1 /* 2 * Copyright (c) 2007-2014 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 16 * 02110-1301, USA 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/if_ether.h> 23 #include <linux/if_vlan.h> 24 #include <net/llc_pdu.h> 25 #include <linux/kernel.h> 26 #include <linux/jhash.h> 27 #include <linux/jiffies.h> 28 #include <linux/llc.h> 29 #include <linux/module.h> 30 #include <linux/in.h> 31 #include <linux/rcupdate.h> 32 #include <linux/if_arp.h> 33 #include <linux/ip.h> 34 #include <linux/ipv6.h> 35 #include <linux/mpls.h> 36 #include <linux/sctp.h> 37 #include <linux/smp.h> 38 #include <linux/tcp.h> 39 #include <linux/udp.h> 40 #include <linux/icmp.h> 41 #include <linux/icmpv6.h> 42 #include <linux/rculist.h> 43 #include <net/ip.h> 44 #include <net/ip_tunnels.h> 45 #include <net/ipv6.h> 46 #include <net/mpls.h> 47 #include <net/ndisc.h> 48 49 #include "datapath.h" 50 #include "flow.h" 51 #include "flow_netlink.h" 52 #include "conntrack.h" 53 54 u64 ovs_flow_used_time(unsigned long flow_jiffies) 55 { 56 struct timespec cur_ts; 57 u64 cur_ms, idle_ms; 58 59 ktime_get_ts(&cur_ts); 60 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); 61 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + 62 cur_ts.tv_nsec / NSEC_PER_MSEC; 63 64 return cur_ms - idle_ms; 65 } 66 67 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF)) 68 69 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags, 70 const struct sk_buff *skb) 71 { 72 struct flow_stats *stats; 73 int node = numa_node_id(); 74 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0); 75 76 stats = rcu_dereference(flow->stats[node]); 77 78 /* Check if already have node-specific stats. */ 79 if (likely(stats)) { 80 spin_lock(&stats->lock); 81 /* Mark if we write on the pre-allocated stats. */ 82 if (node == 0 && unlikely(flow->stats_last_writer != node)) 83 flow->stats_last_writer = node; 84 } else { 85 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */ 86 spin_lock(&stats->lock); 87 88 /* If the current NUMA-node is the only writer on the 89 * pre-allocated stats keep using them. 90 */ 91 if (unlikely(flow->stats_last_writer != node)) { 92 /* A previous locker may have already allocated the 93 * stats, so we need to check again. If node-specific 94 * stats were already allocated, we update the pre- 95 * allocated stats as we have already locked them. 96 */ 97 if (likely(flow->stats_last_writer != NUMA_NO_NODE) 98 && likely(!rcu_access_pointer(flow->stats[node]))) { 99 /* Try to allocate node-specific stats. */ 100 struct flow_stats *new_stats; 101 102 new_stats = 103 kmem_cache_alloc_node(flow_stats_cache, 104 GFP_NOWAIT | 105 __GFP_THISNODE | 106 __GFP_NOWARN | 107 __GFP_NOMEMALLOC, 108 node); 109 if (likely(new_stats)) { 110 new_stats->used = jiffies; 111 new_stats->packet_count = 1; 112 new_stats->byte_count = len; 113 new_stats->tcp_flags = tcp_flags; 114 spin_lock_init(&new_stats->lock); 115 116 rcu_assign_pointer(flow->stats[node], 117 new_stats); 118 goto unlock; 119 } 120 } 121 flow->stats_last_writer = node; 122 } 123 } 124 125 stats->used = jiffies; 126 stats->packet_count++; 127 stats->byte_count += len; 128 stats->tcp_flags |= tcp_flags; 129 unlock: 130 spin_unlock(&stats->lock); 131 } 132 133 /* Must be called with rcu_read_lock or ovs_mutex. */ 134 void ovs_flow_stats_get(const struct sw_flow *flow, 135 struct ovs_flow_stats *ovs_stats, 136 unsigned long *used, __be16 *tcp_flags) 137 { 138 int node; 139 140 *used = 0; 141 *tcp_flags = 0; 142 memset(ovs_stats, 0, sizeof(*ovs_stats)); 143 144 for_each_node(node) { 145 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]); 146 147 if (stats) { 148 /* Local CPU may write on non-local stats, so we must 149 * block bottom-halves here. 150 */ 151 spin_lock_bh(&stats->lock); 152 if (!