break; 3125 3126 case OVS_ACTION_ATTR_TRUNC: { 3127 const struct ovs_action_trunc *trunc = nla_data(a); 3128 3129 if (trunc->max_len < ETH_HLEN) 3130 return -EINVAL; 3131 break; 3132 } 3133 3134 case OVS_ACTION_ATTR_HASH: { 3135 const struct ovs_action_hash *act_hash = nla_data(a); 3136 3137 switch (act_hash->hash_alg) { 3138 case OVS_HASH_ALG_L4: 3139 break; 3140 default: 3141 return -EINVAL; 3142 } 3143 3144 break; 3145 } 3146 3147 case OVS_ACTION_ATTR_POP_VLAN: 3148 if (mac_proto != MAC_PROTO_ETHERNET) 3149 return -EINVAL; 3150 vlan_tci = htons(0); 3151 break; 3152 3153 case OVS_ACTION_ATTR_PUSH_VLAN: 3154 if (mac_proto != MAC_PROTO_ETHERNET) 3155 return -EINVAL; 3156 vlan = nla_data(a); 3157 if (!eth_type_vlan(vlan->vlan_tpid)) 3158 return -EINVAL; 3159 if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK))) 3160 return -EINVAL; 3161 vlan_tci = vlan->vlan_tci; 3162 break; 3163 3164 case OVS_ACTION_ATTR_RECIRC: 3165 break; 3166 3167 case OVS_ACTION_ATTR_ADD_MPLS: { 3168 const struct ovs_action_add_mpls *mpls = nla_data(a); 3169 3170 if (!eth_p_mpls(mpls->mpls_ethertype)) 3171 return -EINVAL; 3172 3173 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) { 3174 if (vlan_tci & htons(VLAN_CFI_MASK) || 3175 (eth_type != htons(ETH_P_IP) && 3176 eth_type != htons(ETH_P_IPV6) && 3177 eth_type != htons(ETH_P_ARP) && 3178 eth_type != htons(ETH_P_RARP) && 3179 !eth_p_mpls(eth_type))) 3180 return -EINVAL; 3181 mpls_label_count++; 3182 } else { 3183 if (mac_proto == MAC_PROTO_ETHERNET) { 3184 mpls_label_count = 1; 3185 mac_proto = MAC_PROTO_NONE; 3186 } else { 3187 mpls_label_count++; 3188 } 3189 } 3190 eth_type = mpls->mpls_ethertype; 3191 break; 3192 } 3193 3194 case OVS_ACTION_ATTR_PUSH_MPLS: { 3195 const struct ovs_action_push_mpls *mpls = nla_data(a); 3196 3197 if (!eth_p_mpls(mpls->mpls_ethertype)) 3198 return -EINVAL; 3199 /* Prohibit push MPLS other than to a white list 3200 * for packets that have a known tag order. 3201 */ 3202 if (vlan_tci & htons(VLAN_CFI_MASK) || 3203 (eth_type != htons(ETH_P_IP) && 3204 eth_type != htons(ETH_P_IPV6) && 3205 eth_type != htons(ETH_P_ARP) && 3206 eth_type != htons(ETH_P_RARP) && 3207 !eth_p_mpls(eth_type))) 3208 return -EINVAL; 3209 eth_type = mpls->mpls_ethertype; 3210 mpls_label_count++; 3211 break; 3212 } 3213 3214 case OVS_ACTION_ATTR_POP_MPLS: { 3215 __be16 proto; 3216 if (vlan_tci & htons(VLAN_CFI_MASK) || 3217 !eth_p_mpls(eth_type)) 3218 return -EINVAL; 3219 3220 /* Disallow subsequent L2.5+ set actions and mpls_pop 3221 * actions once the last MPLS label in the packet is 3222 * is popped as there is no check here to ensure that 3223 * the new eth type is valid and thus set actions could 3224 * write off the end of the packet or otherwise corrupt 3225 * it. 3226 * 3227 * Support for these actions is planned using packet 3228 * recirculation. 3229 */ 3230 proto = nla_get_be16(a); 3231 3232 if (proto == htons(ETH_P_TEB) && 3233 mac_proto != MAC_PROTO_NONE) 3234 return -EINVAL; 3235 3236 mpls_label_count--; 3237 3238 if (!eth_p_mpls(proto) || !mpls_label_count) 3239 eth_type = htons(0); 3240 else 3241 eth_type = proto; 3242 3243 break; 3244 } 3245 3246 case OVS_ACTION_ATTR_SET: 3247 err = validate_set(a, key, sfa, 3248 &skip_copy, mac_proto, eth_type, 3249 false, log); 3250 if (err) 3251 return err; 3252 break; 3253 3254 case OVS_ACTION_ATTR_SET_MASKED: 3255 err = validate_set(a, key, sfa, 3256 &skip_copy, mac_proto, eth_type, 3257 true, log); 3258 if (err) 3259 return err; 3260 break; 3261 3262 case OVS_ACTION_ATTR_SAMPLE: { 3263 bool last = nla_is_last(a, rem); 3264 3265 err = validate_and_copy_sample(net, a, key, sfa, 3266 eth_type, vlan_tci, 3267 mpls_label_count, 3268 log, last); 3269 if (err) 3270 return err; 3271 skip_copy = true; 3272 break; 3273 } 3274 3275 case OVS_ACTION_ATTR_CT: 3276 err = ovs_ct_copy_action(net, a, key, sfa, log); 3277 if (err) 3278 return err; 3279 skip_copy = true; 3280 break; 3281 3282 case OVS_ACTION_ATTR_CT_CLEAR: 3283 break; 3284 3285 case OVS_ACTION_ATTR_PUSH_ETH: 3286 /* Disallow pushing an Ethernet header if one 3287 * is already present */ 3288 if (mac_proto != MAC_PROTO_NONE) 3289 return -EINVAL; 3290 mac_proto = MAC_PROTO_ETHERNET; 3291 break; 3292 3293 case OVS_ACTION_ATTR_POP_ETH: 3294 if (mac_proto != MAC_PROTO_ETHERNET) 3295 return -EINVAL; 3296 if (vlan_tci & htons(VLAN_CFI_MASK)) 3297 return -EINVAL; 3298 mac_proto = MAC_PROTO_NONE; 3299 break; 3300 3301 case OVS_ACTION_ATTR_PUSH_NSH: 3302 if (mac_proto != MAC_PROTO_ETHERNET) { 3303 u8 next_proto; 3304 3305 next_proto = tun_p_from_eth_p(eth_type); 3306 if (!next_proto) 3307 return -EINVAL; 3308 } 3309 mac_proto = MAC_PROTO_NONE; 3310 if (!validate_nsh(nla_data(a), false, true, true)) 3311 return -EINVAL; 3312 break; 3313 3314 case OVS_ACTION_ATTR_POP_NSH: { 3315 __be16 inner_proto; 3316 3317 if (eth_type != htons(ETH_P_NSH)) 3318 return -EINVAL; 3319 inner_proto = tun_p_to_eth_p(key->nsh.base.np); 3320 if (!inner_proto) 3321 return -EINVAL; 3322 if (key->nsh.base.np == TUN_P_ETHERNET) 3323 mac_proto = MAC_PROTO_ETHERNET; 3324 else 3325 mac_proto = MAC_PROTO_NONE; 3326 break; 3327 } 3328 3329 case OVS_ACTION_ATTR_METER: 3330 /* Non-existent meters are simply ignored. */ 3331 break; 3332 3333 case OVS_ACTION_ATTR_CLONE: { 3334 bool last = nla_is_last(a, rem); 3335 3336 err = validate_and_copy_clone(net, a, key, sfa, 3337 eth_type, vlan_tci, 3338 mpls_label_count, 3339 log, last); 3340 if (err) 3341 return err; 3342 skip_copy = true; 3343 break; 3344 } 3345 3346 case OVS_ACTION_ATTR_CHECK_PKT_LEN: { 3347 bool last = nla_is_last(a, rem); 3348 3349 err = validate_and_copy_check_pkt_len(net, a, key, sfa, 3350 eth_type, 3351 vlan_tci, 3352 mpls_label_count, 3353 log, last); 3354 if (err) 3355 return err; 3356 skip_copy = true; 3357 break; 3358 } 3359 3360 case OVS_ACTION_ATTR_DEC_TTL: 3361 err = validate_and_copy_dec_ttl(net, a, key, sfa, 3362 eth_type, vlan_tci, 3363 mpls_label_count, log); 3364 if (err) 3365 return err; 3366 skip_copy = true; 3367 break; 3368 3369 default: 3370 OVS_NLERR(log, "Unknown Action type %d", type); 3371 return -EINVAL; 3372 } 3373 if (!skip_copy) { 3374 err = copy_action(a, sfa, log); 3375 if (err) 3376 return err; 3377 } 3378 } 3379 3380 if (rem > 0) 3381 return -EINVAL; 3382 3383 return 0; 3384 } 3385 3386 /* 'key' must be the masked key. */ 3387 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr, 3388 const struct sw_flow_key *key, 3389 struct sw_flow_actions **sfa, bool log) 3390 { 3391 int err; 3392 u32 mpls_label_count = 0; 3393 3394 *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE)); 3395 if (IS_ERR(*sfa)) 3396 return PTR_ERR(*sfa); 3397 3398 if (eth_p_mpls(key->eth.type)) 3399 mpls_label_count = hweight_long(key->mpls.num_labels_mask); 3400 3401 (*sfa)->orig_len = nla_len(attr); 3402 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type, 3403 key->eth.vlan.tci, mpls_label_count, log); 3404 if (err) 3405 ovs_nla_free_flow_actions(*sfa); 3406 3407 return err; 3408 } 3409 3410 static int sample_action_to_attr(const struct nlattr *attr, 3411 