xref: /openbmc/linux/net/netlink/af_netlink.c (revision 59324cf35aba5336b611074028777838a963d03b)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70 
71 #include "af_netlink.h"
72 
73 struct listeners {
74 	struct rcu_head		rcu;
75 	unsigned long		masks[0];
76 };
77 
78 /* state bits */
79 #define NETLINK_S_CONGESTED		0x0
80 
81 /* flags */
82 #define NETLINK_F_KERNEL_SOCKET		0x1
83 #define NETLINK_F_RECV_PKTINFO		0x2
84 #define NETLINK_F_BROADCAST_SEND_ERROR	0x4
85 #define NETLINK_F_RECV_NO_ENOBUFS	0x8
86 #define NETLINK_F_LISTEN_ALL_NSID	0x10
87 
88 static inline int netlink_is_kernel(struct sock *sk)
89 {
90 	return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
91 }
92 
93 struct netlink_table *nl_table;
94 EXPORT_SYMBOL_GPL(nl_table);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
97 
98 static int netlink_dump(struct sock *sk);
99 static void netlink_skb_destructor(struct sk_buff *skb);
100 
101 /* nl_table locking explained:
102  * Lookup and traversal are protected with an RCU read-side lock. Insertion
103  * and removal are protected with per bucket lock while using RCU list
104  * modification primitives and may run in parallel to RCU protected lookups.
105  * Destruction of the Netlink socket may only occur *after* nl_table_lock has
106  * been acquired * either during or after the socket has been removed from
107  * the list and after an RCU grace period.
108  */
109 DEFINE_RWLOCK(nl_table_lock);
110 EXPORT_SYMBOL_GPL(nl_table_lock);
111 static atomic_t nl_table_users = ATOMIC_INIT(0);
112 
113 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
114 
115 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
116 
117 static DEFINE_SPINLOCK(netlink_tap_lock);
118 static struct list_head netlink_tap_all __read_mostly;
119 
120 static const struct rhashtable_params netlink_rhashtable_params;
121 
122 static inline u32 netlink_group_mask(u32 group)
123 {
124 	return group ? 1 << (group - 1) : 0;
125 }
126 
127 int netlink_add_tap(struct netlink_tap *nt)
128 {
129 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
130 		return -EINVAL;
131 
132 	spin_lock(&netlink_tap_lock);
133 	list_add_rcu(&nt->list, &netlink_tap_all);
134 	spin_unlock(&netlink_tap_lock);
135 
136 	__module_get(nt->module);
137 
138 	return 0;
139 }
140 EXPORT_SYMBOL_GPL(netlink_add_tap);
141 
142 static int __netlink_remove_tap(struct netlink_tap *nt)
143 {
144 	bool found = false;
145 	struct netlink_tap *tmp;
146 
147 	spin_lock(&netlink_tap_lock);
148 
149 	list_for_each_entry(tmp, &netlink_tap_all, list) {
150 		if (nt == tmp) {
151 			list_del_rcu(&nt->list);
152 			found = true;
153 			goto out;
154 		}
155 	}
156 
157 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
158 out:
159 	spin_unlock(&netlink_tap_lock);
160 
161 	if (found && nt->module)
162 		module_put(nt->module);
163 
164 	return found ? 0 : -ENODEV;
165 }
166 
167 int netlink_remove_tap(struct netlink_tap *nt)
168 {
169 	int ret;
170 
171 	ret = __netlink_remove_tap(nt);
172 	synchronize_net();
173 
174 	return ret;
175 }
176 EXPORT_SYMBOL_GPL(netlink_remove_tap);
177 
178 static bool netlink_filter_tap(const struct sk_buff *skb)
179 {
180 	struct sock *sk = skb->sk;
181 
182 	/* We take the more conservative approach and
183 	 * whitelist socket protocols that may pass.
184 	 */
185 	switch (sk->sk_protocol) {
186 	case NETLINK_ROUTE:
187 	case NETLINK_USERSOCK:
188 	case NETLINK_SOCK_DIAG:
189 	case NETLINK_NFLOG:
190 	case NETLINK_XFRM:
191 	case NETLINK_FIB_LOOKUP:
192 	case NETLINK_NETFILTER:
193 	case NETLINK_GENERIC:
194 		return true;
195 	}
196 
197 	return false;
198 }
199 
200 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
201 				     struct net_device *dev)
202 {
203 	struct sk_buff *nskb;
204 	struct sock *sk = skb->sk;
205 	int ret = -ENOMEM;
206 
207 	dev_hold(dev);
208 	nskb = skb_clone(skb, GFP_ATOMIC);
209 	if (nskb) {
210 		nskb->dev = dev;
211 		nskb->protocol = htons((u16) sk->sk_protocol);
212 		nskb->pkt_type = netlink_is_kernel(sk) ?
213 				 PACKET_KERNEL : PACKET_USER;
214 		skb_reset_network_header(nskb);
215 		ret = dev_queue_xmit(nskb);
216 		if (unlikely(ret > 0))
217 			ret = net_xmit_errno(ret);
218 	}
219 
220 	dev_put(dev);
221 	return ret;
222 }
223 
224 static void __netlink_deliver_tap(struct sk_buff *skb)
225 {
226 	int ret;
227 	struct netlink_tap *tmp;
228 
229 	if (!netlink_filter_tap(skb))
230 		return;
231 
232 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
233 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
234 		if (unlikely(ret))
235 			break;
236 	}
237 }
238 
239 static void netlink_deliver_tap(struct sk_buff *skb)
240 {
241 	rcu_read_lock();
242 
243 	if (unlikely(!list_empty(&netlink_tap_all)))
244 		__netlink_deliver_tap(skb);
245 
246 	rcu_read_unlock();
247 }
248 
249 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
250 				       struct sk_buff *skb)
251 {
252 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
253 		netlink_deliver_tap(skb);
254 }
255 
256 static void netlink_overrun(struct sock *sk)
257 {
258 	struct netlink_sock *nlk = nlk_sk(sk);
259 
260 	if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
261 		if (!test_and_set_bit(NETLINK_S_CONGESTED,
262 				      &nlk_sk(sk)->state)) {
263 			sk->sk_err = ENOBUFS;
264 			sk->sk_error_report(sk);
265 		}
266 	}
267 	atomic_inc(&sk->sk_drops);
268 }
269 
270 static void netlink_rcv_wake(struct sock *sk)
271 {
272 	struct netlink_sock *nlk = nlk_sk(sk);
273 
274 	if (skb_queue_empty(&sk->sk_receive_queue))
275 		clear_bit(NETLINK_S_CONGESTED, &nlk->state);
276 	if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
277 		wake_up_interruptible(&nlk->wait);
278 }
279 
280 #ifdef CONFIG_NETLINK_MMAP
281 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
282 {
283 	return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
284 }
285 
286 static bool netlink_rx_is_mmaped(struct sock *sk)
287 {
288 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
289 }
290 
291 static bool netlink_tx_is_mmaped(struct sock *sk)
292 {
293 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
294 }
295 
296 static __pure struct page *pgvec_to_page(const void *addr)
297 {
298 	if (is_vmalloc_addr(addr))
299 		return vmalloc_to_page(addr);
300 	else
301 		return virt_to_page(addr);
302 }
303 
304 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
305 {
306 	unsigned int i;
307 
308 	for (i = 0; i < len; i++) {
309 		if (pg_vec[i] != NULL) {
310 			if (is_vmalloc_addr(pg_vec[i]))
311 				vfree(pg_vec[i]);
312 			else
313 				free_pages((unsigned long)pg_vec[i], order);
314 		}
315 	}
316 	kfree(pg_vec);
317 }
318 
319 static void *alloc_one_pg_vec_page(unsigned long order)
320 {
321 	void *buffer;
322 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
323 			  __GFP_NOWARN | __GFP_NORETRY;
324 
325 	buffer = (void *)__get_free_pages(gfp_flags, order);
326 	if (buffer != NULL)
327 		return buffer;
328 
329 	buffer = vzalloc((1 << order) * PAGE_SIZE);
330 	if (buffer != NULL)
331 		return buffer;
332 
333 	gfp_flags &= ~__GFP_NORETRY;
334 	return (void *)__get_free_pages(gfp_flags, order);
335 }
336 
337 static void **alloc_pg_vec(struct netlink_sock *nlk,
338 			   struct nl_mmap_req *req, unsigned int order)
339 {
340 	unsigned int block_nr = req->nm_block_nr;
341 	unsigned int i;
342 	void **pg_vec;
343 
344 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
345 	if (pg_vec == NULL)
346 		return NULL;
347 
348 	for (i = 0; i < block_nr; i++) {
349 		pg_vec[i] = alloc_one_pg_vec_page(order);
350 		if (pg_vec[i] == NULL)
351 			goto err1;
352 	}
353 
354 	return pg_vec;
355 err1:
356 	free_pg_vec(pg_vec, order, block_nr);
357 	return NULL;
358 }
359 
360 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
361 			    bool closing, bool tx_ring)
362 {
363 	struct netlink_sock *nlk = nlk_sk(sk);
364 	struct netlink_ring *ring;
365 	struct sk_buff_head *queue;
366 	void **pg_vec = NULL;
367 	unsigned int order = 0;
368 	int err;
369 
370 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
371 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
372 
373 	if (!closing) {
374 		if (atomic_read(&nlk->mapped))
375 			return -EBUSY;
376 		if (atomic_read(&ring->pending))
377 			return -EBUSY;
378 	}
379 
380 	if (req->nm_block_nr) {
381 		if (ring->pg_vec != NULL)
382 			return -EBUSY;
383 
384 		if ((int)req->nm_block_size <= 0)
385 			return -EINVAL;
386 		if (!PAGE_ALIGNED(req->nm_block_size))
387 			return -EINVAL;
388 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
389 			return -EINVAL;
390 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
391 			return -EINVAL;
392 
393 		ring->frames_per_block = req->nm_block_size /
394 					 req->nm_frame_size;
395 		if (ring->frames_per_block == 0)
396 			return -EINVAL;
397 		if (ring->frames_per_block * req->nm_block_nr !=
398 		    req->nm_frame_nr)
399 			return -EINVAL;
400 
401 		order = get_order(req->nm_block_size);
402 		pg_vec = alloc_pg_vec(nlk, req, order);
403 		if (pg_vec == NULL)
404 			return -ENOMEM;
405 	} else {
406 		if (req->nm_frame_nr)
407 			return -EINVAL;
408 	}
409 
410 	err = -EBUSY;
411 	mutex_lock(&nlk->pg_vec_lock);
412 	if (closing || atomic_read(&nlk->mapped) == 0) {
413 		err = 0;
414 		spin_lock_bh(&queue->lock);
415 
416 		ring->frame_max		= req->nm_frame_nr - 1;
417 		ring->head		= 0;
418 		ring->frame_size	= req->nm_frame_size;
419 		ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
420 
421 		swap(ring->pg_vec_len, req->nm_block_nr);
422 		swap(ring->pg_vec_order, order);
423 		swap(ring->pg_vec, pg_vec);
424 
425 		__skb_queue_purge(queue);
426 		spin_unlock_bh(&queue->lock);
427 
428 		WARN_ON(atomic_read(&nlk->mapped));
429 	}
430 	mutex_unlock(&nlk->pg_vec_lock);
431 
432 	if (pg_vec)
433 		free_pg_vec(pg_vec, order, req->nm_block_nr);
434 	return err;
435 }
436 
437 static void netlink_mm_open(struct vm_area_struct *vma)
438 {
439 	struct file *file = vma->vm_file;
440 	struct socket *sock = file->private_data;
441 	struct sock *sk = sock->sk;
442 
443 	if (sk)
444 		atomic_inc(&nlk_sk(sk)->mapped);
445 }
446 
447 static void netlink_mm_close(struct vm_area_struct *vma)
448 {
449 	struct file *file = vma->vm_file;
450 	struct socket *sock = file->private_data;
451 	struct sock *sk = sock->sk;
452 
453 	if (sk)
454 		atomic_dec(&nlk_sk(sk)->mapped);
455 }
456 
457 static const struct vm_operations_struct netlink_mmap_ops = {
458 	.open	= netlink_mm_open,
459 	.close	= netlink_mm_close,
460 };
461 
462 static int netlink_mmap(struct file *file, struct socket *sock,
463 			struct vm_area_struct *vma)
464 {
465 	struct sock *sk = sock->sk;
466 	struct netlink_sock *nlk = nlk_sk(sk);