*used || time_after(stats->used, *used)) 153 *used = stats->used; 154 *tcp_flags |= stats->tcp_flags; 155 ovs_stats->n_packets += stats->packet_count; 156 ovs_stats->n_bytes += stats->byte_count; 157 spin_unlock_bh(&stats->lock); 158 } 159 } 160 } 161 162 /* Called with ovs_mutex. */ 163 void ovs_flow_stats_clear(struct sw_flow *flow) 164 { 165 int node; 166 167 for_each_node(node) { 168 struct flow_stats *stats = ovsl_dereference(flow->stats[node]); 169 170 if (stats) { 171 spin_lock_bh(&stats->lock); 172 stats->used = 0; 173 stats->packet_count = 0; 174 stats->byte_count = 0; 175 stats->tcp_flags = 0; 176 spin_unlock_bh(&stats->lock); 177 } 178 } 179 } 180 181 static int check_header(struct sk_buff *skb, int len) 182 { 183 if (unlikely(skb->len < len)) 184 return -EINVAL; 185 if (unlikely(!pskb_may_pull(skb, len))) 186 return -ENOMEM; 187 return 0; 188 } 189 190 static bool arphdr_ok(struct sk_buff *skb) 191 { 192 return pskb_may_pull(skb, skb_network_offset(skb) + 193 sizeof(struct arp_eth_header)); 194 } 195 196 static int check_iphdr(struct sk_buff *skb) 197 { 198 unsigned int nh_ofs = skb_network_offset(skb); 199 unsigned int ip_len; 200 int err; 201 202 err = check_header(skb, nh_ofs + sizeof(struct iphdr)); 203 if (unlikely(err)) 204 return err; 205 206 ip_len = ip_hdrlen(skb); 207 if (unlikely(ip_len < sizeof(struct iphdr) || 208 skb->len < nh_ofs + ip_len)) 209 return -EINVAL; 210 211 skb_set_transport_header(skb, nh_ofs + ip_len); 212 return 0; 213 } 214 215 static bool tcphdr_ok(struct sk_buff *skb) 216 { 217 int th_ofs = skb_transport_offset(skb); 218 int tcp_len; 219 220 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) 221 return false; 222 223 tcp_len = tcp_hdrlen(skb); 224 if (unlikely(tcp_len < sizeof(struct tcphdr) || 225 skb->len < th_ofs + tcp_len)) 226 return false; 227 228 return true; 229 } 230 231 static bool udphdr_ok(struct sk_buff *skb) 232 { 233 return pskb_may_pull(skb, skb_transport_offset(skb) + 234 sizeof(struct udphdr)); 235 } 236 237 static bool sctphdr_ok(struct sk_buff *skb) 238 { 239 return pskb_may_pull(skb, skb_transport_offset(skb) + 240 sizeof(struct sctphdr)); 241 } 242 243 static bool icmphdr_ok(struct sk_buff *skb) 244 { 245 return pskb_may_pull(skb, skb_transport_offset(skb) + 246 sizeof(struct icmphdr)); 247 } 248 249 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) 250 { 251 unsigned int nh_ofs = skb_network_offset(skb); 252 unsigned int nh_len; 253 int payload_ofs; 254 struct ipv6hdr *nh; 255 uint8_t nexthdr; 256 __be16 frag_off; 257 int err; 258 259 err = check_header(skb, nh_ofs + sizeof(*nh)); 260 if (unlikely(err)) 261 return err; 262 263 nh = ipv6_hdr(skb); 264 nexthdr = nh->nexthdr; 265 payload_ofs = (u8 *)(nh + 1) - skb->data; 266 267 key->ip.proto = NEXTHDR_NONE; 268 key->ip.tos = ipv6_get_dsfield(nh); 