1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 #include <linux/genetlink.h> 65 66 #include <net/net_namespace.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 71 #include "af_netlink.h" 72 73 struct listeners { 74 struct rcu_head rcu; 75 unsigned long masks[0]; 76 }; 77 78 /* state bits */ 79 #define NETLINK_S_CONGESTED 0x0 80 81 /* flags */ 82 #define NETLINK_F_KERNEL_SOCKET 0x1 83 #define NETLINK_F_RECV_PKTINFO 0x2 84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4 85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8 86 #define NETLINK_F_LISTEN_ALL_NSID 0x10 87 88 static inline int netlink_is_kernel(struct sock *sk) 89 { 90 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 91 } 92 93 struct netlink_table *nl_table; 94 EXPORT_SYMBOL_GPL(nl_table); 95 96 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 97 98 static int netlink_dump(struct sock *sk); 99 static void netlink_skb_destructor(struct sk_buff *skb); 100 101 /* nl_table locking explained: 102 * Lookup and traversal are protected with an RCU read-side lock. Insertion 103 * and removal are protected with per bucket lock while using RCU list 104 * modification primitives and may run in parallel to RCU protected lookups. 105 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 106 * been acquired * either during or after the socket has been removed from 107 * the list and after an RCU grace period. 108 */ 109 DEFINE_RWLOCK(nl_table_lock); 110 EXPORT_SYMBOL_GPL(nl_table_lock); 111 static atomic_t nl_table_users = ATOMIC_INIT(0); 112 113 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 114 115 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 116 117 static DEFINE_SPINLOCK(netlink_tap_lock); 118 static struct list_head netlink_tap_all __read_mostly; 119 120 static const struct rhashtable_params netlink_rhashtable_params; 121 122 static inline u32 netlink_group_mask(u32 group) 123 { 124 return group ? 1 << (group - 1) : 0; 125 } 126 127 int netlink_add_tap(struct netlink_tap *nt) 128 { 129 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 130 return -EINVAL; 131 132 spin_lock(&netlink_tap_lock); 133 list_add_rcu(&nt->list, &netlink_tap_all); 134 spin_unlock(&netlink_tap_lock); 135 136 __module_get(nt->module); 137 138 return 0; 139 } 140 EXPORT_SYMBOL_GPL(netlink_add_tap); 141 142 static int __netlink_remove_tap(struct netlink_tap *nt) 143 { 144 bool found = false; 145 struct netlink_tap *tmp; 146 147 spin_lock(&netlink_tap_lock); 148 149 list_for_each_entry(tmp, &netlink_tap_all, list) { 150 if (nt == tmp) { 151 list_del_rcu(&nt->list); 152 found = true; 153 goto out; 154 } 155 } 156 157 pr_warn("__netlink_remove_tap: %p not found\n", nt); 158 out: 159 spin_unlock(&netlink_tap_lock); 160 161 if (found && nt->module) 162 module_put(nt->module); 163 164 return found ? 0 : -ENODEV; 165 } 166 167 int netlink_remove_tap(struct netlink_tap *nt) 168 { 169 int ret; 170 171 ret = __netlink_remove_tap(nt); 172 synchronize_net(); 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(netlink_remove_tap); 177 178 static bool netlink_filter_tap(const struct sk_buff *skb) 179 { 180 struct sock *sk = skb->sk; 181 182 /* We take the more conservative approach and 183 * whitelist socket protocols that may pass. 184 */ 185 switch (sk->sk_protocol) { 186 case NETLINK_ROUTE: 187 case NETLINK_USERSOCK: 188 case NETLINK_SOCK_DIAG: 189 case NETLINK_NFLOG: 190 case NETLINK_XFRM: 191 case NETLINK_FIB_LOOKUP: 192 case NETLINK_NETFILTER: 193 case NETLINK_GENERIC: 194 return true; 195 } 196 197 return false; 198 } 199 200 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 201 struct net_device *dev) 202 { 203 struct sk_buff *nskb; 204 struct sock *sk = skb->sk; 205 int ret = -ENOMEM; 206 207 dev_hold(dev); 208 nskb = skb_clone(skb, GFP_ATOMIC); 209 if (nskb) { 210 nskb->dev = dev; 211 nskb->protocol = htons((u16) sk->sk_protocol); 212 nskb->pkt_type = netlink_is_kernel(sk) ? 213 PACKET_KERNEL : PACKET_USER; 214 skb_reset_network_header(nskb); 215 ret = dev_queue_xmit(nskb); 216 if (unlikely(ret > 0)) 217 ret = net_xmit_errno(ret); 218 } 219 220 dev_put(dev); 221 return ret; 222 } 223 224 static void __netlink_deliver_tap(struct sk_buff *skb) 225 { 226 int ret; 227 struct netlink_tap *tmp; 228 229 if (!netlink_filter_tap(skb)) 230 return; 231 232 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 233 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 234 if (unlikely(ret)) 235 break; 236 } 237 } 238 239 static void netlink_deliver_tap(struct sk_buff *skb) 240 { 241 rcu_read_lock(); 242 243 if (unlikely(!list_empty(&netlink_tap_all))) 244 __netlink_deliver_tap(skb); 245 246 rcu_read_unlock(); 247 } 248 249 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 250 struct sk_buff *skb) 251 { 252 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 253 netlink_deliver_tap(skb); 254 } 255 256 static void netlink_overrun(struct sock *sk) 257 { 258 struct netlink_sock *nlk = nlk_sk(sk); 259 260 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 261 if (!test_and_set_bit(NETLINK_S_CONGESTED, 262 &nlk_sk(sk)->state)) { 263 sk->sk_err = ENOBUFS; 264 sk->sk_error_report(sk); 265 } 266 } 267 atomic_inc(&sk->sk_drops); 268 } 269 270 static void netlink_rcv_wake(struct sock *sk) 271 { 272 struct netlink_sock *nlk = nlk_sk(sk); 273 274 if (skb_queue_empty(&sk->sk_receive_queue)) 275 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 276 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 277 wake_up_interruptible(&nlk->wait); 278 } 279 280 #ifdef CONFIG_NETLINK_MMAP 281 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 282 { 283 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 284 } 285 286 static bool netlink_rx_is_mmaped(struct sock *sk) 287 { 288 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 289 } 290 291 static bool netlink_tx_is_mmaped(struct sock *sk) 292 { 293 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 294 } 295 296 static __pure struct page *pgvec_to_page(const void *addr) 297 { 298 if (is_vmalloc_addr(addr)) 299 return vmalloc_to_page(addr); 300 else 301 return virt_to_page(addr); 302 } 303 304 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 305 { 306 unsigned int i; 307 308 for (i = 0; i < len; i++) { 309 if (pg_vec[i] != NULL) { 310 if (is_vmalloc_addr(pg_vec[i])) 311 vfree(pg_vec[i]); 312 else 313 free_pages((unsigned long)pg_vec[i], order); 314 } 315 } 316 kfree(pg_vec); 317 } 318 319 static void *alloc_one_pg_vec_page(unsigned long order) 320 { 321 void *buffer; 322 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 323 __GFP_NOWARN | __GFP_NORETRY; 324 325 buffer = (void *)__get_free_pages(gfp_flags, order); 326 if (buffer != NULL) 327 return buffer; 328 329 buffer = vzalloc((1 << order) * PAGE_SIZE); 330 if (buffer != NULL) 331 return buffer; 332 333 gfp_flags &= ~__GFP_NORETRY; 334 return (void *)__get_free_pages(gfp_flags, order); 335 } 336 337 static void **alloc_pg_vec(struct netlink_sock *nlk, 338 struct nl_mmap_req *req, unsigned int order) 339 { 340 unsigned int block_nr = req->nm_block_nr; 341 unsigned int i; 342 void **pg_vec; 343 344 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 345 if (pg_vec == NULL) 346 return NULL; 347 348 for (i = 0; i < block_nr; i++) { 349 pg_vec[i] = alloc_one_pg_vec_page(order); 350 if (pg_vec[i] == NULL) 351 goto err1; 352 } 353 354 return pg_vec; 355 err1: 356 free_pg_vec(pg_vec, order, block_nr); 357 return NULL; 358 } 359 360 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 361 bool closing, bool tx_ring) 362 { 363 struct netlink_sock *nlk = nlk_sk(sk); 364 struct netlink_ring *ring; 365 struct sk_buff_head *queue; 366 void **pg_vec = NULL; 367 unsigned int order = 0; 368 int err; 369 370 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 371 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 372 373 if (!closing) { 374 if (atomic_read(&nlk->mapped)) 375 return -EBUSY; 376 if (atomic_read(&ring->pending)) 377 return -EBUSY; 378 } 379 380 if (req->nm_block_nr) { 381 if (ring->pg_vec != NULL) 382 return -EBUSY; 383 384 if ((int)req->nm_block_size <= 0) 385 return -EINVAL; 386 if (!PAGE_ALIGNED(req->nm_block_size)) 387 return -EINVAL; 388 if (req->nm_frame_size < NL_MMAP_HDRLEN) 389 return -EINVAL; 390 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 391 return -EINVAL; 392 393 ring->frames_per_block = req->nm_block_size / 394 req->nm_frame_size; 395 if (ring->frames_per_block == 0) 396 return -EINVAL; 397 if (ring->frames_per_block * req->nm_block_nr != 398 req->nm_frame_nr) 399 return -EINVAL; 400 401 order = get_order(req->nm_block_size); 402 pg_vec = alloc_pg_vec(nlk, req, order); 403 if (pg_vec == NULL) 404 return -ENOMEM; 405 } else { 406 if (req->nm_frame_nr) 407 return -EINVAL; 408 } 409 410 err = -EBUSY; 411 mutex_lock(&nlk->pg_vec_lock); 412 if (closing || atomic_read(&nlk->mapped) == 0) { 413 err = 0; 414 spin_lock_bh(&queue->lock); 415 416 ring->frame_max = req->nm_frame_nr - 1; 417 ring->head = 0; 418 ring->frame_size = req->nm_frame_size; 419 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 420 421 swap(ring->pg_vec_len, req->nm_block_nr); 422 swap(ring->pg_vec_order, order); 423 swap(ring->pg_vec, pg_vec); 424 425 __skb_queue_purge(queue); 426 spin_unlock_bh(&queue->lock); 427 428 WARN_ON(atomic_read(&nlk->mapped)); 429 } 430 mutex_unlock(&nlk->pg_vec_lock); 431 432 if (pg_vec) 433 free_pg_vec(pg_vec, order, req->nm_block_nr); 434 return err; 435 } 436 437 static void netlink_mm_open(struct vm_area_struct *vma) 438 { 439 struct file *file = vma->vm_file; 440 struct socket *sock = file->private_data; 441 struct sock *sk = sock->sk; 442 443 if (sk) 444 atomic_inc(&nlk_sk(sk)->mapped); 445 } 446 447 static void netlink_mm_close(struct vm_area_struct *vma) 448 { 449 struct file *file = vma->vm_file; 450 struct socket *sock = file->private_data; 451 struct sock *sk = sock->sk; 452 453 if (sk) 454 atomic_dec(&nlk_sk(sk)->mapped); 455 } 456 457 static const struct vm_operations_struct netlink_mmap_ops = { 458 .open = netlink_mm_open, 459 .close = netlink_mm_close, 460 }; 461 462 static int netlink_mmap(struct file *file, struct socket *sock, 463 struct vm_area_struct *vma) 464 { 465 struct sock *sk = sock->sk; 466 struct netlink_sock *nlk = nlk_sk(sk); 467 struct netlink_ring *ring; 468 unsigned long start, size, expected; 469 unsigned int i; 470 int err = -EINVAL; 471 472 if (vma->vm_pgoff) 473 return -EINVAL; 474 475 mutex_lock(&nlk->pg_vec_lock); 476 477 expected = 0; 478 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 479 if (ring->pg_vec == NULL) 480 continue; 481 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 482 } 483 484 if (expected == 0) 485 goto out; 486 487 size = vma->vm_end - vma->vm_start; 488 if (size != expected) 489 goto out; 490 491 start = vma->vm_start; 492 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 493 if (ring->pg_vec == NULL) 494 continue; 495 496 for (i = 0; i < ring->pg_vec_len; i++) { 497 struct page *page; 498 void *kaddr = ring->pg_vec[i]; 499 unsigned int pg_num; 500 501 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 502 page = pgvec_to_page(kaddr); 503 err = vm_insert_page(vma, start, page); 504 if (err < 0) 505 goto out; 506 start += PAGE_SIZE; 507 kaddr += PAGE_SIZE; 508 } 509 } 510 } 511 512 atomic_inc(&nlk->mapped); 513 vma->vm_ops = &netlink_mmap_ops; 514 err = 0; 515 out: 516 mutex_unlock(&nlk->pg_vec_lock); 517 return err; 518 } 519 520 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 521 { 522 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 523 struct page *p_start, *p_end; 524 525 /* First page is flushed through netlink_{get,set}_status */ 526 p_start = pgvec_to_page(hdr + PAGE_SIZE); 527 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 528 while (p_start <= p_end) { 529 flush_dcache_page(p_start); 530 p_start++; 531 } 532 #endif 533 } 534 535 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 536 { 537 smp_rmb(); 538 flush_dcache_page(pgvec_to_page(hdr)); 539 return hdr->nm_status; 540 } 541 542 static void netlink_set_status(struct nl_mmap_hdr *hdr, 543 enum nl_mmap_status status) 544 { 545 smp_mb(); 546 hdr->nm_status = status; 547 flush_dcache_page(pgvec_to_page(hdr)); 548 } 549 550 static struct nl_mmap_hdr * 551 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 552 { 553 unsigned int pg_vec_pos, frame_off; 554 555 pg_vec_pos = pos / ring->frames_per_block; 556 frame_off = pos % ring->frames_per_block; 557 558 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 559 } 560 561 static struct nl_mmap_hdr * 562 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 563 enum nl_mmap_status status) 564 { 565 struct nl_mmap_hdr *hdr; 566 567 hdr = __netlink_lookup_frame(ring, pos); 568 if (netlink_get_status(hdr) != status) 569 return NULL; 570 571 return hdr; 572 } 573 574 static struct nl_mmap_hdr * 575 netlink_current_frame(const struct netlink_ring *ring, 576 enum nl_mmap_status status) 577 { 578 return netlink_lookup_frame(ring, ring->head, status); 579 } 580 581 static struct nl_mmap_hdr * 582 netlink_previous_frame(const struct netlink_ring *ring, 583 enum nl_mmap_status status) 584 { 585 unsigned int prev; 586 587 prev = ring->head ? ring->head - 1 : ring->frame_max; 588 return netlink_lookup_frame(ring, prev, status); 589 } 590 591 static void netlink_increment_head(struct netlink_ring *ring) 592 { 593 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 594 } 595 596 static void netlink_forward_ring(struct netlink_ring *ring) 597 { 598 unsigned int head = ring->head, pos = head; 599 const struct nl_mmap_hdr *hdr; 600 601 do { 602 hdr = __netlink_lookup_frame(ring, pos); 603 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 604 break; 605 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 606 break; 607 netlink_increment_head(ring); 608 } while (ring->head != head); 609 } 610 611 static bool netlink_dump_space(struct netlink_sock *nlk) 612 { 613 struct netlink_ring *ring = &nlk->rx_ring; 614 struct nl_mmap_hdr *hdr; 615 unsigned int n; 616 617 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 618 if (hdr == NULL) 619 return false; 620 621 n = ring->head + ring->frame_max / 2; 622 if (n > ring->frame_max) 623 n -= ring->frame_max; 624 625 hdr = __netlink_lookup_frame(ring, n); 626 627 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 628 } 629 630 static unsigned int netlink_poll(struct file *file, struct socket *sock, 631 poll_table *wait) 632 { 633 struct sock *sk = sock->sk; 634 struct netlink_sock *nlk = nlk_sk(sk); 635 unsigned int mask; 636 int err; 637 638 if (nlk->rx_ring.pg_vec != NULL) { 639 /* Memory mapped sockets don't call recvmsg(), so flow control 640 * for dumps is performed here. A dump is allowed to continue 641 * if at least half the ring is unused. 642 */ 643 while (nlk->cb_running && netlink_dump_space(nlk)) { 644 err = netlink_dump(sk); 645 if (err < 0) { 646 sk->sk_err = -err; 647 sk->sk_error_report(sk); 648 break; 649 } 650 } 651 netlink_rcv_wake(sk); 652 } 653 654 mask = datagram_poll(file, sock, wait); 655 656 spin_lock_bh(&sk->sk_receive_queue.lock); 657 if (nlk->rx_ring.pg_vec) { 658 netlink_forward_ring(&nlk->rx_ring); 659 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 660 mask |= POLLIN | POLLRDNORM; 661 } 662 spin_unlock_bh(&sk->sk_receive_queue.lock); 663 664 spin_lock_bh(&sk->sk_write_queue.lock); 665 if (nlk->tx_ring.pg_vec) { 666 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 667 mask |= POLLOUT | POLLWRNORM; 668 } 669 spin_unlock_bh(&sk->sk_write_queue.lock); 670 671 return mask; 672 } 673 674 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 675 { 676 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 677 } 678 679 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 680 struct netlink_ring *ring, 681 struct nl_mmap_hdr *hdr) 682 { 683 unsigned int size; 684 void *data; 685 686 size = ring->frame_size - NL_MMAP_HDRLEN; 687 data = (void *)hdr + NL_MMAP_HDRLEN; 688 689 skb->head = data; 690 skb->data = data; 691 skb_reset_tail_pointer(skb); 692 skb->end = skb->tail + size; 693 skb->len = 0; 694 695 skb->destructor = netlink_skb_destructor; 696 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 697 NETLINK_CB(skb).sk = sk; 698 } 699 700 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 701 u32 dst_portid, u32 dst_group, 702 struct scm_cookie *scm) 703 { 704 struct netlink_sock *nlk = nlk_sk(sk); 705 struct netlink_ring *ring; 706 struct nl_mmap_hdr *hdr; 707 struct sk_buff *skb; 708 unsigned int maxlen; 709 int err = 0, len = 0; 710 711 mutex_lock(&nlk->pg_vec_lock); 712 713 ring = &nlk->tx_ring; 714 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 715 716 do { 717 unsigned int nm_len; 718 719 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 720 if (hdr == NULL) { 721 if (!(msg->msg_flags & MSG_DONTWAIT) && 722 atomic_read(&nlk->tx_ring.pending)) 723 schedule(); 724 continue; 725 } 726 727 nm_len = ACCESS_ONCE(hdr->nm_len); 728 if (nm_len > maxlen) { 729 err = -EINVAL; 730 goto out; 731 } 732 733 netlink_frame_flush_dcache(hdr, nm_len); 734 735 skb = alloc_skb(nm_len, GFP_KERNEL); 736 if (skb == NULL) { 737 err = -ENOBUFS; 738 goto out; 739 } 740 __skb_put(skb, nm_len); 741 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 742 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 743 744 netlink_increment_head(ring); 745 746 NETLINK_CB(skb).portid = nlk->portid; 747 NETLINK_CB(skb).dst_group = dst_group; 748 NETLINK_CB(skb).creds = scm->creds; 749 750 err = security_netlink_send(sk, skb); 751 if (err) { 752 kfree_skb(skb); 753 goto out; 754 } 755 756 if (unlikely(dst_group)) { 757 atomic_inc(&skb->users); 758 netlink_broadcast(sk, skb, dst_portid, dst_group, 759 GFP_KERNEL); 760 } 761 err = netlink_unicast(sk, skb, dst_portid, 762 msg->msg_flags & MSG_DONTWAIT); 763 if (err < 0) 764 goto out; 765 len += err; 766 767 } while (hdr != NULL || 768 (!(msg->msg_flags & MSG_DONTWAIT) && 769 atomic_read(&nlk->tx_ring.pending))); 770 771 if (len > 0) 772 err = len; 773 out: 774 mutex_unlock(&nlk->pg_vec_lock); 775 return err; 776 } 777 778 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 779 { 780 struct nl_mmap_hdr *hdr; 781 782 hdr = netlink_mmap_hdr(skb); 783 hdr->nm_len = skb->len; 784 hdr->nm_group = NETLINK_CB(skb).dst_group; 785 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 786 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 787 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 788 netlink_frame_flush_dcache(hdr, hdr->nm_len); 789 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 790 791 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 792 kfree_skb(skb); 793 } 794 795 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 796 { 797 struct netlink_sock *nlk = nlk_sk(sk); 798 struct netlink_ring *ring = &nlk->rx_ring; 799 struct nl_mmap_hdr *hdr; 800 801 spin_lock_bh(&sk->sk_receive_queue.lock); 802 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 803 if (hdr == NULL) { 804 spin_unlock_bh(&sk->sk_receive_queue.lock); 805 kfree_skb(skb); 806 netlink_overrun(sk); 807 return; 808 } 809 netlink_increment_head(ring); 810 __skb_queue_tail(&sk->sk_receive_queue, skb); 811 spin_unlock_bh(&sk->sk_receive_queue.lock); 812 813 hdr->nm_len = skb->len; 814 hdr->nm_group = NETLINK_CB(skb).dst_group; 815 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 816 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 817 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 818 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 819 } 820 821 #else /* CONFIG_NETLINK_MMAP */ 822 #define netlink_skb_is_mmaped(skb) false 823 #define netlink_rx_is_mmaped(sk) false 824 #define netlink_tx_is_mmaped(sk) false 825 #define netlink_mmap sock_no_mmap 826 #define netlink_poll datagram_poll 827 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0 828 #endif /* CONFIG_NETLINK_MMAP */ 829 830 static void netlink_skb_destructor(struct sk_buff *skb) 831 { 832 #ifdef CONFIG_NETLINK_MMAP 833 struct nl_mmap_hdr *hdr; 834 struct netlink_ring *ring; 835 struct sock *sk; 836 837 /* If a packet from the kernel to userspace was freed because of an 838 * error without being delivered to userspace, the kernel must reset 839 * the status. In the direction userspace to kernel, the status is 840 * always reset here after the packet was processed and freed. 