xref: /openbmc/linux/net/mptcp/protocol.c (revision 1c9f8dff62d85ce00b0e99f774a84bd783af7cac)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static bool mptcp_is_tcpsk(struct sock *sk)
59 {
60 	struct socket *sock = sk->sk_socket;
61 
62 	if (unlikely(sk->sk_prot == &tcp_prot)) {
63 		/* we are being invoked after mptcp_accept() has
64 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
65 		 * not an mptcp one.
66 		 *
67 		 * Hand the socket over to tcp so all further socket ops
68 		 * bypass mptcp.
69 		 */
70 		WRITE_ONCE(sock->ops, &inet_stream_ops);
71 		return true;
72 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
73 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
74 		WRITE_ONCE(sock->ops, &inet6_stream_ops);
75 		return true;
76 #endif
77 	}
78 
79 	return false;
80 }
81 
82 static int __mptcp_socket_create(struct mptcp_sock *msk)
83 {
84 	struct mptcp_subflow_context *subflow;
85 	struct sock *sk = (struct sock *)msk;
86 	struct socket *ssock;
87 	int err;
88 
89 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
90 	if (err)
91 		return err;
92 
93 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
94 	WRITE_ONCE(msk->first, ssock->sk);
95 	subflow = mptcp_subflow_ctx(ssock->sk);
96 	list_add(&subflow->node, &msk->conn_list);
97 	sock_hold(ssock->sk);
98 	subflow->request_mptcp = 1;
99 	subflow->subflow_id = msk->subflow_id++;
100 
101 	/* This is the first subflow, always with id 0 */
102 	subflow->local_id_valid = 1;
103 	mptcp_sock_graft(msk->first, sk->sk_socket);
104 	iput(SOCK_INODE(ssock));
105 
106 	return 0;
107 }
108 
109 /* If the MPC handshake is not started, returns the first subflow,
110  * eventually allocating it.
111  */
112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
113 {
114 	struct sock *sk = (struct sock *)msk;
115 	int ret;
116 
117 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
118 		return ERR_PTR(-EINVAL);
119 
120 	if (!msk->first) {
121 		ret = __mptcp_socket_create(msk);
122 		if (ret)
123 			return ERR_PTR(ret);
124 
125 		mptcp_sockopt_sync(msk, msk->first);
126 	}
127 
128 	return msk->first;
129 }
130 
131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
132 {
133 	sk_drops_add(sk, skb);
134 	__kfree_skb(skb);
135 }
136 
137 static void mptcp_rmem_charge(struct sock *sk, int size)
138 {
139 	mptcp_sk(sk)->rmem_fwd_alloc -= size;
140 }
141 
142 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
143 			       struct sk_buff *from)
144 {
145 	bool fragstolen;
146 	int delta;
147 
148 	if (MPTCP_SKB_CB(from)->offset ||
149 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
150 		return false;
151 
152 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
153 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
154 		 to->len, MPTCP_SKB_CB(from)->end_seq);
155 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
156 
157 	/* note the fwd memory can reach a negative value after accounting
158 	 * for the delta, but the later skb free will restore a non
159 	 * negative one
160 	 */
161 	atomic_add(delta, &sk->sk_rmem_alloc);
162 	mptcp_rmem_charge(sk, delta);
163 	kfree_skb_partial(from, fragstolen);
164 
165 	return true;
166 }
167 
168 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
169 				   struct sk_buff *from)
170 {
171 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
172 		return false;
173 
174 	return mptcp_try_coalesce((struct sock *)msk, to, from);
175 }
176 
177 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
178 {
179 	amount >>= PAGE_SHIFT;
180 	mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
181 	__sk_mem_reduce_allocated(sk, amount);
182 }
183 
184 static void mptcp_rmem_uncharge(struct sock *sk, int size)
185 {
186 	struct mptcp_sock *msk = mptcp_sk(sk);
187 	int reclaimable;
188 
189 	msk->rmem_fwd_alloc += size;
190 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
191 
192 	/* see sk_mem_uncharge() for the rationale behind the following schema */
193 	if (unlikely(reclaimable >= PAGE_SIZE))
194 		__mptcp_rmem_reclaim(sk, reclaimable);
195 }
196 
197 static void mptcp_rfree(struct sk_buff *skb)
198 {
199 	unsigned int len = skb->truesize;
200 	struct sock *sk = skb->sk;
201 
202 	atomic_sub(len, &sk->sk_rmem_alloc);
203 	mptcp_rmem_uncharge(sk, len);
204 }
205 
206 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
207 {
208 	skb_orphan(skb);
209 	skb->sk = sk;
210 	skb->destructor = mptcp_rfree;
211 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
212 	mptcp_rmem_charge(sk, skb->truesize);
213 }
214 
215 /* "inspired" by tcp_data_queue_ofo(), main differences:
216  * - use mptcp seqs
217  * - don't cope with sacks
218  */
219 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
220 {
221 	struct sock *sk = (struct sock *)msk;
222 	struct rb_node **p, *parent;
223 	u64 seq, end_seq, max_seq;
224 	struct sk_buff *skb1;
225 
226 	seq = MPTCP_SKB_CB(skb)->map_seq;
227 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
228 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
229 
230 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
231 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
232 	if (after64(end_seq, max_seq)) {
233 		/* out of window */
234 		mptcp_drop(sk, skb);
235 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
236 			 (unsigned long long)end_seq - (unsigned long)max_seq,
237 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
238 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
239 		return;
240 	}
241 
242 	p = &msk->out_of_order_queue.rb_node;
243 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
244 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
245 		rb_link_node(&skb->rbnode, NULL, p);
246 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
247 		msk->ooo_last_skb = skb;
248 		goto end;
249 	}
250 
251 	/* with 2 subflows, adding at end of ooo queue is quite likely
252 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
253 	 */
254 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
255 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
256 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
257 		return;
258 	}
259 
260 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
261 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
263 		parent = &msk->ooo_last_skb->rbnode;
264 		p = &parent->rb_right;
265 		goto insert;
266 	}
267 
268 	/* Find place to insert this segment. Handle overlaps on the way. */
269 	parent = NULL;
270 	while (*p) {
271 		parent = *p;
272 		skb1 = rb_to_skb(parent);
273 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
274 			p = &parent->rb_left;
275 			continue;
276 		}
277 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
278 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
279 				/* All the bits are present. Drop. */
280 				mptcp_drop(sk, skb);
281 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
282 				return;
283 			}
284 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
285 				/* partial overlap:
286 				 *     |     skb      |
287 				 *  |     skb1    |
288 				 * continue traversing
289 				 */
290 			} else {
291 				/* skb's seq == skb1's seq and skb covers skb1.
292 				 * Replace skb1 with skb.
293 				 */
294 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
295 						&msk->out_of_order_queue);
296 				mptcp_drop(sk, skb1);
297 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
298 				goto merge_right;
299 			}
300 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
301 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
302 			return;
303 		}
304 		p = &parent->rb_right;
305 	}
306 
307 insert:
308 	/* Insert segment into RB tree. */
309 	rb_link_node(&skb->rbnode, parent, p);
310 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
311 
312 merge_right:
313 	/* Remove other segments covered by skb. */
314 	while ((skb1 = skb_rb_next(skb)) != NULL) {
315 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
316 			break;
317 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
318 		mptcp_drop(sk, skb1);
319 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
320 	}
321 	/* If there is no skb after us, we are the last_skb ! */
322 	if (!skb1)
323 		msk->ooo_last_skb = skb;
324 
325 end:
326 	skb_condense(skb);
327 	mptcp_set_owner_r(skb, sk);
328 }
329 
330 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
331 {
332 	struct mptcp_sock *msk = mptcp_sk(sk);
333 	int amt, amount;
334 
335 	if (size <= msk->rmem_fwd_alloc)
336 		return true;
337 
338 	size -= msk->rmem_fwd_alloc;
339 	amt = sk_mem_pages(size);
340 	amount = amt << PAGE_SHIFT;
341 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
342 		return false;
343 
344 	msk->rmem_fwd_alloc += amount;
345 	return true;
346 }
347 
348 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
349 			     struct sk_buff *skb, unsigned int offset,
350 			     size_t copy_len)
351 {
352 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
353 	struct sock *sk = (struct sock *)msk;
354 	struct sk_buff *tail;
355 	bool has_rxtstamp;
356 
357 	__skb_unlink(skb, &ssk->sk_receive_queue);
358 
359 	skb_ext_reset(skb);
360 	skb_orphan(skb);
361 
362 	/* try to fetch required memory from subflow */
363 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
364 		goto drop;
365 
366 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
367 
368 	/* the skb map_seq accounts for the skb offset:
369 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
370 	 * value
371 	 */
372 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
373 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
374 	MPTCP_SKB_CB(skb)->offset = offset;
375 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
376 
377 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
378 		/* in sequence */
379 		msk->bytes_received += copy_len;
380 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
381 		tail = skb_peek_tail(&sk->sk_receive_queue);
382 		if (tail && mptcp_try_coalesce(sk, tail, skb))
383 			return true;
384 
385 		mptcp_set_owner_r(skb, sk);
386 		__skb_queue_tail(&sk->sk_receive_queue, skb);
387 		return true;
388 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
389 		mptcp_data_queue_ofo(msk, skb);
390 		return false;
391 	}
392 
393 	/* old data, keep it simple and drop the whole pkt, sender
394 	 * will retransmit as needed, if needed.
395 	 */
396 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
397 drop:
398 	mptcp_drop(sk, skb);
399 	return false;
400 }
401 
402 static void mptcp_stop_timer(struct sock *sk)
403 {
404 	struct inet_connection_sock *icsk = inet_csk(sk);
405 
406 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
407 	mptcp_sk(sk)->timer_ival = 0;
408 }
409 
410 static void mptcp_close_wake_up(struct sock *sk)
411 {
412 	if (sock_flag(sk, SOCK_DEAD))
413 		return;
414 
415 	sk->sk_state_change(sk);
416 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
417 	    sk->sk_state == TCP_CLOSE)
418 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
419 	else
420 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
421 }
422 
423 static bool mptcp_pending_data_fin_ack(struct sock *sk)
424 {
425 	struct mptcp_sock *msk = mptcp_sk(sk);
426 
427 	return ((1 << sk->sk_state) &
428 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
429 	       msk->write_seq == READ_ONCE(msk->snd_una);
430 }
431 
432 static void mptcp_check_data_fin_ack(struct sock *sk)
433 {
434 	struct mptcp_sock *msk = mptcp_sk(sk);
435 
436 	/* Look for an acknowledged DATA_FIN */
437 	if (mptcp_pending_data_fin_ack(sk)) {
438 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
439 
440 		switch (sk->sk_state) {
441 		case TCP_FIN_WAIT1:
442 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
443 			break;
444 		case TCP_CLOSING:
445 		case TCP_LAST_ACK:
446 			inet_sk_state_store(sk, TCP_CLOSE);
447 			break;
448 		}
449 
450 		mptcp_close_wake_up(sk);
451 	}
452 }
453 
454 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
455 {
456 	struct mptcp_sock *msk = mptcp_sk(sk);
457 
458 	if (READ_ONCE(msk->rcv_data_fin) &&
459 	    ((1 << sk->sk_state) &
460 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
461 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
462 
463 		if (msk->ack_seq == rcv_data_fin_seq) {
464 			if (seq)
465 				*seq = rcv_data_fin_seq;
466 
467 			return true;
468 		}
469 	}
470 
471 	return false;
472 }
473 
474 static void mptcp_set_datafin_timeout(struct sock *sk)
475 {
476 	struct inet_connection_sock *icsk = inet_csk(sk);
477 	u32 retransmits;
478 
479 	retransmits = min_t(u32, icsk->icsk_retransmits,
480 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
481 
482 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
483 }
484 
485 static void __mptcp_set_timeout(struct sock *sk, long tout)
486 {
487 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
488 }
489 
490 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
491 {
492 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
493 
494 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
495 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
496 }
497 
498 static void mptcp_set_timeout(struct sock *sk)
499 {
500 	struct mptcp_subflow_context *subflow;
501 	long tout = 0;
502 
503 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
504 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
505 	__mptcp_set_timeout(sk, tout);
506 }
507 
508 static inline bool tcp_can_send_ack(const struct sock *ssk)
509 {
510 	return !((1 << inet_sk_state_load(ssk)) &
511 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
512 }
513 
514 void __mptcp_subflow_send_ack(struct sock *ssk)
515 {
516 	if (tcp_can_send_ack(ssk))
517 		tcp_send_ack(ssk);
518 }
519 
520 static void mptcp_subflow_send_ack(struct sock *ssk)
521 {
522 	bool slow;
523 
524 	slow = lock_sock_fast(ssk);
525 	__mptcp_subflow_send_ack(ssk);
526 	unlock_sock_fast(ssk, slow);
527 }
528 
529 static void mptcp_send_ack(struct mptcp_sock *msk)
530 {
531 	struct mptcp_subflow_context *subflow;
532 
533 	mptcp_for_each_subflow(msk, subflow)
534 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
535 }
536 
537 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
538 {
539 	bool slow;
540 
541 	slow = lock_sock_fast(ssk);
542 	if (tcp_can_send_ack(ssk))
543 		tcp_cleanup_rbuf(ssk, 1);
544 	unlock_sock_fast(ssk, slow);
545 }
546 
547 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
548 {
549 	const struct inet_connection_sock *icsk = inet_csk(ssk);
550 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
551 	const struct tcp_sock *tp = tcp_sk(ssk);
552 
553 	return (ack_pending & ICSK_ACK_SCHED) &&
554 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
555 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
556 		 (rx_empty && ack_pending &
557 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
558 }
559 
560 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
561 {
562 	int old_space = READ_ONCE(msk->old_wspace);
563 	struct mptcp_subflow_context *subflow;
564 	struct sock *sk = (struct sock *)msk;
565 	int space =  __mptcp_space(sk);
566 	bool cleanup, rx_empty;
567 
568 	cleanup = (space > 0) && (space >= (old_space << 1));
569 	rx_empty = !__mptcp_rmem(sk);
570 
571 	mptcp_for_each_subflow(msk, subflow) {
572 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
573 
574 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
575 			mptcp_subflow_cleanup_rbuf(ssk);
576 	}
577 }
578 
579 static bool mptcp_check_data_fin(struct sock *sk)
580 {
581 	struct mptcp_sock *msk = mptcp_sk(sk);
582 	u64 rcv_data_fin_seq;
583 	bool ret = false;
584 
585 	/* Need to ack a DATA_FIN received from a peer while this side
586 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
587 	 * msk->rcv_data_fin was set when parsing the incoming options
588 	 * at the subflow level and the msk lock was not held, so this
589 	 * is the first opportunity to act on the DATA_FIN and change
590 	 * the msk state.
591 	 *
592 	 * If we are caught up to the sequence number of the incoming
593 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
594 	 * not caught up, do nothing and let the recv code send DATA_ACK
595 	 * when catching up.
