1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 111 mptcp_sockopt_sync(msk, msk->first); 112 } 113 114 return msk->first; 115 } 116 117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 118 { 119 sk_drops_add(sk, skb); 120 __kfree_skb(skb); 121 } 122 123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 124 { 125 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 126 mptcp_sk(sk)->rmem_fwd_alloc + size); 127 } 128 129 static void mptcp_rmem_charge(struct sock *sk, int size) 130 { 131 mptcp_rmem_fwd_alloc_add(sk, -size); 132 } 133 134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 135 struct sk_buff *from) 136 { 137 bool fragstolen; 138 int delta; 139 140 if (MPTCP_SKB_CB(from)->offset || 141 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) || 142 !skb_try_coalesce(to, from, &fragstolen, &delta)) 143 return false; 144 145 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 146 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 147 to->len, MPTCP_SKB_CB(from)->end_seq); 148 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 149 150 /* note the fwd memory can reach a negative value after accounting 151 * for the delta, but the later skb free will restore a non 152 * negative one 153 */ 154 atomic_add(delta, &sk->sk_rmem_alloc); 155 mptcp_rmem_charge(sk, delta); 156 kfree_skb_partial(from, fragstolen); 157 158 return true; 159 } 160 161 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 162 struct sk_buff *from) 163 { 164 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 165 return false; 166 167 return mptcp_try_coalesce((struct sock *)msk, to, from); 168 } 169 170 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 171 { 172 amount >>= PAGE_SHIFT; 173 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 174 __sk_mem_reduce_allocated(sk, amount); 175 } 176 177 static void mptcp_rmem_uncharge(struct sock *sk, int size) 178 { 179 struct mptcp_sock *msk = mptcp_sk(sk); 180 int reclaimable; 181 182 mptcp_rmem_fwd_alloc_add(sk, size); 183 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 184 185 /* see sk_mem_uncharge() for the rationale behind the following schema */ 186 if (unlikely(reclaimable >= PAGE_SIZE)) 187 __mptcp_rmem_reclaim(sk, reclaimable); 188 } 189 190 static void mptcp_rfree(struct sk_buff *skb) 191 { 192 unsigned int len = skb->truesize; 193 struct sock *sk = skb->sk; 194 195 atomic_sub(len, &sk->sk_rmem_alloc); 196 mptcp_rmem_uncharge(sk, len); 197 } 198 199 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 200 { 201 skb_orphan(skb); 202 skb->sk = sk; 203 skb->destructor = mptcp_rfree; 204 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 205 mptcp_rmem_charge(sk, skb->truesize); 206 } 207 208 /* "inspired" by tcp_data_queue_ofo(), main differences: 209 * - use mptcp seqs 210 * - don't cope with sacks 211 */ 212 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 213 { 214 struct sock *sk = (struct sock *)msk; 215 struct rb_node **p, *parent; 216 u64 seq, end_seq, max_seq; 217 struct sk_buff *skb1; 218 219 seq = MPTCP_SKB_CB(skb)->map_seq; 220 end_seq = MPTCP_SKB_CB(skb)->end_seq; 221 max_seq = atomic64_read(&msk->rcv_wnd_sent); 222 223 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 224 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 225 if (after64(end_seq, max_seq)) { 226 /* out of window */ 227 mptcp_drop(sk, skb); 228 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 229 (unsigned long long)end_seq - (unsigned long)max_seq, 230 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 232 return; 233 } 234 235 p = &msk->out_of_order_queue.rb_node; 236 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 237 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 238 rb_link_node(&skb->rbnode, NULL, p); 239 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 240 msk->ooo_last_skb = skb; 241 goto end; 242 } 243 244 /* with 2 subflows, adding at end of ooo queue is quite likely 245 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 246 */ 247 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 249 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 250 return; 251 } 252 253 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 254 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 255 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 256 parent = &msk->ooo_last_skb->rbnode; 257 p = &parent->rb_right; 258 goto insert; 259 } 260 261 /* Find place to insert this segment. Handle overlaps on the way. */ 262 parent = NULL; 263 while (*p) { 264 parent = *p; 265 skb1 = rb_to_skb(parent); 266 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 267 p = &parent->rb_left; 268 continue; 269 } 270 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 271 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 272 /* All the bits are present. Drop. */ 273 mptcp_drop(sk, skb); 274 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 275 return; 276 } 277 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 278 /* partial overlap: 279 * | skb | 280 * | skb1 | 281 * continue traversing 282 */ 283 } else { 284 /* skb's seq == skb1's seq and skb covers skb1. 285 * Replace skb1 with skb. 286 */ 287 rb_replace_node(&skb1->rbnode, &skb->rbnode, 288 &msk->out_of_order_queue); 289 mptcp_drop(sk, skb1); 290 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 291 goto merge_right; 292 } 293 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 294 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 295 return; 296 } 297 p = &parent->rb_right; 298 } 299 300 insert: 301 /* Insert segment into RB tree. */ 302 rb_link_node(&skb->rbnode, parent, p); 303 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 304 305 merge_right: 306 /* Remove other segments covered by skb. */ 307 while ((skb1 = skb_rb_next(skb)) != NULL) { 308 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 309 break; 310 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 311 mptcp_drop(sk, skb1); 312 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 313 } 314 /* If there is no skb after us, we are the last_skb ! */ 315 if (!skb1) 316 msk->ooo_last_skb = skb; 317 318 end: 319 skb_condense(skb); 320 mptcp_set_owner_r(skb, sk); 321 } 322 323 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 324 { 325 struct mptcp_sock *msk = mptcp_sk(sk); 326 int amt, amount; 327 328 if (size <= msk->rmem_fwd_alloc) 329 return true; 330 331 size -= msk->rmem_fwd_alloc; 332 amt = sk_mem_pages(size); 333 amount = amt << PAGE_SHIFT; 334 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 335 return false; 336 337 mptcp_rmem_fwd_alloc_add(sk, amount); 338 return true; 339 } 340 341 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 342 struct sk_buff *skb, unsigned int offset, 343 size_t copy_len) 344 { 345 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 346 struct sock *sk = (struct sock *)msk; 347 struct sk_buff *tail; 348 bool has_rxtstamp; 349 350 __skb_unlink(skb, &ssk->sk_receive_queue); 351 352 skb_ext_reset(skb); 353 skb_orphan(skb); 354 355 /* try to fetch required memory from subflow */ 356 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) { 357 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 358 goto drop; 359 } 360 361 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 362 363 /* the skb map_seq accounts for the skb offset: 364 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 365 * value 366 */ 367 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 368 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 369 MPTCP_SKB_CB(skb)->offset = offset; 370 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 371 372 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 373 /* in sequence */ 374 msk->bytes_received += copy_len; 375 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 376 tail = skb_peek_tail(&sk->sk_receive_queue); 377 if (tail && mptcp_try_coalesce(sk, tail, skb)) 378 return true; 379 380 mptcp_set_owner_r(skb, sk); 381 __skb_queue_tail(&sk->sk_receive_queue, skb); 382 return true; 383 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 384 mptcp_data_queue_ofo(msk, skb); 385 return false; 386 } 387 388 /* old data, keep it simple and drop the whole pkt, sender 389 * will retransmit as needed, if needed. 390 */ 391 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 392 drop: 393 mptcp_drop(sk, skb); 394 return false; 395 } 396 397 static void mptcp_stop_rtx_timer(struct sock *sk) 398 { 399 struct inet_connection_sock *icsk = inet_csk(sk); 400 401 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 402 mptcp_sk(sk)->timer_ival = 0; 403 } 404 405 static void mptcp_close_wake_up(struct sock *sk) 406 { 407 if (sock_flag(sk, SOCK_DEAD)) 408 return; 409 410 sk->sk_state_change(sk); 411 if (sk->sk_shutdown == SHUTDOWN_MASK || 412 sk->sk_state == TCP_CLOSE) 413 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 414 else 415 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 416 } 417 418 static bool mptcp_pending_data_fin_ack(struct sock *sk) 419 { 420 struct mptcp_sock *msk = mptcp_sk(sk); 421 422 return ((1 << sk->sk_state) & 423 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 424 msk->write_seq == READ_ONCE(msk->snd_una); 425 } 426 427 static void mptcp_check_data_fin_ack(struct sock *sk) 428 { 429 struct mptcp_sock *msk = mptcp_sk(sk); 430 431 /* Look for an acknowledged DATA_FIN */ 432 if (mptcp_pending_data_fin_ack(sk)) { 433 WRITE_ONCE(msk->snd_data_fin_enable, 0); 434 435 switch (sk->sk_state) { 436 case TCP_FIN_WAIT1: 437 mptcp_set_state(sk, TCP_FIN_WAIT2); 438 break; 439 case TCP_CLOSING: 440 case TCP_LAST_ACK: 441 mptcp_set_state(sk, TCP_CLOSE); 442 break; 443 } 444 445 mptcp_close_wake_up(sk); 446 } 447 } 448 449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 450 { 451 struct mptcp_sock *msk = mptcp_sk(sk); 452 453 if (READ_ONCE(msk->rcv_data_fin) && 454 ((1 << sk->sk_state) & 455 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 456 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 457 458 if (msk->ack_seq == rcv_data_fin_seq) { 459 if (seq) 460 *seq = rcv_data_fin_seq; 461 462 return true; 463 } 464 } 465 466 return false; 467 } 468 469 static void mptcp_set_datafin_timeout(struct sock *sk) 470 { 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 u32 retransmits; 473 474 retransmits = min_t(u32, icsk->icsk_retransmits, 475 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 476 477 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 478 } 479 480 static void __mptcp_set_timeout(struct sock *sk, long tout) 481 { 482 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 483 } 484 485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 486 { 487 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 488 489 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 490 inet_csk(ssk)->icsk_timeout - jiffies : 0; 491 } 492 493 static void mptcp_set_timeout(struct sock *sk) 494 { 495 struct mptcp_subflow_context *subflow; 496 long tout = 0; 497 498 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 499 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 500 __mptcp_set_timeout(sk, tout); 501 } 502 503 static inline bool tcp_can_send_ack(const struct sock *ssk) 504 { 505 return !((1 << inet_sk_state_load(ssk)) & 506 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 507 } 508 509 void __mptcp_subflow_send_ack(struct sock *ssk) 510 { 511 if (tcp_can_send_ack(ssk)) 512 tcp_send_ack(ssk); 513 } 514 515 static void mptcp_subflow_send_ack(struct sock *ssk) 516 { 517 bool slow; 518 519 slow = lock_sock_fast(ssk); 520 __mptcp_subflow_send_ack(ssk); 521 unlock_sock_fast(ssk, slow); 522 } 523 524 static void mptcp_send_ack(struct mptcp_sock *msk) 525 { 526 struct mptcp_subflow_context *subflow; 527 528 mptcp_for_each_subflow(msk, subflow) 529 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 530 } 531 532 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 533 { 534 bool slow; 535 536 slow = lock_sock_fast(ssk); 537 if (tcp_can_send_ack(ssk)) 538 tcp_cleanup_rbuf(ssk, copied); 539 unlock_sock_fast(ssk, slow); 540 } 541 542 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 543 { 544 const struct inet_connection_sock *icsk = inet_csk(ssk); 545 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 546 const struct tcp_sock *tp = tcp_sk(ssk); 547 548 return (ack_pending & ICSK_ACK_SCHED) && 549 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 550 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 551 (rx_empty && ack_pending & 552 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 553 } 554 555 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 556 { 557 int old_space = READ_ONCE(msk->old_wspace); 558 struct mptcp_subflow_context *subflow; 559 struct sock *sk = (struct sock *)msk; 560 int space = __mptcp_space(sk); 561 bool cleanup, rx_empty; 562 563 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 564 rx_empty = !__mptcp_rmem(sk) && copied; 565 566 mptcp_for_each_subflow(msk, subflow) { 567 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 568 569 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 570 mptcp_subflow_cleanup_rbuf(ssk, copied); 571 } 572 } 573 574 static bool mptcp_check_data_fin(struct sock *sk) 575 { 576 struct mptcp_sock *msk = mptcp_sk(sk); 577 u64 rcv_data_fin_seq; 578 bool ret = false; 579 580 /* Need to ack a DATA_FIN received from a peer while this side 581 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 582 * msk->rcv_data_fin was set when parsing the incoming options 583 * at the subflow level and the msk lock was not held, so this 584 * is the first opportunity to act on the DATA_FIN and change 585 * the msk state. 586 * 587 * If we are caught up to the sequence number of the incoming 588 * DATA_FIN, send the DATA_ACK now and do state transition. If 589 * not caught up, do nothing and let the recv code send DATA_ACK 590 * when catching up. 591 */ 592 593 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 594 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 595 WRITE_ONCE(msk->rcv_data_fin, 0); 596 597 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 598 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 599 600 switch (sk->sk_state) { 601 case TCP_ESTABLISHED: 602 mptcp_set_state(sk, TCP_CLOSE_WAIT); 603 break; 604 case TCP_FIN_WAIT1: 605 mptcp_set_state(sk, TCP_CLOSING); 606 break; 607 case TCP_FIN_WAIT2: 608 mptcp_set_state(sk, TCP_CLOSE); 609 break; 610 default: 611 /* Other states not expected */ 612 WARN_ON_ONCE(1); 613 break; 614 } 615 616 ret = true; 617 if (!