841 */ 842 if (netlink_skb_is_mmaped(skb)) { 843 hdr = netlink_mmap_hdr(skb); 844 sk = NETLINK_CB(skb).sk; 845 846 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 847 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 848 ring = &nlk_sk(sk)->tx_ring; 849 } else { 850 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 851 hdr->nm_len = 0; 852 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 853 } 854 ring = &nlk_sk(sk)->rx_ring; 855 } 856 857 WARN_ON(atomic_read(&ring->pending) == 0); 858 atomic_dec(&ring->pending); 859 sock_put(sk); 860 861 skb->head = NULL; 862 } 863 #endif 864 if (is_vmalloc_addr(skb->head)) { 865 if (!skb->cloned || 866 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 867 vfree(skb->head); 868 869 skb->head = NULL; 870 } 871 if (skb->sk != NULL) 872 sock_rfree(skb); 873 } 874 875 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 876 { 877 WARN_ON(skb->sk != NULL); 878 skb->sk = sk; 879 skb->destructor = netlink_skb_destructor; 880 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 881 sk_mem_charge(sk, skb->truesize); 882 } 883 884 static void netlink_sock_destruct(struct sock *sk) 885 { 886 struct netlink_sock *nlk = nlk_sk(sk); 887 888 if (nlk->cb_running) { 889 if (nlk->cb.done) 890 nlk->cb.done(&nlk->cb); 891 892 module_put(nlk->cb.module); 893 kfree_skb(nlk->cb.skb); 894 } 895 896 skb_queue_purge(&sk->sk_receive_queue); 897 #ifdef CONFIG_NETLINK_MMAP 898 if (1) { 899 struct nl_mmap_req req; 900 901 memset(&req, 0, sizeof(req)); 902 if (nlk->rx_ring.pg_vec) 903 netlink_set_ring(sk, &req, true, false); 904 memset(&req, 0, sizeof(req)); 905 if (nlk->tx_ring.pg_vec) 906 netlink_set_ring(sk, &req, true, true); 907 } 908 #endif /* CONFIG_NETLINK_MMAP */ 909 910 if (!sock_flag(sk, SOCK_DEAD)) { 911 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 912 return; 913 } 914 915 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 916 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 917 WARN_ON(nlk_sk(sk)->groups); 918 } 919 920 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 921 * SMP. Look, when several writers sleep and reader wakes them up, all but one 922 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 923 * this, _but_ remember, it adds useless work on UP machines. 924 */ 925 926 void netlink_table_grab(void) 927 __acquires(nl_table_lock) 928 { 929 might_sleep(); 930 931 write_lock_irq(&nl_table_lock); 932 933 if (atomic_read(&nl_table_users)) { 934 DECLARE_WAITQUEUE(wait, current); 935 936 add_wait_queue_exclusive(&nl_table_wait, &wait); 937 for (;;) { 938 set_current_state(TASK_UNINTERRUPTIBLE); 939 if (atomic_read(&nl_table_users) == 0) 940 break; 941 write_unlock_irq(&nl_table_lock); 942 schedule(); 943 write_lock_irq(&nl_table_lock); 944 } 945 946 __set_current_state(TASK_RUNNING); 947 remove_wait_queue(&nl_table_wait, &wait); 948 } 949 } 950 951 void netlink_table_ungrab(void) 952 __releases(nl_table_lock) 953 { 954 write_unlock_irq(&nl_table_lock); 955 wake_up(&nl_table_wait); 956 } 957 958 static inline void 959 netlink_lock_table(void) 960 { 961 /* read_lock() synchronizes us to netlink_table_grab */ 962 963 read_lock(&nl_table_lock); 964 atomic_inc(&nl_table_users); 965 read_unlock(&nl_table_lock); 966 } 967 968 static inline void 969 netlink_unlock_table(void) 970 { 971 if (atomic_dec_and_test(&nl_table_users)) 972 wake_up(&nl_table_wait); 973 } 974 975 struct netlink_compare_arg 976 { 977 possible_net_t pnet; 978 u32 portid; 979 }; 980 981 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 982 #define netlink_compare_arg_len \ 983 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 984 985 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 986 const void *ptr) 987 { 988 const struct netlink_compare_arg *x = arg->key; 989 const struct netlink_sock *nlk = ptr; 990 991 return nlk->portid != x->portid || 992 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 993 } 994 995 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 996 struct net *net, u32 portid) 997 { 998 memset(arg, 0, sizeof(*arg)); 999 write_pnet(&arg->pnet, net); 1000 arg->portid = portid; 1001 } 1002 1003 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 1004 struct net *net) 1005 { 1006 struct netlink_compare_arg arg; 1007 1008 netlink_compare_arg_init(&arg, net, portid); 1009 return rhashtable_lookup_fast(&table->hash, &arg, 1010 netlink_rhashtable_params); 1011 } 1012 1013 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 1014 { 1015 struct netlink_compare_arg arg; 1016 1017 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 1018 return rhashtable_lookup_insert_key(&table->hash, &arg, 1019 &nlk_sk(sk)->node, 1020 netlink_rhashtable_params); 1021 } 1022 1023 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1024 { 1025 struct netlink_table *table = &nl_table[protocol]; 1026 struct sock *sk; 1027 1028 rcu_read_lock(); 1029 sk = __netlink_lookup(table, portid, net); 1030 if (sk) 1031 sock_hold(sk); 1032 rcu_read_unlock(); 1033 1034 return sk; 1035 } 1036 1037 static const struct proto_ops netlink_ops; 1038 1039 static void 1040 netlink_update_listeners(struct sock *sk) 1041 { 1042 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1043 unsigned long mask; 1044 unsigned int i; 1045 struct listeners *listeners; 1046 1047 listeners = nl_deref_protected(tbl->listeners); 1048 if (!listeners) 1049 return; 1050 1051 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1052 mask = 0; 1053 sk_for_each_bound(sk, &tbl->mc_list) { 1054 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1055 mask |= nlk_sk(sk)->groups[i]; 1056 } 1057 listeners->masks[i] = mask; 1058 } 1059 /* this function is only called with the netlink table "grabbed", which 1060 * makes sure updates are visible before bind or setsockopt return. */ 1061 } 1062 1063 static int netlink_insert(struct sock *sk, u32 portid) 1064 { 1065 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1066 int err; 1067 1068 lock_sock(sk); 1069 1070 err = -EBUSY; 1071 if (nlk_sk(sk)->portid) 1072 goto err; 1073 1074 err = -ENOMEM; 1075 if (BITS_PER_LONG > 32 && 1076 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX)) 1077 goto err; 1078 1079 nlk_sk(sk)->portid = portid; 1080 sock_hold(sk); 1081 1082 err = __netlink_insert(table, sk); 1083 if (err) { 1084 if (err == -EEXIST) 1085 err = -EADDRINUSE; 1086 sock_put(sk); 1087 } 1088 1089 err: 1090 release_sock(sk); 1091 return err; 1092 } 1093 1094 static void netlink_remove(struct sock *sk) 1095 { 1096 struct netlink_table *table; 1097 1098 table = &nl_table[sk->sk_protocol]; 1099 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 1100 netlink_rhashtable_params)) { 1101 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1102 __sock_put(sk); 1103 } 1104 1105 netlink_table_grab(); 1106 if (nlk_sk(sk)->subscriptions) { 1107 __sk_del_bind_node(sk); 1108 netlink_update_listeners(sk); 1109 } 1110 if (sk->sk_protocol == NETLINK_GENERIC) 1111 atomic_inc(&genl_sk_destructing_cnt); 1112 netlink_table_ungrab(); 1113 } 1114 1115 static struct proto netlink_proto = { 1116 .name = "NETLINK", 1117 .owner = THIS_MODULE, 1118 .obj_size = sizeof(struct netlink_sock), 1119 }; 1120 1121 static int __netlink_create(struct net *net, struct socket *sock, 1122 struct mutex *cb_mutex, int protocol) 1123 { 1124 struct sock *sk; 1125 struct netlink_sock *nlk; 1126 1127 sock->ops = &netlink_ops; 1128 1129 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto); 1130 if (!sk) 1131 return -ENOMEM; 1132 1133 sock_init_data(sock, sk); 1134 1135 nlk = nlk_sk(sk); 1136 if (cb_mutex) { 1137 nlk->cb_mutex = cb_mutex; 1138 } else { 1139 nlk->cb_mutex = &nlk->cb_def_mutex; 1140 mutex_init(nlk->cb_mutex); 1141 } 1142 init_waitqueue_head(&nlk->wait); 1143 #ifdef CONFIG_NETLINK_MMAP 1144 mutex_init(&nlk->pg_vec_lock); 1145 #endif 1146 1147 sk->sk_destruct = netlink_sock_destruct; 1148 sk->sk_protocol = protocol; 1149 return 0; 1150 } 1151 1152 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1153 int kern) 1154 { 1155 struct module *module = NULL; 1156 struct mutex *cb_mutex; 1157 struct netlink_sock *nlk; 1158 int (*bind)(struct net *net, int group); 1159 void (*unbind)(struct net *net, int group); 1160 int err = 0; 1161 1162 sock->state = SS_UNCONNECTED; 1163 1164 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1165 return -ESOCKTNOSUPPORT; 1166 1167 if (protocol < 0 || protocol >= MAX_LINKS) 1168 return -EPROTONOSUPPORT; 1169 1170 netlink_lock_table(); 1171 #ifdef CONFIG_MODULES 1172 if (!nl_table[protocol].registered) { 1173 netlink_unlock_table(); 1174 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1175 netlink_lock_table(); 1176 } 1177 #endif 1178 if (nl_table[protocol].registered && 1179 try_module_get(nl_table[protocol].module)) 1180 module = nl_table[protocol].module; 1181 else 1182 err = -EPROTONOSUPPORT; 1183 cb_mutex = nl_table[protocol].cb_mutex; 1184 bind = nl_table[protocol].bind; 1185 unbind = nl_table[protocol].unbind; 1186 netlink_unlock_table(); 1187 1188 if (err < 0) 1189 goto out; 1190 1191 err = __netlink_create(net, sock, cb_mutex, protocol); 1192 if (err < 0) 1193 goto out_module; 1194 1195 local_bh_disable(); 1196 sock_prot_inuse_add(net, &netlink_proto, 1); 1197 local_bh_enable(); 1198 1199 nlk = nlk_sk(sock->sk); 1200 nlk->module = module; 1201 nlk->netlink_bind = bind; 1202 nlk->netlink_unbind = unbind; 1203 out: 1204 return err; 1205 1206 out_module: 1207 module_put(module); 1208 goto out; 1209 } 1210 1211 static void deferred_put_nlk_sk(struct rcu_head *head) 1212 { 1213 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 1214 1215 sock_put(&nlk->sk); 1216 } 1217 1218 static int netlink_release(struct socket *sock) 1219 { 1220 struct sock *sk = sock->sk; 1221 struct netlink_sock *nlk; 1222 1223 if (!sk) 1224 return 0; 1225 1226 netlink_remove(sk); 1227 sock_orphan(sk); 1228 nlk = nlk_sk(sk); 1229 1230 /* 1231 * OK. Socket is unlinked, any packets that arrive now 1232 * will be purged. 