269 key->ip.ttl = nh->hop_limit; 270 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 271 key->ipv6.addr.src = nh->saddr; 272 key->ipv6.addr.dst = nh->daddr; 273 274 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); 275 if (unlikely(payload_ofs < 0)) 276 return -EINVAL; 277 278 if (frag_off) { 279 if (frag_off & htons(~0x7)) 280 key->ip.frag = OVS_FRAG_TYPE_LATER; 281 else 282 key->ip.frag = OVS_FRAG_TYPE_FIRST; 283 } else { 284 key->ip.frag = OVS_FRAG_TYPE_NONE; 285 } 286 287 nh_len = payload_ofs - nh_ofs; 288 skb_set_transport_header(skb, nh_ofs + nh_len); 289 key->ip.proto = nexthdr; 290 return nh_len; 291 } 292 293 static bool icmp6hdr_ok(struct sk_buff *skb) 294 { 295 return pskb_may_pull(skb, skb_transport_offset(skb) + 296 sizeof(struct icmp6hdr)); 297 } 298 299 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) 300 { 301 struct qtag_prefix { 302 __be16 eth_type; /* ETH_P_8021Q */ 303 __be16 tci; 304 }; 305 struct qtag_prefix *qp; 306 307 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) 308 return 0; 309 310 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + 311 sizeof(__be16)))) 312 return -ENOMEM; 313 314 qp = (struct qtag_prefix *) skb->data; 315 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); 316 __skb_pull(skb, sizeof(struct qtag_prefix)); 317 318 return 0; 319 } 320 321 static __be16 parse_ethertype(struct sk_buff *skb) 322 { 323 struct llc_snap_hdr { 324 u8 dsap; /* Always 0xAA */ 325 u8 ssap; /* Always 0xAA */ 326 u8 ctrl; 327 u8 oui[3]; 328 __be16 ethertype; 329 }; 330 struct llc_snap_hdr *llc; 331 __be16 proto; 332 333 proto = *(__be16 *) skb->data; 334 __skb_pull(skb, sizeof(__be16)); 335 336 if (eth_proto_is_802_3(proto)) 337 return proto; 338 339 if (skb->len < sizeof(struct llc_snap_hdr)) 340 return htons(ETH_P_802_2); 341 342 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) 343 return htons(0); 344 345 llc = (struct llc_snap_hdr *) skb->data; 346 if (llc->dsap != LLC_SAP_SNAP || 347 llc->ssap != LLC_SAP_SNAP || 348 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) 349 return htons(ETH_P_802_2); 350 351 __skb_pull(skb, sizeof(struct llc_snap_hdr)); 352 353 if (eth_proto_is_802_3(llc->ethertype)) 354 return llc->ethertype; 355 356 return htons(ETH_P_802_2); 357 } 358 359 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, 360 int nh_len) 361 { 362 struct icmp6hdr *icmp = icmp6_hdr(skb); 363 364 /* The ICMPv6 type and code fields use the 16-bit transport port 365 * fields, so we need to store them in 16-bit network byte order. 366 */ 367 key->tp.src = htons(icmp->icmp6_type); 368 key->tp.dst = htons(icmp->icmp6_code); 369 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd)); 370 371 if (icmp->icmp6_code == 0 && 372 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || 373 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { 374 int icmp_len = skb->len - skb_transport_offset(skb); 375 struct nd_msg *nd; 376 int offset; 377 378 /* In order to process neighbor discovery options, we need the 379 * entire packet. 