467 	struct netlink_ring *ring;
468 	unsigned long start, size, expected;
469 	unsigned int i;
470 	int err = -EINVAL;
471 
472 	if (vma->vm_pgoff)
473 		return -EINVAL;
474 
475 	mutex_lock(&nlk->pg_vec_lock);
476 
477 	expected = 0;
478 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
479 		if (ring->pg_vec == NULL)
480 			continue;
481 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
482 	}
483 
484 	if (expected == 0)
485 		goto out;
486 
487 	size = vma->vm_end - vma->vm_start;
488 	if (size != expected)
489 		goto out;
490 
491 	start = vma->vm_start;
492 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
493 		if (ring->pg_vec == NULL)
494 			continue;
495 
496 		for (i = 0; i < ring->pg_vec_len; i++) {
497 			struct page *page;
498 			void *kaddr = ring->pg_vec[i];
499 			unsigned int pg_num;
500 
501 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
502 				page = pgvec_to_page(kaddr);
503 				err = vm_insert_page(vma, start, page);
504 				if (err < 0)
505 					goto out;
506 				start += PAGE_SIZE;
507 				kaddr += PAGE_SIZE;
508 			}
509 		}
510 	}
511 
512 	atomic_inc(&nlk->mapped);
513 	vma->vm_ops = &netlink_mmap_ops;
514 	err = 0;
515 out:
516 	mutex_unlock(&nlk->pg_vec_lock);
517 	return err;
518 }
519 
520 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
521 {
522 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
523 	struct page *p_start, *p_end;
524 
525 	/* First page is flushed through netlink_{get,set}_status */
526 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
527 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
528 	while (p_start <= p_end) {
529 		flush_dcache_page(p_start);
530 		p_start++;
531 	}
532 #endif
533 }
534 
535 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
536 {
537 	smp_rmb();
538 	flush_dcache_page(pgvec_to_page(hdr));
539 	return hdr->nm_status;
540 }
541 
542 static void netlink_set_status(struct nl_mmap_hdr *hdr,
543 			       enum nl_mmap_status status)
544 {
545 	smp_mb();
546 	hdr->nm_status = status;
547 	flush_dcache_page(pgvec_to_page(hdr));
548 }
549 
550 static struct nl_mmap_hdr *
551 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
552 {
553 	unsigned int pg_vec_pos, frame_off;
554 
555 	pg_vec_pos = pos / ring->frames_per_block;
556 	frame_off  = pos % ring->frames_per_block;
557 
558 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
559 }
560 
561 static struct nl_mmap_hdr *
562 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
563 		     enum nl_mmap_status status)
564 {
565 	struct nl_mmap_hdr *hdr;
566 
567 	hdr = __netlink_lookup_frame(ring, pos);
568 	if (netlink_get_status(hdr) != status)
569 		return NULL;
570 
571 	return hdr;
572 }
573 
574 static struct nl_mmap_hdr *
575 netlink_current_frame(const struct netlink_ring *ring,
576 		      enum nl_mmap_status status)
577 {
578 	return netlink_lookup_frame(ring, ring->head, status);
579 }
580 
581 static struct nl_mmap_hdr *
582 netlink_previous_frame(const struct netlink_ring *ring,
583 		       enum nl_mmap_status status)
584 {
585 	unsigned int prev;
586 
587 	prev = ring->head ? ring->head - 1 : ring->frame_max;
588 	return netlink_lookup_frame(ring, prev, status);
589 }
590 
591 static void netlink_increment_head(struct netlink_ring *ring)
592 {
593 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
594 }
595 
596 static void netlink_forward_ring(struct netlink_ring *ring)
597 {
598 	unsigned int head = ring->head, pos = head;
599 	const struct nl_mmap_hdr *hdr;
600 
601 	do {
602 		hdr = __netlink_lookup_frame(ring, pos);
603 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
604 			break;
605 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
606 			break;
607 		netlink_increment_head(ring);
608 	} while (ring->head != head);
609 }
610 
611 static bool netlink_dump_space(struct netlink_sock *nlk)
612 {
613 	struct netlink_ring *ring = &nlk->rx_ring;
614 	struct nl_mmap_hdr *hdr;
615 	unsigned int n;
616 
617 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
618 	if (hdr == NULL)
619 		return false;
620 
621 	n = ring->head + ring->frame_max / 2;
622 	if (n > ring->frame_max)
623 		n -= ring->frame_max;
624 
625 	hdr = __netlink_lookup_frame(ring, n);
626 
627 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
628 }
629 
630 static unsigned int netlink_poll(struct file *file, struct socket *sock,
631 				 poll_table *wait)
632 {
633 	struct sock *sk = sock->sk;
634 	struct netlink_sock *nlk = nlk_sk(sk);
635 	unsigned int mask;
636 	int err;
637 
638 	if (nlk->rx_ring.pg_vec != NULL) {
639 		/* Memory mapped sockets don't call recvmsg(), so flow control
640 		 * for dumps is performed here. A dump is allowed to continue
641 		 * if at least half the ring is unused.
642 		 */
643 		while (nlk->cb_running && netlink_dump_space(nlk)) {
644 			err = netlink_dump(sk);
645 			if (err < 0) {
646 				sk->sk_err = -err;
647 				sk->sk_error_report(sk);
648 				break;
649 			}
650 		}
651 		netlink_rcv_wake(sk);
652 	}
653 
654 	mask = datagram_poll(file, sock, wait);
655 
656 	spin_lock_bh(&sk->sk_receive_queue.lock);
657 	if (nlk->rx_ring.pg_vec) {
658 		netlink_forward_ring(&nlk->rx_ring);
659 		if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
660 			mask |= POLLIN | POLLRDNORM;
661 	}
662 	spin_unlock_bh(&sk->sk_receive_queue.lock);
663 
664 	spin_lock_bh(&sk->sk_write_queue.lock);
665 	if (nlk->tx_ring.pg_vec) {
666 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
667 			mask |= POLLOUT | POLLWRNORM;
668 	}
669 	spin_unlock_bh(&sk->sk_write_queue.lock);
670 
671 	return mask;
672 }
673 
674 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
675 {
676 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
677 }
678 
679 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
680 				   struct netlink_ring *ring,
681 				   struct nl_mmap_hdr *hdr)
682 {
683 	unsigned int size;
684 	void *data;
685 
686 	size = ring->frame_size - NL_MMAP_HDRLEN;
687 	data = (void *)hdr + NL_MMAP_HDRLEN;
688 
689 	skb->head	= data;
690 	skb->data	= data;
691 	skb_reset_tail_pointer(skb);
692 	skb->end	= skb->tail + size;
693 	skb->len	= 0;
694 
695 	skb->destructor	= netlink_skb_destructor;
696 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
697 	NETLINK_CB(skb).sk = sk;
698 }
699 
700 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
701 				u32 dst_portid, u32 dst_group,
702 				struct scm_cookie *scm)
703 {
704 	struct netlink_sock *nlk = nlk_sk(sk);
705 	struct netlink_ring *ring;
706 	struct nl_mmap_hdr *hdr;
707 	struct sk_buff *skb;
708 	unsigned int maxlen;
709 	int err = 0, len = 0;
710 
711 	mutex_lock(&nlk->pg_vec_lock);
712 
713 	ring   = &nlk->tx_ring;
714 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
715 
716 	do {
717 		unsigned int nm_len;
718 
719 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
720 		if (hdr == NULL) {
721 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
722 			    atomic_read(&nlk->tx_ring.pending))
723 				schedule();
724 			continue;
725 		}
726 
727 		nm_len = ACCESS_ONCE(hdr->nm_len);
728 		if (nm_len > maxlen) {
729 			err = -EINVAL;
730 			goto out;
731 		}
732 
733 		netlink_frame_flush_dcache(hdr, nm_len);
734 
735 		skb = alloc_skb(nm_len, GFP_KERNEL);
736 		if (skb == NULL) {
737 			err = -ENOBUFS;
738 			goto out;
739 		}
740 		__skb_put(skb, nm_len);
741 		memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
742 		netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
743 
744 		netlink_increment_head(ring);
745 
746 		NETLINK_CB(skb).portid	  = nlk->portid;
747 		NETLINK_CB(skb).dst_group = dst_group;
748 		NETLINK_CB(skb).creds	  = scm->creds;
749 
750 		err = security_netlink_send(sk, skb);
751 		if (err) {
752 			kfree_skb(skb);
753 			goto out;
754 		}
755 
756 		if (unlikely(dst_group)) {
757 			atomic_inc(&skb->users);
758 			netlink_broadcast(sk, skb, dst_portid, dst_group,
759 					  GFP_KERNEL);
760 		}
761 		err = netlink_unicast(sk, skb, dst_portid,
762 				      msg->msg_flags & MSG_DONTWAIT);
763 		if (err < 0)
764 			goto out;
765 		len += err;
766 
767 	} while (hdr != NULL ||
768 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
769 		  atomic_read(&nlk->tx_ring.pending)));
770 
771 	if (len > 0)
772 		err = len;
773 out:
774 	mutex_unlock(&nlk->pg_vec_lock);
775 	return err;
776 }
777 
778 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
779 {
780 	struct nl_mmap_hdr *hdr;
781 
782 	hdr = netlink_mmap_hdr(skb);
783 	hdr->nm_len	= skb->len;
784 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
785 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
786 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
787 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
788 	netlink_frame_flush_dcache(hdr, hdr->nm_len);
789 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
790 
791 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
792 	kfree_skb(skb);
793 }
794 
795 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
796 {
797 	struct netlink_sock *nlk = nlk_sk(sk);
798 	struct netlink_ring *ring = &nlk->rx_ring;
799 	struct nl_mmap_hdr *hdr;
800 
801 	spin_lock_bh(&sk->sk_receive_queue.lock);
802 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
803 	if (hdr == NULL) {
804 		spin_unlock_bh(&sk->sk_receive_queue.lock);
805 		kfree_skb(skb);
806 		netlink_overrun(sk);
807 		return;
808 	}
809 	netlink_increment_head(ring);
810 	__skb_queue_tail(&sk->sk_receive_queue, skb);
811 	spin_unlock_bh(&sk->sk_receive_queue.lock);
812 
813 	hdr->nm_len	= skb->len;
814 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
815 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
816 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
817 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
818 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
819 }
820 
821 #else /* CONFIG_NETLINK_MMAP */
822 #define netlink_skb_is_mmaped(skb)	false
823 #define netlink_rx_is_mmaped(sk)	false
824 #define netlink_tx_is_mmaped(sk)	false
825 #define netlink_mmap			sock_no_mmap
826 #define netlink_poll			datagram_poll
827 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm)	0
828 #endif /* CONFIG_NETLINK_MMAP */
829 
830 static void netlink_skb_destructor(struct sk_buff *skb)
831 {
832 #ifdef CONFIG_NETLINK_MMAP
833 	struct nl_mmap_hdr *hdr;
834 	struct netlink_ring *ring;
835 	struct sock *sk;
836 
837 	/* If a packet from the kernel to userspace was freed because of an
838 	 * error without being delivered to userspace, the kernel must reset
839 	 * the status. In the direction userspace to kernel, the status is
840 	 * always reset here after the packet was processed and freed.