596 	 */
597 
598 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
599 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
600 		WRITE_ONCE(msk->rcv_data_fin, 0);
601 
602 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
603 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
604 
605 		switch (sk->sk_state) {
606 		case TCP_ESTABLISHED:
607 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
608 			break;
609 		case TCP_FIN_WAIT1:
610 			inet_sk_state_store(sk, TCP_CLOSING);
611 			break;
612 		case TCP_FIN_WAIT2:
613 			inet_sk_state_store(sk, TCP_CLOSE);
614 			break;
615 		default:
616 			/* Other states not expected */
617 			WARN_ON_ONCE(1);
618 			break;
619 		}
620 
621 		ret = true;
622 		if (!__mptcp_check_fallback(msk))
623 			mptcp_send_ack(msk);
624 		mptcp_close_wake_up(sk);
625 	}
626 	return ret;
627 }
628 
629 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
630 					   struct sock *ssk,
631 					   unsigned int *bytes)
632 {
633 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
634 	struct sock *sk = (struct sock *)msk;
635 	unsigned int moved = 0;
636 	bool more_data_avail;
637 	struct tcp_sock *tp;
638 	bool done = false;
639 	int sk_rbuf;
640 
641 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
642 
643 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
644 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
645 
646 		if (unlikely(ssk_rbuf > sk_rbuf)) {
647 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
648 			sk_rbuf = ssk_rbuf;
649 		}
650 	}
651 
652 	pr_debug("msk=%p ssk=%p", msk, ssk);
653 	tp = tcp_sk(ssk);
654 	do {
655 		u32 map_remaining, offset;
656 		u32 seq = tp->copied_seq;
657 		struct sk_buff *skb;
658 		bool fin;
659 
660 		/* try to move as much data as available */
661 		map_remaining = subflow->map_data_len -
662 				mptcp_subflow_get_map_offset(subflow);
663 
664 		skb = skb_peek(&ssk->sk_receive_queue);
665 		if (!skb) {
666 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
667 			 * a different CPU can have already processed the pending
668 			 * data, stop here or we can enter an infinite loop
669 			 */
670 			if (!moved)
671 				done = true;
672 			break;
673 		}
674 
675 		if (__mptcp_check_fallback(msk)) {
676 			/* Under fallback skbs have no MPTCP extension and TCP could
677 			 * collapse them between the dummy map creation and the
678 			 * current dequeue. Be sure to adjust the map size.
679 			 */
680 			map_remaining = skb->len;
681 			subflow->map_data_len = skb->len;
682 		}
683 
684 		offset = seq - TCP_SKB_CB(skb)->seq;
685 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
686 		if (fin) {
687 			done = true;
688 			seq++;
689 		}
690 
691 		if (offset < skb->len) {
692 			size_t len = skb->len - offset;
693 
694 			if (tp->urg_data)
695 				done = true;
696 
697 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
698 				moved += len;
699 			seq += len;
700 
701 			if (WARN_ON_ONCE(map_remaining < len))
702 				break;
703 		} else {
704 			WARN_ON_ONCE(!fin);
705 			sk_eat_skb(ssk, skb);
706 			done = true;
707 		}
708 
709 		WRITE_ONCE(tp->copied_seq, seq);
710 		more_data_avail = mptcp_subflow_data_available(ssk);
711 
712 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
713 			done = true;
714 			break;
715 		}
716 	} while (more_data_avail);
717 
718 	*bytes += moved;
719 	return done;
720 }
721 
722 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
723 {
724 	struct sock *sk = (struct sock *)msk;
725 	struct sk_buff *skb, *tail;
726 	bool moved = false;
727 	struct rb_node *p;
728 	u64 end_seq;
729 
730 	p = rb_first(&msk->out_of_order_queue);
731 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
732 	while (p) {
733 		skb = rb_to_skb(p);
734 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
735 			break;
736 
737 		p = rb_next(p);
738 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
739 
740 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
741 				      msk->ack_seq))) {
742 			mptcp_drop(sk, skb);
743 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
744 			continue;
745 		}
746 
747 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
748 		tail = skb_peek_tail(&sk->sk_receive_queue);
749 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
750 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
751 
752 			/* skip overlapping data, if any */
753 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
754 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
755 				 delta);
756 			MPTCP_SKB_CB(skb)->offset += delta;
757 			MPTCP_SKB_CB(skb)->map_seq += delta;
758 			__skb_queue_tail(&sk->sk_receive_queue, skb);
759 		}
760 		msk->bytes_received += end_seq - msk->ack_seq;
761 		msk->ack_seq = end_seq;
762 		moved = true;
763 	}
764 	return moved;
765 }
766 
767 /* In most cases we will be able to lock the mptcp socket.  If its already
768  * owned, we need to defer to the work queue to avoid ABBA deadlock.
769  */
770 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
771 {
772 	struct sock *sk = (struct sock *)msk;
773 	unsigned int moved = 0;
774 
775 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
776 	__mptcp_ofo_queue(msk);
777 	if (unlikely(ssk->sk_err)) {
778 		if (!sock_owned_by_user(sk))
779 			__mptcp_error_report(sk);
780 		else
781 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
782 	}
783 
784 	/* If the moves have caught up with the DATA_FIN sequence number
785 	 * it's time to ack the DATA_FIN and change socket state, but
786 	 * this is not a good place to change state. Let the workqueue
787 	 * do it.
788 	 */
789 	if (mptcp_pending_data_fin(sk, NULL))
790 		mptcp_schedule_work(sk);
791 	return moved > 0;
792 }
793 
794 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
795 {
796 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
797 	struct mptcp_sock *msk = mptcp_sk(sk);
798 	int sk_rbuf, ssk_rbuf;
799 
800 	/* The peer can send data while we are shutting down this
801 	 * subflow at msk destruction time, but we must avoid enqueuing
802 	 * more data to the msk receive queue
803 	 */
804 	if (unlikely(subflow->disposable))
805 		return;
806 
807 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
808 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
809 	if (unlikely(ssk_rbuf > sk_rbuf))
810 		sk_rbuf = ssk_rbuf;
811 
812 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
813 	if (__mptcp_rmem(sk) > sk_rbuf) {
814 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
815 		return;
816 	}
817 
818 	/* Wake-up the reader only for in-sequence data */
819 	mptcp_data_lock(sk);
820 	if (move_skbs_to_msk(msk, ssk))
821 		sk->sk_data_ready(sk);
822 
823 	mptcp_data_unlock(sk);
824 }
825 
826 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
827 {
828 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
829 	WRITE_ONCE(msk->allow_infinite_fallback, false);
830 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
831 }
832 
833 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
834 {
835 	struct sock *sk = (struct sock *)msk;
836 
837 	if (sk->sk_state != TCP_ESTABLISHED)
838 		return false;
839 
840 	/* attach to msk socket only after we are sure we will deal with it
841 	 * at close time
842 	 */
843 	if (sk->sk_socket && !ssk->sk_socket)
844 		mptcp_sock_graft(ssk, sk->sk_socket);
845 
846 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
847 	mptcp_sockopt_sync_locked(msk, ssk);
848 	mptcp_subflow_joined(msk, ssk);
849 	return true;
850 }
851 
852 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
853 {
854 	struct mptcp_subflow_context *tmp, *subflow;
855 	struct mptcp_sock *msk = mptcp_sk(sk);
856 
857 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
858 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
859 		bool slow = lock_sock_fast(ssk);
860 
861 		list_move_tail(&subflow->node, &msk->conn_list);
862 		if (!__mptcp_finish_join(msk, ssk))
863 			mptcp_subflow_reset(ssk);
864 		unlock_sock_fast(ssk, slow);
865 	}
866 }
867 
868 static bool mptcp_timer_pending(struct sock *sk)
869 {
870 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
871 }
872 
873 static void mptcp_reset_timer(struct sock *sk)
874 {
875 	struct inet_connection_sock *icsk = inet_csk(sk);
876 	unsigned long tout;
877 
878 	/* prevent rescheduling on close */
879 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
880 		return;
881 
882 	tout = mptcp_sk(sk)->timer_ival;
883 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
884 }
885 
886 bool mptcp_schedule_work(struct sock *sk)
887 {
888 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
889 	    schedule_work(&mptcp_sk(sk)->work)) {
890 		/* each subflow already holds a reference to the sk, and the
891 		 * workqueue is invoked by a subflow, so sk can't go away here.
892 		 */
893 		sock_hold(sk);
894 		return true;
895 	}
896 	return false;
897 }
898 
899 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
900 {
901 	struct mptcp_subflow_context *subflow;
902 
903 	msk_owned_by_me(msk);
904 
905 	mptcp_for_each_subflow(msk, subflow) {
906 		if (READ_ONCE(subflow->data_avail))
907 			return mptcp_subflow_tcp_sock(subflow);
908 	}
909 
910 	return NULL;
911 }
912 
913 static bool mptcp_skb_can_collapse_to(u64 write_seq,
914 				      const struct sk_buff *skb,
915 				      const struct mptcp_ext *mpext)
916 {
917 	if (!tcp_skb_can_collapse_to(skb))
918 		return false;
919 
920 	/* can collapse only if MPTCP level sequence is in order and this
921 	 * mapping has not been xmitted yet
922 	 */
923 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
924 	       !mpext->frozen;
925 }
926 
927 /* we can append data to the given data frag if:
928  * - there is space available in the backing page_frag
929  * - the data frag tail matches the current page_frag free offset
930  * - the data frag end sequence number matches the current write seq
931  */
932 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
933 				       const struct page_frag *pfrag,
934 				       const struct mptcp_data_frag *df)
935 {
936 	return df && pfrag->page == df->page &&
937 		pfrag->size - pfrag->offset > 0 &&
938 		pfrag->offset == (df->offset + df->data_len) &&
939 		df->data_seq + df->data_len == msk->write_seq;
940 }
941 
942 static void dfrag_uncharge(struct sock *sk, int len)
943 {
944 	sk_mem_uncharge(sk, len);
945 	sk_wmem_queued_add(sk, -len);
946 }
947 
948 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
949 {
950 	int len = dfrag->data_len + dfrag->overhead;
951 
952 	list_del(&dfrag->list);
953 	dfrag_uncharge(sk, len);
954 	put_page(dfrag->page);
955 }
956 
957 static void __mptcp_clean_una(struct sock *sk)
958 {
959 	struct mptcp_sock *msk = mptcp_sk(sk);
960 	struct mptcp_data_frag *dtmp, *dfrag;
961 	u64 snd_una;
962 
963 	snd_una = msk->snd_una;
964 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
965 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
966 			break;
967 
968 		if (unlikely(dfrag == msk->first_pending)) {
969 			/* in recovery mode can see ack after the current snd head */
970 			if (WARN_ON_ONCE(!msk->recovery))
971 				break;
972 
973 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
974 		}
975 
976 		dfrag_clear(sk, dfrag);
977 	}
978 
979 	dfrag = mptcp_rtx_head(sk);
980 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
981 		u64 delta = snd_una - dfrag->data_seq;
982 
983 		/* prevent wrap around in recovery mode */
984 		if (unlikely(delta > dfrag->already_sent)) {
985 			if (WARN_ON_ONCE(!msk->recovery))
986 				goto out;
987 			if (WARN_ON_ONCE(delta > dfrag->data_len))
988 				goto out;
989 			dfrag->already_sent += delta - dfrag->already_sent;
990 		}
991 
992 		dfrag->data_seq += delta;
993 		dfrag->offset += delta;
994 		dfrag->data_len -= delta;
995 		dfrag->already_sent -= delta;
996 
997 		dfrag_uncharge(sk, delta);
998 	}
999 
1000 	/* all retransmitted data acked, recovery completed */
1001 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1002 		msk->recovery = false;
1003 
1004 out:
1005 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1006 	    snd_una == READ_ONCE(msk->write_seq)) {
1007 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1008 			mptcp_stop_timer(sk);
1009 	} else {
1010 		mptcp_reset_timer(sk);
1011 	}
1012 }
1013 
1014 static void __mptcp_clean_una_wakeup(struct sock *sk)
1015 {
1016 	lockdep_assert_held_once(&sk->sk_lock.slock);
1017 
1018 	__mptcp_clean_una(sk);
1019 	mptcp_write_space(sk);
1020 }
1021 
1022 static void mptcp_clean_una_wakeup(struct sock *sk)
1023 {
1024 	mptcp_data_lock(sk);
1025 	__mptcp_clean_una_wakeup(sk);
1026 	mptcp_data_unlock(sk);
1027 }
1028 
1029 static void mptcp_enter_memory_pressure(struct sock *sk)
1030 {
1031 	struct mptcp_subflow_context *subflow;
1032 	struct mptcp_sock *msk = mptcp_sk(sk);
1033 	bool first = true;
1034 
1035 	sk_stream_moderate_sndbuf(sk);
1036 	mptcp_for_each_subflow(msk, subflow) {
1037 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1038 
1039 		if (first)
1040 			tcp_enter_memory_pressure(ssk);
1041 		sk_stream_moderate_sndbuf(ssk);
1042 		first = false;
1043 	}
1044 }
1045 
1046 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1047  * data
1048  */
1049 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1050 {
1051 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1052 					pfrag, sk->sk_allocation)))
1053 		return true;
1054 
1055 	mptcp_enter_memory_pressure(sk);
1056 	return false;
1057 }
1058 
1059 static struct mptcp_data_frag *
1060 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1061 		      int orig_offset)
1062 {
1063 	int offset = ALIGN(orig_offset, sizeof(long));
1064 	struct mptcp_data_frag *dfrag;
1065 
1066 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1067 	dfrag->data_len = 0;
1068 	dfrag->data_seq = msk->write_seq;
1069 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1070 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1071 	dfrag->already_sent = 0;
1072 	dfrag->page = pfrag->page;
1073 
1074 	return dfrag;
1075 }
1076 
1077 struct mptcp_sendmsg_info {
1078 	int mss_now;
1079 	int size_goal;
1080 	u16 limit;
1081 	u16 sent;
1082 	unsigned int flags;
1083 	bool data_lock_held;
1084 };
1085 
1086 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1087 				    u64 data_seq, int avail_size)
1088 {
1089 	u64 window_end = mptcp_wnd_end(msk);
1090 	u64 mptcp_snd_wnd;
1091 
1092 	if (__mptcp_check_fallback(msk))
1093 		return avail_size;
1094 
1095 	mptcp_snd_wnd = window_end - data_seq;
1096 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1097 
1098 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1099 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1100 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1101 	}
1102 
1103 	return avail_size;
1104 }
1105 
1106 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1107 {
1108 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1109 
1110 	if (!mpext)
1111 		return false;
1112 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1113 	return true;
1114 }
1115 
1116 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1117 {
1118 	struct sk_buff *skb;
1119 
1120 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1121 	if (likely(skb)) {
1122 		if (likely(__mptcp_add_ext(skb, gfp))) {
1123 			skb_reserve(skb, MAX_TCP_HEADER);
1124 			skb->ip_summed = CHECKSUM_PARTIAL;
1125 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1126 			return skb;
1127 		}
1128 		__kfree_skb(skb);
1129 	} else {
1130 		mptcp_enter_memory_pressure(sk);
1131 	}
1132 	return NULL;
1133 }
1134 
1135 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1136 {
1137 	struct sk_buff *skb;
1138 
1139 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1140 	if (!skb)
1141 		return NULL;
1142 
1143 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1144 		tcp_skb_entail(ssk, skb);
1145 		return skb;
1146 	}
1147 	tcp_skb_tsorted_anchor_cleanup(skb);
1148 	kfree_skb(skb);
1149 	return NULL;
1150 }
1151 
1152 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1153 {
1154 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1155 
1156 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1157 }
1158 
1159 /* note: this always recompute the csum on the whole skb, even
1160  * if we just appended a single frag. More status info needed
1161  */
1162 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1163 {
1164 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1165 	__wsum csum = ~csum_unfold(mpext->csum);
1166 	int offset = skb->len - added;
1167 
1168 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1169 }
1170 
1171 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1172 				      struct sock *ssk,
1173 				      struct mptcp_ext *mpext)
1174 {
1175 	if (!mpext)
1176 		return;
1177 
1178 	mpext->infinite_map = 1;
1179 	mpext->data_len = 0;
1180 
1181 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1182 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1183 	pr_fallback(msk);
1184 	mptcp_do_fallback(ssk);
1185 }
1186 
1187 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1188 			      struct mptcp_data_frag *dfrag,
1189 			      struct mptcp_sendmsg_info *info)
1190 {
1191 	u64 data_seq = dfrag->data_seq + info->sent;
1192 	int offset = dfrag->offset + info->sent;
1193 	struct mptcp_sock *msk = mptcp_sk(sk);
1194 	bool zero_window_probe = false;
1195 	struct mptcp_ext *mpext = NULL;
1196 	bool can_coalesce = false;
1197 	bool reuse_skb = true;
1198 	struct sk_buff *skb;
1199 	size_t copy;
1200 	int i;
1201 
1202 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1203 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1204 
1205 	if (WARN_ON_ONCE(info->sent > info->limit ||
1206 			 info->limit > dfrag->data_len))
1207 		return 0;
1208 
1209 	if (unlikely(!__tcp_can_send(ssk)))
1210 		return -EAGAIN;
1211 
1212 	/* compute send limit */
1213 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1214 	copy = info->size_goal;
1215 
1216 	skb = tcp_write_queue_tail(ssk);
1217 	if (skb && copy > skb->len) {
1218 		/* Limit the write to the size available in the
1219 		 * current skb, if any, so that we create at most a new skb.
