1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 121 /* This is the first subflow, always with id 0 */ 122 subflow->local_id_valid = 1; 123 mptcp_sock_graft(msk->first, sk->sk_socket); 124 125 return 0; 126 } 127 128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 129 { 130 sk_drops_add(sk, skb); 131 __kfree_skb(skb); 132 } 133 134 static void mptcp_rmem_charge(struct sock *sk, int size) 135 { 136 mptcp_sk(sk)->rmem_fwd_alloc -= size; 137 } 138 139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 140 struct sk_buff *from) 141 { 142 bool fragstolen; 143 int delta; 144 145 if (MPTCP_SKB_CB(from)->offset || 146 !skb_try_coalesce(to, from, &fragstolen, &delta)) 147 return false; 148 149 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 150 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 151 to->len, MPTCP_SKB_CB(from)->end_seq); 152 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 153 kfree_skb_partial(from, fragstolen); 154 atomic_add(delta, &sk->sk_rmem_alloc); 155 mptcp_rmem_charge(sk, delta); 156 return true; 157 } 158 159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 160 struct sk_buff *from) 161 { 162 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 163 return false; 164 165 return mptcp_try_coalesce((struct sock *)msk, to, from); 166 } 167 168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 169 { 170 amount >>= SK_MEM_QUANTUM_SHIFT; 171 mptcp_sk(sk)->rmem_fwd_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 172 __sk_mem_reduce_allocated(sk, amount); 173 } 174 175 static void mptcp_rmem_uncharge(struct sock *sk, int size) 176 { 177 struct mptcp_sock *msk = mptcp_sk(sk); 178 int reclaimable; 179 180 msk->rmem_fwd_alloc += size; 181 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 182 183 /* see sk_mem_uncharge() for the rationale behind the following schema */ 184 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD)) 185 __mptcp_rmem_reclaim(sk, SK_RECLAIM_CHUNK); 186 } 187 188 static void mptcp_rfree(struct sk_buff *skb) 189 { 190 unsigned int len = skb->truesize; 191 struct sock *sk = skb->sk; 192 193 atomic_sub(len, &sk->sk_rmem_alloc); 194 mptcp_rmem_uncharge(sk, len); 195 } 196 197 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 198 { 199 skb_orphan(skb); 200 skb->sk = sk; 201 skb->destructor = mptcp_rfree; 202 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 203 mptcp_rmem_charge(sk, skb->truesize); 204 } 205 206 /* "inspired" by tcp_data_queue_ofo(), main differences: 207 * - use mptcp seqs 208 * - don't cope with sacks 209 */ 210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 211 { 212 struct sock *sk = (struct sock *)msk; 213 struct rb_node **p, *parent; 214 u64 seq, end_seq, max_seq; 215 struct sk_buff *skb1; 216 217 seq = MPTCP_SKB_CB(skb)->map_seq; 218 end_seq = MPTCP_SKB_CB(skb)->end_seq; 219 max_seq = READ_ONCE(msk->rcv_wnd_sent); 220 221 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 222 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 223 if (after64(end_seq, max_seq)) { 224 /* out of window */ 225 mptcp_drop(sk, skb); 226 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 227 (unsigned long long)end_seq - (unsigned long)max_seq, 228 (unsigned long long)msk->rcv_wnd_sent); 229 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 230 return; 231 } 232 233 p = &msk->out_of_order_queue.rb_node; 234 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 235 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 236 rb_link_node(&skb->rbnode, NULL, p); 237 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 238 msk->ooo_last_skb = skb; 239 goto end; 240 } 241 242 /* with 2 subflows, adding at end of ooo queue is quite likely 243 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 244 */ 245 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 248 return; 249 } 250 251 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 252 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 254 parent = &msk->ooo_last_skb->rbnode; 255 p = &parent->rb_right; 256 goto insert; 257 } 258 259 /* Find place to insert this segment. Handle overlaps on the way. */ 260 parent = NULL; 261 while (*p) { 262 parent = *p; 263 skb1 = rb_to_skb(parent); 264 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 265 p = &parent->rb_left; 266 continue; 267 } 268 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 270 /* All the bits are present. Drop. */ 271 mptcp_drop(sk, skb); 272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 273 return; 274 } 275 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 276 /* partial overlap: 277 * | skb | 278 * | skb1 | 279 * continue traversing 280 */ 281 } else { 282 /* skb's seq == skb1's seq and skb covers skb1. 283 * Replace skb1 with skb. 284 */ 285 rb_replace_node(&skb1->rbnode, &skb->rbnode, 286 &msk->out_of_order_queue); 287 mptcp_drop(sk, skb1); 288 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 289 goto merge_right; 290 } 291 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 292 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 293 return; 294 } 295 p = &parent->rb_right; 296 } 297 298 insert: 299 /* Insert segment into RB tree. */ 300 rb_link_node(&skb->rbnode, parent, p); 301 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 302 303 merge_right: 304 /* Remove other segments covered by skb. */ 305 while ((skb1 = skb_rb_next(skb)) != NULL) { 306 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 307 break; 308 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 309 mptcp_drop(sk, skb1); 310 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 311 } 312 /* If there is no skb after us, we are the last_skb ! */ 313 if (!skb1) 314 msk->ooo_last_skb = skb; 315 316 end: 317 skb_condense(skb); 318 mptcp_set_owner_r(skb, sk); 319 } 320 321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 322 { 323 struct mptcp_sock *msk = mptcp_sk(sk); 324 int amt, amount; 325 326 if (size < msk->rmem_fwd_alloc) 327 return true; 328 329 amt = sk_mem_pages(size); 330 amount = amt << SK_MEM_QUANTUM_SHIFT; 331 msk->rmem_fwd_alloc += amount; 332 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) { 333 if (ssk->sk_forward_alloc < amount) { 334 msk->rmem_fwd_alloc -= amount; 335 return false; 336 } 337 338 ssk->sk_forward_alloc -= amount; 339 } 340 return true; 341 } 342 343 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 344 struct sk_buff *skb, unsigned int offset, 345 size_t copy_len) 346 { 347 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 348 struct sock *sk = (struct sock *)msk; 349 struct sk_buff *tail; 350 bool has_rxtstamp; 351 352 __skb_unlink(skb, &ssk->sk_receive_queue); 353 354 skb_ext_reset(skb); 355 skb_orphan(skb); 356 357 /* try to fetch required memory from subflow */ 358 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 359 goto drop; 360 361 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 362 363 /* the skb map_seq accounts for the skb offset: 364 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 365 * value 366 */ 367 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 368 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 369 MPTCP_SKB_CB(skb)->offset = offset; 370 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 371 372 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 373 /* in sequence */ 374 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 375 tail = skb_peek_tail(&sk->sk_receive_queue); 376 if (tail && mptcp_try_coalesce(sk, tail, skb)) 377 return true; 378 379 mptcp_set_owner_r(skb, sk); 380 __skb_queue_tail(&sk->sk_receive_queue, skb); 381 return true; 382 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 383 mptcp_data_queue_ofo(msk, skb); 384 return false; 385 } 386 387 /* old data, keep it simple and drop the whole pkt, sender 388 * will retransmit as needed, if needed. 389 */ 390 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 391 drop: 392 mptcp_drop(sk, skb); 393 return false; 394 } 395 396 static void mptcp_stop_timer(struct sock *sk) 397 { 398 struct inet_connection_sock *icsk = inet_csk(sk); 399 400 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 401 mptcp_sk(sk)->timer_ival = 0; 402 } 403 404 static void mptcp_close_wake_up(struct sock *sk) 405 { 406 if (sock_flag(sk, SOCK_DEAD)) 407 return; 408 409 sk->sk_state_change(sk); 410 if (sk->sk_shutdown == SHUTDOWN_MASK || 411 sk->sk_state == TCP_CLOSE) 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 413 else 414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 415 } 416 417 static bool mptcp_pending_data_fin_ack(struct sock *sk) 418 { 419 struct mptcp_sock *msk = mptcp_sk(sk); 420 421 return !__mptcp_check_fallback(msk) && 422 ((1 << sk->sk_state) & 423 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 424 msk->write_seq == READ_ONCE(msk->snd_una); 425 } 426 427 static void mptcp_check_data_fin_ack(struct sock *sk) 428 { 429 struct mptcp_sock *msk = mptcp_sk(sk); 430 431 /* Look for an acknowledged DATA_FIN */ 432 if (mptcp_pending_data_fin_ack(sk)) { 433 WRITE_ONCE(msk->snd_data_fin_enable, 0); 434 435 switch (sk->sk_state) { 436 case TCP_FIN_WAIT1: 437 inet_sk_state_store(sk, TCP_FIN_WAIT2); 438 break; 439 case TCP_CLOSING: 440 case TCP_LAST_ACK: 441 inet_sk_state_store(sk, TCP_CLOSE); 442 break; 443 } 444 445 mptcp_close_wake_up(sk); 446 } 447 } 448 449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 450 { 451 struct mptcp_sock *msk = mptcp_sk(sk); 452 453 if (READ_ONCE(msk->rcv_data_fin) && 454 ((1 << sk->sk_state) & 455 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 456 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 457 458 if (msk->ack_seq == rcv_data_fin_seq) { 459 if (seq) 460 *seq = rcv_data_fin_seq; 461 462 return true; 463 } 464 } 465 466 return false; 467 } 468 469 static void mptcp_set_datafin_timeout(const struct sock *sk) 470 { 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 u32 retransmits; 473 474 retransmits = min_t(u32, icsk->icsk_retransmits, 475 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 476 477 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 478 } 479 480 static void __mptcp_set_timeout(struct sock *sk, long tout) 481 { 482 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 483 } 484 485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 486 { 487 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 488 489 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 490 inet_csk(ssk)->icsk_timeout - jiffies : 0; 491 } 492 493 static void mptcp_set_timeout(struct sock *sk) 494 { 495 struct mptcp_subflow_context *subflow; 496 long tout = 0; 497 498 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 499 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 500 __mptcp_set_timeout(sk, tout); 501 } 502 503 static bool tcp_can_send_ack(const struct sock *ssk) 504 { 505 return !((1 << inet_sk_state_load(ssk)) & 506 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 507 } 508 509 void mptcp_subflow_send_ack(struct sock *ssk) 510 { 511 bool slow; 512 513 slow = lock_sock_fast(ssk); 514 if (tcp_can_send_ack(ssk)) 515 tcp_send_ack(ssk); 516 unlock_sock_fast(ssk, slow); 517 } 518 519 static void mptcp_send_ack(struct mptcp_sock *msk) 520 { 521 struct mptcp_subflow_context *subflow; 522 523 mptcp_for_each_subflow(msk, subflow) 524 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 525 } 526 527 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 528 { 529 bool slow; 530 531 slow = lock_sock_fast(ssk); 532 if (tcp_can_send_ack(ssk)) 533 tcp_cleanup_rbuf(ssk, 1); 534 unlock_sock_fast(ssk, slow); 535 } 536 537 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 538 { 539 const struct inet_connection_sock *icsk = inet_csk(ssk); 540 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 541 const struct tcp_sock *tp = tcp_sk(ssk); 542 543 return (ack_pending & ICSK_ACK_SCHED) && 544 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 545 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 546 (rx_empty && ack_pending & 547 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 548 } 549 550 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 551 { 552 int old_space = READ_ONCE(msk->old_wspace); 553 struct mptcp_subflow_context *subflow; 554 struct sock *sk = (struct sock *)msk; 555 int space = __mptcp_space(sk); 556 bool cleanup, rx_empty; 557 558 cleanup = (space > 0) && (space >= (old_space << 1)); 559 rx_empty = !__mptcp_rmem(sk); 560 561 mptcp_for_each_subflow(msk, subflow) { 562 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 563 564 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 565 mptcp_subflow_cleanup_rbuf(ssk); 566 } 567 } 568 569 static bool mptcp_check_data_fin(struct sock *sk) 570 { 571 struct mptcp_sock *msk = mptcp_sk(sk); 572 u64 rcv_data_fin_seq; 573 bool ret = false; 574 575 if (__mptcp_check_fallback(msk)) 576 return ret; 577 578 /* Need to ack a DATA_FIN received from a peer while this side 579 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 580 * msk->rcv_data_fin was set when parsing the incoming options 581 * at the subflow level and the msk lock was not held, so this 582 * is the first opportunity to act on the DATA_FIN and change 583 * the msk state. 