380 */ 381 if (unlikely(icmp_len < sizeof(*nd))) 382 return 0; 383 384 if (unlikely(skb_linearize(skb))) 385 return -ENOMEM; 386 387 nd = (struct nd_msg *)skb_transport_header(skb); 388 key->ipv6.nd.target = nd->target; 389 390 icmp_len -= sizeof(*nd); 391 offset = 0; 392 while (icmp_len >= 8) { 393 struct nd_opt_hdr *nd_opt = 394 (struct nd_opt_hdr *)(nd->opt + offset); 395 int opt_len = nd_opt->nd_opt_len * 8; 396 397 if (unlikely(!opt_len || opt_len > icmp_len)) 398 return 0; 399 400 /* Store the link layer address if the appropriate 401 * option is provided. It is considered an error if 402 * the same link layer option is specified twice. 403 */ 404 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR 405 && opt_len == 8) { 406 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) 407 goto invalid; 408 ether_addr_copy(key->ipv6.nd.sll, 409 &nd->opt[offset+sizeof(*nd_opt)]); 410 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR 411 && opt_len == 8) { 412 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) 413 goto invalid; 414 ether_addr_copy(key->ipv6.nd.tll, 415 &nd->opt[offset+sizeof(*nd_opt)]); 416 } 417 418 icmp_len -= opt_len; 419 offset += opt_len; 420 } 421 } 422 423 return 0; 424 425 invalid: 426 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); 427 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); 428 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); 429 430 return 0; 431 } 432 433 /** 434 * key_extract - extracts a flow key from an Ethernet frame. 435 * @skb: sk_buff that contains the frame, with skb->data pointing to the 436 * Ethernet header 437 * @key: output flow key 438 * 439 * The caller must ensure that skb->len >= ETH_HLEN. 440 * 441 * Returns 0 if successful, otherwise a negative errno value. 442 * 443 * Initializes @skb header pointers as follows: 444 * 445 * - skb->mac_header: the Ethernet header. 446 * 447 * - skb->network_header: just past the Ethernet header, or just past the 448 * VLAN header, to the first byte of the Ethernet payload. 449 * 450 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 451 * on output, then just past the IP header, if one is present and 452 * of a correct length, otherwise the same as skb->network_header. 453 * For other key->eth.type values it is left untouched. 454 */ 455 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key) 456 { 457 int error; 458 struct ethhdr *eth; 459 460 /* Flags are always used as part of stats */ 461 key->tp.flags = 0; 462 463 skb_reset_mac_header(skb); 464 465 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet 466 * header in the linear data area. 467 */ 468 eth = eth_hdr(skb); 469 ether_addr_copy(key->eth.src, eth->h_source); 470 ether_addr_copy(key->eth.dst, eth->h_dest); 471 472 __skb_pull(skb, 2 * ETH_ALEN); 473 /* We are going to push all headers that we pull, so no need to 474 * update skb->csum here. 475 */ 476 477 key->eth.tci = 0; 478 if (skb_vlan_tag_present(skb)) 479 key->eth.tci = htons(skb->vlan_tci); 480 else if (eth->h_proto == htons(ETH_P_8021Q)) 481 if (unlikely(parse_vlan(skb, key))) 482 return -ENOMEM; 483 484 key->eth.type = parse_ethertype(skb); 485 if (unlikely(key->eth.type == htons(0))) 486 return -ENOMEM; 487 488 skb_reset_network_header(skb); 489 skb_reset_mac_len(skb); 490 __skb_push(skb, skb->data - skb_mac_header(skb)); 491 492 /* Network layer. */ 493 if (key->eth.type == htons(ETH_P_IP)) { 494 struct iphdr *nh; 495 __be16 offset; 496 497 error = check_iphdr(skb); 498 if (unlikely(error)) { 499 memset(&key->ip, 0, sizeof(key->ip)); 500 