1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 6 * Copyright (C) 2018-2019 Intel Corporation 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/etherdevice.h> 16 #include <linux/netdevice.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/if_arp.h> 21 #include <linux/timer.h> 22 #include <linux/rtnetlink.h> 23 24 #include <net/codel.h> 25 #include <net/mac80211.h> 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "rate.h" 29 #include "sta_info.h" 30 #include "debugfs_sta.h" 31 #include "mesh.h" 32 #include "wme.h" 33 34 /** 35 * DOC: STA information lifetime rules 36 * 37 * STA info structures (&struct sta_info) are managed in a hash table 38 * for faster lookup and a list for iteration. They are managed using 39 * RCU, i.e. access to the list and hash table is protected by RCU. 40 * 41 * Upon allocating a STA info structure with sta_info_alloc(), the caller 42 * owns that structure. It must then insert it into the hash table using 43 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 44 * case (which acquires an rcu read section but must not be called from 45 * within one) will the pointer still be valid after the call. Note that 46 * the caller may not do much with the STA info before inserting it, in 47 * particular, it may not start any mesh peer link management or add 48 * encryption keys. 49 * 50 * When the insertion fails (sta_info_insert()) returns non-zero), the 51 * structure will have been freed by sta_info_insert()! 52 * 53 * Station entries are added by mac80211 when you establish a link with a 54 * peer. This means different things for the different type of interfaces 55 * we support. For a regular station this mean we add the AP sta when we 56 * receive an association response from the AP. For IBSS this occurs when 57 * get to know about a peer on the same IBSS. For WDS we add the sta for 58 * the peer immediately upon device open. When using AP mode we add stations 59 * for each respective station upon request from userspace through nl80211. 60 * 61 * In order to remove a STA info structure, various sta_info_destroy_*() 62 * calls are available. 63 * 64 * There is no concept of ownership on a STA entry, each structure is 65 * owned by the global hash table/list until it is removed. All users of 66 * the structure need to be RCU protected so that the structure won't be 67 * freed before they are done using it. 68 */ 69 70 static const struct rhashtable_params sta_rht_params = { 71 .nelem_hint = 3, /* start small */ 72 .automatic_shrinking = true, 73 .head_offset = offsetof(struct sta_info, hash_node), 74 .key_offset = offsetof(struct sta_info, addr), 75 .key_len = ETH_ALEN, 76 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 77 }; 78 79 /* Caller must hold local->sta_mtx */ 80 static int sta_info_hash_del(struct ieee80211_local *local, 81 struct sta_info *sta) 82 { 83 return rhltable_remove(&local->sta_hash, &sta->hash_node, 84 sta_rht_params); 85 } 86 87 static void __cleanup_single_sta(struct sta_info *sta) 88 { 89 int ac, i; 90 struct tid_ampdu_tx *tid_tx; 91 struct ieee80211_sub_if_data *sdata = sta->sdata; 92 struct ieee80211_local *local = sdata->local; 93 struct ps_data *ps; 94 95 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 96 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 97 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 98 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 99 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 100 ps = &sdata->bss->ps; 101 else if (ieee80211_vif_is_mesh(&sdata->vif)) 102 ps = &sdata->u.mesh.ps; 103 else 104 return; 105 106 clear_sta_flag(sta, WLAN_STA_PS_STA); 107 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 108 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 109 110 atomic_dec(&ps->num_sta_ps); 111 } 112 113 if (sta->sta.txq[0]) { 114 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 115 struct txq_info *txqi; 116 117 if (!sta->sta.txq[i]) 118 continue; 119 120 txqi = to_txq_info(sta->sta.txq[i]); 121 122 ieee80211_txq_purge(local, txqi); 123 } 124 } 125 126 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 127 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 128 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 129 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 130 } 131 132 if (ieee80211_vif_is_mesh(&sdata->vif)) 133 mesh_sta_cleanup(sta); 134 135 cancel_work_sync(&sta->drv_deliver_wk); 136 137 /* 138 * Destroy aggregation state here. It would be nice to wait for the 139 * driver to finish aggregation stop and then clean up, but for now 140 * drivers have to handle aggregation stop being requested, followed 141 * directly by station destruction. 142 */ 143 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 144 kfree(sta->ampdu_mlme.tid_start_tx[i]); 145 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 146 if (!tid_tx) 147 continue; 148 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 149 kfree(tid_tx); 150 } 151 } 152 153 static void cleanup_single_sta(struct sta_info *sta) 154 { 155 struct ieee80211_sub_if_data *sdata = sta->sdata; 156 struct ieee80211_local *local = sdata->local; 157 158 __cleanup_single_sta(sta); 159 sta_info_free(local, sta); 160 } 161 162 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 163 const u8 *addr) 164 { 165 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 166 } 167 168 /* protected by RCU */ 169 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 170 const u8 *addr) 171 { 172 struct ieee80211_local *local = sdata->local; 173 struct rhlist_head *tmp; 174 struct sta_info *sta; 175 176 rcu_read_lock(); 177 for_each_sta_info(local, addr, sta, tmp) { 178 if (sta->sdata == sdata) { 179 rcu_read_unlock(); 180 /* this is safe as the caller must already hold 181 * another rcu read section or the mutex 182 */ 183 return sta; 184 } 185 } 186 rcu_read_unlock(); 187 return NULL; 188 } 189 190 /* 191 * Get sta info either from the specified interface 192 * or from one of its vlans 193 */ 194 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 195 const u8 *addr) 196 { 197 struct ieee80211_local *local = sdata->local; 198 struct rhlist_head *tmp; 199 struct sta_info *sta; 200 201 rcu_read_lock(); 202 for_each_sta_info(local, addr, sta, tmp) { 203 if (sta->sdata == sdata || 204 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 205 rcu_read_unlock(); 206 /* this is safe as the caller must already hold 207 * another rcu read section or the mutex 208 */ 209 return sta; 210 } 211 } 212 rcu_read_unlock(); 213 return NULL; 214 } 215 216 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 217 int idx) 218 { 219 struct ieee80211_local *local = sdata->local; 220 struct sta_info *sta; 221 int i = 0; 222 223 list_for_each_entry_rcu(sta, &local->sta_list, list) { 224 if (sdata != sta->sdata) 225 continue; 226 if (i < idx) { 227 ++i; 228 continue; 229 } 230 return sta; 231 } 232 233 return NULL; 234 } 235 236 /** 237 * sta_info_free - free STA 238 * 239 * @local: pointer to the global information 240 * @sta: STA info to free 241 * 242 * This function must undo everything done by sta_info_alloc() 243 * that may happen before sta_info_insert(). It may only be 244 * called when sta_info_insert() has not been attempted (and 245 * if that fails, the station is freed anyway.) 