__mptcp_check_fallback(msk)) 618 mptcp_send_ack(msk); 619 mptcp_close_wake_up(sk); 620 } 621 return ret; 622 } 623 624 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 625 { 626 if (READ_ONCE(msk->allow_infinite_fallback)) { 627 MPTCP_INC_STATS(sock_net(ssk), 628 MPTCP_MIB_DSSCORRUPTIONFALLBACK); 629 mptcp_do_fallback(ssk); 630 } else { 631 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 632 mptcp_subflow_reset(ssk); 633 } 634 } 635 636 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 637 struct sock *ssk, 638 unsigned int *bytes) 639 { 640 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 641 struct sock *sk = (struct sock *)msk; 642 unsigned int moved = 0; 643 bool more_data_avail; 644 struct tcp_sock *tp; 645 bool done = false; 646 int sk_rbuf; 647 648 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 649 650 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 651 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 652 653 if (unlikely(ssk_rbuf > sk_rbuf)) { 654 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 655 sk_rbuf = ssk_rbuf; 656 } 657 } 658 659 pr_debug("msk=%p ssk=%p\n", msk, ssk); 660 tp = tcp_sk(ssk); 661 do { 662 u32 map_remaining, offset; 663 u32 seq = tp->copied_seq; 664 struct sk_buff *skb; 665 bool fin; 666 667 /* try to move as much data as available */ 668 map_remaining = subflow->map_data_len - 669 mptcp_subflow_get_map_offset(subflow); 670 671 skb = skb_peek(&ssk->sk_receive_queue); 672 if (!skb) { 673 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 674 * a different CPU can have already processed the pending 675 * data, stop here or we can enter an infinite loop 676 */ 677 if (!moved) 678 done = true; 679 break; 680 } 681 682 if (__mptcp_check_fallback(msk)) { 683 /* Under fallback skbs have no MPTCP extension and TCP could 684 * collapse them between the dummy map creation and the 685 * current dequeue. Be sure to adjust the map size. 686 */ 687 map_remaining = skb->len; 688 subflow->map_data_len = skb->len; 689 } 690 691 offset = seq - TCP_SKB_CB(skb)->seq; 692 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 693 if (fin) { 694 done = true; 695 seq++; 696 } 697 698 if (offset < skb->len) { 699 size_t len = skb->len - offset; 700 701 if (tp->urg_data) 702 done = true; 703 704 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 705 moved += len; 706 seq += len; 707 708 if (unlikely(map_remaining < len)) { 709 DEBUG_NET_WARN_ON_ONCE(1); 710 mptcp_dss_corruption(msk, ssk); 711 } 712 } else { 713 if (unlikely(!fin)) { 714 DEBUG_NET_WARN_ON_ONCE(1); 715 mptcp_dss_corruption(msk, ssk); 716 } 717 718 sk_eat_skb(ssk, skb); 719 done = true; 720 } 721 722 WRITE_ONCE(tp->copied_seq, seq); 723 more_data_avail = mptcp_subflow_data_available(ssk); 724 725 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 726 done = true; 727 break; 728 } 729 } while (more_data_avail); 730 731 *bytes += moved; 732 return done; 733 } 734 735 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 736 { 737 struct sock *sk = (struct sock *)msk; 738 struct sk_buff *skb, *tail; 739 bool moved = false; 740 struct rb_node *p; 741 u64 end_seq; 742 743 p = rb_first(&msk->out_of_order_queue); 744 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 745 while (p) { 746 skb = rb_to_skb(p); 747 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 748 break; 749 750 p = rb_next(p); 751 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 752 753 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 754 msk->ack_seq))) { 755 mptcp_drop(sk, skb); 756 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 757 continue; 758 } 759 760 end_seq = MPTCP_SKB_CB(skb)->end_seq; 761 tail = skb_peek_tail(&sk->sk_receive_queue); 762 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 763 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 764 765 /* skip overlapping data, if any */ 766 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 767 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 768 delta); 769 MPTCP_SKB_CB(skb)->offset += delta; 770 MPTCP_SKB_CB(skb)->map_seq += delta; 771 __skb_queue_tail(&sk->sk_receive_queue, skb); 772 } 773 msk->bytes_received += end_seq - msk->ack_seq; 774 msk->ack_seq = end_seq; 775 moved = true; 776 } 777 return moved; 778 } 779 780 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 781 { 782 int err = sock_error(ssk); 783 int ssk_state; 784 785 if (!err) 786 return false; 787 788 /* only propagate errors on fallen-back sockets or 789 * on MPC connect 790 */ 791 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 792 return false; 793 794 /* We need to propagate only transition to CLOSE state. 795 * Orphaned socket will see such state change via 796 * subflow_sched_work_if_closed() and that path will properly 797 * destroy the msk as needed. 798 */ 799 ssk_state = inet_sk_state_load(ssk); 800 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 801 mptcp_set_state(sk, ssk_state); 802 WRITE_ONCE(sk->sk_err, -err); 803 804 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 805 smp_wmb(); 806 sk_error_report(sk); 807 return true; 808 } 809 810 void __mptcp_error_report(struct sock *sk) 811 { 812 struct mptcp_subflow_context *subflow; 813 struct mptcp_sock *msk = mptcp_sk(sk); 814 815 mptcp_for_each_subflow(msk, subflow) 816 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 817 break; 818 } 819 820 /* In most cases we will be able to lock the mptcp socket. If its already 821 * owned, we need to defer to the work queue to avoid ABBA deadlock. 822 */ 823 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 824 { 825 struct sock *sk = (struct sock *)msk; 826 unsigned int moved = 0; 827 828 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 829 __mptcp_ofo_queue(msk); 830 if (unlikely(ssk->sk_err)) { 831 if (!sock_owned_by_user(sk)) 832 __mptcp_error_report(sk); 833 else 834 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 835 } 836 837 /* If the moves have caught up with the DATA_FIN sequence number 838 * it's time to ack the DATA_FIN and change socket state, but 839 * this is not a good place to change state. Let the workqueue 840 * do it. 841 */ 842 if (mptcp_pending_data_fin(sk, NULL)) 843 mptcp_schedule_work(sk); 844 return moved > 0; 845 } 846 847 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 848 { 849 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 850 struct mptcp_sock *msk = mptcp_sk(sk); 851 int sk_rbuf, ssk_rbuf; 852 853 /* The peer can send data while we are shutting down this 854 * subflow at msk destruction time, but we must avoid enqueuing 855 * more data to the msk receive queue 856 */ 857 if (unlikely(subflow->disposable)) 858 return; 859 860 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 861 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 862 if (unlikely(ssk_rbuf > sk_rbuf)) 863 sk_rbuf = ssk_rbuf; 864 865 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 866 if (__mptcp_rmem(sk) > sk_rbuf) 867 return; 868 869 /* Wake-up the reader only for in-sequence data */ 870 mptcp_data_lock(sk); 871 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 872 sk->sk_data_ready(sk); 873 mptcp_data_unlock(sk); 874 } 875 876 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 877 { 878 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 879 WRITE_ONCE(msk->allow_infinite_fallback, false); 880 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 881 } 882 883 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 884 { 885 struct sock *sk = (struct sock *)msk; 886 887 if (sk->sk_state != TCP_ESTABLISHED) 888 return false; 889 890 /* attach to msk socket only after we are sure we will deal with it 891 * at close time 892 */ 893 if (sk->sk_socket && !ssk->sk_socket) 894 mptcp_sock_graft(ssk, sk->sk_socket); 895 896 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 897 mptcp_sockopt_sync_locked(msk, ssk); 898 mptcp_subflow_joined(msk, ssk); 899 mptcp_stop_tout_timer(sk); 900 __mptcp_propagate_sndbuf(sk, ssk); 901 return true; 902 } 903 904 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 905 { 906 struct mptcp_subflow_context *tmp, *subflow; 907 struct mptcp_sock *msk = mptcp_sk(sk); 908 909 list_for_each_entry_safe(subflow, tmp, join_list, node) { 910 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 911 bool slow = lock_sock_fast(ssk); 912 913 list_move_tail(&subflow->node, &msk->conn_list); 914 if (!__mptcp_finish_join(msk, ssk)) 915 mptcp_subflow_reset(ssk); 916 unlock_sock_fast(ssk, slow); 917 } 918 } 919 920 static bool mptcp_rtx_timer_pending(struct sock *sk) 921 { 922 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 923 } 924 925 static void mptcp_reset_rtx_timer(struct sock *sk) 926 { 927 struct inet_connection_sock *icsk = inet_csk(sk); 928 unsigned long tout; 929 930 /* prevent rescheduling on close */ 931 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 932 return; 933 934 tout = mptcp_sk(sk)->timer_ival; 935 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 936 } 937 938 bool mptcp_schedule_work(struct sock *sk) 939 { 940 if (inet_sk_state_load(sk) != TCP_CLOSE && 941 schedule_work(&mptcp_sk(sk)->work)) { 942 /* each subflow already holds a reference to the sk, and the 943 * workqueue is invoked by a subflow, so sk can't go away here. 944 */ 945 sock_hold(sk); 946 return true; 947 } 948 return false; 949 } 950 951 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 952 { 953 struct mptcp_subflow_context *subflow; 954 955 msk_owned_by_me(msk); 956 957 mptcp_for_each_subflow(msk, subflow) { 958 if (READ_ONCE(subflow->data_avail)) 959 return mptcp_subflow_tcp_sock(subflow); 960 } 961 962 return NULL; 963 } 964 965 static bool mptcp_skb_can_collapse_to(u64 write_seq, 966 const struct sk_buff *skb, 967 const struct mptcp_ext *mpext) 968 { 969 if (!tcp_skb_can_collapse_to(skb)) 970 return false; 971 972 /* can collapse only if MPTCP level sequence is in order and this 973 * mapping has not been xmitted yet 974 */ 975 return mpext && mpext->data_seq + mpext->data_len == write_seq && 976 !mpext->frozen; 977 } 978 979 /* we can append data to the given data frag if: 980 * - there is space available in the backing page_frag 981 * - the data frag tail matches the current page_frag free offset 982 * - the data frag end sequence number matches the current write seq 983 */ 984 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 985 const struct page_frag *pfrag, 986 const struct mptcp_data_frag *df) 987 { 988 return df && pfrag->page == df->page && 989 pfrag->size - pfrag->offset > 0 && 990 pfrag->offset == (df->offset + df->data_len) && 991 df->data_seq + df->data_len == msk->write_seq; 992 } 993 994 static void dfrag_uncharge(struct sock *sk, int len) 995 { 996 sk_mem_uncharge(sk, len); 997 sk_wmem_queued_add(sk, -len); 998 } 999 1000 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1001 { 1002 int len = dfrag->data_len + dfrag->overhead; 1003 1004 list_del(&dfrag->list); 1005 dfrag_uncharge(sk, len); 1006 put_page(dfrag->page); 1007 } 1008 1009 static void __mptcp_clean_una(struct sock *sk) 1010 { 1011 struct mptcp_sock *msk = mptcp_sk(sk); 1012 struct mptcp_data_frag *dtmp, *dfrag; 1013 u64 snd_una; 1014 1015 snd_una = msk->snd_una; 1016 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1017 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1018 break; 1019 1020 if (unlikely(dfrag == msk->first_pending)) { 1021 /* in recovery mode can see ack after the current snd head */ 1022 if (WARN_ON_ONCE(!msk->recovery)) 1023 break; 1024 1025 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1026 } 1027 1028 dfrag_clear(sk, dfrag); 1029 } 1030 1031 dfrag = mptcp_rtx_head(sk); 1032 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1033 u64 delta = snd_una - dfrag->data_seq; 1034 1035 /* prevent wrap around in recovery mode */ 1036 if (unlikely(delta > dfrag->already_sent)) { 1037 if (WARN_ON_ONCE(!msk->recovery)) 1038 goto out; 1039 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1040 goto out; 1041 dfrag->already_sent += delta - dfrag->already_sent; 1042 } 1043 1044 dfrag->data_seq += delta; 1045 dfrag->offset += delta; 1046 dfrag->data_len -= delta; 1047 dfrag->already_sent -= delta; 1048 1049 dfrag_uncharge(sk, delta); 1050 } 1051 1052 /* all retransmitted data acked, recovery completed */ 1053 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1054 msk->recovery = false; 1055 1056 out: 1057 if (snd_una == READ_ONCE(msk->snd_nxt) && 1058 snd_una == READ_ONCE(msk->write_seq)) { 1059 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1060 mptcp_stop_rtx_timer(sk); 1061 } else { 1062 mptcp_reset_rtx_timer(sk); 1063 } 1064 } 1065 1066 static void __mptcp_clean_una_wakeup(struct sock *sk) 1067 { 1068 lockdep_assert_held_once(&sk->sk_lock.slock); 1069 1070 __mptcp_clean_una(sk); 1071 mptcp_write_space(sk); 1072 } 1073 1074 static void mptcp_clean_una_wakeup(struct sock *sk) 1075 { 1076 mptcp_data_lock(sk); 1077 __mptcp_clean_una_wakeup(sk); 1078 mptcp_data_unlock(sk); 1079 } 1080 1081 static void mptcp_enter_memory_pressure(struct sock *sk) 1082 { 1083 struct mptcp_subflow_context *subflow; 1084 struct mptcp_sock *msk = mptcp_sk(sk); 1085 bool first = true; 1086 1087 mptcp_for_each_subflow(msk, subflow) { 1088 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1089 1090 if (first) 1091 tcp_enter_memory_pressure(ssk); 1092 sk_stream_moderate_sndbuf(ssk); 1093 1094 first = false; 1095 } 1096 __mptcp_sync_sndbuf(sk); 1097 } 1098 1099 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1100 * data 1101 */ 1102 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1103 { 1104 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1105 pfrag, sk->sk_allocation))) 1106 return true; 1107 1108 mptcp_enter_memory_pressure(sk); 1109 return false; 1110 } 1111 1112 static struct mptcp_data_frag * 1113 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1114 int orig_offset) 1115 { 1116 int offset = ALIGN(orig_offset, sizeof(long)); 1117 struct mptcp_data_frag *dfrag; 1118 1119 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1120 dfrag->data_len = 0; 1121 dfrag->data_seq = msk->write_seq; 1122 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1123 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1124 dfrag->already_sent = 0; 1125 dfrag->page = pfrag->page; 1126 1127 return dfrag; 1128 } 1129 1130 struct mptcp_sendmsg_info { 1131 int mss_now; 1132 int size_goal; 1133 u16 limit; 1134 u16 sent; 1135 unsigned int flags; 1136 bool data_lock_held; 1137 }; 1138 1139 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1140 u64 data_seq, int avail_size) 1141 { 1142 u64 window_end = mptcp_wnd_end(msk); 