841 	 */
842 	if (netlink_skb_is_mmaped(skb)) {
843 		hdr = netlink_mmap_hdr(skb);
844 		sk = NETLINK_CB(skb).sk;
845 
846 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
847 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
848 			ring = &nlk_sk(sk)->tx_ring;
849 		} else {
850 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
851 				hdr->nm_len = 0;
852 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
853 			}
854 			ring = &nlk_sk(sk)->rx_ring;
855 		}
856 
857 		WARN_ON(atomic_read(&ring->pending) == 0);
858 		atomic_dec(&ring->pending);
859 		sock_put(sk);
860 
861 		skb->head = NULL;
862 	}
863 #endif
864 	if (is_vmalloc_addr(skb->head)) {
865 		if (!skb->cloned ||
866 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
867 			vfree(skb->head);
868 
869 		skb->head = NULL;
870 	}
871 	if (skb->sk != NULL)
872 		sock_rfree(skb);
873 }
874 
875 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
876 {
877 	WARN_ON(skb->sk != NULL);
878 	skb->sk = sk;
879 	skb->destructor = netlink_skb_destructor;
880 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
881 	sk_mem_charge(sk, skb->truesize);
882 }
883 
884 static void netlink_sock_destruct(struct sock *sk)
885 {
886 	struct netlink_sock *nlk = nlk_sk(sk);
887 
888 	if (nlk->cb_running) {
889 		if (nlk->cb.done)
890 			nlk->cb.done(&nlk->cb);
891 
892 		module_put(nlk->cb.module);
893 		kfree_skb(nlk->cb.skb);
894 	}
895 
896 	skb_queue_purge(&sk->sk_receive_queue);
897 #ifdef CONFIG_NETLINK_MMAP
898 	if (1) {
899 		struct nl_mmap_req req;
900 
901 		memset(&req, 0, sizeof(req));
902 		if (nlk->rx_ring.pg_vec)
903 			netlink_set_ring(sk, &req, true, false);
904 		memset(&req, 0, sizeof(req));
905 		if (nlk->tx_ring.pg_vec)
906 			netlink_set_ring(sk, &req, true, true);
907 	}
908 #endif /* CONFIG_NETLINK_MMAP */
909 
910 	if (!sock_flag(sk, SOCK_DEAD)) {
911 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
912 		return;
913 	}
914 
915 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
916 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
917 	WARN_ON(nlk_sk(sk)->groups);
918 }
919 
920 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
921  * SMP. Look, when several writers sleep and reader wakes them up, all but one
922  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
923  * this, _but_ remember, it adds useless work on UP machines.
924  */
925 
926 void netlink_table_grab(void)
927 	__acquires(nl_table_lock)
928 {
929 	might_sleep();
930 
931 	write_lock_irq(&nl_table_lock);
932 
933 	if (atomic_read(&nl_table_users)) {
934 		DECLARE_WAITQUEUE(wait, current);
935 
936 		add_wait_queue_exclusive(&nl_table_wait, &wait);
937 		for (;;) {
938 			set_current_state(TASK_UNINTERRUPTIBLE);
939 			if (atomic_read(&nl_table_users) == 0)
940 				break;
941 			write_unlock_irq(&nl_table_lock);
942 			schedule();
943 			write_lock_irq(&nl_table_lock);
944 		}
945 
946 		__set_current_state(TASK_RUNNING);
947 		remove_wait_queue(&nl_table_wait, &wait);
948 	}
949 }
950 
951 void netlink_table_ungrab(void)
952 	__releases(nl_table_lock)
953 {
954 	write_unlock_irq(&nl_table_lock);
955 	wake_up(&nl_table_wait);
956 }
957 
958 static inline void
959 netlink_lock_table(void)
960 {
961 	/* read_lock() synchronizes us to netlink_table_grab */
962 
963 	read_lock(&nl_table_lock);
964 	atomic_inc(&nl_table_users);
965 	read_unlock(&nl_table_lock);
966 }
967 
968 static inline void
969 netlink_unlock_table(void)
970 {
971 	if (atomic_dec_and_test(&nl_table_users))
972 		wake_up(&nl_table_wait);
973 }
974 
975 struct netlink_compare_arg
976 {
977 	possible_net_t pnet;
978 	u32 portid;
979 };
980 
981 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
982 #define netlink_compare_arg_len \
983 	(offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
984 
985 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
986 				  const void *ptr)
987 {
988 	const struct netlink_compare_arg *x = arg->key;
989 	const struct netlink_sock *nlk = ptr;
990 
991 	return nlk->portid != x->portid ||
992 	       !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
993 }
994 
995 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
996 				     struct net *net, u32 portid)
997 {
998 	memset(arg, 0, sizeof(*arg));
999 	write_pnet(&arg->pnet, net);
1000 	arg->portid = portid;
1001 }
1002 
1003 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1004 				     struct net *net)
1005 {
1006 	struct netlink_compare_arg arg;
1007 
1008 	netlink_compare_arg_init(&arg, net, portid);
1009 	return rhashtable_lookup_fast(&table->hash, &arg,
1010 				      netlink_rhashtable_params);
1011 }
1012 
1013 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1014 {
1015 	struct netlink_compare_arg arg;
1016 
1017 	netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1018 	return rhashtable_lookup_insert_key(&table->hash, &arg,
1019 					    &nlk_sk(sk)->node,
1020 					    netlink_rhashtable_params);
1021 }
1022 
1023 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1024 {
1025 	struct netlink_table *table = &nl_table[protocol];
1026 	struct sock *sk;
1027 
1028 	rcu_read_lock();
1029 	sk = __netlink_lookup(table, portid, net);
1030 	if (sk)
1031 		sock_hold(sk);
1032 	rcu_read_unlock();
1033 
1034 	return sk;
1035 }
1036 
1037 static const struct proto_ops netlink_ops;
1038 
1039 static void
1040 netlink_update_listeners(struct sock *sk)
1041 {
1042 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1043 	unsigned long mask;
1044 	unsigned int i;
1045 	struct listeners *listeners;
1046 
1047 	listeners = nl_deref_protected(tbl->listeners);
1048 	if (!listeners)
1049 		return;
1050 
1051 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1052 		mask = 0;
1053 		sk_for_each_bound(sk, &tbl->mc_list) {
1054 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1055 				mask |= nlk_sk(sk)->groups[i];
1056 		}
1057 		listeners->masks[i] = mask;
1058 	}
1059 	/* this function is only called with the netlink table "grabbed", which
1060 	 * makes sure updates are visible before bind or setsockopt return. */
1061 }
1062 
1063 static int netlink_insert(struct sock *sk, u32 portid)
1064 {
1065 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1066 	int err;
1067 
1068 	lock_sock(sk);
1069 
1070 	err = -EBUSY;
1071 	if (nlk_sk(sk)->portid)
1072 		goto err;
1073 
1074 	err = -ENOMEM;
1075 	if (BITS_PER_LONG > 32 &&
1076 	    unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1077 		goto err;
1078 
1079 	nlk_sk(sk)->portid = portid;
1080 	sock_hold(sk);
1081 
1082 	err = __netlink_insert(table, sk);
1083 	if (err) {
1084 		if (err == -EEXIST)
1085 			err = -EADDRINUSE;
1086 		sock_put(sk);
1087 	}
1088 
1089 err:
1090 	release_sock(sk);
1091 	return err;
1092 }
1093 
1094 static void netlink_remove(struct sock *sk)
1095 {
1096 	struct netlink_table *table;
1097 
1098 	table = &nl_table[sk->sk_protocol];
1099 	if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1100 				    netlink_rhashtable_params)) {
1101 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1102 		__sock_put(sk);
1103 	}
1104 
1105 	netlink_table_grab();
1106 	if (nlk_sk(sk)->subscriptions) {
1107 		__sk_del_bind_node(sk);
1108 		netlink_update_listeners(sk);
1109 	}
1110 	if (sk->sk_protocol == NETLINK_GENERIC)
1111 		atomic_inc(&genl_sk_destructing_cnt);
1112 	netlink_table_ungrab();
1113 }
1114 
1115 static struct proto netlink_proto = {
1116 	.name	  = "NETLINK",
1117 	.owner	  = THIS_MODULE,
1118 	.obj_size = sizeof(struct netlink_sock),
1119 };
1120 
1121 static int __netlink_create(struct net *net, struct socket *sock,
1122 			    struct mutex *cb_mutex, int protocol)
1123 {
1124 	struct sock *sk;
1125 	struct netlink_sock *nlk;
1126 
1127 	sock->ops = &netlink_ops;
1128 
1129 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1130 	if (!sk)
1131 		return -ENOMEM;
1132 
1133 	sock_init_data(sock, sk);
1134 
1135 	nlk = nlk_sk(sk);
1136 	if (cb_mutex) {
1137 		nlk->cb_mutex = cb_mutex;
1138 	} else {
1139 		nlk->cb_mutex = &nlk->cb_def_mutex;
1140 		mutex_init(nlk->cb_mutex);
1141 	}
1142 	init_waitqueue_head(&nlk->wait);
1143 #ifdef CONFIG_NETLINK_MMAP
1144 	mutex_init(&nlk->pg_vec_lock);
1145 #endif
1146 
1147 	sk->sk_destruct = netlink_sock_destruct;
1148 	sk->sk_protocol = protocol;
1149 	return 0;
1150 }
1151 
1152 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1153 			  int kern)
1154 {
1155 	struct module *module = NULL;
1156 	struct mutex *cb_mutex;
1157 	struct netlink_sock *nlk;
1158 	int (*bind)(struct net *net, int group);
1159 	void (*unbind)(struct net *net, int group);
1160 	int err = 0;
1161 
1162 	sock->state = SS_UNCONNECTED;
1163 
1164 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1165 		return -ESOCKTNOSUPPORT;
1166 
1167 	if (protocol < 0 || protocol >= MAX_LINKS)
1168 		return -EPROTONOSUPPORT;
1169 
1170 	netlink_lock_table();
1171 #ifdef CONFIG_MODULES
1172 	if (!nl_table[protocol].registered) {
1173 		netlink_unlock_table();
1174 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1175 		netlink_lock_table();
1176 	}
1177 #endif
1178 	if (nl_table[protocol].registered &&
1179 	    try_module_get(nl_table[protocol].module))
1180 		module = nl_table[protocol].module;
1181 	else
1182 		err = -EPROTONOSUPPORT;
1183 	cb_mutex = nl_table[protocol].cb_mutex;
1184 	bind = nl_table[protocol].bind;
1185 	unbind = nl_table[protocol].unbind;
1186 	netlink_unlock_table();
1187 
1188 	if (err < 0)
1189 		goto out;
1190 
1191 	err = __netlink_create(net, sock, cb_mutex, protocol);
1192 	if (err < 0)
1193 		goto out_module;
1194 
1195 	local_bh_disable();
1196 	sock_prot_inuse_add(net, &netlink_proto, 1);
1197 	local_bh_enable();
1198 
1199 	nlk = nlk_sk(sock->sk);
1200 	nlk->module = module;
1201 	nlk->netlink_bind = bind;
1202 	nlk->netlink_unbind = unbind;
1203 out:
1204 	return err;
1205 
1206 out_module:
1207 	module_put(module);
1208 	goto out;
1209 }
1210 
1211 static void deferred_put_nlk_sk(struct rcu_head *head)
1212 {
1213 	struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1214 
1215 	sock_put(&nlk->sk);
1216 }
1217 
1218 static int netlink_release(struct socket *sock)
1219 {
1220 	struct sock *sk = sock->sk;
1221 	struct netlink_sock *nlk;
1222 
1223 	if (!sk)
1224 		return 0;
1225 
1226 	netlink_remove(sk);
1227 	sock_orphan(sk);
1228 	nlk = nlk_sk(sk);
1229 
1230 	/*
1231 	 * OK. Socket is unlinked, any packets that arrive now
1232 	 * will be purged.
