xref: /openbmc/linux/net/mac80211/util.c (revision c1601ea9a65133685c4ddaf3d3640d905e9405c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright (C) 2015-2017	Intel Deutschland GmbH
9  * Copyright (C) 2018-2021 Intel Corporation
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 
43 	local = wiphy_priv(wiphy);
44 	return &local->hw;
45 }
46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
47 
48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_s1g_beacon(fc)) {
68 		struct ieee80211_ext *ext = (void *) hdr;
69 
70 		return ext->u.s1g_beacon.sa;
71 	}
72 
73 	if (ieee80211_is_mgmt(fc)) {
74 		if (len < 24) /* drop incorrect hdr len (mgmt) */
75 			return NULL;
76 		return hdr->addr3;
77 	}
78 
79 	if (ieee80211_is_ctl(fc)) {
80 		if (ieee80211_is_pspoll(fc))
81 			return hdr->addr1;
82 
83 		if (ieee80211_is_back_req(fc)) {
84 			switch (type) {
85 			case NL80211_IFTYPE_STATION:
86 				return hdr->addr2;
87 			case NL80211_IFTYPE_AP:
88 			case NL80211_IFTYPE_AP_VLAN:
89 				return hdr->addr1;
90 			default:
91 				break; /* fall through to the return */
92 			}
93 		}
94 	}
95 
96 	return NULL;
97 }
98 EXPORT_SYMBOL(ieee80211_get_bssid);
99 
100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
101 {
102 	struct sk_buff *skb;
103 	struct ieee80211_hdr *hdr;
104 
105 	skb_queue_walk(&tx->skbs, skb) {
106 		hdr = (struct ieee80211_hdr *) skb->data;
107 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
108 	}
109 }
110 
111 int ieee80211_frame_duration(enum nl80211_band band, size_t len,
112 			     int rate, int erp, int short_preamble,
113 			     int shift)
114 {
115 	int dur;
116 
117 	/* calculate duration (in microseconds, rounded up to next higher
118 	 * integer if it includes a fractional microsecond) to send frame of
119 	 * len bytes (does not include FCS) at the given rate. Duration will
120 	 * also include SIFS.
121 	 *
122 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
123 	 * DIV_ROUND_UP() operations.
124 	 *
125 	 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and
126 	 * is assumed to be 0 otherwise.
127 	 */
128 
129 	if (band == NL80211_BAND_5GHZ || erp) {
130 		/*
131 		 * OFDM:
132 		 *
133 		 * N_DBPS = DATARATE x 4
134 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
135 		 *	(16 = SIGNAL time, 6 = tail bits)
136 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
137 		 *
138 		 * T_SYM = 4 usec
139 		 * 802.11a - 18.5.2: aSIFSTime = 16 usec
140 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
141 		 *	signal ext = 6 usec
142 		 */
143 		dur = 16; /* SIFS + signal ext */
144 		dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
145 		dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
146 
147 		/* IEEE 802.11-2012 18.3.2.4: all values above are:
148 		 *  * times 4 for 5 MHz
149 		 *  * times 2 for 10 MHz
150 		 */
151 		dur *= 1 << shift;
152 
153 		/* rates should already consider the channel bandwidth,
154 		 * don't apply divisor again.
155 		 */
156 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
157 					4 * rate); /* T_SYM x N_SYM */
158 	} else {
159 		/*
160 		 * 802.11b or 802.11g with 802.11b compatibility:
161 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
162 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
163 		 *
164 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
165 		 * aSIFSTime = 10 usec
166 		 * aPreambleLength = 144 usec or 72 usec with short preamble
167 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
168 		 */
169 		dur = 10; /* aSIFSTime = 10 usec */
170 		dur += short_preamble ? (72 + 24) : (144 + 48);
171 
172 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
173 	}
174 
175 	return dur;
176 }
177 
178 /* Exported duration function for driver use */
179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
180 					struct ieee80211_vif *vif,
181 					enum nl80211_band band,
182 					size_t frame_len,
183 					struct ieee80211_rate *rate)
184 {
185 	struct ieee80211_sub_if_data *sdata;
186 	u16 dur;
187 	int erp, shift = 0;
188 	bool short_preamble = false;
189 
190 	erp = 0;
191 	if (vif) {
192 		sdata = vif_to_sdata(vif);
193 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
194 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
195 			erp = rate->flags & IEEE80211_RATE_ERP_G;
196 		shift = ieee80211_vif_get_shift(vif);
197 	}
198 
199 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
200 				       short_preamble, shift);
201 
202 	return cpu_to_le16(dur);
203 }
204 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
205 
206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
207 			      struct ieee80211_vif *vif, size_t frame_len,
208 			      const struct ieee80211_tx_info *frame_txctl)
209 {
210 	struct ieee80211_local *local = hw_to_local(hw);
211 	struct ieee80211_rate *rate;
212 	struct ieee80211_sub_if_data *sdata;
213 	bool short_preamble;
214 	int erp, shift = 0, bitrate;
215 	u16 dur;
216 	struct ieee80211_supported_band *sband;
217 
218 	sband = local->hw.wiphy->bands[frame_txctl->band];
219 
220 	short_preamble = false;
221 
222 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
223 
224 	erp = 0;
225 	if (vif) {
226 		sdata = vif_to_sdata(vif);
227 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
228 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
229 			erp = rate->flags & IEEE80211_RATE_ERP_G;
230 		shift = ieee80211_vif_get_shift(vif);
231 	}
232 
233 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
234 
235 	/* CTS duration */
236 	dur = ieee80211_frame_duration(sband->band, 10, bitrate,
237 				       erp, short_preamble, shift);
238 	/* Data frame duration */
239 	dur += ieee80211_frame_duration(sband->band, frame_len, bitrate,
240 					erp, short_preamble, shift);
241 	/* ACK duration */
242 	dur += ieee80211_frame_duration(sband->band, 10, bitrate,
243 					erp, short_preamble, shift);
244 
245 	return cpu_to_le16(dur);
246 }
247 EXPORT_SYMBOL(ieee80211_rts_duration);
248 
249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
250 				    struct ieee80211_vif *vif,
251 				    size_t frame_len,
252 				    const struct ieee80211_tx_info *frame_txctl)
253 {
254 	struct ieee80211_local *local = hw_to_local(hw);
255 	struct ieee80211_rate *rate;
256 	struct ieee80211_sub_if_data *sdata;
257 	bool short_preamble;
258 	int erp, shift = 0, bitrate;
259 	u16 dur;
260 	struct ieee80211_supported_band *sband;
261 
262 	sband = local->hw.wiphy->bands[frame_txctl->band];
263 
264 	short_preamble = false;
265 
266 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
267 	erp = 0;
268 	if (vif) {
269 		sdata = vif_to_sdata(vif);
270 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
271 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
272 			erp = rate->flags & IEEE80211_RATE_ERP_G;
273 		shift = ieee80211_vif_get_shift(vif);
274 	}
275 
276 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
277 
278 	/* Data frame duration */
279 	dur = ieee80211_frame_duration(sband->band, frame_len, bitrate,
280 				       erp, short_preamble, shift);
281 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
282 		/* ACK duration */
283 		dur += ieee80211_frame_duration(sband->band, 10, bitrate,
284 						erp, short_preamble, shift);
285 	}
286 
287 	return cpu_to_le16(dur);
288 }
289 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
290 
291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac)
292 {
293 	struct ieee80211_local *local = sdata->local;
294 	struct ieee80211_vif *vif = &sdata->vif;
295 	struct fq *fq = &local->fq;
296 	struct ps_data *ps = NULL;
297 	struct txq_info *txqi;
298 	struct sta_info *sta;
299 	int i;
300 
301 	local_bh_disable();
302 	spin_lock(&fq->lock);
303 
304 	if (sdata->vif.type == NL80211_IFTYPE_AP)
305 		ps = &sdata->bss->ps;
306 
307 	sdata->vif.txqs_stopped[ac] = false;
308 
309 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
310 		if (sdata != sta->sdata)
311 			continue;
312 
313 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
314 			struct ieee80211_txq *txq = sta->sta.txq[i];
315 
316 			if (!txq)
317 				continue;
318 
319 			txqi = to_txq_info(txq);
320 
321 			if (ac != txq->ac)
322 				continue;
323 
324 			if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX,
325 						&txqi->flags))
326 				continue;
327 
328 			spin_unlock(&fq->lock);
329 			drv_wake_tx_queue(local, txqi);
330 			spin_lock(&fq->lock);
331 		}
332 	}
333 
334 	if (!vif->txq)
335 		goto out;
336 
337 	txqi = to_txq_info(vif->txq);
338 
339 	if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) ||
340 	    (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac)
341 		goto out;
342 
343 	spin_unlock(&fq->lock);
344 
345 	drv_wake_tx_queue(local, txqi);
346 	local_bh_enable();
347 	return;
348 out:
349 	spin_unlock(&fq->lock);
350 	local_bh_enable();
351 }
352 
353 static void
354 __releases(&local->queue_stop_reason_lock)
355 __acquires(&local->queue_stop_reason_lock)
356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags)
357 {
358 	struct ieee80211_sub_if_data *sdata;
359 	int n_acs = IEEE80211_NUM_ACS;
360 	int i;
361 
362 	rcu_read_lock();
363 
364 	if (local->hw.queues < IEEE80211_NUM_ACS)
365 		n_acs = 1;
366 
367 	for (i = 0; i < local->hw.queues; i++) {
368 		if (local->queue_stop_reasons[i])
369 			continue;
370 
371 		spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags);
372 		list_for_each_entry_rcu(sdata, &local->interfaces, list) {
373 			int ac;
374 
375 			for (ac = 0; ac < n_acs; ac++) {
376 				int ac_queue = sdata->vif.hw_queue[ac];
377 
378 				if (ac_queue == i ||
379 				    sdata->vif.cab_queue == i)
380 					__ieee80211_wake_txqs(sdata, ac);
381 			}
382 		}
383 		spin_lock_irqsave(&local->queue_stop_reason_lock, *flags);
384 	}
385 
386 	rcu_read_unlock();
387 }
388 
389 void ieee80211_wake_txqs(struct tasklet_struct *t)
390 {
391 	struct ieee80211_local *local = from_tasklet(local, t,
392 						     wake_txqs_tasklet);
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
396 	_ieee80211_wake_txqs(local, &flags);
397 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
398 }
399 
400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
401 {
402 	struct ieee80211_sub_if_data *sdata;
403 	int n_acs = IEEE80211_NUM_ACS;
404 
405 	if (local->ops->wake_tx_queue)
406 		return;
407 
408 	if (local->hw.queues < IEEE80211_NUM_ACS)
409 		n_acs = 1;
410 
411 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
412 		int ac;
413 
414 		if (!sdata->dev)
415 			continue;
416 
417 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
418 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
419 			continue;
420 
421 		for (ac = 0; ac < n_acs; ac++) {
422 			int ac_queue = sdata->vif.hw_queue[ac];
423 
424 			if (ac_queue == queue ||
425 			    (sdata->vif.cab_queue == queue &&
426 			     local->queue_stop_reasons[ac_queue] == 0 &&
427 			     skb_queue_empty(&local->pending[ac_queue])))
428 				netif_wake_subqueue(sdata->dev, ac);
429 		}
430 	}
431 }
432 
433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
434 				   enum queue_stop_reason reason,
435 				   bool refcounted,
436 				   unsigned long *flags)
437 {
438 	struct ieee80211_local *local = hw_to_local(hw);
439 
440 	trace_wake_queue(local, queue, reason);
441 
442 	if (WARN_ON(queue >= hw->queues))
443 		return;
444 
445 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
446 		return;
447 
448 	if (!refcounted) {
449 		local->q_stop_reasons[queue][reason] = 0;
450 	} else {
451 		local->q_stop_reasons[queue][reason]--;
452 		if (WARN_ON(local->q_stop_reasons[queue][reason] < 0))
453 			local->q_stop_reasons[queue][reason] = 0;
454 	}
455 
456 	if (local->q_stop_reasons[queue][reason] == 0)
457 		__clear_bit(reason, &local->queue_stop_reasons[queue]);
458 
459 	if (local->queue_stop_reasons[queue] != 0)
460 		/* someone still has this queue stopped */
461 		return;
462 
463 	if (skb_queue_empty(&local->pending[queue])) {
464 		rcu_read_lock();
465 		ieee80211_propagate_queue_wake(local, queue);
466 		rcu_read_unlock();
467 	} else
468 		tasklet_schedule(&local->tx_pending_tasklet);
469 
470 	/*
471 	 * Calling _ieee80211_wake_txqs here can be a problem because it may
472 	 * release queue_stop_reason_lock which has been taken by
473 	 * __ieee80211_wake_queue's caller. It is certainly not very nice to
474 	 * release someone's lock, but it is fine because all the callers of
475 	 * __ieee80211_wake_queue call it right before releasing the lock.
476 	 */
477 	if (local->ops->wake_tx_queue) {
478 		if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER)
479 			tasklet_schedule(&local->wake_txqs_tasklet);
480 		else
481 			_ieee80211_wake_txqs(local, flags);
482 	}
483 }
484 
485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
486 				    enum queue_stop_reason reason,
487 				    bool refcounted)
488 {
489 	struct ieee80211_local *local = hw_to_local(hw);
490 	unsigned long flags;
491 
492 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
493 	__ieee80211_wake_queue(hw, queue, reason, refcounted, &flags);
494 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
495 }
496 
497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
498 {
499 	ieee80211_wake_queue_by_reason(hw, queue,
500 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
501 				       false);
502 }
503 EXPORT_SYMBOL(ieee80211_wake_queue);
504 
505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
506 				   enum queue_stop_reason reason,
507 				   bool refcounted)
508 {
509 	struct ieee80211_local *local = hw_to_local(hw);
510 	struct ieee80211_sub_if_data *sdata;
511 	int n_acs = IEEE80211_NUM_ACS;
512 
513 	trace_stop_queue(local, queue, reason);
514 
515 	if (WARN_ON(queue >= hw->queues))
516 		return;
517 
518 	if (!refcounted)
519 		local->q_stop_reasons[queue][reason] = 1;
520 	else
521 		local->q_stop_reasons[queue][reason]++;
522 
523 	if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue]))
524 		return;
525 
526 	if (local->hw.queues < IEEE80211_NUM_ACS)
527 		n_acs = 1;
528 
529 	rcu_read_lock();
530 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
531 		int ac;
532 
533 		if (!sdata->dev)
534 			continue;
535 
536 		for (ac = 0; ac < n_acs; ac++) {
537 			if (sdata->vif.hw_queue[ac] == queue ||
538 			    sdata->vif.cab_queue == queue) {
539 				if (!local->ops->wake_tx_queue) {
540 					netif_stop_subqueue(sdata->dev, ac);
541 					continue;
542 				}
543 				spin_lock(&local->fq.lock);
544 				sdata->vif.txqs_stopped[ac] = true;
545 				spin_unlock(&local->fq.lock);
546 			}
547 		}
548 	}
549 	rcu_read_unlock();
550 }
551 
552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
553 				    enum queue_stop_reason reason,
554 				    bool refcounted)
555 {
556 	struct ieee80211_local *local = hw_to_local(hw);
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
560 	__ieee80211_stop_queue(hw, queue, reason, refcounted);
561 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
562 }
563 
564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
565 {
566 	ieee80211_stop_queue_by_reason(hw, queue,
567 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
568 				       false);
569 }
570 EXPORT_SYMBOL(ieee80211_stop_queue);
571 
572 void ieee80211_add_pending_skb(struct ieee80211_local *local,
573 			       struct sk_buff *skb)
574 {
575 	struct ieee80211_hw *hw = &local->hw;
576 	unsigned long flags;
577 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
578 	int queue = info->hw_queue;
579 
580 	if (WARN_ON(!info->control.vif)) {
581 		ieee80211_free_txskb(&local->hw, skb);
582 		return;
583 	}
584 
585 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
586 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
587 			       false);
588 	__skb_queue_tail(&local->pending[queue], skb);
589 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
590 			       false, &flags);
591 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
592 }
593 
594 void ieee80211_add_pending_skbs(struct ieee80211_local *local,
595 				struct sk_buff_head *skbs)
596 {
597 	struct ieee80211_hw *hw = &local->hw;
598 	struct sk_buff *skb;
599 	unsigned long flags;
600 	int queue, i;
601 
602 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
603 	while ((skb = skb_dequeue(skbs))) {
604 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
605 
606 		if (WARN_ON(!info->control.vif)) {
607 			ieee80211_free_txskb(&local->hw, skb);
608 			continue;
609 		}
610 
611 		queue = info->hw_queue;
612 
613 		__ieee80211_stop_queue(hw, queue,
614 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
615 				false);
616 
617 		__skb_queue_tail(&local->pending[queue], skb);
618 	}
619 
620 	for (i = 0; i < hw->queues; i++)
621 		__ieee80211_wake_queue(hw, i,
622 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
623 			false, &flags);
624 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
625 }
626 
627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
628 				     unsigned long queues,
629 				     enum queue_stop_reason reason,
630 				     bool refcounted)
631 {
632 	struct ieee80211_local *local = hw_to_local(hw);
633 	unsigned long flags;
634 	int i;
635 
636 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
637 
638 	for_each_set_bit(i, &queues, hw->queues)
639 		__ieee80211_stop_queue(hw, i, reason, refcounted);
640 
641 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
642 }
643 
644 void ieee80211_stop_queues(struct ieee80211_hw *hw)
645 {
646 	ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
647 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
648 					false);
649 }
650 EXPORT_SYMBOL(ieee80211_stop_queues);
651 
652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
653 {
654 	struct ieee80211_local *local = hw_to_local(hw);
655 	unsigned long flags;
656 	int ret;
657 
658 	if (WARN_ON(queue >= hw->queues))
659 		return true;
660 
661 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
662 	ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
663 		       &local->queue_stop_reasons[queue]);
664 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
665 	return ret;
666 }
667 EXPORT_SYMBOL(ieee80211_queue_stopped);
668 
669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
670 				     unsigned long queues,
671 				     enum queue_stop_reason reason,
672 				     bool refcounted)
673 {
674 	struct ieee80211_local *local = hw_to_local(hw);
675 	unsigned long flags;
676 	int i;
677 
678 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
679 
680 	for_each_set_bit(i, &queues, hw->queues)
681 		__ieee80211_wake_queue(hw, i, reason, refcounted, &flags);
682 
683 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
684 }
685 
686 void ieee80211_wake_queues(struct ieee80211_hw *hw)
687 {
688 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
689 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
690 					false);
691 }
692 EXPORT_SYMBOL(ieee80211_wake_queues);
693 
694 static unsigned int
695 ieee80211_get_vif_queues(struct ieee80211_local *local,
696 			 struct ieee80211_sub_if_data *sdata)
697 {
698 	unsigned int queues;
699 
700 	if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
701 		int ac;
702 
703 		queues = 0;
704 
705 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
706 			queues |= BIT(sdata->vif.hw_queue[ac]);
707 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
708 			queues |= BIT(sdata->vif.cab_queue);
709 	} else {
710 		/* all queues */
711 		queues = BIT(local->hw.queues) - 1;
712 	}
713 
714 	return queues;
715 }
716 
717 void __ieee80211_flush_queues(struct ieee80211_local *local,
718 			      struct ieee80211_sub_if_data *sdata,
719 			      unsigned int queues, bool drop)
720 {
721 	if (!local->ops->flush)
722 		return;
723 
724 	/*
725 	 * If no queue was set, or if the HW doesn't support
726 	 * IEEE80211_HW_QUEUE_CONTROL - flush all queues
727 	 */
728 	if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
729 		queues = ieee80211_get_vif_queues(local, sdata);
730 
731 	ieee80211_stop_queues_by_reason(&local->hw, queues,
732 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
733 					false);
734 
735 	drv_flush(local, sdata, queues, drop);
736 
737 	ieee80211_wake_queues_by_reason(&local->hw, queues,
738 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
739 					false);
740 }
741 
742 void ieee80211_flush_queues(struct ieee80211_local *local,
743 			    struct ieee80211_sub_if_data *sdata, bool drop)
744 {
745 	__ieee80211_flush_queues(local, sdata, 0, drop);
746 }
747 
748 void ieee80211_stop_vif_queues(struct ieee80211_local *local,
749 			       struct ieee80211_sub_if_data *sdata,
750 			       enum queue_stop_reason reason)
751 {
752 	ieee80211_stop_queues_by_reason(&local->hw,
753 					ieee80211_get_vif_queues(local, sdata),
754 					reason, true);
755 }
756 
757 void ieee80211_wake_vif_queues(struct ieee80211_local *local,
758 			       struct ieee80211_sub_if_data *sdata,
759 			       enum queue_stop_reason reason)
760 {
761 	ieee80211_wake_queues_by_reason(&local->hw,
762 					ieee80211_get_vif_queues(local, sdata),
763 					reason, true);
764 }
765 
766 static void __iterate_interfaces(struct ieee80211_local *local,
767 				 u32 iter_flags,
768 				 void (*iterator)(void *data, u8 *mac,
769 						  struct ieee80211_vif *vif),
770 				 void *data)
771 {
772 	struct ieee80211_sub_if_data *sdata;
773 	bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
774 
775 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
776 		switch (sdata->vif.type) {
777 		case NL80211_IFTYPE_MONITOR:
778 			if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
779 				continue;
780 			break;
781 		case NL80211_IFTYPE_AP_VLAN:
782 			continue;
783 		default:
784 			break;
785 		}
786 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
787 		    active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
788 			continue;
789 		if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) &&
790 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
791 			continue;
792 		if (ieee80211_sdata_running(sdata) || !active_only)
793 			iterator(data, sdata->vif.addr,
794 				 &sdata->vif);
795 	}
796 
797 	sdata = rcu_dereference_check(local->monitor_sdata,
798 				      lockdep_is_held(&local->iflist_mtx) ||
799 				      lockdep_is_held(&local->hw.wiphy->mtx));
800 	if (sdata &&
801 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
802 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
803 		iterator(data, sdata->vif.addr, &sdata->vif);
804 }
805 
806 void ieee80211_iterate_interfaces(
807 	struct ieee80211_hw *hw, u32 iter_flags,
808 	void (*iterator)(void *data, u8 *mac,
809 			 struct ieee80211_vif *vif),
810 	void *data)
811 {
812 	struct ieee80211_local *local = hw_to_local(hw);
813 
814 	mutex_lock(&local->iflist_mtx);
815 	__iterate_interfaces(local, iter_flags, iterator, data);
816 	mutex_unlock(&local->iflist_mtx);
817 }
818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
819 
820 void ieee80211_iterate_active_interfaces_atomic(
821 	struct ieee80211_hw *hw, u32 iter_flags,
822 	void (*iterator)(void *data, u8 *mac,
823 			 struct ieee80211_vif *vif),
824 	void *data)
825 {
826 	struct ieee80211_local *local = hw_to_local(hw);
827 
828 	rcu_read_lock();
829 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
830 			     iterator, data);
831 	rcu_read_unlock();
832 }
833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
834 
835 void ieee80211_iterate_active_interfaces_mtx(
836 	struct ieee80211_hw *hw, u32 iter_flags,
837 	void (*iterator)(void *data, u8 *mac,
838 			 struct ieee80211_vif *vif),
839 	void *data)
840 {
841 	struct ieee80211_local *local = hw_to_local(hw);
842 
843 	lockdep_assert_wiphy(hw->wiphy);
844 
845 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
846 			     iterator, data);
847 }
848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx);
849 
850 static void __iterate_stations(struct ieee80211_local *local,
851 			       void (*iterator)(void *data,
852 						struct ieee80211_sta *sta),
853 			       void *data)
854 {
855 	struct sta_info *sta;
856 
857 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
858 		if (!sta->uploaded)
859 			continue;
860 
861 		iterator(data, &sta->sta);
862 	}
863 }
864 
865 void ieee80211_iterate_stations(struct ieee80211_hw *hw,
866 				void (*iterator)(void *data,
867 						 struct ieee80211_sta *sta),
868 				void *data)
869 {
870 	struct ieee80211_local *local = hw_to_local(hw);
871 
872 	mutex_lock(&local->sta_mtx);
873 	__iterate_stations(local, iterator, data);
874 	mutex_unlock(&local->sta_mtx);
875 }
876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations);
877 
878 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
879 			void (*iterator)(void *data,
880 					 struct ieee80211_sta *sta),
881 			void *data)
882 {
883 	struct ieee80211_local *local = hw_to_local(hw);
884 
885 	rcu_read_lock();
886 	__iterate_stations(local, iterator, data);
887 	rcu_read_unlock();
888 }
889 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
890 
891 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
892 {
893 	struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
894 
895 	if (!ieee80211_sdata_running(sdata) ||
896 	    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
897 		return NULL;
898 	return &sdata->vif;
899 }
900 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
901 
902 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
903 {
904 	if (!vif)
905 		return NULL;
906 
907 	return &vif_to_sdata(vif)->wdev;
908 }
909 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
910 
911 /*
912  * Nothing should have been stuffed into the workqueue during
913  * the suspend->resume cycle. Since we can't check each caller
914  * of this function if we are already quiescing / suspended,
915  * check here and don't WARN since this can actually happen when
916  * the rx path (for example) is racing against __ieee80211_suspend
917  * and suspending / quiescing was set after the rx path checked
918  * them.