1143 u64 mptcp_snd_wnd; 1144 1145 if (__mptcp_check_fallback(msk)) 1146 return avail_size; 1147 1148 mptcp_snd_wnd = window_end - data_seq; 1149 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1150 1151 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1152 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1153 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1154 } 1155 1156 return avail_size; 1157 } 1158 1159 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1160 { 1161 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1162 1163 if (!mpext) 1164 return false; 1165 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1166 return true; 1167 } 1168 1169 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1170 { 1171 struct sk_buff *skb; 1172 1173 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1174 if (likely(skb)) { 1175 if (likely(__mptcp_add_ext(skb, gfp))) { 1176 skb_reserve(skb, MAX_TCP_HEADER); 1177 skb->ip_summed = CHECKSUM_PARTIAL; 1178 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1179 return skb; 1180 } 1181 __kfree_skb(skb); 1182 } else { 1183 mptcp_enter_memory_pressure(sk); 1184 } 1185 return NULL; 1186 } 1187 1188 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1189 { 1190 struct sk_buff *skb; 1191 1192 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1193 if (!skb) 1194 return NULL; 1195 1196 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1197 tcp_skb_entail(ssk, skb); 1198 return skb; 1199 } 1200 tcp_skb_tsorted_anchor_cleanup(skb); 1201 kfree_skb(skb); 1202 return NULL; 1203 } 1204 1205 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1206 { 1207 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1208 1209 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1210 } 1211 1212 /* note: this always recompute the csum on the whole skb, even 1213 * if we just appended a single frag. More status info needed 1214 */ 1215 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1216 { 1217 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1218 __wsum csum = ~csum_unfold(mpext->csum); 1219 int offset = skb->len - added; 1220 1221 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1222 } 1223 1224 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1225 struct sock *ssk, 1226 struct mptcp_ext *mpext) 1227 { 1228 if (!mpext) 1229 return; 1230 1231 mpext->infinite_map = 1; 1232 mpext->data_len = 0; 1233 1234 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1235 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1236 pr_fallback(msk); 1237 mptcp_do_fallback(ssk); 1238 } 1239 1240 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1241 1242 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1243 struct mptcp_data_frag *dfrag, 1244 struct mptcp_sendmsg_info *info) 1245 { 1246 u64 data_seq = dfrag->data_seq + info->sent; 1247 int offset = dfrag->offset + info->sent; 1248 struct mptcp_sock *msk = mptcp_sk(sk); 1249 bool zero_window_probe = false; 1250 struct mptcp_ext *mpext = NULL; 1251 bool can_coalesce = false; 1252 bool reuse_skb = true; 1253 struct sk_buff *skb; 1254 size_t copy; 1255 int i; 1256 1257 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1258 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1259 1260 if (WARN_ON_ONCE(info->sent > info->limit || 1261 info->limit > dfrag->data_len)) 1262 return 0; 1263 1264 if (unlikely(!__tcp_can_send(ssk))) 1265 return -EAGAIN; 1266 1267 /* compute send limit */ 1268 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1269 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1270 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1271 copy = info->size_goal; 1272 1273 skb = tcp_write_queue_tail(ssk); 1274 if (skb && copy > skb->len) { 1275 /* Limit the write to the size available in the 1276 * current skb, if any, so that we create at most a new skb. 1277 * Explicitly tells TCP internals to avoid collapsing on later 1278 * queue management operation, to avoid breaking the ext <-> 1279 * SSN association set here 1280 */ 1281 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1282 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1283 TCP_SKB_CB(skb)->eor = 1; 1284 tcp_mark_push(tcp_sk(ssk), skb); 1285 goto alloc_skb; 1286 } 1287 1288 i = skb_shinfo(skb)->nr_frags; 1289 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1290 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1291 tcp_mark_push(tcp_sk(ssk), skb); 1292 goto alloc_skb; 1293 } 1294 1295 copy -= skb->len; 1296 } else { 1297 alloc_skb: 1298 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1299 if (!skb) 1300 return -ENOMEM; 1301 1302 i = skb_shinfo(skb)->nr_frags; 1303 reuse_skb = false; 1304 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1305 } 1306 1307 /* Zero window and all data acked? Probe. */ 1308 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1309 if (copy == 0) { 1310 u64 snd_una = READ_ONCE(msk->snd_una); 1311 1312 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1313 tcp_remove_empty_skb(ssk); 1314 return 0; 1315 } 1316 1317 zero_window_probe = true; 1318 data_seq = snd_una - 1; 1319 copy = 1; 1320 } 1321 1322 copy = min_t(size_t, copy, info->limit - info->sent); 1323 if (!sk_wmem_schedule(ssk, copy)) { 1324 tcp_remove_empty_skb(ssk); 1325 return -ENOMEM; 1326 } 1327 1328 if (can_coalesce) { 1329 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1330 } else { 1331 get_page(dfrag->page); 1332 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1333 } 1334 1335 skb->len += copy; 1336 skb->data_len += copy; 1337 skb->truesize += copy; 1338 sk_wmem_queued_add(ssk, copy); 1339 sk_mem_charge(ssk, copy); 1340 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1341 TCP_SKB_CB(skb)->end_seq += copy; 1342 tcp_skb_pcount_set(skb, 0); 1343 1344 /* on skb reuse we just need to update the DSS len */ 1345 if (reuse_skb) { 1346 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1347 mpext->data_len += copy; 1348 goto out; 1349 } 1350 1351 memset(mpext, 0, sizeof(*mpext)); 1352 mpext->data_seq = data_seq; 1353 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1354 mpext->data_len = copy; 1355 mpext->use_map = 1; 1356 mpext->dsn64 = 1; 1357 1358 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1359 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1360 mpext->dsn64); 1361 1362 if (zero_window_probe) { 1363 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1364 mpext->frozen = 1; 1365 if (READ_ONCE(msk->csum_enabled)) 1366 mptcp_update_data_checksum(skb, copy); 1367 tcp_push_pending_frames(ssk); 1368 return 0; 1369 } 1370 out: 1371 if (READ_ONCE(msk->csum_enabled)) 1372 mptcp_update_data_checksum(skb, copy); 1373 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1374 mptcp_update_infinite_map(msk, ssk, mpext); 1375 trace_mptcp_sendmsg_frag(mpext); 1376 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1377 return copy; 1378 } 1379 1380 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1381 sizeof(struct tcphdr) - \ 1382 MAX_TCP_OPTION_SPACE - \ 1383 sizeof(struct ipv6hdr) - \ 1384 sizeof(struct frag_hdr)) 1385 1386 struct subflow_send_info { 1387 struct sock *ssk; 1388 u64 linger_time; 1389 }; 1390 1391 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1392 { 1393 if (!subflow->stale) 1394 return; 1395 1396 subflow->stale = 0; 1397 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1398 } 1399 1400 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1401 { 1402 if (unlikely(subflow->stale)) { 1403 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1404 1405 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1406 return false; 1407 1408 mptcp_subflow_set_active(subflow); 1409 } 1410 return __mptcp_subflow_active(subflow); 1411 } 1412 1413 #define SSK_MODE_ACTIVE 0 1414 #define SSK_MODE_BACKUP 1 1415 #define SSK_MODE_MAX 2 1416 1417 /* implement the mptcp packet scheduler; 1418 * returns the subflow that will transmit the next DSS 1419 * additionally updates the rtx timeout 1420 */ 1421 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1422 { 1423 struct subflow_send_info send_info[SSK_MODE_MAX]; 1424 struct mptcp_subflow_context *subflow; 1425 struct sock *sk = (struct sock *)msk; 1426 u32 pace, burst, wmem; 1427 int i, nr_active = 0; 1428 struct sock *ssk; 1429 u64 linger_time; 1430 long tout = 0; 1431 1432 /* pick the subflow with the lower wmem/wspace ratio */ 1433 for (i = 0; i < SSK_MODE_MAX; ++i) { 1434 send_info[i].ssk = NULL; 1435 send_info[i].linger_time = -1; 1436 } 1437 1438 mptcp_for_each_subflow(msk, subflow) { 1439 bool backup = subflow->backup || subflow->request_bkup; 1440 1441 trace_mptcp_subflow_get_send(subflow); 1442 ssk = mptcp_subflow_tcp_sock(subflow); 1443 if (!mptcp_subflow_active(subflow)) 1444 continue; 1445 1446 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1447 nr_active += !backup; 1448 pace = subflow->avg_pacing_rate; 1449 if (unlikely(!pace)) { 1450 /* init pacing rate from socket */ 1451 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1452 pace = subflow->avg_pacing_rate; 1453 if (!pace) 1454 continue; 1455 } 1456 1457 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1458 if (linger_time < send_info[backup].linger_time) { 1459 send_info[backup].ssk = ssk; 1460 send_info[backup].linger_time = linger_time; 1461 } 1462 } 1463 __mptcp_set_timeout(sk, tout); 1464 1465 /* pick the best backup if no other subflow is active */ 1466 if (!nr_active) 1467 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1468 1469 /* According to the blest algorithm, to avoid HoL blocking for the 1470 * faster flow, we need to: 1471 * - estimate the faster flow linger time 1472 * - use the above to estimate the amount of byte transferred 1473 * by the faster flow 1474 * - check that the amount of queued data is greter than the above, 1475 * otherwise do not use the picked, slower, subflow 1476 * We select the subflow with the shorter estimated time to flush 1477 * the queued mem, which basically ensure the above. We just need 1478 * to check that subflow has a non empty cwin. 1479 */ 1480 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1481 if (!ssk || !sk_stream_memory_free(ssk)) 1482 return NULL; 1483 1484 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1485 wmem = READ_ONCE(ssk->sk_wmem_queued); 1486 if (!burst) 1487 return ssk; 1488 1489 subflow = mptcp_subflow_ctx(ssk); 1490 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1491 READ_ONCE(ssk->sk_pacing_rate) * burst, 1492 burst + wmem); 1493 msk->snd_burst = burst; 1494 return ssk; 1495 } 1496 1497 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1498 { 1499 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1500 release_sock(ssk); 1501 } 1502 1503 static void mptcp_update_post_push(struct mptcp_sock *msk, 1504 struct mptcp_data_frag *dfrag, 1505 u32 sent) 1506 { 1507 u64 snd_nxt_new = dfrag->data_seq; 1508 1509 dfrag->already_sent += sent; 1510 1511 msk->snd_burst -= sent; 1512 1513 snd_nxt_new += dfrag->already_sent; 1514 1515 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1516 * is recovering after a failover. In that event, this re-sends 1517 * old segments. 1518 * 1519 * Thus compute snd_nxt_new candidate based on 1520 * the dfrag->data_seq that was sent and the data 1521 * that has been handed to the subflow for transmission 1522 * and skip update in case it was old dfrag. 1523 */ 1524 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1525 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1526 msk->snd_nxt = snd_nxt_new; 1527 } 1528 } 1529 1530 void mptcp_check_and_set_pending(struct sock *sk) 1531 { 1532 if (mptcp_send_head(sk)) { 1533 mptcp_data_lock(sk); 1534 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1535 mptcp_data_unlock(sk); 1536 } 1537 } 1538 1539 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1540 struct mptcp_sendmsg_info *info) 1541 { 1542 struct mptcp_sock *msk = mptcp_sk(sk); 1543 struct mptcp_data_frag *dfrag; 1544 int len, copied = 0, err = 0; 1545 1546 while ((dfrag = mptcp_send_head(sk))) { 1547 info->sent = dfrag->already_sent; 1548 info->limit = dfrag->data_len; 1549 len = dfrag->data_len - dfrag->already_sent; 1550 while (len > 0) { 1551 int ret = 0; 1552 1553 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1554 if (ret <= 0) { 1555 err = copied ? : ret; 1556 goto out; 1557 } 1558 1559 info->sent += ret; 1560 copied += ret; 1561 len -= ret; 1562 1563 mptcp_update_post_push(msk, dfrag, ret); 1564 } 1565 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1566 1567 if (msk->snd_burst <= 0 || 1568 !sk_stream_memory_free(ssk) || 1569 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1570 err = copied; 1571 goto out; 1572 } 1573 mptcp_set_timeout(sk); 1574 } 1575 err = copied; 1576 1577 out: 1578 return err; 1579 } 1580 1581 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1582 { 1583 struct sock *prev_ssk = NULL, *ssk = NULL; 1584 struct mptcp_sock *msk = mptcp_sk(sk); 1585 struct mptcp_sendmsg_info info = { 1586 .flags = flags, 1587 }; 1588 bool do_check_data_fin = false; 1589 int push_count = 1; 1590 1591 while (mptcp_send_head(sk) && (push_count > 0)) { 1592 struct mptcp_subflow_context *subflow; 1593 int ret = 0; 1594 1595 if (mptcp_sched_get_send(msk)) 1596 break; 1597 1598 push_count = 0; 1599 1600 mptcp_for_each_subflow(msk, subflow) { 1601 if (READ_ONCE(subflow->scheduled)) { 1602 mptcp_subflow_set_scheduled(subflow, false); 1603 1604 prev_ssk = ssk; 1605 ssk = mptcp_subflow_tcp_sock(subflow); 1606 if (ssk != prev_ssk) { 1607 /* First check. If the ssk has changed since 1608 * the last round, release prev_ssk 1609 */ 1610 if (prev_ssk) 1611 mptcp_push_release(prev_ssk, &info); 1612 1613 /* Need to lock the new subflow only if different 1614 * from the previous one, otherwise we are still 1615 * helding the relevant lock 1616 */ 1617 lock_sock(ssk); 1618 } 1619 1620 push_count++; 1621 1622 ret = __subflow_push_pending(sk, ssk, &info); 1623 if (ret <= 0) { 1624 if (ret != -EAGAIN || 1625 (1 << ssk->sk_state) & 1626 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1627 push_count--; 1628 continue; 1629 } 1630 do_check_data_fin = true; 1631 } 1632 } 1633 } 1634 1635 /* at this point we held the socket lock for the last subflow we used */ 1636 if (ssk) 1637 mptcp_push_release(ssk, &info); 1638 1639 /* ensure the rtx timer is running */ 1640 if (!mptcp_rtx_timer_pending(sk)) 1641 mptcp_reset_rtx_timer(sk); 1642 if (do_check_data_fin) 1643 mptcp_check_send_data_fin(sk); 1644 } 1645 1646 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1647 { 1648 struct mptcp_sock *msk = mptcp_sk(sk); 1649 struct mptcp_sendmsg_info info = { 1650 .data_lock_held = true, 1651 }; 1652 bool keep_pushing = true; 1653 struct sock *xmit_ssk; 1654 int copied = 0; 1655 1656 info.flags = 0; 1657 while (mptcp_send_head(sk) && keep_pushing) { 1658 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1659 int ret = 0; 1660 1661 /* check for a different subflow usage only after 1662 * spooling the first chunk of data 1663 */ 1664 if (first) { 1665 mptcp_subflow_set_scheduled(subflow, false); 1666 ret = __subflow_push_pending(sk, ssk, &info); 1667 first = false; 1668 if (ret <= 0) 1669 break; 1670 copied += ret; 1671 continue; 1672 } 1673 1674 if (mptcp_sched_get_send(msk)) 1675 goto out; 1676 1677 if (READ_ONCE(subflow->scheduled)) { 1678 mptcp_subflow_set_scheduled(subflow, false); 1679 ret = __subflow_push_pending(sk, ssk, &info); 1680 if (ret <= 0) 1681 keep_pushing = false; 1682 copied += ret; 1683 } 1684 1685 mptcp_for_each_subflow(msk, subflow) { 1686 if (READ_ONCE(subflow->scheduled)) { 1687 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1688 if (xmit_ssk != ssk) { 1689 mptcp_subflow_delegate(subflow, 1690 MPTCP_DELEGATE_SEND); 1691 keep_pushing = false; 1692 } 1693 } 1694 } 1695 } 1696 1697 out: 1698 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1699 * not going to flush it via release_sock() 1700 */ 1701 if (copied) { 1702 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1703 info.size_goal); 1704 if (!mptcp_rtx_timer_pending(sk)) 1705 mptcp_reset_rtx_timer(sk); 1706 1707 if (msk->snd_data_fin_enable && 1708 msk->snd_nxt + 1 == msk->write_seq) 1709 mptcp_schedule_work(sk); 1710 } 1711 } 1712 1713 static void mptcp_set_nospace(struct sock *sk) 1714 { 1715 /* enable autotune */ 1716 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1717 1718 /* will be cleared on avail space */ 1719 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1720 } 1721 1722 static int mptcp_disconnect(struct sock *sk, int flags); 1723 1724 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1725 size_t len, int *copied_syn) 1726 { 1727 unsigned int saved_flags = msg->msg_flags; 1728 struct mptcp_sock *msk = mptcp_sk(sk); 1729 struct sock *ssk; 1730 int ret; 1731 1732 /* on flags based fastopen the mptcp is supposed to create the 1733 * first subflow right now. Otherwise we are in the defer_connect 1734 * path, and the first subflow must be already present. 1735 * Since the defer_connect flag is cleared after the first succsful 1736 * fastopen attempt, no need to check for additional subflow status. 1737 */ 1738 if (msg->msg_flags & MSG_FASTOPEN) { 1739 ssk = __mptcp_nmpc_sk(msk); 1740 if (IS_ERR(ssk)) 1741 return PTR_ERR(ssk); 1742 } 1743 if (!msk->first) 1744 return -EINVAL; 1745 1746 ssk = msk->first; 1747 1748 lock_sock(ssk); 1749 msg->msg_flags |= MSG_DONTWAIT; 1750 msk->fastopening = 1; 1751 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1752 msk->fastopening = 0; 1753 msg->msg_flags = saved_flags; 1754 release_sock(ssk); 1755 1756 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1757 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1758 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1759 msg->msg_namelen, msg->msg_flags, 1); 1760 1761 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1762 * case of any error, except timeout or signal 1763 */ 1764 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1765 *copied_syn = 0; 1766 } else if (ret && ret != -EINPROGRESS) { 1767 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1768 * __inet_stream_connect() can fail, due to looking check, 1769 * see mptcp_disconnect(). 1770 * Attempt it again outside the problematic scope. 1771 */ 1772 if (!mptcp_disconnect(sk, 0)) { 1773 sk->sk_disconnects++; 1774 sk->sk_socket->state = SS_UNCONNECTED; 1775 } 1776 } 1777 inet_clear_bit(DEFER_CONNECT, sk); 1778 1779 return ret; 1780 } 1781 1782 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1783 { 1784 struct mptcp_sock *msk = mptcp_sk(sk); 1785 struct page_frag *pfrag; 1786 size_t copied = 0; 1787 int ret = 0; 1788 long timeo; 1789 1790 /* silently ignore everything else */ 1791 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1792 1793 lock_sock(sk); 1794 1795 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1796 msg->msg_flags & MSG_FASTOPEN)) { 1797 int copied_syn = 0; 1798 1799 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1800 copied += copied_syn; 1801 if (ret == -EINPROGRESS && copied_syn > 0) 1802 goto out; 1803 else if (ret) 1804 goto do_error; 1805 } 1806 1807 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1808 1809 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1810 ret = sk_stream_wait_connect(sk, &timeo); 1811 if (ret) 1812 goto do_error; 1813 } 1814 1815 ret = -EPIPE; 1816 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1817 goto do_error; 1818 1819 pfrag = sk_page_frag(sk); 1820 1821 while (msg_data_left(msg)) { 1822 int total_ts, frag_truesize = 0; 1823 struct mptcp_data_frag *dfrag; 1824 bool dfrag_collapsed; 1825 size_t psize, offset; 1826 1827 /* reuse tail pfrag, if possible, or carve a new one from the 1828 * page allocator 1829 */ 1830 dfrag = mptcp_pending_tail(sk); 1831 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1832 if (!dfrag_collapsed) { 1833 if (!sk_stream_memory_free(sk)) 1834 goto wait_for_memory; 1835 1836 if (!mptcp_page_frag_refill(sk, pfrag)) 1837 goto wait_for_memory; 1838 1839 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1840 frag_truesize = dfrag->overhead; 1841 } 1842 1843 /* we do not bound vs wspace, to allow a single packet. 1844 * memory accounting will prevent execessive memory usage 1845 * anyway 1846 */ 1847 offset = dfrag->offset + dfrag->data_len; 1848 psize = pfrag->size - offset; 1849 psize = min_t(size_t, psize, msg_data_left(msg)); 1850 total_ts = psize + frag_truesize; 1851 1852 if (!sk_wmem_schedule(sk, total_ts)) 1853 goto wait_for_memory; 1854 1855 if (copy_page_from_iter(dfrag->page, offset, psize, 1856 &msg->msg_iter) != psize) { 1857 ret = -EFAULT; 1858 goto do_error; 1859 } 1860 1861 /* data successfully copied into the write queue */ 1862 sk_forward_alloc_add(sk, -total_ts); 1863 copied += psize; 1864 dfrag->data_len += psize; 1865 frag_truesize += psize; 1866 pfrag->offset += frag_truesize; 1867 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1868 1869 /* charge data on mptcp pending queue to the msk socket 1870 * Note: we charge such data both to sk and ssk 1871 */ 1872 sk_wmem_queued_add(sk, frag_truesize); 1873 if (!dfrag_collapsed) { 1874 get_page(dfrag->page); 1875 list_add_tail(&dfrag->list, &msk->rtx_queue); 1876 if (!msk->first_pending) 1877 WRITE_ONCE(msk->first_pending, dfrag); 1878 } 1879 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1880 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1881 !dfrag_collapsed); 1882 1883 continue; 1884 1885 wait_for_memory: 1886 mptcp_set_nospace(sk); 1887 __mptcp_push_pending(sk, msg->msg_flags); 1888 ret = sk_stream_wait_memory(sk, &timeo); 1889 if (ret) 1890 goto do_error; 1891 } 1892 1893 if (copied) 1894 __mptcp_push_pending(sk, msg->msg_flags); 1895 1896 out: 1897 release_sock(sk); 1898 return copied; 1899 1900 do_error: 1901 if (copied) 1902 goto out; 1903 1904 copied = sk_stream_error(sk, msg->msg_flags, ret); 1905 goto out; 1906 } 1907 1908 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1909 1910 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1911 struct msghdr *msg, 1912 size_t len, int flags, 1913 struct scm_timestamping_internal *tss, 1914 int *cmsg_flags) 1915 { 1916 struct sk_buff *skb, *tmp; 1917 int copied = 0; 1918 1919 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1920 u32 offset = MPTCP_SKB_CB(skb)->offset; 1921 u32 data_len = skb->len - offset; 1922 u32 count = min_t(size_t, len - copied, data_len); 1923 int err; 1924 1925 if (!(flags & MSG_TRUNC)) { 1926 err = skb_copy_datagram_msg(skb, offset, msg, count); 1927 if (unlikely(err < 0)) { 1928 if (!copied) 1929 return err; 1930 break; 1931 } 1932 } 1933 1934 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1935 tcp_update_recv_tstamps(skb, tss); 1936 *cmsg_flags |= MPTCP_CMSG_TS; 1937 } 1938 1939 copied += count; 1940 1941 if (count < data_len) { 1942 if (!(flags & MSG_PEEK)) { 1943 MPTCP_SKB_CB(skb)->offset += count; 1944 MPTCP_SKB_CB(skb)->map_seq += count; 1945 msk->bytes_consumed += count; 1946 } 1947 break; 1948 } 1949 1950 if (!(flags & MSG_PEEK)) { 1951 /* we will bulk release the skb memory later */ 1952 skb->destructor = NULL; 1953 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1954 __skb_unlink(skb, &msk->receive_queue); 1955 __kfree_skb(skb); 1956 msk->bytes_consumed += count; 1957 } 1958 1959 if (copied >= len) 1960 break; 1961 } 1962 1963 mptcp_rcv_space_adjust(msk, copied); 1964 return copied; 1965 } 1966 1967 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1968 * 1969 * Only difference: Use highest rtt estimate of the subflows in use. 1970 */ 1971 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1972 { 1973 struct mptcp_subflow_context *subflow; 1974 struct sock *sk = (struct sock *)msk; 1975 u8 scaling_ratio = U8_MAX; 1976 u32 time, advmss = 1; 1977 u64 rtt_us, mstamp; 1978 1979 msk_owned_by_me(msk); 1980 1981 if (copied <= 0) 1982 return; 1983 1984 if (!msk->rcvspace_init) 1985 mptcp_rcv_space_init(msk, msk->first); 1986 1987 msk->rcvq_space.copied += copied; 1988 1989 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1990 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1991 1992 rtt_us = msk->rcvq_space.rtt_us; 1993 if (rtt_us && time < (rtt_us >> 3)) 1994 return; 1995 1996 rtt_us = 0; 1997 mptcp_for_each_subflow(msk, subflow) { 1998 const struct tcp_sock *tp; 1999 u64 sf_rtt_us; 2000 u32 sf_advmss; 2001 2002 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2003 2004 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2005 sf_advmss = READ_ONCE(tp->advmss); 2006 2007 rtt_us = max(sf_rtt_us, rtt_us); 2008 advmss = max(sf_advmss, advmss); 2009 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2010 } 2011 2012 msk->rcvq_space.rtt_us = rtt_us; 2013 msk->scaling_ratio = scaling_ratio; 2014 if (time < (rtt_us >> 3) || rtt_us == 0) 2015 return; 2016 2017 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2018 goto new_measure; 2019 2020 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2021 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2022 u64 rcvwin, grow; 2023 int rcvbuf; 2024 2025 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2026 2027 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2028 2029 do_div(grow, msk->rcvq_space.space); 2030 rcvwin += (grow << 1); 2031 2032 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2033 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2034 2035 if (rcvbuf > sk->sk_rcvbuf) { 2036 u32 window_clamp; 2037 2038 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2039 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2040 2041 /* Make subflows follow along. If we do not do this, we 2042 * get drops at subflow level if skbs can't be moved to 2043 * the mptcp rx queue fast enough (announced rcv_win can 2044 * exceed ssk->sk_rcvbuf). 2045 */ 2046 mptcp_for_each_subflow(msk, subflow) { 2047 struct sock *ssk; 2048 bool slow; 2049 2050 ssk = mptcp_subflow_tcp_sock(subflow); 2051 slow = lock_sock_fast(ssk); 2052 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2053 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2054 if (tcp_can_send_ack(ssk)) 2055 tcp_cleanup_rbuf(ssk, 1); 2056 unlock_sock_fast(ssk, slow); 2057 } 2058 } 2059 } 2060 2061 msk->rcvq_space.space = msk->rcvq_space.copied; 2062 new_measure: 2063 msk->rcvq_space.copied = 0; 2064 msk->rcvq_space.time = mstamp; 2065 } 2066 2067 static void __mptcp_update_rmem(struct sock *sk) 2068 { 2069 struct mptcp_sock *msk = mptcp_sk(sk); 2070 2071 if (!msk->rmem_released) 2072 return; 2073 2074 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2075 mptcp_rmem_uncharge(sk, msk->rmem_released); 2076 WRITE_ONCE(msk->rmem_released, 0); 2077 } 2078 2079 static void __mptcp_splice_receive_queue(struct sock *sk) 2080 { 2081 struct mptcp_sock *msk = mptcp_sk(sk); 2082 2083 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2084 } 2085 2086 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2087 { 2088 struct sock *sk = (struct sock *)msk; 2089 unsigned int moved = 0; 2090 bool ret, done; 2091 2092 do { 2093 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2094 bool slowpath; 2095 2096 /* we can have data pending in the subflows only if the msk 2097 * receive buffer was full at subflow_data_ready() time, 2098 * that is an unlikely slow path. 2099 */ 2100 if (likely(!ssk)) 2101 break; 2102 2103 slowpath = lock_sock_fast(ssk); 2104 mptcp_data_lock(sk); 2105 __mptcp_update_rmem(sk); 2106 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2107 mptcp_data_unlock(sk); 2108 2109 if (unlikely(ssk->sk_err)) 2110 __mptcp_error_report(sk); 2111 unlock_sock_fast(ssk, slowpath); 2112 } while (!done); 2113 2114 /* acquire the data lock only if some input data is pending */ 2115 ret = moved > 0; 2116 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2117 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2118 mptcp_data_lock(sk); 2119 __mptcp_update_rmem(sk); 2120 ret |= __mptcp_ofo_queue(msk); 2121 __mptcp_splice_receive_queue(sk); 2122 mptcp_data_unlock(sk); 2123 } 2124 if (ret) 2125 mptcp_check_data_fin((struct sock *)msk); 2126 return !skb_queue_empty(&msk->receive_queue); 2127 } 2128 2129 static unsigned int mptcp_inq_hint(const struct sock *sk) 2130 { 2131 const struct mptcp_sock *msk = mptcp_sk(sk); 2132 const struct sk_buff *skb; 2133 2134 skb = skb_peek(&msk->receive_queue); 2135 if (skb) { 2136 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2137 2138 if (hint_val >= INT_MAX) 2139 return INT_MAX; 2140 2141 return (unsigned int)hint_val; 2142 } 2143 2144 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2145 return 1; 2146 2147 return 0; 2148 } 2149 2150 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2151 int flags, int *addr_len) 2152 { 2153 struct mptcp_sock *msk = mptcp_sk(sk); 2154 struct scm_timestamping_internal tss; 2155 int copied = 0, cmsg_flags = 0; 2156 int target; 2157 long timeo; 2158 2159 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2160 if (unlikely(flags & MSG_ERRQUEUE)) 2161 return inet_recv_error(sk, msg, len, addr_len); 2162 2163 lock_sock(sk); 2164 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2165 copied = -ENOTCONN; 2166 goto out_err; 2167 } 2168 2169 