xref: /openbmc/linux/net/openvswitch/actions.c (revision 12eb18f7115884b0c1513dda31b0051121116b3a)
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31 
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/checksum.h>
35 #include <net/dsfield.h>
36 #include <net/mpls.h>
37 #include <net/sctp/checksum.h>
38 
39 #include "datapath.h"
40 #include "flow.h"
41 #include "vport.h"
42 
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44 			      struct sw_flow_key *key,
45 			      const struct nlattr *attr, int len);
46 
47 struct deferred_action {
48 	struct sk_buff *skb;
49 	const struct nlattr *actions;
50 
51 	/* Store pkt_key clone when creating deferred action. */
52 	struct sw_flow_key pkt_key;
53 };
54 
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57 	int head;
58 	int tail;
59 	/* Deferred action fifo queue storage. */
60 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62 
63 static struct action_fifo __percpu *action_fifos;
64 static DEFINE_PER_CPU(int, exec_actions_level);
65 
66 static void action_fifo_init(struct action_fifo *fifo)
67 {
68 	fifo->head = 0;
69 	fifo->tail = 0;
70 }
71 
72 static bool action_fifo_is_empty(const struct action_fifo *fifo)
73 {
74 	return (fifo->head == fifo->tail);
75 }
76 
77 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
78 {
79 	if (action_fifo_is_empty(fifo))
80 		return NULL;
81 
82 	return &fifo->fifo[fifo->tail++];
83 }
84 
85 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
86 {
87 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
88 		return NULL;
89 
90 	return &fifo->fifo[fifo->head++];
91 }
92 
93 /* Return true if fifo is not full */
94 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
95 						    const struct sw_flow_key *key,
96 						    const struct nlattr *attr)
97 {
98 	struct action_fifo *fifo;
99 	struct deferred_action *da;
100 
101 	fifo = this_cpu_ptr(action_fifos);
102 	da = action_fifo_put(fifo);
103 	if (da) {
104 		da->skb = skb;
105 		da->actions = attr;
106 		da->pkt_key = *key;
107 	}
108 
109 	return da;
110 }
111 
112 static void invalidate_flow_key(struct sw_flow_key *key)
113 {
114 	key->eth.type = htons(0);
115 }
116 
117 static bool is_flow_key_valid(const struct sw_flow_key *key)
118 {
119 	return !!key->eth.type;
120 }
121 
122 static int make_writable(struct sk_buff *skb, int write_len)
123 {
124 	if (!pskb_may_pull(skb, write_len))
125 		return -ENOMEM;
126 
127 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
128 		return 0;
129 
130 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
131 }
132 
133 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
134 		     const struct ovs_action_push_mpls *mpls)
135 {
136 	__be32 *new_mpls_lse;
137 	struct ethhdr *hdr;
138 
139 	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
140 	if (skb->encapsulation)
141 		return -ENOTSUPP;
142 
143 	if (skb_cow_head(skb, MPLS_HLEN) < 0)
144 		return -ENOMEM;
145 
146 	skb_push(skb, MPLS_HLEN);
147 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
148 		skb->mac_len);
149 	skb_reset_mac_header(skb);
150 
151 	new_mpls_lse = (__be32 *)skb_mpls_header(skb);
152 	*new_mpls_lse = mpls->mpls_lse;
153 
154 	if (skb->ip_summed == CHECKSUM_COMPLETE)
155 		skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
156 							     MPLS_HLEN, 0));
157 
158 	hdr = eth_hdr(skb);
159 	hdr->h_proto = mpls->mpls_ethertype;
160 
161 	skb_set_inner_protocol(skb, skb->protocol);
162 	skb->protocol = mpls->mpls_ethertype;
163 
164 	invalidate_flow_key(key);
165 	return 0;
166 }
167 
168 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
169 		    const __be16 ethertype)
170 {
171 	struct ethhdr *hdr;
172 	int err;
173 
174 	err = make_writable(skb, skb->mac_len + MPLS_HLEN);
175 	if (unlikely(err))
176 		return err;
177 
178 	if (skb->ip_summed == CHECKSUM_COMPLETE)
179 		skb->csum = csum_sub(skb->csum,
180 				     csum_partial(skb_mpls_header(skb),
181 						  MPLS_HLEN, 0));
182 
183 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
184 		skb->mac_len);
185 
186 	__skb_pull(skb, MPLS_HLEN);
187 	skb_reset_mac_header(skb);
188 
189 	/* skb_mpls_header() is used to locate the ethertype
190 	 * field correctly in the presence of VLAN tags.
