1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "ieee80211_led.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "wme.h" 32 #include "ieee80211_rate.h" 33 34 #define IEEE80211_TX_OK 0 35 #define IEEE80211_TX_AGAIN 1 36 #define IEEE80211_TX_FRAG_AGAIN 2 37 38 /* misc utils */ 39 40 static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata, 41 struct ieee80211_hdr *hdr) 42 { 43 /* Set the sequence number for this frame. */ 44 hdr->seq_ctrl = cpu_to_le16(sdata->sequence); 45 46 /* Increase the sequence number. */ 47 sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ; 48 } 49 50 #ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP 51 static void ieee80211_dump_frame(const char *ifname, const char *title, 52 const struct sk_buff *skb) 53 { 54 const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 55 u16 fc; 56 int hdrlen; 57 DECLARE_MAC_BUF(mac); 58 59 printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len); 60 if (skb->len < 4) { 61 printk("\n"); 62 return; 63 } 64 65 fc = le16_to_cpu(hdr->frame_control); 66 hdrlen = ieee80211_get_hdrlen(fc); 67 if (hdrlen > skb->len) 68 hdrlen = skb->len; 69 if (hdrlen >= 4) 70 printk(" FC=0x%04x DUR=0x%04x", 71 fc, le16_to_cpu(hdr->duration_id)); 72 if (hdrlen >= 10) 73 printk(" A1=%s", print_mac(mac, hdr->addr1)); 74 if (hdrlen >= 16) 75 printk(" A2=%s", print_mac(mac, hdr->addr2)); 76 if (hdrlen >= 24) 77 printk(" A3=%s", print_mac(mac, hdr->addr3)); 78 if (hdrlen >= 30) 79 printk(" A4=%s", print_mac(mac, hdr->addr4)); 80 printk("\n"); 81 } 82 #else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ 83 static inline void ieee80211_dump_frame(const char *ifname, const char *title, 84 struct sk_buff *skb) 85 { 86 } 87 #endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ 88 89 static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr, 90 int next_frag_len) 91 { 92 int rate, mrate, erp, dur, i; 93 struct ieee80211_rate *txrate = tx->u.tx.rate; 94 struct ieee80211_local *local = tx->local; 95 struct ieee80211_hw_mode *mode = tx->u.tx.mode; 96 97 erp = txrate->flags & IEEE80211_RATE_ERP; 98 99 /* 100 * data and mgmt (except PS Poll): 101 * - during CFP: 32768 102 * - during contention period: 103 * if addr1 is group address: 0 104 * if more fragments = 0 and addr1 is individual address: time to 105 * transmit one ACK plus SIFS 106 * if more fragments = 1 and addr1 is individual address: time to 107 * transmit next fragment plus 2 x ACK plus 3 x SIFS 108 * 109 * IEEE 802.11, 9.6: 110 * - control response frame (CTS or ACK) shall be transmitted using the 111 * same rate as the immediately previous frame in the frame exchange 112 * sequence, if this rate belongs to the PHY mandatory rates, or else 113 * at the highest possible rate belonging to the PHY rates in the 114 * BSSBasicRateSet 115 */ 116 117 if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) { 118 /* TODO: These control frames are not currently sent by 119 * 80211.o, but should they be implemented, this function 120 * needs to be updated to support duration field calculation. 121 * 122 * RTS: time needed to transmit pending data/mgmt frame plus 123 * one CTS frame plus one ACK frame plus 3 x SIFS 124 * CTS: duration of immediately previous RTS minus time 125 * required to transmit CTS and its SIFS 126 * ACK: 0 if immediately previous directed data/mgmt had 127 * more=0, with more=1 duration in ACK frame is duration 128 * from previous frame minus time needed to transmit ACK 129 * and its SIFS 130 * PS Poll: BIT(15) | BIT(14) | aid 131 */ 132 return 0; 133 } 134 135 /* data/mgmt */ 136 if (0 /* FIX: data/mgmt during CFP */) 137 return 32768; 138 139 if (group_addr) /* Group address as the destination - no ACK */ 140 return 0; 141 142 /* Individual destination address: 143 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 144 * CTS and ACK frames shall be transmitted using the highest rate in 145 * basic rate set that is less than or equal to the rate of the 146 * immediately previous frame and that is using the same modulation 147 * (CCK or OFDM). If no basic rate set matches with these requirements, 148 * the highest mandatory rate of the PHY that is less than or equal to 149 * the rate of the previous frame is used. 150 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 151 */ 152 rate = -1; 153 mrate = 10; /* use 1 Mbps if everything fails */ 154 for (i = 0; i < mode->num_rates; i++) { 155 struct ieee80211_rate *r = &mode->rates[i]; 156 if (r->rate > txrate->rate) 157 break; 158 159 if (IEEE80211_RATE_MODULATION(txrate->flags) != 160 IEEE80211_RATE_MODULATION(r->flags)) 161 continue; 162 163 if (r->flags & IEEE80211_RATE_BASIC) 164 rate = r->rate; 165 else if (r->flags & IEEE80211_RATE_MANDATORY) 166 mrate = r->rate; 167 } 168 if (rate == -1) { 169 /* No matching basic rate found; use highest suitable mandatory 170 * PHY rate */ 171 rate = mrate; 172 } 173 174 /* Time needed to transmit ACK 175 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 176 * to closest integer */ 177 178 dur = ieee80211_frame_duration(local, 10, rate, erp, 179 tx->sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE); 180 181 if (next_frag_len) { 182 /* Frame is fragmented: duration increases with time needed to 183 * transmit next fragment plus ACK and 2 x SIFS. */ 184 dur *= 2; /* ACK + SIFS */ 185 /* next fragment */ 186 dur += ieee80211_frame_duration(local, next_frag_len, 187 txrate->rate, erp, 188 tx->sdata->flags & 189 IEEE80211_SDATA_SHORT_PREAMBLE); 190 } 191 192 return dur; 193 } 194 195 static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local, 196 int queue) 197 { 198 return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]); 199 } 200 201 static inline int __ieee80211_queue_pending(const struct ieee80211_local *local, 202 int queue) 203 { 204 return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]); 205 } 206 207 static int inline is_ieee80211_device(struct net_device *dev, 208 struct net_device *master) 209 { 210 return (wdev_priv(dev->ieee80211_ptr) == 211 wdev_priv(master->ieee80211_ptr)); 212 } 213 214 /* tx handlers */ 215 216 static ieee80211_txrx_result 217 ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx) 218 { 219 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 220 struct sk_buff *skb = tx->skb; 221 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 222 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 223 u32 sta_flags; 224 225 if (unlikely(tx->flags & IEEE80211_TXRXD_TX_INJECTED)) 226 return TXRX_CONTINUE; 227 228 if (unlikely(tx->local->sta_scanning != 0) && 229 ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || 230 (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ)) 231 return TXRX_DROP; 232 233 if (tx->flags & IEEE80211_TXRXD_TXPS_BUFFERED) 234 return TXRX_CONTINUE; 235 236 sta_flags = tx->sta ? tx->sta->flags : 0; 237 238 if (likely(tx->flags & IEEE80211_TXRXD_TXUNICAST)) { 239 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 240 tx->sdata->type != IEEE80211_IF_TYPE_IBSS && 241 (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) { 242 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 243 DECLARE_MAC_BUF(mac); 244 printk(KERN_DEBUG "%s: dropped data frame to not " 245 "associated station %s\n", 246 tx->dev->name, print_mac(mac, hdr->addr1)); 247 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 248 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 249 return TXRX_DROP; 250 } 251 } else { 252 if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && 253 tx->local->num_sta == 0 && 254 tx->sdata->type != IEEE80211_IF_TYPE_IBSS)) { 255 /* 256 * No associated STAs - no need to send multicast 257 * frames. 