584 * 585 * If we are caught up to the sequence number of the incoming 586 * DATA_FIN, send the DATA_ACK now and do state transition. If 587 * not caught up, do nothing and let the recv code send DATA_ACK 588 * when catching up. 589 */ 590 591 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 592 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 593 WRITE_ONCE(msk->rcv_data_fin, 0); 594 595 sk->sk_shutdown |= RCV_SHUTDOWN; 596 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 597 598 switch (sk->sk_state) { 599 case TCP_ESTABLISHED: 600 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 601 break; 602 case TCP_FIN_WAIT1: 603 inet_sk_state_store(sk, TCP_CLOSING); 604 break; 605 case TCP_FIN_WAIT2: 606 inet_sk_state_store(sk, TCP_CLOSE); 607 break; 608 default: 609 /* Other states not expected */ 610 WARN_ON_ONCE(1); 611 break; 612 } 613 614 ret = true; 615 mptcp_send_ack(msk); 616 mptcp_close_wake_up(sk); 617 } 618 return ret; 619 } 620 621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 622 struct sock *ssk, 623 unsigned int *bytes) 624 { 625 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 626 struct sock *sk = (struct sock *)msk; 627 unsigned int moved = 0; 628 bool more_data_avail; 629 struct tcp_sock *tp; 630 bool done = false; 631 int sk_rbuf; 632 633 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 634 635 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 636 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 637 638 if (unlikely(ssk_rbuf > sk_rbuf)) { 639 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 640 sk_rbuf = ssk_rbuf; 641 } 642 } 643 644 pr_debug("msk=%p ssk=%p", msk, ssk); 645 tp = tcp_sk(ssk); 646 do { 647 u32 map_remaining, offset; 648 u32 seq = tp->copied_seq; 649 struct sk_buff *skb; 650 bool fin; 651 652 /* try to move as much data as available */ 653 map_remaining = subflow->map_data_len - 654 mptcp_subflow_get_map_offset(subflow); 655 656 skb = skb_peek(&ssk->sk_receive_queue); 657 if (!skb) { 658 /* if no data is found, a racing workqueue/recvmsg 659 * already processed the new data, stop here or we 660 * can enter an infinite loop 661 */ 662 if (!moved) 663 done = true; 664 break; 665 } 666 667 if (__mptcp_check_fallback(msk)) { 668 /* if we are running under the workqueue, TCP could have 669 * collapsed skbs between dummy map creation and now 670 * be sure to adjust the size 671 */ 672 map_remaining = skb->len; 673 subflow->map_data_len = skb->len; 674 } 675 676 offset = seq - TCP_SKB_CB(skb)->seq; 677 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 678 if (fin) { 679 done = true; 680 seq++; 681 } 682 683 if (offset < skb->len) { 684 size_t len = skb->len - offset; 685 686 if (tp->urg_data) 687 done = true; 688 689 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 690 moved += len; 691 seq += len; 692 693 if (WARN_ON_ONCE(map_remaining < len)) 694 break; 695 } else { 696 WARN_ON_ONCE(!fin); 697 sk_eat_skb(ssk, skb); 698 done = true; 699 } 700 701 WRITE_ONCE(tp->copied_seq, seq); 702 more_data_avail = mptcp_subflow_data_available(ssk); 703 704 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 705 done = true; 706 break; 707 } 708 } while (more_data_avail); 709 710 *bytes += moved; 711 return done; 712 } 713 714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 715 { 716 struct sock *sk = (struct sock *)msk; 717 struct sk_buff *skb, *tail; 718 bool moved = false; 719 struct rb_node *p; 720 u64 end_seq; 721 722 p = rb_first(&msk->out_of_order_queue); 723 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 724 while (p) { 725 skb = rb_to_skb(p); 726 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 727 break; 728 729 p = rb_next(p); 730 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 731 732 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 733 msk->ack_seq))) { 734 mptcp_drop(sk, skb); 735 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 736 continue; 737 } 738 739 end_seq = MPTCP_SKB_CB(skb)->end_seq; 740 tail = skb_peek_tail(&sk->sk_receive_queue); 741 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 742 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 743 744 /* skip overlapping data, if any */ 745 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 746 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 747 delta); 748 MPTCP_SKB_CB(skb)->offset += delta; 749 MPTCP_SKB_CB(skb)->map_seq += delta; 750 __skb_queue_tail(&sk->sk_receive_queue, skb); 751 } 752 msk->ack_seq = end_seq; 753 moved = true; 754 } 755 return moved; 756 } 757 758 /* In most cases we will be able to lock the mptcp socket. If its already 759 * owned, we need to defer to the work queue to avoid ABBA deadlock. 760 */ 761 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 762 { 763 struct sock *sk = (struct sock *)msk; 764 unsigned int moved = 0; 765 766 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 767 __mptcp_ofo_queue(msk); 768 if (unlikely(ssk->sk_err)) { 769 if (!sock_owned_by_user(sk)) 770 __mptcp_error_report(sk); 771 else 772 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 773 } 774 775 /* If the moves have caught up with the DATA_FIN sequence number 776 * it's time to ack the DATA_FIN and change socket state, but 777 * this is not a good place to change state. Let the workqueue 778 * do it. 779 */ 780 if (mptcp_pending_data_fin(sk, NULL)) 781 mptcp_schedule_work(sk); 782 return moved > 0; 783 } 784 785 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 786 { 787 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 788 struct mptcp_sock *msk = mptcp_sk(sk); 789 int sk_rbuf, ssk_rbuf; 790 791 /* The peer can send data while we are shutting down this 792 * subflow at msk destruction time, but we must avoid enqueuing 793 * more data to the msk receive queue 794 */ 795 if (unlikely(subflow->disposable)) 796 return; 797 798 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 799 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 800 if (unlikely(ssk_rbuf > sk_rbuf)) 801 sk_rbuf = ssk_rbuf; 802 803 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 804 if (__mptcp_rmem(sk) > sk_rbuf) { 805 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 806 return; 807 } 808 809 /* Wake-up the reader only for in-sequence data */ 810 mptcp_data_lock(sk); 811 if (move_skbs_to_msk(msk, ssk)) 812 sk->sk_data_ready(sk); 813 814 mptcp_data_unlock(sk); 815 } 816 817 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 818 { 819 struct sock *sk = (struct sock *)msk; 820 821 if (sk->sk_state != TCP_ESTABLISHED) 822 return false; 823 824 /* attach to msk socket only after we are sure we will deal with it 825 * at close time 826 */ 827 if (sk->sk_socket && !ssk->sk_socket) 828 mptcp_sock_graft(ssk, sk->sk_socket); 829 830 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 831 mptcp_sockopt_sync_locked(msk, ssk); 832 return true; 833 } 834 835 static void __mptcp_flush_join_list(struct sock *sk) 836 { 837 struct mptcp_subflow_context *tmp, *subflow; 838 struct mptcp_sock *msk = mptcp_sk(sk); 839 840 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 841 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 842 bool slow = lock_sock_fast(ssk); 843 844 list_move_tail(&subflow->node, &msk->conn_list); 845 if (!__mptcp_finish_join(msk, ssk)) 846 mptcp_subflow_reset(ssk); 847 unlock_sock_fast(ssk, slow); 848 } 849 } 850 851 static bool mptcp_timer_pending(struct sock *sk) 852 { 853 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 854 } 855 856 static void mptcp_reset_timer(struct sock *sk) 857 { 858 struct inet_connection_sock *icsk = inet_csk(sk); 859 unsigned long tout; 860 861 /* prevent rescheduling on close */ 862 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 863 return; 864 865 tout = mptcp_sk(sk)->timer_ival; 866 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 867 } 868 869 bool mptcp_schedule_work(struct sock *sk) 870 { 871 if (inet_sk_state_load(sk) != TCP_CLOSE && 872 schedule_work(&mptcp_sk(sk)->work)) { 873 /* each subflow already holds a reference to the sk, and the 874 * workqueue is invoked by a subflow, so sk can't go away here. 875 */ 876 sock_hold(sk); 877 return true; 878 } 879 return false; 880 } 881 882 void mptcp_subflow_eof(struct sock *sk) 883 { 884 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 885 mptcp_schedule_work(sk); 886 } 887 888 static void mptcp_check_for_eof(struct mptcp_sock *msk) 889 { 890 struct mptcp_subflow_context *subflow; 891 struct sock *sk = (struct sock *)msk; 892 int receivers = 0; 893 894 mptcp_for_each_subflow(msk, subflow) 895 receivers += !subflow->rx_eof; 896 if (receivers) 897 return; 898 899 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 900 /* hopefully temporary hack: propagate shutdown status 901 * to msk, when all subflows agree on it 902 */ 903 sk->sk_shutdown |= RCV_SHUTDOWN; 904 905 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 906 sk->sk_data_ready(sk); 907 } 908 909 switch (sk->sk_state) { 910 case TCP_ESTABLISHED: 911 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 912 break; 913 case TCP_FIN_WAIT1: 914 inet_sk_state_store(sk, TCP_CLOSING); 915 break; 916 case TCP_FIN_WAIT2: 917 inet_sk_state_store(sk, TCP_CLOSE); 918 break; 919 default: 920 return; 921 } 922 mptcp_close_wake_up(sk); 923 } 924 925 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 926 { 927 struct mptcp_subflow_context *subflow; 928 struct sock *sk = (struct sock *)msk; 929 930 sock_owned_by_me(sk); 931 932 mptcp_for_each_subflow(msk, subflow) { 933 if (READ_ONCE(subflow->data_avail)) 934 return mptcp_subflow_tcp_sock(subflow); 935 } 936 937 return NULL; 938 } 939 940 static bool mptcp_skb_can_collapse_to(u64 write_seq, 941 const struct sk_buff *skb, 942 const struct mptcp_ext *mpext) 943 { 944 if (!tcp_skb_can_collapse_to(skb)) 945 return false; 946 947 /* can collapse only if MPTCP level sequence is in order and this 948 * mapping has not been xmitted yet 949 */ 950 return mpext && mpext->data_seq + mpext->data_len == write_seq && 951 !mpext->frozen; 952 } 953 954 /* we can append data to the given data frag if: 955 * - there is space available in the backing page_frag 956 * - the data frag tail matches the current page_frag free offset 957 * - the data frag end sequence number matches the current write seq 958 */ 959 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 960 const struct page_frag *pfrag, 961 const struct mptcp_data_frag *df) 962 { 963 return df && pfrag->page == df->page && 964 pfrag->size - pfrag->offset > 0 && 965 pfrag->offset == (df->offset + df->data_len) && 966 df->data_seq + df->data_len == msk->write_seq; 967 } 968 969 static void __mptcp_mem_reclaim_partial(struct sock *sk) 970 { 971 int reclaimable = mptcp_sk(sk)->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 972 973 lockdep_assert_held_once(&sk->sk_lock.slock); 974 975 if (reclaimable > SK_MEM_QUANTUM) 976 __mptcp_rmem_reclaim(sk, reclaimable - 1); 977 978 sk_mem_reclaim_partial(sk); 979 } 980 981 static void mptcp_mem_reclaim_partial(struct sock *sk) 982 { 983 mptcp_data_lock(sk); 984 __mptcp_mem_reclaim_partial(sk); 985 mptcp_data_unlock(sk); 986 } 987 988 static void dfrag_uncharge(struct sock *sk, int len) 989 { 990 sk_mem_uncharge(sk, len); 991 sk_wmem_queued_add(sk, -len); 992 } 993 994 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 995 { 996 int len = dfrag->data_len + dfrag->overhead; 997 998 list_del(&dfrag->list); 999 dfrag_uncharge(sk, len); 1000 put_page(dfrag->page); 1001 } 1002 1003 static void __mptcp_clean_una(struct sock *sk) 1004 { 1005 struct mptcp_sock *msk = mptcp_sk(sk); 1006 struct mptcp_data_frag *dtmp, *dfrag; 1007 bool cleaned = false; 1008 u64 snd_una; 1009 1010 /* on fallback we just need to ignore snd_una, as this is really 1011 * plain TCP 1012 */ 1013 if (__mptcp_check_fallback(msk)) 1014 msk->snd_una = READ_ONCE(msk->snd_nxt); 1015 1016 snd_una = msk->snd_una; 1017 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1018 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1019 break; 1020 1021 if (unlikely(dfrag == msk->first_pending)) { 1022 /* in recovery mode can see ack after the current snd head */ 1023 if (WARN_ON_ONCE(!msk->recovery)) 1024 break; 1025 1026 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1027 } 1028 1029 dfrag_clear(sk, dfrag); 1030 cleaned = true; 1031 } 1032 1033 dfrag = mptcp_rtx_head(sk); 1034 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1035 u64 delta = snd_una - dfrag->data_seq; 1036 1037 /* prevent wrap around in recovery mode */ 1038 if (unlikely(delta > dfrag->already_sent)) { 1039 if (WARN_ON_ONCE(!msk->recovery)) 1040 goto out; 1041 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1042 goto out; 1043 dfrag->already_sent += delta - dfrag->already_sent; 1044 } 1045 1046 dfrag->data_seq += delta; 1047 dfrag->offset += delta; 1048 dfrag->data_len -= delta; 1049 dfrag->already_sent -= delta; 1050 