191 	 */
192 	hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
193 	hdr->h_proto = ethertype;
194 	if (eth_p_mpls(skb->protocol))
195 		skb->protocol = ethertype;
196 
197 	invalidate_flow_key(key);
198 	return 0;
199 }
200 
201 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
202 		    const __be32 *mpls_lse)
203 {
204 	__be32 *stack;
205 	int err;
206 
207 	err = make_writable(skb, skb->mac_len + MPLS_HLEN);
208 	if (unlikely(err))
209 		return err;
210 
211 	stack = (__be32 *)skb_mpls_header(skb);
212 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
213 		__be32 diff[] = { ~(*stack), *mpls_lse };
214 		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
215 					  ~skb->csum);
216 	}
217 
218 	*stack = *mpls_lse;
219 	key->mpls.top_lse = *mpls_lse;
220 	return 0;
221 }
222 
223 /* remove VLAN header from packet and update csum accordingly. */
224 static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
225 {
226 	struct vlan_hdr *vhdr;
227 	int err;
228 
229 	err = make_writable(skb, VLAN_ETH_HLEN);
230 	if (unlikely(err))
231 		return err;
232 
233 	if (skb->ip_summed == CHECKSUM_COMPLETE)
234 		skb->csum = csum_sub(skb->csum, csum_partial(skb->data
235 					+ (2 * ETH_ALEN), VLAN_HLEN, 0));
236 
237 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
238 	*current_tci = vhdr->h_vlan_TCI;
239 
240 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
241 	__skb_pull(skb, VLAN_HLEN);
242 
243 	vlan_set_encap_proto(skb, vhdr);
244 	skb->mac_header += VLAN_HLEN;
245 
246 	if (skb_network_offset(skb) < ETH_HLEN)
247 		skb_set_network_header(skb, ETH_HLEN);
248 
249 	/* Update mac_len for subsequent MPLS actions */
250 	skb_reset_mac_len(skb);
251 	return 0;
252 }
253 
254 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
255 {
256 	__be16 tci;
257 	int err;
258 
259 	if (likely(vlan_tx_tag_present(skb))) {
260 		skb->vlan_tci = 0;
261 	} else {
262 		if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
263 			     skb->len < VLAN_ETH_HLEN))
264 			return 0;
265 
266 		err = __pop_vlan_tci(skb, &tci);
267 		if (err)
268 			return err;
269 	}
270 	/* move next vlan tag to hw accel tag */
271 	if (likely(skb->protocol != htons(ETH_P_8021Q) ||
272 		   skb->len < VLAN_ETH_HLEN)) {
273 		key->eth.tci = 0;
274 		return 0;
275 	}
276 
277 	invalidate_flow_key(key);
278 	err = __pop_vlan_tci(skb, &tci);
279 	if (unlikely(err))
280 		return err;
281 
282 	__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci));
283 	return 0;
284 }
285 
286 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
287 		     const struct ovs_action_push_vlan *vlan)
288 {
289 	if (unlikely(vlan_tx_tag_present(skb))) {
290 		u16 current_tag;
291 
292 		/* push down current VLAN tag */
293 		current_tag = vlan_tx_tag_get(skb);
294 
295 		if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag))
296 			return -ENOMEM;
297 		/* Update mac_len for subsequent MPLS actions */
298 		skb->mac_len += VLAN_HLEN;
299 
300 		if (skb->ip_summed == CHECKSUM_COMPLETE)
301 			skb->csum = csum_add(skb->csum, csum_partial(skb->data
302 					+ (2 * ETH_ALEN), VLAN_HLEN, 0));
303 
304 		invalidate_flow_key(key);
305 	} else {
306 		key->eth.tci = vlan->vlan_tci;
307 	}
308 	__vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
309 	return 0;
310 }
311 
312 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
313 			const struct ovs_key_ethernet *eth_key)
314 {
315 	int err;
316 	err = make_writable(skb, ETH_HLEN);
317 	if (unlikely(err))
318 		return err;
319 
320 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
321 