258 */ 259 return TXRX_DROP; 260 } 261 return TXRX_CONTINUE; 262 } 263 264 if (unlikely(/* !injected && */ tx->sdata->ieee802_1x && 265 !(sta_flags & WLAN_STA_AUTHORIZED))) { 266 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 267 DECLARE_MAC_BUF(mac); 268 printk(KERN_DEBUG "%s: dropped frame to %s" 269 " (unauthorized port)\n", tx->dev->name, 270 print_mac(mac, hdr->addr1)); 271 #endif 272 I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port); 273 return TXRX_DROP; 274 } 275 276 return TXRX_CONTINUE; 277 } 278 279 static ieee80211_txrx_result 280 ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx) 281 { 282 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 283 284 if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24) 285 ieee80211_include_sequence(tx->sdata, hdr); 286 287 return TXRX_CONTINUE; 288 } 289 290 /* This function is called whenever the AP is about to exceed the maximum limit 291 * of buffered frames for power saving STAs. This situation should not really 292 * happen often during normal operation, so dropping the oldest buffered packet 293 * from each queue should be OK to make some room for new frames. */ 294 static void purge_old_ps_buffers(struct ieee80211_local *local) 295 { 296 int total = 0, purged = 0; 297 struct sk_buff *skb; 298 struct ieee80211_sub_if_data *sdata; 299 struct sta_info *sta; 300 301 /* 302 * virtual interfaces are protected by RCU 303 */ 304 rcu_read_lock(); 305 306 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 307 struct ieee80211_if_ap *ap; 308 if (sdata->dev == local->mdev || 309 sdata->type != IEEE80211_IF_TYPE_AP) 310 continue; 311 ap = &sdata->u.ap; 312 skb = skb_dequeue(&ap->ps_bc_buf); 313 if (skb) { 314 purged++; 315 dev_kfree_skb(skb); 316 } 317 total += skb_queue_len(&ap->ps_bc_buf); 318 } 319 rcu_read_unlock(); 320 321 read_lock_bh(&local->sta_lock); 322 list_for_each_entry(sta, &local->sta_list, list) { 323 skb = skb_dequeue(&sta->ps_tx_buf); 324 if (skb) { 325 purged++; 326 dev_kfree_skb(skb); 327 } 328 total += skb_queue_len(&sta->ps_tx_buf); 329 } 330 read_unlock_bh(&local->sta_lock); 331 332 local->total_ps_buffered = total; 333 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", 334 wiphy_name(local->hw.wiphy), purged); 335 } 336 337 static inline ieee80211_txrx_result 338 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx) 339 { 340 /* broadcast/multicast frame */ 341 /* If any of the associated stations is in power save mode, 342 * the frame is buffered to be sent after DTIM beacon frame */ 343 if ((tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) && 344 tx->sdata->type != IEEE80211_IF_TYPE_WDS && 345 tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) && 346 !(tx->fc & IEEE80211_FCTL_ORDER)) { 347 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 348 purge_old_ps_buffers(tx->local); 349 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= 350 AP_MAX_BC_BUFFER) { 351 if (net_ratelimit()) { 352 printk(KERN_DEBUG "%s: BC TX buffer full - " 353 "dropping the oldest frame\n", 354 tx->dev->name); 355 } 356 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 357 } else 358 tx->local->total_ps_buffered++; 359 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 360 return TXRX_QUEUED; 361 } 362 363 return TXRX_CONTINUE; 364 } 365 366 static inline ieee80211_txrx_result 367 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx) 368 { 369 struct sta_info *sta = tx->sta; 370 DECLARE_MAC_BUF(mac); 371 372 if (unlikely(!sta || 373 ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && 374 (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP))) 375 return TXRX_CONTINUE; 376 377 if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) { 378 struct ieee80211_tx_packet_data *pkt_data; 379 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 380 printk(KERN_DEBUG "STA %s aid %d: PS buffer (entries " 381 "before %d)\n", 382 print_mac(mac, sta->addr), sta->aid, 383 skb_queue_len(&sta->ps_tx_buf)); 384 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 385 sta->flags |= WLAN_STA_TIM; 386 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 387 purge_old_ps_buffers(tx->local); 388 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 389 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 390 if (net_ratelimit()) { 391 printk(KERN_DEBUG "%s: STA %s TX " 392 "buffer full - dropping oldest frame\n", 393 tx->dev->name, print_mac(mac, sta->addr)); 394 } 395 dev_kfree_skb(old); 396 } else 397 tx->local->total_ps_buffered++; 398 /* Queue frame to be sent after STA sends an PS Poll frame */ 399 if (skb_queue_empty(&sta->ps_tx_buf)) { 400 if (tx->local->ops->set_tim) 401 tx->local->ops->set_tim(local_to_hw(tx->local), 402 sta->aid, 1); 403 if (tx->sdata->bss) 404 bss_tim_set(tx->local, tx->sdata->bss, sta->aid); 405 } 406 pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb; 407 pkt_data->jiffies = jiffies; 408 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 409 return TXRX_QUEUED; 410 } 411 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 412 else if (unlikely(sta->flags & WLAN_STA_PS)) { 413 printk(KERN_DEBUG "%s: STA %s in PS mode, but pspoll " 414 "set -> send frame\n", tx->dev->name, 415 print_mac(mac, sta->addr)); 416 } 417 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 418 sta->pspoll = 0; 419 420 return TXRX_CONTINUE; 421 } 422 423 424 static ieee80211_txrx_result 425 ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx) 426 { 427 if (unlikely(tx->flags & IEEE80211_TXRXD_TXPS_BUFFERED)) 428 return TXRX_CONTINUE; 429 430 if (tx->flags & IEEE80211_TXRXD_TXUNICAST) 431 return ieee80211_tx_h_unicast_ps_buf(tx); 432 else 433 return ieee80211_tx_h_multicast_ps_buf(tx); 434 } 435 436 437 438 439 static ieee80211_txrx_result 440 ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx) 441 { 442 struct ieee80211_key *key; 443 444 if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) 445 tx->key = NULL; 446 else if (tx->sta && (key = rcu_dereference(tx->sta->key))) 447 tx->key = key; 448 else if ((key = rcu_dereference(tx->sdata->default_key))) 449 tx->key = key; 450 else if (tx->sdata->drop_unencrypted && 451 !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) { 452 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 453 return TXRX_DROP; 454 } else { 455 tx->key = NULL; 456 tx->u.tx.control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; 457 } 458 459 if (tx->key) { 460 tx->key->tx_rx_count++; 461 /* TODO: add threshold stuff again */ 462 } 463 464 return TXRX_CONTINUE; 465 } 466 467 static ieee80211_txrx_result 468 ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx) 469 { 470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; 471 size_t hdrlen, per_fragm, num_fragm, payload_len, left; 472 struct sk_buff **frags, *first, *frag; 473 int i; 474 u16 seq; 475 u8 *pos; 476 int frag_threshold = tx->local->fragmentation_threshold; 477 478 if (!