1220 		 * Explicitly tells TCP internals to avoid collapsing on later
1221 		 * queue management operation, to avoid breaking the ext <->
1222 		 * SSN association set here
1223 		 */
1224 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1225 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1226 			TCP_SKB_CB(skb)->eor = 1;
1227 			goto alloc_skb;
1228 		}
1229 
1230 		i = skb_shinfo(skb)->nr_frags;
1231 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1232 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1233 			tcp_mark_push(tcp_sk(ssk), skb);
1234 			goto alloc_skb;
1235 		}
1236 
1237 		copy -= skb->len;
1238 	} else {
1239 alloc_skb:
1240 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1241 		if (!skb)
1242 			return -ENOMEM;
1243 
1244 		i = skb_shinfo(skb)->nr_frags;
1245 		reuse_skb = false;
1246 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1247 	}
1248 
1249 	/* Zero window and all data acked? Probe. */
1250 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1251 	if (copy == 0) {
1252 		u64 snd_una = READ_ONCE(msk->snd_una);
1253 
1254 		if (snd_una != msk->snd_nxt) {
1255 			tcp_remove_empty_skb(ssk);
1256 			return 0;
1257 		}
1258 
1259 		zero_window_probe = true;
1260 		data_seq = snd_una - 1;
1261 		copy = 1;
1262 
1263 		/* all mptcp-level data is acked, no skbs should be present into the
1264 		 * ssk write queue
1265 		 */
1266 		WARN_ON_ONCE(reuse_skb);
1267 	}
1268 
1269 	copy = min_t(size_t, copy, info->limit - info->sent);
1270 	if (!sk_wmem_schedule(ssk, copy)) {
1271 		tcp_remove_empty_skb(ssk);
1272 		return -ENOMEM;
1273 	}
1274 
1275 	if (can_coalesce) {
1276 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1277 	} else {
1278 		get_page(dfrag->page);
1279 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1280 	}
1281 
1282 	skb->len += copy;
1283 	skb->data_len += copy;
1284 	skb->truesize += copy;
1285 	sk_wmem_queued_add(ssk, copy);
1286 	sk_mem_charge(ssk, copy);
1287 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1288 	TCP_SKB_CB(skb)->end_seq += copy;
1289 	tcp_skb_pcount_set(skb, 0);
1290 
1291 	/* on skb reuse we just need to update the DSS len */
1292 	if (reuse_skb) {
1293 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1294 		mpext->data_len += copy;
1295 		WARN_ON_ONCE(zero_window_probe);
1296 		goto out;
1297 	}
1298 
1299 	memset(mpext, 0, sizeof(*mpext));
1300 	mpext->data_seq = data_seq;
1301 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1302 	mpext->data_len = copy;
1303 	mpext->use_map = 1;
1304 	mpext->dsn64 = 1;
1305 
1306 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1307 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1308 		 mpext->dsn64);
1309 
1310 	if (zero_window_probe) {
1311 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1312 		mpext->frozen = 1;
1313 		if (READ_ONCE(msk->csum_enabled))
1314 			mptcp_update_data_checksum(skb, copy);
1315 		tcp_push_pending_frames(ssk);
1316 		return 0;
1317 	}
1318 out:
1319 	if (READ_ONCE(msk->csum_enabled))
1320 		mptcp_update_data_checksum(skb, copy);
1321 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1322 		mptcp_update_infinite_map(msk, ssk, mpext);
1323 	trace_mptcp_sendmsg_frag(mpext);
1324 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1325 	return copy;
1326 }
1327 
1328 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1329 					 sizeof(struct tcphdr) - \
1330 					 MAX_TCP_OPTION_SPACE - \
1331 					 sizeof(struct ipv6hdr) - \
1332 					 sizeof(struct frag_hdr))
1333 
1334 struct subflow_send_info {
1335 	struct sock *ssk;
1336 	u64 linger_time;
1337 };
1338 
1339 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1340 {
1341 	if (!subflow->stale)
1342 		return;
1343 
1344 	subflow->stale = 0;
1345 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1346 }
1347 
1348 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1349 {
1350 	if (unlikely(subflow->stale)) {
1351 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1352 
1353 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1354 			return false;
1355 
1356 		mptcp_subflow_set_active(subflow);
1357 	}
1358 	return __mptcp_subflow_active(subflow);
1359 }
1360 
1361 #define SSK_MODE_ACTIVE	0
1362 #define SSK_MODE_BACKUP	1
1363 #define SSK_MODE_MAX	2
1364 
1365 /* implement the mptcp packet scheduler;
1366  * returns the subflow that will transmit the next DSS
1367  * additionally updates the rtx timeout
1368  */
1369 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1370 {
1371 	struct subflow_send_info send_info[SSK_MODE_MAX];
1372 	struct mptcp_subflow_context *subflow;
1373 	struct sock *sk = (struct sock *)msk;
1374 	u32 pace, burst, wmem;
1375 	int i, nr_active = 0;
1376 	struct sock *ssk;
1377 	u64 linger_time;
1378 	long tout = 0;
1379 
1380 	/* pick the subflow with the lower wmem/wspace ratio */
1381 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1382 		send_info[i].ssk = NULL;
1383 		send_info[i].linger_time = -1;
1384 	}
1385 
1386 	mptcp_for_each_subflow(msk, subflow) {
1387 		trace_mptcp_subflow_get_send(subflow);
1388 		ssk =  mptcp_subflow_tcp_sock(subflow);
1389 		if (!mptcp_subflow_active(subflow))
1390 			continue;
1391 
1392 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1393 		nr_active += !subflow->backup;
1394 		pace = subflow->avg_pacing_rate;
1395 		if (unlikely(!pace)) {
1396 			/* init pacing rate from socket */
1397 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1398 			pace = subflow->avg_pacing_rate;
1399 			if (!pace)
1400 				continue;
1401 		}
1402 
1403 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1404 		if (linger_time < send_info[subflow->backup].linger_time) {
1405 			send_info[subflow->backup].ssk = ssk;
1406 			send_info[subflow->backup].linger_time = linger_time;
1407 		}
1408 	}
1409 	__mptcp_set_timeout(sk, tout);
1410 
1411 	/* pick the best backup if no other subflow is active */
1412 	if (!nr_active)
1413 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1414 
1415 	/* According to the blest algorithm, to avoid HoL blocking for the
1416 	 * faster flow, we need to:
1417 	 * - estimate the faster flow linger time
1418 	 * - use the above to estimate the amount of byte transferred
1419 	 *   by the faster flow
1420 	 * - check that the amount of queued data is greter than the above,
1421 	 *   otherwise do not use the picked, slower, subflow
1422 	 * We select the subflow with the shorter estimated time to flush
1423 	 * the queued mem, which basically ensure the above. We just need
1424 	 * to check that subflow has a non empty cwin.
1425 	 */
1426 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1427 	if (!ssk || !sk_stream_memory_free(ssk))
1428 		return NULL;
1429 
1430 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1431 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1432 	if (!burst)
1433 		return ssk;
1434 
1435 	subflow = mptcp_subflow_ctx(ssk);
1436 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1437 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1438 					   burst + wmem);
1439 	msk->snd_burst = burst;
1440 	return ssk;
1441 }
1442 
1443 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1444 {
1445 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1446 	release_sock(ssk);
1447 }
1448 
1449 static void mptcp_update_post_push(struct mptcp_sock *msk,
1450 				   struct mptcp_data_frag *dfrag,
1451 				   u32 sent)
1452 {
1453 	u64 snd_nxt_new = dfrag->data_seq;
1454 
1455 	dfrag->already_sent += sent;
1456 
1457 	msk->snd_burst -= sent;
1458 
1459 	snd_nxt_new += dfrag->already_sent;
1460 
1461 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1462 	 * is recovering after a failover. In that event, this re-sends
1463 	 * old segments.
1464 	 *
1465 	 * Thus compute snd_nxt_new candidate based on
1466 	 * the dfrag->data_seq that was sent and the data
1467 	 * that has been handed to the subflow for transmission
1468 	 * and skip update in case it was old dfrag.
1469 	 */
1470 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1471 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1472 		msk->snd_nxt = snd_nxt_new;
1473 	}
1474 }
1475 
1476 void mptcp_check_and_set_pending(struct sock *sk)
1477 {
1478 	if (mptcp_send_head(sk))
1479 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1480 }
1481 
1482 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1483 				  struct mptcp_sendmsg_info *info)
1484 {
1485 	struct mptcp_sock *msk = mptcp_sk(sk);
1486 	struct mptcp_data_frag *dfrag;
1487 	int len, copied = 0, err = 0;
1488 
1489 	while ((dfrag = mptcp_send_head(sk))) {
1490 		info->sent = dfrag->already_sent;
1491 		info->limit = dfrag->data_len;
1492 		len = dfrag->data_len - dfrag->already_sent;
1493 		while (len > 0) {
1494 			int ret = 0;
1495 
1496 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1497 			if (ret <= 0) {
1498 				err = copied ? : ret;
1499 				goto out;
1500 			}
1501 
1502 			info->sent += ret;
1503 			copied += ret;
1504 			len -= ret;
1505 
1506 			mptcp_update_post_push(msk, dfrag, ret);
1507 		}
1508 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1509 
1510 		if (msk->snd_burst <= 0 ||
1511 		    !sk_stream_memory_free(ssk) ||
1512 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1513 			err = copied;
1514 			goto out;
1515 		}
1516 		mptcp_set_timeout(sk);
1517 	}
1518 	err = copied;
1519 
1520 out:
1521 	return err;
1522 }
1523 
1524 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1525 {
1526 	struct sock *prev_ssk = NULL, *ssk = NULL;
1527 	struct mptcp_sock *msk = mptcp_sk(sk);
1528 	struct mptcp_sendmsg_info info = {
1529 				.flags = flags,
1530 	};
1531 	bool do_check_data_fin = false;
1532 	int push_count = 1;
1533 
1534 	while (mptcp_send_head(sk) && (push_count > 0)) {
1535 		struct mptcp_subflow_context *subflow;
1536 		int ret = 0;
1537 
1538 		if (mptcp_sched_get_send(msk))
1539 			break;
1540 
1541 		push_count = 0;
1542 
1543 		mptcp_for_each_subflow(msk, subflow) {
1544 			if (READ_ONCE(subflow->scheduled)) {
1545 				mptcp_subflow_set_scheduled(subflow, false);
1546 
1547 				prev_ssk = ssk;
1548 				ssk = mptcp_subflow_tcp_sock(subflow);
1549 				if (ssk != prev_ssk) {
1550 					/* First check. If the ssk has changed since
1551 					 * the last round, release prev_ssk
1552 					 */
1553 					if (prev_ssk)
1554 						mptcp_push_release(prev_ssk, &info);
1555 
1556 					/* Need to lock the new subflow only if different
1557 					 * from the previous one, otherwise we are still
1558 					 * helding the relevant lock
1559 					 */
1560 					lock_sock(ssk);
1561 				}
1562 
1563 				push_count++;
1564 
1565 				ret = __subflow_push_pending(sk, ssk, &info);
1566 				if (ret <= 0) {
1567 					if (ret != -EAGAIN ||
1568 					    (1 << ssk->sk_state) &
1569 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1570 						push_count--;
1571 					continue;
1572 				}
1573 				do_check_data_fin = true;
1574 			}
1575 		}
1576 	}
1577 
1578 	/* at this point we held the socket lock for the last subflow we used */
1579 	if (ssk)
1580 		mptcp_push_release(ssk, &info);
1581 
1582 	/* ensure the rtx timer is running */
1583 	if (!mptcp_timer_pending(sk))
1584 		mptcp_reset_timer(sk);
1585 	if (do_check_data_fin)
1586 		mptcp_check_send_data_fin(sk);
1587 }
1588 
1589 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1590 {
1591 	struct mptcp_sock *msk = mptcp_sk(sk);
1592 	struct mptcp_sendmsg_info info = {
1593 		.data_lock_held = true,
1594 	};
1595 	bool keep_pushing = true;
1596 	struct sock *xmit_ssk;
1597 	int copied = 0;
1598 
1599 	info.flags = 0;
1600 	while (mptcp_send_head(sk) && keep_pushing) {
1601 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1602 		int ret = 0;
1603 
1604 		/* check for a different subflow usage only after
1605 		 * spooling the first chunk of data
1606 		 */
1607 		if (first) {
1608 			mptcp_subflow_set_scheduled(subflow, false);
1609 			ret = __subflow_push_pending(sk, ssk, &info);
1610 			first = false;
1611 			if (ret <= 0)
1612 				break;
1613 			copied += ret;
1614 			continue;
1615 		}
1616 
1617 		if (mptcp_sched_get_send(msk))
1618 			goto out;
1619 
1620 		if (READ_ONCE(subflow->scheduled)) {
1621 			mptcp_subflow_set_scheduled(subflow, false);
1622 			ret = __subflow_push_pending(sk, ssk, &info);
1623 			if (ret <= 0)
1624 				keep_pushing = false;
1625 			copied += ret;
1626 		}
1627 
1628 		mptcp_for_each_subflow(msk, subflow) {
1629 			if (READ_ONCE(subflow->scheduled)) {
1630 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1631 				if (xmit_ssk != ssk) {
1632 					mptcp_subflow_delegate(subflow,
1633 							       MPTCP_DELEGATE_SEND);
1634 					keep_pushing = false;
1635 				}
1636 			}
1637 		}
1638 	}
1639 
1640 out:
1641 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1642 	 * not going to flush it via release_sock()
1643 	 */
1644 	if (copied) {
1645 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1646 			 info.size_goal);
1647 		if (!mptcp_timer_pending(sk))
1648 			mptcp_reset_timer(sk);
1649 
1650 		if (msk->snd_data_fin_enable &&
1651 		    msk->snd_nxt + 1 == msk->write_seq)
1652 			mptcp_schedule_work(sk);
1653 	}
1654 }
1655 
1656 static void mptcp_set_nospace(struct sock *sk)
1657 {
1658 	/* enable autotune */
1659 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1660 
1661 	/* will be cleared on avail space */
1662 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1663 }
1664 
1665 static int mptcp_disconnect(struct sock *sk, int flags);
1666 
1667 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1668 				  size_t len, int *copied_syn)
1669 {
1670 	unsigned int saved_flags = msg->msg_flags;
1671 	struct mptcp_sock *msk = mptcp_sk(sk);
1672 	struct sock *ssk;
1673 	int ret;
1674 
1675 	/* on flags based fastopen the mptcp is supposed to create the
1676 	 * first subflow right now. Otherwise we are in the defer_connect
1677 	 * path, and the first subflow must be already present.