322 	ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
323 	ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
324 
325 	ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
326 
327 	ether_addr_copy(key->eth.src, eth_key->eth_src);
328 	ether_addr_copy(key->eth.dst, eth_key->eth_dst);
329 	return 0;
330 }
331 
332 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
333 			__be32 *addr, __be32 new_addr)
334 {
335 	int transport_len = skb->len - skb_transport_offset(skb);
336 
337 	if (nh->protocol == IPPROTO_TCP) {
338 		if (likely(transport_len >= sizeof(struct tcphdr)))
339 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
340 						 *addr, new_addr, 1);
341 	} else if (nh->protocol == IPPROTO_UDP) {
342 		if (likely(transport_len >= sizeof(struct udphdr))) {
343 			struct udphdr *uh = udp_hdr(skb);
344 
345 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
346 				inet_proto_csum_replace4(&uh->check, skb,
347 							 *addr, new_addr, 1);
348 				if (!uh->check)
349 					uh->check = CSUM_MANGLED_0;
350 			}
351 		}
352 	}
353 
354 	csum_replace4(&nh->check, *addr, new_addr);
355 	skb_clear_hash(skb);
356 	*addr = new_addr;
357 }
358 
359 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
360 				 __be32 addr[4], const __be32 new_addr[4])
361 {
362 	int transport_len = skb->len - skb_transport_offset(skb);
363 
364 	if (l4_proto == IPPROTO_TCP) {
365 		if (likely(transport_len >= sizeof(struct tcphdr)))
366 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
367 						  addr, new_addr, 1);
368 	} else if (l4_proto == IPPROTO_UDP) {
369 		if (likely(transport_len >= sizeof(struct udphdr))) {
370 			struct udphdr *uh = udp_hdr(skb);
371 
372 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
373 				inet_proto_csum_replace16(&uh->check, skb,
374 							  addr, new_addr, 1);
375 				if (!uh->check)
376 					uh->check = CSUM_MANGLED_0;
377 			}
378 		}
379 	}
380 }
381 
382 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
383 			  __be32 addr[4], const __be32 new_addr[4],
384 			  bool recalculate_csum)
385 {
386 	if (recalculate_csum)
387 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
388 
389 	skb_clear_hash(skb);
390 	memcpy(addr, new_addr, sizeof(__be32[4]));
391 }
392 
393 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
394 {
395 	nh->priority = tc >> 4;
396 	nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
397 }
398 
399 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
400 {
401 	nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
402 	nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
403 	nh->flow_lbl[2] = fl & 0x000000FF;
404 }
405 
406 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
407 {
408 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
409 	nh->ttl = new_ttl;
410 }
411 
412 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
413 		    const struct ovs_key_ipv4 *ipv4_key)
414 {
415 	struct iphdr *nh;
416 	int err;
417 
418 	err = make_writable(skb, skb_network_offset(skb) +
419 				 sizeof(struct iphdr));
420 	if (unlikely(err))
421 		return err;
422 
423 	nh = ip_hdr(skb);
424 
425 	if (ipv4_key->ipv4_src != nh->saddr) {
426 		set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
427 		key->ipv4.addr.src = ipv4_key->ipv4_src;
428 	}
429 
430 	if (ipv4_key->ipv4_dst != nh->daddr) {
431 		set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
432 		key->ipv4.addr.dst = ipv4_key->ipv4_dst;
433 	}
434 
435 	if (ipv4_key->ipv4_tos != nh->tos) {
436 		ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
437 		key->ip.tos = nh->tos;
438 	}
439 
440 	if (ipv4_key->ipv4_ttl != nh->ttl) {