(tx->flags & IEEE80211_TXRXD_FRAGMENTED)) 479 return TXRX_CONTINUE; 480 481 first = tx->skb; 482 483 hdrlen = ieee80211_get_hdrlen(tx->fc); 484 payload_len = first->len - hdrlen; 485 per_fragm = frag_threshold - hdrlen - FCS_LEN; 486 num_fragm = DIV_ROUND_UP(payload_len, per_fragm); 487 488 frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); 489 if (!frags) 490 goto fail; 491 492 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 493 seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ; 494 pos = first->data + hdrlen + per_fragm; 495 left = payload_len - per_fragm; 496 for (i = 0; i < num_fragm - 1; i++) { 497 struct ieee80211_hdr *fhdr; 498 size_t copylen; 499 500 if (left <= 0) 501 goto fail; 502 503 /* reserve enough extra head and tail room for possible 504 * encryption */ 505 frag = frags[i] = 506 dev_alloc_skb(tx->local->tx_headroom + 507 frag_threshold + 508 IEEE80211_ENCRYPT_HEADROOM + 509 IEEE80211_ENCRYPT_TAILROOM); 510 if (!frag) 511 goto fail; 512 /* Make sure that all fragments use the same priority so 513 * that they end up using the same TX queue */ 514 frag->priority = first->priority; 515 skb_reserve(frag, tx->local->tx_headroom + 516 IEEE80211_ENCRYPT_HEADROOM); 517 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); 518 memcpy(fhdr, first->data, hdrlen); 519 if (i == num_fragm - 2) 520 fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS); 521 fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG)); 522 copylen = left > per_fragm ? per_fragm : left; 523 memcpy(skb_put(frag, copylen), pos, copylen); 524 525 pos += copylen; 526 left -= copylen; 527 } 528 skb_trim(first, hdrlen + per_fragm); 529 530 tx->u.tx.num_extra_frag = num_fragm - 1; 531 tx->u.tx.extra_frag = frags; 532 533 return TXRX_CONTINUE; 534 535 fail: 536 printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name); 537 if (frags) { 538 for (i = 0; i < num_fragm - 1; i++) 539 if (frags[i]) 540 dev_kfree_skb(frags[i]); 541 kfree(frags); 542 } 543 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); 544 return TXRX_DROP; 545 } 546 547 static ieee80211_txrx_result 548 ieee80211_tx_h_encrypt(struct ieee80211_txrx_data *tx) 549 { 550 if (!tx->key) 551 return TXRX_CONTINUE; 552 553 switch (tx->key->conf.alg) { 554 case ALG_WEP: 555 return ieee80211_crypto_wep_encrypt(tx); 556 case ALG_TKIP: 557 return ieee80211_crypto_tkip_encrypt(tx); 558 case ALG_CCMP: 559 return ieee80211_crypto_ccmp_encrypt(tx); 560 } 561 562 /* not reached */ 563 WARN_ON(1); 564 return TXRX_DROP; 565 } 566 567 static ieee80211_txrx_result 568 ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx) 569 { 570 struct rate_control_extra extra; 571 572 if (likely(!tx->u.tx.rate)) { 573 memset(&extra, 0, sizeof(extra)); 574 extra.mode = tx->u.tx.mode; 575 extra.ethertype = tx->ethertype; 576 577 tx->u.tx.rate = rate_control_get_rate(tx->local, tx->dev, 578 tx->skb, &extra); 579 if (unlikely(extra.probe != NULL)) { 580 tx->u.tx.control->flags |= 581 IEEE80211_TXCTL_RATE_CTRL_PROBE; 582 tx->flags |= IEEE80211_TXRXD_TXPROBE_LAST_FRAG; 583 tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val; 584 tx->u.tx.rate = extra.probe; 585 } else 586 tx->u.tx.control->alt_retry_rate = -1; 587 588 if (!tx->u.tx.rate) 589 return TXRX_DROP; 590 } else 591 tx->u.tx.control->alt_retry_rate = -1; 592 593 if (tx->u.tx.mode->mode == MODE_IEEE80211G && 594 (tx->sdata->flags & IEEE80211_SDATA_USE_PROTECTION) && 595 (tx->flags & IEEE80211_TXRXD_FRAGMENTED) && extra.nonerp) { 596 tx->u.tx.last_frag_rate = tx->u.tx.rate; 597 if (extra.probe) 598 tx->flags &= ~IEEE80211_TXRXD_TXPROBE_LAST_FRAG; 599 else 600 tx->flags |= IEEE80211_TXRXD_TXPROBE_LAST_FRAG; 601 tx->u.tx.rate = extra.nonerp; 602 tx->u.tx.control->rate = extra.nonerp; 603 tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE; 604 } else { 605 tx->u.tx.last_frag_rate = tx->u.tx.rate; 606 tx->u.tx.control->rate = tx->u.tx.rate; 607 } 608 tx->u.tx.control->tx_rate = tx->u.tx.rate->val; 609 610 return TXRX_CONTINUE; 611 } 612 613 static ieee80211_txrx_result 614 ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx) 615 { 616 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; 617 u16 fc = le16_to_cpu(hdr->frame_control); 618 u16 dur; 619 struct ieee80211_tx_control *control = tx->u.tx.control; 620 struct ieee80211_hw_mode *mode = tx->u.tx.mode; 621 622 if (!control->retry_limit) { 623 if (!is_multicast_ether_addr(hdr->addr1)) { 624 if (tx->skb->len + FCS_LEN > tx->local->rts_threshold 625 && tx->local->rts_threshold < 626 IEEE80211_MAX_RTS_THRESHOLD) { 627 control->flags |= 628 IEEE80211_TXCTL_USE_RTS_CTS; 629 control->flags |= 630 IEEE80211_TXCTL_LONG_RETRY_LIMIT; 631 control->retry_limit = 632 tx->local->long_retry_limit; 633 } else { 634 control->retry_limit = 635 tx->local->short_retry_limit; 636 } 637 } else { 638 control->retry_limit = 1; 639 } 640 } 641 642 if (tx->flags & IEEE80211_TXRXD_FRAGMENTED) { 643 /* Do not use multiple retry rates when sending fragmented 644 * frames. 645 * TODO: The last fragment could still use multiple retry 646 * rates. */ 647 control->alt_retry_rate = -1; 648 } 649 650 /* Use CTS protection for unicast frames sent using extended rates if 651 * there are associated non-ERP stations and RTS/CTS is not configured 652 * for the frame. */ 653 if (mode->mode == MODE_IEEE80211G && 654 (tx->u.tx.rate->flags & IEEE80211_RATE_ERP) && 655 (tx->flags & IEEE80211_TXRXD_TXUNICAST) && 656 (tx->sdata->flags & IEEE80211_SDATA_USE_PROTECTION) && 657 !(control->flags & IEEE80211_TXCTL_USE_RTS_CTS)) 658 control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT; 659 660 /* Transmit data frames using short preambles if the driver supports 661 * short preambles at the selected rate and short preambles are 662 * available on the network at the current point in time. */ 663 if (((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) && 664 (tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) && 665 (tx->sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE) && 666 (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) { 667 tx->u.tx.control->tx_rate = tx->u.tx.rate->val2; 668 } 669 670 /* Setup duration field for the first fragment of the frame. Duration 671 * for remaining fragments will be updated when they are being sent 672 * to low-level driver in ieee80211_tx(). */ 673 dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1), 674 (tx->flags & IEEE80211_TXRXD_FRAGMENTED) ? 675 tx->u.tx.extra_frag[0]->len : 0); 676 hdr->duration_id = cpu_to_le16(dur); 677 678 if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) || 679 (control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) { 680 struct ieee80211_rate *rate; 681 682 /* Do not use multiple retry rates when using RTS/CTS */ 683 control->alt_retry_rate = -1; 684 685 /* Use min(data rate, max base rate) as CTS/RTS rate */ 686 rate = tx->u.tx.rate; 687 while (rate > mode->rates && 688 !(rate->flags & IEEE80211_RATE_BASIC)) 689 rate--; 690 691 control->rts_cts_rate = rate->val; 692 control->rts_rate = rate; 693 } 694 695 if (tx->sta) { 696 tx->sta->tx_packets++; 697 tx->sta->tx_fragments++; 698 tx->sta->tx_bytes += tx->skb->len; 699 if (tx->u.tx.extra_frag) { 700 int i; 701 tx->sta->tx_fragments += tx->u.tx.num_extra_frag; 702 for (i = 0; i < tx->u.tx.num_extra_frag; i++) { 703 tx->sta->tx_bytes += 704 tx->u.tx.extra_frag[i]->len; 705 } 706 } 707 } 708 709 /* 710 * Tell hardware to not encrypt when we had sw crypto. 711 * Because we use the same flag to internally indicate that 712 * no (software) encryption should be done, we have to set it 713 * after all crypto handlers. 714 */ 715 if (tx->key && !