1678 	 * Since the defer_connect flag is cleared after the first succsful
1679 	 * fastopen attempt, no need to check for additional subflow status.
1680 	 */
1681 	if (msg->msg_flags & MSG_FASTOPEN) {
1682 		ssk = __mptcp_nmpc_sk(msk);
1683 		if (IS_ERR(ssk))
1684 			return PTR_ERR(ssk);
1685 	}
1686 	if (!msk->first)
1687 		return -EINVAL;
1688 
1689 	ssk = msk->first;
1690 
1691 	lock_sock(ssk);
1692 	msg->msg_flags |= MSG_DONTWAIT;
1693 	msk->fastopening = 1;
1694 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1695 	msk->fastopening = 0;
1696 	msg->msg_flags = saved_flags;
1697 	release_sock(ssk);
1698 
1699 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1700 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1701 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1702 					    msg->msg_namelen, msg->msg_flags, 1);
1703 
1704 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1705 		 * case of any error, except timeout or signal
1706 		 */
1707 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1708 			*copied_syn = 0;
1709 	} else if (ret && ret != -EINPROGRESS) {
1710 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1711 		 * __inet_stream_connect() can fail, due to looking check,
1712 		 * see mptcp_disconnect().
1713 		 * Attempt it again outside the problematic scope.
1714 		 */
1715 		if (!mptcp_disconnect(sk, 0))
1716 			sk->sk_socket->state = SS_UNCONNECTED;
1717 	}
1718 	inet_clear_bit(DEFER_CONNECT, sk);
1719 
1720 	return ret;
1721 }
1722 
1723 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1724 {
1725 	struct mptcp_sock *msk = mptcp_sk(sk);
1726 	struct page_frag *pfrag;
1727 	size_t copied = 0;
1728 	int ret = 0;
1729 	long timeo;
1730 
1731 	/* silently ignore everything else */
1732 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1733 
1734 	lock_sock(sk);
1735 
1736 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1737 		     msg->msg_flags & MSG_FASTOPEN)) {
1738 		int copied_syn = 0;
1739 
1740 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1741 		copied += copied_syn;
1742 		if (ret == -EINPROGRESS && copied_syn > 0)
1743 			goto out;
1744 		else if (ret)
1745 			goto do_error;
1746 	}
1747 
1748 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1749 
1750 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1751 		ret = sk_stream_wait_connect(sk, &timeo);
1752 		if (ret)
1753 			goto do_error;
1754 	}
1755 
1756 	ret = -EPIPE;
1757 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1758 		goto do_error;
1759 
1760 	pfrag = sk_page_frag(sk);
1761 
1762 	while (msg_data_left(msg)) {
1763 		int total_ts, frag_truesize = 0;
1764 		struct mptcp_data_frag *dfrag;
1765 		bool dfrag_collapsed;
1766 		size_t psize, offset;
1767 
1768 		/* reuse tail pfrag, if possible, or carve a new one from the
1769 		 * page allocator
1770 		 */
1771 		dfrag = mptcp_pending_tail(sk);
1772 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1773 		if (!dfrag_collapsed) {
1774 			if (!sk_stream_memory_free(sk))
1775 				goto wait_for_memory;
1776 
1777 			if (!mptcp_page_frag_refill(sk, pfrag))
1778 				goto wait_for_memory;
1779 
1780 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1781 			frag_truesize = dfrag->overhead;
1782 		}
1783 
1784 		/* we do not bound vs wspace, to allow a single packet.
1785 		 * memory accounting will prevent execessive memory usage
1786 		 * anyway
1787 		 */
1788 		offset = dfrag->offset + dfrag->data_len;
1789 		psize = pfrag->size - offset;
1790 		psize = min_t(size_t, psize, msg_data_left(msg));
1791 		total_ts = psize + frag_truesize;
1792 
1793 		if (!sk_wmem_schedule(sk, total_ts))
1794 			goto wait_for_memory;
1795 
1796 		if (copy_page_from_iter(dfrag->page, offset, psize,
1797 					&msg->msg_iter) != psize) {
1798 			ret = -EFAULT;
1799 			goto do_error;
1800 		}
1801 
1802 		/* data successfully copied into the write queue */
1803 		sk->sk_forward_alloc -= total_ts;
1804 		copied += psize;
1805 		dfrag->data_len += psize;
1806 		frag_truesize += psize;
1807 		pfrag->offset += frag_truesize;
1808 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1809 
1810 		/* charge data on mptcp pending queue to the msk socket
1811 		 * Note: we charge such data both to sk and ssk
1812 		 */
1813 		sk_wmem_queued_add(sk, frag_truesize);
1814 		if (!dfrag_collapsed) {
1815 			get_page(dfrag->page);
1816 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1817 			if (!msk->first_pending)
1818 				WRITE_ONCE(msk->first_pending, dfrag);
1819 		}
1820 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1821 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1822 			 !dfrag_collapsed);
1823 
1824 		continue;
1825 
1826 wait_for_memory:
1827 		mptcp_set_nospace(sk);
1828 		__mptcp_push_pending(sk, msg->msg_flags);
1829 		ret = sk_stream_wait_memory(sk, &timeo);
1830 		if (ret)
1831 			goto do_error;
1832 	}
1833 
1834 	if (copied)
1835 		__mptcp_push_pending(sk, msg->msg_flags);
1836 
1837 out:
1838 	release_sock(sk);
1839 	return copied;
1840 
1841 do_error:
1842 	if (copied)
1843 		goto out;
1844 
1845 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1846 	goto out;
1847 }
1848 
1849 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1850 				struct msghdr *msg,
1851 				size_t len, int flags,
1852 				struct scm_timestamping_internal *tss,
1853 				int *cmsg_flags)
1854 {
1855 	struct sk_buff *skb, *tmp;
1856 	int copied = 0;
1857 
1858 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1859 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1860 		u32 data_len = skb->len - offset;
1861 		u32 count = min_t(size_t, len - copied, data_len);
1862 		int err;
1863 
1864 		if (!(flags & MSG_TRUNC)) {
1865 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1866 			if (unlikely(err < 0)) {
1867 				if (!copied)
1868 					return err;
1869 				break;
1870 			}
1871 		}
1872 
1873 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1874 			tcp_update_recv_tstamps(skb, tss);
1875 			*cmsg_flags |= MPTCP_CMSG_TS;
1876 		}
1877 
1878 		copied += count;
1879 
1880 		if (count < data_len) {
1881 			if (!(flags & MSG_PEEK)) {
1882 				MPTCP_SKB_CB(skb)->offset += count;
1883 				MPTCP_SKB_CB(skb)->map_seq += count;
1884 			}
1885 			break;
1886 		}
1887 
1888 		if (!(flags & MSG_PEEK)) {
1889 			/* we will bulk release the skb memory later */
1890 			skb->destructor = NULL;
1891 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1892 			__skb_unlink(skb, &msk->receive_queue);
1893 			__kfree_skb(skb);
1894 		}
1895 
1896 		if (copied >= len)
1897 			break;
1898 	}
1899 
1900 	return copied;
1901 }
1902 
1903 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1904  *
1905  * Only difference: Use highest rtt estimate of the subflows in use.
1906  */
1907 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1908 {
1909 	struct mptcp_subflow_context *subflow;
1910 	struct sock *sk = (struct sock *)msk;
1911 	u8 scaling_ratio = U8_MAX;
1912 	u32 time, advmss = 1;
1913 	u64 rtt_us, mstamp;
1914 
1915 	msk_owned_by_me(msk);
1916 
1917 	if (copied <= 0)
1918 		return;
1919 
1920 	msk->rcvq_space.copied += copied;
1921 
1922 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1923 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1924 
1925 	rtt_us = msk->rcvq_space.rtt_us;
1926 	if (rtt_us && time < (rtt_us >> 3))
1927 		return;
1928 
1929 	rtt_us = 0;
1930 	mptcp_for_each_subflow(msk, subflow) {
1931 		const struct tcp_sock *tp;
1932 		u64 sf_rtt_us;
1933 		u32 sf_advmss;
1934 
1935 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1936 
1937 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1938 		sf_advmss = READ_ONCE(tp->advmss);
1939 
1940 		rtt_us = max(sf_rtt_us, rtt_us);
1941 		advmss = max(sf_advmss, advmss);
1942 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1943 	}
1944 
1945 	msk->rcvq_space.rtt_us = rtt_us;
1946 	msk->scaling_ratio = scaling_ratio;
1947 	if (time < (rtt_us >> 3) || rtt_us == 0)
1948 		return;
1949 
1950 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1951 		goto new_measure;
1952 
1953 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1954 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1955 		u64 rcvwin, grow;
1956 		int rcvbuf;
1957 
1958 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1959 
1960 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1961 
1962 		do_div(grow, msk->rcvq_space.space);
1963 		rcvwin += (grow << 1);
1964 
1965 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
1966 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1967 
1968 		if (rcvbuf > sk->sk_rcvbuf) {
1969 			u32 window_clamp;
1970 
1971 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
1972 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1973 
1974 			/* Make subflows follow along.  If we do not do this, we
1975 			 * get drops at subflow level if skbs can't be moved to
1976 			 * the mptcp rx queue fast enough (announced rcv_win can
1977 			 * exceed ssk->sk_rcvbuf).
1978 			 */
1979 			mptcp_for_each_subflow(msk, subflow) {
1980 				struct sock *ssk;
1981 				bool slow;
1982 
1983 				ssk = mptcp_subflow_tcp_sock(subflow);
1984 				slow = lock_sock_fast(ssk);
1985 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1986 				tcp_sk(ssk)->window_clamp = window_clamp;
1987 				tcp_cleanup_rbuf(ssk, 1);
1988 				unlock_sock_fast(ssk, slow);
1989 			}
1990 		}
1991 	}
1992 
1993 	msk->rcvq_space.space = msk->rcvq_space.copied;
1994 new_measure:
1995 	msk->rcvq_space.copied = 0;
1996 	msk->rcvq_space.time = mstamp;
1997 }
1998 
1999 static void __mptcp_update_rmem(struct sock *sk)
2000 {
2001 	struct mptcp_sock *msk = mptcp_sk(sk);
2002 
2003 	if (!msk->rmem_released)
2004 		return;
2005 
2006 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2007 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2008 	WRITE_ONCE(msk->rmem_released, 0);
2009 }
2010 
2011 static void __mptcp_splice_receive_queue(struct sock *sk)
2012 {
2013 	struct mptcp_sock *msk = mptcp_sk(sk);
2014 
2015 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2016 }
2017 
2018 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2019 {
2020 	struct sock *sk = (struct sock *)msk;
2021 	unsigned int moved = 0;
2022 	bool ret, done;
2023 
2024 	do {
2025 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2026 		bool slowpath;
2027 
2028 		/* we can have data pending in the subflows only if the msk
2029 		 * receive buffer was full at subflow_data_ready() time,
2030 		 * that is an unlikely slow path.