441 		set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
442 		key->ip.ttl = ipv4_key->ipv4_ttl;
443 	}
444 
445 	return 0;
446 }
447 
448 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
449 		    const struct ovs_key_ipv6 *ipv6_key)
450 {
451 	struct ipv6hdr *nh;
452 	int err;
453 	__be32 *saddr;
454 	__be32 *daddr;
455 
456 	err = make_writable(skb, skb_network_offset(skb) +
457 			    sizeof(struct ipv6hdr));
458 	if (unlikely(err))
459 		return err;
460 
461 	nh = ipv6_hdr(skb);
462 	saddr = (__be32 *)&nh->saddr;
463 	daddr = (__be32 *)&nh->daddr;
464 
465 	if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
466 		set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
467 			      ipv6_key->ipv6_src, true);
468 		memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
469 		       sizeof(ipv6_key->ipv6_src));
470 	}
471 
472 	if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
473 		unsigned int offset = 0;
474 		int flags = IP6_FH_F_SKIP_RH;
475 		bool recalc_csum = true;
476 
477 		if (ipv6_ext_hdr(nh->nexthdr))
478 			recalc_csum = ipv6_find_hdr(skb, &offset,
479 						    NEXTHDR_ROUTING, NULL,
480 						    &flags) != NEXTHDR_ROUTING;
481 
482 		set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
483 			      ipv6_key->ipv6_dst, recalc_csum);
484 		memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
485 		       sizeof(ipv6_key->ipv6_dst));
486 	}
487 
488 	set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
489 	key->ip.tos = ipv6_get_dsfield(nh);
490 
491 	set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
492 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
493 
494 	nh->hop_limit = ipv6_key->ipv6_hlimit;
495 	key->ip.ttl = ipv6_key->ipv6_hlimit;
496 	return 0;
497 }
498 
499 /* Must follow make_writable() since that can move the skb data. */
500 static void set_tp_port(struct sk_buff *skb, __be16 *port,
501 			 __be16 new_port, __sum16 *check)
502 {
503 	inet_proto_csum_replace2(check, skb, *port, new_port, 0);
504 	*port = new_port;
505 	skb_clear_hash(skb);
506 }
507 
508 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
509 {
510 	struct udphdr *uh = udp_hdr(skb);
511 
512 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
513 		set_tp_port(skb, port, new_port, &uh->check);
514 
515 		if (!uh->check)
516 			uh->check = CSUM_MANGLED_0;
517 	} else {
518 		*port = new_port;
519 		skb_clear_hash(skb);
520 	}
521 }
522 
523 static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
524 		   const struct ovs_key_udp *udp_port_key)
525 {
526 	struct udphdr *uh;
527 	int err;
528 
529 	err = make_writable(skb, skb_transport_offset(skb) +
530 				 sizeof(struct udphdr));
531 	if (unlikely(err))
532 		return err;
533 
534 	uh = udp_hdr(skb);
535 	if (udp_port_key->udp_src != uh->source) {
536 		set_udp_port(skb, &uh->source, udp_port_key->udp_src);
537 		key->tp.src = udp_port_key->udp_src;
538 	}
539 
540 	if (udp_port_key->udp_dst != uh->dest) {
541 		set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
542 		key->tp.dst = udp_port_key->udp_dst;
543 	}
544 
545 	return 0;
546 }
547 
548 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
549 		   const struct ovs_key_tcp *tcp_port_key)
550 {
551 	struct tcphdr *th;
552 	int err;
553 
554 	err = make_writable(skb, skb_transport_offset(skb) +
555 				 sizeof(struct tcphdr));
556 	if (unlikely(err))
557 		return err;
558 
559 	th = tcp_hdr(skb);
560 	if (tcp_port_key->tcp_src != th->source) {
561 		set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
562 		key->tp.src = tcp_port_key->tcp_src;