1051 dfrag_uncharge(sk, delta); 1052 cleaned = true; 1053 } 1054 1055 /* all retransmitted data acked, recovery completed */ 1056 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1057 msk->recovery = false; 1058 1059 out: 1060 if (cleaned && tcp_under_memory_pressure(sk)) 1061 __mptcp_mem_reclaim_partial(sk); 1062 1063 if (snd_una == READ_ONCE(msk->snd_nxt) && 1064 snd_una == READ_ONCE(msk->write_seq)) { 1065 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1066 mptcp_stop_timer(sk); 1067 } else { 1068 mptcp_reset_timer(sk); 1069 } 1070 } 1071 1072 static void __mptcp_clean_una_wakeup(struct sock *sk) 1073 { 1074 lockdep_assert_held_once(&sk->sk_lock.slock); 1075 1076 __mptcp_clean_una(sk); 1077 mptcp_write_space(sk); 1078 } 1079 1080 static void mptcp_clean_una_wakeup(struct sock *sk) 1081 { 1082 mptcp_data_lock(sk); 1083 __mptcp_clean_una_wakeup(sk); 1084 mptcp_data_unlock(sk); 1085 } 1086 1087 static void mptcp_enter_memory_pressure(struct sock *sk) 1088 { 1089 struct mptcp_subflow_context *subflow; 1090 struct mptcp_sock *msk = mptcp_sk(sk); 1091 bool first = true; 1092 1093 sk_stream_moderate_sndbuf(sk); 1094 mptcp_for_each_subflow(msk, subflow) { 1095 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1096 1097 if (first) 1098 tcp_enter_memory_pressure(ssk); 1099 sk_stream_moderate_sndbuf(ssk); 1100 first = false; 1101 } 1102 } 1103 1104 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1105 * data 1106 */ 1107 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1108 { 1109 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1110 pfrag, sk->sk_allocation))) 1111 return true; 1112 1113 mptcp_enter_memory_pressure(sk); 1114 return false; 1115 } 1116 1117 static struct mptcp_data_frag * 1118 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1119 int orig_offset) 1120 { 1121 int offset = ALIGN(orig_offset, sizeof(long)); 1122 struct mptcp_data_frag *dfrag; 1123 1124 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1125 dfrag->data_len = 0; 1126 dfrag->data_seq = msk->write_seq; 1127 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1128 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1129 dfrag->already_sent = 0; 1130 dfrag->page = pfrag->page; 1131 1132 return dfrag; 1133 } 1134 1135 struct mptcp_sendmsg_info { 1136 int mss_now; 1137 int size_goal; 1138 u16 limit; 1139 u16 sent; 1140 unsigned int flags; 1141 bool data_lock_held; 1142 }; 1143 1144 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq, 1145 int avail_size) 1146 { 1147 u64 window_end = mptcp_wnd_end(msk); 1148 1149 if (__mptcp_check_fallback(msk)) 1150 return avail_size; 1151 1152 if (!before64(data_seq + avail_size, window_end)) { 1153 u64 allowed_size = window_end - data_seq; 1154 1155 return min_t(unsigned int, allowed_size, avail_size); 1156 } 1157 1158 return avail_size; 1159 } 1160 1161 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1162 { 1163 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1164 1165 if (!mpext) 1166 return false; 1167 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1168 return true; 1169 } 1170 1171 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1172 { 1173 struct sk_buff *skb; 1174 1175 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1176 if (likely(skb)) { 1177 if (likely(__mptcp_add_ext(skb, gfp))) { 1178 skb_reserve(skb, MAX_TCP_HEADER); 1179 skb->ip_summed = CHECKSUM_PARTIAL; 1180 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1181 return skb; 1182 } 1183 __kfree_skb(skb); 1184 } else { 1185 mptcp_enter_memory_pressure(sk); 1186 } 1187 return NULL; 1188 } 1189 1190 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1191 { 1192 struct sk_buff *skb; 1193 1194 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1195 if (!skb) 1196 return NULL; 1197 1198 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1199 tcp_skb_entail(ssk, skb); 1200 return skb; 1201 } 1202 tcp_skb_tsorted_anchor_cleanup(skb); 1203 kfree_skb(skb); 1204 return NULL; 1205 } 1206 1207 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1208 { 1209 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1210 1211 if (unlikely(tcp_under_memory_pressure(sk))) { 1212 if (data_lock_held) 1213 __mptcp_mem_reclaim_partial(sk); 1214 else 1215 mptcp_mem_reclaim_partial(sk); 1216 } 1217 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1218 } 1219 1220 /* note: this always recompute the csum on the whole skb, even 1221 * if we just appended a single frag. More status info needed 1222 */ 1223 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1224 { 1225 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1226 __wsum csum = ~csum_unfold(mpext->csum); 1227 int offset = skb->len - added; 1228 1229 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1230 } 1231 1232 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1233 struct sock *ssk, 1234 struct mptcp_ext *mpext) 1235 { 1236 if (!mpext) 1237 return; 1238 1239 mpext->infinite_map = 1; 1240 mpext->data_len = 0; 1241 1242 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1243 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1244 pr_fallback(msk); 1245 __mptcp_do_fallback(msk); 1246 } 1247 1248 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1249 struct mptcp_data_frag *dfrag, 1250 struct mptcp_sendmsg_info *info) 1251 { 1252 u64 data_seq = dfrag->data_seq + info->sent; 1253 int offset = dfrag->offset + info->sent; 1254 struct mptcp_sock *msk = mptcp_sk(sk); 1255 bool zero_window_probe = false; 1256 struct mptcp_ext *mpext = NULL; 1257 bool can_coalesce = false; 1258 bool reuse_skb = true; 1259 struct sk_buff *skb; 1260 size_t copy; 1261 int i; 1262 1263 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1264 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1265 1266 if (WARN_ON_ONCE(info->sent > info->limit || 1267 info->limit > dfrag->data_len)) 1268 return 0; 1269 1270 /* compute send limit */ 1271 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1272 copy = info->size_goal; 1273 1274 skb = tcp_write_queue_tail(ssk); 1275 if (skb && copy > skb->len) { 1276 /* Limit the write to the size available in the 1277 * current skb, if any, so that we create at most a new skb. 1278 * Explicitly tells TCP internals to avoid collapsing on later 1279 * queue management operation, to avoid breaking the ext <-> 1280 * SSN association set here 1281 */ 1282 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1283 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1284 TCP_SKB_CB(skb)->eor = 1; 1285 goto alloc_skb; 1286 } 1287 1288 i = skb_shinfo(skb)->nr_frags; 1289 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1290 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1291 tcp_mark_push(tcp_sk(ssk), skb); 1292 goto alloc_skb; 1293 } 1294 1295 copy -= skb->len; 1296 } else { 1297 alloc_skb: 1298 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1299 if (!skb) 1300 return -ENOMEM; 1301 1302 i = skb_shinfo(skb)->nr_frags; 1303 reuse_skb = false; 1304 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1305 } 1306 1307 /* Zero window and all data acked? Probe. */ 1308 copy = mptcp_check_allowed_size(msk, data_seq, copy); 1309 if (copy == 0) { 1310 u64 snd_una = READ_ONCE(msk->snd_una); 1311 1312 if (snd_una != msk->snd_nxt) { 1313 tcp_remove_empty_skb(ssk); 1314 return 0; 1315 } 1316 1317 zero_window_probe = true; 1318 data_seq = snd_una - 1; 1319 copy = 1; 1320 1321 /* all mptcp-level data is acked, no skbs should be present into the 1322 * ssk write queue 1323 */ 1324 WARN_ON_ONCE(reuse_skb); 1325 } 1326 1327 copy = min_t(size_t, copy, info->limit - info->sent); 1328 if (!sk_wmem_schedule(ssk, copy)) { 1329 tcp_remove_empty_skb(ssk); 1330 return -ENOMEM; 1331 } 1332 1333 if (can_coalesce) { 1334 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1335 } else { 1336 get_page(dfrag->page); 1337 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1338 } 1339 1340 skb->len += copy; 1341 skb->data_len += copy; 1342 skb->truesize += copy; 1343 sk_wmem_queued_add(ssk, copy); 1344 sk_mem_charge(ssk, copy); 1345 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1346 TCP_SKB_CB(skb)->end_seq += copy; 1347 tcp_skb_pcount_set(skb, 0); 1348 1349 /* on skb reuse we just need to update the DSS len */ 1350 if (reuse_skb) { 1351 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1352 mpext->data_len += copy; 1353 WARN_ON_ONCE(zero_window_probe); 1354 goto out; 1355 } 1356 1357 memset(mpext, 0, sizeof(*mpext)); 1358 mpext->data_seq = data_seq; 1359 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1360 mpext->data_len = copy; 1361 mpext->use_map = 1; 1362 mpext->dsn64 = 1; 1363 1364 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1365 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1366 mpext->dsn64); 1367 1368 if (zero_window_probe) { 1369 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1370 mpext->frozen = 1; 1371 if (READ_ONCE(msk->csum_enabled)) 1372 mptcp_update_data_checksum(skb, copy); 1373 tcp_push_pending_frames(ssk); 1374 return 0; 1375 } 1376 out: 1377 if (READ_ONCE(msk->csum_enabled)) 1378 mptcp_update_data_checksum(skb, copy); 1379 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1380 mptcp_update_infinite_map(msk, ssk, mpext); 1381 trace_mptcp_sendmsg_frag(mpext); 1382 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1383 return copy; 1384 } 1385 1386 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1387 sizeof(struct tcphdr) - \ 1388 MAX_TCP_OPTION_SPACE - \ 1389 sizeof(struct ipv6hdr) - \ 1390 sizeof(struct frag_hdr)) 1391 1392 struct subflow_send_info { 1393 struct sock *ssk; 1394 u64 linger_time; 1395 }; 1396 1397 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1398 { 1399 if (!subflow->stale) 1400 return; 1401 1402 subflow->stale = 0; 1403 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1404 } 1405 1406 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1407 { 1408 if (unlikely(subflow->stale)) { 1409 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1410 1411 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1412 return false; 1413 1414 mptcp_subflow_set_active(subflow); 1415 } 1416 return __mptcp_subflow_active(subflow); 1417 } 1418 1419 #define SSK_MODE_ACTIVE 0 1420 #define SSK_MODE_BACKUP 1 1421 #define SSK_MODE_MAX 2 1422 1423 /* implement the mptcp packet scheduler; 1424 * returns the subflow that will transmit the next DSS 1425 * additionally updates the rtx timeout 1426 */ 1427 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1428 { 1429 struct subflow_send_info send_info[SSK_MODE_MAX]; 1430 struct mptcp_subflow_context *subflow; 1431 struct sock *sk = (struct sock *)msk; 1432 u32 pace, burst, wmem; 1433 int i, nr_active = 0; 1434 struct sock *ssk; 1435 u64 linger_time; 1436 long tout = 0; 1437 1438 sock_owned_by_me(sk); 1439 1440 if (__mptcp_check_fallback(msk)) { 1441 if (!msk->first) 1442 return NULL; 1443 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1444 } 1445 1446 /* re-use last subflow, if the burst allow that */ 1447 if (msk->last_snd && msk->snd_burst > 0 && 1448 sk_stream_memory_free(msk->last_snd) && 1449 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1450 mptcp_set_timeout(sk); 1451 return msk->last_snd; 1452 } 1453 1454 /* pick the subflow with the lower wmem/wspace ratio */ 1455 for (i = 0; i < SSK_MODE_MAX; ++i) { 1456 send_info[i].ssk = NULL; 1457 send_info[i].linger_time = -1; 1458 } 1459 1460 mptcp_for_each_subflow(msk, subflow) { 1461 trace_mptcp_subflow_get_send(subflow); 1462 ssk = mptcp_subflow_tcp_sock(subflow); 1463 if (!mptcp_subflow_active(subflow)) 1464 continue; 1465 1466 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1467 nr_active += !subflow->backup; 1468 pace = subflow->avg_pacing_rate; 1469 if (unlikely(!pace)) { 1470 /* init pacing rate from socket */ 1471 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1472 pace = subflow->avg_pacing_rate; 1473 if (!pace) 1474 continue; 1475 } 1476 1477 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1478 if (linger_time < send_info[subflow->backup].linger_time) { 1479 send_info[subflow->backup].ssk = ssk; 1480 send_info[subflow->backup].linger_time = linger_time; 1481 } 1482 } 1483 __mptcp_set_timeout(sk, tout); 1484 1485 /* pick the best backup if no other subflow is active */ 1486 if (!nr_active) 1487 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1488 1489 /* According to the blest algorithm, to avoid HoL blocking for the 1490 * faster flow, we need to: 1491 * - estimate the faster flow linger time 1492 * - use the above to estimate the amount of byte transferred 1493 * by the faster flow 1494 * - check that the amount of queued data is greter than the above, 1495 * otherwise do not use the picked, slower, subflow 1496 * We select the subflow with the shorter estimated time to flush 1497 * the queued mem, which basically ensure the above. We just need 1498 * to check that subflow has a non empty cwin. 1499 */ 1500 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1501 if (!ssk || !sk_stream_memory_free(ssk) || !tcp_sk(ssk)->snd_wnd) 1502 return NULL; 1503 1504 burst = min_t(int, MPTCP_SEND_BURST_SIZE, tcp_sk(ssk)->snd_wnd); 1505 wmem = READ_ONCE(ssk->sk_wmem_queued); 1506 subflow = mptcp_subflow_ctx(ssk); 1507 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1508 READ_ONCE(ssk->sk_pacing_rate) * burst, 1509 burst + wmem); 1510 msk->last_snd = ssk; 1511 msk->snd_burst = burst; 1512 return ssk; 1513 } 1514 1515 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1516 { 1517 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1518 release_sock(ssk); 1519 } 1520 1521 static void mptcp_update_post_push(struct mptcp_sock *msk, 1522 struct mptcp_data_frag *dfrag, 1523 u32 sent) 1524 { 1525 u64 snd_nxt_new = dfrag->data_seq; 1526 1527 dfrag->already_sent += sent; 1528 1529 msk->snd_burst -= sent; 1530 1531 snd_nxt_new += dfrag->already_sent; 1532 1533 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1534 * is recovering after a failover. In that event, this re-sends 1535 * old segments. 