246 */ 247 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 248 { 249 if (sta->rate_ctrl) 250 rate_control_free_sta(sta); 251 252 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 253 254 if (sta->sta.txq[0]) 255 kfree(to_txq_info(sta->sta.txq[0])); 256 kfree(rcu_dereference_raw(sta->sta.rates)); 257 #ifdef CONFIG_MAC80211_MESH 258 kfree(sta->mesh); 259 #endif 260 free_percpu(sta->pcpu_rx_stats); 261 kfree(sta); 262 } 263 264 /* Caller must hold local->sta_mtx */ 265 static int sta_info_hash_add(struct ieee80211_local *local, 266 struct sta_info *sta) 267 { 268 return rhltable_insert(&local->sta_hash, &sta->hash_node, 269 sta_rht_params); 270 } 271 272 static void sta_deliver_ps_frames(struct work_struct *wk) 273 { 274 struct sta_info *sta; 275 276 sta = container_of(wk, struct sta_info, drv_deliver_wk); 277 278 if (sta->dead) 279 return; 280 281 local_bh_disable(); 282 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 283 ieee80211_sta_ps_deliver_wakeup(sta); 284 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 285 ieee80211_sta_ps_deliver_poll_response(sta); 286 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 287 ieee80211_sta_ps_deliver_uapsd(sta); 288 local_bh_enable(); 289 } 290 291 static int sta_prepare_rate_control(struct ieee80211_local *local, 292 struct sta_info *sta, gfp_t gfp) 293 { 294 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 295 return 0; 296 297 sta->rate_ctrl = local->rate_ctrl; 298 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 299 sta, gfp); 300 if (!sta->rate_ctrl_priv) 301 return -ENOMEM; 302 303 return 0; 304 } 305 306 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 307 const u8 *addr, gfp_t gfp) 308 { 309 struct ieee80211_local *local = sdata->local; 310 struct ieee80211_hw *hw = &local->hw; 311 struct sta_info *sta; 312 int i; 313 314 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 315 if (!sta) 316 return NULL; 317 318 if (ieee80211_hw_check(hw, USES_RSS)) { 319 sta->pcpu_rx_stats = 320 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 321 if (!sta->pcpu_rx_stats) 322 goto free; 323 } 324 325 spin_lock_init(&sta->lock); 326 spin_lock_init(&sta->ps_lock); 327 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 328 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 329 mutex_init(&sta->ampdu_mlme.mtx); 330 #ifdef CONFIG_MAC80211_MESH 331 if (ieee80211_vif_is_mesh(&sdata->vif)) { 332 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 333 if (!sta->mesh) 334 goto free; 335 sta->mesh->plink_sta = sta; 336 spin_lock_init(&sta->mesh->plink_lock); 337 if (ieee80211_vif_is_mesh(&sdata->vif) && 338 !sdata->u.mesh.user_mpm) 339 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 340 0); 341 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 342 } 343 #endif 344 345 memcpy(sta->addr, addr, ETH_ALEN); 346 memcpy(sta->sta.addr, addr, ETH_ALEN); 347 sta->sta.max_rx_aggregation_subframes = 348 local->hw.max_rx_aggregation_subframes; 349 350 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 351 * The Tx path starts to use a key as soon as the key slot ptk_idx 352 * references to is not NULL. To not use the initial Rx-only key 353 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 354 * which always will refer to a NULL key. 355 */ 356 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 357 sta->ptk_idx = INVALID_PTK_KEYIDX; 358 359 sta->local = local; 360 sta->sdata = sdata; 361 sta->rx_stats.last_rx = jiffies; 362 363 u64_stats_init(&sta->rx_stats.syncp); 364 365 sta->sta_state = IEEE80211_STA_NONE; 366 367 /* Mark TID as unreserved */ 368 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 369 370 sta->last_connected = ktime_get_seconds(); 371 ewma_signal_init(&sta->rx_stats_avg.signal); 372 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 373 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 374 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 375 376 if (local->ops->wake_tx_queue) { 377 void *txq_data; 378 int size = sizeof(struct txq_info) + 379 ALIGN(hw->txq_data_size, sizeof(void *)); 380 381 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 382 if (!txq_data) 383 goto free; 384 385 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 386 struct txq_info *txq = txq_data + i * size; 387 388 /* might not do anything for the bufferable MMPDU TXQ */ 389 ieee80211_txq_init(sdata, sta, txq, i); 390 } 391 } 392 393 if (sta_prepare_rate_control(local, sta, gfp)) 394 goto free_txq; 395 396 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; 397 398 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 399 skb_queue_head_init(&sta->ps_tx_buf[i]); 400 skb_queue_head_init(&sta->tx_filtered[i]); 401 sta->airtime[i].deficit = sta->airtime_weight; 402 } 403 404 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 405 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 406 407 for (i = 0; i < NUM_NL80211_BANDS; i++) { 408 u32 mandatory = 0; 409 int r; 410 411 if (!hw->wiphy->bands[i]) 412 continue; 413 414 switch (i) { 415 case NL80211_BAND_2GHZ: 416 /* 417 * We use both here, even if we cannot really know for 418 * sure the station will support both, but the only use 419 * for this is when we don't know anything yet and send 420 * management frames, and then we'll pick the lowest 421 * possible rate anyway. 422 * If we don't include _G here, we cannot find a rate 423 * in P2P, and thus trigger the WARN_ONCE() in rate.c 424 */ 425 mandatory = IEEE80211_RATE_MANDATORY_B | 426 IEEE80211_RATE_MANDATORY_G; 427 break; 428 case NL80211_BAND_5GHZ: 429 mandatory = IEEE80211_RATE_MANDATORY_A; 430 break; 431 case NL80211_BAND_60GHZ: 432 WARN_ON(1); 433 mandatory = 0; 434 break; 435 } 436 437 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 438 struct ieee80211_rate *rate; 439 440 rate = &hw->wiphy->bands[i]->bitrates[r]; 441 442 if (!(rate->flags & mandatory)) 443 continue; 444 sta->sta.supp_rates[i] |= BIT(r); 445 } 446 } 447 448 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 449 if (sdata->vif.type == NL80211_IFTYPE_AP || 450 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 451 struct ieee80211_supported_band *sband; 452 u8 smps; 453 454 sband = ieee80211_get_sband(sdata); 455 if (!sband) 456 goto free_txq; 457 458 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 459 IEEE80211_HT_CAP_SM_PS_SHIFT; 460 /* 461 * Assume that hostapd advertises our caps in the beacon and 462 * this is the known_smps_mode for a station that just assciated 463 */ 464 switch (smps) { 465 case WLAN_HT_SMPS_CONTROL_DISABLED: 466 sta->known_smps_mode = IEEE80211_SMPS_OFF; 467 break; 468 case WLAN_HT_SMPS_CONTROL_STATIC: 469 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 470 break; 471 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 472 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 473 break; 474 default: 475 WARN_ON(1); 476 } 477 } 478 479 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 480 481 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 482 sta->cparams.target = MS2TIME(20); 483 sta->cparams.interval = MS2TIME(100); 484 sta->cparams.ecn = true; 485 486 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 487 488 return sta; 489 490 free_txq: 491 if (sta->sta.txq[0]) 492 kfree(to_txq_info(sta->sta.txq[0])); 493 free: 494 free_percpu(sta->pcpu_rx_stats); 495 #ifdef CONFIG_MAC80211_MESH 496 kfree(sta->mesh); 497 #endif 498 kfree(sta); 499 return NULL; 500 } 501 502 static int sta_info_insert_check(struct sta_info *sta) 503 { 504 struct ieee80211_sub_if_data *sdata = sta->sdata; 505 506 /* 507 * Can't be a WARN_ON because it can be triggered through a race: 508 * something inserts a STA (on one CPU) without holding the RTNL 509 * and another CPU turns off the net device. 