563 	}
564 
565 	if (tcp_port_key->tcp_dst != th->dest) {
566 		set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
567 		key->tp.dst = tcp_port_key->tcp_dst;
568 	}
569 
570 	return 0;
571 }
572 
573 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
574 		    const struct ovs_key_sctp *sctp_port_key)
575 {
576 	struct sctphdr *sh;
577 	int err;
578 	unsigned int sctphoff = skb_transport_offset(skb);
579 
580 	err = make_writable(skb, sctphoff + sizeof(struct sctphdr));
581 	if (unlikely(err))
582 		return err;
583 
584 	sh = sctp_hdr(skb);
585 	if (sctp_port_key->sctp_src != sh->source ||
586 	    sctp_port_key->sctp_dst != sh->dest) {
587 		__le32 old_correct_csum, new_csum, old_csum;
588 
589 		old_csum = sh->checksum;
590 		old_correct_csum = sctp_compute_cksum(skb, sctphoff);
591 
592 		sh->source = sctp_port_key->sctp_src;
593 		sh->dest = sctp_port_key->sctp_dst;
594 
595 		new_csum = sctp_compute_cksum(skb, sctphoff);
596 
597 		/* Carry any checksum errors through. */
598 		sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
599 
600 		skb_clear_hash(skb);
601 		key->tp.src = sctp_port_key->sctp_src;
602 		key->tp.dst = sctp_port_key->sctp_dst;
603 	}
604 
605 	return 0;
606 }
607 
608 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
609 {
610 	struct vport *vport = ovs_vport_rcu(dp, out_port);
611 
612 	if (likely(vport))
613 		ovs_vport_send(vport, skb);
614 	else
615 		kfree_skb(skb);
616 }
617 
618 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
619 			    struct sw_flow_key *key, const struct nlattr *attr)
620 {
621 	struct ovs_tunnel_info info;
622 	struct dp_upcall_info upcall;
623 	const struct nlattr *a;
624 	int rem;
625 
626 	upcall.cmd = OVS_PACKET_CMD_ACTION;
627 	upcall.userdata = NULL;
628 	upcall.portid = 0;
629 	upcall.egress_tun_info = NULL;
630 
631 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
632 		 a = nla_next(a, &rem)) {
633 		switch (nla_type(a)) {
634 		case OVS_USERSPACE_ATTR_USERDATA:
635 			upcall.userdata = a;
636 			break;
637 
638 		case OVS_USERSPACE_ATTR_PID:
639 			upcall.portid = nla_get_u32(a);
640 			break;
641 
642 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
643 			/* Get out tunnel info. */
644 			struct vport *vport;
645 
646 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
647 			if (vport) {
648 				int err;
649 
650 				err = ovs_vport_get_egress_tun_info(vport, skb,
651 								    &info);
652 				if (!err)
653 					upcall.egress_tun_info = &info;
654 			}
655 			break;
656 		}
657 
658 		} /* End of switch. */
659 	}
660 
661 	return ovs_dp_upcall(dp, skb, key, &upcall);
662 }
663 
664 static int sample(struct datapath *dp, struct sk_buff *skb,
665 		  struct sw_flow_key *key, const struct nlattr *attr)
666 {
667 	const struct nlattr *acts_list = NULL;
668 	const struct nlattr *a;
669 	int rem;
670 
671 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
672 		 a = nla_next(a, &rem)) {
673 		switch (nla_type(a)) {
674 		case OVS_SAMPLE_ATTR_PROBABILITY:
675 			if (prandom_u32() >= nla_get_u32(a))
676 				return 0;
677 			break;
678 
679 		case OVS_SAMPLE_ATTR_ACTIONS:
680 			acts_list = a;
681 			break;
682 		}
683 	}
684 
685 	rem = nla_len(acts_list);
686 	a = nla_data(acts_list);
687 
688 	/* Actions list is empty, do nothing */
689 	if (unlikely(!rem))
690 		return 0;
691 
692 	/* The only known usage of sample action is having a single user-space
693 	 * action. Treat this usage as a special case.
694 	 * The output_userspace() should clone the skb to be sent to the
695 	 * user space. This skb will be consumed by its caller.