919  */
920 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
921 {
922 	if (local->quiescing || (local->suspended && !local->resuming)) {
923 		pr_warn("queueing ieee80211 work while going to suspend\n");
924 		return false;
925 	}
926 
927 	return true;
928 }
929 
930 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
931 {
932 	struct ieee80211_local *local = hw_to_local(hw);
933 
934 	if (!ieee80211_can_queue_work(local))
935 		return;
936 
937 	queue_work(local->workqueue, work);
938 }
939 EXPORT_SYMBOL(ieee80211_queue_work);
940 
941 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
942 				  struct delayed_work *dwork,
943 				  unsigned long delay)
944 {
945 	struct ieee80211_local *local = hw_to_local(hw);
946 
947 	if (!ieee80211_can_queue_work(local))
948 		return;
949 
950 	queue_delayed_work(local->workqueue, dwork, delay);
951 }
952 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
953 
954 static void ieee80211_parse_extension_element(u32 *crc,
955 					      const struct element *elem,
956 					      struct ieee802_11_elems *elems)
957 {
958 	const void *data = elem->data + 1;
959 	u8 len;
960 
961 	if (!elem->datalen)
962 		return;
963 
964 	len = elem->datalen - 1;
965 
966 	switch (elem->data[0]) {
967 	case WLAN_EID_EXT_HE_MU_EDCA:
968 		if (len >= sizeof(*elems->mu_edca_param_set)) {
969 			elems->mu_edca_param_set = data;
970 			if (crc)
971 				*crc = crc32_be(*crc, (void *)elem,
972 						elem->datalen + 2);
973 		}
974 		break;
975 	case WLAN_EID_EXT_HE_CAPABILITY:
976 		if (ieee80211_he_capa_size_ok(data, len)) {
977 			elems->he_cap = data;
978 			elems->he_cap_len = len;
979 		}
980 		break;
981 	case WLAN_EID_EXT_HE_OPERATION:
982 		if (len >= sizeof(*elems->he_operation) &&
983 		    len >= ieee80211_he_oper_size(data) - 1) {
984 			if (crc)
985 				*crc = crc32_be(*crc, (void *)elem,
986 						elem->datalen + 2);
987 			elems->he_operation = data;
988 		}
989 		break;
990 	case WLAN_EID_EXT_UORA:
991 		if (len >= 1)
992 			elems->uora_element = data;
993 		break;
994 	case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME:
995 		if (len == 3)
996 			elems->max_channel_switch_time = data;
997 		break;
998 	case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION:
999 		if (len >= sizeof(*elems->mbssid_config_ie))
1000 			elems->mbssid_config_ie = data;
1001 		break;
1002 	case WLAN_EID_EXT_HE_SPR:
1003 		if (len >= sizeof(*elems->he_spr) &&
1004 		    len >= ieee80211_he_spr_size(data))
1005 			elems->he_spr = data;
1006 		break;
1007 	case WLAN_EID_EXT_HE_6GHZ_CAPA:
1008 		if (len >= sizeof(*elems->he_6ghz_capa))
1009 			elems->he_6ghz_capa = data;
1010 		break;
1011 	case WLAN_EID_EXT_EHT_CAPABILITY:
1012 		if (ieee80211_eht_capa_size_ok(elems->he_cap,
1013 					       data, len)) {
1014 			elems->eht_cap = data;
1015 			elems->eht_cap_len = len;
1016 		}
1017 		break;
1018 	case WLAN_EID_EXT_EHT_OPERATION:
1019 		if (ieee80211_eht_oper_size_ok(data, len))
1020 			elems->eht_operation = data;
1021 		break;
1022 	}
1023 }
1024 
1025 static u32
1026 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
1027 			    struct ieee802_11_elems *elems,
1028 			    u64 filter, u32 crc,
1029 			    const struct element *check_inherit)
1030 {
1031 	const struct element *elem;
1032 	bool calc_crc = filter != 0;
1033 	DECLARE_BITMAP(seen_elems, 256);
1034 	const u8 *ie;
1035 
1036 	bitmap_zero(seen_elems, 256);
1037 
1038 	for_each_element(elem, start, len) {
1039 		bool elem_parse_failed;
1040 		u8 id = elem->id;
1041 		u8 elen = elem->datalen;
1042 		const u8 *pos = elem->data;
1043 
1044 		if (check_inherit &&
1045 		    !cfg80211_is_element_inherited(elem,
1046 						   check_inherit))
1047 			continue;
1048 
1049 		switch (id) {
1050 		case WLAN_EID_SSID:
1051 		case WLAN_EID_SUPP_RATES:
1052 		case WLAN_EID_FH_PARAMS:
1053 		case WLAN_EID_DS_PARAMS:
1054 		case WLAN_EID_CF_PARAMS:
1055 		case WLAN_EID_TIM:
1056 		case WLAN_EID_IBSS_PARAMS:
1057 		case WLAN_EID_CHALLENGE:
1058 		case WLAN_EID_RSN:
1059 		case WLAN_EID_ERP_INFO:
1060 		case WLAN_EID_EXT_SUPP_RATES:
1061 		case WLAN_EID_HT_CAPABILITY:
1062 		case WLAN_EID_HT_OPERATION:
1063 		case WLAN_EID_VHT_CAPABILITY:
1064 		case WLAN_EID_VHT_OPERATION:
1065 		case WLAN_EID_MESH_ID:
1066 		case WLAN_EID_MESH_CONFIG:
1067 		case WLAN_EID_PEER_MGMT:
1068 		case WLAN_EID_PREQ:
1069 		case WLAN_EID_PREP:
1070 		case WLAN_EID_PERR:
1071 		case WLAN_EID_RANN:
1072 		case WLAN_EID_CHANNEL_SWITCH:
1073 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1074 		case WLAN_EID_COUNTRY:
1075 		case WLAN_EID_PWR_CONSTRAINT:
1076 		case WLAN_EID_TIMEOUT_INTERVAL:
1077 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1078 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1079 		case WLAN_EID_CHAN_SWITCH_PARAM:
1080 		case WLAN_EID_EXT_CAPABILITY:
1081 		case WLAN_EID_CHAN_SWITCH_TIMING:
1082 		case WLAN_EID_LINK_ID:
1083 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1084 		case WLAN_EID_RSNX:
1085 		case WLAN_EID_S1G_BCN_COMPAT:
1086 		case WLAN_EID_S1G_CAPABILITIES:
1087 		case WLAN_EID_S1G_OPERATION:
1088 		case WLAN_EID_AID_RESPONSE:
1089 		case WLAN_EID_S1G_SHORT_BCN_INTERVAL:
1090 		/*
1091 		 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
1092 		 * that if the content gets bigger it might be needed more than once
1093 		 */
1094 			if (test_bit(id, seen_elems)) {
1095 				elems->parse_error = true;
1096 				continue;
1097 			}
1098 			break;
1099 		}
1100 
1101 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
1102 			crc = crc32_be(crc, pos - 2, elen + 2);
1103 
1104 		elem_parse_failed = false;
1105 
1106 		switch (id) {
1107 		case WLAN_EID_LINK_ID:
1108 			if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) {
1109 				elem_parse_failed = true;
1110 				break;
1111 			}
1112 			elems->lnk_id = (void *)(pos - 2);
1113 			break;
1114 		case WLAN_EID_CHAN_SWITCH_TIMING:
1115 			if (elen < sizeof(struct ieee80211_ch_switch_timing)) {
1116 				elem_parse_failed = true;
1117 				break;
1118 			}
1119 			elems->ch_sw_timing = (void *)pos;
1120 			break;
1121 		case WLAN_EID_EXT_CAPABILITY:
1122 			elems->ext_capab = pos;
1123 			elems->ext_capab_len = elen;
1124 			break;
1125 		case WLAN_EID_SSID:
1126 			elems->ssid = pos;
1127 			elems->ssid_len = elen;
1128 			break;
1129 		case WLAN_EID_SUPP_RATES:
1130 			elems->supp_rates = pos;
1131 			elems->supp_rates_len = elen;
1132 			break;
1133 		case WLAN_EID_DS_PARAMS:
1134 			if (elen >= 1)
1135 				elems->ds_params = pos;
1136 			else
1137 				elem_parse_failed = true;
1138 			break;
1139 		case WLAN_EID_TIM:
1140 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
1141 				elems->tim = (void *)pos;
1142 				elems->tim_len = elen;
1143 			} else
1144 				elem_parse_failed = true;
1145 			break;
1146 		case WLAN_EID_VENDOR_SPECIFIC:
1147 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
1148 			    pos[2] == 0xf2) {
1149 				/* Microsoft OUI (00:50:F2) */
1150 
1151 				if (calc_crc)
1152 					crc = crc32_be(crc, pos - 2, elen + 2);
1153 
1154 				if (elen >= 5 && pos[3] == 2) {
1155 					/* OUI Type 2 - WMM IE */
1156 					if (pos[4] == 0) {
1157 						elems->wmm_info = pos;
1158 						elems->wmm_info_len = elen;
1159 					} else if (pos[4] == 1) {
1160 						elems->wmm_param = pos;
1161 						elems->wmm_param_len = elen;
1162 					}
1163 				}
1164 			}
1165 			break;
1166 		case WLAN_EID_RSN:
1167 			elems->rsn = pos;
1168 			elems->rsn_len = elen;
1169 			break;
1170 		case WLAN_EID_ERP_INFO:
1171 			if (elen >= 1)
1172 				elems->erp_info = pos;
1173 			else
1174 				elem_parse_failed = true;
1175 			break;
1176 		case WLAN_EID_EXT_SUPP_RATES:
1177 			elems->ext_supp_rates = pos;
1178 			elems->ext_supp_rates_len = elen;
1179 			break;
1180 		case WLAN_EID_HT_CAPABILITY:
1181 			if (elen >= sizeof(struct ieee80211_ht_cap))
1182 				elems->ht_cap_elem = (void *)pos;
1183 			else
1184 				elem_parse_failed = true;
1185 			break;
1186 		case WLAN_EID_HT_OPERATION:
1187 			if (elen >= sizeof(struct ieee80211_ht_operation))
1188 				elems->ht_operation = (void *)pos;
1189 			else
1190 				elem_parse_failed = true;
1191 			break;
1192 		case WLAN_EID_VHT_CAPABILITY:
1193 			if (elen >= sizeof(struct ieee80211_vht_cap))
1194 				elems->vht_cap_elem = (void *)pos;
1195 			else
1196 				elem_parse_failed = true;
1197 			break;
1198 		case WLAN_EID_VHT_OPERATION:
1199 			if (elen >= sizeof(struct ieee80211_vht_operation)) {
1200 				elems->vht_operation = (void *)pos;
1201 				if (calc_crc)
1202 					crc = crc32_be(crc, pos - 2, elen + 2);
1203 				break;
1204 			}
1205 			elem_parse_failed = true;
1206 			break;
1207 		case WLAN_EID_OPMODE_NOTIF:
1208 			if (elen > 0) {
1209 				elems->opmode_notif = pos;
1210 				if (calc_crc)
1211 					crc = crc32_be(crc, pos - 2, elen + 2);
1212 				break;
1213 			}
1214 			elem_parse_failed = true;
1215 			break;
1216 		case WLAN_EID_MESH_ID:
1217 			elems->mesh_id = pos;
1218 			elems->mesh_id_len = elen;
1219 			break;
1220 		case WLAN_EID_MESH_CONFIG:
1221 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
1222 				elems->mesh_config = (void *)pos;
1223 			else
1224 				elem_parse_failed = true;
1225 			break;
1226 		case WLAN_EID_PEER_MGMT:
1227 			elems->peering = pos;
1228 			elems->peering_len = elen;
1229 			break;
1230 		case WLAN_EID_MESH_AWAKE_WINDOW:
1231 			if (elen >= 2)
1232 				elems->awake_window = (void *)pos;
1233 			break;
1234 		case WLAN_EID_PREQ:
1235 			elems->preq = pos;
1236 			elems->preq_len = elen;
1237 			break;
1238 		case WLAN_EID_PREP:
1239 			elems->prep = pos;
1240 			elems->prep_len = elen;
1241 			break;
1242 		case WLAN_EID_PERR:
1243 			elems->perr = pos;
1244 			elems->perr_len = elen;
1245 			break;
1246 		case WLAN_EID_RANN:
1247 			if (elen >= sizeof(struct ieee80211_rann_ie))
1248 				elems->rann = (void *)pos;
1249 			else
1250 				elem_parse_failed = true;
1251 			break;
1252 		case WLAN_EID_CHANNEL_SWITCH:
1253 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
1254 				elem_parse_failed = true;
1255 				break;
1256 			}
1257 			elems->ch_switch_ie = (void *)pos;
1258 			break;
1259 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1260 			if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
1261 				elem_parse_failed = true;
1262 				break;
1263 			}
1264 			elems->ext_chansw_ie = (void *)pos;
1265 			break;
1266 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1267 			if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
1268 				elem_parse_failed = true;
1269 				break;
1270 			}
1271 			elems->sec_chan_offs = (void *)pos;
1272 			break;
1273 		case WLAN_EID_CHAN_SWITCH_PARAM:
1274 			if (elen <
1275 			    sizeof(*elems->mesh_chansw_params_ie)) {
1276 				elem_parse_failed = true;
1277 				break;
1278 			}
1279 			elems->mesh_chansw_params_ie = (void *)pos;
1280 			break;
1281 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1282 			if (!action ||
1283 			    elen < sizeof(*elems->wide_bw_chansw_ie)) {
1284 				elem_parse_failed = true;
1285 				break;
1286 			}
1287 			elems->wide_bw_chansw_ie = (void *)pos;
1288 			break;
1289 		case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
1290 			if (action) {
1291 				elem_parse_failed = true;
1292 				break;
1293 			}
1294 			/*
1295 			 * This is a bit tricky, but as we only care about
1296 			 * the wide bandwidth channel switch element, so
1297 			 * just parse it out manually.
1298 			 */
1299 			ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
1300 					      pos, elen);
1301 			if (ie) {
1302 				if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie))
1303 					elems->wide_bw_chansw_ie =
1304 						(void *)(ie + 2);
1305 				else
1306 					elem_parse_failed = true;
1307 			}
1308 			break;
1309 		case WLAN_EID_COUNTRY:
1310 			elems->country_elem = pos;
1311 			elems->country_elem_len = elen;
1312 			break;
1313 		case WLAN_EID_PWR_CONSTRAINT:
1314 			if (elen != 1) {
1315 				elem_parse_failed = true;
1316 				break;
1317 			}
1318 			elems->pwr_constr_elem = pos;
1319 			break;
1320 		case WLAN_EID_CISCO_VENDOR_SPECIFIC:
1321 			/* Lots of different options exist, but we only care
1322 			 * about the Dynamic Transmit Power Control element.