510 */ 511 if (unlikely(!ieee80211_sdata_running(sdata))) 512 return -ENETDOWN; 513 514 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 515 is_multicast_ether_addr(sta->sta.addr))) 516 return -EINVAL; 517 518 /* The RCU read lock is required by rhashtable due to 519 * asynchronous resize/rehash. We also require the mutex 520 * for correctness. 521 */ 522 rcu_read_lock(); 523 lockdep_assert_held(&sdata->local->sta_mtx); 524 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 525 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 526 rcu_read_unlock(); 527 return -ENOTUNIQ; 528 } 529 rcu_read_unlock(); 530 531 return 0; 532 } 533 534 static int sta_info_insert_drv_state(struct ieee80211_local *local, 535 struct ieee80211_sub_if_data *sdata, 536 struct sta_info *sta) 537 { 538 enum ieee80211_sta_state state; 539 int err = 0; 540 541 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 542 err = drv_sta_state(local, sdata, sta, state, state + 1); 543 if (err) 544 break; 545 } 546 547 if (!err) { 548 /* 549 * Drivers using legacy sta_add/sta_remove callbacks only 550 * get uploaded set to true after sta_add is called. 551 */ 552 if (!local->ops->sta_add) 553 sta->uploaded = true; 554 return 0; 555 } 556 557 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 558 sdata_info(sdata, 559 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 560 sta->sta.addr, state + 1, err); 561 err = 0; 562 } 563 564 /* unwind on error */ 565 for (; state > IEEE80211_STA_NOTEXIST; state--) 566 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 567 568 return err; 569 } 570 571 static void 572 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 573 { 574 struct ieee80211_local *local = sdata->local; 575 bool allow_p2p_go_ps = sdata->vif.p2p; 576 struct sta_info *sta; 577 578 rcu_read_lock(); 579 list_for_each_entry_rcu(sta, &local->sta_list, list) { 580 if (sdata != sta->sdata || 581 !test_sta_flag(sta, WLAN_STA_ASSOC)) 582 continue; 583 if (!sta->sta.support_p2p_ps) { 584 allow_p2p_go_ps = false; 585 break; 586 } 587 } 588 rcu_read_unlock(); 589 590 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 591 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 592 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 593 } 594 } 595 596 /* 597 * should be called with sta_mtx locked 598 * this function replaces the mutex lock 599 * with a RCU lock 600 */ 601 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 602 { 603 struct ieee80211_local *local = sta->local; 604 struct ieee80211_sub_if_data *sdata = sta->sdata; 605 struct station_info *sinfo = NULL; 606 int err = 0; 607 608 lockdep_assert_held(&local->sta_mtx); 609 610 /* check if STA exists already */ 611 if (sta_info_get_bss(sdata, sta->sta.addr)) { 612 err = -EEXIST; 613 goto out_err; 614 } 615 616 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 617 if (!sinfo) { 618 err = -ENOMEM; 619 goto out_err; 620 } 621 622 local->num_sta++; 623 local->sta_generation++; 624 smp_mb(); 625 626 /* simplify things and don't accept BA sessions yet */ 627 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 628 629 /* make the station visible */ 630 err = sta_info_hash_add(local, sta); 631 if (err) 632 goto out_drop_sta; 633 634 list_add_tail_rcu(&sta->list, &local->sta_list); 635 636 /* notify driver */ 637 err = sta_info_insert_drv_state(local, sdata, sta); 638 if (err) 639 goto out_remove; 640 641 set_sta_flag(sta, WLAN_STA_INSERTED); 642 643 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 644 ieee80211_recalc_min_chandef(sta->sdata); 645 if (!sta->sta.support_p2p_ps) 646 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 647 } 648 649 /* accept BA sessions now */ 650 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 651 652 ieee80211_sta_debugfs_add(sta); 653 rate_control_add_sta_debugfs(sta); 654 655 sinfo->generation = local->sta_generation; 656 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 657 kfree(sinfo); 658 659 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 660 661 /* move reference to rcu-protected */ 662 rcu_read_lock(); 663 mutex_unlock(&local->sta_mtx); 664 665 if (ieee80211_vif_is_mesh(&sdata->vif)) 666 mesh_accept_plinks_update(sdata); 667 668 return 0; 669 out_remove: 670 sta_info_hash_del(local, sta); 671 list_del_rcu(&sta->list); 672 out_drop_sta: 673 local->num_sta--; 674 synchronize_net(); 675 __cleanup_single_sta(sta); 676 out_err: 677 mutex_unlock(&local->sta_mtx); 678 kfree(sinfo); 679 rcu_read_lock(); 680 return err; 681 } 682 683 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 684 { 685 struct ieee80211_local *local = sta->local; 686 int err; 687 688 might_sleep(); 689 690 mutex_lock(&local->sta_mtx); 691 692 err = sta_info_insert_check(sta); 693 if (err) { 694 mutex_unlock(&local->sta_mtx); 695 rcu_read_lock(); 696 goto out_free; 697 } 698 699 err = sta_info_insert_finish(sta); 700 if (err) 701 goto out_free; 702 703 return 0; 704 out_free: 705 sta_info_free(local, sta); 706 return err; 707 } 708 709 int sta_info_insert(struct sta_info *sta) 710 { 711 int err = sta_info_insert_rcu(sta); 712 713 rcu_read_unlock(); 714 715 return err; 716 } 717 718 static inline void __bss_tim_set(u8 *tim, u16 id) 719 { 720 /* 721 * This format has been mandated by the IEEE specifications, 722 * so this line may not be changed to use the __set_bit() format. 723 */ 724 tim[id / 8] |= (1 << (id % 8)); 725 } 726 727 static inline void __bss_tim_clear(u8 *tim, u16 id) 728 { 729 /* 730 * This format has been mandated by the IEEE specifications, 731 * so this line may not be changed to use the __clear_bit() format. 732 */ 733 tim[id / 8] &= ~(1 << (id % 8)); 734 } 735 736 static inline bool __bss_tim_get(u8 *tim, u16 id) 737 { 738 /* 739 * This format has been mandated by the IEEE specifications, 740 * so this line may not be changed to use the test_bit() format. 741 */ 742 return tim[id / 8] & (1 << (id % 8)); 743 } 744 745 static unsigned long ieee80211_tids_for_ac(int ac) 746 { 747 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 748 switch (ac) { 749 case IEEE80211_AC_VO: 750 return BIT(6) | BIT(7); 751 case IEEE80211_AC_VI: 752 return BIT(4) | BIT(5); 753 case IEEE80211_AC_BE: 754 return BIT(0) | BIT(3); 755 case IEEE80211_AC_BK: 756 return BIT(1) | BIT(2); 757 default: 758 WARN_ON(1); 759 return 0; 760 } 761 } 762 763 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 764 { 765 struct ieee80211_local *local = sta->local; 766 struct ps_data *ps; 767 bool indicate_tim = false; 768 u8 ignore_for_tim = sta->sta.uapsd_queues; 769 int ac; 770 u16 id = sta->sta.aid; 771 772 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 773 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 774 if (WARN_ON_ONCE(!sta->sdata->bss)) 775 return; 776 777 ps = &sta->sdata->bss->ps; 778 #ifdef CONFIG_MAC80211_MESH 779 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 780 ps = &sta->sdata->u.mesh.ps; 781 #endif 782 } else { 783 return; 784 } 785 786 /* No need to do anything if the