1233 */ 1234 1235 /* must not acquire netlink_table_lock in any way again before unbind 1236 * and notifying genetlink is done as otherwise it might deadlock 1237 */ 1238 if (nlk->netlink_unbind) { 1239 int i; 1240 1241 for (i = 0; i < nlk->ngroups; i++) 1242 if (test_bit(i, nlk->groups)) 1243 nlk->netlink_unbind(sock_net(sk), i + 1); 1244 } 1245 if (sk->sk_protocol == NETLINK_GENERIC && 1246 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 1247 wake_up(&genl_sk_destructing_waitq); 1248 1249 sock->sk = NULL; 1250 wake_up_interruptible_all(&nlk->wait); 1251 1252 skb_queue_purge(&sk->sk_write_queue); 1253 1254 if (nlk->portid) { 1255 struct netlink_notify n = { 1256 .net = sock_net(sk), 1257 .protocol = sk->sk_protocol, 1258 .portid = nlk->portid, 1259 }; 1260 atomic_notifier_call_chain(&netlink_chain, 1261 NETLINK_URELEASE, &n); 1262 } 1263 1264 module_put(nlk->module); 1265 1266 if (netlink_is_kernel(sk)) { 1267 netlink_table_grab(); 1268 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1269 if (--nl_table[sk->sk_protocol].registered == 0) { 1270 struct listeners *old; 1271 1272 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1273 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1274 kfree_rcu(old, rcu); 1275 nl_table[sk->sk_protocol].module = NULL; 1276 nl_table[sk->sk_protocol].bind = NULL; 1277 nl_table[sk->sk_protocol].unbind = NULL; 1278 nl_table[sk->sk_protocol].flags = 0; 1279 nl_table[sk->sk_protocol].registered = 0; 1280 } 1281 netlink_table_ungrab(); 1282 } 1283 1284 kfree(nlk->groups); 1285 nlk->groups = NULL; 1286 1287 local_bh_disable(); 1288 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1289 local_bh_enable(); 1290 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 1291 return 0; 1292 } 1293 1294 static int netlink_autobind(struct socket *sock) 1295 { 1296 struct sock *sk = sock->sk; 1297 struct net *net = sock_net(sk); 1298 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1299 s32 portid = task_tgid_vnr(current); 1300 int err; 1301 static s32 rover = -4097; 1302 1303 retry: 1304 cond_resched(); 1305 rcu_read_lock(); 1306 if (__netlink_lookup(table, portid, net)) { 1307 /* Bind collision, search negative portid values. */ 1308 portid = rover--; 1309 if (rover > -4097) 1310 rover = -4097; 1311 rcu_read_unlock(); 1312 goto retry; 1313 } 1314 rcu_read_unlock(); 1315 1316 err = netlink_insert(sk, portid); 1317 if (err == -EADDRINUSE) 1318 goto retry; 1319 1320 /* If 2 threads race to autobind, that is fine. */ 1321 if (err == -EBUSY) 1322 err = 0; 1323 1324 return err; 1325 } 1326 1327 /** 1328 * __netlink_ns_capable - General netlink message capability test 1329 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1330 * @user_ns: The user namespace of the capability to use 1331 * @cap: The capability to use 1332 * 1333 * Test to see if the opener of the socket we received the message 1334 * from had when the netlink socket was created and the sender of the 1335 * message has has the capability @cap in the user namespace @user_ns. 1336 */ 1337 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1338 struct user_namespace *user_ns, int cap) 1339 { 1340 return ((nsp->flags & NETLINK_SKB_DST) || 1341 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1342 ns_capable(user_ns, cap); 1343 } 1344 EXPORT_SYMBOL(__netlink_ns_capable); 1345 1346 /** 1347 * netlink_ns_capable - General netlink message capability test 1348 * @skb: socket buffer holding a netlink command from userspace 1349 * @user_ns: The user namespace of the capability to use 1350 * @cap: The capability to use 1351 * 1352 * Test to see if the opener of the socket we received the message 1353 * from had when the netlink socket was created and the sender of the 1354 * message has has the capability @cap in the user namespace @user_ns. 1355 */ 1356 bool netlink_ns_capable(const struct sk_buff *skb, 1357 struct user_namespace *user_ns, int cap) 1358 { 1359 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1360 } 1361 EXPORT_SYMBOL(netlink_ns_capable); 1362 1363 /** 1364 * netlink_capable - Netlink global message capability test 1365 * @skb: socket buffer holding a netlink command from userspace 1366 * @cap: The capability to use 1367 * 1368 * Test to see if the opener of the socket we received the message 1369 * from had when the netlink socket was created and the sender of the 1370 * message has has the capability @cap in all user namespaces. 1371 */ 1372 bool netlink_capable(const struct sk_buff *skb, int cap) 1373 { 1374 return netlink_ns_capable(skb, &init_user_ns, cap); 1375 } 1376 EXPORT_SYMBOL(netlink_capable); 1377 1378 /** 1379 * netlink_net_capable - Netlink network namespace message capability test 1380 * @skb: socket buffer holding a netlink command from userspace 1381 * @cap: The capability to use 1382 * 1383 * Test to see if the opener of the socket we received the message 1384 * from had when the netlink socket was created and the sender of the 1385 * message has has the capability @cap over the network namespace of 1386 * the socket we received the message from. 1387 */ 1388 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1389 { 1390 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1391 } 1392 EXPORT_SYMBOL(netlink_net_capable); 1393 1394 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1395 { 1396 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1397 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1398 } 1399 1400 static void 1401 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1402 { 1403 struct netlink_sock *nlk = nlk_sk(sk); 1404 1405 if (nlk->subscriptions && !subscriptions) 1406 __sk_del_bind_node(sk); 1407 else if (!nlk->subscriptions && subscriptions) 1408 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1409 nlk->subscriptions = subscriptions; 1410 } 1411 1412 static int netlink_realloc_groups(struct sock *sk) 1413 { 1414 struct netlink_sock *nlk = nlk_sk(sk); 1415 unsigned int groups; 1416 unsigned long *new_groups; 1417 int err = 0; 1418 1419 netlink_table_grab(); 1420 1421 groups = nl_table[sk->sk_protocol].groups; 1422 if (!nl_table[sk->sk_protocol].registered) { 1423 err = -ENOENT; 1424 goto out_unlock; 1425 } 1426 1427 if (nlk->ngroups >= groups) 1428 goto out_unlock; 1429 1430 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1431 if (new_groups == NULL) { 1432 err = -ENOMEM; 1433 goto out_unlock; 1434 } 1435 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1436 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1437 1438 nlk->groups = new_groups; 1439 nlk->ngroups = groups; 1440 out_unlock: 1441 netlink_table_ungrab(); 1442 return err; 1443 } 1444 1445 static void netlink_undo_bind(int group, long unsigned int groups, 1446 struct sock *sk) 1447 { 1448 struct netlink_sock *nlk = nlk_sk(sk); 1449 int undo; 1450 1451 if (!nlk->netlink_unbind) 1452 return; 1453 1454 for (undo = 0; undo < group; undo++) 1455 if (test_bit(undo, &groups)) 1456 nlk->netlink_unbind(sock_net(sk), undo + 1); 1457 } 1458 1459 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1460 int addr_len) 1461 { 1462 struct sock *sk = sock->sk; 1463 struct net *net = sock_net(sk); 1464 struct netlink_sock *nlk = nlk_sk(sk); 1465 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1466 int err; 1467 long unsigned int groups = nladdr->nl_groups; 1468 1469 if (addr_len < sizeof(struct sockaddr_nl)) 1470 return -EINVAL; 1471 1472 if (nladdr->nl_family != AF_NETLINK) 1473 return -EINVAL; 1474 1475 /* Only superuser is allowed to listen multicasts */ 1476 if (groups) { 1477 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1478 return -EPERM; 1479 err = netlink_realloc_groups(sk); 1480 if (err) 1481 return err; 1482 } 1483 1484 if (nlk->portid) 1485 if (nladdr->nl_pid != nlk->portid) 1486 return -EINVAL; 1487 1488 if (nlk->netlink_bind && groups) { 1489 int group; 1490 1491 for (group = 0; group < nlk->ngroups; group++) { 1492 if (!test_bit(group, &groups)) 1493 continue; 1494 err = nlk->netlink_bind(net, group + 1); 1495 if (!err) 1496 continue; 1497 netlink_undo_bind(group, groups, sk); 1498 return err; 1499 } 1500 } 1501 1502 if (!nlk->portid) { 1503 err = nladdr->nl_pid ? 1504 netlink_insert(sk, nladdr->nl_pid) : 1505 netlink_autobind(sock); 1506 if (err) { 1507 netlink_undo_bind(nlk->ngroups, groups, sk); 1508 return err; 1509 } 1510 } 1511 1512 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1513 return 0; 1514 1515 netlink_table_grab(); 1516 netlink_update_subscriptions(sk, nlk->subscriptions + 1517 hweight32(groups) - 1518 hweight32(nlk->groups[0])); 1519 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1520 netlink_update_listeners(sk); 1521 netlink_table_ungrab(); 1522 1523 return 0; 1524 } 1525 1526 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1527 int alen, int flags) 1528 { 1529 int err = 0; 1530 struct sock *sk = sock->sk; 1531 struct netlink_sock *nlk = nlk_sk(sk); 1532 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1533 1534 if (alen < sizeof(addr->sa_family)) 1535 return -EINVAL; 1536 1537 if (addr->sa_family == AF_UNSPEC) { 1538 sk->sk_state = NETLINK_UNCONNECTED; 1539 nlk->dst_portid = 0; 1540 nlk->dst_group = 0; 1541 return 0; 1542 } 1543 if (addr->sa_family != AF_NETLINK) 1544 return -EINVAL; 1545 1546 if ((nladdr->nl_groups || nladdr->nl_pid) && 1547 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1548 return -EPERM; 1549 1550 if (!nlk->portid) 1551 err = netlink_autobind(sock); 1552 1553 if (err == 0) { 1554 sk->sk_state = NETLINK_CONNECTED; 1555 nlk->dst_portid = nladdr->nl_pid; 1556 nlk->dst_group = ffs(nladdr->nl_groups); 1557 } 1558 1559 return err; 1560 } 1561 1562 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1563 int *addr_len, int peer) 1564 { 1565 struct sock *sk = sock->sk; 1566 struct netlink_sock *nlk = nlk_sk(sk); 1567 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1568 1569 nladdr->nl_family = AF_NETLINK; 1570 nladdr->nl_pad = 0; 1571 *addr_len = sizeof(*nladdr); 1572 1573 if (peer) { 1574 nladdr->nl_pid = nlk->dst_portid; 1575 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1576 } else { 1577 nladdr->nl_pid = nlk->portid; 1578 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1579 } 1580 return 0; 1581 } 1582 1583 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1584 { 1585 struct sock *sock; 1586 struct netlink_sock *nlk; 1587 1588 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1589 if (!sock) 1590 return ERR_PTR(-ECONNREFUSED); 1591 1592 /* Don't bother queuing skb if kernel socket has no input function */ 1593 nlk = nlk_sk(sock); 1594 if (sock->sk_state == NETLINK_CONNECTED && 1595 nlk->dst_portid != nlk_sk(ssk)->portid) { 1596 sock_put(sock); 1597 return ERR_PTR(-ECONNREFUSED); 1598 } 1599 return sock; 1600 } 1601 1602 struct sock *netlink_getsockbyfilp(struct file *filp) 1603 { 1604 struct inode *inode = file_inode(filp); 1605 struct sock *sock; 1606 1607 if (!S_ISSOCK(inode->i_mode)) 1608 return ERR_PTR(-ENOTSOCK); 1609 1610 sock = SOCKET_I(inode)->sk; 1611 if (sock->sk_family != AF_NETLINK) 1612 return ERR_PTR(-EINVAL); 1613 1614 sock_hold(sock); 1615 return sock; 1616 } 1617 1618 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1619 int broadcast) 1620 { 1621 struct sk_buff *skb; 1622 void *data; 1623 1624 if (size <= NLMSG_GOODSIZE || broadcast) 1625 return alloc_skb(size, GFP_KERNEL); 1626 1627 size = SKB_DATA_ALIGN(size) + 1628 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1629 1630 data = vmalloc(size); 1631 if (data == NULL) 1632 return NULL; 1633 1634 skb = __build_skb(data, size); 1635 if (skb == NULL) 1636 vfree(data); 1637 else 1638 skb->destructor = netlink_skb_destructor; 1639 1640 return skb; 1641 } 1642 1643 /* 1644 * Attach a skb to a netlink socket. 