696 	 */
697 	if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
698 		   nla_is_last(a, rem)))
699 		return output_userspace(dp, skb, key, a);
700 
701 	skb = skb_clone(skb, GFP_ATOMIC);
702 	if (!skb)
703 		/* Skip the sample action when out of memory. */
704 		return 0;
705 
706 	if (!add_deferred_actions(skb, key, a)) {
707 		if (net_ratelimit())
708 			pr_warn("%s: deferred actions limit reached, dropping sample action\n",
709 				ovs_dp_name(dp));
710 
711 		kfree_skb(skb);
712 	}
713 	return 0;
714 }
715 
716 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
717 			 const struct nlattr *attr)
718 {
719 	struct ovs_action_hash *hash_act = nla_data(attr);
720 	u32 hash = 0;
721 
722 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
723 	hash = skb_get_hash(skb);
724 	hash = jhash_1word(hash, hash_act->hash_basis);
725 	if (!hash)
726 		hash = 0x1;
727 
728 	key->ovs_flow_hash = hash;
729 }
730 
731 static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
732 			      const struct nlattr *nested_attr)
733 {
734 	int err = 0;
735 
736 	switch (nla_type(nested_attr)) {
737 	case OVS_KEY_ATTR_PRIORITY:
738 		skb->priority = nla_get_u32(nested_attr);
739 		key->phy.priority = skb->priority;
740 		break;
741 
742 	case OVS_KEY_ATTR_SKB_MARK:
743 		skb->mark = nla_get_u32(nested_attr);
744 		key->phy.skb_mark = skb->mark;
745 		break;
746 
747 	case OVS_KEY_ATTR_TUNNEL_INFO:
748 		OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
749 		break;
750 
751 	case OVS_KEY_ATTR_ETHERNET:
752 		err = set_eth_addr(skb, key, nla_data(nested_attr));
753 		break;
754 
755 	case OVS_KEY_ATTR_IPV4:
756 		err = set_ipv4(skb, key, nla_data(nested_attr));
757 		break;
758 
759 	case OVS_KEY_ATTR_IPV6:
760 		err = set_ipv6(skb, key, nla_data(nested_attr));
761 		break;
762 
763 	case OVS_KEY_ATTR_TCP:
764 		err = set_tcp(skb, key, nla_data(nested_attr));
765 		break;
766 
767 	case OVS_KEY_ATTR_UDP:
768 		err = set_udp(skb, key, nla_data(nested_attr));
769 		break;
770 
771 	case OVS_KEY_ATTR_SCTP:
772 		err = set_sctp(skb, key, nla_data(nested_attr));
773 		break;
774 
775 	case OVS_KEY_ATTR_MPLS:
776 		err = set_mpls(skb, key, nla_data(nested_attr));
777 		break;
778 	}
779 
780 	return err;
781 }
782 
783 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
784 			  struct sw_flow_key *key,
785 			  const struct nlattr *a, int rem)
786 {
787 	struct deferred_action *da;
788 
789 	if (!is_flow_key_valid(key)) {
790 		int err;
791 
792 		err = ovs_flow_key_update(skb, key);
793 		if (err)
794 			return err;
795 	}
796 	BUG_ON(!is_flow_key_valid(key));
797 
798 	if (!nla_is_last(a, rem)) {
799 		/* Recirc action is the not the last action
800 		 * of the action list, need to clone the skb.
801 		 */
802 		skb = skb_clone(skb, GFP_ATOMIC);
803 
804 		/* Skip the recirc action when out of memory, but
805 		 * continue on with the rest of the action list.
806 		 */
807 		if (!skb)
808 			return 0;
809 	}
810 
811 	da = add_deferred_actions(skb, key, NULL);
812 	if (da) {
813 		da->pkt_key.recirc_id = nla_get_u32(a);
814 	} else {
815 		kfree_skb(skb);
816 
817 		if (net_ratelimit())
818 			pr_warn("%s: deferred action limit reached, drop recirc action\n",
819 				ovs_dp_name(dp));
820 	}
821 
822 	return 0;
823 }
824 
825 /* Execute a list of actions against 'skb'. */
826 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
827 			      struct sw_flow_key *key,
828 			      const struct nlattr *attr, int len)
829 {
830 	/* Every output action needs a separate clone of 'skb', but the common
831 	 * case is just a single output action, so that doing a clone and
832 	 * then freeing the original skbuff is wasteful.  So the following code
833 	 * is slightly obscure just to avoid that.