1323 			 * First check for the Cisco OUI, then for the DTPC
1324 			 * tag (0x00).
1325 			 */
1326 			if (elen < 4) {
1327 				elem_parse_failed = true;
1328 				break;
1329 			}
1330 
1331 			if (pos[0] != 0x00 || pos[1] != 0x40 ||
1332 			    pos[2] != 0x96 || pos[3] != 0x00)
1333 				break;
1334 
1335 			if (elen != 6) {
1336 				elem_parse_failed = true;
1337 				break;
1338 			}
1339 
1340 			if (calc_crc)
1341 				crc = crc32_be(crc, pos - 2, elen + 2);
1342 
1343 			elems->cisco_dtpc_elem = pos;
1344 			break;
1345 		case WLAN_EID_ADDBA_EXT:
1346 			if (elen < sizeof(struct ieee80211_addba_ext_ie)) {
1347 				elem_parse_failed = true;
1348 				break;
1349 			}
1350 			elems->addba_ext_ie = (void *)pos;
1351 			break;
1352 		case WLAN_EID_TIMEOUT_INTERVAL:
1353 			if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
1354 				elems->timeout_int = (void *)pos;
1355 			else
1356 				elem_parse_failed = true;
1357 			break;
1358 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1359 			if (elen >= sizeof(*elems->max_idle_period_ie))
1360 				elems->max_idle_period_ie = (void *)pos;
1361 			break;
1362 		case WLAN_EID_RSNX:
1363 			elems->rsnx = pos;
1364 			elems->rsnx_len = elen;
1365 			break;
1366 		case WLAN_EID_TX_POWER_ENVELOPE:
1367 			if (elen < 1 ||
1368 			    elen > sizeof(struct ieee80211_tx_pwr_env))
1369 				break;
1370 
1371 			if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env))
1372 				break;
1373 
1374 			elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos;
1375 			elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen;
1376 			elems->tx_pwr_env_num++;
1377 			break;
1378 		case WLAN_EID_EXTENSION:
1379 			ieee80211_parse_extension_element(calc_crc ?
1380 								&crc : NULL,
1381 							  elem, elems);
1382 			break;
1383 		case WLAN_EID_S1G_CAPABILITIES:
1384 			if (elen >= sizeof(*elems->s1g_capab))
1385 				elems->s1g_capab = (void *)pos;
1386 			else
1387 				elem_parse_failed = true;
1388 			break;
1389 		case WLAN_EID_S1G_OPERATION:
1390 			if (elen == sizeof(*elems->s1g_oper))
1391 				elems->s1g_oper = (void *)pos;
1392 			else
1393 				elem_parse_failed = true;
1394 			break;
1395 		case WLAN_EID_S1G_BCN_COMPAT:
1396 			if (elen == sizeof(*elems->s1g_bcn_compat))
1397 				elems->s1g_bcn_compat = (void *)pos;
1398 			else
1399 				elem_parse_failed = true;
1400 			break;
1401 		case WLAN_EID_AID_RESPONSE:
1402 			if (elen == sizeof(struct ieee80211_aid_response_ie))
1403 				elems->aid_resp = (void *)pos;
1404 			else
1405 				elem_parse_failed = true;
1406 			break;
1407 		default:
1408 			break;
1409 		}
1410 
1411 		if (elem_parse_failed)
1412 			elems->parse_error = true;
1413 		else
1414 			__set_bit(id, seen_elems);
1415 	}
1416 
1417 	if (!for_each_element_completed(elem, start, len))
1418 		elems->parse_error = true;
1419 
1420 	return crc;
1421 }
1422 
1423 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len,
1424 					    struct ieee802_11_elems *elems,
1425 					    const u8 *transmitter_bssid,
1426 					    const u8 *bss_bssid,
1427 					    u8 *nontransmitted_profile)
1428 {
1429 	const struct element *elem, *sub;
1430 	size_t profile_len = 0;
1431 	bool found = false;
1432 
1433 	if (!bss_bssid || !transmitter_bssid)
1434 		return profile_len;
1435 
1436 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) {
1437 		if (elem->datalen < 2)
1438 			continue;
1439 
1440 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1441 			u8 new_bssid[ETH_ALEN];
1442 			const u8 *index;
1443 
1444 			if (sub->id != 0 || sub->datalen < 4) {
1445 				/* not a valid BSS profile */
1446 				continue;
1447 			}
1448 
1449 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1450 			    sub->data[1] != 2) {
1451 				/* The first element of the
1452 				 * Nontransmitted BSSID Profile is not
1453 				 * the Nontransmitted BSSID Capability
1454 				 * element.
1455 				 */
1456 				continue;
1457 			}
1458 
1459 			memset(nontransmitted_profile, 0, len);
1460 			profile_len = cfg80211_merge_profile(start, len,
1461 							     elem,
1462 							     sub,
1463 							     nontransmitted_profile,
1464 							     len);
1465 
1466 			/* found a Nontransmitted BSSID Profile */
1467 			index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX,
1468 						 nontransmitted_profile,
1469 						 profile_len);
1470 			if (!index || index[1] < 1 || index[2] == 0) {
1471 				/* Invalid MBSSID Index element */
1472 				continue;
1473 			}
1474 
1475 			cfg80211_gen_new_bssid(transmitter_bssid,
1476 					       elem->data[0],
1477 					       index[2],
1478 					       new_bssid);
1479 			if (ether_addr_equal(new_bssid, bss_bssid)) {
1480 				found = true;
1481 				elems->bssid_index_len = index[1];
1482 				elems->bssid_index = (void *)&index[2];
1483 				break;
1484 			}
1485 		}
1486 	}
1487 
1488 	return found ? profile_len : 0;
1489 }
1490 
1491 struct ieee802_11_elems *ieee802_11_parse_elems_crc(const u8 *start, size_t len,
1492 						    bool action, u64 filter,
1493 						    u32 crc,
1494 						    const u8 *transmitter_bssid,
1495 						    const u8 *bss_bssid)
1496 {
1497 	struct ieee802_11_elems *elems;
1498 	const struct element *non_inherit = NULL;
1499 	u8 *nontransmitted_profile;
1500 	int nontransmitted_profile_len = 0;
1501 
1502 	elems = kzalloc(sizeof(*elems), GFP_ATOMIC);
1503 	if (!elems)
1504 		return NULL;
1505 	elems->ie_start = start;
1506 	elems->total_len = len;
1507 
1508 	nontransmitted_profile = kmalloc(len, GFP_ATOMIC);
1509 	if (nontransmitted_profile) {
1510 		nontransmitted_profile_len =
1511 			ieee802_11_find_bssid_profile(start, len, elems,
1512 						      transmitter_bssid,
1513 						      bss_bssid,
1514 						      nontransmitted_profile);
1515 		non_inherit =
1516 			cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
1517 					       nontransmitted_profile,
1518 					       nontransmitted_profile_len);
1519 	}
1520 
1521 	crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter,
1522 					  crc, non_inherit);
1523 
1524 	/* Override with nontransmitted profile, if found */
1525 	if (nontransmitted_profile_len)
1526 		_ieee802_11_parse_elems_crc(nontransmitted_profile,
1527 					    nontransmitted_profile_len,
1528 					    action, elems, 0, 0, NULL);
1529 
1530 	if (elems->tim && !elems->parse_error) {
1531 		const struct ieee80211_tim_ie *tim_ie = elems->tim;
1532 
1533 		elems->dtim_period = tim_ie->dtim_period;
1534 		elems->dtim_count = tim_ie->dtim_count;
1535 	}
1536 
1537 	/* Override DTIM period and count if needed */
1538 	if (elems->bssid_index &&
1539 	    elems->bssid_index_len >=
1540 	    offsetofend(struct ieee80211_bssid_index, dtim_period))
1541 		elems->dtim_period = elems->bssid_index->dtim_period;
1542 
1543 	if (elems->bssid_index &&
1544 	    elems->bssid_index_len >=
1545 	    offsetofend(struct ieee80211_bssid_index, dtim_count))
1546 		elems->dtim_count = elems->bssid_index->dtim_count;
1547 
1548 	kfree(nontransmitted_profile);
1549 
1550 	elems->crc = crc;
1551 
1552 	return elems;
1553 }
1554 
1555 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata,
1556 					   struct ieee80211_tx_queue_params
1557 					   *qparam, int ac)
1558 {
1559 	struct ieee80211_chanctx_conf *chanctx_conf;
1560 	const struct ieee80211_reg_rule *rrule;
1561 	const struct ieee80211_wmm_ac *wmm_ac;
1562 	u16 center_freq = 0;
1563 
1564 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1565 	    sdata->vif.type != NL80211_IFTYPE_STATION)
1566 		return;
1567 
1568 	rcu_read_lock();
1569 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1570 	if (chanctx_conf)
1571 		center_freq = chanctx_conf->def.chan->center_freq;
1572 
1573 	if (!center_freq) {
1574 		rcu_read_unlock();
1575 		return;
1576 	}
1577 
1578 	rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq));
1579 
1580 	if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) {
1581 		rcu_read_unlock();
1582 		return;
1583 	}
1584 
1585 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1586 		wmm_ac = &rrule->wmm_rule.ap[ac];
1587 	else
1588 		wmm_ac = &rrule->wmm_rule.client[ac];
1589 	qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min);
1590 	qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max);
1591 	qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn);
1592 	qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32);
1593 	rcu_read_unlock();
1594 }
1595 
1596 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
1597 			       bool bss_notify, bool enable_qos)
1598 {
1599 	struct ieee80211_local *local = sdata->local;
1600 	struct ieee80211_tx_queue_params qparam;
1601 	struct ieee80211_chanctx_conf *chanctx_conf;
1602 	int ac;
1603 	bool use_11b;
1604 	bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
1605 	int aCWmin, aCWmax;
1606 
1607 	if (!local->ops->conf_tx)
1608 		return;
1609 
1610 	if (local->hw.queues < IEEE80211_NUM_ACS)
1611 		return;
1612 
1613 	memset(&qparam, 0, sizeof(qparam));
1614 
1615 	rcu_read_lock();
1616 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1617 	use_11b = (chanctx_conf &&
1618 		   chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) &&
1619 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
1620 	rcu_read_unlock();
1621 
1622 	is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
1623 
1624 	/* Set defaults according to 802.11-2007 Table 7-37 */
1625 	aCWmax = 1023;
1626 	if (use_11b)
1627 		aCWmin = 31;
1628 	else
1629 		aCWmin = 15;
1630 
1631 	/* Confiure old 802.11b/g medium access rules. */
1632 	qparam.cw_max = aCWmax;
1633 	qparam.cw_min = aCWmin;
1634 	qparam.txop = 0;
1635 	qparam.aifs = 2;
1636 
1637 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1638 		/* Update if QoS is enabled. */
1639 		if (enable_qos) {
1640 			switch (ac) {
1641 			case IEEE80211_AC_BK:
1642 				qparam.cw_max = aCWmax;
1643 				qparam.cw_min = aCWmin;
1644 				qparam.txop = 0;
1645 				if (is_ocb)
1646 					qparam.aifs = 9;
1647 				else
1648 					qparam.aifs = 7;
1649 				break;
1650 			/* never happens but let's not leave undefined */
1651 			default:
1652 			case IEEE80211_AC_BE:
1653 				qparam.cw_max = aCWmax;
1654 				qparam.cw_min = aCWmin;
1655 				qparam.txop = 0;
1656 				if (is_ocb)
1657 					qparam.aifs = 6;
1658 				else
1659 					qparam.aifs = 3;
1660 				break;
1661 			case IEEE80211_AC_VI:
1662 				qparam.cw_max = aCWmin;
1663 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
1664 				if (is_ocb)
1665 					qparam.txop = 0;
1666 				else if (use_11b)
1667 					qparam.txop = 6016/32;
1668 				else
1669 					qparam.txop = 3008/32;
1670 
1671 				if (is_ocb)
1672 					qparam.aifs = 3;
1673 				else
1674 					qparam.aifs = 2;
1675 				break;
1676 			case IEEE80211_AC_VO:
1677 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
1678 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
1679 				if (is_ocb)
1680 					qparam.txop = 0;
1681 				else if (use_11b)
1682 					qparam.txop = 3264/32;
1683 				else
1684 					qparam.txop = 1504/32;
1685 				qparam.aifs = 2;
1686 				break;
1687 			}
1688 		}
1689 		ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac);
1690 
1691 		qparam.uapsd = false;
1692 
1693 		sdata->tx_conf[ac] = qparam;
1694 		drv_conf_tx(local, sdata, ac, &qparam);
1695 	}
1696 
1697 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1698 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
1699 	    sdata->vif.type != NL80211_IFTYPE_NAN) {
1700 		sdata->vif.bss_conf.qos = enable_qos;
1701 		if (bss_notify)
1702 			ieee80211_bss_info_change_notify(sdata,
1703 							 BSS_CHANGED_QOS);
1704 	}
1705 }
1706 
1707 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1708 			 u16 transaction, u16 auth_alg, u16 status,
1709 			 const u8 *extra, size_t extra_len, const u8 *da,
1710 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1711 			 u32 tx_flags)
1712 {
1713 	struct ieee80211_local *local = sdata->local;
1714 	struct sk_buff *skb;
1715 	struct ieee80211_mgmt *mgmt;
1716 	int err;
1717 
1718 	/* 24 + 6 = header + auth_algo + auth_transaction + status_code */
1719 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
1720 			    24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN);
1721 	if (!skb)
1722 		return;
1723 
1724 	skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
1725 
1726 	mgmt = skb_put_zero(skb, 24 + 6);
1727 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1728 					  IEEE80211_STYPE_AUTH);
1729 	memcpy(mgmt->da, da, ETH_ALEN);
1730 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1731 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1732 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1733 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1734 	mgmt->u.auth.status_code = cpu_to_le16(status);
1735 	if (extra)
1736 		skb_put_data(skb, extra, extra_len);
1737 
1738 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1739 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1740 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1741 		if (WARN_ON(err)) {
1742 			kfree_skb(skb);
1743 			return;
1744 		}
1745 	}
1746 
1747 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1748 					tx_flags;
1749 	ieee80211_tx_skb(sdata, skb);
1750 }
1751 
1752 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1753 				    const u8 *da, const u8 *bssid,
1754 				    u16 stype, u16 reason,
1755 				    bool send_frame, u8 *frame_buf)
1756 {
1757 	struct ieee80211_local *local = sdata->local;
1758 	struct sk_buff *skb;
1759 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1760 
1761 	/* build frame */
1762 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1763 	mgmt->duration = 0; /* initialize only */
1764 	mgmt->seq_ctrl = 0; /* initialize only */
1765 	memcpy(mgmt->da, da, ETH_ALEN);
1766 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1767 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1768 	/* u.deauth.reason_code == u.disassoc.reason_code */
1769 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1770 
1771 	if (send_frame) {
1772 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1773 				    IEEE80211_DEAUTH_FRAME_LEN);
1774 		if (!skb)
1775 			return;
1776 
1777 		skb_reserve(skb, local->hw.extra_tx_headroom);
1778 
1779 		/* copy in frame */
1780 		skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1781 
1782 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1783 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1784 			IEEE80211_SKB_CB(skb)->flags |=
1785 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1786 
1787 		ieee80211_tx_skb(sdata, skb);
1788 	}
1789 }
1790 
1791 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end)
1792 {
1793 	if ((end - pos) < 5)
1794 		return pos;
1795 
1796 	*pos++ = WLAN_EID_EXTENSION;
1797 	*pos++ = 1 + sizeof(cap);
1798 	*pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA;
1799 	memcpy(pos, &cap, sizeof(cap));
1800 
1801 	return pos + 2;
1802 }
1803 
1804 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata,
1805 					 u8 *buffer, size_t buffer_len,
1806 					 const u8 *ie, size_t ie_len,
1807 					 enum nl80211_band band,
1808 					 u32 rate_mask,
1809 					 struct cfg80211_chan_def *chandef,
1810 					 size_t *offset, u32 flags)
1811 {
1812 	struct ieee80211_local *local = sdata->local;
1813 	struct ieee80211_supported_band *sband;
1814 	const struct ieee80211_sta_he_cap *he_cap;
1815 	const struct ieee80211_sta_eht_cap *eht_cap;
1816 	u8 *pos = buffer, *end = buffer + buffer_len;
1817 	size_t noffset;
1818 	int supp_rates_len, i;
1819 	u8 rates[32];
1820 	int num_rates;
1821 	int ext_rates_len;
1822 	int shift;
1823 	u32 rate_flags;
1824 	bool have_80mhz = false;
1825 
1826 	*offset = 0;
1827 
1828 	sband = local->hw.wiphy->bands[band];
1829 	if (WARN_ON_ONCE(!sband))
1830 		return 0;
1831 
1832 	rate_flags = ieee80211_chandef_rate_flags(chandef);
1833 	shift = ieee80211_chandef_get_shift(chandef);
1834 
1835 	num_rates = 0;
1836 	for (i = 0; i < sband->n_bitrates; i++) {
1837 		if ((BIT(i) & rate_mask) == 0)
1838 			continue; /* skip rate */
1839 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1840 			continue;
1841 
1842 		rates[num_rates++] =
1843 			(u8) DIV_ROUND_UP(sband->bitrates[i].bitrate,
1844 					  (1 << shift) * 5);
1845 	}
1846 
1847 	supp_rates_len = min_t(int, num_rates, 8);
1848 
1849 	if (end - pos < 2 + supp_rates_len)
1850 		goto out_err;
1851 	*pos++ = WLAN_EID_SUPP_RATES;
1852 	*pos++ = supp_rates_len;
1853 	memcpy(pos, rates, supp_rates_len);
1854 	pos += supp_rates_len;
1855 
1856 	/* insert "request information" if in custom IEs */
1857 	if (ie && ie_len) {
1858 		static const u8 before_extrates[] = {
1859 			WLAN_EID_SSID,
1860 			WLAN_EID_SUPP_RATES,
1861 			WLAN_EID_REQUEST,
1862 		};
1863 		noffset = ieee80211_ie_split(ie, ie_len,
1864 					     before_extrates,
1865 					     ARRAY_SIZE(before_extrates),
1866 					     *offset);
1867 		if (end - pos < noffset - *offset)
1868 			goto out_err;
1869 		memcpy(pos, ie + *offset, noffset - *offset);
1870 		pos += noffset - *offset;
1871 		*offset = noffset;
1872 	}
1873 
1874 	ext_rates_len = num_rates - supp_rates_len;
1875 	if (ext_rates_len > 0) {
1876 		if (end - pos < 2 + ext_rates_len)
1877 			goto out_err;
1878 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1879 		*pos++ = ext_rates_len;
1880 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1881 		pos += ext_rates_len;
1882 	}
1883 
1884 	if (chandef->chan && sband->band == NL80211_BAND_2GHZ) {
1885 		if (end - pos < 3)
1886 			goto out_err;
1887 		*pos++ = WLAN_EID_DS_PARAMS;
1888 		*pos++ = 1;
1889 		*pos++ = ieee80211_frequency_to_channel(
1890 				chandef->chan->center_freq);
1891 	}
1892 
1893 	if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT)
1894 		goto done;
1895 
1896 	/* insert custom IEs that go before HT */
1897 	if (ie && ie_len) {
1898 		static const u8 before_ht[] = {
1899 			/*
1900 			 * no need to list the ones split off already
1901 			 * (or generated here)
1902 			 */
1903 			WLAN_EID_DS_PARAMS,
1904 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1905 		};
1906 		noffset = ieee80211_ie_split(ie, ie_len,
1907 					     before_ht, ARRAY_SIZE(before_ht),
1908 					     *offset);
1909 		if (end - pos < noffset - *offset)
1910 			goto out_err;
1911 		memcpy(pos, ie + *offset, noffset - *offset);
1912 		pos += noffset - *offset;
1913 		*offset = noffset;
1914 	}
1915 
1916 	if (sband->ht_cap.ht_supported) {
1917 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1918 			goto out_err;
1919 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1920 						sband->ht_cap.cap);
1921 	}
1922 
1923 	/* insert custom IEs that go before VHT */
1924 	if (ie && ie_len) {
1925 		static const u8 before_vht[] = {
1926 			/*
1927 			 * no need to list the ones split off already
1928 			 * (or generated here)
1929 			 */
1930 			WLAN_EID_BSS_COEX_2040,
1931 			WLAN_EID_EXT_CAPABILITY,
1932 			WLAN_EID_SSID_LIST,
1933 			WLAN_EID_CHANNEL_USAGE,
1934 			WLAN_EID_INTERWORKING,
1935 			WLAN_EID_MESH_ID,
1936 			/* 60 GHz (Multi-band, DMG, MMS) can't happen */
1937 		};
1938 		noffset = ieee80211_ie_split(ie, ie_len,
1939 					     before_vht, ARRAY_SIZE(before_vht),
1940 					     *offset);
1941 		if (end - pos < noffset - *offset)
1942 			goto out_err;
1943 		memcpy(pos, ie + *offset, noffset - *offset);
1944 		pos += noffset - *offset;
1945 		*offset = noffset;
1946 	}
1947 
1948 	/* Check if any channel in this sband supports at least 80 MHz */
1949 	for (i = 0; i < sband->n_channels; i++) {
1950 		if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
1951 						IEEE80211_CHAN_NO_80MHZ))
1952 			continue;
1953 
1954 		have_80mhz = true;
1955 		break;
1956 	}
1957 
1958 	if (sband->vht_cap.vht_supported && have_80mhz) {
1959 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1960 			goto out_err;
1961 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1962 						 sband->vht_cap.cap);
1963 	}
1964 
1965 	/* insert custom IEs that go before HE */
1966 	if (ie && ie_len) {
1967 		static const u8 before_he[] = {
1968 			/*
1969 			 * no need to list the ones split off before VHT
1970 			 * or generated here
1971 			 */
1972 			WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS,
1973 			WLAN_EID_AP_CSN,
1974 			/* TODO: add 11ah/11aj/11ak elements */
1975 		};
1976 		noffset = ieee80211_ie_split(ie, ie_len,
1977 					     before_he, ARRAY_SIZE(before_he),
1978 					     *offset);
1979 		if (end - pos < noffset - *offset)
1980 			goto out_err;
1981 		memcpy(pos, ie + *offset, noffset - *offset);
1982 		pos += noffset - *offset;
1983 		*offset = noffset;
1984 	}
1985 
1986 	he_cap = ieee80211_get_he_iftype_cap(sband,
1987 					     ieee80211_vif_type_p2p(&sdata->vif));
1988 	if (he_cap &&
1989 	    cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band),
1990 					 IEEE80211_CHAN_NO_HE)) {
1991 		pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end);
1992 		if (!pos)
1993 			goto out_err;
1994 	}
1995 
1996 	eht_cap = ieee80211_get_eht_iftype_cap(sband,
1997 					       ieee80211_vif_type_p2p(&sdata->vif));
1998 
1999 	if (eht_cap &&
2000 	    cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band),
2001 					 IEEE80211_CHAN_NO_HE |
2002 					 IEEE80211_CHAN_NO_EHT)) {
2003 		pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end);
2004 		if (!pos)
2005 			goto out_err;
2006 	}
2007 
2008 	if (cfg80211_any_usable_channels(local->hw.wiphy,
2009 					 BIT(NL80211_BAND_6GHZ),
2010 					 IEEE80211_CHAN_NO_HE)) {
2011 		struct ieee80211_supported_band *sband6;
2012 
2013 		sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
2014 		he_cap = ieee80211_get_he_iftype_cap(sband6,
2015 				ieee80211_vif_type_p2p(&sdata->vif));
2016 
2017 		if (he_cap) {
2018 			enum nl80211_iftype iftype =
2019 				ieee80211_vif_type_p2p(&sdata->vif);
2020 			__le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype);
2021 
2022 			pos = ieee80211_write_he_6ghz_cap(pos, cap, end);
2023 		}
2024 	}
2025 
2026 	/*
2027 	 * If adding more here, adjust code in main.c
2028 	 * that calculates local->scan_ies_len.