1645 * The caller must hold a reference to the destination socket. On error, the 1646 * reference is dropped. The skb is not send to the destination, just all 1647 * all error checks are performed and memory in the queue is reserved. 1648 * Return values: 1649 * < 0: error. skb freed, reference to sock dropped. 1650 * 0: continue 1651 * 1: repeat lookup - reference dropped while waiting for socket memory. 1652 */ 1653 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1654 long *timeo, struct sock *ssk) 1655 { 1656 struct netlink_sock *nlk; 1657 1658 nlk = nlk_sk(sk); 1659 1660 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1661 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1662 !netlink_skb_is_mmaped(skb)) { 1663 DECLARE_WAITQUEUE(wait, current); 1664 if (!*timeo) { 1665 if (!ssk || netlink_is_kernel(ssk)) 1666 netlink_overrun(sk); 1667 sock_put(sk); 1668 kfree_skb(skb); 1669 return -EAGAIN; 1670 } 1671 1672 __set_current_state(TASK_INTERRUPTIBLE); 1673 add_wait_queue(&nlk->wait, &wait); 1674 1675 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1676 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1677 !sock_flag(sk, SOCK_DEAD)) 1678 *timeo = schedule_timeout(*timeo); 1679 1680 __set_current_state(TASK_RUNNING); 1681 remove_wait_queue(&nlk->wait, &wait); 1682 sock_put(sk); 1683 1684 if (signal_pending(current)) { 1685 kfree_skb(skb); 1686 return sock_intr_errno(*timeo); 1687 } 1688 return 1; 1689 } 1690 netlink_skb_set_owner_r(skb, sk); 1691 return 0; 1692 } 1693 1694 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1695 { 1696 int len = skb->len; 1697 1698 netlink_deliver_tap(skb); 1699 1700 #ifdef CONFIG_NETLINK_MMAP 1701 if (netlink_skb_is_mmaped(skb)) 1702 netlink_queue_mmaped_skb(sk, skb); 1703 else if (netlink_rx_is_mmaped(sk)) 1704 netlink_ring_set_copied(sk, skb); 1705 else 1706 #endif /* CONFIG_NETLINK_MMAP */ 1707 skb_queue_tail(&sk->sk_receive_queue, skb); 1708 sk->sk_data_ready(sk); 1709 return len; 1710 } 1711 1712 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1713 { 1714 int len = __netlink_sendskb(sk, skb); 1715 1716 sock_put(sk); 1717 return len; 1718 } 1719 1720 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1721 { 1722 kfree_skb(skb); 1723 sock_put(sk); 1724 } 1725 1726 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1727 { 1728 int delta; 1729 1730 WARN_ON(skb->sk != NULL); 1731 if (netlink_skb_is_mmaped(skb)) 1732 return skb; 1733 1734 delta = skb->end - skb->tail; 1735 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1736 return skb; 1737 1738 if (skb_shared(skb)) { 1739 struct sk_buff *nskb = skb_clone(skb, allocation); 1740 if (!nskb) 1741 return skb; 1742 consume_skb(skb); 1743 skb = nskb; 1744 } 1745 1746 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1747 skb->truesize -= delta; 1748 1749 return skb; 1750 } 1751 1752 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1753 struct sock *ssk) 1754 { 1755 int ret; 1756 struct netlink_sock *nlk = nlk_sk(sk); 1757 1758 ret = -ECONNREFUSED; 1759 if (nlk->netlink_rcv != NULL) { 1760 ret = skb->len; 1761 netlink_skb_set_owner_r(skb, sk); 1762 NETLINK_CB(skb).sk = ssk; 1763 netlink_deliver_tap_kernel(sk, ssk, skb); 1764 nlk->netlink_rcv(skb); 1765 consume_skb(skb); 1766 } else { 1767 kfree_skb(skb); 1768 } 1769 sock_put(sk); 1770 return ret; 1771 } 1772 1773 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1774 u32 portid, int nonblock) 1775 { 1776 struct sock *sk; 1777 int err; 1778 long timeo; 1779 1780 skb = netlink_trim(skb, gfp_any()); 1781 1782 timeo = sock_sndtimeo(ssk, nonblock); 1783 retry: 1784 sk = netlink_getsockbyportid(ssk, portid); 1785 if (IS_ERR(sk)) { 1786 kfree_skb(skb); 1787 return PTR_ERR(sk); 1788 } 1789 if (netlink_is_kernel(sk)) 1790 return netlink_unicast_kernel(sk, skb, ssk); 1791 1792 if (sk_filter(sk, skb)) { 1793 err = skb->len; 1794 kfree_skb(skb); 1795 sock_put(sk); 1796 return err; 1797 } 1798 1799 err = netlink_attachskb(sk, skb, &timeo, ssk); 1800 if (err == 1) 1801 goto retry; 1802 if (err) 1803 return err; 1804 1805 return netlink_sendskb(sk, skb); 1806 } 1807 EXPORT_SYMBOL(netlink_unicast); 1808 1809 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1810 u32 dst_portid, gfp_t gfp_mask) 1811 { 1812 #ifdef CONFIG_NETLINK_MMAP 1813 struct sock *sk = NULL; 1814 struct sk_buff *skb; 1815 struct netlink_ring *ring; 1816 struct nl_mmap_hdr *hdr; 1817 unsigned int maxlen; 1818 1819 sk = netlink_getsockbyportid(ssk, dst_portid); 1820 if (IS_ERR(sk)) 1821 goto out; 1822 1823 ring = &nlk_sk(sk)->rx_ring; 1824 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1825 if (ring->pg_vec == NULL) 1826 goto out_put; 1827 1828 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1829 goto out_put; 1830 1831 skb = alloc_skb_head(gfp_mask); 1832 if (skb == NULL) 1833 goto err1; 1834 1835 spin_lock_bh(&sk->sk_receive_queue.lock); 1836 /* check again under lock */ 1837 if (ring->pg_vec == NULL) 1838 goto out_free; 1839 1840 /* check again under lock */ 1841 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1842 if (maxlen < size) 1843 goto out_free; 1844 1845 netlink_forward_ring(ring); 1846 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1847 if (hdr == NULL) 1848 goto err2; 1849 netlink_ring_setup_skb(skb, sk, ring, hdr); 1850 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1851 atomic_inc(&ring->pending); 1852 netlink_increment_head(ring); 1853 1854 spin_unlock_bh(&sk->sk_receive_queue.lock); 1855 return skb; 1856 1857 err2: 1858 kfree_skb(skb); 1859 spin_unlock_bh(&sk->sk_receive_queue.lock); 1860 netlink_overrun(sk); 1861 err1: 1862 sock_put(sk); 1863 return NULL; 1864 1865 out_free: 1866 kfree_skb(skb); 1867 spin_unlock_bh(&sk->sk_receive_queue.lock); 1868 out_put: 1869 sock_put(sk); 1870 out: 1871 #endif 1872 return alloc_skb(size, gfp_mask); 1873 } 1874 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1875 1876 int netlink_has_listeners(struct sock *sk, unsigned int group) 1877 { 1878 int res = 0; 1879 struct listeners *listeners; 1880 1881 BUG_ON(!netlink_is_kernel(sk)); 1882 1883 rcu_read_lock(); 1884 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1885 1886 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1887 res = test_bit(group - 1, listeners->masks); 1888 1889 rcu_read_unlock(); 1890 1891 return res; 1892 } 1893 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1894 1895 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1896 { 1897 struct netlink_sock *nlk = nlk_sk(sk); 1898 1899 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1900 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1901 netlink_skb_set_owner_r(skb, sk); 1902 __netlink_sendskb(sk, skb); 1903 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1904 } 1905 return -1; 1906 } 1907 1908 struct netlink_broadcast_data { 1909 struct sock *exclude_sk; 1910 struct net *net; 1911 u32 portid; 1912 u32 group; 1913 int failure; 1914 int delivery_failure; 1915 int congested; 1916 int delivered; 1917 gfp_t allocation; 1918 struct sk_buff *skb, *skb2; 1919 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1920 void *tx_data; 1921 }; 1922 1923 static void do_one_broadcast(struct sock *sk, 1924 struct netlink_broadcast_data *p) 1925 { 1926 struct netlink_sock *nlk = nlk_sk(sk); 1927 int val; 1928 1929 if (p->exclude_sk == sk) 1930 return; 1931 1932 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1933 !test_bit(p->group - 1, nlk->groups)) 1934 return; 1935 1936 if (!net_eq(sock_net(sk), p->net)) { 1937 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 1938 return; 1939 1940 if (!peernet_has_id(sock_net(sk), p->net)) 1941 return; 1942 1943 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1944 CAP_NET_BROADCAST)) 1945 return; 1946 } 1947 1948 if (p->failure) { 1949 netlink_overrun(sk); 1950 return; 1951 } 1952 1953 sock_hold(sk); 1954 if (p->skb2 == NULL) { 1955 if (skb_shared(p->skb)) { 1956 p->skb2 = skb_clone(p->skb, p->allocation); 1957 } else { 1958 p->skb2 = skb_get(p->skb); 1959 /* 1960 * skb ownership may have been set when 1961 * delivered to a previous socket. 1962 */ 1963 skb_orphan(p->skb2); 1964 } 1965 } 1966 if (p->skb2 == NULL) { 1967 netlink_overrun(sk); 1968 /* Clone failed. Notify ALL listeners. */ 1969 p->failure = 1; 1970 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1971 p->delivery_failure = 1; 1972 goto out; 1973 } 1974 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1975 kfree_skb(p->skb2); 1976 p->skb2 = NULL; 1977 goto out; 1978 } 1979 if (sk_filter(sk, p->skb2)) { 1980 kfree_skb(p->skb2); 1981 p->skb2 = NULL; 1982 goto out; 1983 } 1984 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1985 NETLINK_CB(p->skb2).nsid_is_set = true; 1986 val = netlink_broadcast_deliver(sk, p->skb2); 1987 if (val < 0) { 1988 netlink_overrun(sk); 1989 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1990 p->delivery_failure = 1; 1991 } else { 1992 p->congested |= val; 1993 p->delivered = 1; 1994 p->skb2 = NULL; 1995 } 1996 out: 1997 sock_put(sk); 1998 } 1999 2000 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 2001 u32 group, gfp_t allocation, 2002 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 2003 void *filter_data) 2004 { 2005 struct net *net = sock_net(ssk); 2006 struct netlink_broadcast_data info; 2007 struct sock *sk; 2008 2009 skb = netlink_trim(skb, allocation); 2010 2011 info.exclude_sk = ssk; 2012 info.net = net; 2013 info.portid = portid; 2014 info.group = group; 2015 info.failure = 0; 2016 info.delivery_failure = 0; 2017 info.congested = 0; 2018 info.delivered = 0; 2019 info.allocation = allocation; 2020 info.skb = skb; 2021 info.skb2 = NULL; 2022 info.tx_filter = filter; 2023 info.tx_data = filter_data; 2024 2025 /* While we sleep in clone, do not allow to change socket list */ 2026 2027 netlink_lock_table(); 2028 2029 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2030 do_one_broadcast(sk, &info); 2031 2032 consume_skb(skb); 2033 2034 netlink_unlock_table(); 