1233 	 */
1234 
1235 	/* must not acquire netlink_table_lock in any way again before unbind
1236 	 * and notifying genetlink is done as otherwise it might deadlock
1237 	 */
1238 	if (nlk->netlink_unbind) {
1239 		int i;
1240 
1241 		for (i = 0; i < nlk->ngroups; i++)
1242 			if (test_bit(i, nlk->groups))
1243 				nlk->netlink_unbind(sock_net(sk), i + 1);
1244 	}
1245 	if (sk->sk_protocol == NETLINK_GENERIC &&
1246 	    atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1247 		wake_up(&genl_sk_destructing_waitq);
1248 
1249 	sock->sk = NULL;
1250 	wake_up_interruptible_all(&nlk->wait);
1251 
1252 	skb_queue_purge(&sk->sk_write_queue);
1253 
1254 	if (nlk->portid) {
1255 		struct netlink_notify n = {
1256 						.net = sock_net(sk),
1257 						.protocol = sk->sk_protocol,
1258 						.portid = nlk->portid,
1259 					  };
1260 		atomic_notifier_call_chain(&netlink_chain,
1261 				NETLINK_URELEASE, &n);
1262 	}
1263 
1264 	module_put(nlk->module);
1265 
1266 	if (netlink_is_kernel(sk)) {
1267 		netlink_table_grab();
1268 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1269 		if (--nl_table[sk->sk_protocol].registered == 0) {
1270 			struct listeners *old;
1271 
1272 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1273 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1274 			kfree_rcu(old, rcu);
1275 			nl_table[sk->sk_protocol].module = NULL;
1276 			nl_table[sk->sk_protocol].bind = NULL;
1277 			nl_table[sk->sk_protocol].unbind = NULL;
1278 			nl_table[sk->sk_protocol].flags = 0;
1279 			nl_table[sk->sk_protocol].registered = 0;
1280 		}
1281 		netlink_table_ungrab();
1282 	}
1283 
1284 	kfree(nlk->groups);
1285 	nlk->groups = NULL;
1286 
1287 	local_bh_disable();
1288 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1289 	local_bh_enable();
1290 	call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1291 	return 0;
1292 }
1293 
1294 static int netlink_autobind(struct socket *sock)
1295 {
1296 	struct sock *sk = sock->sk;
1297 	struct net *net = sock_net(sk);
1298 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1299 	s32 portid = task_tgid_vnr(current);
1300 	int err;
1301 	static s32 rover = -4097;
1302 
1303 retry:
1304 	cond_resched();
1305 	rcu_read_lock();
1306 	if (__netlink_lookup(table, portid, net)) {
1307 		/* Bind collision, search negative portid values. */
1308 		portid = rover--;
1309 		if (rover > -4097)
1310 			rover = -4097;
1311 		rcu_read_unlock();
1312 		goto retry;
1313 	}
1314 	rcu_read_unlock();
1315 
1316 	err = netlink_insert(sk, portid);
1317 	if (err == -EADDRINUSE)
1318 		goto retry;
1319 
1320 	/* If 2 threads race to autobind, that is fine.  */
1321 	if (err == -EBUSY)
1322 		err = 0;
1323 
1324 	return err;
1325 }
1326 
1327 /**
1328  * __netlink_ns_capable - General netlink message capability test
1329  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1330  * @user_ns: The user namespace of the capability to use
1331  * @cap: The capability to use
1332  *
1333  * Test to see if the opener of the socket we received the message
1334  * from had when the netlink socket was created and the sender of the
1335  * message has has the capability @cap in the user namespace @user_ns.
1336  */
1337 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1338 			struct user_namespace *user_ns, int cap)
1339 {
1340 	return ((nsp->flags & NETLINK_SKB_DST) ||
1341 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1342 		ns_capable(user_ns, cap);
1343 }
1344 EXPORT_SYMBOL(__netlink_ns_capable);
1345 
1346 /**
1347  * netlink_ns_capable - General netlink message capability test
1348  * @skb: socket buffer holding a netlink command from userspace
1349  * @user_ns: The user namespace of the capability to use
1350  * @cap: The capability to use
1351  *
1352  * Test to see if the opener of the socket we received the message
1353  * from had when the netlink socket was created and the sender of the
1354  * message has has the capability @cap in the user namespace @user_ns.
1355  */
1356 bool netlink_ns_capable(const struct sk_buff *skb,
1357 			struct user_namespace *user_ns, int cap)
1358 {
1359 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1360 }
1361 EXPORT_SYMBOL(netlink_ns_capable);
1362 
1363 /**
1364  * netlink_capable - Netlink global message capability test
1365  * @skb: socket buffer holding a netlink command from userspace
1366  * @cap: The capability to use
1367  *
1368  * Test to see if the opener of the socket we received the message
1369  * from had when the netlink socket was created and the sender of the
1370  * message has has the capability @cap in all user namespaces.
1371  */
1372 bool netlink_capable(const struct sk_buff *skb, int cap)
1373 {
1374 	return netlink_ns_capable(skb, &init_user_ns, cap);
1375 }
1376 EXPORT_SYMBOL(netlink_capable);
1377 
1378 /**
1379  * netlink_net_capable - Netlink network namespace message capability test
1380  * @skb: socket buffer holding a netlink command from userspace
1381  * @cap: The capability to use
1382  *
1383  * Test to see if the opener of the socket we received the message
1384  * from had when the netlink socket was created and the sender of the
1385  * message has has the capability @cap over the network namespace of
1386  * the socket we received the message from.
1387  */
1388 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1389 {
1390 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1391 }
1392 EXPORT_SYMBOL(netlink_net_capable);
1393 
1394 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1395 {
1396 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1397 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1398 }
1399 
1400 static void
1401 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1402 {
1403 	struct netlink_sock *nlk = nlk_sk(sk);
1404 
1405 	if (nlk->subscriptions && !subscriptions)
1406 		__sk_del_bind_node(sk);
1407 	else if (!nlk->subscriptions && subscriptions)
1408 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1409 	nlk->subscriptions = subscriptions;
1410 }
1411 
1412 static int netlink_realloc_groups(struct sock *sk)
1413 {
1414 	struct netlink_sock *nlk = nlk_sk(sk);
1415 	unsigned int groups;
1416 	unsigned long *new_groups;
1417 	int err = 0;
1418 
1419 	netlink_table_grab();
1420 
1421 	groups = nl_table[sk->sk_protocol].groups;
1422 	if (!nl_table[sk->sk_protocol].registered) {
1423 		err = -ENOENT;
1424 		goto out_unlock;
1425 	}
1426 
1427 	if (nlk->ngroups >= groups)
1428 		goto out_unlock;
1429 
1430 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1431 	if (new_groups == NULL) {
1432 		err = -ENOMEM;
1433 		goto out_unlock;
1434 	}
1435 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1436 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1437 
1438 	nlk->groups = new_groups;
1439 	nlk->ngroups = groups;
1440  out_unlock:
1441 	netlink_table_ungrab();
1442 	return err;
1443 }
1444 
1445 static void netlink_undo_bind(int group, long unsigned int groups,
1446 			      struct sock *sk)
1447 {
1448 	struct netlink_sock *nlk = nlk_sk(sk);
1449 	int undo;
1450 
1451 	if (!nlk->netlink_unbind)
1452 		return;
1453 
1454 	for (undo = 0; undo < group; undo++)
1455 		if (test_bit(undo, &groups))
1456 			nlk->netlink_unbind(sock_net(sk), undo + 1);
1457 }
1458 
1459 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1460 			int addr_len)
1461 {
1462 	struct sock *sk = sock->sk;
1463 	struct net *net = sock_net(sk);
1464 	struct netlink_sock *nlk = nlk_sk(sk);
1465 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1466 	int err;
1467 	long unsigned int groups = nladdr->nl_groups;
1468 
1469 	if (addr_len < sizeof(struct sockaddr_nl))
1470 		return -EINVAL;
1471 
1472 	if (nladdr->nl_family != AF_NETLINK)
1473 		return -EINVAL;
1474 
1475 	/* Only superuser is allowed to listen multicasts */
1476 	if (groups) {
1477 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1478 			return -EPERM;
1479 		err = netlink_realloc_groups(sk);
1480 		if (err)
1481 			return err;
1482 	}
1483 
1484 	if (nlk->portid)
1485 		if (nladdr->nl_pid != nlk->portid)
1486 			return -EINVAL;
1487 
1488 	if (nlk->netlink_bind && groups) {
1489 		int group;
1490 
1491 		for (group = 0; group < nlk->ngroups; group++) {
1492 			if (!test_bit(group, &groups))
1493 				continue;
1494 			err = nlk->netlink_bind(net, group + 1);
1495 			if (!err)
1496 				continue;
1497 			netlink_undo_bind(group, groups, sk);
1498 			return err;
1499 		}
1500 	}
1501 
1502 	if (!nlk->portid) {
1503 		err = nladdr->nl_pid ?
1504 			netlink_insert(sk, nladdr->nl_pid) :
1505 			netlink_autobind(sock);
1506 		if (err) {
1507 			netlink_undo_bind(nlk->ngroups, groups, sk);
1508 			return err;
1509 		}
1510 	}
1511 
1512 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1513 		return 0;
1514 
1515 	netlink_table_grab();
1516 	netlink_update_subscriptions(sk, nlk->subscriptions +
1517 					 hweight32(groups) -
1518 					 hweight32(nlk->groups[0]));
1519 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1520 	netlink_update_listeners(sk);
1521 	netlink_table_ungrab();
1522 
1523 	return 0;
1524 }
1525 
1526 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1527 			   int alen, int flags)
1528 {
1529 	int err = 0;
1530 	struct sock *sk = sock->sk;
1531 	struct netlink_sock *nlk = nlk_sk(sk);
1532 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1533 
1534 	if (alen < sizeof(addr->sa_family))
1535 		return -EINVAL;
1536 
1537 	if (addr->sa_family == AF_UNSPEC) {
1538 		sk->sk_state	= NETLINK_UNCONNECTED;
1539 		nlk->dst_portid	= 0;
1540 		nlk->dst_group  = 0;
1541 		return 0;
1542 	}
1543 	if (addr->sa_family != AF_NETLINK)
1544 		return -EINVAL;
1545 
1546 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1547 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1548 		return -EPERM;
1549 
1550 	if (!nlk->portid)
1551 		err = netlink_autobind(sock);
1552 
1553 	if (err == 0) {
1554 		sk->sk_state	= NETLINK_CONNECTED;
1555 		nlk->dst_portid = nladdr->nl_pid;
1556 		nlk->dst_group  = ffs(nladdr->nl_groups);
1557 	}
1558 
1559 	return err;
1560 }
1561 
1562 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1563 			   int *addr_len, int peer)
1564 {
1565 	struct sock *sk = sock->sk;
1566 	struct netlink_sock *nlk = nlk_sk(sk);
1567 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1568 
1569 	nladdr->nl_family = AF_NETLINK;
1570 	nladdr->nl_pad = 0;
1571 	*addr_len = sizeof(*nladdr);
1572 
1573 	if (peer) {
1574 		nladdr->nl_pid = nlk->dst_portid;
1575 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1576 	} else {
1577 		nladdr->nl_pid = nlk->portid;
1578 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1579 	}
1580 	return 0;
1581 }
1582 
1583 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1584 {
1585 	struct sock *sock;
1586 	struct netlink_sock *nlk;
1587 
1588 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1589 	if (!sock)
1590 		return ERR_PTR(-ECONNREFUSED);
1591 
1592 	/* Don't bother queuing skb if kernel socket has no input function */
1593 	nlk = nlk_sk(sock);
1594 	if (sock->sk_state == NETLINK_CONNECTED &&
1595 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1596 		sock_put(sock);
1597 		return ERR_PTR(-ECONNREFUSED);
1598 	}
1599 	return sock;
1600 }
1601 
1602 struct sock *netlink_getsockbyfilp(struct file *filp)
1603 {
1604 	struct inode *inode = file_inode(filp);
1605 	struct sock *sock;
1606 
1607 	if (!S_ISSOCK(inode->i_mode))
1608 		return ERR_PTR(-ENOTSOCK);
1609 
1610 	sock = SOCKET_I(inode)->sk;
1611 	if (sock->sk_family != AF_NETLINK)
1612 		return ERR_PTR(-EINVAL);
1613 
1614 	sock_hold(sock);
1615 	return sock;
1616 }
1617 
1618 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1619 					       int broadcast)
1620 {
1621 	struct sk_buff *skb;
1622 	void *data;
1623 
1624 	if (size <= NLMSG_GOODSIZE || broadcast)
1625 		return alloc_skb(size, GFP_KERNEL);
1626 
1627 	size = SKB_DATA_ALIGN(size) +
1628 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1629 
1630 	data = vmalloc(size);
1631 	if (data == NULL)
1632 		return NULL;
1633 
1634 	skb = __build_skb(data, size);
1635 	if (skb == NULL)
1636 		vfree(data);
1637 	else
1638 		skb->destructor = netlink_skb_destructor;
1639 
1640 	return skb;
1641 }
1642 
1643 /*
1644  * Attach a skb to a netlink socket.