1536 * 1537 * Thus compute snd_nxt_new candidate based on 1538 * the dfrag->data_seq that was sent and the data 1539 * that has been handed to the subflow for transmission 1540 * and skip update in case it was old dfrag. 1541 */ 1542 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1543 msk->snd_nxt = snd_nxt_new; 1544 } 1545 1546 void mptcp_check_and_set_pending(struct sock *sk) 1547 { 1548 if (mptcp_send_head(sk)) 1549 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1550 } 1551 1552 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1553 { 1554 struct sock *prev_ssk = NULL, *ssk = NULL; 1555 struct mptcp_sock *msk = mptcp_sk(sk); 1556 struct mptcp_sendmsg_info info = { 1557 .flags = flags, 1558 }; 1559 struct mptcp_data_frag *dfrag; 1560 int len, copied = 0; 1561 1562 while ((dfrag = mptcp_send_head(sk))) { 1563 info.sent = dfrag->already_sent; 1564 info.limit = dfrag->data_len; 1565 len = dfrag->data_len - dfrag->already_sent; 1566 while (len > 0) { 1567 int ret = 0; 1568 1569 prev_ssk = ssk; 1570 ssk = mptcp_subflow_get_send(msk); 1571 1572 /* First check. If the ssk has changed since 1573 * the last round, release prev_ssk 1574 */ 1575 if (ssk != prev_ssk && prev_ssk) 1576 mptcp_push_release(prev_ssk, &info); 1577 if (!ssk) 1578 goto out; 1579 1580 /* Need to lock the new subflow only if different 1581 * from the previous one, otherwise we are still 1582 * helding the relevant lock 1583 */ 1584 if (ssk != prev_ssk) 1585 lock_sock(ssk); 1586 1587 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1588 if (ret <= 0) { 1589 mptcp_push_release(ssk, &info); 1590 goto out; 1591 } 1592 1593 info.sent += ret; 1594 copied += ret; 1595 len -= ret; 1596 1597 mptcp_update_post_push(msk, dfrag, ret); 1598 } 1599 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1600 } 1601 1602 /* at this point we held the socket lock for the last subflow we used */ 1603 if (ssk) 1604 mptcp_push_release(ssk, &info); 1605 1606 out: 1607 /* ensure the rtx timer is running */ 1608 if (!mptcp_timer_pending(sk)) 1609 mptcp_reset_timer(sk); 1610 if (copied) 1611 __mptcp_check_send_data_fin(sk); 1612 } 1613 1614 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1615 { 1616 struct mptcp_sock *msk = mptcp_sk(sk); 1617 struct mptcp_sendmsg_info info = { 1618 .data_lock_held = true, 1619 }; 1620 struct mptcp_data_frag *dfrag; 1621 struct sock *xmit_ssk; 1622 int len, copied = 0; 1623 bool first = true; 1624 1625 info.flags = 0; 1626 while ((dfrag = mptcp_send_head(sk))) { 1627 info.sent = dfrag->already_sent; 1628 info.limit = dfrag->data_len; 1629 len = dfrag->data_len - dfrag->already_sent; 1630 while (len > 0) { 1631 int ret = 0; 1632 1633 /* the caller already invoked the packet scheduler, 1634 * check for a different subflow usage only after 1635 * spooling the first chunk of data 1636 */ 1637 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1638 if (!xmit_ssk) 1639 goto out; 1640 if (xmit_ssk != ssk) { 1641 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1642 MPTCP_DELEGATE_SEND); 1643 goto out; 1644 } 1645 1646 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1647 if (ret <= 0) 1648 goto out; 1649 1650 info.sent += ret; 1651 copied += ret; 1652 len -= ret; 1653 first = false; 1654 1655 mptcp_update_post_push(msk, dfrag, ret); 1656 } 1657 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1658 } 1659 1660 out: 1661 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1662 * not going to flush it via release_sock() 1663 */ 1664 if (copied) { 1665 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1666 info.size_goal); 1667 if (!mptcp_timer_pending(sk)) 1668 mptcp_reset_timer(sk); 1669 1670 if (msk->snd_data_fin_enable && 1671 msk->snd_nxt + 1 == msk->write_seq) 1672 mptcp_schedule_work(sk); 1673 } 1674 } 1675 1676 static void mptcp_set_nospace(struct sock *sk) 1677 { 1678 /* enable autotune */ 1679 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1680 1681 /* will be cleared on avail space */ 1682 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1683 } 1684 1685 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1686 { 1687 struct mptcp_sock *msk = mptcp_sk(sk); 1688 struct page_frag *pfrag; 1689 size_t copied = 0; 1690 int ret = 0; 1691 long timeo; 1692 1693 /* we don't support FASTOPEN yet */ 1694 if (msg->msg_flags & MSG_FASTOPEN) 1695 return -EOPNOTSUPP; 1696 1697 /* silently ignore everything else */ 1698 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1699 1700 lock_sock(sk); 1701 1702 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1703 1704 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1705 ret = sk_stream_wait_connect(sk, &timeo); 1706 if (ret) 1707 goto out; 1708 } 1709 1710 pfrag = sk_page_frag(sk); 1711 1712 while (msg_data_left(msg)) { 1713 int total_ts, frag_truesize = 0; 1714 struct mptcp_data_frag *dfrag; 1715 bool dfrag_collapsed; 1716 size_t psize, offset; 1717 1718 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1719 ret = -EPIPE; 1720 goto out; 1721 } 1722 1723 /* reuse tail pfrag, if possible, or carve a new one from the 1724 * page allocator 1725 */ 1726 dfrag = mptcp_pending_tail(sk); 1727 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1728 if (!dfrag_collapsed) { 1729 if (!sk_stream_memory_free(sk)) 1730 goto wait_for_memory; 1731 1732 if (!mptcp_page_frag_refill(sk, pfrag)) 1733 goto wait_for_memory; 1734 1735 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1736 frag_truesize = dfrag->overhead; 1737 } 1738 1739 /* we do not bound vs wspace, to allow a single packet. 1740 * memory accounting will prevent execessive memory usage 1741 * anyway 1742 */ 1743 offset = dfrag->offset + dfrag->data_len; 1744 psize = pfrag->size - offset; 1745 psize = min_t(size_t, psize, msg_data_left(msg)); 1746 total_ts = psize + frag_truesize; 1747 1748 if (!sk_wmem_schedule(sk, total_ts)) 1749 goto wait_for_memory; 1750 1751 if (copy_page_from_iter(dfrag->page, offset, psize, 1752 &msg->msg_iter) != psize) { 1753 ret = -EFAULT; 1754 goto out; 1755 } 1756 1757 /* data successfully copied into the write queue */ 1758 sk->sk_forward_alloc -= total_ts; 1759 copied += psize; 1760 dfrag->data_len += psize; 1761 frag_truesize += psize; 1762 pfrag->offset += frag_truesize; 1763 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1764 1765 /* charge data on mptcp pending queue to the msk socket 1766 * Note: we charge such data both to sk and ssk 1767 */ 1768 sk_wmem_queued_add(sk, frag_truesize); 1769 if (!dfrag_collapsed) { 1770 get_page(dfrag->page); 1771 list_add_tail(&dfrag->list, &msk->rtx_queue); 1772 if (!msk->first_pending) 1773 WRITE_ONCE(msk->first_pending, dfrag); 1774 } 1775 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1776 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1777 !dfrag_collapsed); 1778 1779 continue; 1780 1781 wait_for_memory: 1782 mptcp_set_nospace(sk); 1783 __mptcp_push_pending(sk, msg->msg_flags); 1784 ret = sk_stream_wait_memory(sk, &timeo); 1785 if (ret) 1786 goto out; 1787 } 1788 1789 if (copied) 1790 __mptcp_push_pending(sk, msg->msg_flags); 1791 1792 out: 1793 release_sock(sk); 1794 return copied ? : ret; 1795 } 1796 1797 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1798 struct msghdr *msg, 1799 size_t len, int flags, 1800 struct scm_timestamping_internal *tss, 1801 int *cmsg_flags) 1802 { 1803 struct sk_buff *skb, *tmp; 1804 int copied = 0; 1805 1806 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1807 u32 offset = MPTCP_SKB_CB(skb)->offset; 1808 u32 data_len = skb->len - offset; 1809 u32 count = min_t(size_t, len - copied, data_len); 1810 int err; 1811 1812 if (!(flags & MSG_TRUNC)) { 1813 err = skb_copy_datagram_msg(skb, offset, msg, count); 1814 if (unlikely(err < 0)) { 1815 if (!copied) 1816 return err; 1817 break; 1818 } 1819 } 1820 1821 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1822 tcp_update_recv_tstamps(skb, tss); 1823 *cmsg_flags |= MPTCP_CMSG_TS; 1824 } 1825 1826 copied += count; 1827 1828 if (count < data_len) { 1829 if (!(flags & MSG_PEEK)) { 1830 MPTCP_SKB_CB(skb)->offset += count; 1831 MPTCP_SKB_CB(skb)->map_seq += count; 1832 } 1833 break; 1834 } 1835 1836 if (!(flags & MSG_PEEK)) { 1837 /* we will bulk release the skb memory later */ 1838 skb->destructor = NULL; 1839 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1840 __skb_unlink(skb, &msk->receive_queue); 1841 __kfree_skb(skb); 1842 } 1843 1844 if (copied >= len) 1845 break; 1846 } 1847 1848 return copied; 1849 } 1850 1851 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1852 * 1853 * Only difference: Use highest rtt estimate of the subflows in use. 1854 */ 1855 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1856 { 1857 struct mptcp_subflow_context *subflow; 1858 struct sock *sk = (struct sock *)msk; 1859 u32 time, advmss = 1; 1860 u64 rtt_us, mstamp; 1861 1862 sock_owned_by_me(sk); 1863 1864 if (copied <= 0) 1865 return; 1866 1867 msk->rcvq_space.copied += copied; 1868 1869 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1870 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1871 1872 rtt_us = msk->rcvq_space.rtt_us; 1873 if (rtt_us && time < (rtt_us >> 3)) 1874 return; 1875 1876 rtt_us = 0; 1877 mptcp_for_each_subflow(msk, subflow) { 1878 const struct tcp_sock *tp; 1879 u64 sf_rtt_us; 1880 u32 sf_advmss; 1881 1882 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1883 1884 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1885 sf_advmss = READ_ONCE(tp->advmss); 1886 1887 rtt_us = max(sf_rtt_us, rtt_us); 1888 advmss = max(sf_advmss, advmss); 1889 } 1890 1891 msk->rcvq_space.rtt_us = rtt_us; 1892 if (time < (rtt_us >> 3) || rtt_us == 0) 1893 return; 1894 1895 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1896 goto new_measure; 1897 1898 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1899 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1900 int rcvmem, rcvbuf; 1901 u64 rcvwin, grow; 1902 1903 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1904 1905 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1906 1907 do_div(grow, msk->rcvq_space.space); 1908 rcvwin += (grow << 1); 1909 1910 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1911 while (tcp_win_from_space(sk, rcvmem) < advmss) 1912 rcvmem += 128; 1913 1914 do_div(rcvwin, advmss); 1915 rcvbuf = min_t(u64, rcvwin * rcvmem, 1916 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1917 1918 if (rcvbuf > sk->sk_rcvbuf) { 1919 u32 window_clamp; 1920 1921 window_clamp = tcp_win_from_space(sk, rcvbuf); 1922 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1923 1924 /* Make subflows follow along. If we do not do this, we 1925 * get drops at subflow level if skbs can't be moved to 1926 * the mptcp rx queue fast enough (announced rcv_win can 1927 * exceed ssk->sk_rcvbuf). 