driver does all */ 787 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 788 return; 789 790 if (sta->dead) 791 goto done; 792 793 /* 794 * If all ACs are delivery-enabled then we should build 795 * the TIM bit for all ACs anyway; if only some are then 796 * we ignore those and build the TIM bit using only the 797 * non-enabled ones. 798 */ 799 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 800 ignore_for_tim = 0; 801 802 if (ignore_pending) 803 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 804 805 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 806 unsigned long tids; 807 808 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 809 continue; 810 811 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 812 !skb_queue_empty(&sta->ps_tx_buf[ac]); 813 if (indicate_tim) 814 break; 815 816 tids = ieee80211_tids_for_ac(ac); 817 818 indicate_tim |= 819 sta->driver_buffered_tids & tids; 820 indicate_tim |= 821 sta->txq_buffered_tids & tids; 822 } 823 824 done: 825 spin_lock_bh(&local->tim_lock); 826 827 if (indicate_tim == __bss_tim_get(ps->tim, id)) 828 goto out_unlock; 829 830 if (indicate_tim) 831 __bss_tim_set(ps->tim, id); 832 else 833 __bss_tim_clear(ps->tim, id); 834 835 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 836 local->tim_in_locked_section = true; 837 drv_set_tim(local, &sta->sta, indicate_tim); 838 local->tim_in_locked_section = false; 839 } 840 841 out_unlock: 842 spin_unlock_bh(&local->tim_lock); 843 } 844 845 void sta_info_recalc_tim(struct sta_info *sta) 846 { 847 __sta_info_recalc_tim(sta, false); 848 } 849 850 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 851 { 852 struct ieee80211_tx_info *info; 853 int timeout; 854 855 if (!skb) 856 return false; 857 858 info = IEEE80211_SKB_CB(skb); 859 860 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 861 timeout = (sta->listen_interval * 862 sta->sdata->vif.bss_conf.beacon_int * 863 32 / 15625) * HZ; 864 if (timeout < STA_TX_BUFFER_EXPIRE) 865 timeout = STA_TX_BUFFER_EXPIRE; 866 return time_after(jiffies, info->control.jiffies + timeout); 867 } 868 869 870 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 871 struct sta_info *sta, int ac) 872 { 873 unsigned long flags; 874 struct sk_buff *skb; 875 876 /* 877 * First check for frames that should expire on the filtered 878 * queue. Frames here were rejected by the driver and are on 879 * a separate queue to avoid reordering with normal PS-buffered 880 * frames. They also aren't accounted for right now in the 881 * total_ps_buffered counter. 882 */ 883 for (;;) { 884 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 885 skb = skb_peek(&sta->tx_filtered[ac]); 886 if (sta_info_buffer_expired(sta, skb)) 887 skb = __skb_dequeue(&sta->tx_filtered[ac]); 888 else 889 skb = NULL; 890 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 891 892 /* 893 * Frames are queued in order, so if this one 894 * hasn't expired yet we can stop testing. If 895 * we actually reached the end of the queue we 896 * also need to stop, of course. 897 */ 898 if (!skb) 899 break; 900 ieee80211_free_txskb(&local->hw, skb); 901 } 902 903 /* 904 * Now also check the normal PS-buffered queue, this will 905 * only find something if the filtered queue was emptied 906 * since the filtered frames are all before the normal PS 907 * buffered frames. 908 */ 909 for (;;) { 910 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 911 skb = skb_peek(&sta->ps_tx_buf[ac]); 912 if (sta_info_buffer_expired(sta, skb)) 913 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 914 else 915 skb = NULL; 916 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 917 918 /* 919 * frames are queued in order, so if this one 920 * hasn't expired yet (or we reached the end of 921 * the queue) we can stop testing 922 */ 923 if (!skb) 924 break; 925 926 local->total_ps_buffered--; 927 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 928 sta->sta.addr); 929 ieee80211_free_txskb(&local->hw, skb); 930 } 931 932 /* 933 * Finally, recalculate the TIM bit for this station -- it might 934 * now be clear because the station was too slow to retrieve its 935 * frames. 936 */ 937 sta_info_recalc_tim(sta); 938 939 /* 940 * Return whether there are any frames still buffered, this is 941 * used to check whether the cleanup timer still needs to run, 942 * if there are no frames we don't need to rearm the timer. 943 */ 944 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 945 skb_queue_empty(&sta->tx_filtered[ac])); 946 } 947 948 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 949 struct sta_info *sta) 950 { 951 bool have_buffered = false; 952 int ac; 953 954 /* This is only necessary for stations on BSS/MBSS interfaces */ 955 if (!sta->sdata->bss && 956 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 957 return false; 958 959 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 960 have_buffered |= 961 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 962 963 return have_buffered; 964 } 965 966 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 967 { 968 struct ieee80211_local *local; 969 struct ieee80211_sub_if_data *sdata; 970 int ret; 971 972 might_sleep(); 973 974 if (!sta) 975 return -ENOENT; 976 977 local = sta->local; 978 sdata = sta->sdata; 979 980 lockdep_assert_held(&local->sta_mtx); 981 982 /* 983 * Before removing the station from the driver and 984 * rate control, it might still start new aggregation 985 * sessions -- block that to make sure the tear-down 986 * will be sufficient. 987 */ 988 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 989 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 990 991 /* 992 * Before removing the station from the driver there might be pending 993 * rx frames on RSS queues sent prior to the disassociation - wait for 994 * all such frames to be processed. 995 */ 996 drv_sync_rx_queues(local, sta); 997 998 ret = sta_info_hash_del(local, sta); 999 if (WARN_ON(ret)) 1000 return ret; 1001 1002 /* 1003 * for TDLS peers, make sure to return to the base channel before 1004 * removal. 1005 */ 1006 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1007 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1008 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1009 } 1010 1011 list_del_rcu(&sta->list); 1012 sta->removed = true; 1013 1014 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1015 1016 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1017 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1018 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1019 1020 return 0; 1021 } 1022 1023 static void __sta_info_destroy_part2(struct sta_info *sta) 1024 { 1025 struct ieee80211_local *local = sta->local; 1026 struct ieee80211_sub_if_data *sdata = sta->sdata; 1027 struct station_info *sinfo; 1028 int ret; 1029 1030 /* 1031 * NOTE: This assumes at least synchronize_net() was done 1032 * after _part1 and before _part2! 