1645  * The caller must hold a reference to the destination socket. On error, the
1646  * reference is dropped. The skb is not send to the destination, just all
1647  * all error checks are performed and memory in the queue is reserved.
1648  * Return values:
1649  * < 0: error. skb freed, reference to sock dropped.
1650  * 0: continue
1651  * 1: repeat lookup - reference dropped while waiting for socket memory.
1652  */
1653 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1654 		      long *timeo, struct sock *ssk)
1655 {
1656 	struct netlink_sock *nlk;
1657 
1658 	nlk = nlk_sk(sk);
1659 
1660 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1661 	     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1662 	    !netlink_skb_is_mmaped(skb)) {
1663 		DECLARE_WAITQUEUE(wait, current);
1664 		if (!*timeo) {
1665 			if (!ssk || netlink_is_kernel(ssk))
1666 				netlink_overrun(sk);
1667 			sock_put(sk);
1668 			kfree_skb(skb);
1669 			return -EAGAIN;
1670 		}
1671 
1672 		__set_current_state(TASK_INTERRUPTIBLE);
1673 		add_wait_queue(&nlk->wait, &wait);
1674 
1675 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1676 		     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1677 		    !sock_flag(sk, SOCK_DEAD))
1678 			*timeo = schedule_timeout(*timeo);
1679 
1680 		__set_current_state(TASK_RUNNING);
1681 		remove_wait_queue(&nlk->wait, &wait);
1682 		sock_put(sk);
1683 
1684 		if (signal_pending(current)) {
1685 			kfree_skb(skb);
1686 			return sock_intr_errno(*timeo);
1687 		}
1688 		return 1;
1689 	}
1690 	netlink_skb_set_owner_r(skb, sk);
1691 	return 0;
1692 }
1693 
1694 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1695 {
1696 	int len = skb->len;
1697 
1698 	netlink_deliver_tap(skb);
1699 
1700 #ifdef CONFIG_NETLINK_MMAP
1701 	if (netlink_skb_is_mmaped(skb))
1702 		netlink_queue_mmaped_skb(sk, skb);
1703 	else if (netlink_rx_is_mmaped(sk))
1704 		netlink_ring_set_copied(sk, skb);
1705 	else
1706 #endif /* CONFIG_NETLINK_MMAP */
1707 		skb_queue_tail(&sk->sk_receive_queue, skb);
1708 	sk->sk_data_ready(sk);
1709 	return len;
1710 }
1711 
1712 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1713 {
1714 	int len = __netlink_sendskb(sk, skb);
1715 
1716 	sock_put(sk);
1717 	return len;
1718 }
1719 
1720 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1721 {
1722 	kfree_skb(skb);
1723 	sock_put(sk);
1724 }
1725 
1726 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1727 {
1728 	int delta;
1729 
1730 	WARN_ON(skb->sk != NULL);
1731 	if (netlink_skb_is_mmaped(skb))
1732 		return skb;
1733 
1734 	delta = skb->end - skb->tail;
1735 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1736 		return skb;
1737 
1738 	if (skb_shared(skb)) {
1739 		struct sk_buff *nskb = skb_clone(skb, allocation);
1740 		if (!nskb)
1741 			return skb;
1742 		consume_skb(skb);
1743 		skb = nskb;
1744 	}
1745 
1746 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1747 		skb->truesize -= delta;
1748 
1749 	return skb;
1750 }
1751 
1752 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1753 				  struct sock *ssk)
1754 {
1755 	int ret;
1756 	struct netlink_sock *nlk = nlk_sk(sk);
1757 
1758 	ret = -ECONNREFUSED;
1759 	if (nlk->netlink_rcv != NULL) {
1760 		ret = skb->len;
1761 		netlink_skb_set_owner_r(skb, sk);
1762 		NETLINK_CB(skb).sk = ssk;
1763 		netlink_deliver_tap_kernel(sk, ssk, skb);
1764 		nlk->netlink_rcv(skb);
1765 		consume_skb(skb);
1766 	} else {
1767 		kfree_skb(skb);
1768 	}
1769 	sock_put(sk);
1770 	return ret;
1771 }
1772 
1773 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1774 		    u32 portid, int nonblock)
1775 {
1776 	struct sock *sk;
1777 	int err;
1778 	long timeo;
1779 
1780 	skb = netlink_trim(skb, gfp_any());
1781 
1782 	timeo = sock_sndtimeo(ssk, nonblock);
1783 retry:
1784 	sk = netlink_getsockbyportid(ssk, portid);
1785 	if (IS_ERR(sk)) {
1786 		kfree_skb(skb);
1787 		return PTR_ERR(sk);
1788 	}
1789 	if (netlink_is_kernel(sk))
1790 		return netlink_unicast_kernel(sk, skb, ssk);
1791 
1792 	if (sk_filter(sk, skb)) {
1793 		err = skb->len;
1794 		kfree_skb(skb);
1795 		sock_put(sk);
1796 		return err;
1797 	}
1798 
1799 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1800 	if (err == 1)
1801 		goto retry;
1802 	if (err)
1803 		return err;
1804 
1805 	return netlink_sendskb(sk, skb);
1806 }
1807 EXPORT_SYMBOL(netlink_unicast);
1808 
1809 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1810 				  u32 dst_portid, gfp_t gfp_mask)
1811 {
1812 #ifdef CONFIG_NETLINK_MMAP
1813 	struct sock *sk = NULL;
1814 	struct sk_buff *skb;
1815 	struct netlink_ring *ring;
1816 	struct nl_mmap_hdr *hdr;
1817 	unsigned int maxlen;
1818 
1819 	sk = netlink_getsockbyportid(ssk, dst_portid);
1820 	if (IS_ERR(sk))
1821 		goto out;
1822 
1823 	ring = &nlk_sk(sk)->rx_ring;
1824 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1825 	if (ring->pg_vec == NULL)
1826 		goto out_put;
1827 
1828 	if (ring->frame_size - NL_MMAP_HDRLEN < size)
1829 		goto out_put;
1830 
1831 	skb = alloc_skb_head(gfp_mask);
1832 	if (skb == NULL)
1833 		goto err1;
1834 
1835 	spin_lock_bh(&sk->sk_receive_queue.lock);
1836 	/* check again under lock */
1837 	if (ring->pg_vec == NULL)
1838 		goto out_free;
1839 
1840 	/* check again under lock */
1841 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1842 	if (maxlen < size)
1843 		goto out_free;
1844 
1845 	netlink_forward_ring(ring);
1846 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1847 	if (hdr == NULL)
1848 		goto err2;
1849 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1850 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1851 	atomic_inc(&ring->pending);
1852 	netlink_increment_head(ring);
1853 
1854 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1855 	return skb;
1856 
1857 err2:
1858 	kfree_skb(skb);
1859 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1860 	netlink_overrun(sk);
1861 err1:
1862 	sock_put(sk);
1863 	return NULL;
1864 
1865 out_free:
1866 	kfree_skb(skb);
1867 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1868 out_put:
1869 	sock_put(sk);
1870 out:
1871 #endif
1872 	return alloc_skb(size, gfp_mask);
1873 }
1874 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1875 
1876 int netlink_has_listeners(struct sock *sk, unsigned int group)
1877 {
1878 	int res = 0;
1879 	struct listeners *listeners;
1880 
1881 	BUG_ON(!netlink_is_kernel(sk));
1882 
1883 	rcu_read_lock();
1884 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1885 
1886 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1887 		res = test_bit(group - 1, listeners->masks);
1888 
1889 	rcu_read_unlock();
1890 
1891 	return res;
1892 }
1893 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1894 
1895 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1896 {
1897 	struct netlink_sock *nlk = nlk_sk(sk);
1898 
1899 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1900 	    !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1901 		netlink_skb_set_owner_r(skb, sk);
1902 		__netlink_sendskb(sk, skb);
1903 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1904 	}
1905 	return -1;
1906 }
1907 
1908 struct netlink_broadcast_data {
1909 	struct sock *exclude_sk;
1910 	struct net *net;
1911 	u32 portid;
1912 	u32 group;
1913 	int failure;
1914 	int delivery_failure;
1915 	int congested;
1916 	int delivered;
1917 	gfp_t allocation;
1918 	struct sk_buff *skb, *skb2;
1919 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1920 	void *tx_data;
1921 };
1922 
1923 static void do_one_broadcast(struct sock *sk,
1924 				    struct netlink_broadcast_data *p)
1925 {
1926 	struct netlink_sock *nlk = nlk_sk(sk);
1927 	int val;
1928 
1929 	if (p->exclude_sk == sk)
1930 		return;
1931 
1932 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1933 	    !test_bit(p->group - 1, nlk->groups))
1934 		return;
1935 
1936 	if (!net_eq(sock_net(sk), p->net)) {
1937 		if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1938 			return;
1939 
1940 		if (!peernet_has_id(sock_net(sk), p->net))
1941 			return;
1942 
1943 		if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1944 				     CAP_NET_BROADCAST))
1945 			return;
1946 	}
1947 
1948 	if (p->failure) {
1949 		netlink_overrun(sk);
1950 		return;
1951 	}
1952 
1953 	sock_hold(sk);
1954 	if (p->skb2 == NULL) {
1955 		if (skb_shared(p->skb)) {
1956 			p->skb2 = skb_clone(p->skb, p->allocation);
1957 		} else {
1958 			p->skb2 = skb_get(p->skb);
1959 			/*
1960 			 * skb ownership may have been set when
1961 			 * delivered to a previous socket.
1962 			 */
1963 			skb_orphan(p->skb2);
1964 		}
1965 	}
1966 	if (p->skb2 == NULL) {
1967 		netlink_overrun(sk);
1968 		/* Clone failed. Notify ALL listeners. */
1969 		p->failure = 1;
1970 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1971 			p->delivery_failure = 1;
1972 		goto out;
1973 	}
1974 	if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1975 		kfree_skb(p->skb2);
1976 		p->skb2 = NULL;
1977 		goto out;
1978 	}
1979 	if (sk_filter(sk, p->skb2)) {
1980 		kfree_skb(p->skb2);
1981 		p->skb2 = NULL;
1982 		goto out;
1983 	}
1984 	NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
1985 	NETLINK_CB(p->skb2).nsid_is_set = true;
1986 	val = netlink_broadcast_deliver(sk, p->skb2);
1987 	if (val < 0) {
1988 		netlink_overrun(sk);
1989 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1990 			p->delivery_failure = 1;
1991 	} else {
1992 		p->congested |= val;
1993 		p->delivered = 1;
1994 		p->skb2 = NULL;
1995 	}
1996 out:
1997 	sock_put(sk);
1998 }
1999 
2000 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2001 	u32 group, gfp_t allocation,
2002 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2003 	void *filter_data)
2004 {
2005 	struct net *net = sock_net(ssk);
2006 	struct netlink_broadcast_data info;
2007 	struct sock *sk;
2008 
2009 	skb = netlink_trim(skb, allocation);
2010 
2011 	info.exclude_sk = ssk;
2012 	info.net = net;
2013 	info.portid = portid;
2014 	info.group = group;
2015 	info.failure = 0;
2016 	info.delivery_failure = 0;
2017 	info.congested = 0;
2018 	info.delivered = 0;
2019 	info.allocation = allocation;
2020 	info.skb = skb;
2021 	info.skb2 = NULL;
2022 	info.tx_filter = filter;
2023 	info.tx_data = filter_data;
2024 
2025 	/* While we sleep in clone, do not allow to change socket list */
2026 
2027 	netlink_lock_table();
2028 
2029 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2030 		do_one_broadcast(sk, &info);
2031 
2032 	consume_skb(skb);
2033 
2034 	netlink_unlock_table();
2035 
2036 	if (info.delivery_failure) {
2037 		kfree_skb(info.skb2);
2038 		return -ENOBUFS;
2039 	}
2040 	consume_skb(info.skb2);
2041 
2042 	if (info.delivered) {
2043 		if (info.congested && (allocation & __GFP_WAIT))
2044 			yield();
2045 		return 0;
2046 	}
2047 	return -ESRCH;
2048 }
2049 EXPORT_SYMBOL(netlink_broadcast_filtered);
2050 
2051 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2052 		      u32 group, gfp_t allocation)
2053 {
2054 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2055 		NULL, NULL);
2056 }
2057 EXPORT_SYMBOL(netlink_broadcast);
2058 
2059 struct netlink_set_err_data {
2060 	struct sock *exclude_sk;
2061 	u32 portid;
2062 	u32 group;
2063 	int code;
2064 };
2065 
2066 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2067 {
2068 	struct netlink_sock *nlk = nlk_sk(sk);
2069 	int ret = 0;
2070 
2071 	if (sk == p->exclude_sk)
2072 		goto out;
2073 
2074 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2075 		goto out;
2076 
2077 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2078 	    !test_bit(p->group - 1, nlk->groups))
2079 		goto out;
2080 
2081 	if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
2082 		ret = 1;
2083 		goto out;
2084 	}
2085 
2086 	sk->sk_err = p->code;
2087 	sk->sk_error_report(sk);
2088 out:
2089 	return ret;
2090 }
2091 
2092 /**
2093  * netlink_set_err - report error to broadcast listeners
2094  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2095  * @portid: the PORTID of a process that we want to skip (if any)
2096  * @group: the broadcast group that will notice the error
2097  * @code: error code, must be negative (as usual in kernelspace)
2098  *
2099  * This function returns the number of broadcast listeners that have set the
2100  * NETLINK_NO_ENOBUFS socket option.