1928 */ 1929 mptcp_for_each_subflow(msk, subflow) { 1930 struct sock *ssk; 1931 bool slow; 1932 1933 ssk = mptcp_subflow_tcp_sock(subflow); 1934 slow = lock_sock_fast(ssk); 1935 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1936 tcp_sk(ssk)->window_clamp = window_clamp; 1937 tcp_cleanup_rbuf(ssk, 1); 1938 unlock_sock_fast(ssk, slow); 1939 } 1940 } 1941 } 1942 1943 msk->rcvq_space.space = msk->rcvq_space.copied; 1944 new_measure: 1945 msk->rcvq_space.copied = 0; 1946 msk->rcvq_space.time = mstamp; 1947 } 1948 1949 static void __mptcp_update_rmem(struct sock *sk) 1950 { 1951 struct mptcp_sock *msk = mptcp_sk(sk); 1952 1953 if (!msk->rmem_released) 1954 return; 1955 1956 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1957 mptcp_rmem_uncharge(sk, msk->rmem_released); 1958 WRITE_ONCE(msk->rmem_released, 0); 1959 } 1960 1961 static void __mptcp_splice_receive_queue(struct sock *sk) 1962 { 1963 struct mptcp_sock *msk = mptcp_sk(sk); 1964 1965 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1966 } 1967 1968 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1969 { 1970 struct sock *sk = (struct sock *)msk; 1971 unsigned int moved = 0; 1972 bool ret, done; 1973 1974 do { 1975 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1976 bool slowpath; 1977 1978 /* we can have data pending in the subflows only if the msk 1979 * receive buffer was full at subflow_data_ready() time, 1980 * that is an unlikely slow path. 1981 */ 1982 if (likely(!ssk)) 1983 break; 1984 1985 slowpath = lock_sock_fast(ssk); 1986 mptcp_data_lock(sk); 1987 __mptcp_update_rmem(sk); 1988 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1989 mptcp_data_unlock(sk); 1990 1991 if (unlikely(ssk->sk_err)) 1992 __mptcp_error_report(sk); 1993 unlock_sock_fast(ssk, slowpath); 1994 } while (!done); 1995 1996 /* acquire the data lock only if some input data is pending */ 1997 ret = moved > 0; 1998 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1999 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2000 mptcp_data_lock(sk); 2001 __mptcp_update_rmem(sk); 2002 ret |= __mptcp_ofo_queue(msk); 2003 __mptcp_splice_receive_queue(sk); 2004 mptcp_data_unlock(sk); 2005 } 2006 if (ret) 2007 mptcp_check_data_fin((struct sock *)msk); 2008 return !skb_queue_empty(&msk->receive_queue); 2009 } 2010 2011 static unsigned int mptcp_inq_hint(const struct sock *sk) 2012 { 2013 const struct mptcp_sock *msk = mptcp_sk(sk); 2014 const struct sk_buff *skb; 2015 2016 skb = skb_peek(&msk->receive_queue); 2017 if (skb) { 2018 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2019 2020 if (hint_val >= INT_MAX) 2021 return INT_MAX; 2022 2023 return (unsigned int)hint_val; 2024 } 2025 2026 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2027 return 1; 2028 2029 return 0; 2030 } 2031 2032 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2033 int flags, int *addr_len) 2034 { 2035 struct mptcp_sock *msk = mptcp_sk(sk); 2036 struct scm_timestamping_internal tss; 2037 int copied = 0, cmsg_flags = 0; 2038 int target; 2039 long timeo; 2040 2041 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2042 if (unlikely(flags & MSG_ERRQUEUE)) 2043 return inet_recv_error(sk, msg, len, addr_len); 2044 2045 lock_sock(sk); 2046 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2047 copied = -ENOTCONN; 2048 goto out_err; 2049 } 2050 2051 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2052 2053 len = min_t(size_t, len, INT_MAX); 2054 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2055 2056 if (unlikely(msk->recvmsg_inq)) 2057 cmsg_flags = MPTCP_CMSG_INQ; 2058 2059 while (copied < len) { 2060 int bytes_read; 2061 2062 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2063 if (unlikely(bytes_read < 0)) { 2064 if (!copied) 2065 copied = bytes_read; 2066 goto out_err; 2067 } 2068 2069 copied += bytes_read; 2070 2071 /* be sure to advertise window change */ 2072 mptcp_cleanup_rbuf(msk); 2073 2074 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2075 continue; 2076 2077 /* only the master socket status is relevant here. The exit 2078 * conditions mirror closely tcp_recvmsg() 2079 */ 2080 if (copied >= target) 2081 break; 2082 2083 if (copied) { 2084 if (sk->sk_err || 2085 sk->sk_state == TCP_CLOSE || 2086 (sk->sk_shutdown & RCV_SHUTDOWN) || 2087 !timeo || 2088 signal_pending(current)) 2089 break; 2090 } else { 2091 if (sk->sk_err) { 2092 copied = sock_error(sk); 2093 break; 2094 } 2095 2096 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2097 mptcp_check_for_eof(msk); 2098 2099 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2100 /* race breaker: the shutdown could be after the 2101 * previous receive queue check 2102 */ 2103 if (__mptcp_move_skbs(msk)) 2104 continue; 2105 break; 2106 } 2107 2108 if (sk->sk_state == TCP_CLOSE) { 2109 copied = -ENOTCONN; 2110 break; 2111 } 2112 2113 if (!timeo) { 2114 copied = -EAGAIN; 2115 break; 2116 } 2117 2118 if (signal_pending(current)) { 2119 copied = sock_intr_errno(timeo); 2120 break; 2121 } 2122 } 2123 2124 pr_debug("block timeout %ld", timeo); 2125 sk_wait_data(sk, &timeo, NULL); 2126 } 2127 2128 out_err: 2129 if (cmsg_flags && copied >= 0) { 2130 if (cmsg_flags & MPTCP_CMSG_TS) 2131 tcp_recv_timestamp(msg, sk, &tss); 2132 2133 if (cmsg_flags & MPTCP_CMSG_INQ) { 2134 unsigned int inq = mptcp_inq_hint(sk); 2135 2136 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2137 } 2138 } 2139 2140 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2141 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2142 skb_queue_empty(&msk->receive_queue), copied); 2143 if (!(flags & MSG_PEEK)) 2144 mptcp_rcv_space_adjust(msk, copied); 2145 2146 release_sock(sk); 2147 return copied; 2148 } 2149 2150 static void mptcp_retransmit_timer(struct timer_list *t) 2151 { 2152 struct inet_connection_sock *icsk = from_timer(icsk, t, 2153 icsk_retransmit_timer); 2154 struct sock *sk = &icsk->icsk_inet.sk; 2155 struct mptcp_sock *msk = mptcp_sk(sk); 2156 2157 bh_lock_sock(sk); 2158 if (!sock_owned_by_user(sk)) { 2159 /* we need a process context to retransmit */ 2160 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2161 mptcp_schedule_work(sk); 2162 } else { 2163 /* delegate our work to tcp_release_cb() */ 2164 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2165 } 2166 bh_unlock_sock(sk); 2167 sock_put(sk); 2168 } 2169 2170 static void mptcp_timeout_timer(struct timer_list *t) 2171 { 2172 struct sock *sk = from_timer(sk, t, sk_timer); 2173 2174 mptcp_schedule_work(sk); 2175 sock_put(sk); 2176 } 2177 2178 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2179 * level. 2180 * 2181 * A backup subflow is returned only if that is the only kind available. 2182 */ 2183 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2184 { 2185 struct sock *backup = NULL, *pick = NULL; 2186 struct mptcp_subflow_context *subflow; 2187 int min_stale_count = INT_MAX; 2188 2189 sock_owned_by_me((const struct sock *)msk); 2190 2191 if (__mptcp_check_fallback(msk)) 2192 return NULL; 2193 2194 mptcp_for_each_subflow(msk, subflow) { 2195 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2196 2197 if (!__mptcp_subflow_active(subflow)) 2198 continue; 2199 2200 /* still data outstanding at TCP level? skip this */ 2201 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2202 mptcp_pm_subflow_chk_stale(msk, ssk); 2203 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2204 continue; 2205 } 2206 2207 if (subflow->backup) { 2208 if (!backup) 2209 backup = ssk; 2210 continue; 2211 } 2212 2213 if (!pick) 2214 pick = ssk; 2215 } 2216 2217 if (pick) 2218 return pick; 2219 2220 /* use backup only if there are no progresses anywhere */ 2221 return min_stale_count > 1 ? backup : NULL; 2222 } 2223 2224 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2225 { 2226 if (msk->subflow) { 2227 iput(SOCK_INODE(msk->subflow)); 2228 msk->subflow = NULL; 2229 } 2230 } 2231 2232 bool __mptcp_retransmit_pending_data(struct sock *sk) 2233 { 2234 struct mptcp_data_frag *cur, *rtx_head; 2235 struct mptcp_sock *msk = mptcp_sk(sk); 2236 2237 if (__mptcp_check_fallback(mptcp_sk(sk))) 2238 return false; 2239 2240 if (tcp_rtx_and_write_queues_empty(sk)) 2241 return false; 2242 2243 /* the closing socket has some data untransmitted and/or unacked: 2244 * some data in the mptcp rtx queue has not really xmitted yet. 2245 * keep it simple and re-inject the whole mptcp level rtx queue 2246 */ 2247 mptcp_data_lock(sk); 2248 __mptcp_clean_una_wakeup(sk); 2249 rtx_head = mptcp_rtx_head(sk); 2250 if (!rtx_head) { 2251 mptcp_data_unlock(sk); 2252 return false; 2253 } 2254 2255 msk->recovery_snd_nxt = msk->snd_nxt; 2256 msk->recovery = true; 2257 mptcp_data_unlock(sk); 2258 2259 msk->first_pending = rtx_head; 2260 msk->snd_burst = 0; 2261 2262 /* be sure to clear the "sent status" on all re-injected fragments */ 2263 list_for_each_entry(cur, &msk->rtx_queue, list) { 2264 if (!cur->already_sent) 2265 break; 2266 cur->already_sent = 0; 2267 } 2268 2269 return true; 2270 } 2271 2272 /* flags for __mptcp_close_ssk() */ 2273 #define MPTCP_CF_PUSH BIT(1) 2274 #define MPTCP_CF_FASTCLOSE BIT(2) 2275 2276 /* subflow sockets can be either outgoing (connect) or incoming 2277 * (accept). 2278 * 2279 * Outgoing subflows use in-kernel sockets. 2280 * Incoming subflows do not have their own 'struct socket' allocated, 2281 * so we need to use tcp_close() after detaching them from the mptcp 2282 * parent socket. 2283 */ 2284 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2285 struct mptcp_subflow_context *subflow, 2286 unsigned int flags) 2287 { 2288 struct mptcp_sock *msk = mptcp_sk(sk); 2289 bool need_push, dispose_it; 2290 2291 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2292 if (dispose_it) 2293 list_del(&subflow->node); 2294 2295 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2296 2297 if (flags & MPTCP_CF_FASTCLOSE) 2298 subflow->send_fastclose = 1; 2299 2300 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2301 if (!dispose_it) { 2302 tcp_disconnect(ssk, 0); 2303 msk->subflow->state = SS_UNCONNECTED; 2304 mptcp_subflow_ctx_reset(subflow); 2305 release_sock(ssk); 2306 2307 goto out; 2308 } 2309 2310 /* if we are invoked by the msk cleanup code, the subflow is 2311 * already orphaned 2312 */ 2313 if (ssk->sk_socket) 2314 sock_orphan(ssk); 2315 2316 subflow->disposable = 1; 2317 2318 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2319 * the ssk has been already destroyed, we just need to release the 2320 * reference owned by msk; 2321 */ 2322 if (!inet_csk(ssk)->icsk_ulp_ops) { 2323 kfree_rcu(subflow, rcu); 2324 } else { 2325 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2326 __tcp_close(ssk, 0); 2327 2328 /* close acquired an extra ref */ 2329 __sock_put(ssk); 2330 } 2331 release_sock(ssk); 2332 2333 sock_put(ssk); 2334 2335 if (ssk == msk->first) 2336 msk->first = NULL; 2337 2338 out: 2339 if (ssk == msk->last_snd) 2340 msk->last_snd = NULL; 2341 2342 if (need_push) 2343 __mptcp_push_pending(sk, 0); 2344 } 2345 2346 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2347 struct mptcp_subflow_context *subflow) 2348 { 2349 if (sk->sk_state == TCP_ESTABLISHED) 2350 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2351 2352 /* subflow aborted before reaching the fully_established status 2353 * attempt the creation of the next subflow 2354 */ 2355 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2356 2357 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2358 } 2359 2360 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2361 { 2362 return 0; 2363 } 2364 2365 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2366 { 2367 struct mptcp_subflow_context *subflow, *tmp; 2368 2369 might_sleep(); 2370 2371 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2372 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2373 2374 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2375 continue; 2376 2377 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2378 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2379 continue; 2380 2381 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2382 } 2383 } 2384 2385 static bool mptcp_check_close_timeout(const struct sock *sk) 2386 { 2387 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2388 struct mptcp_subflow_context *subflow; 2389 2390 if (delta >= TCP_TIMEWAIT_LEN) 2391 return true; 2392 2393 /* if all subflows are in closed status don't bother with additional 2394 * timeout 2395 */ 2396 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2397 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2398 TCP_CLOSE) 2399 return false; 2400 } 2401 return true; 2402 } 2403 2404 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2405 { 2406 struct mptcp_subflow_context *subflow, *tmp; 2407 struct sock *sk = &msk->sk.icsk_inet.sk; 2408 2409 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2410 return; 2411 2412 mptcp_token_destroy(msk); 2413 2414 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2415 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2416 bool slow; 2417 2418 slow = lock_sock_fast(tcp_sk); 2419 if (tcp_sk->sk_state != TCP_CLOSE) { 2420 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2421 tcp_set_state(tcp_sk, TCP_CLOSE); 2422 } 2423 unlock_sock_fast(tcp_sk, slow); 2424 } 2425 2426 inet_sk_state_store(sk, TCP_CLOSE); 2427 sk->sk_shutdown = SHUTDOWN_MASK; 2428 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2429 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2430 2431 mptcp_close_wake_up(sk); 2432 } 2433 2434 static void __mptcp_retrans(struct sock *sk) 2435 { 2436 struct mptcp_sock *msk = mptcp_sk(sk); 2437 struct mptcp_sendmsg_info info = {}; 2438 struct mptcp_data_frag *dfrag; 2439 size_t copied = 0; 2440 struct sock *ssk; 2441 int ret; 2442 2443 mptcp_clean_una_wakeup(sk); 2444 2445 /* first check ssk: need to kick "stale" logic */ 2446 ssk = mptcp_subflow_get_retrans(msk); 2447 dfrag = mptcp_rtx_head(sk); 2448 if (!dfrag) { 2449 if (mptcp_data_fin_enabled(msk)) { 2450 struct inet_connection_sock *icsk = inet_csk(sk); 2451 2452 icsk->icsk_retransmits++; 2453 mptcp_set_datafin_timeout(sk); 2454 mptcp_send_ack(msk); 2455 2456 goto reset_timer; 2457 } 2458 2459 if (!mptcp_send_head(sk)) 2460 return; 2461 2462 goto reset_timer; 2463 } 2464 2465 if (!ssk) 2466 goto reset_timer; 2467 2468 lock_sock(ssk); 2469 