struct sk_buff *skb) 3412 { 3413 struct nlattr *start, *ac_start = NULL, *sample_arg; 3414 int err = 0, rem = nla_len(attr); 3415 const struct sample_arg *arg; 3416 struct nlattr *actions; 3417 3418 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE); 3419 if (!start) 3420 return -EMSGSIZE; 3421 3422 sample_arg = nla_data(attr); 3423 arg = nla_data(sample_arg); 3424 actions = nla_next(sample_arg, &rem); 3425 3426 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) { 3427 err = -EMSGSIZE; 3428 goto out; 3429 } 3430 3431 ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS); 3432 if (!ac_start) { 3433 err = -EMSGSIZE; 3434 goto out; 3435 } 3436 3437 err = ovs_nla_put_actions(actions, rem, skb); 3438 3439 out: 3440 if (err) { 3441 nla_nest_cancel(skb, ac_start); 3442 nla_nest_cancel(skb, start); 3443 } else { 3444 nla_nest_end(skb, ac_start); 3445 nla_nest_end(skb, start); 3446 } 3447 3448 return err; 3449 } 3450 3451 static int clone_action_to_attr(const struct nlattr *attr, 3452 struct sk_buff *skb) 3453 { 3454 struct nlattr *start; 3455 int err = 0, rem = nla_len(attr); 3456 3457 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE); 3458 if (!start) 3459 return -EMSGSIZE; 3460 3461 /* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */ 3462 attr = nla_next(nla_data(attr), &rem); 3463 err = ovs_nla_put_actions(attr, rem, skb); 3464 3465 if (err) 3466 nla_nest_cancel(skb, start); 3467 else 3468 nla_nest_end(skb, start); 3469 3470 return err; 3471 } 3472 3473 static int check_pkt_len_action_to_attr(const struct nlattr *attr, 3474 struct sk_buff *skb) 3475 { 3476 struct nlattr *start, *ac_start = NULL; 3477 const struct check_pkt_len_arg *arg; 3478 const struct nlattr *a, *cpl_arg; 3479 int err = 0, rem = nla_len(attr); 3480 3481 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN); 3482 if (!start) 3483 return -EMSGSIZE; 3484 3485 /* The first nested attribute in 'attr' is always 3486 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. 3487 */ 3488 cpl_arg = nla_data(attr); 3489 arg = nla_data(cpl_arg); 3490 3491 if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) { 3492 err = -EMSGSIZE; 3493 goto out; 3494 } 3495 3496 /* Second nested attribute in 'attr' is always 3497 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. 3498 */ 3499 a = nla_next(cpl_arg, &rem); 3500 ac_start = nla_nest_start_noflag(skb, 3501 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL); 3502 if (!ac_start) { 3503 err = -EMSGSIZE; 3504 goto out; 3505 } 3506 3507 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 3508 if (err) { 3509 nla_nest_cancel(skb, ac_start); 3510 goto out; 3511 } else { 3512 nla_nest_end(skb, ac_start); 3513 } 3514 3515 /* Third nested attribute in 'attr' is always 3516 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER. 3517 */ 3518 a = nla_next(a, &rem); 3519 ac_start = nla_nest_start_noflag(skb, 3520 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER); 3521 if (!ac_start) { 3522 err = -EMSGSIZE; 3523 goto out; 3524 } 3525 3526 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 3527 if (err) { 3528 nla_nest_cancel(skb, ac_start); 3529 goto out; 3530 } else { 3531 nla_nest_end(skb, ac_start); 3532 } 3533 3534 nla_nest_end(skb, start); 3535 return 0; 3536 3537 out: 3538 nla_nest_cancel(skb, start); 3539 return err; 3540 } 3541 3542 static int dec_ttl_action_to_attr(const struct nlattr *attr, 3543 struct sk_buff *skb) 3544 { 3545 struct nlattr *start, *action_start; 3546 const struct nlattr *a; 3547 int err = 0, rem; 3548 