2031 		 */
2032 		if (likely(!ssk))
2033 			break;
2034 
2035 		slowpath = lock_sock_fast(ssk);
2036 		mptcp_data_lock(sk);
2037 		__mptcp_update_rmem(sk);
2038 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2039 		mptcp_data_unlock(sk);
2040 
2041 		if (unlikely(ssk->sk_err))
2042 			__mptcp_error_report(sk);
2043 		unlock_sock_fast(ssk, slowpath);
2044 	} while (!done);
2045 
2046 	/* acquire the data lock only if some input data is pending */
2047 	ret = moved > 0;
2048 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2049 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2050 		mptcp_data_lock(sk);
2051 		__mptcp_update_rmem(sk);
2052 		ret |= __mptcp_ofo_queue(msk);
2053 		__mptcp_splice_receive_queue(sk);
2054 		mptcp_data_unlock(sk);
2055 	}
2056 	if (ret)
2057 		mptcp_check_data_fin((struct sock *)msk);
2058 	return !skb_queue_empty(&msk->receive_queue);
2059 }
2060 
2061 static unsigned int mptcp_inq_hint(const struct sock *sk)
2062 {
2063 	const struct mptcp_sock *msk = mptcp_sk(sk);
2064 	const struct sk_buff *skb;
2065 
2066 	skb = skb_peek(&msk->receive_queue);
2067 	if (skb) {
2068 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2069 
2070 		if (hint_val >= INT_MAX)
2071 			return INT_MAX;
2072 
2073 		return (unsigned int)hint_val;
2074 	}
2075 
2076 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2077 		return 1;
2078 
2079 	return 0;
2080 }
2081 
2082 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2083 			 int flags, int *addr_len)
2084 {
2085 	struct mptcp_sock *msk = mptcp_sk(sk);
2086 	struct scm_timestamping_internal tss;
2087 	int copied = 0, cmsg_flags = 0;
2088 	int target;
2089 	long timeo;
2090 
2091 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2092 	if (unlikely(flags & MSG_ERRQUEUE))
2093 		return inet_recv_error(sk, msg, len, addr_len);
2094 
2095 	lock_sock(sk);
2096 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2097 		copied = -ENOTCONN;
2098 		goto out_err;
2099 	}
2100 
2101 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2102 
2103 	len = min_t(size_t, len, INT_MAX);
2104 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2105 
2106 	if (unlikely(msk->recvmsg_inq))
2107 		cmsg_flags = MPTCP_CMSG_INQ;
2108 
2109 	while (copied < len) {
2110 		int bytes_read;
2111 
2112 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2113 		if (unlikely(bytes_read < 0)) {
2114 			if (!copied)
2115 				copied = bytes_read;
2116 			goto out_err;
2117 		}
2118 
2119 		copied += bytes_read;
2120 
2121 		/* be sure to advertise window change */
2122 		mptcp_cleanup_rbuf(msk);
2123 
2124 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2125 			continue;
2126 
2127 		/* only the master socket status is relevant here. The exit
2128 		 * conditions mirror closely tcp_recvmsg()
2129 		 */
2130 		if (copied >= target)
2131 			break;
2132 
2133 		if (copied) {
2134 			if (sk->sk_err ||
2135 			    sk->sk_state == TCP_CLOSE ||
2136 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2137 			    !timeo ||
2138 			    signal_pending(current))
2139 				break;
2140 		} else {
2141 			if (sk->sk_err) {
2142 				copied = sock_error(sk);
2143 				break;
2144 			}
2145 
2146 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2147 				/* race breaker: the shutdown could be after the
2148 				 * previous receive queue check
2149 				 */
2150 				if (__mptcp_move_skbs(msk))
2151 					continue;
2152 				break;
2153 			}
2154 
2155 			if (sk->sk_state == TCP_CLOSE) {
2156 				copied = -ENOTCONN;
2157 				break;
2158 			}
2159 
2160 			if (!timeo) {
2161 				copied = -EAGAIN;
2162 				break;
2163 			}
2164 
2165 			if (signal_pending(current)) {
2166 				copied = sock_intr_errno(timeo);
2167 				break;
2168 			}
2169 		}
2170 
2171 		pr_debug("block timeout %ld", timeo);
2172 		sk_wait_data(sk, &timeo, NULL);
2173 	}
2174 
2175 out_err:
2176 	if (cmsg_flags && copied >= 0) {
2177 		if (cmsg_flags & MPTCP_CMSG_TS)
2178 			tcp_recv_timestamp(msg, sk, &tss);
2179 
2180 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2181 			unsigned int inq = mptcp_inq_hint(sk);
2182 
2183 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2184 		}
2185 	}
2186 
2187 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2188 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2189 		 skb_queue_empty(&msk->receive_queue), copied);
2190 	if (!(flags & MSG_PEEK))
2191 		mptcp_rcv_space_adjust(msk, copied);
2192 
2193 	release_sock(sk);
2194 	return copied;
2195 }
2196 
2197 static void mptcp_retransmit_timer(struct timer_list *t)
2198 {
2199 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2200 						       icsk_retransmit_timer);
2201 	struct sock *sk = &icsk->icsk_inet.sk;
2202 	struct mptcp_sock *msk = mptcp_sk(sk);
2203 
2204 	bh_lock_sock(sk);
2205 	if (!sock_owned_by_user(sk)) {
2206 		/* we need a process context to retransmit */
2207 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2208 			mptcp_schedule_work(sk);
2209 	} else {
2210 		/* delegate our work to tcp_release_cb() */
2211 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2212 	}
2213 	bh_unlock_sock(sk);
2214 	sock_put(sk);
2215 }
2216 
2217 static void mptcp_timeout_timer(struct timer_list *t)
2218 {
2219 	struct sock *sk = from_timer(sk, t, sk_timer);
2220 
2221 	mptcp_schedule_work(sk);
2222 	sock_put(sk);
2223 }
2224 
2225 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2226  * level.
2227  *
2228  * A backup subflow is returned only if that is the only kind available.
2229  */
2230 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2231 {
2232 	struct sock *backup = NULL, *pick = NULL;
2233 	struct mptcp_subflow_context *subflow;
2234 	int min_stale_count = INT_MAX;
2235 
2236 	mptcp_for_each_subflow(msk, subflow) {
2237 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2238 
2239 		if (!__mptcp_subflow_active(subflow))
2240 			continue;
2241 
2242 		/* still data outstanding at TCP level? skip this */
2243 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2244 			mptcp_pm_subflow_chk_stale(msk, ssk);
2245 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2246 			continue;
2247 		}
2248 
2249 		if (subflow->backup) {
2250 			if (!backup)
2251 				backup = ssk;
2252 			continue;
2253 		}
2254 
2255 		if (!pick)
2256 			pick = ssk;
2257 	}
2258 
2259 	if (pick)
2260 		return pick;
2261 
2262 	/* use backup only if there are no progresses anywhere */
2263 	return min_stale_count > 1 ? backup : NULL;
2264 }
2265 
2266 bool __mptcp_retransmit_pending_data(struct sock *sk)
2267 {
2268 	struct mptcp_data_frag *cur, *rtx_head;
2269 	struct mptcp_sock *msk = mptcp_sk(sk);
2270 
2271 	if (__mptcp_check_fallback(msk))
2272 		return false;
2273 
2274 	if (tcp_rtx_and_write_queues_empty(sk))
2275 		return false;
2276 
2277 	/* the closing socket has some data untransmitted and/or unacked:
2278 	 * some data in the mptcp rtx queue has not really xmitted yet.
2279 	 * keep it simple and re-inject the whole mptcp level rtx queue
2280 	 */
2281 	mptcp_data_lock(sk);
2282 	__mptcp_clean_una_wakeup(sk);
2283 	rtx_head = mptcp_rtx_head(sk);
2284 	if (!rtx_head) {
2285 		mptcp_data_unlock(sk);
2286 		return false;
2287 	}
2288 
2289 	msk->recovery_snd_nxt = msk->snd_nxt;
2290 	msk->recovery = true;
2291 	mptcp_data_unlock(sk);
2292 
2293 	msk->first_pending = rtx_head;
2294 	msk->snd_burst = 0;
2295 
2296 	/* be sure to clear the "sent status" on all re-injected fragments */
2297 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2298 		if (!cur->already_sent)
2299 			break;
2300 		cur->already_sent = 0;
2301 	}
2302 
2303 	return true;
2304 }
2305 
2306 /* flags for __mptcp_close_ssk() */
2307 #define MPTCP_CF_PUSH		BIT(1)
2308 #define MPTCP_CF_FASTCLOSE	BIT(2)
2309 
2310 /* subflow sockets can be either outgoing (connect) or incoming
2311  * (accept).
2312  *
2313  * Outgoing subflows use in-kernel sockets.
2314  * Incoming subflows do not have their own 'struct socket' allocated,
2315  * so we need to use tcp_close() after detaching them from the mptcp
2316  * parent socket.
2317  */
2318 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2319 			      struct mptcp_subflow_context *subflow,
2320 			      unsigned int flags)
2321 {
2322 	struct mptcp_sock *msk = mptcp_sk(sk);
2323 	bool dispose_it, need_push = false;
2324 
2325 	/* If the first subflow moved to a close state before accept, e.g. due
2326 	 * to an incoming reset, mptcp either:
2327 	 * - if either the subflow or the msk are dead, destroy the context
2328 	 *   (the subflow socket is deleted by inet_child_forget) and the msk
2329 	 * - otherwise do nothing at the moment and take action at accept and/or
2330 	 *   listener shutdown - user-space must be able to accept() the closed
2331 	 *   socket.
2332 	 */
2333 	if (msk->in_accept_queue && msk->first == ssk) {
2334 		if (!sock_flag(sk, SOCK_DEAD) && !sock_flag(ssk, SOCK_DEAD))
2335 			return;
2336 
2337 		/* ensure later check in mptcp_worker() will dispose the msk */
2338 		sock_set_flag(sk, SOCK_DEAD);
2339 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2340 		mptcp_subflow_drop_ctx(ssk);
2341 		goto out_release;
2342 	}
2343 
2344 	dispose_it = msk->free_first || ssk != msk->first;
2345 	if (dispose_it)
2346 		list_del(&subflow->node);
2347 
2348 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2349 
2350 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2351 		/* be sure to force the tcp_disconnect() path,
2352 		 * to generate the egress reset
2353 		 */
2354 		ssk->sk_lingertime = 0;
2355 		sock_set_flag(ssk, SOCK_LINGER);
2356 		subflow->send_fastclose = 1;
2357 	}
2358 
2359 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2360 	if (!dispose_it) {
2361 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2362 		 * disconnect should never fail
2363 		 */
2364 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2365 		mptcp_subflow_ctx_reset(subflow);
2366 		release_sock(ssk);
2367 
2368 		goto out;
2369 	}
2370 
2371 	subflow->disposable = 1;
2372 
2373 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2374 	 * the ssk has been already destroyed, we just need to release the
2375 	 * reference owned by msk;
2376 	 */
2377 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2378 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2379 		kfree_rcu(subflow, rcu);
2380 	} else {
2381 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2382 		__tcp_close(ssk, 0);
2383 
2384 		/* close acquired an extra ref */
2385 		__sock_put(ssk);
2386 	}
2387 
2388 out_release:
2389 	release_sock(ssk);
2390 
2391 	sock_put(ssk);
2392 
2393 	if (ssk == msk->first)
2394 		WRITE_ONCE(msk->first, NULL);
2395 
2396 out:
2397 	if (need_push)
2398 		__mptcp_push_pending(sk, 0);
2399 }
2400 
2401 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2402 		     struct mptcp_subflow_context *subflow)
2403 {
2404 	if (sk->sk_state == TCP_ESTABLISHED)
2405 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2406 
2407 	/* subflow aborted before reaching the fully_established status
2408 	 * attempt the creation of the next subflow
2409 	 */
2410 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2411 
2412 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2413 }
2414 
2415 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2416 {
2417 	return 0;
2418 }
2419 
2420 static void __mptcp_close_subflow(struct sock *sk)
2421 {
2422 	struct mptcp_subflow_context *subflow, *tmp;
2423 	struct mptcp_sock *msk = mptcp_sk(sk);
2424 
2425 	might_sleep();
2426 
2427 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2428 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2429 
2430 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2431 			continue;
2432 
2433 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2434 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2435 			continue;
2436 
2437 		mptcp_close_ssk(sk, ssk, subflow);
2438 	}
2439 
2440 }
2441 
2442 static bool mptcp_should_close(const struct sock *sk)
2443 {
2444 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2445 	struct mptcp_subflow_context *subflow;
2446 
2447 	if (delta >= TCP_TIMEWAIT_LEN || mptcp_sk(sk)->in_accept_queue)
2448 		return true;
2449 
2450 	/* if all subflows are in closed status don't bother with additional
2451 	 * timeout
2452 	 */
2453 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2454 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2455 		    TCP_CLOSE)
2456 			return false;
2457 	}
2458 	return true;
2459 }
2460 
2461 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2462 {
2463 	struct mptcp_subflow_context *subflow, *tmp;
2464 	struct sock *sk = (struct sock *)msk;
2465 
2466 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2467 		return;
2468 
2469 	mptcp_token_destroy(msk);
2470 
2471 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2472 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2473 		bool slow;
2474 
2475 		slow = lock_sock_fast(tcp_sk);
2476 		if (tcp_sk->sk_state != TCP_CLOSE) {
2477 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2478 			tcp_set_state(tcp_sk, TCP_CLOSE);
2479 		}
2480 		unlock_sock_fast(tcp_sk, slow);
2481 	}
2482 
2483 	/* Mirror the tcp_reset() error propagation */
2484 	switch (sk->sk_state) {
2485 	case TCP_SYN_SENT:
2486 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2487 		break;
2488 	case TCP_CLOSE_WAIT:
2489 		WRITE_ONCE(sk->sk_err, EPIPE);
2490 		break;
2491 	case TCP_CLOSE:
2492 		return;
2493 	default:
2494 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2495 	}
2496 
2497 	inet_sk_state_store(sk, TCP_CLOSE);
2498 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2499 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2500 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2501 
2502 	/* the calling mptcp_worker will properly destroy the socket */
2503 	if (sock_flag(sk, SOCK_DEAD))
2504 		return;
2505 
2506 	sk->sk_state_change(sk);
2507 	sk_error_report(sk);
2508 }
2509 
2510 static void __mptcp_retrans(struct sock *sk)
2511 {
2512 	struct mptcp_sock *msk = mptcp_sk(sk);
2513 	struct mptcp_subflow_context *subflow;
2514 	struct mptcp_sendmsg_info info = {};
2515 	struct mptcp_data_frag *dfrag;
2516 	struct sock *ssk;
2517 	int ret, err;
2518 	u16 len = 0;
2519 
2520 	mptcp_clean_una_wakeup(sk);
2521 
2522 	/* first check ssk: need to kick "stale" logic */
2523 	err = mptcp_sched_get_retrans(msk);
2524 	dfrag = mptcp_rtx_head(sk);
2525 	if (!dfrag) {
2526 		if (mptcp_data_fin_enabled(msk)) {
2527 			struct inet_connection_sock *icsk = inet_csk(sk);
2528 
2529 			icsk->icsk_retransmits++;
2530 			mptcp_set_datafin_timeout(sk);
2531 			mptcp_send_ack(msk);
2532 
2533 			goto reset_timer;
2534 		}
2535 
2536 		if (!mptcp_send_head(sk))
2537 			return;
2538 
2539 		goto reset_timer;
2540 	}
2541 
2542 	if (err)
2543 		goto reset_timer;
2544 
2545 	mptcp_for_each_subflow(msk, subflow) {
2546 		if (READ_ONCE(subflow->scheduled)) {
2547 			u16 copied = 0;
2548 
2549 			mptcp_subflow_set_scheduled(subflow, false);
2550 
2551 			ssk = mptcp_subflow_tcp_sock(subflow);
2552 
2553 			lock_sock(ssk);
2554 
2555 			/* limit retransmission to the bytes already sent on some subflows */
2556 			info.sent = 0;