1033 */ 1034 1035 might_sleep(); 1036 lockdep_assert_held(&local->sta_mtx); 1037 1038 /* now keys can no longer be reached */ 1039 ieee80211_free_sta_keys(local, sta); 1040 1041 /* disable TIM bit - last chance to tell driver */ 1042 __sta_info_recalc_tim(sta, true); 1043 1044 sta->dead = true; 1045 1046 local->num_sta--; 1047 local->sta_generation++; 1048 1049 while (sta->sta_state > IEEE80211_STA_NONE) { 1050 ret = sta_info_move_state(sta, sta->sta_state - 1); 1051 if (ret) { 1052 WARN_ON_ONCE(1); 1053 break; 1054 } 1055 } 1056 1057 if (sta->uploaded) { 1058 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1059 IEEE80211_STA_NOTEXIST); 1060 WARN_ON_ONCE(ret != 0); 1061 } 1062 1063 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1064 1065 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1066 if (sinfo) 1067 sta_set_sinfo(sta, sinfo, true); 1068 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1069 kfree(sinfo); 1070 1071 rate_control_remove_sta_debugfs(sta); 1072 ieee80211_sta_debugfs_remove(sta); 1073 1074 cleanup_single_sta(sta); 1075 } 1076 1077 int __must_check __sta_info_destroy(struct sta_info *sta) 1078 { 1079 int err = __sta_info_destroy_part1(sta); 1080 1081 if (err) 1082 return err; 1083 1084 synchronize_net(); 1085 1086 __sta_info_destroy_part2(sta); 1087 1088 return 0; 1089 } 1090 1091 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1092 { 1093 struct sta_info *sta; 1094 int ret; 1095 1096 mutex_lock(&sdata->local->sta_mtx); 1097 sta = sta_info_get(sdata, addr); 1098 ret = __sta_info_destroy(sta); 1099 mutex_unlock(&sdata->local->sta_mtx); 1100 1101 return ret; 1102 } 1103 1104 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1105 const u8 *addr) 1106 { 1107 struct sta_info *sta; 1108 int ret; 1109 1110 mutex_lock(&sdata->local->sta_mtx); 1111 sta = sta_info_get_bss(sdata, addr); 1112 ret = __sta_info_destroy(sta); 1113 mutex_unlock(&sdata->local->sta_mtx); 1114 1115 return ret; 1116 } 1117 1118 static void sta_info_cleanup(struct timer_list *t) 1119 { 1120 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1121 struct sta_info *sta; 1122 bool timer_needed = false; 1123 1124 rcu_read_lock(); 1125 list_for_each_entry_rcu(sta, &local->sta_list, list) 1126 if (sta_info_cleanup_expire_buffered(local, sta)) 1127 timer_needed = true; 1128 rcu_read_unlock(); 1129 1130 if (local->quiescing) 1131 return; 1132 1133 if (!timer_needed) 1134 return; 1135 1136 mod_timer(&local->sta_cleanup, 1137 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1138 } 1139 1140 int sta_info_init(struct ieee80211_local *local) 1141 { 1142 int err; 1143 1144 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1145 if (err) 1146 return err; 1147 1148 spin_lock_init(&local->tim_lock); 1149 mutex_init(&local->sta_mtx); 1150 INIT_LIST_HEAD(&local->sta_list); 1151 1152 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1153 return 0; 1154 } 1155 1156 void sta_info_stop(struct ieee80211_local *local) 1157 { 1158 del_timer_sync(&local->sta_cleanup); 1159 rhltable_destroy(&local->sta_hash); 1160 } 1161 1162 1163 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1164 { 1165 struct ieee80211_local *local = sdata->local; 1166 struct sta_info *sta, *tmp; 1167 LIST_HEAD(free_list); 1168 int ret = 0; 1169 1170 might_sleep(); 1171 1172 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1173 WARN_ON(vlans && !sdata->bss); 1174 1175 mutex_lock(&local->sta_mtx); 1176 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1177 if (sdata == sta->sdata || 1178 (vlans && sdata->bss == sta->sdata->bss)) { 1179 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1180 list_add(&sta->free_list, &free_list); 1181 ret++; 1182 } 1183 } 1184 1185 if (!list_empty(&free_list)) { 1186 synchronize_net(); 1187 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1188 __sta_info_destroy_part2(sta); 1189 } 1190 mutex_unlock(&local->sta_mtx); 1191 1192 return ret; 1193 } 1194 1195 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1196 unsigned long exp_time) 1197 { 1198 struct ieee80211_local *local = sdata->local; 1199 struct sta_info *sta, *tmp; 1200 1201 mutex_lock(&local->sta_mtx); 1202 1203 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1204 unsigned long last_active = ieee80211_sta_last_active(sta); 1205 1206 if (sdata != sta->sdata) 1207 continue; 1208 1209 if (time_is_before_jiffies(last_active + exp_time)) { 1210 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1211 sta->sta.addr); 1212 1213 if (ieee80211_vif_is_mesh(&sdata->vif) && 1214 test_sta_flag(sta, WLAN_STA_PS_STA)) 1215 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1216 1217 WARN_ON(__sta_info_destroy(sta)); 1218 } 1219 } 1220 1221 mutex_unlock(&local->sta_mtx); 1222 } 1223 1224 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1225 const u8 *addr, 1226 const u8 *localaddr) 1227 { 1228 struct ieee80211_local *local = hw_to_local(hw); 1229 struct rhlist_head *tmp; 1230 struct sta_info *sta; 1231 1232 /* 1233 * Just return a random station if localaddr is NULL 1234 * ... first in list. 1235 */ 1236 for_each_sta_info(local, addr, sta, tmp) { 1237 if (localaddr && 1238 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1239 continue; 1240 if (!sta->uploaded) 1241 return NULL; 1242 return &sta->sta; 1243 } 1244 1245 return NULL; 1246 } 1247 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1248 1249 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1250 const u8 *addr) 1251 { 1252 struct sta_info *sta; 1253 1254 if (!vif) 1255 return NULL; 1256 1257 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1258 if (!sta) 1259 return NULL; 1260 1261 if (!sta->uploaded) 1262 return NULL; 1263 1264 return &sta->sta; 1265 } 1266 EXPORT_SYMBOL(ieee80211_find_sta); 1267 1268 /* powersave support code */ 1269 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1270 { 1271 struct ieee80211_sub_if_data *sdata = sta->sdata; 1272 struct ieee80211_local *local = sdata->local; 1273 struct sk_buff_head pending; 1274 int filtered = 0, buffered = 0, ac, i; 1275 unsigned long flags; 1276 struct ps_data *ps; 1277 1278 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1279 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1280 u.ap); 1281 1282 if (sdata->vif.type == NL80211_IFTYPE_AP) 1283 ps = &sdata->bss->ps; 1284 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1285 ps = &sdata->u.mesh.ps; 1286 else 1287 return; 1288 1289 clear_sta_flag(sta, WLAN_STA_SP); 1290 1291 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1292 sta->driver_buffered_tids = 0; 1293 sta->txq_buffered_tids = 0; 1294 1295 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1296 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1297 1298 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1299 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1300 continue; 1301 1302 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1303 } 1304 1305 skb_queue_head_init(&pending); 1306 1307 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1308 spin_lock(&sta->ps_lock); 1309 /* Send all buffered frames to the station */ 1310 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1311 int count = skb_queue_len(&pending), tmp; 1312 1313 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1314 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1315 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1316 tmp = skb_queue_len(&pending); 1317 filtered += tmp - count; 1318 count = tmp; 1319 1320 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1321 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1322 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1323 tmp = skb_queue_len(&pending); 1324 buffered += tmp - count; 1325 } 1326 1327 ieee80211_add_pending_skbs(local, &pending); 1328 1329 /* now we're no longer in the deliver code */ 1330 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1331 1332 /* The station might have polled and then woken up before we responded, 1333 * so clear these flags now to avoid them sticking around. 