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2170 2171 len = min_t(size_t, len, INT_MAX); 2172 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2173 2174 if (unlikely(msk->recvmsg_inq)) 2175 cmsg_flags = MPTCP_CMSG_INQ; 2176 2177 while (copied < len) { 2178 int err, bytes_read; 2179 2180 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2181 if (unlikely(bytes_read < 0)) { 2182 if (!copied) 2183 copied = bytes_read; 2184 goto out_err; 2185 } 2186 2187 copied += bytes_read; 2188 2189 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2190 continue; 2191 2192 /* only the master socket status is relevant here. The exit 2193 * conditions mirror closely tcp_recvmsg() 2194 */ 2195 if (copied >= target) 2196 break; 2197 2198 if (copied) { 2199 if (sk->sk_err || 2200 sk->sk_state == TCP_CLOSE || 2201 (sk->sk_shutdown & RCV_SHUTDOWN) || 2202 !timeo || 2203 signal_pending(current)) 2204 break; 2205 } else { 2206 if (sk->sk_err) { 2207 copied = sock_error(sk); 2208 break; 2209 } 2210 2211 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2212 /* race breaker: the shutdown could be after the 2213 * previous receive queue check 2214 */ 2215 if (__mptcp_move_skbs(msk)) 2216 continue; 2217 break; 2218 } 2219 2220 if (sk->sk_state == TCP_CLOSE) { 2221 copied = -ENOTCONN; 2222 break; 2223 } 2224 2225 if (!timeo) { 2226 copied = -EAGAIN; 2227 break; 2228 } 2229 2230 if (signal_pending(current)) { 2231 copied = sock_intr_errno(timeo); 2232 break; 2233 } 2234 } 2235 2236 pr_debug("block timeout %ld\n", timeo); 2237 mptcp_cleanup_rbuf(msk, copied); 2238 err = sk_wait_data(sk, &timeo, NULL); 2239 if (err < 0) { 2240 err = copied ? : err; 2241 goto out_err; 2242 } 2243 } 2244 2245 mptcp_cleanup_rbuf(msk, copied); 2246 2247 out_err: 2248 if (cmsg_flags && copied >= 0) { 2249 if (cmsg_flags & MPTCP_CMSG_TS) 2250 tcp_recv_timestamp(msg, sk, &tss); 2251 2252 if (cmsg_flags & MPTCP_CMSG_INQ) { 2253 unsigned int inq = mptcp_inq_hint(sk); 2254 2255 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2256 } 2257 } 2258 2259 pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n", 2260 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2261 skb_queue_empty(&msk->receive_queue), copied); 2262 2263 release_sock(sk); 2264 return copied; 2265 } 2266 2267 static void mptcp_retransmit_timer(struct timer_list *t) 2268 { 2269 struct inet_connection_sock *icsk = from_timer(icsk, t, 2270 icsk_retransmit_timer); 2271 struct sock *sk = &icsk->icsk_inet.sk; 2272 struct mptcp_sock *msk = mptcp_sk(sk); 2273 2274 bh_lock_sock(sk); 2275 if (!sock_owned_by_user(sk)) { 2276 /* we need a process context to retransmit */ 2277 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2278 mptcp_schedule_work(sk); 2279 } else { 2280 /* delegate our work to tcp_release_cb() */ 2281 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2282 } 2283 bh_unlock_sock(sk); 2284 sock_put(sk); 2285 } 2286 2287 static void mptcp_tout_timer(struct timer_list *t) 2288 { 2289 struct sock *sk = from_timer(sk, t, sk_timer); 2290 2291 mptcp_schedule_work(sk); 2292 sock_put(sk); 2293 } 2294 2295 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2296 * level. 2297 * 2298 * A backup subflow is returned only if that is the only kind available. 2299 */ 2300 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2301 { 2302 struct sock *backup = NULL, *pick = NULL; 2303 struct mptcp_subflow_context *subflow; 2304 int min_stale_count = INT_MAX; 2305 2306 mptcp_for_each_subflow(msk, subflow) { 2307 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2308 2309 if (!__mptcp_subflow_active(subflow)) 2310 continue; 2311 2312 /* still data outstanding at TCP level? skip this */ 2313 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2314 mptcp_pm_subflow_chk_stale(msk, ssk); 2315 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2316 continue; 2317 } 2318 2319 if (subflow->backup || subflow->request_bkup) { 2320 if (!backup) 2321 backup = ssk; 2322 continue; 2323 } 2324 2325 if (!pick) 2326 pick = ssk; 2327 } 2328 2329 if (pick) 2330 return pick; 2331 2332 /* use backup only if there are no progresses anywhere */ 2333 return min_stale_count > 1 ? backup : NULL; 2334 } 2335 2336 bool __mptcp_retransmit_pending_data(struct sock *sk) 2337 { 2338 struct mptcp_data_frag *cur, *rtx_head; 2339 struct mptcp_sock *msk = mptcp_sk(sk); 2340 2341 if (__mptcp_check_fallback(msk)) 2342 return false; 2343 2344 /* the closing socket has some data untransmitted and/or unacked: 2345 * some data in the mptcp rtx queue has not really xmitted yet. 2346 * keep it simple and re-inject the whole mptcp level rtx queue 2347 */ 2348 mptcp_data_lock(sk); 2349 __mptcp_clean_una_wakeup(sk); 2350 rtx_head = mptcp_rtx_head(sk); 2351 if (!rtx_head) { 2352 mptcp_data_unlock(sk); 2353 return false; 2354 } 2355 2356 msk->recovery_snd_nxt = msk->snd_nxt; 2357 msk->recovery = true; 2358 mptcp_data_unlock(sk); 2359 2360 msk->first_pending = rtx_head; 2361 msk->snd_burst = 0; 2362 2363 /* be sure to clear the "sent status" on all re-injected fragments */ 2364 list_for_each_entry(cur, &msk->rtx_queue, list) { 2365 if (!cur->already_sent) 2366 break; 2367 cur->already_sent = 0; 2368 } 2369 2370 return true; 2371 } 2372 2373 /* flags for __mptcp_close_ssk() */ 2374 #define MPTCP_CF_PUSH BIT(1) 2375 #define MPTCP_CF_FASTCLOSE BIT(2) 2376 2377 /* be sure to send a reset only if the caller asked for it, also 2378 * clean completely the subflow status when the subflow reaches 2379 * TCP_CLOSE state 2380 */ 2381 static void __mptcp_subflow_disconnect(struct sock *ssk, 2382 struct mptcp_subflow_context *subflow, 2383 unsigned int flags) 2384 { 2385 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2386 (flags & MPTCP_CF_FASTCLOSE)) { 2387 /* The MPTCP code never wait on the subflow sockets, TCP-level 2388 * disconnect should never fail 2389 */ 2390 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2391 mptcp_subflow_ctx_reset(subflow); 2392 } else { 2393 tcp_shutdown(ssk, SEND_SHUTDOWN); 2394 } 2395 } 2396 2397 /* subflow sockets can be either outgoing (connect) or incoming 2398 * (accept). 2399 * 2400 * Outgoing subflows use in-kernel sockets. 2401 * Incoming subflows do not have their own 'struct socket' allocated, 2402 * so we need to use tcp_close() after detaching them from the mptcp 2403 * parent socket. 2404 */ 2405 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2406 struct mptcp_subflow_context *subflow, 2407 unsigned int flags) 2408 { 2409 struct mptcp_sock *msk = mptcp_sk(sk); 2410 bool dispose_it, need_push = false; 2411 2412 /* If the first subflow moved to a close state before accept, e.g. due 2413 * to an incoming reset or listener shutdown, the subflow socket is 2414 * already deleted by inet_child_forget() and the mptcp socket can't 2415 * survive too. 2416 */ 2417 if (msk->in_accept_queue && msk->first == ssk && 2418 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2419 /* ensure later check in mptcp_worker() will dispose the msk */ 2420 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1)); 2421 sock_set_flag(sk, SOCK_DEAD); 2422 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2423 mptcp_subflow_drop_ctx(ssk); 2424 goto out_release; 2425 } 2426 2427 dispose_it = msk->free_first || ssk != msk->first; 2428 if (dispose_it) 2429 list_del(&subflow->node); 2430 2431 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2432 2433 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2434 /* be sure to force the tcp_close path 2435 * to generate the egress reset 2436 */ 2437 ssk->sk_lingertime = 0; 2438 sock_set_flag(ssk, SOCK_LINGER); 2439 subflow->send_fastclose = 1; 2440 } 2441 2442 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2443 if (!dispose_it) { 2444 __mptcp_subflow_disconnect(ssk, subflow, flags); 2445 release_sock(ssk); 2446 2447 goto out; 2448 } 2449 2450 subflow->disposable = 1; 2451 2452 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2453 * the ssk has been already destroyed, we just need to release the 2454 * reference owned by msk; 2455 */ 2456 if (!inet_csk(ssk)->icsk_ulp_ops) { 2457 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2458 kfree_rcu(subflow, rcu); 2459 } else { 2460 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2461 __tcp_close(ssk, 0); 2462 2463 /* close acquired an extra ref */ 2464 __sock_put(ssk); 2465 } 2466 2467 out_release: 2468 __mptcp_subflow_error_report(sk, ssk); 2469 release_sock(ssk); 2470 2471 sock_put(ssk); 2472 2473 if (ssk == msk->first) 2474 WRITE_ONCE(msk->first, NULL); 2475 2476 out: 2477 __mptcp_sync_sndbuf(sk); 2478 if (need_push) 2479 __mptcp_push_pending(sk, 0); 2480 2481 /* Catch every 'all subflows closed' scenario, including peers silently 2482 * closing them, e.g. due to timeout. 2483 * For established sockets, allow an additional timeout before closing, 2484 * as the protocol can still create more subflows. 2485 */ 2486 if (list_is_singular(&msk->conn_list) && msk->first && 2487 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2488 if (sk->sk_state != TCP_ESTABLISHED || 2489 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2490 mptcp_set_state(sk, TCP_CLOSE); 2491 mptcp_close_wake_up(sk); 2492 } else { 2493 mptcp_start_tout_timer(sk); 2494 } 2495 } 2496 } 2497 2498 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2499 struct mptcp_subflow_context *subflow) 2500 { 2501 /* The first subflow can already be closed and still in the list */ 2502 if (subflow->close_event_done) 2503 return; 2504 2505 subflow->close_event_done = true; 2506 2507 if (sk->sk_state == TCP_ESTABLISHED) 2508 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2509 2510 /* subflow aborted before reaching the fully_established status 2511 * attempt the creation of the next subflow 2512 */ 2513 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2514 2515 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2516 } 2517 2518 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2519 { 2520 return 0; 2521 } 2522 2523 static void __mptcp_close_subflow(struct sock *sk) 2524 { 2525 struct mptcp_subflow_context *subflow, *tmp; 2526 struct mptcp_sock *msk = mptcp_sk(sk); 2527 2528 might_sleep(); 2529 2530 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2531 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2532 int ssk_state = inet_sk_state_load(ssk); 2533 2534 if (ssk_state != TCP_CLOSE && 2535 (ssk_state != TCP_CLOSE_WAIT || 2536 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2537 continue; 2538 2539 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2540 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2541 continue; 2542 2543 mptcp_close_ssk(sk, ssk, subflow); 2544 } 2545 2546 } 2547 2548 static bool mptcp_close_tout_expired(const struct sock *sk) 2549 { 2550 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2551 sk->sk_state == TCP_CLOSE) 2552 return false; 2553 2554 return time_after32(tcp_jiffies32, 2555 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN); 2556 } 2557 2558 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2559 { 2560 struct mptcp_subflow_context *subflow, *tmp; 2561 struct sock *sk = (struct sock *)msk; 2562 2563 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2564 return; 2565 2566 mptcp_token_destroy(msk); 2567 2568 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2569 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2570 bool slow; 2571 2572 slow = lock_sock_fast(tcp_sk); 2573 if (tcp_sk->sk_state != TCP_CLOSE) { 2574 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2575 tcp_set_state(tcp_sk, TCP_CLOSE); 2576 } 2577 unlock_sock_fast(tcp_sk, slow); 2578 } 2579 2580 /* Mirror the tcp_reset() error propagation */ 2581 switch (sk->sk_state) { 2582 case TCP_SYN_SENT: 2583 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2584 break; 2585 case TCP_CLOSE_WAIT: 2586 WRITE_ONCE(sk->sk_err, EPIPE); 2587 break; 2588 case TCP_CLOSE: 2589 return; 2590 default: 2591 WRITE_ONCE(sk->sk_err, ECONNRESET); 2592 } 2593 2594 mptcp_set_state(sk, TCP_CLOSE); 2595 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2596 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2597 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2598 2599 /* the calling mptcp_worker will properly destroy the socket */ 2600 if (sock_flag(sk, SOCK_DEAD)) 2601 return; 2602 2603 sk->sk_state_change(sk); 2604 sk_error_report(sk); 2605 } 2606 2607 static void __mptcp_retrans(struct sock *sk) 2608 { 2609 struct mptcp_sock *msk = mptcp_sk(sk); 2610 struct mptcp_subflow_context *subflow; 2611 struct mptcp_sendmsg_info info = {}; 2612 struct mptcp_data_frag *dfrag; 2613 struct sock *ssk; 2614 int ret, err; 2615 u16 len = 0; 2616 2617 mptcp_clean_una_wakeup(sk); 2618 2619 /* first check ssk: need to kick "stale" logic */ 2620 err = mptcp_sched_get_retrans(msk); 2621 dfrag = mptcp_rtx_head(sk); 2622 if (!dfrag) { 2623 if (mptcp_data_fin_enabled(msk)) { 2624 struct inet_connection_sock *icsk = inet_csk(sk); 2625 2626 icsk->icsk_retransmits++; 2627 mptcp_set_datafin_timeout(sk); 2628 mptcp_send_ack(msk); 2629 2630 goto reset_timer; 2631 } 2632 2633 if (!mptcp_send_head(sk)) 2634 return; 2635 2636 goto reset_timer; 2637 } 2638 2639 if (err) 2640 goto reset_timer; 2641 2642 mptcp_for_each_subflow(msk, subflow) { 2643 if (READ_ONCE(subflow->scheduled)) { 2644 u16 copied = 0; 2645 2646 mptcp_subflow_set_scheduled(subflow, false); 2647 2648 ssk = mptcp_subflow_tcp_sock(subflow); 2649 2650 lock_sock(ssk); 2651 2652 /* limit retransmission to the bytes already sent on some subflows */ 2653 info.sent = 0; 2654 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2655 dfrag->already_sent; 2656 while (info.sent < info.limit) { 2657 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2658 if (ret <= 0) 2659 break; 2660 2661 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2662 copied += ret; 2663 info.sent += ret; 2664 } 2665 if (copied) { 2666 len = max(copied, len); 2667 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2668 info.size_goal); 2669 WRITE_ONCE(msk->allow_infinite_fallback, false); 2670 } 2671 2672 release_sock(ssk); 2673 } 2674 } 2675 2676 msk->bytes_retrans += len; 2677 dfrag->already_sent = max(dfrag->already_sent, len); 2678 2679 reset_timer: 2680 mptcp_check_and_set_pending(sk); 2681 2682 if (!mptcp_rtx_timer_pending(sk)) 2683 mptcp_reset_rtx_timer(sk); 2684 } 2685 2686 /* schedule the timeout timer for the relevant event: either close timeout 2687 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2688 */ 2689 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2690 { 2691 struct sock *sk = (struct sock *)msk; 2692 unsigned long timeout, close_timeout; 2693 2694 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2695 return; 2696 2697 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2698 tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2699 2700 /* the close timeout takes precedence on the fail one, and here at least one of 2701 * them is active 2702 */ 2703 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2704 2705 sk_reset_timer(sk, &sk->sk_timer, timeout); 2706 } 2707 2708 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2709 { 2710 struct sock *ssk = msk->first; 2711 bool slow; 2712 2713 if (!ssk) 2714 return; 2715 2716 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2717 2718 slow = lock_sock_fast(ssk); 2719 mptcp_subflow_reset(ssk); 2720 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2721 unlock_sock_fast(ssk, slow); 2722 } 2723 2724 static void mptcp_do_fastclose(struct sock *sk) 2725 { 2726 struct mptcp_subflow_context *subflow, *tmp; 2727 struct mptcp_sock *msk = mptcp_sk(sk); 2728 2729 mptcp_set_state(sk, TCP_CLOSE); 2730 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2731 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2732 subflow, MPTCP_CF_FASTCLOSE); 2733 } 2734 2735 static void mptcp_worker(struct work_struct *work) 2736 { 2737 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2738 struct sock *sk = (struct sock *)msk; 2739 unsigned long fail_tout; 2740 int state; 2741 2742 lock_sock(sk); 2743 state = sk->sk_state; 2744 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2745 goto unlock; 2746 2747 mptcp_check_fastclose(msk); 2748 2749 mptcp_pm_nl_work(msk); 2750 2751 mptcp_check_send_data_fin(sk); 2752 mptcp_check_data_fin_ack(sk); 2753 mptcp_check_data_fin(sk); 2754 2755 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2756 __mptcp_close_subflow(sk); 2757 2758 if (mptcp_close_tout_expired(sk)) { 2759 mptcp_do_fastclose(sk); 2760 mptcp_close_wake_up(sk); 2761 } 2762 2763 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2764 __mptcp_destroy_sock(sk); 2765 goto unlock; 2766 } 2767 2768 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2769 __mptcp_retrans(sk); 2770 2771 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2772 if (fail_tout && time_after(jiffies, fail_tout)) 2773 mptcp_mp_fail_no_response(msk); 2774 2775 unlock: 2776 release_sock(sk); 2777 sock_put(sk); 2778 } 2779 2780 static void __mptcp_init_sock(struct sock *sk) 2781 { 2782 struct mptcp_sock *msk = mptcp_sk(sk); 2783 2784 INIT_LIST_HEAD(&msk->conn_list); 2785 INIT_LIST_HEAD(&msk->join_list); 2786 INIT_LIST_HEAD(&msk->rtx_queue); 2787 INIT_WORK(&msk->work, mptcp_worker); 2788 __skb_queue_head_init(&msk->receive_queue); 2789 msk->out_of_order_queue = RB_ROOT; 2790 msk->first_pending = NULL; 2791 msk->rmem_fwd_alloc = 0; 2792 WRITE_ONCE(msk->rmem_released, 0); 2793 msk->timer_ival = TCP_RTO_MIN; 2794 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2795 2796 WRITE_ONCE(msk->first, NULL); 2797 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2798 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2799 WRITE_ONCE(msk->allow_infinite_fallback, true); 2800 msk->recovery = false; 2801 msk->subflow_id = 1; 2802 2803 mptcp_pm_data_init(msk); 2804 2805 /* re-use the csk retrans timer for MPTCP-level retrans */ 2806 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2807 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2808 } 2809 2810 static void mptcp_ca_reset(struct sock *sk) 2811 { 2812 struct inet_connection_sock *icsk = inet_csk(sk); 2813 2814 tcp_assign_congestion_control(sk); 2815 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2816 2817 /* no need to keep a reference to the ops, the name will suffice */ 2818 tcp_cleanup_congestion_control(sk); 2819 icsk->icsk_ca_ops = NULL; 2820 } 2821 2822 static int mptcp_init_sock(struct sock *sk) 2823 { 2824 struct net *net = sock_net(sk); 2825 int ret; 2826 2827 __mptcp_init_sock(sk); 2828 2829 if (!mptcp_is_enabled(net)) 2830 return -ENOPROTOOPT; 2831 2832 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2833 return -ENOMEM; 2834 2835 rcu_read_lock(); 2836 ret = mptcp_init_sched(mptcp_sk(sk), 2837 mptcp_sched_find(mptcp_get_scheduler(net))); 2838 rcu_read_unlock(); 2839 if (ret) 2840 return ret; 2841 2842 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2843 2844 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2845 * propagate the correct value 2846 */ 2847 mptcp_ca_reset(sk); 2848 2849 sk_sockets_allocated_inc(sk); 2850 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2851 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2852 2853 return 0; 2854 } 2855 2856 static void __mptcp_clear_xmit(struct sock *sk) 2857 { 2858 struct mptcp_sock *msk = mptcp_sk(sk); 2859 struct mptcp_data_frag *dtmp, *dfrag; 2860 2861 WRITE_ONCE(msk->first_pending, NULL); 2862 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2863 dfrag_clear(sk, dfrag); 2864 } 2865 2866 void mptcp_cancel_work(struct sock *sk) 2867 { 2868 struct mptcp_sock *msk = mptcp_sk(sk); 2869 2870 if (cancel_work_sync(&msk->work)) 2871 __sock_put(sk); 2872 } 2873 2874 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2875 { 2876 lock_sock(ssk); 2877 2878 switch (ssk->sk_state) { 2879 case TCP_LISTEN: 2880 if (!(how & RCV_SHUTDOWN)) 2881 break; 2882 fallthrough; 2883 case TCP_SYN_SENT: 2884 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2885 break; 2886 default: 2887 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2888 pr_debug("Fallback\n"); 2889 ssk->sk_shutdown |= how; 2890 tcp_shutdown(ssk, how); 2891 2892 /* simulate the data_fin ack reception to let the state 2893 * machine move forward 2894 */ 2895 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2896 mptcp_schedule_work(sk); 2897 } else { 2898 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2899 tcp_send_ack(ssk); 2900 if (!mptcp_rtx_timer_pending(sk)) 2901 mptcp_reset_rtx_timer(sk); 2902 } 2903 break; 2904 } 2905 2906 release_sock(ssk); 2907 } 2908 2909 void mptcp_set_state(struct sock *sk, int state) 2910 { 2911 int oldstate = sk->sk_state; 2912 2913 switch (state) { 2914 case TCP_ESTABLISHED: 2915 if (oldstate != TCP_ESTABLISHED) 2916 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2917 break; 2918 case TCP_CLOSE_WAIT: 2919 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2920 * MPTCP "accepted" sockets will be created later on. So no 2921 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2922 */ 2923 break; 2924 default: 2925 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2926 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2927 } 2928 2929 inet_sk_state_store(sk, state); 2930 } 2931 2932 static const unsigned char new_state[16] = { 2933 /* current state: new state: action: */ 2934 [0 /* (Invalid) */] = TCP_CLOSE, 2935 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2936 [TCP_SYN_SENT] = TCP_CLOSE, 2937 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2938 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2939 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2940 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2941 [TCP_CLOSE] = TCP_CLOSE, 2942 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2943 [TCP_LAST_ACK] = TCP_LAST_ACK, 2944 [TCP_LISTEN] = TCP_CLOSE, 2945 [TCP_CLOSING] = TCP_CLOSING, 2946 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2947 }; 2948 2949 static int mptcp_close_state(struct sock *sk) 2950 { 2951 int next = (int)new_state[sk->sk_state]; 2952 int ns = next & TCP_STATE_MASK; 2953 2954 mptcp_set_state(sk, ns); 2955 2956 return next & TCP_ACTION_FIN; 2957 } 2958 2959 static void mptcp_check_send_data_fin(struct sock *sk) 2960 { 2961 struct mptcp_subflow_context *subflow; 2962 struct mptcp_sock *msk = mptcp_sk(sk); 2963 2964 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2965 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2966 msk->snd_nxt, msk->write_seq); 2967 2968 /* we still need to enqueue subflows or not really shutting down, 2969 * skip this 2970 */ 2971 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2972 mptcp_send_head(sk)) 2973 return; 2974 2975 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2976 2977 mptcp_for_each_subflow(msk, subflow) { 2978 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2979 2980 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2981 } 2982 } 2983 2984 static void __mptcp_wr_shutdown(struct sock *sk) 2985 { 2986 struct mptcp_sock *msk = mptcp_sk(sk); 2987 2988 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 2989 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2990 !!mptcp_send_head(sk)); 2991 2992 /* will be ignored by fallback sockets */ 2993 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2994 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2995 2996 mptcp_check_send_data_fin(sk); 2997 } 2998 2999 static void __mptcp_destroy_sock(struct sock *sk) 3000 { 3001 struct mptcp_sock *msk = mptcp_sk(sk); 3002 3003 pr_debug("msk=%p\n", msk); 3004 3005 might_sleep(); 3006 3007 mptcp_stop_rtx_timer(sk); 3008 sk_stop_timer(sk, &sk->sk_timer); 3009 msk->pm.status = 0; 3010 mptcp_release_sched(msk); 3011 3012 sk->sk_prot->destroy(sk); 3013 3014 WARN_ON_ONCE(msk->rmem_fwd_alloc); 3015 WARN_ON_ONCE(msk->rmem_released); 3016 sk_stream_kill_queues(sk); 3017 xfrm_sk_free_policy(sk); 3018 3019 sock_put(sk); 3020 } 3021 3022 void __mptcp_unaccepted_force_close(struct sock *sk) 3023 { 3024 sock_set_flag(sk, SOCK_DEAD); 3025 mptcp_do_fastclose(sk); 3026 __mptcp_destroy_sock(sk); 3027 } 3028 3029 static __poll_t mptcp_check_readable(struct sock *sk) 3030 { 3031 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3032 } 3033 3034 static void mptcp_check_listen_stop(struct sock *sk) 3035 { 3036 struct sock *ssk; 3037 3038 if (inet_sk_state_load(sk) != TCP_LISTEN) 3039 return; 3040 3041 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3042 ssk = mptcp_sk(sk)->first; 3043 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3044 return; 3045 3046 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3047 tcp_set_state(ssk, TCP_CLOSE); 3048 mptcp_subflow_queue_clean(sk, ssk); 3049 inet_csk_listen_stop(ssk); 3050 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3051 release_sock(ssk); 3052 } 3053 3054 bool __mptcp_close(struct sock *sk, long timeout) 3055 { 3056 struct mptcp_subflow_context *subflow; 3057 struct mptcp_sock *msk = mptcp_sk(sk); 3058 bool do_cancel_work = false; 3059 int subflows_alive = 0; 3060 3061 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3062 3063 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3064 mptcp_check_listen_stop(sk); 3065 mptcp_set_state(sk, TCP_CLOSE); 3066 goto cleanup; 3067 } 3068 3069 if (mptcp_data_avail(msk) || timeout < 0) { 3070 /* If the msk has read data, or the caller explicitly ask it, 3071 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3072 */ 3073 mptcp_do_fastclose(sk); 3074 timeout = 0; 3075 } else if (mptcp_close_state(sk)) { 3076 __mptcp_wr_shutdown(sk); 3077 } 3078 3079 sk_stream_wait_close(sk, timeout); 3080 3081 cleanup: 3082 /* orphan all the subflows */ 3083 mptcp_for_each_subflow(msk, subflow) { 3084 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3085 bool slow = lock_sock_fast_nested(ssk); 3086 3087 subflows_alive += ssk->sk_state != TCP_CLOSE; 3088 3089 /* since the close timeout takes precedence on the fail one, 3090 * cancel the latter 3091 */ 3092 if (ssk == msk->first) 3093 subflow->fail_tout = 0; 3094 3095 /* detach from the parent socket, but allow data_ready to 3096 * push incoming data into the mptcp stack, to properly ack it 3097 */ 3098 ssk->sk_socket = NULL; 3099 ssk->sk_wq = NULL; 3100 unlock_sock_fast(ssk, slow); 3101 } 3102 sock_orphan(sk); 3103 3104 /* all the subflows are closed, only timeout can change the msk 3105 * state, let's not keep resources busy for no reasons 3106 */ 3107 if (subflows_alive == 0) 3108 mptcp_set_state(sk, TCP_CLOSE); 3109 3110 sock_hold(sk); 3111 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3112 if (msk->token) 3113 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3114 3115 if (sk->sk_state == TCP_CLOSE) { 3116 __mptcp_destroy_sock(sk); 3117 do_cancel_work = true; 3118 } else { 3119 mptcp_start_tout_timer(sk); 3120 } 3121 3122 return do_cancel_work; 3123 } 3124 3125 static void mptcp_close(struct sock *sk, long timeout) 3126 { 3127 bool do_cancel_work; 3128 3129 lock_sock(sk); 3130 3131 do_cancel_work = __mptcp_close(sk, timeout); 3132 release_sock(sk); 3133 if (do_cancel_work) 3134 mptcp_cancel_work(sk); 3135 3136 sock_put(sk); 3137 } 3138 3139 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3140 { 3141 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3142 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3143 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3144 3145 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3146 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3147 3148 if (msk6 && ssk6) { 3149 msk6->saddr = ssk6->saddr; 3150 msk6->flow_label = ssk6->flow_label; 3151 } 3152 #endif 3153 3154 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3155 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3156 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3157 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3158 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3159 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3160 } 3161 3162 static int mptcp_disconnect(struct sock *sk, int flags) 3163 { 3164 struct mptcp_sock *msk = mptcp_sk(sk); 3165 3166 /* We are on the fastopen error path. We can't call straight into the 3167 * subflows cleanup code due to lock nesting (we are already under 3168 * msk->firstsocket lock). 