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 716 tx->u.tx.control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; 717 718 return TXRX_CONTINUE; 719 } 720 721 static ieee80211_txrx_result 722 ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx) 723 { 724 struct ieee80211_local *local = tx->local; 725 struct ieee80211_hw_mode *mode = tx->u.tx.mode; 726 struct sk_buff *skb = tx->skb; 727 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 728 u32 load = 0, hdrtime; 729 730 /* TODO: this could be part of tx_status handling, so that the number 731 * of retries would be known; TX rate should in that case be stored 732 * somewhere with the packet */ 733 734 /* Estimate total channel use caused by this frame */ 735 736 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, 737 * 1 usec = 1/8 * (1080 / 10) = 13.5 */ 738 739 if (mode->mode == MODE_IEEE80211A || 740 (mode->mode == MODE_IEEE80211G && 741 tx->u.tx.rate->flags & IEEE80211_RATE_ERP)) 742 hdrtime = CHAN_UTIL_HDR_SHORT; 743 else 744 hdrtime = CHAN_UTIL_HDR_LONG; 745 746 load = hdrtime; 747 if (!is_multicast_ether_addr(hdr->addr1)) 748 load += hdrtime; 749 750 if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_RTS_CTS) 751 load += 2 * hdrtime; 752 else if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT) 753 load += hdrtime; 754 755 load += skb->len * tx->u.tx.rate->rate_inv; 756 757 if (tx->u.tx.extra_frag) { 758 int i; 759 for (i = 0; i < tx->u.tx.num_extra_frag; i++) { 760 load += 2 * hdrtime; 761 load += tx->u.tx.extra_frag[i]->len * 762 tx->u.tx.rate->rate; 763 } 764 } 765 766 /* Divide channel_use by 8 to avoid wrapping around the counter */ 767 load >>= CHAN_UTIL_SHIFT; 768 local->channel_use_raw += load; 769 if (tx->sta) 770 tx->sta->channel_use_raw += load; 771 tx->sdata->channel_use_raw += load; 772 773 return TXRX_CONTINUE; 774 } 775 776 /* TODO: implement register/unregister functions for adding TX/RX handlers 777 * into ordered list */ 778 779 ieee80211_tx_handler ieee80211_tx_handlers[] = 780 { 781 ieee80211_tx_h_check_assoc, 782 ieee80211_tx_h_sequence, 783 ieee80211_tx_h_ps_buf, 784 ieee80211_tx_h_select_key, 785 ieee80211_tx_h_michael_mic_add, 786 ieee80211_tx_h_fragment, 787 ieee80211_tx_h_encrypt, 788 ieee80211_tx_h_rate_ctrl, 789 ieee80211_tx_h_misc, 790 ieee80211_tx_h_load_stats, 791 NULL 792 }; 793 794 /* actual transmit path */ 795 796 /* 797 * deal with packet injection down monitor interface 798 * with Radiotap Header -- only called for monitor mode interface 799 */ 800 static ieee80211_txrx_result 801 __ieee80211_parse_tx_radiotap(struct ieee80211_txrx_data *tx, 802 struct sk_buff *skb) 803 { 804 /* 805 * this is the moment to interpret and discard the radiotap header that 806 * must be at the start of the packet injected in Monitor mode 807 * 808 * Need to take some care with endian-ness since radiotap 809 * args are little-endian 810 */ 811 812 struct ieee80211_radiotap_iterator iterator; 813 struct ieee80211_radiotap_header *rthdr = 814 (struct ieee80211_radiotap_header *) skb->data; 815 struct ieee80211_hw_mode *mode = tx->local->hw.conf.mode; 816 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); 817 struct ieee80211_tx_control *control = tx->u.tx.control; 818 819 control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; 820 tx->flags |= IEEE80211_TXRXD_TX_INJECTED; 821 tx->flags &= ~IEEE80211_TXRXD_FRAGMENTED; 822 823 /* 824 * for every radiotap entry that is present 825 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 826 * entries present, or -EINVAL on error) 827 */ 828 829 while (!ret) { 830 int i, target_rate; 831 832 ret = ieee80211_radiotap_iterator_next(&iterator); 833 834 if (ret) 835 continue; 836 837 /* see if this argument is something we can use */ 838 switch (iterator.this_arg_index) { 839 /* 840 * You must take care when dereferencing iterator.this_arg 841 * for multibyte types... the pointer is not aligned. Use 842 * get_unaligned((type *)iterator.this_arg) to dereference 843 * iterator.this_arg for type "type" safely on all arches. 844 */ 845 case IEEE80211_RADIOTAP_RATE: 846 /* 847 * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps 848 * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps 849 */ 850 target_rate = (*iterator.this_arg) * 5; 851 for (i = 0; i < mode->num_rates; i++) { 852 struct ieee80211_rate *r = &mode->rates[i]; 853 854 if (r->rate == target_rate) { 855 tx->u.tx.rate = r; 856 break; 857 } 858 } 859 break; 860 861 case IEEE80211_RADIOTAP_ANTENNA: 862 /* 863 * radiotap uses 0 for 1st ant, mac80211 is 1 for 864 * 1st ant 865 */ 866 control->antenna_sel_tx = (*iterator.this_arg) + 1; 867 break; 868 869 case IEEE80211_RADIOTAP_DBM_TX_POWER: 870 control->power_level = *iterator.this_arg; 871 break; 872 873 case IEEE80211_RADIOTAP_FLAGS: 874 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 875 /* 876 * this indicates that the skb we have been 877 * handed has the 32-bit FCS CRC at the end... 878 * we should react to that by snipping it off 879 * because it will be recomputed and added 880 * on transmission 881 */ 882 if (skb->len < (iterator.max_length + FCS_LEN)) 883 return TXRX_DROP; 884 885 skb_trim(skb, skb->len - FCS_LEN); 886 } 887 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 888 control->flags &= 889 ~IEEE80211_TXCTL_DO_NOT_ENCRYPT; 890 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) 891 tx->flags |= IEEE80211_TXRXD_FRAGMENTED; 892 break; 893 894 /* 895 * Please update the file 896 * Documentation/networking/mac80211-injection.txt 897 * when parsing new fields here. 898 */ 899 900 default: 901 break; 902 } 903 } 904 905 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 906 return TXRX_DROP; 907 908 /* 909 * remove the radiotap header 910 * iterator->max_length was sanity-checked against 911 * skb->len by iterator init 912 */ 913 skb_pull(skb, iterator.max_length); 914 915 return TXRX_CONTINUE; 916 } 917 918 /* 919 * initialises @tx 920 */ 921 static ieee80211_txrx_result 922 __ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, 923 struct sk_buff *skb, 924 struct net_device *dev, 925 struct ieee80211_tx_control *control) 926 { 927 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 928 struct ieee80211_hdr *hdr; 929 struct ieee80211_sub_if_data *sdata; 930 ieee80211_txrx_result res = TXRX_CONTINUE; 931 932 int hdrlen; 933 934 memset(tx, 0, sizeof(*tx)); 935 tx->skb = skb; 936 tx->dev = dev; /* use original interface */ 937 tx->local = local; 938 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); 939 tx->u.tx.control = control; 940 /* 941 * Set this flag (used below to indicate "automatic fragmentation"), 942 * it will be cleared/left by radiotap as desired. 943 */ 944 tx->flags |= IEEE80211_TXRXD_FRAGMENTED; 945 946 /* process and remove the injection radiotap header */ 947 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 948 if (unlikely(sdata->type == IEEE80211_IF_TYPE_MNTR)) { 949 if (__ieee80211_parse_tx_radiotap(tx, skb) == TXRX_DROP) 950 return TXRX_DROP; 951 952 /* 953 * __ieee80211_parse_tx_radiotap has now removed 954 * the radiotap header that was present and pre-filled 955 * 'tx' with tx control information. 