2029 	 */
2030 
2031 	return pos - buffer;
2032  out_err:
2033 	WARN_ONCE(1, "not enough space for preq IEs\n");
2034  done:
2035 	return pos - buffer;
2036 }
2037 
2038 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer,
2039 			     size_t buffer_len,
2040 			     struct ieee80211_scan_ies *ie_desc,
2041 			     const u8 *ie, size_t ie_len,
2042 			     u8 bands_used, u32 *rate_masks,
2043 			     struct cfg80211_chan_def *chandef,
2044 			     u32 flags)
2045 {
2046 	size_t pos = 0, old_pos = 0, custom_ie_offset = 0;
2047 	int i;
2048 
2049 	memset(ie_desc, 0, sizeof(*ie_desc));
2050 
2051 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
2052 		if (bands_used & BIT(i)) {
2053 			pos += ieee80211_build_preq_ies_band(sdata,
2054 							     buffer + pos,
2055 							     buffer_len - pos,
2056 							     ie, ie_len, i,
2057 							     rate_masks[i],
2058 							     chandef,
2059 							     &custom_ie_offset,
2060 							     flags);
2061 			ie_desc->ies[i] = buffer + old_pos;
2062 			ie_desc->len[i] = pos - old_pos;
2063 			old_pos = pos;
2064 		}
2065 	}
2066 
2067 	/* add any remaining custom IEs */
2068 	if (ie && ie_len) {
2069 		if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset,
2070 			      "not enough space for preq custom IEs\n"))
2071 			return pos;
2072 		memcpy(buffer + pos, ie + custom_ie_offset,
2073 		       ie_len - custom_ie_offset);
2074 		ie_desc->common_ies = buffer + pos;
2075 		ie_desc->common_ie_len = ie_len - custom_ie_offset;
2076 		pos += ie_len - custom_ie_offset;
2077 	}
2078 
2079 	return pos;
2080 };
2081 
2082 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
2083 					  const u8 *src, const u8 *dst,
2084 					  u32 ratemask,
2085 					  struct ieee80211_channel *chan,
2086 					  const u8 *ssid, size_t ssid_len,
2087 					  const u8 *ie, size_t ie_len,
2088 					  u32 flags)
2089 {
2090 	struct ieee80211_local *local = sdata->local;
2091 	struct cfg80211_chan_def chandef;
2092 	struct sk_buff *skb;
2093 	struct ieee80211_mgmt *mgmt;
2094 	int ies_len;
2095 	u32 rate_masks[NUM_NL80211_BANDS] = {};
2096 	struct ieee80211_scan_ies dummy_ie_desc;
2097 
2098 	/*
2099 	 * Do not send DS Channel parameter for directed probe requests
2100 	 * in order to maximize the chance that we get a response.  Some
2101 	 * badly-behaved APs don't respond when this parameter is included.
2102 	 */
2103 	chandef.width = sdata->vif.bss_conf.chandef.width;
2104 	if (flags & IEEE80211_PROBE_FLAG_DIRECTED)
2105 		chandef.chan = NULL;
2106 	else
2107 		chandef.chan = chan;
2108 
2109 	skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len,
2110 				     local->scan_ies_len + ie_len);
2111 	if (!skb)
2112 		return NULL;
2113 
2114 	rate_masks[chan->band] = ratemask;
2115 	ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb),
2116 					   skb_tailroom(skb), &dummy_ie_desc,
2117 					   ie, ie_len, BIT(chan->band),
2118 					   rate_masks, &chandef, flags);
2119 	skb_put(skb, ies_len);
2120 
2121 	if (dst) {
2122 		mgmt = (struct ieee80211_mgmt *) skb->data;
2123 		memcpy(mgmt->da, dst, ETH_ALEN);
2124 		memcpy(mgmt->bssid, dst, ETH_ALEN);
2125 	}
2126 
2127 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2128 
2129 	return skb;
2130 }
2131 
2132 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
2133 			    struct ieee802_11_elems *elems,
2134 			    enum nl80211_band band, u32 *basic_rates)
2135 {
2136 	struct ieee80211_supported_band *sband;
2137 	size_t num_rates;
2138 	u32 supp_rates, rate_flags;
2139 	int i, j, shift;
2140 
2141 	sband = sdata->local->hw.wiphy->bands[band];
2142 	if (WARN_ON(!sband))
2143 		return 1;
2144 
2145 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
2146 	shift = ieee80211_vif_get_shift(&sdata->vif);
2147 
2148 	num_rates = sband->n_bitrates;
2149 	supp_rates = 0;
2150 	for (i = 0; i < elems->supp_rates_len +
2151 		     elems->ext_supp_rates_len; i++) {
2152 		u8 rate = 0;
2153 		int own_rate;
2154 		bool is_basic;
2155 		if (i < elems->supp_rates_len)
2156 			rate = elems->supp_rates[i];
2157 		else if (elems->ext_supp_rates)
2158 			rate = elems->ext_supp_rates
2159 				[i - elems->supp_rates_len];
2160 		own_rate = 5 * (rate & 0x7f);
2161 		is_basic = !!(rate & 0x80);
2162 
2163 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
2164 			continue;
2165 
2166 		for (j = 0; j < num_rates; j++) {
2167 			int brate;
2168 			if ((rate_flags & sband->bitrates[j].flags)
2169 			    != rate_flags)
2170 				continue;
2171 
2172 			brate = DIV_ROUND_UP(sband->bitrates[j].bitrate,
2173 					     1 << shift);
2174 
2175 			if (brate == own_rate) {
2176 				supp_rates |= BIT(j);
2177 				if (basic_rates && is_basic)
2178 					*basic_rates |= BIT(j);
2179 			}
2180 		}
2181 	}
2182 	return supp_rates;
2183 }
2184 
2185 void ieee80211_stop_device(struct ieee80211_local *local)
2186 {
2187 	ieee80211_led_radio(local, false);
2188 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
2189 
2190 	cancel_work_sync(&local->reconfig_filter);
2191 
2192 	flush_workqueue(local->workqueue);
2193 	drv_stop(local);
2194 }
2195 
2196 static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
2197 					   bool aborted)
2198 {
2199 	/* It's possible that we don't handle the scan completion in
2200 	 * time during suspend, so if it's still marked as completed
2201 	 * here, queue the work and flush it to clean things up.
2202 	 * Instead of calling the worker function directly here, we
2203 	 * really queue it to avoid potential races with other flows
2204 	 * scheduling the same work.
2205 	 */
2206 	if (test_bit(SCAN_COMPLETED, &local->scanning)) {
2207 		/* If coming from reconfiguration failure, abort the scan so
2208 		 * we don't attempt to continue a partial HW scan - which is
2209 		 * possible otherwise if (e.g.) the 2.4 GHz portion was the
2210 		 * completed scan, and a 5 GHz portion is still pending.
2211 		 */
2212 		if (aborted)
2213 			set_bit(SCAN_ABORTED, &local->scanning);
2214 		ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0);
2215 		flush_delayed_work(&local->scan_work);
2216 	}
2217 }
2218 
2219 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
2220 {
2221 	struct ieee80211_sub_if_data *sdata;
2222 	struct ieee80211_chanctx *ctx;
2223 
2224 	/*
2225 	 * We get here if during resume the device can't be restarted properly.
2226 	 * We might also get here if this happens during HW reset, which is a
2227 	 * slightly different situation and we need to drop all connections in
2228 	 * the latter case.
2229 	 *
2230 	 * Ask cfg80211 to turn off all interfaces, this will result in more
2231 	 * warnings but at least we'll then get into a clean stopped state.
2232 	 */
2233 
2234 	local->resuming = false;
2235 	local->suspended = false;
2236 	local->in_reconfig = false;
2237 
2238 	ieee80211_flush_completed_scan(local, true);
2239 
2240 	/* scheduled scan clearly can't be running any more, but tell
2241 	 * cfg80211 and clear local state
2242 	 */
2243 	ieee80211_sched_scan_end(local);
2244 
2245 	list_for_each_entry(sdata, &local->interfaces, list)
2246 		sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
2247 
2248 	/* Mark channel contexts as not being in the driver any more to avoid
2249 	 * removing them from the driver during the shutdown process...
2250 	 */
2251 	mutex_lock(&local->chanctx_mtx);
2252 	list_for_each_entry(ctx, &local->chanctx_list, list)
2253 		ctx->driver_present = false;
2254 	mutex_unlock(&local->chanctx_mtx);
2255 }
2256 
2257 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
2258 				     struct ieee80211_sub_if_data *sdata)
2259 {
2260 	struct ieee80211_chanctx_conf *conf;
2261 	struct ieee80211_chanctx *ctx;
2262 
2263 	if (!local->use_chanctx)
2264 		return;
2265 
2266 	mutex_lock(&local->chanctx_mtx);
2267 	conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2268 					 lockdep_is_held(&local->chanctx_mtx));
2269 	if (conf) {
2270 		ctx = container_of(conf, struct ieee80211_chanctx, conf);
2271 		drv_assign_vif_chanctx(local, sdata, ctx);
2272 	}
2273 	mutex_unlock(&local->chanctx_mtx);
2274 }
2275 
2276 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
2277 {
2278 	struct ieee80211_local *local = sdata->local;
2279 	struct sta_info *sta;
2280 
2281 	/* add STAs back */
2282 	mutex_lock(&local->sta_mtx);
2283 	list_for_each_entry(sta, &local->sta_list, list) {
2284 		enum ieee80211_sta_state state;
2285 
2286 		if (!sta->uploaded || sta->sdata != sdata)
2287 			continue;
2288 
2289 		for (state = IEEE80211_STA_NOTEXIST;
2290 		     state < sta->sta_state; state++)
2291 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2292 					      state + 1));
2293 	}
2294 	mutex_unlock(&local->sta_mtx);
2295 }
2296 
2297 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata)
2298 {
2299 	struct cfg80211_nan_func *func, **funcs;
2300 	int res, id, i = 0;
2301 
2302 	res = drv_start_nan(sdata->local, sdata,
2303 			    &sdata->u.nan.conf);
2304 	if (WARN_ON(res))
2305 		return res;
2306 
2307 	funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1,
2308 			sizeof(*funcs),
2309 			GFP_KERNEL);
2310 	if (!funcs)
2311 		return -ENOMEM;
2312 
2313 	/* Add all the functions:
2314 	 * This is a little bit ugly. We need to call a potentially sleeping
2315 	 * callback for each NAN function, so we can't hold the spinlock.
2316 	 */
2317 	spin_lock_bh(&sdata->u.nan.func_lock);
2318 
2319 	idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id)
2320 		funcs[i++] = func;
2321 
2322 	spin_unlock_bh(&sdata->u.nan.func_lock);
2323 
2324 	for (i = 0; funcs[i]; i++) {
2325 		res = drv_add_nan_func(sdata->local, sdata, funcs[i]);
2326 		if (WARN_ON(res))
2327 			ieee80211_nan_func_terminated(&sdata->vif,
2328 						      funcs[i]->instance_id,
2329 						      NL80211_NAN_FUNC_TERM_REASON_ERROR,
2330 						      GFP_KERNEL);
2331 	}
2332 
2333 	kfree(funcs);
2334 
2335 	return 0;
2336 }
2337 
2338 int ieee80211_reconfig(struct ieee80211_local *local)
2339 {
2340 	struct ieee80211_hw *hw = &local->hw;
2341 	struct ieee80211_sub_if_data *sdata;
2342 	struct ieee80211_chanctx *ctx;
2343 	struct sta_info *sta;
2344 	int res, i;
2345 	bool reconfig_due_to_wowlan = false;
2346 	struct ieee80211_sub_if_data *sched_scan_sdata;
2347 	struct cfg80211_sched_scan_request *sched_scan_req;
2348 	bool sched_scan_stopped = false;
2349 	bool suspended = local->suspended;
2350 	bool in_reconfig = false;
2351 
2352 	/* nothing to do if HW shouldn't run */
2353 	if (!local->open_count)
2354 		goto wake_up;
2355 
2356 #ifdef CONFIG_PM
2357 	if (suspended)
2358 		local->resuming = true;
2359 
2360 	if (local->wowlan) {
2361 		/*
2362 		 * In the wowlan case, both mac80211 and the device
2363 		 * are functional when the resume op is called, so
2364 		 * clear local->suspended so the device could operate
2365 		 * normally (e.g. pass rx frames).
2366 		 */
2367 		local->suspended = false;
2368 		res = drv_resume(local);
2369 		local->wowlan = false;
2370 		if (res < 0) {
2371 			local->resuming = false;
2372 			return res;
2373 		}
2374 		if (res == 0)
2375 			goto wake_up;
2376 		WARN_ON(res > 1);
2377 		/*
2378 		 * res is 1, which means the driver requested
2379 		 * to go through a regular reset on wakeup.
2380 		 * restore local->suspended in this case.
2381 		 */
2382 		reconfig_due_to_wowlan = true;
2383 		local->suspended = true;
2384 	}
2385 #endif
2386 
2387 	/*
2388 	 * In case of hw_restart during suspend (without wowlan),
2389 	 * cancel restart work, as we are reconfiguring the device
2390 	 * anyway.
2391 	 * Note that restart_work is scheduled on a frozen workqueue,
2392 	 * so we can't deadlock in this case.
2393 	 */
2394 	if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
2395 		cancel_work_sync(&local->restart_work);
2396 
2397 	local->started = false;
2398 
2399 	/*
2400 	 * Upon resume hardware can sometimes be goofy due to
2401 	 * various platform / driver / bus issues, so restarting
2402 	 * the device may at times not work immediately. Propagate
2403 	 * the error.
2404 	 */
2405 	res = drv_start(local);
2406 	if (res) {
2407 		if (suspended)
2408 			WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
2409 		else
2410 			WARN(1, "Hardware became unavailable during restart.\n");
2411 		ieee80211_handle_reconfig_failure(local);
2412 		return res;
2413 	}
2414 
2415 	/* setup fragmentation threshold */
2416 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
2417 
2418 	/* setup RTS threshold */
2419 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
2420 
2421 	/* reset coverage class */
2422 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
2423 
2424 	ieee80211_led_radio(local, true);
2425 	ieee80211_mod_tpt_led_trig(local,
2426 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
2427 
2428 	/* add interfaces */
2429 	sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata);
2430 	if (sdata) {
2431 		/* in HW restart it exists already */
2432 		WARN_ON(local->resuming);
2433 		res = drv_add_interface(local, sdata);
2434 		if (WARN_ON(res)) {
2435 			RCU_INIT_POINTER(local->monitor_sdata, NULL);
2436 			synchronize_net();
2437 			kfree(sdata);
2438 		}
2439 	}
2440 
2441 	list_for_each_entry(sdata, &local->interfaces, list) {
2442 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2443 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2444 		    ieee80211_sdata_running(sdata)) {
2445 			res = drv_add_interface(local, sdata);
2446 			if (WARN_ON(res))
2447 				break;
2448 		}
2449 	}
2450 
2451 	/* If adding any of the interfaces failed above, roll back and
2452 	 * report failure.