2470 /* limit retransmission to the bytes already sent on some subflows */ 2471 info.sent = 0; 2472 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2473 while (info.sent < info.limit) { 2474 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2475 if (ret <= 0) 2476 break; 2477 2478 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2479 copied += ret; 2480 info.sent += ret; 2481 } 2482 if (copied) { 2483 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2484 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2485 info.size_goal); 2486 WRITE_ONCE(msk->allow_infinite_fallback, false); 2487 } 2488 2489 release_sock(ssk); 2490 2491 reset_timer: 2492 mptcp_check_and_set_pending(sk); 2493 2494 if (!mptcp_timer_pending(sk)) 2495 mptcp_reset_timer(sk); 2496 } 2497 2498 static void mptcp_worker(struct work_struct *work) 2499 { 2500 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2501 struct sock *sk = &msk->sk.icsk_inet.sk; 2502 int state; 2503 2504 lock_sock(sk); 2505 state = sk->sk_state; 2506 if (unlikely(state == TCP_CLOSE)) 2507 goto unlock; 2508 2509 mptcp_check_data_fin_ack(sk); 2510 2511 mptcp_check_fastclose(msk); 2512 2513 mptcp_pm_nl_work(msk); 2514 2515 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2516 mptcp_check_for_eof(msk); 2517 2518 __mptcp_check_send_data_fin(sk); 2519 mptcp_check_data_fin(sk); 2520 2521 /* There is no point in keeping around an orphaned sk timedout or 2522 * closed, but we need the msk around to reply to incoming DATA_FIN, 2523 * even if it is orphaned and in FIN_WAIT2 state 2524 */ 2525 if (sock_flag(sk, SOCK_DEAD) && 2526 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2527 inet_sk_state_store(sk, TCP_CLOSE); 2528 __mptcp_destroy_sock(sk); 2529 goto unlock; 2530 } 2531 2532 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2533 __mptcp_close_subflow(msk); 2534 2535 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2536 __mptcp_retrans(sk); 2537 2538 unlock: 2539 release_sock(sk); 2540 sock_put(sk); 2541 } 2542 2543 static int __mptcp_init_sock(struct sock *sk) 2544 { 2545 struct mptcp_sock *msk = mptcp_sk(sk); 2546 2547 INIT_LIST_HEAD(&msk->conn_list); 2548 INIT_LIST_HEAD(&msk->join_list); 2549 INIT_LIST_HEAD(&msk->rtx_queue); 2550 INIT_WORK(&msk->work, mptcp_worker); 2551 __skb_queue_head_init(&msk->receive_queue); 2552 msk->out_of_order_queue = RB_ROOT; 2553 msk->first_pending = NULL; 2554 msk->rmem_fwd_alloc = 0; 2555 WRITE_ONCE(msk->rmem_released, 0); 2556 msk->timer_ival = TCP_RTO_MIN; 2557 2558 msk->first = NULL; 2559 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2560 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2561 WRITE_ONCE(msk->allow_infinite_fallback, true); 2562 msk->recovery = false; 2563 2564 mptcp_pm_data_init(msk); 2565 2566 /* re-use the csk retrans timer for MPTCP-level retrans */ 2567 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2568 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2569 2570 return 0; 2571 } 2572 2573 static void mptcp_ca_reset(struct sock *sk) 2574 { 2575 struct inet_connection_sock *icsk = inet_csk(sk); 2576 2577 tcp_assign_congestion_control(sk); 2578 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2579 2580 /* no need to keep a reference to the ops, the name will suffice */ 2581 tcp_cleanup_congestion_control(sk); 2582 icsk->icsk_ca_ops = NULL; 2583 } 2584 2585 static int mptcp_init_sock(struct sock *sk) 2586 { 2587 struct net *net = sock_net(sk); 2588 int ret; 2589 2590 ret = __mptcp_init_sock(sk); 2591 if (ret) 2592 return ret; 2593 2594 if (!mptcp_is_enabled(net)) 2595 return -ENOPROTOOPT; 2596 2597 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2598 return -ENOMEM; 2599 2600 ret = __mptcp_socket_create(mptcp_sk(sk)); 2601 if (ret) 2602 return ret; 2603 2604 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2605 * propagate the correct value 2606 */ 2607 mptcp_ca_reset(sk); 2608 2609 sk_sockets_allocated_inc(sk); 2610 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 2611 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 2612 2613 return 0; 2614 } 2615 2616 static void __mptcp_clear_xmit(struct sock *sk) 2617 { 2618 struct mptcp_sock *msk = mptcp_sk(sk); 2619 struct mptcp_data_frag *dtmp, *dfrag; 2620 2621 WRITE_ONCE(msk->first_pending, NULL); 2622 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2623 dfrag_clear(sk, dfrag); 2624 } 2625 2626 static void mptcp_cancel_work(struct sock *sk) 2627 { 2628 struct mptcp_sock *msk = mptcp_sk(sk); 2629 2630 if (cancel_work_sync(&msk->work)) 2631 __sock_put(sk); 2632 } 2633 2634 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2635 { 2636 lock_sock(ssk); 2637 2638 switch (ssk->sk_state) { 2639 case TCP_LISTEN: 2640 if (!(how & RCV_SHUTDOWN)) 2641 break; 2642 fallthrough; 2643 case TCP_SYN_SENT: 2644 tcp_disconnect(ssk, O_NONBLOCK); 2645 break; 2646 default: 2647 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2648 pr_debug("Fallback"); 2649 ssk->sk_shutdown |= how; 2650 tcp_shutdown(ssk, how); 2651 } else { 2652 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2653 tcp_send_ack(ssk); 2654 if (!mptcp_timer_pending(sk)) 2655 mptcp_reset_timer(sk); 2656 } 2657 break; 2658 } 2659 2660 release_sock(ssk); 2661 } 2662 2663 static const unsigned char new_state[16] = { 2664 /* current state: new state: action: */ 2665 [0 /* (Invalid) */] = TCP_CLOSE, 2666 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2667 [TCP_SYN_SENT] = TCP_CLOSE, 2668 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2669 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2670 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2671 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2672 [TCP_CLOSE] = TCP_CLOSE, 2673 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2674 [TCP_LAST_ACK] = TCP_LAST_ACK, 2675 [TCP_LISTEN] = TCP_CLOSE, 2676 [TCP_CLOSING] = TCP_CLOSING, 2677 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2678 }; 2679 2680 static int mptcp_close_state(struct sock *sk) 2681 { 2682 int next = (int)new_state[sk->sk_state]; 2683 int ns = next & TCP_STATE_MASK; 2684 2685 inet_sk_state_store(sk, ns); 2686 2687 return next & TCP_ACTION_FIN; 2688 } 2689 2690 static void __mptcp_check_send_data_fin(struct sock *sk) 2691 { 2692 struct mptcp_subflow_context *subflow; 2693 struct mptcp_sock *msk = mptcp_sk(sk); 2694 2695 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2696 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2697 msk->snd_nxt, msk->write_seq); 2698 2699 /* we still need to enqueue subflows or not really shutting down, 2700 * skip this 2701 */ 2702 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2703 mptcp_send_head(sk)) 2704 return; 2705 2706 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2707 2708 /* fallback socket will not get data_fin/ack, can move to the next 2709 * state now 2710 */ 2711 if (__mptcp_check_fallback(msk)) { 2712 WRITE_ONCE(msk->snd_una, msk->write_seq); 2713 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2714 inet_sk_state_store(sk, TCP_CLOSE); 2715 mptcp_close_wake_up(sk); 2716 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2717 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2718 } 2719 } 2720 2721 mptcp_for_each_subflow(msk, subflow) { 2722 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2723 2724 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2725 } 2726 } 2727 2728 static void __mptcp_wr_shutdown(struct sock *sk) 2729 { 2730 struct mptcp_sock *msk = mptcp_sk(sk); 2731 2732 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2733 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2734 !!mptcp_send_head(sk)); 2735 2736 /* will be ignored by fallback sockets */ 2737 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2738 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2739 2740 __mptcp_check_send_data_fin(sk); 2741 } 2742 2743 static void __mptcp_destroy_sock(struct sock *sk) 2744 { 2745 struct mptcp_subflow_context *subflow, *tmp; 2746 struct mptcp_sock *msk = mptcp_sk(sk); 2747 LIST_HEAD(conn_list); 2748 2749 pr_debug("msk=%p", msk); 2750 2751 might_sleep(); 2752 2753 /* join list will be eventually flushed (with rst) at sock lock release time*/ 2754 list_splice_init(&msk->conn_list, &conn_list); 2755 2756 mptcp_stop_timer(sk); 2757 sk_stop_timer(sk, &sk->sk_timer); 2758 msk->pm.status = 0; 2759 2760 /* clears msk->subflow, allowing the following loop to close 2761 * even the initial subflow 2762 */ 2763 mptcp_dispose_initial_subflow(msk); 2764 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2765 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2766 __mptcp_close_ssk(sk, ssk, subflow, 0); 2767 } 2768 2769 sk->sk_prot->destroy(sk); 2770 2771 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2772 WARN_ON_ONCE(msk->rmem_released); 2773 sk_stream_kill_queues(sk); 2774 xfrm_sk_free_policy(sk); 2775 2776 sk_refcnt_debug_release(sk); 2777 sock_put(sk); 2778 } 2779 2780 static void mptcp_close(struct sock *sk, long timeout) 2781 { 2782 struct mptcp_subflow_context *subflow; 2783 bool do_cancel_work = false; 2784 2785 lock_sock(sk); 2786 sk->sk_shutdown = SHUTDOWN_MASK; 2787 2788 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2789 inet_sk_state_store(sk, TCP_CLOSE); 2790 goto cleanup; 2791 } 2792 2793 if (mptcp_close_state(sk)) 2794 __mptcp_wr_shutdown(sk); 2795 2796 sk_stream_wait_close(sk, timeout); 2797 2798 cleanup: 2799 /* orphan all the subflows */ 2800 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2801 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2802 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2803 bool slow = lock_sock_fast_nested(ssk); 2804 2805 sock_orphan(ssk); 2806 unlock_sock_fast(ssk, slow); 2807 } 2808 sock_orphan(sk); 2809 2810 sock_hold(sk); 2811 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2812 if (mptcp_sk(sk)->token) 2813 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2814 2815 if (sk->sk_state == TCP_CLOSE) { 2816 __mptcp_destroy_sock(sk); 2817 do_cancel_work = true; 2818 } else { 2819 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN); 2820 } 2821 release_sock(sk); 2822 if (do_cancel_work) 2823 mptcp_cancel_work(sk); 2824 2825 sock_put(sk); 2826 } 2827 2828 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2829 { 2830 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2831 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2832 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2833 2834 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2835 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2836 2837 if (msk6 && ssk6) { 2838 msk6->saddr = ssk6->saddr; 2839 msk6->flow_label = ssk6->flow_label; 2840 } 2841 #endif 2842 2843 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2844 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2845 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2846 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2847 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2848 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2849 } 2850 2851 static int mptcp_disconnect(struct sock *sk, int flags) 2852 { 2853 struct mptcp_subflow_context *subflow; 2854 struct mptcp_sock *msk = mptcp_sk(sk); 2855 2856 inet_sk_state_store(sk, TCP_CLOSE); 2857 2858 mptcp_for_each_subflow(msk, subflow) { 2859 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2860 2861 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE); 2862 } 2863 2864 mptcp_stop_timer(sk); 2865 sk_stop_timer(sk, &sk->sk_timer); 2866 2867 if (mptcp_sk(sk)->token) 2868 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2869 2870 mptcp_destroy_common(msk); 2871 msk->last_snd = NULL; 2872 WRITE_ONCE(msk->flags, 0); 2873 msk->cb_flags = 0; 2874 msk->push_pending = 0; 2875 msk->recovery = false; 2876 msk->can_ack = false; 2877 msk->fully_established = false; 2878 msk->rcv_data_fin = false; 2879 msk->snd_data_fin_enable = false; 2880 msk->rcv_fastclose = false; 2881 msk->use_64bit_ack = false; 2882 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2883 mptcp_pm_data_reset(msk); 2884 mptcp_ca_reset(sk); 2885 2886 sk->sk_shutdown = 0; 2887 sk_error_report(sk); 2888 return 0; 2889 } 2890 2891 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2892 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2893 { 2894 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2895 2896 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2897 } 2898 #endif 2899 2900 struct sock *mptcp_sk_clone(const struct sock *sk, 2901 const struct mptcp_options_received *mp_opt, 2902 struct request_sock *req) 2903 { 2904 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2905 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2906 struct mptcp_sock *msk; 2907 u64 ack_seq; 2908 2909 if (!nsk) 2910 return NULL; 2911 2912 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2913 if (nsk->sk_family == AF_INET6) 2914 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2915 #endif 2916 2917 __mptcp_init_sock(nsk); 2918 2919 msk = mptcp_sk(nsk); 2920 msk->local_key = subflow_req->local_key; 2921 msk->token = subflow_req->token; 2922 msk->subflow = NULL; 2923 WRITE_ONCE(msk->fully_established, false); 2924 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2925 WRITE_ONCE(msk->csum_enabled, true); 2926 2927 msk->write_seq = subflow_req->idsn + 1; 2928 msk->snd_nxt = msk->write_seq; 2929 msk->snd_una = msk->write_seq; 2930 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2931 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2932 2933 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2934 msk->can_ack = true; 2935 msk->remote_key = mp_opt->sndr_key; 2936 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2937 ack_seq++; 2938 WRITE_ONCE(msk->ack_seq, ack_seq); 2939 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 2940 } 2941 2942 sock_reset_flag(nsk, SOCK_RCU_FREE); 2943 /* will be fully established after successful MPC subflow creation */ 2944 inet_sk_state_store(nsk, TCP_SYN_RECV); 2945 2946 security_inet_csk_clone(nsk, req); 2947 bh_unlock_sock(nsk); 2948 2949 /* keep a single reference */ 2950 __sock_put(nsk); 2951 return nsk; 2952 } 2953 2954 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2955 { 2956 const struct tcp_sock *tp = tcp_sk(ssk); 2957 2958 msk->rcvq_space.copied = 0; 2959 msk->rcvq_space.rtt_us = 0; 2960 2961 msk->rcvq_space.time = tp->tcp_mstamp; 2962 2963 /* initial rcv_space offering made to peer */ 2964 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2965 TCP_INIT_CWND * tp->advmss); 2966 if (msk->rcvq_space.space == 0) 2967 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2968 2969 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 2970 } 2971 2972 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2973 bool kern) 2974 { 2975 struct mptcp_sock *msk = mptcp_sk(sk); 2976 struct socket *listener; 2977 struct sock *newsk; 2978 2979 listener = __mptcp_nmpc_socket(msk); 2980 if (WARN_ON_ONCE(!listener)) { 2981 *err = -EINVAL; 2982 return NULL; 2983 } 2984 2985 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2986 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2987 if (!newsk) 2988 return NULL; 2989 2990 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2991 if (sk_is_mptcp(newsk)) { 2992 struct mptcp_subflow_context *subflow; 2993 struct sock *new_mptcp_sock; 2994 2995 subflow = mptcp_subflow_ctx(newsk); 2996 new_mptcp_sock = subflow->conn; 2997 2998 /* is_mptcp should be false if subflow->conn is missing, see 2999 * subflow_syn_recv_sock() 3000 */ 3001 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3002 tcp_sk(newsk)->is_mptcp = 0; 3003 goto out; 3004 } 3005 3006 /* acquire the 2nd reference for the owning socket */ 3007 sock_hold(new_mptcp_sock); 3008 newsk = new_mptcp_sock; 3009 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3010 } else { 3011 MPTCP_INC_STATS(sock_net(sk), 3012 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3013 } 3014 3015 out: 3016 newsk->sk_kern_sock = kern; 3017 return newsk; 3018 } 3019 3020 void mptcp_destroy_common(struct mptcp_sock *msk) 3021 { 3022 struct sock *sk = (struct sock *)msk; 3023 3024 __mptcp_clear_xmit(sk); 3025 3026 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3027 mptcp_data_lock(sk); 3028 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3029 __skb_queue_purge(&sk->sk_receive_queue); 3030 skb_rbtree_purge(&msk->out_of_order_queue); 3031 mptcp_data_unlock(sk); 3032 3033 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3034 * inet_sock_destruct() will dispose it 3035 */ 3036 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3037 msk->rmem_fwd_alloc = 0; 3038 mptcp_token_destroy(msk); 3039 mptcp_pm_free_anno_list(msk); 3040 } 3041 3042 static void mptcp_destroy(struct sock *sk) 3043 { 3044 struct mptcp_sock *msk = mptcp_sk(sk); 3045 3046 mptcp_destroy_common(msk); 3047 sk_sockets_allocated_dec(sk); 3048 } 3049 3050 void __mptcp_data_acked(struct sock *sk) 3051 { 3052 if (!sock_owned_by_user(sk)) 3053 __mptcp_clean_una(sk); 3054 else 3055 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3056 3057 if (mptcp_pending_data_fin_ack(sk)) 3058 mptcp_schedule_work(sk); 3059 } 3060 3061 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3062 { 3063 if (!mptcp_send_head(sk)) 3064 return; 3065 3066 if (!sock_owned_by_user(sk)) { 3067 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3068 3069 if (xmit_ssk == ssk) 3070 __mptcp_subflow_push_pending(sk, ssk); 3071 else if (xmit_ssk) 3072 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3073 } else { 3074 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3075 } 3076 } 3077 3078 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3079 BIT(MPTCP_RETRANSMIT) | \ 3080 BIT(MPTCP_FLUSH_JOIN_LIST)) 3081 3082 /* processes deferred events and flush wmem */ 3083 static void mptcp_release_cb(struct sock *sk) 3084 __must_hold(&sk->sk_lock.slock) 3085 { 3086 struct mptcp_sock *msk = mptcp_sk(sk); 3087 3088 for (;;) { 3089 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3090 msk->push_pending; 3091 if (!flags) 3092 break; 3093 3094 /* the following actions acquire the subflow socket lock 3095 * 3096 * 1) can't be invoked in atomic scope 3097 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3098 * datapath acquires the msk socket spinlock while helding 3099 * the subflow socket lock 3100 */ 3101 msk->push_pending = 0; 3102 msk->cb_flags &= ~flags; 3103 spin_unlock_bh(&sk->sk_lock.slock); 3104 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3105 __mptcp_flush_join_list(sk); 3106 if (flags & BIT(MPTCP_PUSH_PENDING)) 3107 __mptcp_push_pending(sk, 0); 3108 if (flags & BIT(MPTCP_RETRANSMIT)) 3109 __mptcp_retrans(sk); 3110 3111 cond_resched(); 3112 spin_lock_bh(&sk->sk_lock.slock); 3113 } 3114 3115 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3116 __mptcp_clean_una_wakeup(sk); 3117 if (unlikely(&msk->cb_flags)) { 3118 /* be sure to set the current sk state before tacking actions 3119 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3120 */ 3121 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3122 __mptcp_set_connected(sk); 3123 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3124 __mptcp_error_report(sk); 3125 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3126 msk->last_snd = NULL; 3127 } 3128 3129 __mptcp_update_rmem(sk); 3130 } 3131 3132 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3133 * TCP can't schedule delack timer before the subflow is fully established. 3134 * MPTCP uses the delack timer to do 3rd ack retransmissions 3135 */ 3136 static void schedule_3rdack_retransmission(struct sock *ssk) 3137 { 3138 struct inet_connection_sock *icsk = inet_csk(ssk); 3139 struct tcp_sock *tp = tcp_sk(ssk); 3140 unsigned long timeout; 3141 3142 if (mptcp_subflow_ctx(ssk)->fully_established) 3143 return; 3144 3145 /* reschedule with a timeout above RTT, as we must look only for drop */ 3146 if (tp->srtt_us) 3147 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3148 else 3149 timeout = TCP_TIMEOUT_INIT; 3150 timeout += jiffies; 3151 3152 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3153 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3154 icsk->icsk_ack.timeout = timeout; 3155 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3156 } 3157 3158 void mptcp_subflow_process_delegated(struct sock *ssk) 3159 { 3160 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3161 struct sock *sk = subflow->conn; 3162 3163 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3164 mptcp_data_lock(sk); 3165 if (!sock_owned_by_user(sk)) 3166 __mptcp_subflow_push_pending(sk, ssk); 3167 else 3168 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3169 mptcp_data_unlock(sk); 3170 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3171 } 3172 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3173 schedule_3rdack_retransmission(ssk); 3174 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3175 } 3176 } 3177 3178 static int mptcp_hash(struct sock *sk) 3179 { 3180 /* should never be called, 3181 * we hash the TCP subflows not the master socket 3182 */ 3183 WARN_ON_ONCE(1); 3184 return 0; 3185 } 3186 3187 static void mptcp_unhash(struct sock *sk) 3188 { 3189 /* called from sk_common_release(), but nothing to do here */ 3190 } 3191 3192 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3193 { 3194 struct mptcp_sock *msk = mptcp_sk(sk); 3195 struct socket *ssock; 3196 3197 ssock = __mptcp_nmpc_socket(msk); 3198 pr_debug("msk=%p, subflow=%p", msk, ssock); 3199 if (WARN_ON_ONCE(!ssock)) 3200 return -EINVAL; 3201 3202 return inet_csk_get_port(ssock->sk, snum); 3203 } 3204 3205 void mptcp_finish_connect(struct sock *ssk) 3206 { 3207 struct mptcp_subflow_context *subflow; 3208 struct mptcp_sock *msk; 3209 struct sock *sk; 3210 u64 ack_seq; 3211 3212 subflow = mptcp_subflow_ctx(ssk); 3213 sk = subflow->conn; 3214 msk = mptcp_sk(sk); 3215 3216 pr_debug("msk=%p, token=%u", sk, subflow->token); 3217 3218 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3219 ack_seq++; 3220 subflow->map_seq = ack_seq; 3221 subflow->map_subflow_seq = 1; 3222 3223 /* the socket is not connected yet, no msk/subflow ops can access/race 3224 * accessing the field below 3225 */ 3226 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3227 WRITE_ONCE(msk->local_key, subflow->local_key); 3228 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3229 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3230 WRITE_ONCE(msk->ack_seq, ack_seq); 3231 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 3232 WRITE_ONCE(msk->can_ack, 1); 3233 WRITE_ONCE(msk->snd_una, msk->write_seq); 3234 3235 mptcp_pm_new_connection(msk, ssk, 0); 3236 3237 mptcp_rcv_space_init(msk, ssk); 3238 } 3239 3240 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3241 { 3242 write_lock_bh(&sk->sk_callback_lock); 3243 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3244 sk_set_socket(sk, parent); 3245 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3246 write_unlock_bh(&sk->sk_callback_lock); 3247 } 3248 3249 bool mptcp_finish_join(struct sock *ssk) 3250 { 3251 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3252 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3253 struct sock *parent = (void *)msk; 3254 bool ret = true; 3255 3256 pr_debug("msk=%p, subflow=%p", msk, subflow); 3257 3258 /* mptcp socket already closing? */ 3259 if (!mptcp_is_fully_established(parent)) { 3260 subflow->reset_reason = MPTCP_RST_EMPTCP; 3261 return false; 3262 } 3263 3264 if (!msk->pm.server_side) 3265 goto out; 3266 3267 if (!mptcp_pm_allow_new_subflow(msk)) 3268 goto err_prohibited; 3269 3270 if (WARN_ON_ONCE(!list_empty(&subflow->node))) 3271 goto err_prohibited; 3272 3273 /* active connections are already on conn_list. 3274 * If we can't acquire msk socket lock here, let the release callback 3275 * handle it 3276 */ 3277 mptcp_data_lock(parent); 3278 if (!sock_owned_by_user(parent)) { 3279 ret = __mptcp_finish_join(msk, ssk); 3280 if (ret) { 3281 sock_hold(ssk); 3282 list_add_tail(&subflow->node, &msk->conn_list); 3283 } 3284 } else { 3285 sock_hold(ssk); 3286 list_add_tail(&subflow->node, &msk->join_list); 3287 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3288 } 3289 mptcp_data_unlock(parent); 3290 3291 if (!ret) { 3292 err_prohibited: 3293 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3294 return false; 3295 } 3296 3297 subflow->map_seq = READ_ONCE(msk->ack_seq); 3298 WRITE_ONCE(msk->allow_infinite_fallback, false); 3299 3300 out: 3301 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3302 return true; 3303 } 3304 3305 static void mptcp_shutdown(struct sock *sk, int how) 3306 { 3307 pr_debug("sk=%p, how=%d", sk, how); 3308 3309 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3310 __mptcp_wr_shutdown(sk); 3311 } 3312 3313 static int mptcp_forward_alloc_get(const struct sock *sk) 3314 { 3315 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3316 } 3317 3318 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3319 { 3320 const struct sock *sk = (void *)msk; 3321 u64 delta; 3322 3323 if (sk->sk_state == TCP_LISTEN) 3324 return -EINVAL; 3325 3326 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3327 return 0; 3328 3329 delta = msk->write_seq - v; 3330 if (__mptcp_check_fallback(msk) && msk->first) { 3331 struct tcp_sock *tp = tcp_sk(msk->first); 3332 3333 /* the first subflow is disconnected after close - see 3334 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3335 * so ignore that status, too. 3336 */ 3337 if (!