3169 */ 3170 if (msk->fastopening) 3171 return -EBUSY; 3172 3173 mptcp_check_listen_stop(sk); 3174 mptcp_set_state(sk, TCP_CLOSE); 3175 3176 mptcp_stop_rtx_timer(sk); 3177 mptcp_stop_tout_timer(sk); 3178 3179 if (msk->token) 3180 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3181 3182 /* msk->subflow is still intact, the following will not free the first 3183 * subflow 3184 */ 3185 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3186 WRITE_ONCE(msk->flags, 0); 3187 msk->cb_flags = 0; 3188 msk->recovery = false; 3189 msk->can_ack = false; 3190 msk->fully_established = false; 3191 msk->rcv_data_fin = false; 3192 msk->snd_data_fin_enable = false; 3193 msk->rcv_fastclose = false; 3194 msk->use_64bit_ack = false; 3195 msk->bytes_consumed = 0; 3196 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3197 mptcp_pm_data_reset(msk); 3198 mptcp_ca_reset(sk); 3199 msk->bytes_acked = 0; 3200 msk->bytes_received = 0; 3201 msk->bytes_sent = 0; 3202 msk->bytes_retrans = 0; 3203 msk->rcvspace_init = 0; 3204 3205 WRITE_ONCE(sk->sk_shutdown, 0); 3206 sk_error_report(sk); 3207 return 0; 3208 } 3209 3210 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3211 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3212 { 3213 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3214 3215 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3216 } 3217 3218 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3219 { 3220 const struct ipv6_pinfo *np = inet6_sk(sk); 3221 struct ipv6_txoptions *opt; 3222 struct ipv6_pinfo *newnp; 3223 3224 newnp = inet6_sk(newsk); 3225 3226 rcu_read_lock(); 3227 opt = rcu_dereference(np->opt); 3228 if (opt) { 3229 opt = ipv6_dup_options(newsk, opt); 3230 if (!opt) 3231 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3232 } 3233 RCU_INIT_POINTER(newnp->opt, opt); 3234 rcu_read_unlock(); 3235 } 3236 #endif 3237 3238 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3239 { 3240 struct ip_options_rcu *inet_opt, *newopt = NULL; 3241 const struct inet_sock *inet = inet_sk(sk); 3242 struct inet_sock *newinet; 3243 3244 newinet = inet_sk(newsk); 3245 3246 rcu_read_lock(); 3247 inet_opt = rcu_dereference(inet->inet_opt); 3248 if (inet_opt) { 3249 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3250 inet_opt->opt.optlen, GFP_ATOMIC); 3251 if (newopt) 3252 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3253 inet_opt->opt.optlen); 3254 else 3255 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3256 } 3257 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3258 rcu_read_unlock(); 3259 } 3260 3261 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3262 const struct mptcp_options_received *mp_opt, 3263 struct sock *ssk, 3264 struct request_sock *req) 3265 { 3266 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3267 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3268 struct mptcp_subflow_context *subflow; 3269 struct mptcp_sock *msk; 3270 3271 if (!nsk) 3272 return NULL; 3273 3274 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3275 if (nsk->sk_family == AF_INET6) 3276 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3277 #endif 3278 3279 __mptcp_init_sock(nsk); 3280 3281 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3282 if (nsk->sk_family == AF_INET6) 3283 mptcp_copy_ip6_options(nsk, sk); 3284 else 3285 #endif 3286 mptcp_copy_ip_options(nsk, sk); 3287 3288 msk = mptcp_sk(nsk); 3289 msk->local_key = subflow_req->local_key; 3290 msk->token = subflow_req->token; 3291 msk->in_accept_queue = 1; 3292 WRITE_ONCE(msk->fully_established, false); 3293 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3294 WRITE_ONCE(msk->csum_enabled, true); 3295 3296 msk->write_seq = subflow_req->idsn + 1; 3297 msk->snd_nxt = msk->write_seq; 3298 msk->snd_una = msk->write_seq; 3299 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd; 3300 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3301 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3302 3303 /* passive msk is created after the first/MPC subflow */ 3304 msk->subflow_id = 2; 3305 3306 sock_reset_flag(nsk, SOCK_RCU_FREE); 3307 security_inet_csk_clone(nsk, req); 3308 3309 /* this can't race with mptcp_close(), as the msk is 3310 * not yet exposted to user-space 3311 */ 3312 mptcp_set_state(nsk, TCP_ESTABLISHED); 3313 3314 /* The msk maintain a ref to each subflow in the connections list */ 3315 WRITE_ONCE(msk->first, ssk); 3316 subflow = mptcp_subflow_ctx(ssk); 3317 list_add(&subflow->node, &msk->conn_list); 3318 sock_hold(ssk); 3319 3320 /* new mpc subflow takes ownership of the newly 3321 * created mptcp socket 3322 */ 3323 mptcp_token_accept(subflow_req, msk); 3324 3325 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3326 * uses the correct data 3327 */ 3328 mptcp_copy_inaddrs(nsk, ssk); 3329 __mptcp_propagate_sndbuf(nsk, ssk); 3330 3331 mptcp_rcv_space_init(msk, ssk); 3332 3333 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3334 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3335 bh_unlock_sock(nsk); 3336 3337 /* note: the newly allocated socket refcount is 2 now */ 3338 return nsk; 3339 } 3340 3341 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3342 { 3343 const struct tcp_sock *tp = tcp_sk(ssk); 3344 3345 msk->rcvspace_init = 1; 3346 msk->rcvq_space.copied = 0; 3347 msk->rcvq_space.rtt_us = 0; 3348 3349 msk->rcvq_space.time = tp->tcp_mstamp; 3350 3351 /* initial rcv_space offering made to peer */ 3352 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3353 TCP_INIT_CWND * tp->advmss); 3354 if (msk->rcvq_space.space == 0) 3355 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3356 } 3357 3358 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3359 { 3360 struct mptcp_subflow_context *subflow, *tmp; 3361 struct sock *sk = (struct sock *)msk; 3362 3363 __mptcp_clear_xmit(sk); 3364 3365 /* join list will be eventually flushed (with rst) at sock lock release time */ 3366 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3367 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3368 3369 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3370 mptcp_data_lock(sk); 3371 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3372 __skb_queue_purge(&sk->sk_receive_queue); 3373 skb_rbtree_purge(&msk->out_of_order_queue); 3374 mptcp_data_unlock(sk); 3375 3376 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3377 * inet_sock_destruct() will dispose it 3378 */ 3379 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3380 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3381 mptcp_token_destroy(msk); 3382 mptcp_pm_free_anno_list(msk); 3383 mptcp_free_local_addr_list(msk); 3384 } 3385 3386 static void mptcp_destroy(struct sock *sk) 3387 { 3388 struct mptcp_sock *msk = mptcp_sk(sk); 3389 3390 /* allow the following to close even the initial subflow */ 3391 msk->free_first = 1; 3392 mptcp_destroy_common(msk, 0); 3393 sk_sockets_allocated_dec(sk); 3394 } 3395 3396 void __mptcp_data_acked(struct sock *sk) 3397 { 3398 if (!sock_owned_by_user(sk)) 3399 __mptcp_clean_una(sk); 3400 else 3401 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3402 3403 if (mptcp_pending_data_fin_ack(sk)) 3404 mptcp_schedule_work(sk); 3405 } 3406 3407 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3408 { 3409 if (!mptcp_send_head(sk)) 3410 return; 3411 3412 if (!sock_owned_by_user(sk)) 3413 __mptcp_subflow_push_pending(sk, ssk, false); 3414 else 3415 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3416 } 3417 3418 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3419 BIT(MPTCP_RETRANSMIT) | \ 3420 BIT(MPTCP_FLUSH_JOIN_LIST)) 3421 3422 /* processes deferred events and flush wmem */ 3423 static void mptcp_release_cb(struct sock *sk) 3424 __must_hold(&sk->sk_lock.slock) 3425 { 3426 struct mptcp_sock *msk = mptcp_sk(sk); 3427 3428 for (;;) { 3429 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3430 struct list_head join_list; 3431 3432 if (!flags) 3433 break; 3434 3435 INIT_LIST_HEAD(&join_list); 3436 list_splice_init(&msk->join_list, &join_list); 3437 3438 /* the following actions acquire the subflow socket lock 3439 * 3440 * 1) can't be invoked in atomic scope 3441 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3442 * datapath acquires the msk socket spinlock while helding 3443 * the subflow socket lock 3444 */ 3445 msk->cb_flags &= ~flags; 3446 spin_unlock_bh(&sk->sk_lock.slock); 3447 3448 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3449 __mptcp_flush_join_list(sk, &join_list); 3450 if (flags & BIT(MPTCP_PUSH_PENDING)) 3451 __mptcp_push_pending(sk, 0); 3452 if (flags & BIT(MPTCP_RETRANSMIT)) 3453 __mptcp_retrans(sk); 3454 3455 cond_resched(); 3456 spin_lock_bh(&sk->sk_lock.slock); 3457 } 3458 3459 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3460 __mptcp_clean_una_wakeup(sk); 3461 if (unlikely(msk->cb_flags)) { 3462 /* be sure to sync the msk state before taking actions 3463 * depending on sk_state (MPTCP_ERROR_REPORT) 3464 * On sk release avoid actions depending on the first subflow 3465 */ 3466 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3467 __mptcp_sync_state(sk, msk->pending_state); 3468 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3469 __mptcp_error_report(sk); 3470 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3471 __mptcp_sync_sndbuf(sk); 3472 } 3473 3474 __mptcp_update_rmem(sk); 3475 } 3476 3477 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3478 * TCP can't schedule delack timer before the subflow is fully established. 3479 * MPTCP uses the delack timer to do 3rd ack retransmissions 3480 */ 3481 static void schedule_3rdack_retransmission(struct sock *ssk) 3482 { 3483 struct inet_connection_sock *icsk = inet_csk(ssk); 3484 struct tcp_sock *tp = tcp_sk(ssk); 3485 unsigned long timeout; 3486 3487 if (mptcp_subflow_ctx(ssk)->fully_established) 3488 return; 3489 3490 /* reschedule with a timeout above RTT, as we must look only for drop */ 3491 if (tp->srtt_us) 3492 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3493 else 3494 timeout = TCP_TIMEOUT_INIT; 3495 timeout += jiffies; 3496 3497 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3498 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3499 icsk->icsk_ack.timeout = timeout; 3500 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3501 } 3502 3503 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3504 { 3505 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3506 struct sock *sk = subflow->conn; 3507 3508 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3509 mptcp_data_lock(sk); 3510 if (!sock_owned_by_user(sk)) 3511 __mptcp_subflow_push_pending(sk, ssk, true); 3512 else 3513 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3514 mptcp_data_unlock(sk); 3515 } 3516 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3517 mptcp_data_lock(sk); 3518 if (!sock_owned_by_user(sk)) 3519 __mptcp_sync_sndbuf(sk); 3520 else 3521 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3522 mptcp_data_unlock(sk); 3523 } 3524 if (status & BIT(MPTCP_DELEGATE_ACK)) 3525 schedule_3rdack_retransmission(ssk); 3526 } 3527 3528 static int mptcp_hash(struct sock *sk) 3529 { 3530 /* should never be called, 3531 * we hash the TCP subflows not the master socket 3532 */ 3533 WARN_ON_ONCE(1); 3534 return 0; 3535 } 3536 3537 static void mptcp_unhash(struct sock *sk) 3538 { 3539 /* called from sk_common_release(), but nothing to do here */ 3540 } 3541 3542 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3543 { 3544 struct mptcp_sock *msk = mptcp_sk(sk); 3545 3546 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3547 if (WARN_ON_ONCE(!msk->first)) 3548 return -EINVAL; 3549 3550 return inet_csk_get_port(msk->first, snum); 3551 } 3552 3553 void mptcp_finish_connect(struct sock *ssk) 3554 { 3555 struct mptcp_subflow_context *subflow; 3556 struct mptcp_sock *msk; 3557 struct sock *sk; 3558 3559 subflow = mptcp_subflow_ctx(ssk); 3560 sk = subflow->conn; 3561 msk = mptcp_sk(sk); 3562 3563 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3564 3565 subflow->map_seq = subflow->iasn; 3566 subflow->map_subflow_seq = 1; 3567 3568 /* the socket is not connected yet, no msk/subflow ops can access/race 3569 * accessing the field below 3570 */ 3571 WRITE_ONCE(msk->local_key, subflow->local_key); 3572 3573 mptcp_pm_new_connection(msk, ssk, 0); 3574 } 3575 3576 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3577 { 3578 write_lock_bh(&sk->sk_callback_lock); 3579 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3580 sk_set_socket(sk, parent); 3581 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3582 write_unlock_bh(&sk->sk_callback_lock); 3583 } 3584 3585 bool mptcp_finish_join(struct sock *ssk) 3586 { 3587 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3588 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3589 struct sock *parent = (void *)msk; 3590 bool ret = true; 3591 3592 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3593 3594 /* mptcp socket already closing? */ 3595 if (!mptcp_is_fully_established(parent)) { 3596 subflow->reset_reason = MPTCP_RST_EMPTCP; 3597 return false; 3598 } 3599 3600 /* active subflow, already present inside the conn_list */ 3601 if (!list_empty(&subflow->node)) { 3602 mptcp_subflow_joined(msk, ssk); 3603 mptcp_propagate_sndbuf(parent, ssk); 3604 return true; 3605 } 3606 3607 if (!mptcp_pm_allow_new_subflow(msk)) 3608 goto err_prohibited; 3609 3610 /* If we can't acquire msk socket lock here, let the release callback 3611 * handle it 3612 */ 3613 mptcp_data_lock(parent); 3614 if (!sock_owned_by_user(parent)) { 3615 ret = __mptcp_finish_join(msk, ssk); 3616 if (ret) { 3617 sock_hold(ssk); 3618 list_add_tail(&subflow->node, &msk->conn_list); 3619 } 3620 } else { 3621 sock_hold(ssk); 3622 list_add_tail(&subflow->node, &msk->join_list); 3623 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3624 } 3625 mptcp_data_unlock(parent); 3626 3627 if (!ret) { 3628 err_prohibited: 3629 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3630 return false; 3631 } 3632 3633 return true; 3634 } 3635 3636 static void mptcp_shutdown(struct sock *sk, int how) 3637 { 3638 pr_debug("sk=%p, how=%d\n", sk, how); 3639 3640 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3641 __mptcp_wr_shutdown(sk); 3642 } 3643 3644 static int mptcp_forward_alloc_get(const struct sock *sk) 3645 { 3646 return READ_ONCE(sk->sk_forward_alloc) + 3647 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3648 } 3649 3650 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3651 { 3652 const struct sock *sk = (void *)msk; 3653 u64 delta; 3654 3655 if (sk->sk_state == TCP_LISTEN) 3656 return -EINVAL; 3657 3658 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3659 return 0; 3660 3661 delta = msk->write_seq - v; 3662 if (__mptcp_check_fallback(msk) && msk->first) { 3663 struct tcp_sock *tp = tcp_sk(msk->first); 3664 3665 /* the first subflow is disconnected after close - see 3666 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3667 * so ignore that status, too. 3668 */ 3669 if (!