2035 2036 if (info.delivery_failure) { 2037 kfree_skb(info.skb2); 2038 return -ENOBUFS; 2039 } 2040 consume_skb(info.skb2); 2041 2042 if (info.delivered) { 2043 if (info.congested && (allocation & __GFP_WAIT)) 2044 yield(); 2045 return 0; 2046 } 2047 return -ESRCH; 2048 } 2049 EXPORT_SYMBOL(netlink_broadcast_filtered); 2050 2051 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2052 u32 group, gfp_t allocation) 2053 { 2054 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2055 NULL, NULL); 2056 } 2057 EXPORT_SYMBOL(netlink_broadcast); 2058 2059 struct netlink_set_err_data { 2060 struct sock *exclude_sk; 2061 u32 portid; 2062 u32 group; 2063 int code; 2064 }; 2065 2066 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2067 { 2068 struct netlink_sock *nlk = nlk_sk(sk); 2069 int ret = 0; 2070 2071 if (sk == p->exclude_sk) 2072 goto out; 2073 2074 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2075 goto out; 2076 2077 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2078 !test_bit(p->group - 1, nlk->groups)) 2079 goto out; 2080 2081 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 2082 ret = 1; 2083 goto out; 2084 } 2085 2086 sk->sk_err = p->code; 2087 sk->sk_error_report(sk); 2088 out: 2089 return ret; 2090 } 2091 2092 /** 2093 * netlink_set_err - report error to broadcast listeners 2094 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2095 * @portid: the PORTID of a process that we want to skip (if any) 2096 * @group: the broadcast group that will notice the error 2097 * @code: error code, must be negative (as usual in kernelspace) 2098 * 2099 * This function returns the number of broadcast listeners that have set the 2100 * NETLINK_NO_ENOBUFS socket option. 2101 */ 2102 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2103 { 2104 struct netlink_set_err_data info; 2105 struct sock *sk; 2106 int ret = 0; 2107 2108 info.exclude_sk = ssk; 2109 info.portid = portid; 2110 info.group = group; 2111 /* sk->sk_err wants a positive error value */ 2112 info.code = -code; 2113 2114 read_lock(&nl_table_lock); 2115 2116 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2117 ret += do_one_set_err(sk, &info); 2118 2119 read_unlock(&nl_table_lock); 2120 return ret; 2121 } 2122 EXPORT_SYMBOL(netlink_set_err); 2123 2124 /* must be called with netlink table grabbed */ 2125 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2126 unsigned int group, 2127 int is_new) 2128 { 2129 int old, new = !!is_new, subscriptions; 2130 2131 old = test_bit(group - 1, nlk->groups); 2132 subscriptions = nlk->subscriptions - old + new; 2133 if (new) 2134 __set_bit(group - 1, nlk->groups); 2135 else 2136 __clear_bit(group - 1, nlk->groups); 2137 netlink_update_subscriptions(&nlk->sk, subscriptions); 2138 netlink_update_listeners(&nlk->sk); 2139 } 2140 2141 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2142 char __user *optval, unsigned int optlen) 2143 { 2144 struct sock *sk = sock->sk; 2145 struct netlink_sock *nlk = nlk_sk(sk); 2146 unsigned int val = 0; 2147 int err; 2148 2149 if (level != SOL_NETLINK) 2150 return -ENOPROTOOPT; 2151 2152 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2153 optlen >= sizeof(int) && 2154 get_user(val, (unsigned int __user *)optval)) 2155 return -EFAULT; 2156 2157 switch (optname) { 2158 case NETLINK_PKTINFO: 2159 if (val) 2160 nlk->flags |= NETLINK_F_RECV_PKTINFO; 2161 else 2162 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 2163 err = 0; 2164 break; 2165 case NETLINK_ADD_MEMBERSHIP: 2166 case NETLINK_DROP_MEMBERSHIP: { 2167 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2168 return -EPERM; 2169 err = netlink_realloc_groups(sk); 2170 if (err) 2171 return err; 2172 if (!val || val - 1 >= nlk->ngroups) 2173 return -EINVAL; 2174 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2175 err = nlk->netlink_bind(sock_net(sk), val); 2176 if (err) 2177 return err; 2178 } 2179 netlink_table_grab(); 2180 netlink_update_socket_mc(nlk, val, 2181 optname == NETLINK_ADD_MEMBERSHIP); 2182 netlink_table_ungrab(); 2183 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2184 nlk->netlink_unbind(sock_net(sk), val); 2185 2186 err = 0; 2187 break; 2188 } 2189 case NETLINK_BROADCAST_ERROR: 2190 if (val) 2191 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 2192 else 2193 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 2194 err = 0; 2195 break; 2196 case NETLINK_NO_ENOBUFS: 2197 if (val) { 2198 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 2199 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 2200 wake_up_interruptible(&nlk->wait); 2201 } else { 2202 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 2203 } 2204 err = 0; 2205 break; 2206 #ifdef CONFIG_NETLINK_MMAP 2207 case NETLINK_RX_RING: 2208 case NETLINK_TX_RING: { 2209 struct nl_mmap_req req; 2210 2211 /* Rings might consume more memory than queue limits, require 2212 * CAP_NET_ADMIN. 2213 */ 2214 if (!capable(CAP_NET_ADMIN)) 2215 return -EPERM; 2216 if (optlen < sizeof(req)) 2217 return -EINVAL; 2218 if (copy_from_user(&req, optval, sizeof(req))) 2219 return -EFAULT; 2220 err = netlink_set_ring(sk, &req, false, 2221 optname == NETLINK_TX_RING); 2222 break; 2223 } 2224 #endif /* CONFIG_NETLINK_MMAP */ 2225 case NETLINK_LISTEN_ALL_NSID: 2226 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 2227 return -EPERM; 2228 2229 if (val) 2230 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 2231 else 2232 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 2233 err = 0; 2234 break; 2235 default: 2236 err = -ENOPROTOOPT; 2237 } 2238 return err; 2239 } 2240 2241 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2242 char __user *optval, int __user *optlen) 2243 { 2244 struct sock *sk = sock->sk; 2245 struct netlink_sock *nlk = nlk_sk(sk); 2246 int len, val, err; 2247 2248 if (level != SOL_NETLINK) 2249 return -ENOPROTOOPT; 2250 2251 if (get_user(len, optlen)) 2252 return -EFAULT; 2253 if (len < 0) 2254 return -EINVAL; 2255 2256 switch (optname) { 2257 case NETLINK_PKTINFO: 2258 if (len < sizeof(int)) 2259 return -EINVAL; 2260 len = sizeof(int); 2261 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 2262 if (put_user(len, optlen) || 2263 put_user(val, optval)) 2264 return -EFAULT; 2265 err = 0; 2266 break; 2267 case NETLINK_BROADCAST_ERROR: 2268 if (len < sizeof(int)) 2269 return -EINVAL; 2270 len = sizeof(int); 2271 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 2272 if (put_user(len, optlen) || 2273 put_user(val, optval)) 2274 return -EFAULT; 2275 err = 0; 2276 break; 2277 case NETLINK_NO_ENOBUFS: 2278 if (len < sizeof(int)) 2279 return -EINVAL; 2280 len = sizeof(int); 2281 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 2282 if (put_user(len, optlen) || 2283 put_user(val, optval)) 2284 return -EFAULT; 2285 err = 0; 2286 break; 2287 default: 2288 err = -ENOPROTOOPT; 2289 } 2290 return err; 2291 } 2292 2293 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2294 { 2295 struct nl_pktinfo info; 2296 2297 info.group = NETLINK_CB(skb).dst_group; 2298 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2299 } 2300 2301 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 2302 struct sk_buff *skb) 2303 { 2304 if (!NETLINK_CB(skb).nsid_is_set) 2305 return; 2306 2307 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 2308 &NETLINK_CB(skb).nsid); 2309 } 2310 2311 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2312 { 2313 struct sock *sk = sock->sk; 2314 struct netlink_sock *nlk = nlk_sk(sk); 2315 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2316 u32 dst_portid; 2317 u32 dst_group; 2318 struct sk_buff *skb; 2319 int err; 2320 struct scm_cookie scm; 2321 u32 netlink_skb_flags = 0; 2322 2323 if (msg->msg_flags&MSG_OOB) 2324 return -EOPNOTSUPP; 2325 2326 err = scm_send(sock, msg, &scm, true); 2327 if (err < 0) 2328 return err; 2329 2330 if (msg->msg_namelen) { 2331 err = -EINVAL; 2332 if (addr->nl_family != AF_NETLINK) 2333 goto out; 2334 dst_portid = addr->nl_pid; 2335 dst_group = ffs(addr->nl_groups); 2336 err = -EPERM; 2337 if ((dst_group || dst_portid) && 2338 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2339 goto out; 2340 netlink_skb_flags |= NETLINK_SKB_DST; 2341 } else { 2342 dst_portid = nlk->dst_portid; 2343 dst_group = nlk->dst_group; 2344 } 2345 2346 if (!nlk->portid) { 2347 err = netlink_autobind(sock); 2348 if (err) 2349 goto out; 2350 } 2351 2352 /* It's a really convoluted way for userland to ask for mmaped 2353 * sendmsg(), but that's what we've got... 2354 */ 2355 if (netlink_tx_is_mmaped(sk) && 2356 msg->msg_iter.type == ITER_IOVEC && 2357 msg->msg_iter.nr_segs == 1 && 2358 msg->msg_iter.iov->iov_base == NULL) { 2359 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2360 &scm); 2361 goto out; 2362 } 2363 2364 err = -EMSGSIZE; 2365 if (len > sk->sk_sndbuf - 32) 2366 goto out; 2367 err = -ENOBUFS; 2368 skb = netlink_alloc_large_skb(len, dst_group); 2369 if (skb == NULL) 2370 goto out; 2371 2372 NETLINK_CB(skb).portid = nlk->portid; 2373 NETLINK_CB(skb).dst_group = dst_group; 2374 NETLINK_CB(skb).creds = scm.creds; 2375 NETLINK_CB(skb).flags = netlink_skb_flags; 2376 2377 err = -EFAULT; 2378 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2379 kfree_skb(skb); 2380 goto out; 2381 } 2382 2383 err = security_netlink_send(sk, skb); 2384 if (err) { 2385 kfree_skb(skb); 2386 goto out; 2387 } 2388 2389 if (dst_group) { 2390 atomic_inc(&skb->users); 2391 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2392 } 2393 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2394 2395 out: 2396 scm_destroy(&scm); 2397 return err; 2398 } 2399 2400 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2401 int flags) 2402 { 2403 struct scm_cookie scm; 2404 struct sock *sk = sock->sk; 2405 struct netlink_sock *nlk = nlk_sk(sk); 2406 int noblock = flags&MSG_DONTWAIT; 2407 size_t copied; 2408 struct sk_buff *skb, *data_skb; 2409 int err, ret; 2410 2411 if (flags&MSG_OOB) 2412 return -EOPNOTSUPP; 2413 2414 copied = 0; 2415 2416 skb = skb_recv_datagram(sk, flags, noblock, &err); 2417 if (skb == NULL) 2418 goto out; 2419 2420 data_skb = skb; 2421 2422 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2423 if (unlikely(skb_shinfo(skb)->frag_list)) { 2424 /* 2425 * If this skb has a frag_list, then here that means that we 2426 * will have to use the frag_list skb's data for compat tasks 2427 * and the regular skb's data for normal (non-compat) tasks. 