2557 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2558 								    dfrag->already_sent;
2559 			while (info.sent < info.limit) {
2560 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2561 				if (ret <= 0)
2562 					break;
2563 
2564 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2565 				copied += ret;
2566 				info.sent += ret;
2567 			}
2568 			if (copied) {
2569 				len = max(copied, len);
2570 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2571 					 info.size_goal);
2572 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2573 			}
2574 
2575 			release_sock(ssk);
2576 		}
2577 	}
2578 
2579 	msk->bytes_retrans += len;
2580 	dfrag->already_sent = max(dfrag->already_sent, len);
2581 
2582 reset_timer:
2583 	mptcp_check_and_set_pending(sk);
2584 
2585 	if (!mptcp_timer_pending(sk))
2586 		mptcp_reset_timer(sk);
2587 }
2588 
2589 /* schedule the timeout timer for the relevant event: either close timeout
2590  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2591  */
2592 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
2593 {
2594 	struct sock *sk = (struct sock *)msk;
2595 	unsigned long timeout, close_timeout;
2596 
2597 	if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
2598 		return;
2599 
2600 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2601 
2602 	/* the close timeout takes precedence on the fail one, and here at least one of
2603 	 * them is active
2604 	 */
2605 	timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
2606 
2607 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2608 }
2609 
2610 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2611 {
2612 	struct sock *ssk = msk->first;
2613 	bool slow;
2614 
2615 	if (!ssk)
2616 		return;
2617 
2618 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2619 
2620 	slow = lock_sock_fast(ssk);
2621 	mptcp_subflow_reset(ssk);
2622 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2623 	unlock_sock_fast(ssk, slow);
2624 
2625 	mptcp_reset_timeout(msk, 0);
2626 }
2627 
2628 static void mptcp_do_fastclose(struct sock *sk)
2629 {
2630 	struct mptcp_subflow_context *subflow, *tmp;
2631 	struct mptcp_sock *msk = mptcp_sk(sk);
2632 
2633 	inet_sk_state_store(sk, TCP_CLOSE);
2634 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2635 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2636 				  subflow, MPTCP_CF_FASTCLOSE);
2637 }
2638 
2639 static void mptcp_worker(struct work_struct *work)
2640 {
2641 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2642 	struct sock *sk = (struct sock *)msk;
2643 	unsigned long fail_tout;
2644 	int state;
2645 
2646 	lock_sock(sk);
2647 	state = sk->sk_state;
2648 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2649 		goto unlock;
2650 
2651 	mptcp_check_fastclose(msk);
2652 
2653 	mptcp_pm_nl_work(msk);
2654 
2655 	mptcp_check_send_data_fin(sk);
2656 	mptcp_check_data_fin_ack(sk);
2657 	mptcp_check_data_fin(sk);
2658 
2659 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2660 		__mptcp_close_subflow(sk);
2661 
2662 	/* There is no point in keeping around an orphaned sk timedout or
2663 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2664 	 * even if it is orphaned and in FIN_WAIT2 state
2665 	 */
2666 	if (sock_flag(sk, SOCK_DEAD)) {
2667 		if (mptcp_should_close(sk))
2668 			mptcp_do_fastclose(sk);
2669 
2670 		if (sk->sk_state == TCP_CLOSE) {
2671 			__mptcp_destroy_sock(sk);
2672 			goto unlock;
2673 		}
2674 	}
2675 
2676 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2677 		__mptcp_retrans(sk);
2678 
2679 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2680 	if (fail_tout && time_after(jiffies, fail_tout))
2681 		mptcp_mp_fail_no_response(msk);
2682 
2683 unlock:
2684 	release_sock(sk);
2685 	sock_put(sk);
2686 }
2687 
2688 static void __mptcp_init_sock(struct sock *sk)
2689 {
2690 	struct mptcp_sock *msk = mptcp_sk(sk);
2691 
2692 	INIT_LIST_HEAD(&msk->conn_list);
2693 	INIT_LIST_HEAD(&msk->join_list);
2694 	INIT_LIST_HEAD(&msk->rtx_queue);
2695 	INIT_WORK(&msk->work, mptcp_worker);
2696 	__skb_queue_head_init(&msk->receive_queue);
2697 	msk->out_of_order_queue = RB_ROOT;
2698 	msk->first_pending = NULL;
2699 	msk->rmem_fwd_alloc = 0;
2700 	WRITE_ONCE(msk->rmem_released, 0);
2701 	msk->timer_ival = TCP_RTO_MIN;
2702 
2703 	WRITE_ONCE(msk->first, NULL);
2704 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2705 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2706 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2707 	msk->recovery = false;
2708 	msk->subflow_id = 1;
2709 
2710 	mptcp_pm_data_init(msk);
2711 
2712 	/* re-use the csk retrans timer for MPTCP-level retrans */
2713 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2714 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2715 }
2716 
2717 static void mptcp_ca_reset(struct sock *sk)
2718 {
2719 	struct inet_connection_sock *icsk = inet_csk(sk);
2720 
2721 	tcp_assign_congestion_control(sk);
2722 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2723 
2724 	/* no need to keep a reference to the ops, the name will suffice */
2725 	tcp_cleanup_congestion_control(sk);
2726 	icsk->icsk_ca_ops = NULL;
2727 }
2728 
2729 static int mptcp_init_sock(struct sock *sk)
2730 {
2731 	struct net *net = sock_net(sk);
2732 	int ret;
2733 
2734 	__mptcp_init_sock(sk);
2735 
2736 	if (!mptcp_is_enabled(net))
2737 		return -ENOPROTOOPT;
2738 
2739 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2740 		return -ENOMEM;
2741 
2742 	ret = mptcp_init_sched(mptcp_sk(sk),
2743 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2744 	if (ret)
2745 		return ret;
2746 
2747 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2748 
2749 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2750 	 * propagate the correct value
2751 	 */
2752 	mptcp_ca_reset(sk);
2753 
2754 	sk_sockets_allocated_inc(sk);
2755 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2756 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2757 
2758 	return 0;
2759 }
2760 
2761 static void __mptcp_clear_xmit(struct sock *sk)
2762 {
2763 	struct mptcp_sock *msk = mptcp_sk(sk);
2764 	struct mptcp_data_frag *dtmp, *dfrag;
2765 
2766 	WRITE_ONCE(msk->first_pending, NULL);
2767 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2768 		dfrag_clear(sk, dfrag);
2769 }
2770 
2771 void mptcp_cancel_work(struct sock *sk)
2772 {
2773 	struct mptcp_sock *msk = mptcp_sk(sk);
2774 
2775 	if (cancel_work_sync(&msk->work))
2776 		__sock_put(sk);
2777 }
2778 
2779 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2780 {
2781 	lock_sock(ssk);
2782 
2783 	switch (ssk->sk_state) {
2784 	case TCP_LISTEN:
2785 		if (!(how & RCV_SHUTDOWN))
2786 			break;
2787 		fallthrough;
2788 	case TCP_SYN_SENT:
2789 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2790 		break;
2791 	default:
2792 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2793 			pr_debug("Fallback");
2794 			ssk->sk_shutdown |= how;
2795 			tcp_shutdown(ssk, how);
2796 
2797 			/* simulate the data_fin ack reception to let the state
2798 			 * machine move forward
2799 			 */
2800 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2801 			mptcp_schedule_work(sk);
2802 		} else {
2803 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2804 			tcp_send_ack(ssk);
2805 			if (!mptcp_timer_pending(sk))
2806 				mptcp_reset_timer(sk);
2807 		}
2808 		break;
2809 	}
2810 
2811 	release_sock(ssk);
2812 }
2813 
2814 static const unsigned char new_state[16] = {
2815 	/* current state:     new state:      action:	*/
2816 	[0 /* (Invalid) */] = TCP_CLOSE,
2817 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2818 	[TCP_SYN_SENT]      = TCP_CLOSE,
2819 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2820 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2821 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2822 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2823 	[TCP_CLOSE]         = TCP_CLOSE,
2824 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2825 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2826 	[TCP_LISTEN]        = TCP_CLOSE,
2827 	[TCP_CLOSING]       = TCP_CLOSING,
2828 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2829 };
2830 
2831 static int mptcp_close_state(struct sock *sk)
2832 {
2833 	int next = (int)new_state[sk->sk_state];
2834 	int ns = next & TCP_STATE_MASK;
2835 
2836 	inet_sk_state_store(sk, ns);
2837 
2838 	return next & TCP_ACTION_FIN;
2839 }
2840 
2841 static void mptcp_check_send_data_fin(struct sock *sk)
2842 {
2843 	struct mptcp_subflow_context *subflow;
2844 	struct mptcp_sock *msk = mptcp_sk(sk);
2845 
2846 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2847 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2848 		 msk->snd_nxt, msk->write_seq);
2849 
2850 	/* we still need to enqueue subflows or not really shutting down,
2851 	 * skip this
2852 	 */
2853 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2854 	    mptcp_send_head(sk))
2855 		return;
2856 
2857 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2858 
2859 	mptcp_for_each_subflow(msk, subflow) {
2860 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2861 
2862 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2863 	}
2864 }
2865 
2866 static void __mptcp_wr_shutdown(struct sock *sk)
2867 {
2868 	struct mptcp_sock *msk = mptcp_sk(sk);
2869 
2870 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2871 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2872 		 !!mptcp_send_head(sk));
2873 
2874 	/* will be ignored by fallback sockets */
2875 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2876 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2877 
2878 	mptcp_check_send_data_fin(sk);
2879 }
2880 
2881 static void __mptcp_destroy_sock(struct sock *sk)
2882 {
2883 	struct mptcp_sock *msk = mptcp_sk(sk);
2884 
2885 	pr_debug("msk=%p", msk);
2886 
2887 	might_sleep();
2888 
2889 	mptcp_stop_timer(sk);
2890 	sk_stop_timer(sk, &sk->sk_timer);
2891 	msk->pm.status = 0;
2892 	mptcp_release_sched(msk);
2893 
2894 	sk->sk_prot->destroy(sk);
2895 
2896 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2897 	WARN_ON_ONCE(msk->rmem_released);
2898 	sk_stream_kill_queues(sk);
2899 	xfrm_sk_free_policy(sk);
2900 
2901 	sock_put(sk);
2902 }
2903 
2904 void __mptcp_unaccepted_force_close(struct sock *sk)
2905 {
2906 	sock_set_flag(sk, SOCK_DEAD);
2907 	mptcp_do_fastclose(sk);
2908 	__mptcp_destroy_sock(sk);
2909 }
2910 
2911 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2912 {
2913 	/* Concurrent splices from sk_receive_queue into receive_queue will
2914 	 * always show at least one non-empty queue when checked in this order.
2915 	 */
2916 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
2917 	    skb_queue_empty_lockless(&msk->receive_queue))
2918 		return 0;
2919 
2920 	return EPOLLIN | EPOLLRDNORM;
2921 }
2922 
2923 static void mptcp_check_listen_stop(struct sock *sk)
2924 {
2925 	struct sock *ssk;
2926 
2927 	if (inet_sk_state_load(sk) != TCP_LISTEN)
2928 		return;
2929 
2930 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2931 	ssk = mptcp_sk(sk)->first;
2932 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
2933 		return;
2934 
2935 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2936 	tcp_set_state(ssk, TCP_CLOSE);
2937 	mptcp_subflow_queue_clean(sk, ssk);
2938 	inet_csk_listen_stop(ssk);
2939 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
2940 	release_sock(ssk);
2941 }
2942 
2943 bool __mptcp_close(struct sock *sk, long timeout)
2944 {
2945 	struct mptcp_subflow_context *subflow;
2946 	struct mptcp_sock *msk = mptcp_sk(sk);
2947 	bool do_cancel_work = false;
2948 	int subflows_alive = 0;
2949 
2950 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2951 
2952 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2953 		mptcp_check_listen_stop(sk);
2954 		inet_sk_state_store(sk, TCP_CLOSE);
2955 		goto cleanup;
2956 	}
2957 
2958 	if (mptcp_check_readable(msk) || timeout < 0) {
2959 		/* If the msk has read data, or the caller explicitly ask it,
2960 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
2961 		 */
2962 		mptcp_do_fastclose(sk);
2963 		timeout = 0;
2964 	} else if (mptcp_close_state(sk)) {
2965 		__mptcp_wr_shutdown(sk);
2966 	}
2967 
2968 	sk_stream_wait_close(sk, timeout);
2969 
2970 cleanup:
2971 	/* orphan all the subflows */
2972 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2973 	mptcp_for_each_subflow(msk, subflow) {
2974 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2975 		bool slow = lock_sock_fast_nested(ssk);
2976 
2977 		subflows_alive += ssk->sk_state != TCP_CLOSE;
2978 
2979 		/* since the close timeout takes precedence on the fail one,
2980 		 * cancel the latter
2981 		 */
2982 		if (ssk == msk->first)
2983 			subflow->fail_tout = 0;
2984 
2985 		/* detach from the parent socket, but allow data_ready to
2986 		 * push incoming data into the mptcp stack, to properly ack it
2987 		 */
2988 		ssk->sk_socket = NULL;
2989 		ssk->sk_wq = NULL;
2990 		unlock_sock_fast(ssk, slow);
2991 	}
2992 	sock_orphan(sk);
2993 
2994 	/* all the subflows are closed, only timeout can change the msk
2995 	 * state, let's not keep resources busy for no reasons
2996 	 */
2997 	if (subflows_alive == 0)
2998 		inet_sk_state_store(sk, TCP_CLOSE);
2999 
3000 	sock_hold(sk);
3001 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3002 	if (msk->token)
3003 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3004 
3005 	if (sk->sk_state == TCP_CLOSE) {
3006 		__mptcp_destroy_sock(sk);
3007 		do_cancel_work = true;
3008 	} else {
3009 		mptcp_reset_timeout(msk, 0);
3010 	}
3011 
3012 	return do_cancel_work;
3013 }
3014 
3015 static void mptcp_close(struct sock *sk, long timeout)
3016 {
3017 	bool do_cancel_work;
3018 
3019 	lock_sock(sk);
3020 
3021 	do_cancel_work = __mptcp_close(sk, timeout);
3022 	release_sock(sk);
3023 	if (do_cancel_work)
3024 		mptcp_cancel_work(sk);
3025 
3026 	sock_put(sk);
3027 }
3028 
3029 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3030 {
3031 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3032 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3033 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3034 
3035 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3036 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3037 
3038 	if (msk6 && ssk6) {
3039 		msk6->saddr = ssk6->saddr;
3040 		msk6->flow_label = ssk6->flow_label;
3041 	}
3042 #endif
3043 
3044 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3045 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3046 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3047 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3048 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3049 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3050 }
3051 
3052 static int mptcp_disconnect(struct sock *sk, int flags)
3053 {
3054 	struct mptcp_sock *msk = mptcp_sk(sk);
3055 
3056 	/* Deny disconnect if other threads are blocked in sk_wait_event()
3057 	 * or inet_wait_for_connect().
3058 	 */
3059 	if (sk->sk_wait_pending)
3060 		return -EBUSY;
3061 
3062 	/* We are on the fastopen error path. We can't call straight into the
3063 	 * subflows cleanup code due to lock nesting (we are already under
3064 	 * msk->firstsocket lock).