2453 	 */
2454 	if (res) {
2455 		list_for_each_entry_continue_reverse(sdata, &local->interfaces,
2456 						     list)
2457 			if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2458 			    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2459 			    ieee80211_sdata_running(sdata))
2460 				drv_remove_interface(local, sdata);
2461 		ieee80211_handle_reconfig_failure(local);
2462 		return res;
2463 	}
2464 
2465 	/* add channel contexts */
2466 	if (local->use_chanctx) {
2467 		mutex_lock(&local->chanctx_mtx);
2468 		list_for_each_entry(ctx, &local->chanctx_list, list)
2469 			if (ctx->replace_state !=
2470 			    IEEE80211_CHANCTX_REPLACES_OTHER)
2471 				WARN_ON(drv_add_chanctx(local, ctx));
2472 		mutex_unlock(&local->chanctx_mtx);
2473 
2474 		sdata = wiphy_dereference(local->hw.wiphy,
2475 					  local->monitor_sdata);
2476 		if (sdata && ieee80211_sdata_running(sdata))
2477 			ieee80211_assign_chanctx(local, sdata);
2478 	}
2479 
2480 	/* reconfigure hardware */
2481 	ieee80211_hw_config(local, ~0);
2482 
2483 	ieee80211_configure_filter(local);
2484 
2485 	/* Finally also reconfigure all the BSS information */
2486 	list_for_each_entry(sdata, &local->interfaces, list) {
2487 		u32 changed;
2488 
2489 		if (!ieee80211_sdata_running(sdata))
2490 			continue;
2491 
2492 		ieee80211_assign_chanctx(local, sdata);
2493 
2494 		switch (sdata->vif.type) {
2495 		case NL80211_IFTYPE_AP_VLAN:
2496 		case NL80211_IFTYPE_MONITOR:
2497 			break;
2498 		case NL80211_IFTYPE_ADHOC:
2499 			if (sdata->vif.bss_conf.ibss_joined)
2500 				WARN_ON(drv_join_ibss(local, sdata));
2501 			fallthrough;
2502 		default:
2503 			ieee80211_reconfig_stations(sdata);
2504 			fallthrough;
2505 		case NL80211_IFTYPE_AP: /* AP stations are handled later */
2506 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
2507 				drv_conf_tx(local, sdata, i,
2508 					    &sdata->tx_conf[i]);
2509 			break;
2510 		}
2511 
2512 		/* common change flags for all interface types */
2513 		changed = BSS_CHANGED_ERP_CTS_PROT |
2514 			  BSS_CHANGED_ERP_PREAMBLE |
2515 			  BSS_CHANGED_ERP_SLOT |
2516 			  BSS_CHANGED_HT |
2517 			  BSS_CHANGED_BASIC_RATES |
2518 			  BSS_CHANGED_BEACON_INT |
2519 			  BSS_CHANGED_BSSID |
2520 			  BSS_CHANGED_CQM |
2521 			  BSS_CHANGED_QOS |
2522 			  BSS_CHANGED_IDLE |
2523 			  BSS_CHANGED_TXPOWER |
2524 			  BSS_CHANGED_MCAST_RATE;
2525 
2526 		if (sdata->vif.mu_mimo_owner)
2527 			changed |= BSS_CHANGED_MU_GROUPS;
2528 
2529 		switch (sdata->vif.type) {
2530 		case NL80211_IFTYPE_STATION:
2531 			changed |= BSS_CHANGED_ASSOC |
2532 				   BSS_CHANGED_ARP_FILTER |
2533 				   BSS_CHANGED_PS;
2534 
2535 			/* Re-send beacon info report to the driver */
2536 			if (sdata->u.mgd.have_beacon)
2537 				changed |= BSS_CHANGED_BEACON_INFO;
2538 
2539 			if (sdata->vif.bss_conf.max_idle_period ||
2540 			    sdata->vif.bss_conf.protected_keep_alive)
2541 				changed |= BSS_CHANGED_KEEP_ALIVE;
2542 
2543 			sdata_lock(sdata);
2544 			ieee80211_bss_info_change_notify(sdata, changed);
2545 			sdata_unlock(sdata);
2546 			break;
2547 		case NL80211_IFTYPE_OCB:
2548 			changed |= BSS_CHANGED_OCB;
2549 			ieee80211_bss_info_change_notify(sdata, changed);
2550 			break;
2551 		case NL80211_IFTYPE_ADHOC:
2552 			changed |= BSS_CHANGED_IBSS;
2553 			fallthrough;
2554 		case NL80211_IFTYPE_AP:
2555 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
2556 
2557 			if (sdata->vif.bss_conf.ftm_responder == 1 &&
2558 			    wiphy_ext_feature_isset(sdata->local->hw.wiphy,
2559 					NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER))
2560 				changed |= BSS_CHANGED_FTM_RESPONDER;
2561 
2562 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
2563 				changed |= BSS_CHANGED_AP_PROBE_RESP;
2564 
2565 				if (rcu_access_pointer(sdata->u.ap.beacon))
2566 					drv_start_ap(local, sdata);
2567 			}
2568 			fallthrough;
2569 		case NL80211_IFTYPE_MESH_POINT:
2570 			if (sdata->vif.bss_conf.enable_beacon) {
2571 				changed |= BSS_CHANGED_BEACON |
2572 					   BSS_CHANGED_BEACON_ENABLED;
2573 				ieee80211_bss_info_change_notify(sdata, changed);
2574 			}
2575 			break;
2576 		case NL80211_IFTYPE_NAN:
2577 			res = ieee80211_reconfig_nan(sdata);
2578 			if (res < 0) {
2579 				ieee80211_handle_reconfig_failure(local);
2580 				return res;
2581 			}
2582 			break;
2583 		case NL80211_IFTYPE_AP_VLAN:
2584 		case NL80211_IFTYPE_MONITOR:
2585 		case NL80211_IFTYPE_P2P_DEVICE:
2586 			/* nothing to do */
2587 			break;
2588 		case NL80211_IFTYPE_UNSPECIFIED:
2589 		case NUM_NL80211_IFTYPES:
2590 		case NL80211_IFTYPE_P2P_CLIENT:
2591 		case NL80211_IFTYPE_P2P_GO:
2592 		case NL80211_IFTYPE_WDS:
2593 			WARN_ON(1);
2594 			break;
2595 		}
2596 	}
2597 
2598 	ieee80211_recalc_ps(local);
2599 
2600 	/*
2601 	 * The sta might be in psm against the ap (e.g. because
2602 	 * this was the state before a hw restart), so we
2603 	 * explicitly send a null packet in order to make sure
2604 	 * it'll sync against the ap (and get out of psm).
2605 	 */
2606 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
2607 		list_for_each_entry(sdata, &local->interfaces, list) {
2608 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2609 				continue;
2610 			if (!sdata->u.mgd.associated)
2611 				continue;
2612 
2613 			ieee80211_send_nullfunc(local, sdata, false);
2614 		}
2615 	}
2616 
2617 	/* APs are now beaconing, add back stations */
2618 	mutex_lock(&local->sta_mtx);
2619 	list_for_each_entry(sta, &local->sta_list, list) {
2620 		enum ieee80211_sta_state state;
2621 
2622 		if (!sta->uploaded)
2623 			continue;
2624 
2625 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP &&
2626 		    sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
2627 			continue;
2628 
2629 		for (state = IEEE80211_STA_NOTEXIST;
2630 		     state < sta->sta_state; state++)
2631 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2632 					      state + 1));
2633 	}
2634 	mutex_unlock(&local->sta_mtx);
2635 
2636 	/* add back keys */
2637 	list_for_each_entry(sdata, &local->interfaces, list)
2638 		ieee80211_reenable_keys(sdata);
2639 
2640 	/* Reconfigure sched scan if it was interrupted by FW restart */
2641 	mutex_lock(&local->mtx);
2642 	sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
2643 						lockdep_is_held(&local->mtx));
2644 	sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
2645 						lockdep_is_held(&local->mtx));
2646 	if (sched_scan_sdata && sched_scan_req)
2647 		/*
2648 		 * Sched scan stopped, but we don't want to report it. Instead,
2649 		 * we're trying to reschedule. However, if more than one scan
2650 		 * plan was set, we cannot reschedule since we don't know which
2651 		 * scan plan was currently running (and some scan plans may have
2652 		 * already finished).
2653 		 */
2654 		if (sched_scan_req->n_scan_plans > 1 ||
2655 		    __ieee80211_request_sched_scan_start(sched_scan_sdata,
2656 							 sched_scan_req)) {
2657 			RCU_INIT_POINTER(local->sched_scan_sdata, NULL);
2658 			RCU_INIT_POINTER(local->sched_scan_req, NULL);
2659 			sched_scan_stopped = true;
2660 		}
2661 	mutex_unlock(&local->mtx);
2662 
2663 	if (sched_scan_stopped)
2664 		cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0);
2665 
2666  wake_up:
2667 
2668 	if (local->monitors == local->open_count && local->monitors > 0)
2669 		ieee80211_add_virtual_monitor(local);
2670 
2671 	/*
2672 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
2673 	 * sessions can be established after a resume.
2674 	 *
2675 	 * Also tear down aggregation sessions since reconfiguring
2676 	 * them in a hardware restart scenario is not easily done
2677 	 * right now, and the hardware will have lost information
2678 	 * about the sessions, but we and the AP still think they
2679 	 * are active. This is really a workaround though.
2680 	 */
2681 	if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
2682 		mutex_lock(&local->sta_mtx);
2683 
2684 		list_for_each_entry(sta, &local->sta_list, list) {
2685 			if (!local->resuming)
2686 				ieee80211_sta_tear_down_BA_sessions(
2687 						sta, AGG_STOP_LOCAL_REQUEST);
2688 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
2689 		}
2690 
2691 		mutex_unlock(&local->sta_mtx);
2692 	}
2693 
2694 	/*
2695 	 * If this is for hw restart things are still running.
2696 	 * We may want to change that later, however.
2697 	 */
2698 	if (local->open_count && (!suspended || reconfig_due_to_wowlan))
2699 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART);
2700 
2701 	if (local->in_reconfig) {
2702 		in_reconfig = local->in_reconfig;
2703 		local->in_reconfig = false;
2704 		barrier();
2705 
2706 		/* Restart deferred ROCs */
2707 		mutex_lock(&local->mtx);
2708 		ieee80211_start_next_roc(local);
2709 		mutex_unlock(&local->mtx);
2710 
2711 		/* Requeue all works */
2712 		list_for_each_entry(sdata, &local->interfaces, list)
2713 			ieee80211_queue_work(&local->hw, &sdata->work);
2714 	}
2715 
2716 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
2717 					IEEE80211_QUEUE_STOP_REASON_SUSPEND,
2718 					false);
2719 
2720 	if (in_reconfig) {
2721 		list_for_each_entry(sdata, &local->interfaces, list) {
2722 			if (!ieee80211_sdata_running(sdata))
2723 				continue;
2724 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2725 				ieee80211_sta_restart(sdata);
2726 		}
2727 	}
2728 
2729 	if (!suspended)
2730 		return 0;
2731 
2732 #ifdef CONFIG_PM
2733 	/* first set suspended false, then resuming */
2734 	local->suspended = false;
2735 	mb();
2736 	local->resuming = false;
2737 
2738 	ieee80211_flush_completed_scan(local, false);
2739 
2740 	if (local->open_count && !reconfig_due_to_wowlan)
2741 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND);
2742 
2743 	list_for_each_entry(sdata, &local->interfaces, list) {
2744 		if (!ieee80211_sdata_running(sdata))
2745 			continue;
2746 		if (sdata->vif.type == NL80211_IFTYPE_STATION)
2747 			ieee80211_sta_restart(sdata);
2748 	}
2749 
2750 	mod_timer(&local->sta_cleanup, jiffies + 1);
2751 #else
2752 	WARN_ON(1);
2753 #endif
2754 
2755 	return 0;
2756 }
2757 
2758 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag)
2759 {
2760 	struct ieee80211_sub_if_data *sdata;
2761 	struct ieee80211_local *local;
2762 	struct ieee80211_key *key;
2763 
2764 	if (WARN_ON(!vif))
2765 		return;
2766 
2767 	sdata = vif_to_sdata(vif);
2768 	local = sdata->local;
2769 
2770 	if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME &&
2771 		    !local->resuming))
2772 		return;
2773 
2774 	if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART &&
2775 		    !local->in_reconfig))
2776 		return;
2777 
2778 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2779 		return;
2780 
2781 	sdata->flags |= flag;
2782 
2783 	mutex_lock(&local->key_mtx);
2784 	list_for_each_entry(key, &sdata->key_list, list)
2785 		key->flags |= KEY_FLAG_TAINTED;
2786 	mutex_unlock(&local->key_mtx);
2787 }
2788 
2789 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif)
2790 {
2791 	ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART);
2792 }
2793 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect);
2794 
2795 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
2796 {
2797 	ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME);
2798 }
2799 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
2800 
2801 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
2802 {
2803 	struct ieee80211_local *local = sdata->local;
2804 	struct ieee80211_chanctx_conf *chanctx_conf;
2805 	struct ieee80211_chanctx *chanctx;
2806 
2807 	mutex_lock(&local->chanctx_mtx);
2808 
2809 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2810 					lockdep_is_held(&local->chanctx_mtx));
2811 
2812 	/*
2813 	 * This function can be called from a work, thus it may be possible
2814 	 * that the chanctx_conf is removed (due to a disconnection, for
2815 	 * example).
2816 	 * So nothing should be done in such case.
2817 	 */
2818 	if (!chanctx_conf)
2819 		goto unlock;
2820 
2821 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2822 	ieee80211_recalc_smps_chanctx(local, chanctx);
2823  unlock:
2824 	mutex_unlock(&local->chanctx_mtx);
2825 }
2826 
2827 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata)
2828 {
2829 	struct ieee80211_local *local = sdata->local;
2830 	struct ieee80211_chanctx_conf *chanctx_conf;
2831 	struct ieee80211_chanctx *chanctx;
2832 
2833 	mutex_lock(&local->chanctx_mtx);
2834 
2835 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2836 					lockdep_is_held(&local->chanctx_mtx));
2837 
2838 	if (WARN_ON_ONCE(!chanctx_conf))
2839 		goto unlock;
2840 
2841 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2842 	ieee80211_recalc_chanctx_min_def(local, chanctx);
2843  unlock:
2844 	mutex_unlock(&local->chanctx_mtx);
2845 }
2846 
2847 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
2848 {
2849 	size_t pos = offset;
2850 
2851 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
2852 		pos += 2 + ies[pos + 1];
2853 
2854 	return pos;
2855 }
2856 
2857 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2858 			      u16 cap)
2859 {
2860 	__le16 tmp;
2861 
2862 	*pos++ = WLAN_EID_HT_CAPABILITY;
2863 	*pos++ = sizeof(struct ieee80211_ht_cap);
2864 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
2865 
2866 	/* capability flags */
2867 	tmp = cpu_to_le16(cap);
2868 	memcpy(pos, &tmp, sizeof(u16));
2869 	pos += sizeof(u16);
2870 
2871 	/* AMPDU parameters */
2872 	*pos++ = ht_cap->ampdu_factor |
2873 		 (ht_cap->ampdu_density <<
2874 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
2875 
2876 	/* MCS set */
2877 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
2878 	pos += sizeof(ht_cap->mcs);
2879 
2880 	/* extended capabilities */
2881 	pos += sizeof(__le16);
2882 
2883 	/* BF capabilities */
2884 	pos += sizeof(__le32);
2885 
2886 	/* antenna selection */
2887 	pos += sizeof(u8);
2888 
2889 	return pos;
2890 }
2891 
2892 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
2893 			       u32 cap)
2894 {
2895 	__le32 tmp;
2896 
2897 	*pos++ = WLAN_EID_VHT_CAPABILITY;
2898 	*pos++ = sizeof(struct ieee80211_vht_cap);
2899 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
2900 
2901 	/* capability flags */
2902 	tmp = cpu_to_le32(cap);
2903 	memcpy(pos, &tmp, sizeof(u32));
2904 	pos += sizeof(u32);
2905 
2906 	/* VHT MCS set */
2907 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
2908 	pos += sizeof(vht_cap->vht_mcs);
2909 
2910 	return pos;
2911 }
2912 
2913 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype)
2914 {
2915 	const struct ieee80211_sta_he_cap *he_cap;
2916 	struct ieee80211_supported_band *sband;
2917 	u8 n;
2918 
2919 	sband = ieee80211_get_sband(sdata);
2920 	if (!sband)
2921 		return 0;
2922 
2923 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
2924 	if (!he_cap)
2925 		return 0;
2926 
2927 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
2928 	return 2 + 1 +
2929 	       sizeof(he_cap->he_cap_elem) + n +
2930 	       ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2931 				     he_cap->he_cap_elem.phy_cap_info);
2932 }
2933 
2934 u8 *ieee80211_ie_build_he_cap(u32 disable_flags, u8 *pos,
2935 			      const struct ieee80211_sta_he_cap *he_cap,
2936 			      u8 *end)
2937 {
2938 	struct ieee80211_he_cap_elem elem;
2939 	u8 n;
2940 	u8 ie_len;
2941 	u8 *orig_pos = pos;
2942 
2943 	/* Make sure we have place for the IE */
2944 	/*
2945 	 * TODO: the 1 added is because this temporarily is under the EXTENSION
2946 	 * IE. Get rid of it when it moves.
2947 	 */
2948 	if (!he_cap)
2949 		return orig_pos;
2950 
2951 	/* modify on stack first to calculate 'n' and 'ie_len' correctly */
2952 	elem = he_cap->he_cap_elem;
2953 
2954 	if (disable_flags & IEEE80211_STA_DISABLE_40MHZ)
2955 		elem.phy_cap_info[0] &=
2956 			~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
2957 			  IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G);
2958 
2959 	if (disable_flags & IEEE80211_STA_DISABLE_160MHZ)
2960 		elem.phy_cap_info[0] &=
2961 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
2962 
2963 	if (disable_flags & IEEE80211_STA_DISABLE_80P80MHZ)
2964 		elem.phy_cap_info[0] &=
2965 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
2966 
2967 	n = ieee80211_he_mcs_nss_size(&elem);
2968 	ie_len = 2 + 1 +
2969 		 sizeof(he_cap->he_cap_elem) + n +
2970 		 ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2971 				       he_cap->he_cap_elem.phy_cap_info);
2972 
2973 	if ((end - pos) < ie_len)
2974 		return orig_pos;
2975 
2976 	*pos++ = WLAN_EID_EXTENSION;
2977 	pos++; /* We'll set the size later below */
2978 	*pos++ = WLAN_EID_EXT_HE_CAPABILITY;
2979 
2980 	/* Fixed data */
2981 	memcpy(pos, &elem, sizeof(elem));
2982 	pos += sizeof(elem);
2983 
2984 	memcpy(pos, &he_cap->he_mcs_nss_supp, n);
2985 	pos += n;
2986 
2987 	/* Check if PPE Threshold should be present */
2988 	if ((he_cap->he_cap_elem.phy_cap_info[6] &
2989 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2990 		goto end;
2991 
2992 	/*
2993 	 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm:
2994 	 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK)
2995 	 */
2996 	n = hweight8(he_cap->ppe_thres[0] &
2997 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2998 	n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >>
2999 		   IEEE80211_PPE_THRES_NSS_POS));
3000 
3001 	/*
3002 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
3003 	 * total size.