1334 */ 1335 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1336 clear_sta_flag(sta, WLAN_STA_UAPSD); 1337 spin_unlock(&sta->ps_lock); 1338 1339 atomic_dec(&ps->num_sta_ps); 1340 1341 /* This station just woke up and isn't aware of our SMPS state */ 1342 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1343 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1344 sdata->smps_mode) && 1345 sta->known_smps_mode != sdata->bss->req_smps && 1346 sta_info_tx_streams(sta) != 1) { 1347 ht_dbg(sdata, 1348 "%pM just woke up and MIMO capable - update SMPS\n", 1349 sta->sta.addr); 1350 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1351 sta->sta.addr, 1352 sdata->vif.bss_conf.bssid); 1353 } 1354 1355 local->total_ps_buffered -= buffered; 1356 1357 sta_info_recalc_tim(sta); 1358 1359 ps_dbg(sdata, 1360 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1361 sta->sta.addr, sta->sta.aid, filtered, buffered); 1362 1363 ieee80211_check_fast_xmit(sta); 1364 } 1365 1366 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1367 enum ieee80211_frame_release_type reason, 1368 bool call_driver, bool more_data) 1369 { 1370 struct ieee80211_sub_if_data *sdata = sta->sdata; 1371 struct ieee80211_local *local = sdata->local; 1372 struct ieee80211_qos_hdr *nullfunc; 1373 struct sk_buff *skb; 1374 int size = sizeof(*nullfunc); 1375 __le16 fc; 1376 bool qos = sta->sta.wme; 1377 struct ieee80211_tx_info *info; 1378 struct ieee80211_chanctx_conf *chanctx_conf; 1379 1380 /* Don't send NDPs when STA is connected HE */ 1381 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1382 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE)) 1383 return; 1384 1385 if (qos) { 1386 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1387 IEEE80211_STYPE_QOS_NULLFUNC | 1388 IEEE80211_FCTL_FROMDS); 1389 } else { 1390 size -= 2; 1391 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1392 IEEE80211_STYPE_NULLFUNC | 1393 IEEE80211_FCTL_FROMDS); 1394 } 1395 1396 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1397 if (!skb) 1398 return; 1399 1400 skb_reserve(skb, local->hw.extra_tx_headroom); 1401 1402 nullfunc = skb_put(skb, size); 1403 nullfunc->frame_control = fc; 1404 nullfunc->duration_id = 0; 1405 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1406 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1407 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1408 nullfunc->seq_ctrl = 0; 1409 1410 skb->priority = tid; 1411 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1412 if (qos) { 1413 nullfunc->qos_ctrl = cpu_to_le16(tid); 1414 1415 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1416 nullfunc->qos_ctrl |= 1417 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1418 if (more_data) 1419 nullfunc->frame_control |= 1420 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1421 } 1422 } 1423 1424 info = IEEE80211_SKB_CB(skb); 1425 1426 /* 1427 * Tell TX path to send this frame even though the 1428 * STA may still remain is PS mode after this frame 1429 * exchange. Also set EOSP to indicate this packet 1430 * ends the poll/service period. 1431 */ 1432 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1433 IEEE80211_TX_STATUS_EOSP | 1434 IEEE80211_TX_CTL_REQ_TX_STATUS; 1435 1436 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1437 1438 if (call_driver) 1439 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1440 reason, false); 1441 1442 skb->dev = sdata->dev; 1443 1444 rcu_read_lock(); 1445 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1446 if (WARN_ON(!chanctx_conf)) { 1447 rcu_read_unlock(); 1448 kfree_skb(skb); 1449 return; 1450 } 1451 1452 info->band = chanctx_conf->def.chan->band; 1453 ieee80211_xmit(sdata, sta, skb, 0); 1454 rcu_read_unlock(); 1455 } 1456 1457 static int find_highest_prio_tid(unsigned long tids) 1458 { 1459 /* lower 3 TIDs aren't ordered perfectly */ 1460 if (tids & 0xF8) 1461 return fls(tids) - 1; 1462 /* TID 0 is BE just like TID 3 */ 1463 if (tids & BIT(0)) 1464 return 0; 1465 return fls(tids) - 1; 1466 } 1467 1468 /* Indicates if the MORE_DATA bit should be set in the last 1469 * frame obtained by ieee80211_sta_ps_get_frames. 1470 * Note that driver_release_tids is relevant only if 1471 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1472 */ 1473 static bool 1474 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1475 enum ieee80211_frame_release_type reason, 1476 unsigned long driver_release_tids) 1477 { 1478 int ac; 1479 1480 /* If the driver has data on more than one TID then 1481 * certainly there's more data if we release just a 1482 * single frame now (from a single TID). This will 1483 * only happen for PS-Poll. 1484 */ 1485 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1486 hweight16(driver_release_tids) > 1) 1487 return true; 1488 1489 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1490 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1491 continue; 1492 1493 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1494 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1495 return true; 1496 } 1497 1498 return false; 1499 } 1500 1501 static void 1502 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1503 enum ieee80211_frame_release_type reason, 1504 struct sk_buff_head *frames, 1505 unsigned long *driver_release_tids) 1506 { 1507 struct ieee80211_sub_if_data *sdata = sta->sdata; 1508 struct ieee80211_local *local = sdata->local; 1509 int ac; 1510 1511 /* Get response frame(s) and more data bit for the last one. */ 1512 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1513 unsigned long tids; 1514 1515 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1516 continue; 1517 1518 tids = ieee80211_tids_for_ac(ac); 1519 1520 /* if we already have frames from software, then we can't also 1521 * release from hardware queues 1522 */ 1523 if (skb_queue_empty(frames)) { 1524 *driver_release_tids |= 1525 sta->driver_buffered_tids & tids; 1526 *driver_release_tids |= sta->txq_buffered_tids & tids; 1527 } 1528 1529 if (!