956 */ 957 } 958 959 hdr = (struct ieee80211_hdr *) skb->data; 960 961 tx->sta = sta_info_get(local, hdr->addr1); 962 tx->fc = le16_to_cpu(hdr->frame_control); 963 964 if (is_multicast_ether_addr(hdr->addr1)) { 965 tx->flags &= ~IEEE80211_TXRXD_TXUNICAST; 966 control->flags |= IEEE80211_TXCTL_NO_ACK; 967 } else { 968 tx->flags |= IEEE80211_TXRXD_TXUNICAST; 969 control->flags &= ~IEEE80211_TXCTL_NO_ACK; 970 } 971 972 if (tx->flags & IEEE80211_TXRXD_FRAGMENTED) { 973 if ((tx->flags & IEEE80211_TXRXD_TXUNICAST) && 974 skb->len + FCS_LEN > local->fragmentation_threshold && 975 !local->ops->set_frag_threshold) 976 tx->flags |= IEEE80211_TXRXD_FRAGMENTED; 977 else 978 tx->flags &= ~IEEE80211_TXRXD_FRAGMENTED; 979 } 980 981 if (!tx->sta) 982 control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; 983 else if (tx->sta->clear_dst_mask) { 984 control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; 985 tx->sta->clear_dst_mask = 0; 986 } 987 988 hdrlen = ieee80211_get_hdrlen(tx->fc); 989 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 990 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 991 tx->ethertype = (pos[0] << 8) | pos[1]; 992 } 993 control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT; 994 995 return res; 996 } 997 998 /* Device in tx->dev has a reference added; use dev_put(tx->dev) when 999 * finished with it. 1000 * 1001 * NB: @tx is uninitialised when passed in here 1002 */ 1003 static int ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, 1004 struct sk_buff *skb, 1005 struct net_device *mdev, 1006 struct ieee80211_tx_control *control) 1007 { 1008 struct ieee80211_tx_packet_data *pkt_data; 1009 struct net_device *dev; 1010 1011 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; 1012 dev = dev_get_by_index(&init_net, pkt_data->ifindex); 1013 if (unlikely(dev && !is_ieee80211_device(dev, mdev))) { 1014 dev_put(dev); 1015 dev = NULL; 1016 } 1017 if (unlikely(!dev)) 1018 return -ENODEV; 1019 /* initialises tx with control */ 1020 __ieee80211_tx_prepare(tx, skb, dev, control); 1021 return 0; 1022 } 1023 1024 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb, 1025 struct ieee80211_txrx_data *tx) 1026 { 1027 struct ieee80211_tx_control *control = tx->u.tx.control; 1028 int ret, i; 1029 1030 if (!ieee80211_qdisc_installed(local->mdev) && 1031 __ieee80211_queue_stopped(local, 0)) { 1032 netif_stop_queue(local->mdev); 1033 return IEEE80211_TX_AGAIN; 1034 } 1035 if (skb) { 1036 ieee80211_dump_frame(wiphy_name(local->hw.wiphy), 1037 "TX to low-level driver", skb); 1038 ret = local->ops->tx(local_to_hw(local), skb, control); 1039 if (ret) 1040 return IEEE80211_TX_AGAIN; 1041 local->mdev->trans_start = jiffies; 1042 ieee80211_led_tx(local, 1); 1043 } 1044 if (tx->u.tx.extra_frag) { 1045 control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | 1046 IEEE80211_TXCTL_USE_CTS_PROTECT | 1047 IEEE80211_TXCTL_CLEAR_DST_MASK | 1048 IEEE80211_TXCTL_FIRST_FRAGMENT); 1049 for (i = 0; i < tx->u.tx.num_extra_frag; i++) { 1050 if (!tx->u.tx.extra_frag[i]) 1051 continue; 1052 if (__ieee80211_queue_stopped(local, control->queue)) 1053 return IEEE80211_TX_FRAG_AGAIN; 1054 if (i == tx->u.tx.num_extra_frag) { 1055 control->tx_rate = tx->u.tx.last_frag_hwrate; 1056 control->rate = tx->u.tx.last_frag_rate; 1057 if (tx->flags & IEEE80211_TXRXD_TXPROBE_LAST_FRAG) 1058 control->flags |= 1059 IEEE80211_TXCTL_RATE_CTRL_PROBE; 1060 else 1061 control->flags &= 1062 ~IEEE80211_TXCTL_RATE_CTRL_PROBE; 1063 } 1064 1065 ieee80211_dump_frame(wiphy_name(local->hw.wiphy), 1066 "TX to low-level driver", 1067 tx->u.tx.extra_frag[i]); 1068 ret = local->ops->tx(local_to_hw(local), 1069 tx->u.tx.extra_frag[i], 1070 control); 1071 if (ret) 1072 return IEEE80211_TX_FRAG_AGAIN; 1073 local->mdev->trans_start = jiffies; 1074 ieee80211_led_tx(local, 1); 1075 tx->u.tx.extra_frag[i] = NULL; 1076 } 1077 kfree(tx->u.tx.extra_frag); 1078 tx->u.tx.extra_frag = NULL; 1079 } 1080 return IEEE80211_TX_OK; 1081 } 1082 1083 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb, 1084 struct ieee80211_tx_control *control) 1085 { 1086 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1087 struct sta_info *sta; 1088 ieee80211_tx_handler *handler; 1089 struct ieee80211_txrx_data tx; 1090 ieee80211_txrx_result res = TXRX_DROP, res_prepare; 1091 int ret, i; 1092 1093 WARN_ON(__ieee80211_queue_pending(local, control->queue)); 1094 1095 if (unlikely(skb->len < 10)) { 1096 dev_kfree_skb(skb); 1097 return 0; 1098 } 1099 1100 /* initialises tx */ 1101 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control); 1102 1103 if (res_prepare == TXRX_DROP) { 1104 dev_kfree_skb(skb); 1105 return 0; 1106 } 1107 1108 /* 1109 * key references are protected using RCU and this requires that 1110 * we are in a read-site RCU section during receive processing 1111 */ 1112 rcu_read_lock(); 1113 1114 sta = tx.sta; 1115 tx.u.tx.mode = local->hw.conf.mode; 1116 1117 for (handler = local->tx_handlers; *handler != NULL; 1118 handler++) { 1119 res = (*handler)(&tx); 1120 if (res != TXRX_CONTINUE) 1121 break; 1122 } 1123 1124 skb = tx.skb; /* handlers are allowed to change skb */ 1125 1126 if (sta) 1127 sta_info_put(sta); 1128 1129 if (unlikely(res == TXRX_DROP)) { 1130 I802_DEBUG_INC(local->tx_handlers_drop); 1131 goto drop; 1132 } 1133 1134 if (unlikely(res == TXRX_QUEUED)) { 1135 I802_DEBUG_INC(local->tx_handlers_queued); 1136 rcu_read_unlock(); 1137 return 0; 1138 } 1139 1140 if (tx.u.tx.extra_frag) { 1141 for (i = 0; i < tx.u.tx.num_extra_frag; i++) { 1142 int next_len, dur; 1143 struct ieee80211_hdr *hdr = 1144 (struct ieee80211_hdr *) 1145 tx.u.tx.extra_frag[i]->data; 1146 1147 if (i + 1 < tx.u.tx.num_extra_frag) { 1148 next_len = tx.u.tx.extra_frag[i + 1]->len; 1149 } else { 1150 next_len = 0; 1151 tx.u.tx.rate = tx.u.tx.last_frag_rate; 1152 tx.u.tx.last_frag_hwrate = tx.u.tx.rate->val; 1153 } 1154 dur = ieee80211_duration(&tx, 0, next_len); 1155 hdr->duration_id = cpu_to_le16(dur); 1156 } 1157 } 1158 1159 retry: 1160 ret = __ieee80211_tx(local, skb, &tx); 1161 if (ret) { 1162 struct ieee80211_tx_stored_packet *store = 1163 &local->pending_packet[control->queue]; 1164 1165 if (ret == IEEE80211_TX_FRAG_AGAIN) 1166 skb = NULL; 1167 set_bit(IEEE80211_LINK_STATE_PENDING, 1168 &local->state[control->queue]); 1169 smp_mb(); 1170 /* When the driver gets out of buffers during sending of 1171 * fragments and calls ieee80211_stop_queue, there is 1172 * a small window between IEEE80211_LINK_STATE_XOFF and 1173 * IEEE80211_LINK_STATE_PENDING flags are set. If a buffer 1174 * gets available in that window (i.e. driver calls 1175 * ieee80211_wake_queue), we would end up with ieee80211_tx 1176 * called with IEEE80211_LINK_STATE_PENDING. Prevent this by 1177 * continuing transmitting here when that situation is 1178 * possible to have happened. */ 1179 if (!__ieee80211_queue_stopped(local, control->queue)) { 1180 clear_bit(IEEE80211_LINK_STATE_PENDING, 1181 &local->state[control->queue]); 1182 goto retry; 1183 } 1184 memcpy(&store->control, control, 1185 sizeof(struct ieee80211_tx_control)); 1186 store->skb = skb; 1187 store->extra_frag = tx.u.tx.extra_frag; 1188 store->num_extra_frag = tx.u.tx.num_extra_frag; 1189 store->last_frag_hwrate = tx.u.tx.last_frag_hwrate; 1190 store->last_frag_rate = tx.u.tx.last_frag_rate; 1191 store->last_frag_rate_ctrl_probe = 1192 !!