2101  */
2102 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2103 {
2104 	struct netlink_set_err_data info;
2105 	struct sock *sk;
2106 	int ret = 0;
2107 
2108 	info.exclude_sk = ssk;
2109 	info.portid = portid;
2110 	info.group = group;
2111 	/* sk->sk_err wants a positive error value */
2112 	info.code = -code;
2113 
2114 	read_lock(&nl_table_lock);
2115 
2116 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2117 		ret += do_one_set_err(sk, &info);
2118 
2119 	read_unlock(&nl_table_lock);
2120 	return ret;
2121 }
2122 EXPORT_SYMBOL(netlink_set_err);
2123 
2124 /* must be called with netlink table grabbed */
2125 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2126 				     unsigned int group,
2127 				     int is_new)
2128 {
2129 	int old, new = !!is_new, subscriptions;
2130 
2131 	old = test_bit(group - 1, nlk->groups);
2132 	subscriptions = nlk->subscriptions - old + new;
2133 	if (new)
2134 		__set_bit(group - 1, nlk->groups);
2135 	else
2136 		__clear_bit(group - 1, nlk->groups);
2137 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2138 	netlink_update_listeners(&nlk->sk);
2139 }
2140 
2141 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2142 			      char __user *optval, unsigned int optlen)
2143 {
2144 	struct sock *sk = sock->sk;
2145 	struct netlink_sock *nlk = nlk_sk(sk);
2146 	unsigned int val = 0;
2147 	int err;
2148 
2149 	if (level != SOL_NETLINK)
2150 		return -ENOPROTOOPT;
2151 
2152 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2153 	    optlen >= sizeof(int) &&
2154 	    get_user(val, (unsigned int __user *)optval))
2155 		return -EFAULT;
2156 
2157 	switch (optname) {
2158 	case NETLINK_PKTINFO:
2159 		if (val)
2160 			nlk->flags |= NETLINK_F_RECV_PKTINFO;
2161 		else
2162 			nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
2163 		err = 0;
2164 		break;
2165 	case NETLINK_ADD_MEMBERSHIP:
2166 	case NETLINK_DROP_MEMBERSHIP: {
2167 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2168 			return -EPERM;
2169 		err = netlink_realloc_groups(sk);
2170 		if (err)
2171 			return err;
2172 		if (!val || val - 1 >= nlk->ngroups)
2173 			return -EINVAL;
2174 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2175 			err = nlk->netlink_bind(sock_net(sk), val);
2176 			if (err)
2177 				return err;
2178 		}
2179 		netlink_table_grab();
2180 		netlink_update_socket_mc(nlk, val,
2181 					 optname == NETLINK_ADD_MEMBERSHIP);
2182 		netlink_table_ungrab();
2183 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2184 			nlk->netlink_unbind(sock_net(sk), val);
2185 
2186 		err = 0;
2187 		break;
2188 	}
2189 	case NETLINK_BROADCAST_ERROR:
2190 		if (val)
2191 			nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
2192 		else
2193 			nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
2194 		err = 0;
2195 		break;
2196 	case NETLINK_NO_ENOBUFS:
2197 		if (val) {
2198 			nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
2199 			clear_bit(NETLINK_S_CONGESTED, &nlk->state);
2200 			wake_up_interruptible(&nlk->wait);
2201 		} else {
2202 			nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
2203 		}
2204 		err = 0;
2205 		break;
2206 #ifdef CONFIG_NETLINK_MMAP
2207 	case NETLINK_RX_RING:
2208 	case NETLINK_TX_RING: {
2209 		struct nl_mmap_req req;
2210 
2211 		/* Rings might consume more memory than queue limits, require
2212 		 * CAP_NET_ADMIN.
2213 		 */
2214 		if (!capable(CAP_NET_ADMIN))
2215 			return -EPERM;
2216 		if (optlen < sizeof(req))
2217 			return -EINVAL;
2218 		if (copy_from_user(&req, optval, sizeof(req)))
2219 			return -EFAULT;
2220 		err = netlink_set_ring(sk, &req, false,
2221 				       optname == NETLINK_TX_RING);
2222 		break;
2223 	}
2224 #endif /* CONFIG_NETLINK_MMAP */
2225 	case NETLINK_LISTEN_ALL_NSID:
2226 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
2227 			return -EPERM;
2228 
2229 		if (val)
2230 			nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
2231 		else
2232 			nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
2233 		err = 0;
2234 		break;
2235 	default:
2236 		err = -ENOPROTOOPT;
2237 	}
2238 	return err;
2239 }
2240 
2241 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2242 			      char __user *optval, int __user *optlen)
2243 {
2244 	struct sock *sk = sock->sk;
2245 	struct netlink_sock *nlk = nlk_sk(sk);
2246 	int len, val, err;
2247 
2248 	if (level != SOL_NETLINK)
2249 		return -ENOPROTOOPT;
2250 
2251 	if (get_user(len, optlen))
2252 		return -EFAULT;
2253 	if (len < 0)
2254 		return -EINVAL;
2255 
2256 	switch (optname) {
2257 	case NETLINK_PKTINFO:
2258 		if (len < sizeof(int))
2259 			return -EINVAL;
2260 		len = sizeof(int);
2261 		val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
2262 		if (put_user(len, optlen) ||
2263 		    put_user(val, optval))
2264 			return -EFAULT;
2265 		err = 0;
2266 		break;
2267 	case NETLINK_BROADCAST_ERROR:
2268 		if (len < sizeof(int))
2269 			return -EINVAL;
2270 		len = sizeof(int);
2271 		val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
2272 		if (put_user(len, optlen) ||
2273 		    put_user(val, optval))
2274 			return -EFAULT;
2275 		err = 0;
2276 		break;
2277 	case NETLINK_NO_ENOBUFS:
2278 		if (len < sizeof(int))
2279 			return -EINVAL;
2280 		len = sizeof(int);
2281 		val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
2282 		if (put_user(len, optlen) ||
2283 		    put_user(val, optval))
2284 			return -EFAULT;
2285 		err = 0;
2286 		break;
2287 	default:
2288 		err = -ENOPROTOOPT;
2289 	}
2290 	return err;
2291 }
2292 
2293 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2294 {
2295 	struct nl_pktinfo info;
2296 
2297 	info.group = NETLINK_CB(skb).dst_group;
2298 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2299 }
2300 
2301 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
2302 					 struct sk_buff *skb)
2303 {
2304 	if (!NETLINK_CB(skb).nsid_is_set)
2305 		return;
2306 
2307 	put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
2308 		 &NETLINK_CB(skb).nsid);
2309 }
2310 
2311 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2312 {
2313 	struct sock *sk = sock->sk;
2314 	struct netlink_sock *nlk = nlk_sk(sk);
2315 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2316 	u32 dst_portid;
2317 	u32 dst_group;
2318 	struct sk_buff *skb;
2319 	int err;
2320 	struct scm_cookie scm;
2321 	u32 netlink_skb_flags = 0;
2322 
2323 	if (msg->msg_flags&MSG_OOB)
2324 		return -EOPNOTSUPP;
2325 
2326 	err = scm_send(sock, msg, &scm, true);
2327 	if (err < 0)
2328 		return err;
2329 
2330 	if (msg->msg_namelen) {
2331 		err = -EINVAL;
2332 		if (addr->nl_family != AF_NETLINK)
2333 			goto out;
2334 		dst_portid = addr->nl_pid;
2335 		dst_group = ffs(addr->nl_groups);
2336 		err =  -EPERM;
2337 		if ((dst_group || dst_portid) &&
2338 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2339 			goto out;
2340 		netlink_skb_flags |= NETLINK_SKB_DST;
2341 	} else {
2342 		dst_portid = nlk->dst_portid;
2343 		dst_group = nlk->dst_group;
2344 	}
2345 
2346 	if (!nlk->portid) {
2347 		err = netlink_autobind(sock);
2348 		if (err)
2349 			goto out;
2350 	}
2351 
2352 	/* It's a really convoluted way for userland to ask for mmaped
2353 	 * sendmsg(), but that's what we've got...
2354 	 */
2355 	if (netlink_tx_is_mmaped(sk) &&
2356 	    msg->msg_iter.type == ITER_IOVEC &&
2357 	    msg->msg_iter.nr_segs == 1 &&
2358 	    msg->msg_iter.iov->iov_base == NULL) {
2359 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2360 					   &scm);
2361 		goto out;
2362 	}
2363 
2364 	err = -EMSGSIZE;
2365 	if (len > sk->sk_sndbuf - 32)
2366 		goto out;
2367 	err = -ENOBUFS;
2368 	skb = netlink_alloc_large_skb(len, dst_group);
2369 	if (skb == NULL)
2370 		goto out;
2371 
2372 	NETLINK_CB(skb).portid	= nlk->portid;
2373 	NETLINK_CB(skb).dst_group = dst_group;
2374 	NETLINK_CB(skb).creds	= scm.creds;
2375 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2376 
2377 	err = -EFAULT;
2378 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2379 		kfree_skb(skb);
2380 		goto out;
2381 	}
2382 
2383 	err = security_netlink_send(sk, skb);
2384 	if (err) {
2385 		kfree_skb(skb);
2386 		goto out;
2387 	}
2388 
2389 	if (dst_group) {
2390 		atomic_inc(&skb->users);
2391 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2392 	}
2393 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2394 
2395 out:
2396 	scm_destroy(&scm);
2397 	return err;
2398 }
2399 
2400 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2401 			   int flags)
2402 {
2403 	struct scm_cookie scm;
2404 	struct sock *sk = sock->sk;
2405 	struct netlink_sock *nlk = nlk_sk(sk);
2406 	int noblock = flags&MSG_DONTWAIT;
2407 	size_t copied;
2408 	struct sk_buff *skb, *data_skb;
2409 	int err, ret;
2410 
2411 	if (flags&MSG_OOB)
2412 		return -EOPNOTSUPP;
2413 
2414 	copied = 0;
2415 
2416 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2417 	if (skb == NULL)
2418 		goto out;
2419 
2420 	data_skb = skb;
2421 
2422 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2423 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2424 		/*
2425 		 * If this skb has a frag_list, then here that means that we
2426 		 * will have to use the frag_list skb's data for compat tasks
2427 		 * and the regular skb's data for normal (non-compat) tasks.
2428 		 *
2429 		 * If we need to send the compat skb, assign it to the
2430 		 * 'data_skb' variable so that it will be used below for data
2431 		 * copying. We keep 'skb' for everything else, including
2432 		 * freeing both later.