3004 	 */
3005 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
3006 	n = DIV_ROUND_UP(n, 8);
3007 
3008 	/* Copy PPE Thresholds */
3009 	memcpy(pos, &he_cap->ppe_thres, n);
3010 	pos += n;
3011 
3012 end:
3013 	orig_pos[1] = (pos - orig_pos) - 2;
3014 	return pos;
3015 }
3016 
3017 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata,
3018 				    struct sk_buff *skb)
3019 {
3020 	struct ieee80211_supported_band *sband;
3021 	const struct ieee80211_sband_iftype_data *iftd;
3022 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
3023 	u8 *pos;
3024 	u16 cap;
3025 
3026 	if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy,
3027 					  BIT(NL80211_BAND_6GHZ),
3028 					  IEEE80211_CHAN_NO_HE))
3029 		return;
3030 
3031 	sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ];
3032 
3033 	iftd = ieee80211_get_sband_iftype_data(sband, iftype);
3034 	if (!iftd)
3035 		return;
3036 
3037 	/* Check for device HE 6 GHz capability before adding element */
3038 	if (!iftd->he_6ghz_capa.capa)
3039 		return;
3040 
3041 	cap = le16_to_cpu(iftd->he_6ghz_capa.capa);
3042 	cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS;
3043 
3044 	switch (sdata->smps_mode) {
3045 	case IEEE80211_SMPS_AUTOMATIC:
3046 	case IEEE80211_SMPS_NUM_MODES:
3047 		WARN_ON(1);
3048 		fallthrough;
3049 	case IEEE80211_SMPS_OFF:
3050 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED,
3051 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3052 		break;
3053 	case IEEE80211_SMPS_STATIC:
3054 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC,
3055 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3056 		break;
3057 	case IEEE80211_SMPS_DYNAMIC:
3058 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC,
3059 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3060 		break;
3061 	}
3062 
3063 	pos = skb_put(skb, 2 + 1 + sizeof(cap));
3064 	ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap),
3065 				    pos + 2 + 1 + sizeof(cap));
3066 }
3067 
3068 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
3069 			       const struct cfg80211_chan_def *chandef,
3070 			       u16 prot_mode, bool rifs_mode)
3071 {
3072 	struct ieee80211_ht_operation *ht_oper;
3073 	/* Build HT Information */
3074 	*pos++ = WLAN_EID_HT_OPERATION;
3075 	*pos++ = sizeof(struct ieee80211_ht_operation);
3076 	ht_oper = (struct ieee80211_ht_operation *)pos;
3077 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
3078 					chandef->chan->center_freq);
3079 	switch (chandef->width) {
3080 	case NL80211_CHAN_WIDTH_160:
3081 	case NL80211_CHAN_WIDTH_80P80:
3082 	case NL80211_CHAN_WIDTH_80:
3083 	case NL80211_CHAN_WIDTH_40:
3084 		if (chandef->center_freq1 > chandef->chan->center_freq)
3085 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
3086 		else
3087 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
3088 		break;
3089 	case NL80211_CHAN_WIDTH_320:
3090 		/* HT information element should not be included on 6GHz */
3091 		WARN_ON(1);
3092 		return pos;
3093 	default:
3094 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
3095 		break;
3096 	}
3097 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
3098 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
3099 	    chandef->width != NL80211_CHAN_WIDTH_20)
3100 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
3101 
3102 	if (rifs_mode)
3103 		ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
3104 
3105 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
3106 	ht_oper->stbc_param = 0x0000;
3107 
3108 	/* It seems that Basic MCS set and Supported MCS set
3109 	   are identical for the first 10 bytes */
3110 	memset(&ht_oper->basic_set, 0, 16);
3111 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
3112 
3113 	return pos + sizeof(struct ieee80211_ht_operation);
3114 }
3115 
3116 void ieee80211_ie_build_wide_bw_cs(u8 *pos,
3117 				   const struct cfg80211_chan_def *chandef)
3118 {
3119 	*pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH;	/* EID */
3120 	*pos++ = 3;					/* IE length */
3121 	/* New channel width */
3122 	switch (chandef->width) {
3123 	case NL80211_CHAN_WIDTH_80:
3124 		*pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ;
3125 		break;
3126 	case NL80211_CHAN_WIDTH_160:
3127 		*pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ;
3128 		break;
3129 	case NL80211_CHAN_WIDTH_80P80:
3130 		*pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
3131 		break;
3132 	case NL80211_CHAN_WIDTH_320:
3133 		/* The behavior is not defined for 320 MHz channels */
3134 		WARN_ON(1);
3135 		fallthrough;
3136 	default:
3137 		*pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT;
3138 	}
3139 
3140 	/* new center frequency segment 0 */
3141 	*pos++ = ieee80211_frequency_to_channel(chandef->center_freq1);
3142 	/* new center frequency segment 1 */
3143 	if (chandef->center_freq2)
3144 		*pos++ = ieee80211_frequency_to_channel(chandef->center_freq2);
3145 	else
3146 		*pos++ = 0;
3147 }
3148 
3149 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
3150 				const struct cfg80211_chan_def *chandef)
3151 {
3152 	struct ieee80211_vht_operation *vht_oper;
3153 
3154 	*pos++ = WLAN_EID_VHT_OPERATION;
3155 	*pos++ = sizeof(struct ieee80211_vht_operation);
3156 	vht_oper = (struct ieee80211_vht_operation *)pos;
3157 	vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel(
3158 							chandef->center_freq1);
3159 	if (chandef->center_freq2)
3160 		vht_oper->center_freq_seg1_idx =
3161 			ieee80211_frequency_to_channel(chandef->center_freq2);
3162 	else
3163 		vht_oper->center_freq_seg1_idx = 0x00;
3164 
3165 	switch (chandef->width) {
3166 	case NL80211_CHAN_WIDTH_160:
3167 		/*
3168 		 * Convert 160 MHz channel width to new style as interop
3169 		 * workaround.
3170 		 */
3171 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3172 		vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx;
3173 		if (chandef->chan->center_freq < chandef->center_freq1)
3174 			vht_oper->center_freq_seg0_idx -= 8;
3175 		else
3176 			vht_oper->center_freq_seg0_idx += 8;
3177 		break;
3178 	case NL80211_CHAN_WIDTH_80P80:
3179 		/*
3180 		 * Convert 80+80 MHz channel width to new style as interop
3181 		 * workaround.
3182 		 */
3183 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3184 		break;
3185 	case NL80211_CHAN_WIDTH_80:
3186 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3187 		break;
3188 	case NL80211_CHAN_WIDTH_320:
3189 		/* VHT information element should not be included on 6GHz */
3190 		WARN_ON(1);
3191 		return pos;
3192 	default:
3193 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
3194 		break;
3195 	}
3196 
3197 	/* don't require special VHT peer rates */
3198 	vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
3199 
3200 	return pos + sizeof(struct ieee80211_vht_operation);
3201 }
3202 
3203 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef)
3204 {
3205 	struct ieee80211_he_operation *he_oper;
3206 	struct ieee80211_he_6ghz_oper *he_6ghz_op;
3207 	u32 he_oper_params;
3208 	u8 ie_len = 1 + sizeof(struct ieee80211_he_operation);
3209 
3210 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3211 		ie_len += sizeof(struct ieee80211_he_6ghz_oper);
3212 
3213 	*pos++ = WLAN_EID_EXTENSION;
3214 	*pos++ = ie_len;
3215 	*pos++ = WLAN_EID_EXT_HE_OPERATION;
3216 
3217 	he_oper_params = 0;
3218 	he_oper_params |= u32_encode_bits(1023, /* disabled */
3219 				IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
3220 	he_oper_params |= u32_encode_bits(1,
3221 				IEEE80211_HE_OPERATION_ER_SU_DISABLE);
3222 	he_oper_params |= u32_encode_bits(1,
3223 				IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
3224 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3225 		he_oper_params |= u32_encode_bits(1,
3226 				IEEE80211_HE_OPERATION_6GHZ_OP_INFO);
3227 
3228 	he_oper = (struct ieee80211_he_operation *)pos;
3229 	he_oper->he_oper_params = cpu_to_le32(he_oper_params);
3230 
3231 	/* don't require special HE peer rates */
3232 	he_oper->he_mcs_nss_set = cpu_to_le16(0xffff);
3233 	pos += sizeof(struct ieee80211_he_operation);
3234 
3235 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3236 		goto out;
3237 
3238 	/* TODO add VHT operational */
3239 	he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos;
3240 	he_6ghz_op->minrate = 6; /* 6 Mbps */
3241 	he_6ghz_op->primary =
3242 		ieee80211_frequency_to_channel(chandef->chan->center_freq);
3243 	he_6ghz_op->ccfs0 =
3244 		ieee80211_frequency_to_channel(chandef->center_freq1);
3245 	if (chandef->center_freq2)
3246 		he_6ghz_op->ccfs1 =
3247 			ieee80211_frequency_to_channel(chandef->center_freq2);
3248 	else
3249 		he_6ghz_op->ccfs1 = 0;
3250 
3251 	switch (chandef->width) {
3252 	case NL80211_CHAN_WIDTH_320:
3253 		/*
3254 		 * TODO: mesh operation is not defined over 6GHz 320 MHz
3255 		 * channels.
3256 		 */
3257 		WARN_ON(1);
3258 		break;
3259 	case NL80211_CHAN_WIDTH_160:
3260 		/* Convert 160 MHz channel width to new style as interop
3261 		 * workaround.
3262 		 */
3263 		he_6ghz_op->control =
3264 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3265 		he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0;
3266 		if (chandef->chan->center_freq < chandef->center_freq1)
3267 			he_6ghz_op->ccfs0 -= 8;
3268 		else
3269 			he_6ghz_op->ccfs0 += 8;
3270 		fallthrough;
3271 	case NL80211_CHAN_WIDTH_80P80:
3272 		he_6ghz_op->control =
3273 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3274 		break;
3275 	case NL80211_CHAN_WIDTH_80:
3276 		he_6ghz_op->control =
3277 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ;
3278 		break;
3279 	case NL80211_CHAN_WIDTH_40:
3280 		he_6ghz_op->control =
3281 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ;
3282 		break;
3283 	default:
3284 		he_6ghz_op->control =
3285 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ;
3286 		break;
3287 	}
3288 
3289 	pos += sizeof(struct ieee80211_he_6ghz_oper);
3290 
3291 out:
3292 	return pos;
3293 }
3294 
3295 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper,
3296 			       struct cfg80211_chan_def *chandef)
3297 {
3298 	enum nl80211_channel_type channel_type;
3299 
3300 	if (!ht_oper)
3301 		return false;
3302 
3303 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
3304 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3305 		channel_type = NL80211_CHAN_HT20;
3306 		break;
3307 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3308 		channel_type = NL80211_CHAN_HT40PLUS;
3309 		break;
3310 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3311 		channel_type = NL80211_CHAN_HT40MINUS;
3312 		break;
3313 	default:
3314 		return false;
3315 	}
3316 
3317 	cfg80211_chandef_create(chandef, chandef->chan, channel_type);
3318 	return true;
3319 }
3320 
3321 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info,
3322 				const struct ieee80211_vht_operation *oper,
3323 				const struct ieee80211_ht_operation *htop,
3324 				struct cfg80211_chan_def *chandef)
3325 {
3326 	struct cfg80211_chan_def new = *chandef;
3327 	int cf0, cf1;
3328 	int ccfs0, ccfs1, ccfs2;
3329 	int ccf0, ccf1;
3330 	u32 vht_cap;
3331 	bool support_80_80 = false;
3332 	bool support_160 = false;
3333 	u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info,
3334 					  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
3335 	u8 supp_chwidth = u32_get_bits(vht_cap_info,
3336 				       IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
3337 
3338 	if (!oper || !htop)
3339 		return false;
3340 
3341 	vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap;
3342 	support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK |
3343 				  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK));
3344 	support_80_80 = ((vht_cap &
3345 			 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
3346 			(vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
3347 			 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
3348 			((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >>
3349 				    IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1));
3350 	ccfs0 = oper->center_freq_seg0_idx;
3351 	ccfs1 = oper->center_freq_seg1_idx;
3352 	ccfs2 = (le16_to_cpu(htop->operation_mode) &
3353 				IEEE80211_HT_OP_MODE_CCFS2_MASK)
3354 			>> IEEE80211_HT_OP_MODE_CCFS2_SHIFT;
3355 
3356 	ccf0 = ccfs0;
3357 
3358 	/* if not supported, parse as though we didn't understand it */
3359 	if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW))
3360 		ext_nss_bw_supp = 0;
3361 
3362 	/*
3363 	 * Cf. IEEE 802.11 Table 9-250
3364 	 *
3365 	 * We really just consider that because it's inefficient to connect
3366 	 * at a higher bandwidth than we'll actually be able to use.
3367 	 */
3368 	switch ((supp_chwidth << 4) | ext_nss_bw_supp) {
3369 	default:
3370 	case 0x00:
3371 		ccf1 = 0;
3372 		support_160 = false;
3373 		support_80_80 = false;
3374 		break;
3375 	case 0x01:
3376 		support_80_80 = false;
3377 		fallthrough;
3378 	case 0x02:
3379 	case 0x03:
3380 		ccf1 = ccfs2;
3381 		break;
3382 	case 0x10:
3383 		ccf1 = ccfs1;
3384 		break;
3385 	case 0x11:
3386 	case 0x12:
3387 		if (!ccfs1)
3388 			ccf1 = ccfs2;
3389 		else
3390 			ccf1 = ccfs1;
3391 		break;
3392 	case 0x13:
3393 	case 0x20:
3394 	case 0x23:
3395 		ccf1 = ccfs1;
3396 		break;
3397 	}
3398 
3399 	cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band);
3400 	cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band);
3401 
3402 	switch (oper->chan_width) {
3403 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
3404 		/* just use HT information directly */
3405 		break;
3406 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
3407 		new.width = NL80211_CHAN_WIDTH_80;
3408 		new.center_freq1 = cf0;
3409 		/* If needed, adjust based on the newer interop workaround. */
3410 		if (ccf1) {
3411 			unsigned int diff;
3412 
3413 			diff = abs(ccf1 - ccf0);
3414 			if ((diff == 8) && support_160) {
3415 				new.width = NL80211_CHAN_WIDTH_160;
3416 				new.center_freq1 = cf1;
3417 			} else if ((diff > 8) && support_80_80) {
3418 				new.width = NL80211_CHAN_WIDTH_80P80;
3419 				new.center_freq2 = cf1;
3420 			}
3421 		}
3422 		break;
3423 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
3424 		/* deprecated encoding */
3425 		new.width = NL80211_CHAN_WIDTH_160;
3426 		new.center_freq1 = cf0;
3427 		break;
3428 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
3429 		/* deprecated encoding */
3430 		new.width = NL80211_CHAN_WIDTH_80P80;
3431 		new.center_freq1 = cf0;
3432 		new.center_freq2 = cf1;
3433 		break;
3434 	default:
3435 		return false;
3436 	}
3437 
3438 	if (!cfg80211_chandef_valid(&new))
3439 		return false;
3440 
3441 	*chandef = new;
3442 	return true;
3443 }
3444 
3445 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata,
3446 				    const struct ieee80211_he_operation *he_oper,
3447 				    const struct ieee80211_eht_operation *eht_oper,
3448 				    struct cfg80211_chan_def *chandef)
3449 {
3450 	struct ieee80211_local *local = sdata->local;
3451 	struct ieee80211_supported_band *sband;
3452 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
3453 	const struct ieee80211_sta_he_cap *he_cap;
3454 	const struct ieee80211_sta_eht_cap *eht_cap;
3455 	struct cfg80211_chan_def he_chandef = *chandef;
3456 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
3457 	struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf;
3458 	bool support_80_80, support_160, support_320;
3459 	u8 he_phy_cap, eht_phy_cap;
3460 	u32 freq;
3461 
3462 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3463 		return true;
3464 
3465 	sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
3466 
3467 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
3468 	if (!he_cap) {
3469 		sdata_info(sdata, "Missing iftype sband data/HE cap");
3470 		return false;
3471 	}
3472 
3473 	he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0];
3474 	support_160 =
3475 		he_phy_cap &
3476 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
3477 	support_80_80 =
3478 		he_phy_cap &
3479 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
3480 
3481 	if (!he_oper) {
3482 		sdata_info(sdata,
3483 			   "HE is not advertised on (on %d MHz), expect issues\n",
3484 			   chandef->chan->center_freq);
3485 		return false;
3486 	}
3487 
3488 	eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype);
3489 	if (!eht_cap) {
3490 		sdata_info(sdata, "Missing iftype sband data/EHT cap");
3491 		eht_oper = NULL;
3492 	}
3493 
3494 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
3495 
3496 	if (!he_6ghz_oper) {
3497 		sdata_info(sdata,
3498 			   "HE 6GHz operation missing (on %d MHz), expect issues\n",
3499 			   chandef->chan->center_freq);
3500 		return false;
3501 	}
3502 
3503 	/*
3504 	 * The EHT operation IE does not contain the primary channel so the
3505 	 * primary channel frequency should be taken from the 6 GHz operation
3506 	 * information.