((1 << msk->first->sk_state) & 3670 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3671 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3672 } 3673 if (delta > INT_MAX) 3674 delta = INT_MAX; 3675 3676 return (int)delta; 3677 } 3678 3679 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3680 { 3681 struct mptcp_sock *msk = mptcp_sk(sk); 3682 bool slow; 3683 3684 switch (cmd) { 3685 case SIOCINQ: 3686 if (sk->sk_state == TCP_LISTEN) 3687 return -EINVAL; 3688 3689 lock_sock(sk); 3690 __mptcp_move_skbs(msk); 3691 *karg = mptcp_inq_hint(sk); 3692 release_sock(sk); 3693 break; 3694 case SIOCOUTQ: 3695 slow = lock_sock_fast(sk); 3696 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3697 unlock_sock_fast(sk, slow); 3698 break; 3699 case SIOCOUTQNSD: 3700 slow = lock_sock_fast(sk); 3701 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3702 unlock_sock_fast(sk, slow); 3703 break; 3704 default: 3705 return -ENOIOCTLCMD; 3706 } 3707 3708 return 0; 3709 } 3710 3711 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3712 struct mptcp_subflow_context *subflow) 3713 { 3714 subflow->request_mptcp = 0; 3715 __mptcp_do_fallback(msk); 3716 } 3717 3718 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3719 { 3720 struct mptcp_subflow_context *subflow; 3721 struct mptcp_sock *msk = mptcp_sk(sk); 3722 int err = -EINVAL; 3723 struct sock *ssk; 3724 3725 ssk = __mptcp_nmpc_sk(msk); 3726 if (IS_ERR(ssk)) 3727 return PTR_ERR(ssk); 3728 3729 mptcp_set_state(sk, TCP_SYN_SENT); 3730 subflow = mptcp_subflow_ctx(ssk); 3731 #ifdef CONFIG_TCP_MD5SIG 3732 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3733 * TCP option space. 3734 */ 3735 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3736 mptcp_subflow_early_fallback(msk, subflow); 3737 #endif 3738 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3739 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3740 mptcp_subflow_early_fallback(msk, subflow); 3741 } 3742 3743 WRITE_ONCE(msk->write_seq, subflow->idsn); 3744 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3745 WRITE_ONCE(msk->snd_una, subflow->idsn); 3746 if (likely(!__mptcp_check_fallback(msk))) 3747 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3748 3749 /* if reaching here via the fastopen/sendmsg path, the caller already 3750 * acquired the subflow socket lock, too. 3751 */ 3752 if (!msk->fastopening) 3753 lock_sock(ssk); 3754 3755 /* the following mirrors closely a very small chunk of code from 3756 * __inet_stream_connect() 3757 */ 3758 if (ssk->sk_state != TCP_CLOSE) 3759 goto out; 3760 3761 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3762 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3763 if (err) 3764 goto out; 3765 } 3766 3767 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3768 if (err < 0) 3769 goto out; 3770 3771 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3772 3773 out: 3774 if (!msk->fastopening) 3775 release_sock(ssk); 3776 3777 /* on successful connect, the msk state will be moved to established by 3778 * subflow_finish_connect() 3779 */ 3780 if (unlikely(err)) { 3781 /* avoid leaving a dangling token in an unconnected socket */ 3782 mptcp_token_destroy(msk); 3783 mptcp_set_state(sk, TCP_CLOSE); 3784 return err; 3785 } 3786 3787 mptcp_copy_inaddrs(sk, ssk); 3788 return 0; 3789 } 3790 3791 static struct proto mptcp_prot = { 3792 .name = "MPTCP", 3793 .owner = THIS_MODULE, 3794 .init = mptcp_init_sock, 3795 .connect = mptcp_connect, 3796 .disconnect = mptcp_disconnect, 3797 .close = mptcp_close, 3798 .setsockopt = mptcp_setsockopt, 3799 .getsockopt = mptcp_getsockopt, 3800 .shutdown = mptcp_shutdown, 3801 .destroy = mptcp_destroy, 3802 .sendmsg = mptcp_sendmsg, 3803 .ioctl = mptcp_ioctl, 3804 .recvmsg = mptcp_recvmsg, 3805 .release_cb = mptcp_release_cb, 3806 .hash = mptcp_hash, 3807 .unhash = mptcp_unhash, 3808 .get_port = mptcp_get_port, 3809 .forward_alloc_get = mptcp_forward_alloc_get, 3810 .sockets_allocated = &mptcp_sockets_allocated, 3811 3812 .memory_allocated = &tcp_memory_allocated, 3813 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3814 3815 .memory_pressure = &tcp_memory_pressure, 3816 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3817 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3818 .sysctl_mem = sysctl_tcp_mem, 3819 .obj_size = sizeof(struct mptcp_sock), 3820 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3821 .no_autobind = true, 3822 }; 3823 3824 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3825 { 3826 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3827 struct sock *ssk, *sk = sock->sk; 3828 int err = -EINVAL; 3829 3830 lock_sock(sk); 3831 ssk = __mptcp_nmpc_sk(msk); 3832 if (IS_ERR(ssk)) { 3833 err = PTR_ERR(ssk); 3834 goto unlock; 3835 } 3836 3837 if (sk->sk_family == AF_INET) 3838 err = inet_bind_sk(ssk, uaddr, addr_len); 3839 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3840 else if (sk->sk_family == AF_INET6) 3841 err = inet6_bind_sk(ssk, uaddr, addr_len); 3842 #endif 3843 if (!err) 3844 mptcp_copy_inaddrs(sk, ssk); 3845 3846 unlock: 3847 release_sock(sk); 3848 return err; 3849 } 3850 3851 static int mptcp_listen(struct socket *sock, int backlog) 3852 { 3853 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3854 struct sock *sk = sock->sk; 3855 struct sock *ssk; 3856 int err; 3857 3858 pr_debug("msk=%p\n", msk); 3859 3860 lock_sock(sk); 3861 3862 err = -EINVAL; 3863 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3864 goto unlock; 3865 3866 ssk = __mptcp_nmpc_sk(msk); 3867 if (IS_ERR(ssk)) { 3868 err = PTR_ERR(ssk); 3869 goto unlock; 3870 } 3871 3872 mptcp_set_state(sk, TCP_LISTEN); 3873 sock_set_flag(sk, SOCK_RCU_FREE); 3874 3875 lock_sock(ssk); 3876 err = __inet_listen_sk(ssk, backlog); 3877 release_sock(ssk); 3878 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3879 3880 if (!err) { 3881 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3882 mptcp_copy_inaddrs(sk, ssk); 3883 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3884 } 3885 3886 unlock: 3887 release_sock(sk); 3888 return err; 3889 } 3890 3891 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3892 int flags, bool kern) 3893 { 3894 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3895 struct sock *ssk, *newsk; 3896 int err; 3897 3898 pr_debug("msk=%p\n", msk); 3899 3900 /* Buggy applications can call accept on socket states other then LISTEN 3901 * but no need to allocate the first subflow just to error out. 3902 */ 3903 ssk = READ_ONCE(msk->first); 3904 if (!ssk) 3905 return -EINVAL; 3906 3907 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3908 newsk = inet_csk_accept(ssk, flags, &err, kern); 3909 if (!newsk) 3910 return err; 3911 3912 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3913 if (sk_is_mptcp(newsk)) { 3914 struct mptcp_subflow_context *subflow; 3915 struct sock *new_mptcp_sock; 3916 3917 subflow = mptcp_subflow_ctx(newsk); 3918 new_mptcp_sock = subflow->conn; 3919 3920 /* is_mptcp should be false if subflow->conn is missing, see 3921 * subflow_syn_recv_sock() 3922 */ 3923 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3924 tcp_sk(newsk)->is_mptcp = 0; 3925 goto tcpfallback; 3926 } 3927 3928 newsk = new_mptcp_sock; 3929 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3930 3931 newsk->sk_kern_sock = kern; 3932 lock_sock(newsk); 3933 __inet_accept(sock, newsock, newsk); 3934 3935 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3936 msk = mptcp_sk(newsk); 3937 msk->in_accept_queue = 0; 3938 3939 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3940 * This is needed so NOSPACE flag can be set from tcp stack. 3941 */ 3942 mptcp_for_each_subflow(msk, subflow) { 3943 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3944 3945 if (!ssk->sk_socket) 3946 mptcp_sock_graft(ssk, newsock); 3947 } 3948 3949 /* Do late cleanup for the first subflow as necessary. Also 3950 * deal with bad peers not doing a complete shutdown. 3951 */ 3952 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3953 __mptcp_close_ssk(newsk, msk->first, 3954 mptcp_subflow_ctx(msk->first), 0); 3955 if (unlikely(list_is_singular(&msk->conn_list))) 3956 mptcp_set_state(newsk, TCP_CLOSE); 3957 } 3958 } else { 3959 tcpfallback: 3960 newsk->sk_kern_sock = kern; 3961 lock_sock(newsk); 3962 __inet_accept(sock, newsock, newsk); 3963 /* we are being invoked after accepting a non-mp-capable 3964 * flow: sk is a tcp_sk, not an mptcp one. 3965 * 3966 * Hand the socket over to tcp so all further socket ops 3967 * bypass mptcp. 3968 */ 3969 WRITE_ONCE(newsock->sk->sk_socket->ops, 3970 mptcp_fallback_tcp_ops(newsock->sk)); 3971 } 3972 release_sock(newsk); 3973 3974 return 0; 3975 } 3976 3977 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3978 { 3979 struct sock *sk = (struct sock *)msk; 3980 3981 if (sk_stream_is_writeable(sk)) 3982 return EPOLLOUT | EPOLLWRNORM; 3983 3984 mptcp_set_nospace(sk); 3985 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3986 if (sk_stream_is_writeable(sk)) 3987 return EPOLLOUT | EPOLLWRNORM; 3988 3989 return 0; 3990 } 3991 3992 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3993 struct poll_table_struct *wait) 3994 { 3995 struct sock *sk = sock->sk; 3996 struct mptcp_sock *msk; 3997 __poll_t mask = 0; 3998 u8 shutdown; 3999 int state; 4000 4001 msk = mptcp_sk(sk); 4002 sock_poll_wait(file, sock, wait); 4003 4004 state = inet_sk_state_load(sk); 4005 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4006 if (state == TCP_LISTEN) { 4007 struct sock *ssk = READ_ONCE(msk->first); 4008 4009 if (WARN_ON_ONCE(!ssk)) 4010 return 0; 4011 4012 return inet_csk_listen_poll(ssk); 4013 } 4014 4015 shutdown = READ_ONCE(sk->sk_shutdown); 4016 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4017 mask |= EPOLLHUP; 4018 if (shutdown & RCV_SHUTDOWN) 4019 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4020 4021 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4022 mask |= mptcp_check_readable(sk); 4023 if (shutdown & SEND_SHUTDOWN) 4024 mask |= EPOLLOUT | EPOLLWRNORM; 4025 else 4026 mask |= mptcp_check_writeable(msk); 4027 } else if (state == TCP_SYN_SENT && 4028 inet_test_bit(DEFER_CONNECT, sk)) { 4029 /* cf tcp_poll() note about TFO */ 4030 mask |= EPOLLOUT | EPOLLWRNORM; 4031 } 4032 4033 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4034 smp_rmb(); 4035 if (READ_ONCE(sk->sk_err)) 4036 mask |= EPOLLERR; 4037 4038 return mask; 4039 } 4040 4041 static const struct proto_ops mptcp_stream_ops = { 4042 .family = PF_INET, 4043 .owner = THIS_MODULE, 4044 .release = inet_release, 4045 .bind = mptcp_bind, 4046 .connect = inet_stream_connect, 4047 .socketpair = sock_no_socketpair, 4048 .accept = mptcp_stream_accept, 4049 .getname = inet_getname, 4050 .poll = mptcp_poll, 4051 .ioctl = inet_ioctl, 4052 .gettstamp = sock_gettstamp, 4053 .listen = mptcp_listen, 4054 .shutdown = inet_shutdown, 4055 .setsockopt = sock_common_setsockopt, 4056 .getsockopt = sock_common_getsockopt, 4057 .sendmsg = inet_sendmsg, 4058 .recvmsg = inet_recvmsg, 4059 .mmap = sock_no_mmap, 4060 .set_rcvlowat = mptcp_set_rcvlowat, 4061 }; 4062 4063 static struct inet_protosw mptcp_protosw = { 4064 .type = SOCK_STREAM, 4065 .protocol = IPPROTO_MPTCP, 4066 .prot = &mptcp_prot, 4067 .ops = &mptcp_stream_ops, 4068 .flags = INET_PROTOSW_ICSK, 4069 }; 4070 4071 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4072 { 4073 struct mptcp_delegated_action *delegated; 4074 struct mptcp_subflow_context *subflow; 4075 int work_done = 0; 4076 4077 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4078 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4079 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4080 4081 bh_lock_sock_nested(ssk); 4082 if (!sock_owned_by_user(ssk)) { 4083 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4084 } else { 4085 /* tcp_release_cb_override already processed 4086 * the action or will do at next release_sock(). 4087 * In both case must dequeue the subflow here - on the same 4088 * CPU that scheduled it. 4089 */ 4090 smp_wmb(); 4091 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4092 } 4093 bh_unlock_sock(ssk); 4094 sock_put(ssk); 4095 4096 if (++work_done == budget) 4097 return budget; 4098 } 4099 4100 /* always provide a 0 'work_done' argument, so that napi_complete_done 4101 * will not try accessing the NULL napi->dev ptr 4102 */ 4103 napi_complete_done(napi, 0); 4104 return work_done; 4105 } 4106 4107 void __init mptcp_proto_init(void) 4108 { 4109 struct mptcp_delegated_action *delegated; 4110 int cpu; 4111 4112 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4113 4114 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4115 panic("Failed to allocate MPTCP pcpu counter\n"); 4116 4117 init_dummy_netdev(&mptcp_napi_dev); 4118 for_each_possible_cpu(cpu) { 4119 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4120 INIT_LIST_HEAD(&delegated->head); 4121 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4122 mptcp_napi_poll); 4123 napi_enable(&delegated->napi); 4124 } 4125 4126 mptcp_subflow_init(); 4127 mptcp_pm_init(); 4128 mptcp_sched_init(); 4129 mptcp_token_init(); 4130 4131 if (proto_register(&mptcp_prot, 1) != 0) 4132 panic("Failed to register MPTCP proto.\n"); 4133 4134 inet_register_protosw(&mptcp_protosw); 4135 4136 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4137 } 4138 4139 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4140 static const struct proto_ops mptcp_v6_stream_ops = { 4141 .family = PF_INET6, 4142 .owner = THIS_MODULE, 4143 .release = inet6_release, 4144 .bind = mptcp_bind, 4145 .connect = inet_stream_connect, 4146 .socketpair = sock_no_socketpair, 4147 .accept = mptcp_stream_accept, 4148 .getname = inet6_getname, 4149 .poll = mptcp_poll, 4150 .ioctl = inet6_ioctl, 4151 .gettstamp = sock_gettstamp, 4152 .listen = mptcp_listen, 4153 .shutdown = inet_shutdown, 4154 .setsockopt = sock_common_setsockopt, 4155 .getsockopt = sock_common_getsockopt, 4156 .sendmsg = inet6_sendmsg, 4157 .recvmsg = inet6_recvmsg, 4158 .mmap = sock_no_mmap, 4159 #ifdef CONFIG_COMPAT 4160 .compat_ioctl = inet6_compat_ioctl, 4161 #endif 4162 .set_rcvlowat = mptcp_set_rcvlowat, 4163 }; 4164 4165 static struct proto mptcp_v6_prot; 4166 4167 static struct inet_protosw mptcp_v6_protosw = { 4168 .type = SOCK_STREAM, 4169 .protocol = IPPROTO_MPTCP, 4170 .prot = &mptcp_v6_prot, 4171 .ops = &mptcp_v6_stream_ops, 4172 .flags = INET_PROTOSW_ICSK, 4173 }; 4174 4175 int __init mptcp_proto_v6_init(void) 4176 { 4177 int err; 4178 4179 mptcp_v6_prot = mptcp_prot; 4180 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4181 mptcp_v6_prot.slab = NULL; 4182 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4183 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4184 4185 err = proto_register(&mptcp_v6_prot, 1); 4186 if (err) 4187 return err; 4188 4189 err = inet6_register_protosw(&mptcp_v6_protosw); 4190 if (err) 4191 proto_unregister(&mptcp_v6_prot); 4192 4193 return err; 4194 } 4195 #endif 4196