2433 		 */
2434 		if (flags & MSG_CMSG_COMPAT)
2435 			data_skb = skb_shinfo(skb)->frag_list;
2436 	}
2437 #endif
2438 
2439 	/* Record the max length of recvmsg() calls for future allocations */
2440 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2441 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2442 				     16384);
2443 
2444 	copied = data_skb->len;
2445 	if (len < copied) {
2446 		msg->msg_flags |= MSG_TRUNC;
2447 		copied = len;
2448 	}
2449 
2450 	skb_reset_transport_header(data_skb);
2451 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2452 
2453 	if (msg->msg_name) {
2454 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2455 		addr->nl_family = AF_NETLINK;
2456 		addr->nl_pad    = 0;
2457 		addr->nl_pid	= NETLINK_CB(skb).portid;
2458 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2459 		msg->msg_namelen = sizeof(*addr);
2460 	}
2461 
2462 	if (nlk->flags & NETLINK_F_RECV_PKTINFO)
2463 		netlink_cmsg_recv_pktinfo(msg, skb);
2464 	if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2465 		netlink_cmsg_listen_all_nsid(sk, msg, skb);
2466 
2467 	memset(&scm, 0, sizeof(scm));
2468 	scm.creds = *NETLINK_CREDS(skb);
2469 	if (flags & MSG_TRUNC)
2470 		copied = data_skb->len;
2471 
2472 	skb_free_datagram(sk, skb);
2473 
2474 	if (nlk->cb_running &&
2475 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2476 		ret = netlink_dump(sk);
2477 		if (ret) {
2478 			sk->sk_err = -ret;
2479 			sk->sk_error_report(sk);
2480 		}
2481 	}
2482 
2483 	scm_recv(sock, msg, &scm, flags);
2484 out:
2485 	netlink_rcv_wake(sk);
2486 	return err ? : copied;
2487 }
2488 
2489 static void netlink_data_ready(struct sock *sk)
2490 {
2491 	BUG();
2492 }
2493 
2494 /*
2495  *	We export these functions to other modules. They provide a
2496  *	complete set of kernel non-blocking support for message
2497  *	queueing.
2498  */
2499 
2500 struct sock *
2501 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2502 			struct netlink_kernel_cfg *cfg)
2503 {
2504 	struct socket *sock;
2505 	struct sock *sk;
2506 	struct netlink_sock *nlk;
2507 	struct listeners *listeners = NULL;
2508 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2509 	unsigned int groups;
2510 
2511 	BUG_ON(!nl_table);
2512 
2513 	if (unit < 0 || unit >= MAX_LINKS)
2514 		return NULL;
2515 
2516 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2517 		return NULL;
2518 
2519 	/*
2520 	 * We have to just have a reference on the net from sk, but don't
2521 	 * get_net it. Besides, we cannot get and then put the net here.
2522 	 * So we create one inside init_net and the move it to net.
2523 	 */
2524 
2525 	if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2526 		goto out_sock_release_nosk;
2527 
2528 	sk = sock->sk;
2529 	sk_change_net(sk, net);
2530 
2531 	if (!cfg || cfg->groups < 32)
2532 		groups = 32;
2533 	else
2534 		groups = cfg->groups;
2535 
2536 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2537 	if (!listeners)
2538 		goto out_sock_release;
2539 
2540 	sk->sk_data_ready = netlink_data_ready;
2541 	if (cfg && cfg->input)
2542 		nlk_sk(sk)->netlink_rcv = cfg->input;
2543 
2544 	if (netlink_insert(sk, 0))
2545 		goto out_sock_release;
2546 
2547 	nlk = nlk_sk(sk);
2548 	nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2549 
2550 	netlink_table_grab();
2551 	if (!nl_table[unit].registered) {
2552 		nl_table[unit].groups = groups;
2553 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2554 		nl_table[unit].cb_mutex = cb_mutex;
2555 		nl_table[unit].module = module;
2556 		if (cfg) {
2557 			nl_table[unit].bind = cfg->bind;
2558 			nl_table[unit].unbind = cfg->unbind;
2559 			nl_table[unit].flags = cfg->flags;
2560 			if (cfg->compare)
2561 				nl_table[unit].compare = cfg->compare;
2562 		}
2563 		nl_table[unit].registered = 1;
2564 	} else {
2565 		kfree(listeners);
2566 		nl_table[unit].registered++;
2567 	}
2568 	netlink_table_ungrab();
2569 	return sk;
2570 
2571 out_sock_release:
2572 	kfree(listeners);
2573 	netlink_kernel_release(sk);
2574 	return NULL;
2575 
2576 out_sock_release_nosk:
2577 	sock_release(sock);
2578 	return NULL;
2579 }
2580 EXPORT_SYMBOL(__netlink_kernel_create);
2581 
2582 void
2583 netlink_kernel_release(struct sock *sk)
2584 {
2585 	sk_release_kernel(sk);
2586 }
2587 EXPORT_SYMBOL(netlink_kernel_release);
2588 
2589 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2590 {
2591 	struct listeners *new, *old;
2592 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2593 
2594 	if (groups < 32)
2595 		groups = 32;
2596 
2597 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2598 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2599 		if (!new)
2600 			return -ENOMEM;
2601 		old = nl_deref_protected(tbl->listeners);
2602 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2603 		rcu_assign_pointer(tbl->listeners, new);
2604 
2605 		kfree_rcu(old, rcu);
2606 	}
2607 	tbl->groups = groups;
2608 
2609 	return 0;
2610 }
2611 
2612 /**
2613  * netlink_change_ngroups - change number of multicast groups
2614  *
2615  * This changes the number of multicast groups that are available
2616  * on a certain netlink family. Note that it is not possible to
2617  * change the number of groups to below 32. Also note that it does
2618  * not implicitly call netlink_clear_multicast_users() when the
2619  * number of groups is reduced.
2620  *
2621  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2622  * @groups: The new number of groups.
2623  */
2624 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2625 {
2626 	int err;
2627 
2628 	netlink_table_grab();
2629 	err = __netlink_change_ngroups(sk, groups);
2630 	netlink_table_ungrab();
2631 
2632 	return err;
2633 }
2634 
2635 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2636 {
2637 	struct sock *sk;
2638 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2639 
2640 	sk_for_each_bound(sk, &tbl->mc_list)
2641 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2642 }
2643 
2644 struct nlmsghdr *
2645 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2646 {
2647 	struct nlmsghdr *nlh;
2648 	int size = nlmsg_msg_size(len);
2649 
2650 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2651 	nlh->nlmsg_type = type;
2652 	nlh->nlmsg_len = size;
2653 	nlh->nlmsg_flags = flags;
2654 	nlh->nlmsg_pid = portid;
2655 	nlh->nlmsg_seq = seq;
2656 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2657 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2658 	return nlh;
2659 }
2660 EXPORT_SYMBOL(__nlmsg_put);
2661 
2662 /*
2663  * It looks a bit ugly.
2664  * It would be better to create kernel thread.
2665  */
2666 
2667 static int netlink_dump(struct sock *sk)
2668 {
2669 	struct netlink_sock *nlk = nlk_sk(sk);
2670 	struct netlink_callback *cb;
2671 	struct sk_buff *skb = NULL;
2672 	struct nlmsghdr *nlh;
2673 	int len, err = -ENOBUFS;
2674 	int alloc_size;
2675 
2676 	mutex_lock(nlk->cb_mutex);
2677 	if (!nlk->cb_running) {
2678 		err = -EINVAL;
2679 		goto errout_skb;
2680 	}
2681 
2682 	cb = &nlk->cb;
2683 	alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2684 
2685 	if (!netlink_rx_is_mmaped(sk) &&
2686 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2687 		goto errout_skb;
2688 
2689 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2690 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2691 	 * to reduce number of system calls on dump operations, if user
2692 	 * ever provided a big enough buffer.
2693 	 */
2694 	if (alloc_size < nlk->max_recvmsg_len) {
2695 		skb = netlink_alloc_skb(sk,
2696 					nlk->max_recvmsg_len,
2697 					nlk->portid,
2698 					GFP_KERNEL |
2699 					__GFP_NOWARN |
2700 					__GFP_NORETRY);
2701 		/* available room should be exact amount to avoid MSG_TRUNC */
2702 		if (skb)
2703 			skb_reserve(skb, skb_tailroom(skb) -
2704 					 nlk->max_recvmsg_len);
2705 	}
2706 	if (!skb)
2707 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2708 					GFP_KERNEL);
2709 	if (!skb)
2710 		goto errout_skb;
2711 	netlink_skb_set_owner_r(skb, sk);
2712 
2713 	len = cb->dump(skb, cb);
2714 
2715 	if (len > 0) {
2716 		mutex_unlock(nlk->cb_mutex);
2717 
2718 		if (sk_filter(sk, skb))
2719 			kfree_skb(skb);
2720 		else
2721 			__netlink_sendskb(sk, skb);
2722 		return 0;
2723 	}
2724 
2725 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2726 	if (!nlh)
2727 		goto errout_skb;
2728 
2729 	nl_dump_check_consistent(cb, nlh);
2730 
2731 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2732 
2733 	if (sk_filter(sk, skb))
2734 		kfree_skb(skb);
2735 	else
2736 		__netlink_sendskb(sk, skb);
2737 
2738 	if (cb->done)
2739 		cb->done(cb);
2740 
2741 	nlk->cb_running = false;
2742 	mutex_unlock(nlk->cb_mutex);
2743 	module_put(cb->module);
2744 	consume_skb(cb->skb);
2745 	return 0;
2746 
2747 errout_skb:
2748 	mutex_unlock(nlk->cb_mutex);
2749 	kfree_skb(skb);
2750 	return err;
2751 }
2752 
2753 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2754 			 const struct nlmsghdr *nlh,
2755 			 struct netlink_dump_control *control)
2756 {
2757 	struct netlink_callback *cb;
2758 	struct sock *sk;
2759 	struct netlink_sock *nlk;
2760 	int ret;
2761 
2762 	/* Memory mapped dump requests need to be copied to avoid looping
2763 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2764 	 * a reference to the skb.
2765 	 */
2766 	if (netlink_skb_is_mmaped(skb)) {
2767 		skb = skb_copy(skb, GFP_KERNEL);
2768 		if (skb == NULL)
2769 			return -ENOBUFS;
2770 	} else
2771 		atomic_inc(&skb->users);
2772 
2773 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2774 	if (sk == NULL) {
2775 		ret = -ECONNREFUSED;
2776 		goto error_free;
2777 	}
2778 
2779 	nlk = nlk_sk(sk);
2780 	mutex_lock(nlk->cb_mutex);
2781 	/* A dump is in progress... */
2782 	if (nlk->cb_running) {
2783 		ret = -EBUSY;
2784 		goto error_unlock;
2785 	}
2786 	/* add reference of module which cb->dump belongs to */
2787 	if (!try_module_get(control->module)) {
2788 		ret = -EPROTONOSUPPORT;
2789 		goto error_unlock;
2790 	}
2791 
2792 	cb = &nlk->cb;
2793 	memset(cb, 0, sizeof(*cb));
2794 	cb->dump = control->dump;
2795 	cb->done = control->done;
2796 	cb->nlh = nlh;
2797 	cb->data = control->data;
2798 	cb->module = control->module;
2799 	cb->min_dump_alloc = control->min_dump_alloc;
2800 	cb->skb = skb;
2801 
2802 	nlk->cb_running = true;
2803 
2804 	mutex_unlock(nlk->cb_mutex);
2805 
2806 	ret = netlink_dump(sk);
2807 	sock_put(sk);
2808 
2809 	if (ret)
2810 		return ret;
2811 
2812 	/* We successfully started a dump, by returning -EINTR we
2813 	 * signal not to send ACK even if it was requested.