3065 	 */
3066 	if (msk->fastopening)
3067 		return -EBUSY;
3068 
3069 	mptcp_check_listen_stop(sk);
3070 	inet_sk_state_store(sk, TCP_CLOSE);
3071 
3072 	mptcp_stop_timer(sk);
3073 	sk_stop_timer(sk, &sk->sk_timer);
3074 
3075 	if (msk->token)
3076 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3077 
3078 	/* msk->subflow is still intact, the following will not free the first
3079 	 * subflow
3080 	 */
3081 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3082 	WRITE_ONCE(msk->flags, 0);
3083 	msk->cb_flags = 0;
3084 	msk->push_pending = 0;
3085 	msk->recovery = false;
3086 	msk->can_ack = false;
3087 	msk->fully_established = false;
3088 	msk->rcv_data_fin = false;
3089 	msk->snd_data_fin_enable = false;
3090 	msk->rcv_fastclose = false;
3091 	msk->use_64bit_ack = false;
3092 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3093 	mptcp_pm_data_reset(msk);
3094 	mptcp_ca_reset(sk);
3095 	msk->bytes_acked = 0;
3096 	msk->bytes_received = 0;
3097 	msk->bytes_sent = 0;
3098 	msk->bytes_retrans = 0;
3099 
3100 	WRITE_ONCE(sk->sk_shutdown, 0);
3101 	sk_error_report(sk);
3102 	return 0;
3103 }
3104 
3105 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3106 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3107 {
3108 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3109 
3110 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3111 }
3112 #endif
3113 
3114 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3115 				 const struct mptcp_options_received *mp_opt,
3116 				 struct sock *ssk,
3117 				 struct request_sock *req)
3118 {
3119 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3120 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3121 	struct mptcp_sock *msk;
3122 
3123 	if (!nsk)
3124 		return NULL;
3125 
3126 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3127 	if (nsk->sk_family == AF_INET6)
3128 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3129 #endif
3130 
3131 	nsk->sk_wait_pending = 0;
3132 	__mptcp_init_sock(nsk);
3133 
3134 	msk = mptcp_sk(nsk);
3135 	msk->local_key = subflow_req->local_key;
3136 	msk->token = subflow_req->token;
3137 	msk->in_accept_queue = 1;
3138 	WRITE_ONCE(msk->fully_established, false);
3139 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3140 		WRITE_ONCE(msk->csum_enabled, true);
3141 
3142 	msk->write_seq = subflow_req->idsn + 1;
3143 	msk->snd_nxt = msk->write_seq;
3144 	msk->snd_una = msk->write_seq;
3145 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
3146 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3147 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3148 
3149 	/* passive msk is created after the first/MPC subflow */
3150 	msk->subflow_id = 2;
3151 
3152 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3153 	security_inet_csk_clone(nsk, req);
3154 
3155 	/* this can't race with mptcp_close(), as the msk is
3156 	 * not yet exposted to user-space
3157 	 */
3158 	inet_sk_state_store(nsk, TCP_ESTABLISHED);
3159 
3160 	/* The msk maintain a ref to each subflow in the connections list */
3161 	WRITE_ONCE(msk->first, ssk);
3162 	list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
3163 	sock_hold(ssk);
3164 
3165 	/* new mpc subflow takes ownership of the newly
3166 	 * created mptcp socket
3167 	 */
3168 	mptcp_token_accept(subflow_req, msk);
3169 
3170 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3171 	 * uses the correct data
3172 	 */
3173 	mptcp_copy_inaddrs(nsk, ssk);
3174 	mptcp_propagate_sndbuf(nsk, ssk);
3175 
3176 	mptcp_rcv_space_init(msk, ssk);
3177 	bh_unlock_sock(nsk);
3178 
3179 	/* note: the newly allocated socket refcount is 2 now */
3180 	return nsk;
3181 }
3182 
3183 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3184 {
3185 	const struct tcp_sock *tp = tcp_sk(ssk);
3186 
3187 	msk->rcvq_space.copied = 0;
3188 	msk->rcvq_space.rtt_us = 0;
3189 
3190 	msk->rcvq_space.time = tp->tcp_mstamp;
3191 
3192 	/* initial rcv_space offering made to peer */
3193 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3194 				      TCP_INIT_CWND * tp->advmss);
3195 	if (msk->rcvq_space.space == 0)
3196 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3197 
3198 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3199 }
3200 
3201 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err,
3202 				 bool kern)
3203 {
3204 	struct sock *newsk;
3205 
3206 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3207 	newsk = inet_csk_accept(ssk, flags, err, kern);
3208 	if (!newsk)
3209 		return NULL;
3210 
3211 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3212 	if (sk_is_mptcp(newsk)) {
3213 		struct mptcp_subflow_context *subflow;
3214 		struct sock *new_mptcp_sock;
3215 
3216 		subflow = mptcp_subflow_ctx(newsk);
3217 		new_mptcp_sock = subflow->conn;
3218 
3219 		/* is_mptcp should be false if subflow->conn is missing, see
3220 		 * subflow_syn_recv_sock()
3221 		 */
3222 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3223 			tcp_sk(newsk)->is_mptcp = 0;
3224 			goto out;
3225 		}
3226 
3227 		newsk = new_mptcp_sock;
3228 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3229 	} else {
3230 		MPTCP_INC_STATS(sock_net(ssk),
3231 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3232 	}
3233 
3234 out:
3235 	newsk->sk_kern_sock = kern;
3236 	return newsk;
3237 }
3238 
3239 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3240 {
3241 	struct mptcp_subflow_context *subflow, *tmp;
3242 	struct sock *sk = (struct sock *)msk;
3243 
3244 	__mptcp_clear_xmit(sk);
3245 
3246 	/* join list will be eventually flushed (with rst) at sock lock release time */
3247 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3248 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3249 
3250 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3251 	mptcp_data_lock(sk);
3252 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3253 	__skb_queue_purge(&sk->sk_receive_queue);
3254 	skb_rbtree_purge(&msk->out_of_order_queue);
3255 	mptcp_data_unlock(sk);
3256 
3257 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3258 	 * inet_sock_destruct() will dispose it
3259 	 */
3260 	sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3261 	msk->rmem_fwd_alloc = 0;
3262 	mptcp_token_destroy(msk);
3263 	mptcp_pm_free_anno_list(msk);
3264 	mptcp_free_local_addr_list(msk);
3265 }
3266 
3267 static void mptcp_destroy(struct sock *sk)
3268 {
3269 	struct mptcp_sock *msk = mptcp_sk(sk);
3270 
3271 	/* allow the following to close even the initial subflow */
3272 	msk->free_first = 1;
3273 	mptcp_destroy_common(msk, 0);
3274 	sk_sockets_allocated_dec(sk);
3275 }
3276 
3277 void __mptcp_data_acked(struct sock *sk)
3278 {
3279 	if (!sock_owned_by_user(sk))
3280 		__mptcp_clean_una(sk);
3281 	else
3282 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3283 
3284 	if (mptcp_pending_data_fin_ack(sk))
3285 		mptcp_schedule_work(sk);
3286 }
3287 
3288 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3289 {
3290 	if (!mptcp_send_head(sk))
3291 		return;
3292 
3293 	if (!sock_owned_by_user(sk))
3294 		__mptcp_subflow_push_pending(sk, ssk, false);
3295 	else
3296 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3297 }
3298 
3299 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3300 				      BIT(MPTCP_RETRANSMIT) | \
3301 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3302 
3303 /* processes deferred events and flush wmem */
3304 static void mptcp_release_cb(struct sock *sk)
3305 	__must_hold(&sk->sk_lock.slock)
3306 {
3307 	struct mptcp_sock *msk = mptcp_sk(sk);
3308 
3309 	for (;;) {
3310 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3311 				      msk->push_pending;
3312 		struct list_head join_list;
3313 
3314 		if (!flags)
3315 			break;
3316 
3317 		INIT_LIST_HEAD(&join_list);
3318 		list_splice_init(&msk->join_list, &join_list);
3319 
3320 		/* the following actions acquire the subflow socket lock
3321 		 *
3322 		 * 1) can't be invoked in atomic scope
3323 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3324 		 *    datapath acquires the msk socket spinlock while helding
3325 		 *    the subflow socket lock
3326 		 */
3327 		msk->push_pending = 0;
3328 		msk->cb_flags &= ~flags;
3329 		spin_unlock_bh(&sk->sk_lock.slock);
3330 
3331 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3332 			__mptcp_flush_join_list(sk, &join_list);
3333 		if (flags & BIT(MPTCP_PUSH_PENDING))
3334 			__mptcp_push_pending(sk, 0);
3335 		if (flags & BIT(MPTCP_RETRANSMIT))
3336 			__mptcp_retrans(sk);
3337 
3338 		cond_resched();
3339 		spin_lock_bh(&sk->sk_lock.slock);
3340 	}
3341 
3342 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3343 		__mptcp_clean_una_wakeup(sk);
3344 	if (unlikely(msk->cb_flags)) {
3345 		/* be sure to set the current sk state before tacking actions
3346 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3347 		 */
3348 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3349 			__mptcp_set_connected(sk);
3350 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3351 			__mptcp_error_report(sk);
3352 	}
3353 
3354 	__mptcp_update_rmem(sk);
3355 }
3356 
3357 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3358  * TCP can't schedule delack timer before the subflow is fully established.
3359  * MPTCP uses the delack timer to do 3rd ack retransmissions
3360  */
3361 static void schedule_3rdack_retransmission(struct sock *ssk)
3362 {
3363 	struct inet_connection_sock *icsk = inet_csk(ssk);
3364 	struct tcp_sock *tp = tcp_sk(ssk);
3365 	unsigned long timeout;
3366 
3367 	if (mptcp_subflow_ctx(ssk)->fully_established)
3368 		return;
3369 
3370 	/* reschedule with a timeout above RTT, as we must look only for drop */
3371 	if (tp->srtt_us)
3372 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3373 	else
3374 		timeout = TCP_TIMEOUT_INIT;
3375 	timeout += jiffies;
3376 
3377 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3378 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3379 	icsk->icsk_ack.timeout = timeout;
3380 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3381 }
3382 
3383 void mptcp_subflow_process_delegated(struct sock *ssk)
3384 {
3385 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3386 	struct sock *sk = subflow->conn;
3387 
3388 	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3389 		mptcp_data_lock(sk);
3390 		if (!sock_owned_by_user(sk))
3391 			__mptcp_subflow_push_pending(sk, ssk, true);
3392 		else
3393 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3394 		mptcp_data_unlock(sk);
3395 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3396 	}
3397 	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3398 		schedule_3rdack_retransmission(ssk);
3399 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3400 	}
3401 }
3402 
3403 static int mptcp_hash(struct sock *sk)
3404 {
3405 	/* should never be called,
3406 	 * we hash the TCP subflows not the master socket
3407 	 */
3408 	WARN_ON_ONCE(1);
3409 	return 0;
3410 }
3411 
3412 static void mptcp_unhash(struct sock *sk)
3413 {
3414 	/* called from sk_common_release(), but nothing to do here */
3415 }
3416 
3417 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3418 {
3419 	struct mptcp_sock *msk = mptcp_sk(sk);
3420 
3421 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3422 	if (WARN_ON_ONCE(!msk->first))
3423 		return -EINVAL;
3424 
3425 	return inet_csk_get_port(msk->first, snum);
3426 }
3427 
3428 void mptcp_finish_connect(struct sock *ssk)
3429 {
3430 	struct mptcp_subflow_context *subflow;
3431 	struct mptcp_sock *msk;
3432 	struct sock *sk;
3433 
3434 	subflow = mptcp_subflow_ctx(ssk);
3435 	sk = subflow->conn;
3436 	msk = mptcp_sk(sk);
3437 
3438 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3439 
3440 	subflow->map_seq = subflow->iasn;
3441 	subflow->map_subflow_seq = 1;
3442 
3443 	/* the socket is not connected yet, no msk/subflow ops can access/race
3444 	 * accessing the field below
3445 	 */
3446 	WRITE_ONCE(msk->local_key, subflow->local_key);
3447 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3448 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3449 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3450 
3451 	mptcp_pm_new_connection(msk, ssk, 0);
3452 
3453 	mptcp_rcv_space_init(msk, ssk);
3454 }
3455 
3456 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3457 {
3458 	write_lock_bh(&sk->sk_callback_lock);
3459 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3460 	sk_set_socket(sk, parent);
3461 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3462 	write_unlock_bh(&sk->sk_callback_lock);
3463 }
3464 
3465 bool mptcp_finish_join(struct sock *ssk)
3466 {
3467 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3468 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3469 	struct sock *parent = (void *)msk;
3470 	bool ret = true;
3471 
3472 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3473 
3474 	/* mptcp socket already closing? */
3475 	if (!mptcp_is_fully_established(parent)) {
3476 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3477 		return false;
3478 	}
3479 
3480 	/* active subflow, already present inside the conn_list */
3481 	if (!list_empty(&subflow->node)) {
3482 		mptcp_subflow_joined(msk, ssk);
3483 		return true;
3484 	}
3485 
3486 	if (!mptcp_pm_allow_new_subflow(msk))
3487 		goto err_prohibited;
3488 
3489 	/* If we can't acquire msk socket lock here, let the release callback
3490 	 * handle it
3491 	 */
3492 	mptcp_data_lock(parent);
3493 	if (!sock_owned_by_user(parent)) {
3494 		ret = __mptcp_finish_join(msk, ssk);
3495 		if (ret) {
3496 			sock_hold(ssk);
3497 			list_add_tail(&subflow->node, &msk->conn_list);
3498 		}
3499 	} else {
3500 		sock_hold(ssk);
3501 		list_add_tail(&subflow->node, &msk->join_list);
3502 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3503 	}
3504 	mptcp_data_unlock(parent);
3505 
3506 	if (!ret) {
3507 err_prohibited:
3508 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3509 		return false;
3510 	}
3511 
3512 	return true;
3513 }
3514 
3515 static void mptcp_shutdown(struct sock *sk, int how)
3516 {
3517 	pr_debug("sk=%p, how=%d", sk, how);
3518 
3519 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3520 		__mptcp_wr_shutdown(sk);
3521 }
3522 
3523 static int mptcp_forward_alloc_get(const struct sock *sk)
3524 {
3525 	return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3526 }
3527 
3528 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3529 {
3530 	const struct sock *sk = (void *)msk;
3531 	u64 delta;
3532 
3533 	if (sk->sk_state == TCP_LISTEN)
3534 		return -EINVAL;
3535 
3536 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3537 		return 0;
3538 
3539 	delta = msk->write_seq - v;
3540 	if (__mptcp_check_fallback(msk) && msk->first) {
3541 		struct tcp_sock *tp = tcp_sk(msk->first);
3542 
3543 		/* the first subflow is disconnected after close - see
3544 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3545 		 * so ignore that status, too.
3546 		 */
3547 		if (!((1 << msk->first->sk_state) &
3548 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3549 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3550 	}
3551 	if (delta > INT_MAX)
3552 		delta = INT_MAX;
3553 
3554 	return (int)delta;
3555 }
3556 
3557 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3558 {
3559 	struct mptcp_sock *msk = mptcp_sk(sk);
3560 	bool slow;
3561 
3562 	switch (cmd) {
3563 	case SIOCINQ:
3564 		if (sk->sk_state == TCP_LISTEN)
3565 			return -EINVAL;
3566 
3567 		lock_sock(sk);
3568 		__mptcp_move_skbs(msk);
3569 		*karg = mptcp_inq_hint(sk);
3570 		release_sock(sk);
3571 		break;
3572 	case SIOCOUTQ:
3573 		slow = lock_sock_fast(sk);
3574 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3575 		unlock_sock_fast(sk, slow);
3576 		break;
3577 	case SIOCOUTQNSD:
3578 		slow = lock_sock_fast(sk);
3579 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3580 		unlock_sock_fast(sk, slow);
3581 		break;
3582 	default:
3583 		return -ENOIOCTLCMD;
3584 	}
3585 
3586 	return 0;
3587 }
3588 
3589 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3590 					 struct mptcp_subflow_context *subflow)
3591 {
3592 	subflow->request_mptcp = 0;
3593 	__mptcp_do_fallback(msk);
3594 }
3595 
3596 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3597 {
3598 	struct mptcp_subflow_context *subflow;
3599 	struct mptcp_sock *msk = mptcp_sk(sk);
3600 	int err = -EINVAL;
3601 	struct sock *ssk;
3602 
3603 	ssk = __mptcp_nmpc_sk(msk);
3604 	if (IS_ERR(ssk))
3605 		return PTR_ERR(ssk);
3606 
3607 	inet_sk_state_store(sk, TCP_SYN_SENT);
3608 	subflow = mptcp_subflow_ctx(ssk);
3609 #ifdef CONFIG_TCP_MD5SIG
3610 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3611 	 * TCP option space.