(tx.flags & IEEE80211_TXRXD_TXPROBE_LAST_FRAG); 1193 } 1194 rcu_read_unlock(); 1195 return 0; 1196 1197 drop: 1198 if (skb) 1199 dev_kfree_skb(skb); 1200 for (i = 0; i < tx.u.tx.num_extra_frag; i++) 1201 if (tx.u.tx.extra_frag[i]) 1202 dev_kfree_skb(tx.u.tx.extra_frag[i]); 1203 kfree(tx.u.tx.extra_frag); 1204 rcu_read_unlock(); 1205 return 0; 1206 } 1207 1208 /* device xmit handlers */ 1209 1210 int ieee80211_master_start_xmit(struct sk_buff *skb, 1211 struct net_device *dev) 1212 { 1213 struct ieee80211_tx_control control; 1214 struct ieee80211_tx_packet_data *pkt_data; 1215 struct net_device *odev = NULL; 1216 struct ieee80211_sub_if_data *osdata; 1217 int headroom; 1218 int ret; 1219 1220 /* 1221 * copy control out of the skb so other people can use skb->cb 1222 */ 1223 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; 1224 memset(&control, 0, sizeof(struct ieee80211_tx_control)); 1225 1226 if (pkt_data->ifindex) 1227 odev = dev_get_by_index(&init_net, pkt_data->ifindex); 1228 if (unlikely(odev && !is_ieee80211_device(odev, dev))) { 1229 dev_put(odev); 1230 odev = NULL; 1231 } 1232 if (unlikely(!odev)) { 1233 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1234 printk(KERN_DEBUG "%s: Discarded packet with nonexistent " 1235 "originating device\n", dev->name); 1236 #endif 1237 dev_kfree_skb(skb); 1238 return 0; 1239 } 1240 osdata = IEEE80211_DEV_TO_SUB_IF(odev); 1241 1242 headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM; 1243 if (skb_headroom(skb) < headroom) { 1244 if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) { 1245 dev_kfree_skb(skb); 1246 dev_put(odev); 1247 return 0; 1248 } 1249 } 1250 1251 control.ifindex = odev->ifindex; 1252 control.type = osdata->type; 1253 if (pkt_data->flags & IEEE80211_TXPD_REQ_TX_STATUS) 1254 control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS; 1255 if (pkt_data->flags & IEEE80211_TXPD_DO_NOT_ENCRYPT) 1256 control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; 1257 if (pkt_data->flags & IEEE80211_TXPD_REQUEUE) 1258 control.flags |= IEEE80211_TXCTL_REQUEUE; 1259 control.queue = pkt_data->queue; 1260 1261 ret = ieee80211_tx(odev, skb, &control); 1262 dev_put(odev); 1263 1264 return ret; 1265 } 1266 1267 int ieee80211_monitor_start_xmit(struct sk_buff *skb, 1268 struct net_device *dev) 1269 { 1270 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1271 struct ieee80211_tx_packet_data *pkt_data; 1272 struct ieee80211_radiotap_header *prthdr = 1273 (struct ieee80211_radiotap_header *)skb->data; 1274 u16 len_rthdr; 1275 1276 /* check for not even having the fixed radiotap header part */ 1277 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1278 goto fail; /* too short to be possibly valid */ 1279 1280 /* is it a header version we can trust to find length from? */ 1281 if (unlikely(prthdr->it_version)) 1282 goto fail; /* only version 0 is supported */ 1283 1284 /* then there must be a radiotap header with a length we can use */ 1285 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1286 1287 /* does the skb contain enough to deliver on the alleged length? */ 1288 if (unlikely(skb->len < len_rthdr)) 1289 goto fail; /* skb too short for claimed rt header extent */ 1290 1291 skb->dev = local->mdev; 1292 1293 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; 1294 memset(pkt_data, 0, sizeof(*pkt_data)); 1295 /* needed because we set skb device to master */ 1296 pkt_data->ifindex = dev->ifindex; 1297 1298 pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT; 1299 1300 /* 1301 * fix up the pointers accounting for the radiotap 1302 * header still being in there. We are being given 1303 * a precooked IEEE80211 header so no need for 1304 * normal processing 1305 */ 1306 skb_set_mac_header(skb, len_rthdr); 1307 /* 1308 * these are just fixed to the end of the rt area since we 1309 * don't have any better information and at this point, nobody cares 1310 */ 1311 skb_set_network_header(skb, len_rthdr); 1312 skb_set_transport_header(skb, len_rthdr); 1313 1314 /* pass the radiotap header up to the next stage intact */ 1315 dev_queue_xmit(skb); 1316 return NETDEV_TX_OK; 1317 1318 fail: 1319 dev_kfree_skb(skb); 1320 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1321 } 1322 1323 /** 1324 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1325 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1326 * @skb: packet to be sent 1327 * @dev: incoming interface 1328 * 1329 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1330 * not be freed, and caller is responsible for either retrying later or freeing 1331 * skb). 1332 * 1333 * This function takes in an Ethernet header and encapsulates it with suitable 1334 * IEEE 802.11 header based on which interface the packet is coming in. The 1335 * encapsulated packet will then be passed to master interface, wlan#.11, for 1336 * transmission (through low-level driver). 1337 */ 1338 int ieee80211_subif_start_xmit(struct sk_buff *skb, 1339 struct net_device *dev) 1340 { 1341 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1342 struct ieee80211_tx_packet_data *pkt_data; 1343 struct ieee80211_sub_if_data *sdata; 1344 int ret = 1, head_need; 1345 u16 ethertype, hdrlen, fc; 1346 struct ieee80211_hdr hdr; 1347 const u8 *encaps_data; 1348 int encaps_len, skip_header_bytes; 1349 int nh_pos, h_pos; 1350 struct sta_info *sta; 1351 1352 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1353 if (unlikely(skb->len < ETH_HLEN)) { 1354 printk(KERN_DEBUG "%s: short skb (len=%d)\n", 1355 dev->name, skb->len); 1356 ret = 0; 1357 goto fail; 1358 } 1359 1360 nh_pos = skb_network_header(skb) - skb->data; 1361 h_pos = skb_transport_header(skb) - skb->data; 1362 1363 /* convert Ethernet header to proper 802.11 header (based on 1364 * operation mode) */ 1365 ethertype = (skb->data[12] << 8) | skb->data[13]; 1366 /* TODO: handling for 802.1x authorized/unauthorized port */ 1367 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA; 1368 1369 switch (sdata->type) { 1370 case IEEE80211_IF_TYPE_AP: 1371 case IEEE80211_IF_TYPE_VLAN: 1372 fc |= IEEE80211_FCTL_FROMDS; 1373 /* DA BSSID SA */ 1374 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1375 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1376 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1377 hdrlen = 24; 1378 break; 1379 case IEEE80211_IF_TYPE_WDS: 1380 fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS; 1381 /* RA TA DA SA */ 1382 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1383 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1384 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1385 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1386 hdrlen = 30; 1387 break; 1388 case IEEE80211_IF_TYPE_STA: 1389 fc |= IEEE80211_FCTL_TODS; 1390 /* BSSID SA DA */ 1391 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); 1392 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1393 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1394 hdrlen = 24; 1395 break; 1396 case IEEE80211_IF_TYPE_IBSS: 1397 /* DA SA BSSID */ 1398 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1399 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1400 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); 1401 hdrlen = 24; 1402 break; 1403 default: 1404 ret = 0; 1405 goto fail; 1406 } 1407 1408 /* receiver is QoS enabled, use a QoS type frame */ 1409 sta = sta_info_get(local, hdr.addr1); 1410 if (sta) { 1411 if (sta->flags & WLAN_STA_WME) { 1412 fc |= IEEE80211_STYPE_QOS_DATA; 1413 hdrlen += 2; 1414 } 1415 sta_info_put(sta); 1416 } 1417 1418 hdr.frame_control = cpu_to_le16(fc); 1419 hdr.duration_id = 0; 1420 hdr.seq_ctrl = 0; 1421 1422 skip_header_bytes = ETH_HLEN; 1423 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1424 encaps_data = bridge_tunnel_header; 