2428 * 2429 * If we need to send the compat skb, assign it to the 2430 * 'data_skb' variable so that it will be used below for data 2431 * copying. We keep 'skb' for everything else, including 2432 * freeing both later. 2433 */ 2434 if (flags & MSG_CMSG_COMPAT) 2435 data_skb = skb_shinfo(skb)->frag_list; 2436 } 2437 #endif 2438 2439 /* Record the max length of recvmsg() calls for future allocations */ 2440 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2441 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2442 16384); 2443 2444 copied = data_skb->len; 2445 if (len < copied) { 2446 msg->msg_flags |= MSG_TRUNC; 2447 copied = len; 2448 } 2449 2450 skb_reset_transport_header(data_skb); 2451 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2452 2453 if (msg->msg_name) { 2454 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2455 addr->nl_family = AF_NETLINK; 2456 addr->nl_pad = 0; 2457 addr->nl_pid = NETLINK_CB(skb).portid; 2458 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2459 msg->msg_namelen = sizeof(*addr); 2460 } 2461 2462 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 2463 netlink_cmsg_recv_pktinfo(msg, skb); 2464 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 2465 netlink_cmsg_listen_all_nsid(sk, msg, skb); 2466 2467 memset(&scm, 0, sizeof(scm)); 2468 scm.creds = *NETLINK_CREDS(skb); 2469 if (flags & MSG_TRUNC) 2470 copied = data_skb->len; 2471 2472 skb_free_datagram(sk, skb); 2473 2474 if (nlk->cb_running && 2475 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2476 ret = netlink_dump(sk); 2477 if (ret) { 2478 sk->sk_err = -ret; 2479 sk->sk_error_report(sk); 2480 } 2481 } 2482 2483 scm_recv(sock, msg, &scm, flags); 2484 out: 2485 netlink_rcv_wake(sk); 2486 return err ? : copied; 2487 } 2488 2489 static void netlink_data_ready(struct sock *sk) 2490 { 2491 BUG(); 2492 } 2493 2494 /* 2495 * We export these functions to other modules. They provide a 2496 * complete set of kernel non-blocking support for message 2497 * queueing. 2498 */ 2499 2500 struct sock * 2501 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2502 struct netlink_kernel_cfg *cfg) 2503 { 2504 struct socket *sock; 2505 struct sock *sk; 2506 struct netlink_sock *nlk; 2507 struct listeners *listeners = NULL; 2508 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2509 unsigned int groups; 2510 2511 BUG_ON(!nl_table); 2512 2513 if (unit < 0 || unit >= MAX_LINKS) 2514 return NULL; 2515 2516 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2517 return NULL; 2518 2519 /* 2520 * We have to just have a reference on the net from sk, but don't 2521 * get_net it. Besides, we cannot get and then put the net here. 2522 * So we create one inside init_net and the move it to net. 2523 */ 2524 2525 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0) 2526 goto out_sock_release_nosk; 2527 2528 sk = sock->sk; 2529 sk_change_net(sk, net); 2530 2531 if (!cfg || cfg->groups < 32) 2532 groups = 32; 2533 else 2534 groups = cfg->groups; 2535 2536 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2537 if (!listeners) 2538 goto out_sock_release; 2539 2540 sk->sk_data_ready = netlink_data_ready; 2541 if (cfg && cfg->input) 2542 nlk_sk(sk)->netlink_rcv = cfg->input; 2543 2544 if (netlink_insert(sk, 0)) 2545 goto out_sock_release; 2546 2547 nlk = nlk_sk(sk); 2548 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 2549 2550 netlink_table_grab(); 2551 if (!nl_table[unit].registered) { 2552 nl_table[unit].groups = groups; 2553 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2554 nl_table[unit].cb_mutex = cb_mutex; 2555 nl_table[unit].module = module; 2556 if (cfg) { 2557 nl_table[unit].bind = cfg->bind; 2558 nl_table[unit].unbind = cfg->unbind; 2559 nl_table[unit].flags = cfg->flags; 2560 if (cfg->compare) 2561 nl_table[unit].compare = cfg->compare; 2562 } 2563 nl_table[unit].registered = 1; 2564 } else { 2565 kfree(listeners); 2566 nl_table[unit].registered++; 2567 } 2568 netlink_table_ungrab(); 2569 return sk; 2570 2571 out_sock_release: 2572 kfree(listeners); 2573 netlink_kernel_release(sk); 2574 return NULL; 2575 2576 out_sock_release_nosk: 2577 sock_release(sock); 2578 return NULL; 2579 } 2580 EXPORT_SYMBOL(__netlink_kernel_create); 2581 2582 void 2583 netlink_kernel_release(struct sock *sk) 2584 { 2585 sk_release_kernel(sk); 2586 } 2587 EXPORT_SYMBOL(netlink_kernel_release); 2588 2589 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2590 { 2591 struct listeners *new, *old; 2592 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2593 2594 if (groups < 32) 2595 groups = 32; 2596 2597 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2598 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2599 if (!new) 2600 return -ENOMEM; 2601 old = nl_deref_protected(tbl->listeners); 2602 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2603 rcu_assign_pointer(tbl->listeners, new); 2604 2605 kfree_rcu(old, rcu); 2606 } 2607 tbl->groups = groups; 2608 2609 return 0; 2610 } 2611 2612 /** 2613 * netlink_change_ngroups - change number of multicast groups 2614 * 2615 * This changes the number of multicast groups that are available 2616 * on a certain netlink family. Note that it is not possible to 2617 * change the number of groups to below 32. Also note that it does 2618 * not implicitly call netlink_clear_multicast_users() when the 2619 * number of groups is reduced. 2620 * 2621 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2622 * @groups: The new number of groups. 2623 */ 2624 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2625 { 2626 int err; 2627 2628 netlink_table_grab(); 2629 err = __netlink_change_ngroups(sk, groups); 2630 netlink_table_ungrab(); 2631 2632 return err; 2633 } 2634 2635 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2636 { 2637 struct sock *sk; 2638 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2639 2640 sk_for_each_bound(sk, &tbl->mc_list) 2641 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2642 } 2643 2644 struct nlmsghdr * 2645 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2646 { 2647 struct nlmsghdr *nlh; 2648 int size = nlmsg_msg_size(len); 2649 2650 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2651 nlh->nlmsg_type = type; 2652 nlh->nlmsg_len = size; 2653 nlh->nlmsg_flags = flags; 2654 nlh->nlmsg_pid = portid; 2655 nlh->nlmsg_seq = seq; 2656 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2657 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2658 return nlh; 2659 } 2660 EXPORT_SYMBOL(__nlmsg_put); 2661 2662 /* 2663 * It looks a bit ugly. 2664 * It would be better to create kernel thread. 2665 */ 2666 2667 static int netlink_dump(struct sock *sk) 2668 { 2669 struct netlink_sock *nlk = nlk_sk(sk); 2670 struct netlink_callback *cb; 2671 struct sk_buff *skb = NULL; 2672 struct nlmsghdr *nlh; 2673 int len, err = -ENOBUFS; 2674 int alloc_size; 2675 2676 mutex_lock(nlk->cb_mutex); 2677 if (!nlk->cb_running) { 2678 err = -EINVAL; 2679 goto errout_skb; 2680 } 2681 2682 cb = &nlk->cb; 2683 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2684 2685 if (!netlink_rx_is_mmaped(sk) && 2686 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2687 goto errout_skb; 2688 2689 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2690 * required, but it makes sense to _attempt_ a 16K bytes allocation 2691 * to reduce number of system calls on dump operations, if user 2692 * ever provided a big enough buffer. 2693 */ 2694 if (alloc_size < nlk->max_recvmsg_len) { 2695 skb = netlink_alloc_skb(sk, 2696 nlk->max_recvmsg_len, 2697 nlk->portid, 2698 GFP_KERNEL | 2699 __GFP_NOWARN | 2700 __GFP_NORETRY); 2701 /* available room should be exact amount to avoid MSG_TRUNC */ 2702 if (skb) 2703 skb_reserve(skb, skb_tailroom(skb) - 2704 nlk->max_recvmsg_len); 2705 } 2706 if (!skb) 2707 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2708 GFP_KERNEL); 2709 if (!skb) 2710 goto errout_skb; 2711 netlink_skb_set_owner_r(skb, sk); 2712 2713 len = cb->dump(skb, cb); 2714 2715 if (len > 0) { 2716 mutex_unlock(nlk->cb_mutex); 2717 2718 if (sk_filter(sk, skb)) 2719 kfree_skb(skb); 2720 else 2721 __netlink_sendskb(sk, skb); 2722 return 0; 2723 } 2724 2725 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2726 if (!nlh) 2727 goto errout_skb; 2728 2729 nl_dump_check_consistent(cb, nlh); 2730 2731 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2732 2733 if (sk_filter(sk, skb)) 2734 kfree_skb(skb); 2735 else 2736 __netlink_sendskb(sk, skb); 2737 2738 if (cb->done) 2739 cb->done(cb); 2740 2741 nlk->cb_running = false; 2742 mutex_unlock(nlk->cb_mutex); 2743 module_put(cb->module); 2744 consume_skb(cb->skb); 2745 return 0; 2746 2747 errout_skb: 2748 mutex_unlock(nlk->cb_mutex); 2749 kfree_skb(skb); 2750 return err; 2751 } 2752 2753 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2754 const struct nlmsghdr *nlh, 2755 struct netlink_dump_control *control) 2756 { 2757 struct netlink_callback *cb; 2758 struct sock *sk; 2759 struct netlink_sock *nlk; 2760 int ret; 2761 2762 /* Memory mapped dump requests need to be copied to avoid looping 2763 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2764 * a reference to the skb. 2765 */ 2766 if (netlink_skb_is_mmaped(skb)) { 2767 skb = skb_copy(skb, GFP_KERNEL); 2768 if (skb == NULL) 2769 return -ENOBUFS; 2770 } else 2771 atomic_inc(&skb->users); 2772 2773 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2774 if (sk == NULL) { 2775 ret = -ECONNREFUSED; 2776 goto error_free; 2777 } 2778 2779 nlk = nlk_sk(sk); 2780 mutex_lock(nlk->cb_mutex); 2781 /* A dump is in progress... */ 2782 if (nlk->cb_running) { 2783 ret = -EBUSY; 2784 goto error_unlock; 2785 } 2786 /* add reference of module which cb->dump belongs to */ 2787 if (!try_module_get(control->module)) { 2788 ret = -EPROTONOSUPPORT; 2789 goto error_unlock; 2790 } 2791 2792 cb = &nlk->cb; 2793 memset(cb, 0, sizeof(*cb)); 2794 cb->dump = control->dump; 2795 cb->done = control->done; 2796 cb->nlh = nlh; 2797 cb->data = control->data; 2798 cb->module = control->module; 2799 cb->min_dump_alloc = control->min_dump_alloc; 2800 cb->skb = skb; 2801 2802 nlk->cb_running = true; 2803 2804 mutex_unlock(nlk->cb_mutex); 2805 2806 ret = netlink_dump(sk); 2807 sock_put(sk); 2808 2809 if (ret) 2810 return ret; 2811 2812 /* We successfully started a dump, by returning -EINTR we 2813 * signal not to send ACK even if it was requested. 