3507 	 */
3508 	freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary,
3509 					      NL80211_BAND_6GHZ);
3510 	he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq);
3511 
3512 	switch (u8_get_bits(he_6ghz_oper->control,
3513 			    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
3514 	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
3515 		bss_conf->power_type = IEEE80211_REG_LPI_AP;
3516 		break;
3517 	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
3518 		bss_conf->power_type = IEEE80211_REG_SP_AP;
3519 		break;
3520 	default:
3521 		bss_conf->power_type = IEEE80211_REG_UNSET_AP;
3522 		break;
3523 	}
3524 
3525 	if (!eht_oper) {
3526 		switch (u8_get_bits(he_6ghz_oper->control,
3527 				    IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) {
3528 		case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ:
3529 			he_chandef.width = NL80211_CHAN_WIDTH_20;
3530 			break;
3531 		case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ:
3532 			he_chandef.width = NL80211_CHAN_WIDTH_40;
3533 			break;
3534 		case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ:
3535 			he_chandef.width = NL80211_CHAN_WIDTH_80;
3536 			break;
3537 		case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ:
3538 			he_chandef.width = NL80211_CHAN_WIDTH_80;
3539 			if (!he_6ghz_oper->ccfs1)
3540 				break;
3541 			if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) {
3542 				if (support_160)
3543 					he_chandef.width = NL80211_CHAN_WIDTH_160;
3544 			} else {
3545 				if (support_80_80)
3546 					he_chandef.width = NL80211_CHAN_WIDTH_80P80;
3547 			}
3548 			break;
3549 		}
3550 
3551 		if (he_chandef.width == NL80211_CHAN_WIDTH_160) {
3552 			he_chandef.center_freq1 =
3553 				ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3554 							       NL80211_BAND_6GHZ);
3555 		} else {
3556 			he_chandef.center_freq1 =
3557 				ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0,
3558 							       NL80211_BAND_6GHZ);
3559 			if (support_80_80 || support_160)
3560 				he_chandef.center_freq2 =
3561 					ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3562 								       NL80211_BAND_6GHZ);
3563 		}
3564 	} else {
3565 		eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0];
3566 		support_320 =
3567 			eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
3568 
3569 		switch (u8_get_bits(eht_oper->chan_width,
3570 				    IEEE80211_EHT_OPER_CHAN_WIDTH)) {
3571 		case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ:
3572 			he_chandef.width = NL80211_CHAN_WIDTH_20;
3573 			break;
3574 		case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ:
3575 			he_chandef.width = NL80211_CHAN_WIDTH_40;
3576 			break;
3577 		case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ:
3578 			he_chandef.width = NL80211_CHAN_WIDTH_80;
3579 			break;
3580 		case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ:
3581 			if (support_160)
3582 				he_chandef.width = NL80211_CHAN_WIDTH_160;
3583 			else
3584 				he_chandef.width = NL80211_CHAN_WIDTH_80;
3585 			break;
3586 		case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ:
3587 			if (support_320)
3588 				he_chandef.width = NL80211_CHAN_WIDTH_320;
3589 			else if (support_160)
3590 				he_chandef.width = NL80211_CHAN_WIDTH_160;
3591 			else
3592 				he_chandef.width = NL80211_CHAN_WIDTH_80;
3593 			break;
3594 		}
3595 
3596 		he_chandef.center_freq1 =
3597 			ieee80211_channel_to_frequency(eht_oper->ccfs,
3598 						       NL80211_BAND_6GHZ);
3599 	}
3600 
3601 	if (!cfg80211_chandef_valid(&he_chandef)) {
3602 		sdata_info(sdata,
3603 			   "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n",
3604 			   he_chandef.chan ? he_chandef.chan->center_freq : 0,
3605 			   he_chandef.width,
3606 			   he_chandef.center_freq1,
3607 			   he_chandef.center_freq2);
3608 		return false;
3609 	}
3610 
3611 	*chandef = he_chandef;
3612 
3613 	return true;
3614 }
3615 
3616 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper,
3617 				struct cfg80211_chan_def *chandef)
3618 {
3619 	u32 oper_freq;
3620 
3621 	if (!oper)
3622 		return false;
3623 
3624 	switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) {
3625 	case IEEE80211_S1G_CHANWIDTH_1MHZ:
3626 		chandef->width = NL80211_CHAN_WIDTH_1;
3627 		break;
3628 	case IEEE80211_S1G_CHANWIDTH_2MHZ:
3629 		chandef->width = NL80211_CHAN_WIDTH_2;
3630 		break;
3631 	case IEEE80211_S1G_CHANWIDTH_4MHZ:
3632 		chandef->width = NL80211_CHAN_WIDTH_4;
3633 		break;
3634 	case IEEE80211_S1G_CHANWIDTH_8MHZ:
3635 		chandef->width = NL80211_CHAN_WIDTH_8;
3636 		break;
3637 	case IEEE80211_S1G_CHANWIDTH_16MHZ:
3638 		chandef->width = NL80211_CHAN_WIDTH_16;
3639 		break;
3640 	default:
3641 		return false;
3642 	}
3643 
3644 	oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch,
3645 						  NL80211_BAND_S1GHZ);
3646 	chandef->center_freq1 = KHZ_TO_MHZ(oper_freq);
3647 	chandef->freq1_offset = oper_freq % 1000;
3648 
3649 	return true;
3650 }
3651 
3652 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef,
3653 			     const struct ieee80211_supported_band *sband,
3654 			     const u8 *srates, int srates_len, u32 *rates)
3655 {
3656 	u32 rate_flags = ieee80211_chandef_rate_flags(chandef);
3657 	int shift = ieee80211_chandef_get_shift(chandef);
3658 	struct ieee80211_rate *br;
3659 	int brate, rate, i, j, count = 0;
3660 
3661 	*rates = 0;
3662 
3663 	for (i = 0; i < srates_len; i++) {
3664 		rate = srates[i] & 0x7f;
3665 
3666 		for (j = 0; j < sband->n_bitrates; j++) {
3667 			br = &sband->bitrates[j];
3668 			if ((rate_flags & br->flags) != rate_flags)
3669 				continue;
3670 
3671 			brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5);
3672 			if (brate == rate) {
3673 				*rates |= BIT(j);
3674 				count++;
3675 				break;
3676 			}
3677 		}
3678 	}
3679 	return count;
3680 }
3681 
3682 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
3683 			    struct sk_buff *skb, bool need_basic,
3684 			    enum nl80211_band band)
3685 {
3686 	struct ieee80211_local *local = sdata->local;
3687 	struct ieee80211_supported_band *sband;
3688 	int rate, shift;
3689 	u8 i, rates, *pos;
3690 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3691 	u32 rate_flags;
3692 
3693 	shift = ieee80211_vif_get_shift(&sdata->vif);
3694 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3695 	sband = local->hw.wiphy->bands[band];
3696 	rates = 0;
3697 	for (i = 0; i < sband->n_bitrates; i++) {
3698 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3699 			continue;
3700 		rates++;
3701 	}
3702 	if (rates > 8)
3703 		rates = 8;
3704 
3705 	if (skb_tailroom(skb) < rates + 2)
3706 		return -ENOMEM;
3707 
3708 	pos = skb_put(skb, rates + 2);
3709 	*pos++ = WLAN_EID_SUPP_RATES;
3710 	*pos++ = rates;
3711 	for (i = 0; i < rates; i++) {
3712 		u8 basic = 0;
3713 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3714 			continue;
3715 
3716 		if (need_basic && basic_rates & BIT(i))
3717 			basic = 0x80;
3718 		rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3719 				    5 * (1 << shift));
3720 		*pos++ = basic | (u8) rate;
3721 	}
3722 
3723 	return 0;
3724 }
3725 
3726 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
3727 				struct sk_buff *skb, bool need_basic,
3728 				enum nl80211_band band)
3729 {
3730 	struct ieee80211_local *local = sdata->local;
3731 	struct ieee80211_supported_band *sband;
3732 	int rate, shift;
3733 	u8 i, exrates, *pos;
3734 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3735 	u32 rate_flags;
3736 
3737 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3738 	shift = ieee80211_vif_get_shift(&sdata->vif);
3739 
3740 	sband = local->hw.wiphy->bands[band];
3741 	exrates = 0;
3742 	for (i = 0; i < sband->n_bitrates; i++) {
3743 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3744 			continue;
3745 		exrates++;
3746 	}
3747 
3748 	if (exrates > 8)
3749 		exrates -= 8;
3750 	else
3751 		exrates = 0;
3752 
3753 	if (skb_tailroom(skb) < exrates + 2)
3754 		return -ENOMEM;
3755 
3756 	if (exrates) {
3757 		pos = skb_put(skb, exrates + 2);
3758 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
3759 		*pos++ = exrates;
3760 		for (i = 8; i < sband->n_bitrates; i++) {
3761 			u8 basic = 0;
3762 			if ((rate_flags & sband->bitrates[i].flags)
3763 			    != rate_flags)
3764 				continue;
3765 			if (need_basic && basic_rates & BIT(i))
3766 				basic = 0x80;
3767 			rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3768 					    5 * (1 << shift));
3769 			*pos++ = basic | (u8) rate;
3770 		}
3771 	}
3772 	return 0;
3773 }
3774 
3775 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
3776 {
3777 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
3778 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
3779 
3780 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
3781 		/* non-managed type inferfaces */
3782 		return 0;
3783 	}
3784 	return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal);
3785 }
3786 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
3787 
3788 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
3789 {
3790 	if (!mcs)
3791 		return 1;
3792 
3793 	/* TODO: consider rx_highest */
3794 
3795 	if (mcs->rx_mask[3])
3796 		return 4;
3797 	if (mcs->rx_mask[2])
3798 		return 3;
3799 	if (mcs->rx_mask[1])
3800 		return 2;
3801 	return 1;
3802 }
3803 
3804 /**
3805  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
3806  * @local: mac80211 hw info struct
3807  * @status: RX status
3808  * @mpdu_len: total MPDU length (including FCS)
3809  * @mpdu_offset: offset into MPDU to calculate timestamp at
3810  *
3811  * This function calculates the RX timestamp at the given MPDU offset, taking
3812  * into account what the RX timestamp was. An offset of 0 will just normalize
3813  * the timestamp to TSF at beginning of MPDU reception.
3814  */
3815 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
3816 				     struct ieee80211_rx_status *status,
3817 				     unsigned int mpdu_len,
3818 				     unsigned int mpdu_offset)
3819 {
3820 	u64 ts = status->mactime;
3821 	struct rate_info ri;
3822 	u16 rate;
3823 	u8 n_ltf;
3824 
3825 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
3826 		return 0;
3827 
3828 	memset(&ri, 0, sizeof(ri));
3829 
3830 	ri.bw = status->bw;
3831 
3832 	/* Fill cfg80211 rate info */
3833 	switch (status->encoding) {
3834 	case RX_ENC_HE:
3835 		ri.flags |= RATE_INFO_FLAGS_HE_MCS;
3836 		ri.mcs = status->rate_idx;
3837 		ri.nss = status->nss;
3838 		ri.he_ru_alloc = status->he_ru;
3839 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3840 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3841 
3842 		/*
3843 		 * See P802.11ax_D6.0, section 27.3.4 for
3844 		 * VHT PPDU format.
3845 		 */
3846 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3847 			mpdu_offset += 2;
3848 			ts += 36;
3849 
3850 			/*
3851 			 * TODO:
3852 			 * For HE MU PPDU, add the HE-SIG-B.
3853 			 * For HE ER PPDU, add 8us for the HE-SIG-A.
3854 			 * For HE TB PPDU, add 4us for the HE-STF.
3855 			 * Add the HE-LTF durations - variable.
3856 			 */
3857 		}
3858 
3859 		break;
3860 	case RX_ENC_HT:
3861 		ri.mcs = status->rate_idx;
3862 		ri.flags |= RATE_INFO_FLAGS_MCS;
3863 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3864 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3865 
3866 		/*
3867 		 * See P802.11REVmd_D3.0, section 19.3.2 for
3868 		 * HT PPDU format.
3869 		 */
3870 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3871 			mpdu_offset += 2;
3872 			if (status->enc_flags & RX_ENC_FLAG_HT_GF)
3873 				ts += 24;
3874 			else
3875 				ts += 32;
3876 
3877 			/*
3878 			 * Add Data HT-LTFs per streams
3879 			 * TODO: add Extension HT-LTFs, 4us per LTF
3880 			 */
3881 			n_ltf = ((ri.mcs >> 3) & 3) + 1;
3882 			n_ltf = n_ltf == 3 ? 4 : n_ltf;
3883 			ts += n_ltf * 4;
3884 		}
3885 
3886 		break;
3887 	case RX_ENC_VHT:
3888 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
3889 		ri.mcs = status->rate_idx;
3890 		ri.nss = status->nss;
3891 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3892 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3893 
3894 		/*
3895 		 * See P802.11REVmd_D3.0, section 21.3.2 for
3896 		 * VHT PPDU format.
3897 		 */
3898 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3899 			mpdu_offset += 2;
3900 			ts += 36;
3901 
3902 			/*
3903 			 * Add VHT-LTFs per streams
3904 			 */
3905 			n_ltf = (ri.nss != 1) && (ri.nss % 2) ?
3906 				ri.nss + 1 : ri.nss;
3907 			ts += 4 * n_ltf;
3908 		}
3909 
3910 		break;
3911 	default:
3912 		WARN_ON(1);
3913 		fallthrough;
3914 	case RX_ENC_LEGACY: {
3915 		struct ieee80211_supported_band *sband;
3916 		int shift = 0;
3917 		int bitrate;
3918 
3919 		switch (status->bw) {
3920 		case RATE_INFO_BW_10:
3921 			shift = 1;
3922 			break;
3923 		case RATE_INFO_BW_5:
3924 			shift = 2;
3925 			break;
3926 		}
3927 
3928 		sband = local->hw.wiphy->bands[status->band];
3929 		bitrate = sband->bitrates[status->rate_idx].bitrate;
3930 		ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift));
3931 
3932 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3933 			if (status->band == NL80211_BAND_5GHZ) {
3934 				ts += 20 << shift;
3935 				mpdu_offset += 2;
3936 			} else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) {
3937 				ts += 96;
3938 			} else {
3939 				ts += 192;
3940 			}
3941 		}
3942 		break;
3943 		}
3944 	}
3945 
3946 	rate = cfg80211_calculate_bitrate(&ri);
3947 	if (WARN_ONCE(!rate,
3948 		      "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n",
3949 		      (unsigned long long)status->flag, status->rate_idx,
3950 		      status->nss))
3951 		return 0;
3952 
3953 	/* rewind from end of MPDU */
3954 	if (status->flag & RX_FLAG_MACTIME_END)
3955 		ts -= mpdu_len * 8 * 10 / rate;
3956 
3957 	ts += mpdu_offset * 8 * 10 / rate;
3958 
3959 	return ts;
3960 }
3961 
3962 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
3963 {
3964 	struct ieee80211_sub_if_data *sdata;
3965 	struct cfg80211_chan_def chandef;
3966 
3967 	/* for interface list, to avoid linking iflist_mtx and chanctx_mtx */
3968 	lockdep_assert_wiphy(local->hw.wiphy);
3969 
3970 	mutex_lock(&local->mtx);
3971 	list_for_each_entry(sdata, &local->interfaces, list) {
3972 		/* it might be waiting for the local->mtx, but then
3973 		 * by the time it gets it, sdata->wdev.cac_started
3974 		 * will no longer be true
3975 		 */
3976 		cancel_delayed_work(&sdata->dfs_cac_timer_work);
3977 
3978 		if (sdata->wdev.cac_started) {
3979 			chandef = sdata->vif.bss_conf.chandef;
3980 			ieee80211_vif_release_channel(sdata);
3981 			cfg80211_cac_event(sdata->dev,
3982 					   &chandef,
3983 					   NL80211_RADAR_CAC_ABORTED,
3984 					   GFP_KERNEL);
3985 		}
3986 	}
3987 	mutex_unlock(&local->mtx);
3988 }
3989 
3990 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
3991 {
3992 	struct ieee80211_local *local =
3993 		container_of(work, struct ieee80211_local, radar_detected_work);
3994 	struct cfg80211_chan_def chandef = local->hw.conf.chandef;
3995 	struct ieee80211_chanctx *ctx;
3996 	int num_chanctx = 0;
3997 
3998 	mutex_lock(&local->chanctx_mtx);
3999 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4000 		if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
4001 			continue;
4002 
4003 		num_chanctx++;
4004 		chandef = ctx->conf.def;
4005 	}
4006 	mutex_unlock(&local->chanctx_mtx);
4007 
4008 	wiphy_lock(local->hw.wiphy);
4009 	ieee80211_dfs_cac_cancel(local);
4010 	wiphy_unlock(local->hw.wiphy);
4011 
4012 	if (num_chanctx > 1)
4013 		/* XXX: multi-channel is not supported yet */
4014 		WARN_ON(1);
4015 	else
4016 		cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
4017 }
4018 
4019 void ieee80211_radar_detected(struct ieee80211_hw *hw)
4020 {
4021 	struct ieee80211_local *local = hw_to_local(hw);
4022 
4023 	trace_api_radar_detected(local);
4024 
4025 	schedule_work(&local->radar_detected_work);
4026 }
4027 EXPORT_SYMBOL(ieee80211_radar_detected);
4028 
4029 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c)
4030 {
4031 	u32 ret;
4032 	int tmp;
4033 
4034 	switch (c->width) {
4035 	case NL80211_CHAN_WIDTH_20:
4036 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
4037 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
4038 		break;
4039 	case NL80211_CHAN_WIDTH_40:
4040 		c->width = NL80211_CHAN_WIDTH_20;
4041 		c->center_freq1 = c->chan->center_freq;
4042 		ret = IEEE80211_STA_DISABLE_40MHZ |
4043 		      IEEE80211_STA_DISABLE_VHT;
4044 		break;
4045 	case NL80211_CHAN_WIDTH_80:
4046 		tmp = (30 + c->chan->center_freq - c->center_freq1)/20;
4047 		/* n_P40 */
4048 		tmp /= 2;
4049 		/* freq_P40 */
4050 		c->center_freq1 = c->center_freq1 - 20 + 40 * tmp;
4051 		c->width = NL80211_CHAN_WIDTH_40;
4052 		ret = IEEE80211_STA_DISABLE_VHT;
4053 		break;
4054 	case NL80211_CHAN_WIDTH_80P80:
4055 		c->center_freq2 = 0;
4056 		c->width = NL80211_CHAN_WIDTH_80;
4057 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
4058 		      IEEE80211_STA_DISABLE_160MHZ;
4059 		break;
4060 	case NL80211_CHAN_WIDTH_160:
4061 		/* n_P20 */
4062 		tmp = (70 + c->chan->center_freq - c->center_freq1)/20;
4063 		/* n_P80 */
4064 		tmp /= 4;
4065 		c->center_freq1 = c->center_freq1 - 40 + 80 * tmp;
4066 		c->width = NL80211_CHAN_WIDTH_80;
4067 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
4068 		      IEEE80211_STA_DISABLE_160MHZ;
4069 		break;
4070 	case NL80211_CHAN_WIDTH_320:
4071 		/* n_P20 */
4072 		tmp = (150 + c->chan->center_freq - c->center_freq1) / 20;
4073 		/* n_P160 */
4074 		tmp /= 80;
4075 		c->center_freq1 = c->center_freq1 - 80 + 160 * tmp;
4076 		c->width = NL80211_CHAN_WIDTH_160;
4077 		ret = IEEE80211_STA_DISABLE_320MHZ;
4078 		break;
4079 	default:
4080 	case NL80211_CHAN_WIDTH_20_NOHT:
4081 		WARN_ON_ONCE(1);
4082 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
4083 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
4084 		break;
4085 	case NL80211_CHAN_WIDTH_1:
4086 	case NL80211_CHAN_WIDTH_2:
4087 	case NL80211_CHAN_WIDTH_4:
4088 	case NL80211_CHAN_WIDTH_8:
4089 	case NL80211_CHAN_WIDTH_16:
4090 	case NL80211_CHAN_WIDTH_5:
4091 	case NL80211_CHAN_WIDTH_10:
4092 		WARN_ON_ONCE(1);
4093 		/* keep c->width */
4094 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
4095 		break;
4096 	}
4097 
4098 	WARN_ON_ONCE(!cfg80211_chandef_valid(c));
4099 
4100 	return ret;
4101 }
4102 
4103 /*
4104  * Returns true if smps_mode_new is strictly more restrictive than
4105  * smps_mode_old.
4106  */
4107 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old,
4108 				   enum ieee80211_smps_mode smps_mode_new)
4109 {
4110 	if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC ||
4111 			 smps_mode_new == IEEE80211_SMPS_AUTOMATIC))
4112 		return false;
4113 
4114 	switch (smps_mode_old) {
4115 	case IEEE80211_SMPS_STATIC:
4116 		return false;
4117 	case IEEE80211_SMPS_DYNAMIC:
4118 		return smps_mode_new == IEEE80211_SMPS_STATIC;
4119 	case IEEE80211_SMPS_OFF:
4120 		return smps_mode_new != IEEE80211_SMPS_OFF;
4121 	default:
4122 		WARN_ON(1);
4123 	}
4124 
4125 	return false;
4126 }
4127 
4128 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
4129 			      struct cfg80211_csa_settings *csa_settings)
4130 {
4131 	struct sk_buff *skb;
4132 	struct ieee80211_mgmt *mgmt;
4133 	struct ieee80211_local *local = sdata->local;
4134 	int freq;
4135 	int hdr_len = offsetofend(struct ieee80211_mgmt,
4136 				  u.action.u.chan_switch);
4137 	u8 *pos;
4138 
4139 	if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
4140 	    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
4141 		return -EOPNOTSUPP;
4142 
4143 	skb = dev_alloc_skb(local->tx_headroom + hdr_len +
4144 			    5 + /* channel switch announcement element */
4145 			    3 + /* secondary channel offset element */
4146 			    5 + /* wide bandwidth channel switch announcement */
4147 			    8); /* mesh channel switch parameters element */
4148 	if (!skb)
4149 		return -ENOMEM;
4150 
4151 	skb_reserve(skb, local->tx_headroom);
4152 	mgmt = skb_put_zero(skb, hdr_len);
4153 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
4154 					  IEEE80211_STYPE_ACTION);
4155 
4156 	eth_broadcast_addr(mgmt->da);
4157 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
4158 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4159 		memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
4160 	} else {
4161 		struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
4162 		memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN);
4163 	}
4164 	mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
4165 	mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
4166 	pos = skb_put(skb, 5);
4167 	*pos++ = WLAN_EID_CHANNEL_SWITCH;			/* EID */
4168 	*pos++ = 3;						/* IE length */
4169 	*pos++ = csa_settings->block_tx ? 1 : 0;		/* CSA mode */
4170 	freq = csa_settings->chandef.chan->center_freq;
4171 	*pos++ = ieee80211_frequency_to_channel(freq);		/* channel */
4172 	*pos++ = csa_settings->count;				/* count */
4173 
4174 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
4175 		enum nl80211_channel_type ch_type;
4176 
4177 		skb_put(skb, 3);
4178 		*pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET;	/* EID */
4179 		*pos++ = 1;					/* IE length */
4180 		ch_type = cfg80211_get_chandef_type(&csa_settings->chandef);
4181 		if (ch_type == NL80211_CHAN_HT40PLUS)
4182 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
4183 		else
4184 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
4185 	}
4186 
4187 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4188 		struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
4189 
4190 		skb_put(skb, 8);
4191 		*pos++ = WLAN_EID_CHAN_SWITCH_PARAM;		/* EID */
4192 		*pos++ = 6;					/* IE length */
4193 		*pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL;	/* Mesh TTL */
4194 		*pos = 0x00;	/* Mesh Flag: Tx Restrict, Initiator, Reason */
4195 		*pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
4196 		*pos++ |= csa_settings->block_tx ?