1425 encaps_len = sizeof(bridge_tunnel_header); 1426 skip_header_bytes -= 2; 1427 } else if (ethertype >= 0x600) { 1428 encaps_data = rfc1042_header; 1429 encaps_len = sizeof(rfc1042_header); 1430 skip_header_bytes -= 2; 1431 } else { 1432 encaps_data = NULL; 1433 encaps_len = 0; 1434 } 1435 1436 skb_pull(skb, skip_header_bytes); 1437 nh_pos -= skip_header_bytes; 1438 h_pos -= skip_header_bytes; 1439 1440 /* TODO: implement support for fragments so that there is no need to 1441 * reallocate and copy payload; it might be enough to support one 1442 * extra fragment that would be copied in the beginning of the frame 1443 * data.. anyway, it would be nice to include this into skb structure 1444 * somehow 1445 * 1446 * There are few options for this: 1447 * use skb->cb as an extra space for 802.11 header 1448 * allocate new buffer if not enough headroom 1449 * make sure that there is enough headroom in every skb by increasing 1450 * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and 1451 * alloc_skb() (net/core/skbuff.c) 1452 */ 1453 head_need = hdrlen + encaps_len + local->tx_headroom; 1454 head_need -= skb_headroom(skb); 1455 1456 /* We are going to modify skb data, so make a copy of it if happens to 1457 * be cloned. This could happen, e.g., with Linux bridge code passing 1458 * us broadcast frames. */ 1459 1460 if (head_need > 0 || skb_cloned(skb)) { 1461 #if 0 1462 printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes " 1463 "of headroom\n", dev->name, head_need); 1464 #endif 1465 1466 if (skb_cloned(skb)) 1467 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1468 else 1469 I802_DEBUG_INC(local->tx_expand_skb_head); 1470 /* Since we have to reallocate the buffer, make sure that there 1471 * is enough room for possible WEP IV/ICV and TKIP (8 bytes 1472 * before payload and 12 after). */ 1473 if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8), 1474 12, GFP_ATOMIC)) { 1475 printk(KERN_DEBUG "%s: failed to reallocate TX buffer" 1476 "\n", dev->name); 1477 goto fail; 1478 } 1479 } 1480 1481 if (encaps_data) { 1482 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1483 nh_pos += encaps_len; 1484 h_pos += encaps_len; 1485 } 1486 1487 if (fc & IEEE80211_STYPE_QOS_DATA) { 1488 __le16 *qos_control; 1489 1490 qos_control = (__le16*) skb_push(skb, 2); 1491 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1492 /* 1493 * Maybe we could actually set some fields here, for now just 1494 * initialise to zero to indicate no special operation. 1495 */ 1496 *qos_control = 0; 1497 } else 1498 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1499 1500 nh_pos += hdrlen; 1501 h_pos += hdrlen; 1502 1503 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; 1504 memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); 1505 pkt_data->ifindex = dev->ifindex; 1506 1507 skb->dev = local->mdev; 1508 dev->stats.tx_packets++; 1509 dev->stats.tx_bytes += skb->len; 1510 1511 /* Update skb pointers to various headers since this modified frame 1512 * is going to go through Linux networking code that may potentially 1513 * need things like pointer to IP header. */ 1514 skb_set_mac_header(skb, 0); 1515 skb_set_network_header(skb, nh_pos); 1516 skb_set_transport_header(skb, h_pos); 1517 1518 dev->trans_start = jiffies; 1519 dev_queue_xmit(skb); 1520 1521 return 0; 1522 1523 fail: 1524 if (!ret) 1525 dev_kfree_skb(skb); 1526 1527 return ret; 1528 } 1529 1530 /* 1531 * This is the transmit routine for the 802.11 type interfaces 1532 * called by upper layers of the linux networking 1533 * stack when it has a frame to transmit 1534 */ 1535 int ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev) 1536 { 1537 struct ieee80211_sub_if_data *sdata; 1538 struct ieee80211_tx_packet_data *pkt_data; 1539 struct ieee80211_hdr *hdr; 1540 u16 fc; 1541 1542 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1543 1544 if (skb->len < 10) { 1545 dev_kfree_skb(skb); 1546 return 0; 1547 } 1548 1549 if (skb_headroom(skb) < sdata->local->tx_headroom) { 1550 if (pskb_expand_head(skb, sdata->local->tx_headroom, 1551 0, GFP_ATOMIC)) { 1552 dev_kfree_skb(skb); 1553 return 0; 1554 } 1555 } 1556 1557 hdr = (struct ieee80211_hdr *) skb->data; 1558 fc = le16_to_cpu(hdr->frame_control); 1559 1560 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; 1561 memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); 1562 pkt_data->ifindex = sdata->dev->ifindex; 1563 1564 skb->priority = 20; /* use hardcoded priority for mgmt TX queue */ 1565 skb->dev = sdata->local->mdev; 1566 1567 /* 1568 * We're using the protocol field of the the frame control header 1569 * to request TX callback for hostapd. BIT(1) is checked. 1570 */ 1571 if ((fc & BIT(1)) == BIT(1)) { 1572 pkt_data->flags |= IEEE80211_TXPD_REQ_TX_STATUS; 1573 fc &= ~BIT(1); 1574 hdr->frame_control = cpu_to_le16(fc); 1575 } 1576 1577 if (!(fc & IEEE80211_FCTL_PROTECTED)) 1578 pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT; 1579 1580 dev->stats.tx_packets++; 1581 dev->stats.tx_bytes += skb->len; 1582 1583 dev_queue_xmit(skb); 1584 1585 return 0; 1586 } 1587 1588 /* helper functions for pending packets for when queues are stopped */ 1589 1590 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 1591 { 1592 int i, j; 1593 struct ieee80211_tx_stored_packet *store; 1594 1595 for (i = 0; i < local->hw.queues; i++) { 1596 if (!__ieee80211_queue_pending(local, i)) 1597 continue; 1598 store = &local->pending_packet[i]; 1599 kfree_skb(store->skb); 1600 for (j = 0; j < store->num_extra_frag; j++) 1601 kfree_skb(store->extra_frag[j]); 1602 kfree(store->extra_frag); 1603 clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]); 1604 } 1605 } 1606 1607 void ieee80211_tx_pending(unsigned long data) 1608 { 1609 struct ieee80211_local *local = (struct ieee80211_local *)data; 1610 struct net_device *dev = local->mdev; 1611 struct ieee80211_tx_stored_packet *store; 1612 struct ieee80211_txrx_data tx; 1613 int i, ret, reschedule = 0; 1614 1615 netif_tx_lock_bh(dev); 1616 for (i = 0; i < local->hw.queues; i++) { 1617 if (__ieee80211_queue_stopped(local, i)) 1618 continue; 1619 if (!__ieee80211_queue_pending(local, i)) { 1620 reschedule = 1; 1621 continue; 1622 } 1623 store = &local->pending_packet[i]; 1624 tx.u.tx.control = &store->control; 1625 tx.u.tx.extra_frag = store->extra_frag; 1626 tx.u.tx.num_extra_frag = store->num_extra_frag; 1627 tx.u.tx.last_frag_hwrate = store->last_frag_hwrate; 1628 tx.u.tx.last_frag_rate = store->last_frag_rate; 1629 tx.flags = 0; 1630 if (store->last_frag_rate_ctrl_probe) 1631 tx.flags |= IEEE80211_TXRXD_TXPROBE_LAST_FRAG; 1632 ret = __ieee80211_tx(local, store->skb, &tx); 1633 if (ret) { 1634 if (ret == IEEE80211_TX_FRAG_AGAIN) 1635 store->skb = NULL; 1636 } else { 1637 clear_bit(IEEE80211_LINK_STATE_PENDING, 1638 &local->state[i]); 1639 reschedule = 1; 1640 } 1641 } 1642 netif_tx_unlock_bh(dev); 1643 if (reschedule) { 1644 if (!ieee80211_qdisc_installed(dev)) { 1645 if (!