((1 << msk->first->sk_state) & 3338 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3339 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3340 } 3341 if (delta > INT_MAX) 3342 delta = INT_MAX; 3343 3344 return (int)delta; 3345 } 3346 3347 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3348 { 3349 struct mptcp_sock *msk = mptcp_sk(sk); 3350 bool slow; 3351 int answ; 3352 3353 switch (cmd) { 3354 case SIOCINQ: 3355 if (sk->sk_state == TCP_LISTEN) 3356 return -EINVAL; 3357 3358 lock_sock(sk); 3359 __mptcp_move_skbs(msk); 3360 answ = mptcp_inq_hint(sk); 3361 release_sock(sk); 3362 break; 3363 case SIOCOUTQ: 3364 slow = lock_sock_fast(sk); 3365 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3366 unlock_sock_fast(sk, slow); 3367 break; 3368 case SIOCOUTQNSD: 3369 slow = lock_sock_fast(sk); 3370 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3371 unlock_sock_fast(sk, slow); 3372 break; 3373 default: 3374 return -ENOIOCTLCMD; 3375 } 3376 3377 return put_user(answ, (int __user *)arg); 3378 } 3379 3380 static struct proto mptcp_prot = { 3381 .name = "MPTCP", 3382 .owner = THIS_MODULE, 3383 .init = mptcp_init_sock, 3384 .disconnect = mptcp_disconnect, 3385 .close = mptcp_close, 3386 .accept = mptcp_accept, 3387 .setsockopt = mptcp_setsockopt, 3388 .getsockopt = mptcp_getsockopt, 3389 .shutdown = mptcp_shutdown, 3390 .destroy = mptcp_destroy, 3391 .sendmsg = mptcp_sendmsg, 3392 .ioctl = mptcp_ioctl, 3393 .recvmsg = mptcp_recvmsg, 3394 .release_cb = mptcp_release_cb, 3395 .hash = mptcp_hash, 3396 .unhash = mptcp_unhash, 3397 .get_port = mptcp_get_port, 3398 .forward_alloc_get = mptcp_forward_alloc_get, 3399 .sockets_allocated = &mptcp_sockets_allocated, 3400 .memory_allocated = &tcp_memory_allocated, 3401 .memory_pressure = &tcp_memory_pressure, 3402 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3403 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3404 .sysctl_mem = sysctl_tcp_mem, 3405 .obj_size = sizeof(struct mptcp_sock), 3406 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3407 .no_autobind = true, 3408 }; 3409 3410 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3411 { 3412 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3413 struct socket *ssock; 3414 int err; 3415 3416 lock_sock(sock->sk); 3417 ssock = __mptcp_nmpc_socket(msk); 3418 if (!ssock) { 3419 err = -EINVAL; 3420 goto unlock; 3421 } 3422 3423 err = ssock->ops->bind(ssock, uaddr, addr_len); 3424 if (!err) 3425 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3426 3427 unlock: 3428 release_sock(sock->sk); 3429 return err; 3430 } 3431 3432 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3433 struct mptcp_subflow_context *subflow) 3434 { 3435 subflow->request_mptcp = 0; 3436 __mptcp_do_fallback(msk); 3437 } 3438 3439 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3440 int addr_len, int flags) 3441 { 3442 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3443 struct mptcp_subflow_context *subflow; 3444 struct socket *ssock; 3445 int err = -EINVAL; 3446 3447 lock_sock(sock->sk); 3448 if (uaddr) { 3449 if (addr_len < sizeof(uaddr->sa_family)) 3450 goto unlock; 3451 3452 if (uaddr->sa_family == AF_UNSPEC) { 3453 err = mptcp_disconnect(sock->sk, flags); 3454 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3455 goto unlock; 3456 } 3457 } 3458 3459 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3460 /* pending connection or invalid state, let existing subflow 3461 * cope with that 3462 */ 3463 ssock = msk->subflow; 3464 goto do_connect; 3465 } 3466 3467 ssock = __mptcp_nmpc_socket(msk); 3468 if (!ssock) 3469 goto unlock; 3470 3471 mptcp_token_destroy(msk); 3472 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3473 subflow = mptcp_subflow_ctx(ssock->sk); 3474 #ifdef CONFIG_TCP_MD5SIG 3475 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3476 * TCP option space. 3477 */ 3478 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3479 mptcp_subflow_early_fallback(msk, subflow); 3480 #endif 3481 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3482 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3483 mptcp_subflow_early_fallback(msk, subflow); 3484 } 3485 if (likely(!__mptcp_check_fallback(msk))) 3486 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3487 3488 do_connect: 3489 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3490 sock->state = ssock->state; 3491 3492 /* on successful connect, the msk state will be moved to established by 3493 * subflow_finish_connect() 3494 */ 3495 if (!err || err == -EINPROGRESS) 3496 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3497 else 3498 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3499 3500 unlock: 3501 release_sock(sock->sk); 3502 return err; 3503 } 3504 3505 static int mptcp_listen(struct socket *sock, int backlog) 3506 { 3507 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3508 struct socket *ssock; 3509 int err; 3510 3511 pr_debug("msk=%p", msk); 3512 3513 lock_sock(sock->sk); 3514 ssock = __mptcp_nmpc_socket(msk); 3515 if (!ssock) { 3516 err = -EINVAL; 3517 goto unlock; 3518 } 3519 3520 mptcp_token_destroy(msk); 3521 inet_sk_state_store(sock->sk, TCP_LISTEN); 3522 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3523 3524 err = ssock->ops->listen(ssock, backlog); 3525 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3526 if (!err) 3527 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3528 3529 unlock: 3530 release_sock(sock->sk); 3531 return err; 3532 } 3533 3534 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3535 int flags, bool kern) 3536 { 3537 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3538 struct socket *ssock; 3539 int err; 3540 3541 pr_debug("msk=%p", msk); 3542 3543 ssock = __mptcp_nmpc_socket(msk); 3544 if (!ssock) 3545 return -EINVAL; 3546 3547 err = ssock->ops->accept(sock, newsock, flags, kern); 3548 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3549 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3550 struct mptcp_subflow_context *subflow; 3551 struct sock *newsk = newsock->sk; 3552 3553 lock_sock(newsk); 3554 3555 /* PM/worker can now acquire the first subflow socket 3556 * lock without racing with listener queue cleanup, 3557 * we can notify it, if needed. 3558 * 3559 * Even if remote has reset the initial subflow by now 3560 * the refcnt is still at least one. 3561 */ 3562 subflow = mptcp_subflow_ctx(msk->first); 3563 list_add(&subflow->node, &msk->conn_list); 3564 sock_hold(msk->first); 3565 if (mptcp_is_fully_established(newsk)) 3566 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3567 3568 mptcp_copy_inaddrs(newsk, msk->first); 3569 mptcp_rcv_space_init(msk, msk->first); 3570 mptcp_propagate_sndbuf(newsk, msk->first); 3571 3572 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3573 * This is needed so NOSPACE flag can be set from tcp stack. 3574 */ 3575 mptcp_for_each_subflow(msk, subflow) { 3576 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3577 3578 if (!ssk->sk_socket) 3579 mptcp_sock_graft(ssk, newsock); 3580 } 3581 release_sock(newsk); 3582 } 3583 3584 return err; 3585 } 3586 3587 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3588 { 3589 /* Concurrent splices from sk_receive_queue into receive_queue will 3590 * always show at least one non-empty queue when checked in this order. 3591 */ 3592 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3593 skb_queue_empty_lockless(&msk->receive_queue)) 3594 return 0; 3595 3596 return EPOLLIN | EPOLLRDNORM; 3597 } 3598 3599 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3600 { 3601 struct sock *sk = (struct sock *)msk; 3602 3603 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3604 return EPOLLOUT | EPOLLWRNORM; 3605 3606 if (sk_stream_is_writeable(sk)) 3607 return EPOLLOUT | EPOLLWRNORM; 3608 3609 mptcp_set_nospace(sk); 3610 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3611 if (sk_stream_is_writeable(sk)) 3612 return EPOLLOUT | EPOLLWRNORM; 3613 3614 return 0; 3615 } 3616 3617 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3618 struct poll_table_struct *wait) 3619 { 3620 struct sock *sk = sock->sk; 3621 struct mptcp_sock *msk; 3622 __poll_t mask = 0; 3623 int state; 3624 3625 msk = mptcp_sk(sk); 3626 sock_poll_wait(file, sock, wait); 3627 3628 state = inet_sk_state_load(sk); 3629 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3630 if (state == TCP_LISTEN) { 3631 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3632 return 0; 3633 3634 return inet_csk_listen_poll(msk->subflow->sk); 3635 } 3636 3637 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3638 mask |= mptcp_check_readable(msk); 3639 mask |= mptcp_check_writeable(msk); 3640 } 3641 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3642 mask |= EPOLLHUP; 3643 if (sk->sk_shutdown & RCV_SHUTDOWN) 3644 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3645 3646 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3647 smp_rmb(); 3648 if (sk->sk_err) 3649 mask |= EPOLLERR; 3650 3651 return mask; 3652 } 3653 3654 static const struct proto_ops mptcp_stream_ops = { 3655 .family = PF_INET, 3656 .owner = THIS_MODULE, 3657 .release = inet_release, 3658 .bind = mptcp_bind, 3659 .connect = mptcp_stream_connect, 3660 .socketpair = sock_no_socketpair, 3661 .accept = mptcp_stream_accept, 3662 .getname = inet_getname, 3663 .poll = mptcp_poll, 3664 .ioctl = inet_ioctl, 3665 .gettstamp = sock_gettstamp, 3666 .listen = mptcp_listen, 3667 .shutdown = inet_shutdown, 3668 .setsockopt = sock_common_setsockopt, 3669 .getsockopt = sock_common_getsockopt, 3670 .sendmsg = inet_sendmsg, 3671 .recvmsg = inet_recvmsg, 3672 .mmap = sock_no_mmap, 3673 .sendpage = inet_sendpage, 3674 }; 3675 3676 static struct inet_protosw mptcp_protosw = { 3677 .type = SOCK_STREAM, 3678 .protocol = IPPROTO_MPTCP, 3679 .prot = &mptcp_prot, 3680 .ops = &mptcp_stream_ops, 3681 .flags = INET_PROTOSW_ICSK, 3682 }; 3683 3684 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3685 { 3686 struct mptcp_delegated_action *delegated; 3687 struct mptcp_subflow_context *subflow; 3688 int work_done = 0; 3689 3690 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3691 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3692 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3693 3694 bh_lock_sock_nested(ssk); 3695 if (!sock_owned_by_user(ssk) && 3696 mptcp_subflow_has_delegated_action(subflow)) 3697 mptcp_subflow_process_delegated(ssk); 3698 /* ... elsewhere tcp_release_cb_override already processed 3699 * the action or will do at next release_sock(). 3700 * In both case must dequeue the subflow here - on the same 3701 * CPU that scheduled it. 3702 */ 3703 bh_unlock_sock(ssk); 3704 sock_put(ssk); 3705 3706 if (++work_done == budget) 3707 return budget; 3708 } 3709 3710 /* always provide a 0 'work_done' argument, so that napi_complete_done 3711 * will not try accessing the NULL napi->dev ptr 3712 */ 3713 napi_complete_done(napi, 0); 3714 return work_done; 3715 } 3716 3717 void __init mptcp_proto_init(void) 3718 { 3719 struct mptcp_delegated_action *delegated; 3720 int cpu; 3721 3722 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3723 3724 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3725 panic("Failed to allocate MPTCP pcpu counter\n"); 3726 3727 init_dummy_netdev(&mptcp_napi_dev); 3728 for_each_possible_cpu(cpu) { 3729 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3730 INIT_LIST_HEAD(&delegated->head); 3731 netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll, 3732 NAPI_POLL_WEIGHT); 3733 napi_enable(&delegated->napi); 3734 } 3735 3736 mptcp_subflow_init(); 3737 mptcp_pm_init(); 3738 mptcp_token_init(); 3739 3740 if (proto_register(&mptcp_prot, 1) != 0) 3741 panic("Failed to register MPTCP proto.\n"); 3742 3743 inet_register_protosw(&mptcp_protosw); 3744 3745 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3746 } 3747 3748 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3749 static const struct proto_ops mptcp_v6_stream_ops = { 3750 .family = PF_INET6, 3751 .owner = THIS_MODULE, 3752 .release = inet6_release, 3753 .bind = mptcp_bind, 3754 .connect = mptcp_stream_connect, 3755 .socketpair = sock_no_socketpair, 3756 .accept = mptcp_stream_accept, 3757 .getname = inet6_getname, 3758 .poll = mptcp_poll, 3759 .ioctl = inet6_ioctl, 3760 .gettstamp = sock_gettstamp, 3761 .listen = mptcp_listen, 3762 .shutdown = inet_shutdown, 3763 .setsockopt = sock_common_setsockopt, 3764 .getsockopt = sock_common_getsockopt, 3765 .sendmsg = inet6_sendmsg, 3766 .recvmsg = inet6_recvmsg, 3767 .mmap = sock_no_mmap, 3768 .sendpage = inet_sendpage, 3769 #ifdef CONFIG_COMPAT 3770 .compat_ioctl = inet6_compat_ioctl, 3771 #endif 3772 }; 3773 3774 static struct proto mptcp_v6_prot; 3775 3776 static void mptcp_v6_destroy(struct sock *sk) 3777 { 3778 mptcp_destroy(sk); 3779 inet6_destroy_sock(sk); 3780 } 3781 3782 static struct inet_protosw mptcp_v6_protosw = { 3783 .type = SOCK_STREAM, 3784 .protocol = IPPROTO_MPTCP, 3785 .prot = &mptcp_v6_prot, 3786 .ops = &mptcp_v6_stream_ops, 3787 .flags = INET_PROTOSW_ICSK, 3788 }; 3789 3790 int __init mptcp_proto_v6_init(void) 3791 { 3792 int err; 3793 3794 mptcp_v6_prot = mptcp_prot; 3795 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3796 mptcp_v6_prot.slab = NULL; 3797 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3798 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3799 3800 err = proto_register(&mptcp_v6_prot, 1); 3801 if (err) 3802 return err; 3803 3804 err = inet6_register_protosw(&mptcp_v6_protosw); 3805 if (err) 3806 proto_unregister(&mptcp_v6_prot); 3807 3808 return err; 3809 } 3810 #endif 3811