3612 	 */
3613 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3614 		mptcp_subflow_early_fallback(msk, subflow);
3615 #endif
3616 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3617 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3618 		mptcp_subflow_early_fallback(msk, subflow);
3619 	}
3620 	if (likely(!__mptcp_check_fallback(msk)))
3621 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3622 
3623 	/* if reaching here via the fastopen/sendmsg path, the caller already
3624 	 * acquired the subflow socket lock, too.
3625 	 */
3626 	if (!msk->fastopening)
3627 		lock_sock(ssk);
3628 
3629 	/* the following mirrors closely a very small chunk of code from
3630 	 * __inet_stream_connect()
3631 	 */
3632 	if (ssk->sk_state != TCP_CLOSE)
3633 		goto out;
3634 
3635 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3636 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3637 		if (err)
3638 			goto out;
3639 	}
3640 
3641 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3642 	if (err < 0)
3643 		goto out;
3644 
3645 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3646 
3647 out:
3648 	if (!msk->fastopening)
3649 		release_sock(ssk);
3650 
3651 	/* on successful connect, the msk state will be moved to established by
3652 	 * subflow_finish_connect()
3653 	 */
3654 	if (unlikely(err)) {
3655 		/* avoid leaving a dangling token in an unconnected socket */
3656 		mptcp_token_destroy(msk);
3657 		inet_sk_state_store(sk, TCP_CLOSE);
3658 		return err;
3659 	}
3660 
3661 	mptcp_copy_inaddrs(sk, ssk);
3662 	return 0;
3663 }
3664 
3665 static struct proto mptcp_prot = {
3666 	.name		= "MPTCP",
3667 	.owner		= THIS_MODULE,
3668 	.init		= mptcp_init_sock,
3669 	.connect	= mptcp_connect,
3670 	.disconnect	= mptcp_disconnect,
3671 	.close		= mptcp_close,
3672 	.accept		= mptcp_accept,
3673 	.setsockopt	= mptcp_setsockopt,
3674 	.getsockopt	= mptcp_getsockopt,
3675 	.shutdown	= mptcp_shutdown,
3676 	.destroy	= mptcp_destroy,
3677 	.sendmsg	= mptcp_sendmsg,
3678 	.ioctl		= mptcp_ioctl,
3679 	.recvmsg	= mptcp_recvmsg,
3680 	.release_cb	= mptcp_release_cb,
3681 	.hash		= mptcp_hash,
3682 	.unhash		= mptcp_unhash,
3683 	.get_port	= mptcp_get_port,
3684 	.forward_alloc_get	= mptcp_forward_alloc_get,
3685 	.sockets_allocated	= &mptcp_sockets_allocated,
3686 
3687 	.memory_allocated	= &tcp_memory_allocated,
3688 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3689 
3690 	.memory_pressure	= &tcp_memory_pressure,
3691 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3692 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3693 	.sysctl_mem	= sysctl_tcp_mem,
3694 	.obj_size	= sizeof(struct mptcp_sock),
3695 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3696 	.no_autobind	= true,
3697 };
3698 
3699 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3700 {
3701 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3702 	struct sock *ssk, *sk = sock->sk;
3703 	int err = -EINVAL;
3704 
3705 	lock_sock(sk);
3706 	ssk = __mptcp_nmpc_sk(msk);
3707 	if (IS_ERR(ssk)) {
3708 		err = PTR_ERR(ssk);
3709 		goto unlock;
3710 	}
3711 
3712 	if (sk->sk_family == AF_INET)
3713 		err = inet_bind_sk(ssk, uaddr, addr_len);
3714 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3715 	else if (sk->sk_family == AF_INET6)
3716 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3717 #endif
3718 	if (!err)
3719 		mptcp_copy_inaddrs(sk, ssk);
3720 
3721 unlock:
3722 	release_sock(sk);
3723 	return err;
3724 }
3725 
3726 static int mptcp_listen(struct socket *sock, int backlog)
3727 {
3728 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3729 	struct sock *sk = sock->sk;
3730 	struct sock *ssk;
3731 	int err;
3732 
3733 	pr_debug("msk=%p", msk);
3734 
3735 	lock_sock(sk);
3736 
3737 	err = -EINVAL;
3738 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3739 		goto unlock;
3740 
3741 	ssk = __mptcp_nmpc_sk(msk);
3742 	if (IS_ERR(ssk)) {
3743 		err = PTR_ERR(ssk);
3744 		goto unlock;
3745 	}
3746 
3747 	inet_sk_state_store(sk, TCP_LISTEN);
3748 	sock_set_flag(sk, SOCK_RCU_FREE);
3749 
3750 	lock_sock(ssk);
3751 	err = __inet_listen_sk(ssk, backlog);
3752 	release_sock(ssk);
3753 	inet_sk_state_store(sk, inet_sk_state_load(ssk));
3754 
3755 	if (!err) {
3756 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3757 		mptcp_copy_inaddrs(sk, ssk);
3758 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3759 	}
3760 
3761 unlock:
3762 	release_sock(sk);
3763 	return err;
3764 }
3765 
3766 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3767 			       int flags, bool kern)
3768 {
3769 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3770 	struct sock *ssk, *newsk;
3771 	int err;
3772 
3773 	pr_debug("msk=%p", msk);
3774 
3775 	/* Buggy applications can call accept on socket states other then LISTEN
3776 	 * but no need to allocate the first subflow just to error out.
3777 	 */
3778 	ssk = READ_ONCE(msk->first);
3779 	if (!ssk)
3780 		return -EINVAL;
3781 
3782 	newsk = mptcp_accept(ssk, flags, &err, kern);
3783 	if (!newsk)
3784 		return err;
3785 
3786 	lock_sock(newsk);
3787 
3788 	__inet_accept(sock, newsock, newsk);
3789 	if (!mptcp_is_tcpsk(newsock->sk)) {
3790 		struct mptcp_sock *msk = mptcp_sk(newsk);
3791 		struct mptcp_subflow_context *subflow;
3792 
3793 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3794 		msk->in_accept_queue = 0;
3795 
3796 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3797 		 * This is needed so NOSPACE flag can be set from tcp stack.
3798 		 */
3799 		mptcp_for_each_subflow(msk, subflow) {
3800 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3801 
3802 			if (!ssk->sk_socket)
3803 				mptcp_sock_graft(ssk, newsock);
3804 		}
3805 
3806 		/* Do late cleanup for the first subflow as necessary. Also
3807 		 * deal with bad peers not doing a complete shutdown.
3808 		 */
3809 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3810 			__mptcp_close_ssk(newsk, msk->first,
3811 					  mptcp_subflow_ctx(msk->first), 0);
3812 			if (unlikely(list_is_singular(&msk->conn_list)))
3813 				inet_sk_state_store(newsk, TCP_CLOSE);
3814 		}
3815 	}
3816 	release_sock(newsk);
3817 
3818 	return 0;
3819 }
3820 
3821 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3822 {
3823 	struct sock *sk = (struct sock *)msk;
3824 
3825 	if (sk_stream_is_writeable(sk))
3826 		return EPOLLOUT | EPOLLWRNORM;
3827 
3828 	mptcp_set_nospace(sk);
3829 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3830 	if (sk_stream_is_writeable(sk))
3831 		return EPOLLOUT | EPOLLWRNORM;
3832 
3833 	return 0;
3834 }
3835 
3836 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3837 			   struct poll_table_struct *wait)
3838 {
3839 	struct sock *sk = sock->sk;
3840 	struct mptcp_sock *msk;
3841 	__poll_t mask = 0;
3842 	u8 shutdown;
3843 	int state;
3844 
3845 	msk = mptcp_sk(sk);
3846 	sock_poll_wait(file, sock, wait);
3847 
3848 	state = inet_sk_state_load(sk);
3849 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3850 	if (state == TCP_LISTEN) {
3851 		struct sock *ssk = READ_ONCE(msk->first);
3852 
3853 		if (WARN_ON_ONCE(!ssk))
3854 			return 0;
3855 
3856 		return inet_csk_listen_poll(ssk);
3857 	}
3858 
3859 	shutdown = READ_ONCE(sk->sk_shutdown);
3860 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3861 		mask |= EPOLLHUP;
3862 	if (shutdown & RCV_SHUTDOWN)
3863 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3864 
3865 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3866 		mask |= mptcp_check_readable(msk);
3867 		if (shutdown & SEND_SHUTDOWN)
3868 			mask |= EPOLLOUT | EPOLLWRNORM;
3869 		else
3870 			mask |= mptcp_check_writeable(msk);
3871 	} else if (state == TCP_SYN_SENT &&
3872 		   inet_test_bit(DEFER_CONNECT, sk)) {
3873 		/* cf tcp_poll() note about TFO */
3874 		mask |= EPOLLOUT | EPOLLWRNORM;
3875 	}
3876 
3877 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3878 	smp_rmb();
3879 	if (READ_ONCE(sk->sk_err))
3880 		mask |= EPOLLERR;
3881 
3882 	return mask;
3883 }
3884 
3885 static const struct proto_ops mptcp_stream_ops = {
3886 	.family		   = PF_INET,
3887 	.owner		   = THIS_MODULE,
3888 	.release	   = inet_release,
3889 	.bind		   = mptcp_bind,
3890 	.connect	   = inet_stream_connect,
3891 	.socketpair	   = sock_no_socketpair,
3892 	.accept		   = mptcp_stream_accept,
3893 	.getname	   = inet_getname,
3894 	.poll		   = mptcp_poll,
3895 	.ioctl		   = inet_ioctl,
3896 	.gettstamp	   = sock_gettstamp,
3897 	.listen		   = mptcp_listen,
3898 	.shutdown	   = inet_shutdown,
3899 	.setsockopt	   = sock_common_setsockopt,
3900 	.getsockopt	   = sock_common_getsockopt,
3901 	.sendmsg	   = inet_sendmsg,
3902 	.recvmsg	   = inet_recvmsg,
3903 	.mmap		   = sock_no_mmap,
3904 };
3905 
3906 static struct inet_protosw mptcp_protosw = {
3907 	.type		= SOCK_STREAM,
3908 	.protocol	= IPPROTO_MPTCP,
3909 	.prot		= &mptcp_prot,
3910 	.ops		= &mptcp_stream_ops,
3911 	.flags		= INET_PROTOSW_ICSK,
3912 };
3913 
3914 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3915 {
3916 	struct mptcp_delegated_action *delegated;
3917 	struct mptcp_subflow_context *subflow;
3918 	int work_done = 0;
3919 
3920 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3921 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3922 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3923 
3924 		bh_lock_sock_nested(ssk);
3925 		if (!sock_owned_by_user(ssk) &&
3926 		    mptcp_subflow_has_delegated_action(subflow))
3927 			mptcp_subflow_process_delegated(ssk);
3928 		/* ... elsewhere tcp_release_cb_override already processed
3929 		 * the action or will do at next release_sock().
3930 		 * In both case must dequeue the subflow here - on the same
3931 		 * CPU that scheduled it.
3932 		 */
3933 		bh_unlock_sock(ssk);
3934 		sock_put(ssk);
3935 
3936 		if (++work_done == budget)
3937 			return budget;
3938 	}
3939 
3940 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3941 	 * will not try accessing the NULL napi->dev ptr
3942 	 */
3943 	napi_complete_done(napi, 0);
3944 	return work_done;
3945 }
3946 
3947 void __init mptcp_proto_init(void)
3948 {
3949 	struct mptcp_delegated_action *delegated;
3950 	int cpu;
3951 
3952 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3953 
3954 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3955 		panic("Failed to allocate MPTCP pcpu counter\n");
3956 
3957 	init_dummy_netdev(&mptcp_napi_dev);
3958 	for_each_possible_cpu(cpu) {
3959 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3960 		INIT_LIST_HEAD(&delegated->head);
3961 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
3962 				  mptcp_napi_poll);
3963 		napi_enable(&delegated->napi);
3964 	}
3965 
3966 	mptcp_subflow_init();
3967 	mptcp_pm_init();
3968 	mptcp_sched_init();
3969 	mptcp_token_init();
3970 
3971 	if (proto_register(&mptcp_prot, 1) != 0)
3972 		panic("Failed to register MPTCP proto.\n");
3973 
3974 	inet_register_protosw(&mptcp_protosw);
3975 
3976 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3977 }
3978 
3979 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3980 static const struct proto_ops mptcp_v6_stream_ops = {
3981 	.family		   = PF_INET6,
3982 	.owner		   = THIS_MODULE,
3983 	.release	   = inet6_release,
3984 	.bind		   = mptcp_bind,
3985 	.connect	   = inet_stream_connect,
3986 	.socketpair	   = sock_no_socketpair,
3987 	.accept		   = mptcp_stream_accept,
3988 	.getname	   = inet6_getname,
3989 	.poll		   = mptcp_poll,
3990 	.ioctl		   = inet6_ioctl,
3991 	.gettstamp	   = sock_gettstamp,
3992 	.listen		   = mptcp_listen,
3993 	.shutdown	   = inet_shutdown,
3994 	.setsockopt	   = sock_common_setsockopt,
3995 	.getsockopt	   = sock_common_getsockopt,
3996 	.sendmsg	   = inet6_sendmsg,
3997 	.recvmsg	   = inet6_recvmsg,
3998 	.mmap		   = sock_no_mmap,
3999 #ifdef CONFIG_COMPAT
4000 	.compat_ioctl	   = inet6_compat_ioctl,
4001 #endif
4002 };
4003 
4004 static struct proto mptcp_v6_prot;
4005 
4006 static struct inet_protosw mptcp_v6_protosw = {
4007 	.type		= SOCK_STREAM,
4008 	.protocol	= IPPROTO_MPTCP,
4009 	.prot		= &mptcp_v6_prot,
4010 	.ops		= &mptcp_v6_stream_ops,
4011 	.flags		= INET_PROTOSW_ICSK,
4012 };
4013 
4014 int __init mptcp_proto_v6_init(void)
4015 {
4016 	int err;
4017 
4018 	mptcp_v6_prot = mptcp_prot;
4019 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4020 	mptcp_v6_prot.slab = NULL;
4021 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4022 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4023 
4024 	err = proto_register(&mptcp_v6_prot, 1);
4025 	if (err)
4026 		return err;
4027 
4028 	err = inet6_register_protosw(&mptcp_v6_protosw);
4029 	if (err)
4030 		proto_unregister(&mptcp_v6_prot);
4031 
4032 	return err;
4033 }
4034 #endif
4035