*driver_release_tids) { 1530 struct sk_buff *skb; 1531 1532 while (n_frames > 0) { 1533 skb = skb_dequeue(&sta->tx_filtered[ac]); 1534 if (!skb) { 1535 skb = skb_dequeue( 1536 &sta->ps_tx_buf[ac]); 1537 if (skb) 1538 local->total_ps_buffered--; 1539 } 1540 if (!skb) 1541 break; 1542 n_frames--; 1543 __skb_queue_tail(frames, skb); 1544 } 1545 } 1546 1547 /* If we have more frames buffered on this AC, then abort the 1548 * loop since we can't send more data from other ACs before 1549 * the buffered frames from this. 1550 */ 1551 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1552 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1553 break; 1554 } 1555 } 1556 1557 static void 1558 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1559 int n_frames, u8 ignored_acs, 1560 enum ieee80211_frame_release_type reason) 1561 { 1562 struct ieee80211_sub_if_data *sdata = sta->sdata; 1563 struct ieee80211_local *local = sdata->local; 1564 unsigned long driver_release_tids = 0; 1565 struct sk_buff_head frames; 1566 bool more_data; 1567 1568 /* Service or PS-Poll period starts */ 1569 set_sta_flag(sta, WLAN_STA_SP); 1570 1571 __skb_queue_head_init(&frames); 1572 1573 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1574 &frames, &driver_release_tids); 1575 1576 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1577 1578 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1579 driver_release_tids = 1580 BIT(find_highest_prio_tid(driver_release_tids)); 1581 1582 if (skb_queue_empty(&frames) && !driver_release_tids) { 1583 int tid, ac; 1584 1585 /* 1586 * For PS-Poll, this can only happen due to a race condition 1587 * when we set the TIM bit and the station notices it, but 1588 * before it can poll for the frame we expire it. 1589 * 1590 * For uAPSD, this is said in the standard (11.2.1.5 h): 1591 * At each unscheduled SP for a non-AP STA, the AP shall 1592 * attempt to transmit at least one MSDU or MMPDU, but no 1593 * more than the value specified in the Max SP Length field 1594 * in the QoS Capability element from delivery-enabled ACs, 1595 * that are destined for the non-AP STA. 1596 * 1597 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1598 */ 1599 1600 /* This will evaluate to 1, 3, 5 or 7. */ 1601 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1602 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1603 break; 1604 tid = 7 - 2 * ac; 1605 1606 ieee80211_send_null_response(sta, tid, reason, true, false); 1607 } else if (!driver_release_tids) { 1608 struct sk_buff_head pending; 1609 struct sk_buff *skb; 1610 int num = 0; 1611 u16 tids = 0; 1612 bool need_null = false; 1613 1614 skb_queue_head_init(&pending); 1615 1616 while ((skb = __skb_dequeue(&frames))) { 1617 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1618 struct ieee80211_hdr *hdr = (void *) skb->data; 1619 u8 *qoshdr = NULL; 1620 1621 num++; 1622 1623 /* 1624 * Tell TX path to send this frame even though the 1625 * STA may still remain is PS mode after this frame 1626 * exchange. 1627 */ 1628 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1629 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1630 1631 /* 1632 * Use MoreData flag to indicate whether there are 1633 * more buffered frames for this STA 1634 */ 1635 if (more_data || !skb_queue_empty(&frames)) 1636 hdr->frame_control |= 1637 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1638 else 1639 hdr->frame_control &= 1640 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1641 1642 if (ieee80211_is_data_qos(hdr->frame_control) || 1643 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1644 qoshdr = ieee80211_get_qos_ctl(hdr); 1645 1646 tids |= BIT(skb->priority); 1647 1648 __skb_queue_tail(&pending, skb); 1649 1650 /* end service period after last frame or add one */ 1651 if (!skb_queue_empty(&frames)) 1652 continue; 1653 1654 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1655 /* for PS-Poll, there's only one frame */ 1656 info->flags |= IEEE80211_TX_STATUS_EOSP | 1657 IEEE80211_TX_CTL_REQ_TX_STATUS; 1658 break; 1659 } 1660 1661 /* For uAPSD, things are a bit more complicated. If the 1662 * last frame has a QoS header (i.e. is a QoS-data or 1663 * QoS-nulldata frame) then just set the EOSP bit there 1664 * and be done. 1665 * If the frame doesn't have a QoS header (which means 1666 * it should be a bufferable MMPDU) then we can't set 1667 * the EOSP bit in the QoS header; add a QoS-nulldata 1668 * frame to the list to send it after the MMPDU. 1669 * 1670 * Note that this code is only in the mac80211-release 1671 * code path, we assume that the driver will not buffer 1672 * anything but QoS-data frames, or if it does, will 1673 * create the QoS-nulldata frame by itself if needed. 1674 * 1675 * Cf. 802.11-2012 10.2.1.10 (c). 1676 */ 1677 if (qoshdr) { 1678 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1679 1680 info->flags |= IEEE80211_TX_STATUS_EOSP | 1681 IEEE80211_TX_CTL_REQ_TX_STATUS; 1682 } else { 1683 /* The standard isn't completely clear on this 1684 * as it says the more-data bit should be set 1685 * if there are more BUs. The QoS-Null frame 1686 * we're about to send isn't buffered yet, we 1687 * only create it below, but let's pretend it 1688 * was buffered just in case some clients only 1689 * expect more-data=0 when eosp=1. 1690 */ 1691 hdr->frame_control |= 1692 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1693 need_null = true; 1694 num++; 1695 } 1696 break; 1697 } 1698 1699 drv_allow_buffered_frames(local, sta, tids, num, 1700 reason, more_data); 1701 1702 ieee80211_add_pending_skbs(local, &pending); 1703 1704 if (need_null) 1705 ieee80211_send_null_response( 1706 sta, find_highest_prio_tid(tids), 1707 reason, false, false); 1708 1709 sta_info_recalc_tim(sta); 1710 } else { 1711 int tid; 1712 1713 /* 1714 * We need to release a frame that is buffered somewhere in the 1715 * driver ... it'll have to handle that. 1716 * Note that the driver also has to check the number of frames 1717 * on the TIDs we're releasing from - if there are more than 1718 * n_frames it has to set the more-data bit (if we didn't ask 1719 * it to set it anyway due to other buffered frames); if there 1720 * are fewer than n_frames it has to make sure to adjust that 1721 * to allow the service period to end properly. 1722 */ 1723 drv_release_buffered_frames(local, sta, driver_release_tids, 1724 n_frames, reason, more_data); 1725 1726 /* 1727 * Note that we don't recalculate the TIM bit here as it would 1728 * most likely have no effect at all unless the driver told us 1729 * that the TID(s) became empty before returning here from the 1730 * release function. 1731 * Either way, however, when the driver tells us that the TID(s) 1732 * became empty or we find that a txq became empty, we'll do the 1733 * TIM recalculation. 1734 */ 1735 1736 if (!sta->sta.txq[0]) 1737 return; 1738 1739 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1740 if (!sta->sta.txq[tid] || 1741 !(driver_release_tids & BIT(tid)) || 1742 txq_has_queue(sta->sta.txq[tid])) 1743 continue; 1744 1745 sta_info_recalc_tim(sta); 1746 break; 1747 } 1748 } 1749 } 1750 1751 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1752 { 1753 u8 ignore_for_response = sta->sta.uapsd_queues; 1754 1755 /* 1756 * If all ACs are delivery-enabled then we should reply 1757 * from any of them, if only some are enabled we reply 1758 * only from the non-enabled ones. 1759 */ 1760 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1761 ignore_for_response = 0; 1762 1763 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1764 IEEE80211_FRAME_RELEASE_PSPOLL); 1765 } 1766 1767 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1768 { 1769 int n_frames = sta->sta.max_sp; 1770 u8 delivery_enabled = sta->sta.uapsd_queues; 1771 1772 /* 1773 * If we ever grow support for TSPEC this might happen if 1774 * the TSPEC update from hostapd comes in between a trigger 1775 * frame setting WLAN_STA_UAPSD in the RX path and this 1776 * actually getting called. 