2814 */ 2815 return -EINTR; 2816 2817 error_unlock: 2818 sock_put(sk); 2819 mutex_unlock(nlk->cb_mutex); 2820 error_free: 2821 kfree_skb(skb); 2822 return ret; 2823 } 2824 EXPORT_SYMBOL(__netlink_dump_start); 2825 2826 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2827 { 2828 struct sk_buff *skb; 2829 struct nlmsghdr *rep; 2830 struct nlmsgerr *errmsg; 2831 size_t payload = sizeof(*errmsg); 2832 2833 /* error messages get the original request appened */ 2834 if (err) 2835 payload += nlmsg_len(nlh); 2836 2837 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2838 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2839 if (!skb) { 2840 struct sock *sk; 2841 2842 sk = netlink_lookup(sock_net(in_skb->sk), 2843 in_skb->sk->sk_protocol, 2844 NETLINK_CB(in_skb).portid); 2845 if (sk) { 2846 sk->sk_err = ENOBUFS; 2847 sk->sk_error_report(sk); 2848 sock_put(sk); 2849 } 2850 return; 2851 } 2852 2853 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2854 NLMSG_ERROR, payload, 0); 2855 errmsg = nlmsg_data(rep); 2856 errmsg->error = err; 2857 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2858 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2859 } 2860 EXPORT_SYMBOL(netlink_ack); 2861 2862 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2863 struct nlmsghdr *)) 2864 { 2865 struct nlmsghdr *nlh; 2866 int err; 2867 2868 while (skb->len >= nlmsg_total_size(0)) { 2869 int msglen; 2870 2871 nlh = nlmsg_hdr(skb); 2872 err = 0; 2873 2874 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2875 return 0; 2876 2877 /* Only requests are handled by the kernel */ 2878 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2879 goto ack; 2880 2881 /* Skip control messages */ 2882 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2883 goto ack; 2884 2885 err = cb(skb, nlh); 2886 if (err == -EINTR) 2887 goto skip; 2888 2889 ack: 2890 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2891 netlink_ack(skb, nlh, err); 2892 2893 skip: 2894 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2895 if (msglen > skb->len) 2896 msglen = skb->len; 2897 skb_pull(skb, msglen); 2898 } 2899 2900 return 0; 2901 } 2902 EXPORT_SYMBOL(netlink_rcv_skb); 2903 2904 /** 2905 * nlmsg_notify - send a notification netlink message 2906 * @sk: netlink socket to use 2907 * @skb: notification message 2908 * @portid: destination netlink portid for reports or 0 2909 * @group: destination multicast group or 0 2910 * @report: 1 to report back, 0 to disable 2911 * @flags: allocation flags 2912 */ 2913 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2914 unsigned int group, int report, gfp_t flags) 2915 { 2916 int err = 0; 2917 2918 if (group) { 2919 int exclude_portid = 0; 2920 2921 if (report) { 2922 atomic_inc(&skb->users); 2923 exclude_portid = portid; 2924 } 2925 2926 /* errors reported via destination sk->sk_err, but propagate 2927 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2928 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2929 } 2930 2931 if (report) { 2932 int err2; 2933 2934 err2 = nlmsg_unicast(sk, skb, portid); 2935 if (!err || err == -ESRCH) 2936 err = err2; 2937 } 2938 2939 return err; 2940 } 2941 EXPORT_SYMBOL(nlmsg_notify); 2942 2943 #ifdef CONFIG_PROC_FS 2944 struct nl_seq_iter { 2945 struct seq_net_private p; 2946 struct rhashtable_iter hti; 2947 int link; 2948 }; 2949 2950 static int netlink_walk_start(struct nl_seq_iter *iter) 2951 { 2952 int err; 2953 2954 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti); 2955 if (err) { 2956 iter->link = MAX_LINKS; 2957 return err; 2958 } 2959 2960 err = rhashtable_walk_start(&iter->hti); 2961 return err == -EAGAIN ? 0 : err; 2962 } 2963 2964 static void netlink_walk_stop(struct nl_seq_iter *iter) 2965 { 2966 rhashtable_walk_stop(&iter->hti); 2967 rhashtable_walk_exit(&iter->hti); 2968 } 2969 2970 static void *__netlink_seq_next(struct seq_file *seq) 2971 { 2972 struct nl_seq_iter *iter = seq->private; 2973 struct netlink_sock *nlk; 2974 2975 do { 2976 for (;;) { 2977 int err; 2978 2979 nlk = rhashtable_walk_next(&iter->hti); 2980 2981 if (IS_ERR(nlk)) { 2982 if (PTR_ERR(nlk) == -EAGAIN) 2983 continue; 2984 2985 return nlk; 2986 } 2987 2988 if (nlk) 2989 break; 2990 2991 netlink_walk_stop(iter); 2992 if (++iter->link >= MAX_LINKS) 2993 return NULL; 2994 2995 err = netlink_walk_start(iter); 2996 if (err) 2997 return ERR_PTR(err); 2998 } 2999 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 3000 3001 return nlk; 3002 } 3003 3004 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 3005 { 3006 struct nl_seq_iter *iter = seq->private; 3007 void *obj = SEQ_START_TOKEN; 3008 loff_t pos; 3009 int err; 3010 3011 iter->link = 0; 3012 3013 err = netlink_walk_start(iter); 3014 if (err) 3015 return ERR_PTR(err); 3016 3017 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 3018 obj = __netlink_seq_next(seq); 3019 3020 return obj; 3021 } 3022 3023 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3024 { 3025 ++*pos; 3026 return __netlink_seq_next(seq); 3027 } 3028 3029 static void netlink_seq_stop(struct seq_file *seq, void *v) 3030 { 3031 struct nl_seq_iter *iter = seq->private; 3032 3033 if (iter->link >= MAX_LINKS) 3034 return; 3035 3036 netlink_walk_stop(iter); 3037 } 3038 3039 3040 static int netlink_seq_show(struct seq_file *seq, void *v) 3041 { 3042 if (v == SEQ_START_TOKEN) { 3043 seq_puts(seq, 3044 "sk Eth Pid Groups " 3045 "Rmem Wmem Dump Locks Drops Inode\n"); 3046 } else { 3047 struct sock *s = v; 3048 struct netlink_sock *nlk = nlk_sk(s); 3049 3050 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3051 s, 3052 s->sk_protocol, 3053 nlk->portid, 3054 nlk->groups ? (u32)nlk->groups[0] : 0, 3055 sk_rmem_alloc_get(s), 3056 sk_wmem_alloc_get(s), 3057 nlk->cb_running, 3058 atomic_read(&s->sk_refcnt), 3059 atomic_read(&s->sk_drops), 3060 sock_i_ino(s) 3061 ); 3062 3063 } 3064 return 0; 3065 } 3066 3067 static const struct seq_operations netlink_seq_ops = { 3068 .start = netlink_seq_start, 3069 .next = netlink_seq_next, 3070 .stop = netlink_seq_stop, 3071 .show = netlink_seq_show, 3072 }; 3073 3074 3075 static int netlink_seq_open(struct inode *inode, struct file *file) 3076 { 3077 return seq_open_net(inode, file, &netlink_seq_ops, 3078 sizeof(struct nl_seq_iter)); 3079 } 3080 3081 static const struct file_operations netlink_seq_fops = { 3082 .owner = THIS_MODULE, 3083 .open = netlink_seq_open, 3084 .read = seq_read, 3085 .llseek = seq_lseek, 3086 .release = seq_release_net, 3087 }; 3088 3089 #endif 3090 3091 int netlink_register_notifier(struct notifier_block *nb) 3092 { 3093 return atomic_notifier_chain_register(&netlink_chain, nb); 3094 } 3095 EXPORT_SYMBOL(netlink_register_notifier); 3096 3097 int netlink_unregister_notifier(struct notifier_block *nb) 3098 { 3099 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3100 } 3101 EXPORT_SYMBOL(netlink_unregister_notifier); 3102 3103 static const struct proto_ops netlink_ops = { 3104 .family = PF_NETLINK, 3105 .owner = THIS_MODULE, 3106 .release = netlink_release, 3107 .bind = netlink_bind, 3108 .connect = netlink_connect, 3109 .socketpair = sock_no_socketpair, 3110 .accept = sock_no_accept, 3111 .getname = netlink_getname, 3112 .poll = netlink_poll, 3113 .ioctl = sock_no_ioctl, 3114 .listen = sock_no_listen, 3115 .shutdown = sock_no_shutdown, 3116 .setsockopt = netlink_setsockopt, 3117 .getsockopt = netlink_getsockopt, 3118 .sendmsg = netlink_sendmsg, 3119 .recvmsg = netlink_recvmsg, 3120 .mmap = netlink_mmap, 3121 .sendpage = sock_no_sendpage, 3122 }; 3123 3124 static const struct net_proto_family netlink_family_ops = { 3125 .family = PF_NETLINK, 3126 .create = netlink_create, 3127 .owner = THIS_MODULE, /* for consistency 8) */ 3128 }; 3129 3130 static int __net_init netlink_net_init(struct net *net) 3131 { 3132 #ifdef CONFIG_PROC_FS 3133 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3134 return -ENOMEM; 3135 #endif 3136 return 0; 3137 } 3138 3139 static void __net_exit netlink_net_exit(struct net *net) 3140 { 3141 #ifdef CONFIG_PROC_FS 3142 remove_proc_entry("netlink", net->proc_net); 3143 #endif 3144 } 3145 3146 static void __init netlink_add_usersock_entry(void) 3147 { 3148 struct listeners *listeners; 3149 int groups = 32; 3150 3151 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3152 if (!listeners) 3153 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3154 3155 netlink_table_grab(); 3156 3157 nl_table[NETLINK_USERSOCK].groups = groups; 3158 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3159 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3160 nl_table[NETLINK_USERSOCK].registered = 1; 3161 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3162 3163 netlink_table_ungrab(); 3164 } 3165 3166 static struct pernet_operations __net_initdata netlink_net_ops = { 3167 .init = netlink_net_init, 3168 .exit = netlink_net_exit, 3169 }; 3170 3171 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 3172 { 3173 const struct netlink_sock *nlk = data; 3174 struct netlink_compare_arg arg; 3175 3176 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 3177 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 3178 } 3179 3180 static const struct rhashtable_params netlink_rhashtable_params = { 3181 .head_offset = offsetof(struct netlink_sock, node), 3182 .key_len = netlink_compare_arg_len, 3183 .obj_hashfn = netlink_hash, 3184 .obj_cmpfn = netlink_compare, 3185 .max_size = 65536, 3186 .automatic_shrinking = true, 3187 }; 3188 3189 static int __init netlink_proto_init(void) 3190 { 3191 int i; 3192 int err = proto_register(&netlink_proto, 0); 3193 3194 if (err != 0) 3195 goto out; 3196 3197 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3198 3199 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3200 if (!nl_table) 3201 goto panic; 3202 3203 for (i = 0; i < MAX_LINKS; i++) { 3204 if (rhashtable_init(&nl_table[i].hash, 3205 &netlink_rhashtable_params) < 0) { 3206 while (--i > 0) 3207 rhashtable_destroy(&nl_table[i].hash); 3208 kfree(nl_table); 3209 goto panic; 3210 } 3211 } 3212 3213 INIT_LIST_HEAD(&netlink_tap_all); 3214 3215 netlink_add_usersock_entry(); 3216 3217 sock_register(&netlink_family_ops); 3218 register_pernet_subsys(&netlink_net_ops); 3219 /* The netlink device handler may be needed early. */ 3220 rtnetlink_init(); 3221 out: 3222 return err; 3223 panic: 3224 panic("netlink_init: Cannot allocate nl_table\n"); 3225 } 3226 3227 core_initcall(netlink_proto_init); 3228