memset(&key->ipv4, 0, sizeof(key->ipv4)); 501 if (error == -EINVAL) { 502 skb->transport_header = skb->network_header; 503 error = 0; 504 } 505 return error; 506 } 507 508 nh = ip_hdr(skb); 509 key->ipv4.addr.src = nh->saddr; 510 key->ipv4.addr.dst = nh->daddr; 511 512 key->ip.proto = nh->protocol; 513 key->ip.tos = nh->tos; 514 key->ip.ttl = nh->ttl; 515 516 offset = nh->frag_off & htons(IP_OFFSET); 517 if (offset) { 518 key->ip.frag = OVS_FRAG_TYPE_LATER; 519 return 0; 520 } 521 if (nh->frag_off & htons(IP_MF) || 522 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 523 key->ip.frag = OVS_FRAG_TYPE_FIRST; 524 else 525 key->ip.frag = OVS_FRAG_TYPE_NONE; 526 527 /* Transport layer. */ 528 if (key->ip.proto == IPPROTO_TCP) { 529 if (tcphdr_ok(skb)) { 530 struct tcphdr *tcp = tcp_hdr(skb); 531 key->tp.src = tcp->source; 532 key->tp.dst = tcp->dest; 533 key->tp.flags = TCP_FLAGS_BE16(tcp); 534 } else { 535 memset(&key->tp, 0, sizeof(key->tp)); 536 } 537 538 } else if (key->ip.proto == IPPROTO_UDP) { 539 if (udphdr_ok(skb)) { 540 struct udphdr *udp = udp_hdr(skb); 541 key->tp.src = udp->source; 542 key->tp.dst = udp->dest; 543 } else { 544 memset(&key->tp, 0, sizeof(key->tp)); 545 } 546 } else if (key->ip.proto == IPPROTO_SCTP) { 547 if (sctphdr_ok(skb)) { 548 struct sctphdr *sctp = sctp_hdr(skb); 549 key->tp.src = sctp->source; 550 key->tp.dst = sctp->dest; 551 } else { 552 memset(&key->tp, 0, sizeof(key->tp)); 553 } 554 } else if (key->ip.proto == IPPROTO_ICMP) { 555 if (icmphdr_ok(skb)) { 556 struct icmphdr *icmp = icmp_hdr(skb); 557 /* The ICMP type and code fields use the 16-bit 558 * transport port fields, so we need to store 559 * them in 16-bit network byte order. */ 560 key->tp.src = htons(icmp->type); 561 key->tp.dst = htons(icmp->code); 562 } else { 563 memset(&key->tp, 0, sizeof(key->tp)); 564 } 565 } 566 567 } else if (key->eth.type == htons(ETH_P_ARP) || 568 key->eth.type == htons(ETH_P_RARP)) { 569 struct arp_eth_header *arp; 570 bool arp_available = arphdr_ok(skb); 571 572 arp = (struct arp_eth_header *)skb_network_header(skb); 573 574 if (arp_available && 575 arp->ar_hrd == htons(ARPHRD_ETHER) && 576 arp->ar_pro == htons(ETH_P_IP) && 577 arp->ar_hln == ETH_ALEN && 578 arp->ar_pln == 4) { 579 580 /* We only match on the lower 8 bits of the opcode. */ 581 if (ntohs(arp->ar_op) <= 0xff) 582 key->ip.proto = ntohs(arp->ar_op); 583 else 584 key->ip.proto = 0; 585 586 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); 587 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); 588 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha); 589 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha); 590 } else { 591 memset(&key->ip, 0, sizeof(key->ip)); 592 memset(&key->ipv4, 0, sizeof(key->ipv4)); 593 } 594 } else if (eth_p_mpls(key->eth.type)) { 595 size_t stack_len = MPLS_HLEN; 596 597 /* In the presence of an MPLS label stack the end of the L2 598 * header and the beginning of the L3 header differ. 599 * 600 * Advance network_header to the beginning of the L3 601 * header. mac_len corresponds to the end of the L2 header. 