3549 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL); 3550 if (!start) 3551 return -EMSGSIZE; 3552 3553 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) { 3554 switch (nla_type(a)) { 3555 case OVS_DEC_TTL_ATTR_ACTION: 3556 3557 action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION); 3558 if (!action_start) { 3559 err = -EMSGSIZE; 3560 goto out; 3561 } 3562 3563 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb); 3564 if (err) 3565 goto out; 3566 3567 nla_nest_end(skb, action_start); 3568 break; 3569 3570 default: 3571 /* Ignore all other option to be future compatible */ 3572 break; 3573 } 3574 } 3575 3576 nla_nest_end(skb, start); 3577 return 0; 3578 3579 out: 3580 nla_nest_cancel(skb, start); 3581 return err; 3582 } 3583 3584 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb) 3585 { 3586 const struct nlattr *ovs_key = nla_data(a); 3587 int key_type = nla_type(ovs_key); 3588 struct nlattr *start; 3589 int err; 3590 3591 switch (key_type) { 3592 case OVS_KEY_ATTR_TUNNEL_INFO: { 3593 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key); 3594 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info; 3595 3596 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET); 3597 if (!start) 3598 return -EMSGSIZE; 3599 3600 err = ip_tun_to_nlattr(skb, &tun_info->key, 3601 ip_tunnel_info_opts(tun_info), 3602 tun_info->options_len, 3603 ip_tunnel_info_af(tun_info), tun_info->mode); 3604 if (err) 3605 return err; 3606 nla_nest_end(skb, start); 3607 break; 3608 } 3609 default: 3610 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key)) 3611 return -EMSGSIZE; 3612 break; 3613 } 3614 3615 return 0; 3616 } 3617 3618 static int masked_set_action_to_set_action_attr(const struct nlattr *a, 3619 struct sk_buff *skb) 3620 { 3621 const struct nlattr *ovs_key = nla_data(a); 3622 struct nlattr *nla; 3623 size_t key_len = nla_len(ovs_key) / 2; 3624 3625 /* Revert the conversion we did from a non-masked set action to 3626 * masked set action. 3627 */ 3628 nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET); 3629 if (!nla) 3630 return -EMSGSIZE; 3631 3632 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key))) 3633 return -EMSGSIZE; 3634 3635 nla_nest_end(skb, nla); 3636 return 0; 3637 } 3638 3639 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb) 3640 { 3641 const struct nlattr *a; 3642 int rem, err; 3643 3644 nla_for_each_attr(a, attr, len, rem) { 3645 int type = nla_type(a); 3646 3647 switch (type) { 3648 case OVS_ACTION_ATTR_SET: 3649 err = set_action_to_attr(a, skb); 3650 if (err) 3651 return err; 3652 break; 3653 3654 case OVS_ACTION_ATTR_SET_TO_MASKED: 3655 err = masked_set_action_to_set_action_attr(a, skb); 3656 if (err) 3657 return err; 3658 break; 3659 3660 case OVS_ACTION_ATTR_SAMPLE: 3661 err = sample_action_to_attr(a, skb); 3662 if (err) 3663 return err; 3664 break; 3665 3666 case OVS_ACTION_ATTR_CT: 3667 err = ovs_ct_action_to_attr(nla_data(a), skb); 3668 if (err) 3669 return err; 3670 break; 3671 3672 case OVS_ACTION_ATTR_CLONE: 3673 err = clone_action_to_attr(a, skb); 3674 if (err) 3675 return err; 3676 break; 3677 3678 case OVS_ACTION_ATTR_CHECK_PKT_LEN: 3679 err = check_pkt_len_action_to_attr(a, skb); 3680 if (err) 3681 return err; 3682 break; 3683 3684 case OVS_ACTION_ATTR_DEC_TTL: 3685 err = dec_ttl_action_to_attr(a, skb); 3686 if (err) 3687 return err; 3688 break; 3689 3690 default: 3691 if (nla_put(skb, type, nla_len(a), nla_data(a))) 3692 return -EMSGSIZE; 3693 break; 3694 } 3695 } 3696 3697 return 0; 3698 } 3699