__ieee80211_queue_stopped(local, 0)) 1646 netif_wake_queue(dev); 1647 } else 1648 netif_schedule(dev); 1649 } 1650 } 1651 1652 /* functions for drivers to get certain frames */ 1653 1654 static void ieee80211_beacon_add_tim(struct ieee80211_local *local, 1655 struct ieee80211_if_ap *bss, 1656 struct sk_buff *skb) 1657 { 1658 u8 *pos, *tim; 1659 int aid0 = 0; 1660 int i, have_bits = 0, n1, n2; 1661 1662 /* Generate bitmap for TIM only if there are any STAs in power save 1663 * mode. */ 1664 read_lock_bh(&local->sta_lock); 1665 if (atomic_read(&bss->num_sta_ps) > 0) 1666 /* in the hope that this is faster than 1667 * checking byte-for-byte */ 1668 have_bits = !bitmap_empty((unsigned long*)bss->tim, 1669 IEEE80211_MAX_AID+1); 1670 1671 if (bss->dtim_count == 0) 1672 bss->dtim_count = bss->dtim_period - 1; 1673 else 1674 bss->dtim_count--; 1675 1676 tim = pos = (u8 *) skb_put(skb, 6); 1677 *pos++ = WLAN_EID_TIM; 1678 *pos++ = 4; 1679 *pos++ = bss->dtim_count; 1680 *pos++ = bss->dtim_period; 1681 1682 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 1683 aid0 = 1; 1684 1685 if (have_bits) { 1686 /* Find largest even number N1 so that bits numbered 1 through 1687 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 1688 * (N2 + 1) x 8 through 2007 are 0. */ 1689 n1 = 0; 1690 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 1691 if (bss->tim[i]) { 1692 n1 = i & 0xfe; 1693 break; 1694 } 1695 } 1696 n2 = n1; 1697 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 1698 if (bss->tim[i]) { 1699 n2 = i; 1700 break; 1701 } 1702 } 1703 1704 /* Bitmap control */ 1705 *pos++ = n1 | aid0; 1706 /* Part Virt Bitmap */ 1707 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 1708 1709 tim[1] = n2 - n1 + 4; 1710 skb_put(skb, n2 - n1); 1711 } else { 1712 *pos++ = aid0; /* Bitmap control */ 1713 *pos++ = 0; /* Part Virt Bitmap */ 1714 } 1715 read_unlock_bh(&local->sta_lock); 1716 } 1717 1718 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, int if_id, 1719 struct ieee80211_tx_control *control) 1720 { 1721 struct ieee80211_local *local = hw_to_local(hw); 1722 struct sk_buff *skb; 1723 struct net_device *bdev; 1724 struct ieee80211_sub_if_data *sdata = NULL; 1725 struct ieee80211_if_ap *ap = NULL; 1726 struct ieee80211_rate *rate; 1727 struct rate_control_extra extra; 1728 u8 *b_head, *b_tail; 1729 int bh_len, bt_len; 1730 1731 bdev = dev_get_by_index(&init_net, if_id); 1732 if (bdev) { 1733 sdata = IEEE80211_DEV_TO_SUB_IF(bdev); 1734 ap = &sdata->u.ap; 1735 dev_put(bdev); 1736 } 1737 1738 if (!ap || sdata->type != IEEE80211_IF_TYPE_AP || 1739 !ap->beacon_head) { 1740 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1741 if (net_ratelimit()) 1742 printk(KERN_DEBUG "no beacon data avail for idx=%d " 1743 "(%s)\n", if_id, bdev ? bdev->name : "N/A"); 1744 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 1745 return NULL; 1746 } 1747 1748 /* Assume we are generating the normal beacon locally */ 1749 b_head = ap->beacon_head; 1750 b_tail = ap->beacon_tail; 1751 bh_len = ap->beacon_head_len; 1752 bt_len = ap->beacon_tail_len; 1753 1754 skb = dev_alloc_skb(local->tx_headroom + 1755 bh_len + bt_len + 256 /* maximum TIM len */); 1756 if (!skb) 1757 return NULL; 1758 1759 skb_reserve(skb, local->tx_headroom); 1760 memcpy(skb_put(skb, bh_len), b_head, bh_len); 1761 1762 ieee80211_include_sequence(sdata, (struct ieee80211_hdr *)skb->data); 1763 1764 ieee80211_beacon_add_tim(local, ap, skb); 1765 1766 if (b_tail) { 1767 memcpy(skb_put(skb, bt_len), b_tail, bt_len); 1768 } 1769 1770 if (control) { 1771 memset(&extra, 0, sizeof(extra)); 1772 extra.mode = local->oper_hw_mode; 1773 1774 rate = rate_control_get_rate(local, local->mdev, skb, &extra); 1775 if (!rate) { 1776 if (net_ratelimit()) { 1777 printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate " 1778 "found\n", wiphy_name(local->hw.wiphy)); 1779 } 1780 dev_kfree_skb(skb); 1781 return NULL; 1782 } 1783 1784 control->tx_rate = 1785 ((sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE) && 1786 (rate->flags & IEEE80211_RATE_PREAMBLE2)) ? 1787 rate->val2 : rate->val; 1788 control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; 1789 control->power_level = local->hw.conf.power_level; 1790 control->flags |= IEEE80211_TXCTL_NO_ACK; 1791 control->retry_limit = 1; 1792 control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; 1793 } 1794 1795 ap->num_beacons++; 1796 return skb; 1797 } 1798 EXPORT_SYMBOL(ieee80211_beacon_get); 1799 1800 void ieee80211_rts_get(struct ieee80211_hw *hw, int if_id, 1801 const void *frame, size_t frame_len, 1802 const struct ieee80211_tx_control *frame_txctl, 1803 struct ieee80211_rts *rts) 1804 { 1805 const struct ieee80211_hdr *hdr = frame; 1806 u16 fctl; 1807 1808 fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS; 1809 rts->frame_control = cpu_to_le16(fctl); 1810 rts->duration = ieee80211_rts_duration(hw, if_id, frame_len, frame_txctl); 1811 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 1812 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 1813 } 1814 EXPORT_SYMBOL(ieee80211_rts_get); 1815 1816 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, int if_id, 1817 const void *frame, size_t frame_len, 1818 const struct ieee80211_tx_control *frame_txctl, 1819 struct ieee80211_cts *cts) 1820 { 1821 const struct ieee80211_hdr *hdr = frame; 1822 u16 fctl; 1823 1824 fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS; 1825 cts->frame_control = cpu_to_le16(fctl); 1826 cts->duration = ieee80211_ctstoself_duration(hw, if_id, frame_len, frame_txctl); 1827 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 1828 } 1829 EXPORT_SYMBOL(ieee80211_ctstoself_get); 1830 1831 struct sk_buff * 1832 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id, 1833 struct ieee80211_tx_control *control) 1834 { 1835 struct ieee80211_local *local = hw_to_local(hw); 1836 struct sk_buff *skb; 1837 struct sta_info *sta; 1838 ieee80211_tx_handler *handler; 1839 struct ieee80211_txrx_data tx; 1840 ieee80211_txrx_result res = TXRX_DROP; 1841 struct net_device *bdev; 1842 struct ieee80211_sub_if_data *sdata; 1843 struct ieee80211_if_ap *bss = NULL; 1844 1845 bdev = dev_get_by_index(&init_net, if_id); 1846 if (bdev) { 1847 sdata = IEEE80211_DEV_TO_SUB_IF(bdev); 1848 bss = &sdata->u.ap; 1849 dev_put(bdev); 1850 } 1851 if (!bss || sdata->type != IEEE80211_IF_TYPE_AP || !bss->beacon_head) 1852 return NULL; 1853 1854 if (bss->dtim_count != 0) 1855 return NULL; /* send buffered bc/mc only after DTIM beacon */ 1856 memset(control, 0, sizeof(*control)); 1857 while (1) { 1858 skb = skb_dequeue(&bss->ps_bc_buf); 1859 if (!skb) 1860 return NULL; 1861 local->total_ps_buffered--; 1862 1863 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 1864 struct ieee80211_hdr *hdr = 1865 (struct ieee80211_hdr *) skb->data; 1866 /* more buffered multicast/broadcast frames ==> set 1867 * MoreData flag in IEEE 802.11 header to inform PS 1868 * STAs */ 1869 hdr->frame_control |= 1870 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1871 } 1872 1873 if (!ieee80211_tx_prepare(&tx, skb, local->mdev, control)) 1874 break; 1875 dev_kfree_skb_any(skb); 1876 } 1877 sta = tx.sta; 1878 tx.flags |= IEEE80211_TXRXD_TXPS_BUFFERED; 1879 tx.u.tx.mode = local->hw.conf.mode; 1880 1881 for (handler = local->tx_handlers; *handler != NULL; handler++) { 1882 res = (*handler)(&tx); 1883 if (res == TXRX_DROP || res == TXRX_QUEUED) 1884 break; 1885 } 1886 dev_put(tx.dev); 1887 skb = tx.skb; /* handlers are allowed to change skb */ 1888 1889 if (res == TXRX_DROP) { 1890 I802_DEBUG_INC(local->tx_handlers_drop); 1891 dev_kfree_skb(skb); 1892 skb = NULL; 1893 } else if (res == TXRX_QUEUED) { 1894 I802_DEBUG_INC(local->tx_handlers_queued); 1895 skb = NULL; 1896 } 1897 1898 if (sta) 1899 sta_info_put(sta); 1900 1901 return skb; 1902 } 1903 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 1904