834 	 */
835 	int prev_port = -1;
836 	const struct nlattr *a;
837 	int rem;
838 
839 	for (a = attr, rem = len; rem > 0;
840 	     a = nla_next(a, &rem)) {
841 		int err = 0;
842 
843 		if (unlikely(prev_port != -1)) {
844 			struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
845 
846 			if (out_skb)
847 				do_output(dp, out_skb, prev_port);
848 
849 			prev_port = -1;
850 		}
851 
852 		switch (nla_type(a)) {
853 		case OVS_ACTION_ATTR_OUTPUT:
854 			prev_port = nla_get_u32(a);
855 			break;
856 
857 		case OVS_ACTION_ATTR_USERSPACE:
858 			output_userspace(dp, skb, key, a);
859 			break;
860 
861 		case OVS_ACTION_ATTR_HASH:
862 			execute_hash(skb, key, a);
863 			break;
864 
865 		case OVS_ACTION_ATTR_PUSH_MPLS:
866 			err = push_mpls(skb, key, nla_data(a));
867 			break;
868 
869 		case OVS_ACTION_ATTR_POP_MPLS:
870 			err = pop_mpls(skb, key, nla_get_be16(a));
871 			break;
872 
873 		case OVS_ACTION_ATTR_PUSH_VLAN:
874 			err = push_vlan(skb, key, nla_data(a));
875 			if (unlikely(err)) /* skb already freed. */
876 				return err;
877 			break;
878 
879 		case OVS_ACTION_ATTR_POP_VLAN:
880 			err = pop_vlan(skb, key);
881 			break;
882 
883 		case OVS_ACTION_ATTR_RECIRC:
884 			err = execute_recirc(dp, skb, key, a, rem);
885 			if (nla_is_last(a, rem)) {
886 				/* If this is the last action, the skb has
887 				 * been consumed or freed.
888 				 * Return immediately.
889 				 */
890 				return err;
891 			}
892 			break;
893 
894 		case OVS_ACTION_ATTR_SET:
895 			err = execute_set_action(skb, key, nla_data(a));
896 			break;
897 
898 		case OVS_ACTION_ATTR_SAMPLE:
899 			err = sample(dp, skb, key, a);
900 			if (unlikely(err)) /* skb already freed. */
901 				return err;
902 			break;
903 		}
904 
905 		if (unlikely(err)) {
906 			kfree_skb(skb);
907 			return err;
908 		}
909 	}
910 
911 	if (prev_port != -1)
912 		do_output(dp, skb, prev_port);
913 	else
914 		consume_skb(skb);
915 
916 	return 0;
917 }
918 
919 static void process_deferred_actions(struct datapath *dp)
920 {
921 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
922 
923 	/* Do not touch the FIFO in case there is no deferred actions. */
924 	if (action_fifo_is_empty(fifo))
925 		return;
926 
927 	/* Finishing executing all deferred actions. */
928 	do {
929 		struct deferred_action *da = action_fifo_get(fifo);
930 		struct sk_buff *skb = da->skb;
931 		struct sw_flow_key *key = &da->pkt_key;
932 		const struct nlattr *actions = da->actions;
933 
934 		if (actions)
935 			do_execute_actions(dp, skb, key, actions,
936 					   nla_len(actions));
937 		else
938 			ovs_dp_process_packet(skb, key);
939 	} while (!action_fifo_is_empty(fifo));
940 
941 	/* Reset FIFO for the next packet.  */
942 	action_fifo_init(fifo);
943 }
944 
945 /* Execute a list of actions against 'skb'. */
946 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
947 			const struct sw_flow_actions *acts,
948 			struct sw_flow_key *key)
949 {
950 	int level = this_cpu_read(exec_actions_level);
951 	int err;
952 
953 	this_cpu_inc(exec_actions_level);
954 	OVS_CB(skb)->egress_tun_info = NULL;
955 	err = do_execute_actions(dp, skb, key,
956 				 acts->actions, acts->actions_len);
957 
958 	if (!level)
959 		process_deferred_actions(dp);
960 
961 	this_cpu_dec(exec_actions_level);
962 	return err;
963 }
964 
965 int action_fifos_init(void)
966 {
967 	action_fifos = alloc_percpu(struct action_fifo);
968 	if (!action_fifos)
969 		return -ENOMEM;
970 
971 	return 0;
972 }
973 
974 void action_fifos_exit(void)
975 {
976 	free_percpu(action_fifos);
977 }
978