602 */ 603 while (1) { 604 __be32 lse; 605 606 error = check_header(skb, skb->mac_len + stack_len); 607 if (unlikely(error)) 608 return 0; 609 610 memcpy(&lse, skb_network_header(skb), MPLS_HLEN); 611 612 if (stack_len == MPLS_HLEN) 613 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN); 614 615 skb_set_network_header(skb, skb->mac_len + stack_len); 616 if (lse & htonl(MPLS_LS_S_MASK)) 617 break; 618 619 stack_len += MPLS_HLEN; 620 } 621 } else if (key->eth.type == htons(ETH_P_IPV6)) { 622 int nh_len; /* IPv6 Header + Extensions */ 623 624 nh_len = parse_ipv6hdr(skb, key); 625 if (unlikely(nh_len < 0)) { 626 memset(&key->ip, 0, sizeof(key->ip)); 627 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr)); 628 if (nh_len == -EINVAL) { 629 skb->transport_header = skb->network_header; 630 error = 0; 631 } else { 632 error = nh_len; 633 } 634 return error; 635 } 636 637 if (key->ip.frag == OVS_FRAG_TYPE_LATER) 638 return 0; 639 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) 640 key->ip.frag = OVS_FRAG_TYPE_FIRST; 641 642 /* Transport layer. */ 643 if (key->ip.proto == NEXTHDR_TCP) { 644 if (tcphdr_ok(skb)) { 645 struct tcphdr *tcp = tcp_hdr(skb); 646 key->tp.src = tcp->source; 647 key->tp.dst = tcp->dest; 648 key->tp.flags = TCP_FLAGS_BE16(tcp); 649 } else { 650 memset(&key->tp, 0, sizeof(key->tp)); 651 } 652 } else if (key->ip.proto == NEXTHDR_UDP) { 653 if (udphdr_ok(skb)) { 654 struct udphdr *udp = udp_hdr(skb); 655 key->tp.src = udp->source; 656 key->tp.dst = udp->dest; 657 } else { 658 memset(&key->tp, 0, sizeof(key->tp)); 659 } 660 } else if (key->ip.proto == NEXTHDR_SCTP) { 661 if (sctphdr_ok(skb)) { 662 struct sctphdr *sctp = sctp_hdr(skb); 663 key->tp.src = sctp->source; 664 key->tp.dst = sctp->dest; 665 } else { 666 memset(&key->tp, 0, sizeof(key->tp)); 667 } 668 } else if (key->ip.proto == NEXTHDR_ICMP) { 669 if (icmp6hdr_ok(skb)) { 670 error = parse_icmpv6(skb, key, nh_len); 671 if (error) 672 return error; 673 } else { 674 memset(&key->tp, 0, sizeof(key->tp)); 675 } 676 } 677 } 678 return 0; 679 } 680 681 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key) 682 { 683 return key_extract(skb, key); 684 } 685 686 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info, 687 struct sk_buff *skb, struct sw_flow_key *key) 688 { 689 /* Extract metadata from packet. */ 690 if (tun_info) { 691 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key)); 692 693 if (tun_info->options) { 694 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) * 695 8)) - 1 696 > sizeof(key->tun_opts)); 697 memcpy(TUN_METADATA_OPTS(key, tun_info->options_len), 698 tun_info->options, tun_info->options_len); 699 key->tun_opts_len = tun_info->options_len; 700 } else { 701 key->tun_opts_len = 0; 702 } 703 } else { 704 key->tun_opts_len = 0; 705 memset(&key->tun_key, 0, sizeof(key->tun_key)); 706 } 707 708 key->phy.priority = skb->priority; 709 key->phy.in_port = OVS_CB(skb)->input_vport->port_no; 710 key->phy.skb_mark = skb->mark; 711 ovs_ct_fill_key(skb, key); 712 key->ovs_flow_hash = 0; 713 key->recirc_id = 0; 714 715 return key_extract(skb, key); 716 } 717 718 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr, 719 struct sk_buff *skb, 720 struct sw_flow_key *key, bool log) 721 { 722 int err; 723 724 memset(key, 0, OVS_SW_FLOW_KEY_METADATA_SIZE); 725 726 /* Extract metadata from netlink attributes. */ 727 err = ovs_nla_get_flow_metadata(net, attr, key, log); 728 if (err) 729 return err; 730 731 return key_extract(skb, key); 732 } 733