2814 	 */
2815 	return -EINTR;
2816 
2817 error_unlock:
2818 	sock_put(sk);
2819 	mutex_unlock(nlk->cb_mutex);
2820 error_free:
2821 	kfree_skb(skb);
2822 	return ret;
2823 }
2824 EXPORT_SYMBOL(__netlink_dump_start);
2825 
2826 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2827 {
2828 	struct sk_buff *skb;
2829 	struct nlmsghdr *rep;
2830 	struct nlmsgerr *errmsg;
2831 	size_t payload = sizeof(*errmsg);
2832 
2833 	/* error messages get the original request appened */
2834 	if (err)
2835 		payload += nlmsg_len(nlh);
2836 
2837 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2838 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2839 	if (!skb) {
2840 		struct sock *sk;
2841 
2842 		sk = netlink_lookup(sock_net(in_skb->sk),
2843 				    in_skb->sk->sk_protocol,
2844 				    NETLINK_CB(in_skb).portid);
2845 		if (sk) {
2846 			sk->sk_err = ENOBUFS;
2847 			sk->sk_error_report(sk);
2848 			sock_put(sk);
2849 		}
2850 		return;
2851 	}
2852 
2853 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2854 			  NLMSG_ERROR, payload, 0);
2855 	errmsg = nlmsg_data(rep);
2856 	errmsg->error = err;
2857 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2858 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2859 }
2860 EXPORT_SYMBOL(netlink_ack);
2861 
2862 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2863 						     struct nlmsghdr *))
2864 {
2865 	struct nlmsghdr *nlh;
2866 	int err;
2867 
2868 	while (skb->len >= nlmsg_total_size(0)) {
2869 		int msglen;
2870 
2871 		nlh = nlmsg_hdr(skb);
2872 		err = 0;
2873 
2874 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2875 			return 0;
2876 
2877 		/* Only requests are handled by the kernel */
2878 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2879 			goto ack;
2880 
2881 		/* Skip control messages */
2882 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2883 			goto ack;
2884 
2885 		err = cb(skb, nlh);
2886 		if (err == -EINTR)
2887 			goto skip;
2888 
2889 ack:
2890 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2891 			netlink_ack(skb, nlh, err);
2892 
2893 skip:
2894 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2895 		if (msglen > skb->len)
2896 			msglen = skb->len;
2897 		skb_pull(skb, msglen);
2898 	}
2899 
2900 	return 0;
2901 }
2902 EXPORT_SYMBOL(netlink_rcv_skb);
2903 
2904 /**
2905  * nlmsg_notify - send a notification netlink message
2906  * @sk: netlink socket to use
2907  * @skb: notification message
2908  * @portid: destination netlink portid for reports or 0
2909  * @group: destination multicast group or 0
2910  * @report: 1 to report back, 0 to disable
2911  * @flags: allocation flags
2912  */
2913 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2914 		 unsigned int group, int report, gfp_t flags)
2915 {
2916 	int err = 0;
2917 
2918 	if (group) {
2919 		int exclude_portid = 0;
2920 
2921 		if (report) {
2922 			atomic_inc(&skb->users);
2923 			exclude_portid = portid;
2924 		}
2925 
2926 		/* errors reported via destination sk->sk_err, but propagate
2927 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2928 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2929 	}
2930 
2931 	if (report) {
2932 		int err2;
2933 
2934 		err2 = nlmsg_unicast(sk, skb, portid);
2935 		if (!err || err == -ESRCH)
2936 			err = err2;
2937 	}
2938 
2939 	return err;
2940 }
2941 EXPORT_SYMBOL(nlmsg_notify);
2942 
2943 #ifdef CONFIG_PROC_FS
2944 struct nl_seq_iter {
2945 	struct seq_net_private p;
2946 	struct rhashtable_iter hti;
2947 	int link;
2948 };
2949 
2950 static int netlink_walk_start(struct nl_seq_iter *iter)
2951 {
2952 	int err;
2953 
2954 	err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
2955 	if (err) {
2956 		iter->link = MAX_LINKS;
2957 		return err;
2958 	}
2959 
2960 	err = rhashtable_walk_start(&iter->hti);
2961 	return err == -EAGAIN ? 0 : err;
2962 }
2963 
2964 static void netlink_walk_stop(struct nl_seq_iter *iter)
2965 {
2966 	rhashtable_walk_stop(&iter->hti);
2967 	rhashtable_walk_exit(&iter->hti);
2968 }
2969 
2970 static void *__netlink_seq_next(struct seq_file *seq)
2971 {
2972 	struct nl_seq_iter *iter = seq->private;
2973 	struct netlink_sock *nlk;
2974 
2975 	do {
2976 		for (;;) {
2977 			int err;
2978 
2979 			nlk = rhashtable_walk_next(&iter->hti);
2980 
2981 			if (IS_ERR(nlk)) {
2982 				if (PTR_ERR(nlk) == -EAGAIN)
2983 					continue;
2984 
2985 				return nlk;
2986 			}
2987 
2988 			if (nlk)
2989 				break;
2990 
2991 			netlink_walk_stop(iter);
2992 			if (++iter->link >= MAX_LINKS)
2993 				return NULL;
2994 
2995 			err = netlink_walk_start(iter);
2996 			if (err)
2997 				return ERR_PTR(err);
2998 		}
2999 	} while (sock_net(&nlk->sk) != seq_file_net(seq));
3000 
3001 	return nlk;
3002 }
3003 
3004 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3005 {
3006 	struct nl_seq_iter *iter = seq->private;
3007 	void *obj = SEQ_START_TOKEN;
3008 	loff_t pos;
3009 	int err;
3010 
3011 	iter->link = 0;
3012 
3013 	err = netlink_walk_start(iter);
3014 	if (err)
3015 		return ERR_PTR(err);
3016 
3017 	for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3018 		obj = __netlink_seq_next(seq);
3019 
3020 	return obj;
3021 }
3022 
3023 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3024 {
3025 	++*pos;
3026 	return __netlink_seq_next(seq);
3027 }
3028 
3029 static void netlink_seq_stop(struct seq_file *seq, void *v)
3030 {
3031 	struct nl_seq_iter *iter = seq->private;
3032 
3033 	if (iter->link >= MAX_LINKS)
3034 		return;
3035 
3036 	netlink_walk_stop(iter);
3037 }
3038 
3039 
3040 static int netlink_seq_show(struct seq_file *seq, void *v)
3041 {
3042 	if (v == SEQ_START_TOKEN) {
3043 		seq_puts(seq,
3044 			 "sk       Eth Pid    Groups   "
3045 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
3046 	} else {
3047 		struct sock *s = v;
3048 		struct netlink_sock *nlk = nlk_sk(s);
3049 
3050 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3051 			   s,
3052 			   s->sk_protocol,
3053 			   nlk->portid,
3054 			   nlk->groups ? (u32)nlk->groups[0] : 0,
3055 			   sk_rmem_alloc_get(s),
3056 			   sk_wmem_alloc_get(s),
3057 			   nlk->cb_running,
3058 			   atomic_read(&s->sk_refcnt),
3059 			   atomic_read(&s->sk_drops),
3060 			   sock_i_ino(s)
3061 			);
3062 
3063 	}
3064 	return 0;
3065 }
3066 
3067 static const struct seq_operations netlink_seq_ops = {
3068 	.start  = netlink_seq_start,
3069 	.next   = netlink_seq_next,
3070 	.stop   = netlink_seq_stop,
3071 	.show   = netlink_seq_show,
3072 };
3073 
3074 
3075 static int netlink_seq_open(struct inode *inode, struct file *file)
3076 {
3077 	return seq_open_net(inode, file, &netlink_seq_ops,
3078 				sizeof(struct nl_seq_iter));
3079 }
3080 
3081 static const struct file_operations netlink_seq_fops = {
3082 	.owner		= THIS_MODULE,
3083 	.open		= netlink_seq_open,
3084 	.read		= seq_read,
3085 	.llseek		= seq_lseek,
3086 	.release	= seq_release_net,
3087 };
3088 
3089 #endif
3090 
3091 int netlink_register_notifier(struct notifier_block *nb)
3092 {
3093 	return atomic_notifier_chain_register(&netlink_chain, nb);
3094 }
3095 EXPORT_SYMBOL(netlink_register_notifier);
3096 
3097 int netlink_unregister_notifier(struct notifier_block *nb)
3098 {
3099 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3100 }
3101 EXPORT_SYMBOL(netlink_unregister_notifier);
3102 
3103 static const struct proto_ops netlink_ops = {
3104 	.family =	PF_NETLINK,
3105 	.owner =	THIS_MODULE,
3106 	.release =	netlink_release,
3107 	.bind =		netlink_bind,
3108 	.connect =	netlink_connect,
3109 	.socketpair =	sock_no_socketpair,
3110 	.accept =	sock_no_accept,
3111 	.getname =	netlink_getname,
3112 	.poll =		netlink_poll,
3113 	.ioctl =	sock_no_ioctl,
3114 	.listen =	sock_no_listen,
3115 	.shutdown =	sock_no_shutdown,
3116 	.setsockopt =	netlink_setsockopt,
3117 	.getsockopt =	netlink_getsockopt,
3118 	.sendmsg =	netlink_sendmsg,
3119 	.recvmsg =	netlink_recvmsg,
3120 	.mmap =		netlink_mmap,
3121 	.sendpage =	sock_no_sendpage,
3122 };
3123 
3124 static const struct net_proto_family netlink_family_ops = {
3125 	.family = PF_NETLINK,
3126 	.create = netlink_create,
3127 	.owner	= THIS_MODULE,	/* for consistency 8) */
3128 };
3129 
3130 static int __net_init netlink_net_init(struct net *net)
3131 {
3132 #ifdef CONFIG_PROC_FS
3133 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3134 		return -ENOMEM;
3135 #endif
3136 	return 0;
3137 }
3138 
3139 static void __net_exit netlink_net_exit(struct net *net)
3140 {
3141 #ifdef CONFIG_PROC_FS
3142 	remove_proc_entry("netlink", net->proc_net);
3143 #endif
3144 }
3145 
3146 static void __init netlink_add_usersock_entry(void)
3147 {
3148 	struct listeners *listeners;
3149 	int groups = 32;
3150 
3151 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3152 	if (!listeners)
3153 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3154 
3155 	netlink_table_grab();
3156 
3157 	nl_table[NETLINK_USERSOCK].groups = groups;
3158 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3159 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3160 	nl_table[NETLINK_USERSOCK].registered = 1;
3161 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3162 
3163 	netlink_table_ungrab();
3164 }
3165 
3166 static struct pernet_operations __net_initdata netlink_net_ops = {
3167 	.init = netlink_net_init,
3168 	.exit = netlink_net_exit,
3169 };
3170 
3171 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3172 {
3173 	const struct netlink_sock *nlk = data;
3174 	struct netlink_compare_arg arg;
3175 
3176 	netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3177 	return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3178 }
3179 
3180 static const struct rhashtable_params netlink_rhashtable_params = {
3181 	.head_offset = offsetof(struct netlink_sock, node),
3182 	.key_len = netlink_compare_arg_len,
3183 	.obj_hashfn = netlink_hash,
3184 	.obj_cmpfn = netlink_compare,
3185 	.max_size = 65536,
3186 	.automatic_shrinking = true,
3187 };
3188 
3189 static int __init netlink_proto_init(void)
3190 {
3191 	int i;
3192 	int err = proto_register(&netlink_proto, 0);
3193 
3194 	if (err != 0)
3195 		goto out;
3196 
3197 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3198 
3199 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3200 	if (!nl_table)
3201 		goto panic;
3202 
3203 	for (i = 0; i < MAX_LINKS; i++) {
3204 		if (rhashtable_init(&nl_table[i].hash,
3205 				    &netlink_rhashtable_params) < 0) {
3206 			while (--i > 0)
3207 				rhashtable_destroy(&nl_table[i].hash);
3208 			kfree(nl_table);
3209 			goto panic;
3210 		}
3211 	}
3212 
3213 	INIT_LIST_HEAD(&netlink_tap_all);
3214 
3215 	netlink_add_usersock_entry();
3216 
3217 	sock_register(&netlink_family_ops);
3218 	register_pernet_subsys(&netlink_net_ops);
3219 	/* The netlink device handler may be needed early. */
3220 	rtnetlink_init();
3221 out:
3222 	return err;
3223 panic:
3224 	panic("netlink_init: Cannot allocate nl_table\n");
3225 }
3226 
3227 core_initcall(netlink_proto_init);
3228