4197 			  WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
4198 		put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */
4199 		pos += 2;
4200 		put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */
4201 		pos += 2;
4202 	}
4203 
4204 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 ||
4205 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 ||
4206 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) {
4207 		skb_put(skb, 5);
4208 		ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef);
4209 	}
4210 
4211 	ieee80211_tx_skb(sdata, skb);
4212 	return 0;
4213 }
4214 
4215 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs)
4216 {
4217 	return !(cs == NULL || cs->cipher == 0 ||
4218 		 cs->hdr_len < cs->pn_len + cs->pn_off ||
4219 		 cs->hdr_len <= cs->key_idx_off ||
4220 		 cs->key_idx_shift > 7 ||
4221 		 cs->key_idx_mask == 0);
4222 }
4223 
4224 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n)
4225 {
4226 	int i;
4227 
4228 	/* Ensure we have enough iftype bitmap space for all iftype values */
4229 	WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype));
4230 
4231 	for (i = 0; i < n; i++)
4232 		if (!ieee80211_cs_valid(&cs[i]))
4233 			return false;
4234 
4235 	return true;
4236 }
4237 
4238 const struct ieee80211_cipher_scheme *
4239 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher,
4240 		 enum nl80211_iftype iftype)
4241 {
4242 	const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes;
4243 	int n = local->hw.n_cipher_schemes;
4244 	int i;
4245 	const struct ieee80211_cipher_scheme *cs = NULL;
4246 
4247 	for (i = 0; i < n; i++) {
4248 		if (l[i].cipher == cipher) {
4249 			cs = &l[i];
4250 			break;
4251 		}
4252 	}
4253 
4254 	if (!cs || !(cs->iftype & BIT(iftype)))
4255 		return NULL;
4256 
4257 	return cs;
4258 }
4259 
4260 int ieee80211_cs_headroom(struct ieee80211_local *local,
4261 			  struct cfg80211_crypto_settings *crypto,
4262 			  enum nl80211_iftype iftype)
4263 {
4264 	const struct ieee80211_cipher_scheme *cs;
4265 	int headroom = IEEE80211_ENCRYPT_HEADROOM;
4266 	int i;
4267 
4268 	for (i = 0; i < crypto->n_ciphers_pairwise; i++) {
4269 		cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i],
4270 				      iftype);
4271 
4272 		if (cs && headroom < cs->hdr_len)
4273 			headroom = cs->hdr_len;
4274 	}
4275 
4276 	cs = ieee80211_cs_get(local, crypto->cipher_group, iftype);
4277 	if (cs && headroom < cs->hdr_len)
4278 		headroom = cs->hdr_len;
4279 
4280 	return headroom;
4281 }
4282 
4283 static bool
4284 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
4285 {
4286 	s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
4287 	int skip;
4288 
4289 	if (end > 0)
4290 		return false;
4291 
4292 	/* One shot NOA  */
4293 	if (data->count[i] == 1)
4294 		return false;
4295 
4296 	if (data->desc[i].interval == 0)
4297 		return false;
4298 
4299 	/* End time is in the past, check for repetitions */
4300 	skip = DIV_ROUND_UP(-end, data->desc[i].interval);
4301 	if (data->count[i] < 255) {
4302 		if (data->count[i] <= skip) {
4303 			data->count[i] = 0;
4304 			return false;
4305 		}
4306 
4307 		data->count[i] -= skip;
4308 	}
4309 
4310 	data->desc[i].start += skip * data->desc[i].interval;
4311 
4312 	return true;
4313 }
4314 
4315 static bool
4316 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
4317 			     s32 *offset)
4318 {
4319 	bool ret = false;
4320 	int i;
4321 
4322 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4323 		s32 cur;
4324 
4325 		if (!data->count[i])
4326 			continue;
4327 
4328 		if (ieee80211_extend_noa_desc(data, tsf + *offset, i))
4329 			ret = true;
4330 
4331 		cur = data->desc[i].start - tsf;
4332 		if (cur > *offset)
4333 			continue;
4334 
4335 		cur = data->desc[i].start + data->desc[i].duration - tsf;
4336 		if (cur > *offset)
4337 			*offset = cur;
4338 	}
4339 
4340 	return ret;
4341 }
4342 
4343 static u32
4344 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
4345 {
4346 	s32 offset = 0;
4347 	int tries = 0;
4348 	/*
4349 	 * arbitrary limit, used to avoid infinite loops when combined NoA
4350 	 * descriptors cover the full time period.
4351 	 */
4352 	int max_tries = 5;
4353 
4354 	ieee80211_extend_absent_time(data, tsf, &offset);
4355 	do {
4356 		if (!ieee80211_extend_absent_time(data, tsf, &offset))
4357 			break;
4358 
4359 		tries++;
4360 	} while (tries < max_tries);
4361 
4362 	return offset;
4363 }
4364 
4365 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
4366 {
4367 	u32 next_offset = BIT(31) - 1;
4368 	int i;
4369 
4370 	data->absent = 0;
4371 	data->has_next_tsf = false;
4372 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4373 		s32 start;
4374 
4375 		if (!data->count[i])
4376 			continue;
4377 
4378 		ieee80211_extend_noa_desc(data, tsf, i);
4379 		start = data->desc[i].start - tsf;
4380 		if (start <= 0)
4381 			data->absent |= BIT(i);
4382 
4383 		if (next_offset > start)
4384 			next_offset = start;
4385 
4386 		data->has_next_tsf = true;
4387 	}
4388 
4389 	if (data->absent)
4390 		next_offset = ieee80211_get_noa_absent_time(data, tsf);
4391 
4392 	data->next_tsf = tsf + next_offset;
4393 }
4394 EXPORT_SYMBOL(ieee80211_update_p2p_noa);
4395 
4396 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
4397 			    struct ieee80211_noa_data *data, u32 tsf)
4398 {
4399 	int ret = 0;
4400 	int i;
4401 
4402 	memset(data, 0, sizeof(*data));
4403 
4404 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4405 		const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
4406 
4407 		if (!desc->count || !desc->duration)
4408 			continue;
4409 
4410 		data->count[i] = desc->count;
4411 		data->desc[i].start = le32_to_cpu(desc->start_time);
4412 		data->desc[i].duration = le32_to_cpu(desc->duration);
4413 		data->desc[i].interval = le32_to_cpu(desc->interval);
4414 
4415 		if (data->count[i] > 1 &&
4416 		    data->desc[i].interval < data->desc[i].duration)
4417 			continue;
4418 
4419 		ieee80211_extend_noa_desc(data, tsf, i);
4420 		ret++;
4421 	}
4422 
4423 	if (ret)
4424 		ieee80211_update_p2p_noa(data, tsf);
4425 
4426 	return ret;
4427 }
4428 EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
4429 
4430 void ieee80211_recalc_dtim(struct ieee80211_local *local,
4431 			   struct ieee80211_sub_if_data *sdata)
4432 {
4433 	u64 tsf = drv_get_tsf(local, sdata);
4434 	u64 dtim_count = 0;
4435 	u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
4436 	u8 dtim_period = sdata->vif.bss_conf.dtim_period;
4437 	struct ps_data *ps;
4438 	u8 bcns_from_dtim;
4439 
4440 	if (tsf == -1ULL || !beacon_int || !dtim_period)
4441 		return;
4442 
4443 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4444 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
4445 		if (!sdata->bss)
4446 			return;
4447 
4448 		ps = &sdata->bss->ps;
4449 	} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
4450 		ps = &sdata->u.mesh.ps;
4451 	} else {
4452 		return;
4453 	}
4454 
4455 	/*
4456 	 * actually finds last dtim_count, mac80211 will update in
4457 	 * __beacon_add_tim().
4458 	 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
4459 	 */
4460 	do_div(tsf, beacon_int);
4461 	bcns_from_dtim = do_div(tsf, dtim_period);
4462 	/* just had a DTIM */
4463 	if (!bcns_from_dtim)
4464 		dtim_count = 0;
4465 	else
4466 		dtim_count = dtim_period - bcns_from_dtim;
4467 
4468 	ps->dtim_count = dtim_count;
4469 }
4470 
4471 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
4472 					 struct ieee80211_chanctx *ctx)
4473 {
4474 	struct ieee80211_sub_if_data *sdata;
4475 	u8 radar_detect = 0;
4476 
4477 	lockdep_assert_held(&local->chanctx_mtx);
4478 
4479 	if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
4480 		return 0;
4481 
4482 	list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list)
4483 		if (sdata->reserved_radar_required)
4484 			radar_detect |= BIT(sdata->reserved_chandef.width);
4485 
4486 	/*
4487 	 * An in-place reservation context should not have any assigned vifs
4488 	 * until it replaces the other context.
4489 	 */
4490 	WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
4491 		!list_empty(&ctx->assigned_vifs));
4492 
4493 	list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list)
4494 		if (sdata->radar_required)
4495 			radar_detect |= BIT(sdata->vif.bss_conf.chandef.width);
4496 
4497 	return radar_detect;
4498 }
4499 
4500 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
4501 				 const struct cfg80211_chan_def *chandef,
4502 				 enum ieee80211_chanctx_mode chanmode,
4503 				 u8 radar_detect)
4504 {
4505 	struct ieee80211_local *local = sdata->local;
4506 	struct ieee80211_sub_if_data *sdata_iter;
4507 	enum nl80211_iftype iftype = sdata->wdev.iftype;
4508 	struct ieee80211_chanctx *ctx;
4509 	int total = 1;
4510 	struct iface_combination_params params = {
4511 		.radar_detect = radar_detect,
4512 	};
4513 
4514 	lockdep_assert_held(&local->chanctx_mtx);
4515 
4516 	if (WARN_ON(hweight32(radar_detect) > 1))
4517 		return -EINVAL;
4518 
4519 	if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4520 		    !chandef->chan))
4521 		return -EINVAL;
4522 
4523 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
4524 		return -EINVAL;
4525 
4526 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4527 	    sdata->vif.type == NL80211_IFTYPE_MESH_POINT) {
4528 		/*
4529 		 * always passing this is harmless, since it'll be the
4530 		 * same value that cfg80211 finds if it finds the same
4531 		 * interface ... and that's always allowed
4532 		 */
4533 		params.new_beacon_int = sdata->vif.bss_conf.beacon_int;
4534 	}
4535 
4536 	/* Always allow software iftypes */
4537 	if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) {
4538 		if (radar_detect)
4539 			return -EINVAL;
4540 		return 0;
4541 	}
4542 
4543 	if (chandef)
4544 		params.num_different_channels = 1;
4545 
4546 	if (iftype != NL80211_IFTYPE_UNSPECIFIED)
4547 		params.iftype_num[iftype] = 1;
4548 
4549 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4550 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4551 			continue;
4552 		params.radar_detect |=
4553 			ieee80211_chanctx_radar_detect(local, ctx);
4554 		if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) {
4555 			params.num_different_channels++;
4556 			continue;
4557 		}
4558 		if (chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4559 		    cfg80211_chandef_compatible(chandef,
4560 						&ctx->conf.def))
4561 			continue;
4562 		params.num_different_channels++;
4563 	}
4564 
4565 	list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) {
4566 		struct wireless_dev *wdev_iter;
4567 
4568 		wdev_iter = &sdata_iter->wdev;
4569 
4570 		if (sdata_iter == sdata ||
4571 		    !ieee80211_sdata_running(sdata_iter) ||
4572 		    cfg80211_iftype_allowed(local->hw.wiphy,
4573 					    wdev_iter->iftype, 0, 1))
4574 			continue;
4575 
4576 		params.iftype_num[wdev_iter->iftype]++;
4577 		total++;
4578 	}
4579 
4580 	if (total == 1 && !params.radar_detect)
4581 		return 0;
4582 
4583 	return cfg80211_check_combinations(local->hw.wiphy, &params);
4584 }
4585 
4586 static void
4587 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
4588 			 void *data)
4589 {
4590 	u32 *max_num_different_channels = data;
4591 
4592 	*max_num_different_channels = max(*max_num_different_channels,
4593 					  c->num_different_channels);
4594 }
4595 
4596 int ieee80211_max_num_channels(struct ieee80211_local *local)
4597 {
4598 	struct ieee80211_sub_if_data *sdata;
4599 	struct ieee80211_chanctx *ctx;
4600 	u32 max_num_different_channels = 1;
4601 	int err;
4602 	struct iface_combination_params params = {0};
4603 
4604 	lockdep_assert_held(&local->chanctx_mtx);
4605 
4606 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4607 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4608 			continue;
4609 
4610 		params.num_different_channels++;
4611 
4612 		params.radar_detect |=
4613 			ieee80211_chanctx_radar_detect(local, ctx);
4614 	}
4615 
4616 	list_for_each_entry_rcu(sdata, &local->interfaces, list)
4617 		params.iftype_num[sdata->wdev.iftype]++;
4618 
4619 	err = cfg80211_iter_combinations(local->hw.wiphy, &params,
4620 					 ieee80211_iter_max_chans,
4621 					 &max_num_different_channels);
4622 	if (err < 0)
4623 		return err;
4624 
4625 	return max_num_different_channels;
4626 }
4627 
4628 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata,
4629 				struct ieee80211_sta_s1g_cap *caps,
4630 				struct sk_buff *skb)
4631 {
4632 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
4633 	struct ieee80211_s1g_cap s1g_capab;
4634 	u8 *pos;
4635 	int i;
4636 
4637 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
4638 		return;
4639 
4640 	if (!caps->s1g)
4641 		return;
4642 
4643 	memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap));
4644 	memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs));
4645 
4646 	/* override the capability info */
4647 	for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) {
4648 		u8 mask = ifmgd->s1g_capa_mask.capab_info[i];
4649 
4650 		s1g_capab.capab_info[i] &= ~mask;
4651 		s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask;
4652 	}
4653 
4654 	/* then MCS and NSS set */
4655 	for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) {
4656 		u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i];
4657 
4658 		s1g_capab.supp_mcs_nss[i] &= ~mask;
4659 		s1g_capab.supp_mcs_nss[i] |=
4660 			ifmgd->s1g_capa.supp_mcs_nss[i] & mask;
4661 	}
4662 
4663 	pos = skb_put(skb, 2 + sizeof(s1g_capab));
4664 	*pos++ = WLAN_EID_S1G_CAPABILITIES;
4665 	*pos++ = sizeof(s1g_capab);
4666 
4667 	memcpy(pos, &s1g_capab, sizeof(s1g_capab));
4668 }
4669 
4670 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata,
4671 				  struct sk_buff *skb)
4672 {
4673 	u8 *pos = skb_put(skb, 3);
4674 
4675 	*pos++ = WLAN_EID_AID_REQUEST;
4676 	*pos++ = 1;
4677 	*pos++ = 0;
4678 }
4679 
4680 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
4681 {
4682 	*buf++ = WLAN_EID_VENDOR_SPECIFIC;
4683 	*buf++ = 7; /* len */
4684 	*buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
4685 	*buf++ = 0x50;
4686 	*buf++ = 0xf2;
4687 	*buf++ = 2; /* WME */
4688 	*buf++ = 0; /* WME info */
4689 	*buf++ = 1; /* WME ver */
4690 	*buf++ = qosinfo; /* U-APSD no in use */
4691 
4692 	return buf;
4693 }
4694 
4695 void ieee80211_txq_get_depth(struct ieee80211_txq *txq,
4696 			     unsigned long *frame_cnt,
4697 			     unsigned long *byte_cnt)
4698 {
4699 	struct txq_info *txqi = to_txq_info(txq);
4700 	u32 frag_cnt = 0, frag_bytes = 0;
4701 	struct sk_buff *skb;
4702 
4703 	skb_queue_walk(&txqi->frags, skb) {
4704 		frag_cnt++;
4705 		frag_bytes += skb->len;
4706 	}
4707 
4708 	if (frame_cnt)
4709 		*frame_cnt = txqi->tin.backlog_packets + frag_cnt;
4710 
4711 	if (byte_cnt)
4712 		*byte_cnt = txqi->tin.backlog_bytes + frag_bytes;
4713 }
4714 EXPORT_SYMBOL(ieee80211_txq_get_depth);
4715 
4716 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = {
4717 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VO,
4718 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VI,
4719 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BE,
4720 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BK
4721 };
4722 
4723 u16 ieee80211_encode_usf(int listen_interval)
4724 {
4725 	static const int listen_int_usf[] = { 1, 10, 1000, 10000 };
4726 	u16 ui, usf = 0;
4727 
4728 	/* find greatest USF */
4729 	while (usf < IEEE80211_MAX_USF) {
4730 		if (listen_interval % listen_int_usf[usf + 1])
4731 			break;
4732 		usf += 1;
4733 	}
4734 	ui = listen_interval / listen_int_usf[usf];
4735 
4736 	/* error if there is a remainder. Should've been checked by user */
4737 	WARN_ON_ONCE(ui > IEEE80211_MAX_UI);
4738 	listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) |
4739 			  FIELD_PREP(LISTEN_INT_UI, ui);
4740 
4741 	return (u16) listen_interval;
4742 }
4743 
4744 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype)
4745 {
4746 	const struct ieee80211_sta_he_cap *he_cap;
4747 	const struct ieee80211_sta_eht_cap *eht_cap;
4748 	struct ieee80211_supported_band *sband;
4749 	u8 n;
4750 
4751 	sband = ieee80211_get_sband(sdata);
4752 	if (!sband)
4753 		return 0;
4754 
4755 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
4756 	eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype);
4757 	if (!he_cap || !eht_cap)
4758 		return 0;
4759 
4760 	n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem,
4761 				       &eht_cap->eht_cap_elem);
4762 	return 2 + 1 +
4763 	       sizeof(he_cap->he_cap_elem) + n +
4764 	       ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0],
4765 				      eht_cap->eht_cap_elem.phy_cap_info);
4766 	return 0;
4767 }
4768 
4769 u8 *ieee80211_ie_build_eht_cap(u8 *pos,
4770 			       const struct ieee80211_sta_he_cap *he_cap,
4771 			       const struct ieee80211_sta_eht_cap *eht_cap,
4772 			       u8 *end)
4773 {
4774 	u8 mcs_nss_len, ppet_len;
4775 	u8 ie_len;
4776 	u8 *orig_pos = pos;
4777 
4778 	/* Make sure we have place for the IE */
4779 	if (!he_cap || !eht_cap)
4780 		return orig_pos;
4781 
4782 	mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem,
4783 						 &eht_cap->eht_cap_elem);
4784 	ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0],
4785 					  eht_cap->eht_cap_elem.phy_cap_info);
4786 
4787 	ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len;
4788 	if ((end - pos) < ie_len)
4789 		return orig_pos;
4790 
4791 	*pos++ = WLAN_EID_EXTENSION;
4792 	*pos++ = ie_len - 2;
4793 	*pos++ = WLAN_EID_EXT_EHT_CAPABILITY;
4794 
4795 	/* Fixed data */
4796 	memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem));
4797 	pos += sizeof(eht_cap->eht_cap_elem);
4798 
4799 	memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len);
4800 	pos += mcs_nss_len;
4801 
4802 	if (ppet_len) {
4803 		memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len);
4804 		pos += ppet_len;
4805 	}
4806 
4807 	return pos;
4808 }
4809