1777 */ 1778 if (!delivery_enabled) 1779 return; 1780 1781 switch (sta->sta.max_sp) { 1782 case 1: 1783 n_frames = 2; 1784 break; 1785 case 2: 1786 n_frames = 4; 1787 break; 1788 case 3: 1789 n_frames = 6; 1790 break; 1791 case 0: 1792 /* XXX: what is a good value? */ 1793 n_frames = 128; 1794 break; 1795 } 1796 1797 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1798 IEEE80211_FRAME_RELEASE_UAPSD); 1799 } 1800 1801 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1802 struct ieee80211_sta *pubsta, bool block) 1803 { 1804 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1805 1806 trace_api_sta_block_awake(sta->local, pubsta, block); 1807 1808 if (block) { 1809 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1810 ieee80211_clear_fast_xmit(sta); 1811 return; 1812 } 1813 1814 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1815 return; 1816 1817 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1818 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1819 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1820 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1821 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1822 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1823 /* must be asleep in this case */ 1824 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1825 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1826 } else { 1827 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1828 ieee80211_check_fast_xmit(sta); 1829 } 1830 } 1831 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1832 1833 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1834 { 1835 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1836 struct ieee80211_local *local = sta->local; 1837 1838 trace_api_eosp(local, pubsta); 1839 1840 clear_sta_flag(sta, WLAN_STA_SP); 1841 } 1842 EXPORT_SYMBOL(ieee80211_sta_eosp); 1843 1844 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1845 { 1846 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1847 enum ieee80211_frame_release_type reason; 1848 bool more_data; 1849 1850 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1851 1852 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1853 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1854 reason, 0); 1855 1856 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1857 } 1858 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1859 1860 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1861 u8 tid, bool buffered) 1862 { 1863 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1864 1865 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1866 return; 1867 1868 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1869 1870 if (buffered) 1871 set_bit(tid, &sta->driver_buffered_tids); 1872 else 1873 clear_bit(tid, &sta->driver_buffered_tids); 1874 1875 sta_info_recalc_tim(sta); 1876 } 1877 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1878 1879 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1880 u32 tx_airtime, u32 rx_airtime) 1881 { 1882 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1883 struct ieee80211_local *local = sta->sdata->local; 1884 u8 ac = ieee80211_ac_from_tid(tid); 1885 u32 airtime = 0; 1886 1887 if (sta->local->airtime_flags & AIRTIME_USE_TX) 1888 airtime += tx_airtime; 1889 if (sta->local->airtime_flags & AIRTIME_USE_RX) 1890 airtime += rx_airtime; 1891 1892 spin_lock_bh(&local->active_txq_lock[ac]); 1893 sta->airtime[ac].tx_airtime += tx_airtime; 1894 sta->airtime[ac].rx_airtime += rx_airtime; 1895 sta->airtime[ac].deficit -= airtime; 1896 spin_unlock_bh(&local->active_txq_lock[ac]); 1897 } 1898 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1899 1900 int sta_info_move_state(struct sta_info *sta, 1901 enum ieee80211_sta_state new_state) 1902 { 1903 might_sleep(); 1904 1905 if (sta->sta_state == new_state) 1906 return 0; 1907 1908 /* check allowed transitions first */ 1909 1910 switch (new_state) { 1911 case IEEE80211_STA_NONE: 1912 if (sta->sta_state != IEEE80211_STA_AUTH) 1913 return -EINVAL; 1914 break; 1915 case IEEE80211_STA_AUTH: 1916 if (sta->sta_state != IEEE80211_STA_NONE && 1917 sta->sta_state != IEEE80211_STA_ASSOC) 1918 return -EINVAL; 1919 break; 1920 case IEEE80211_STA_ASSOC: 1921 if (sta->sta_state != IEEE80211_STA_AUTH && 1922 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1923 return -EINVAL; 1924 break; 1925 case IEEE80211_STA_AUTHORIZED: 1926 if (sta->sta_state != IEEE80211_STA_ASSOC) 1927 return -EINVAL; 1928 break; 1929 default: 1930 WARN(1, "invalid state %d", new_state); 1931 return -EINVAL; 1932 } 1933 1934 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1935 sta->sta.addr, new_state); 1936 1937 /* 1938 * notify the driver before the actual changes so it can 1939 * fail the transition 1940 */ 1941 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1942 int err = drv_sta_state(sta->local, sta->sdata, sta, 1943 sta->sta_state, new_state); 1944 if (err) 1945 return err; 1946 } 1947 1948 /* reflect the change in all state variables */ 1949 1950 switch (new_state) { 1951 case IEEE80211_STA_NONE: 1952 if (sta->sta_state == IEEE80211_STA_AUTH) 1953 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1954 break; 1955 case IEEE80211_STA_AUTH: 1956 if (sta->sta_state == IEEE80211_STA_NONE) { 1957 set_bit(WLAN_STA_AUTH, &sta->_flags); 1958 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 1959 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1960 ieee80211_recalc_min_chandef(sta->sdata); 1961 if (!sta->sta.support_p2p_ps) 1962 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1963 } 1964 break; 1965 case IEEE80211_STA_ASSOC: 1966 if (sta->sta_state == IEEE80211_STA_AUTH) { 1967 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1968 ieee80211_recalc_min_chandef(sta->sdata); 1969 if (!sta->sta.support_p2p_ps) 1970 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1971 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1972 ieee80211_vif_dec_num_mcast(sta->sdata); 1973 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1974 ieee80211_clear_fast_xmit(sta); 1975 ieee80211_clear_fast_rx(sta); 1976 } 1977 break; 1978 case IEEE80211_STA_AUTHORIZED: 1979 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1980 ieee80211_vif_inc_num_mcast(sta->sdata); 1981 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1982 ieee80211_check_fast_xmit(sta); 1983 ieee80211_check_fast_rx(sta); 1984 } 1985 break; 1986 default: 1987 break; 1988 } 1989 1990 sta->sta_state = new_state; 1991 1992 return 0; 1993 } 1994 1995 u8 sta_info_tx_streams(struct sta_info *sta) 1996 { 1997 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1998 u8 rx_streams; 1999 2000 if (!sta->sta.ht_cap.ht_supported) 2001 return 1; 2002 2003 if (sta->sta.vht_cap.vht_supported) { 2004 int i; 2005 u16 tx_mcs_map = 2006 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2007 2008 for (i = 7; i >= 0; i--) 2009 if ((tx_mcs_map & (0x3 << (i * 2))) != 2010 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2011 return i + 1; 2012 } 2013 2014 if (ht_cap->mcs.rx_mask[3]) 2015 rx_streams = 4; 2016 else if (ht_cap->mcs.rx_mask[2]) 2017 rx_streams = 3; 2018 else if (ht_cap->mcs.rx_mask[1]) 2019 rx_streams = 2; 2020 else 2021 rx_streams = 1; 2022 2023 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2024 return rx_streams; 2025 2026 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2027 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2028 } 2029 2030 static struct ieee80211_sta_rx_stats * 2031 sta_get_last_rx_stats(struct sta_info *sta) 2032 { 2033 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2034 struct ieee80211_local *local = sta->local; 2035 int cpu; 2036 2037 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2038 return stats; 2039 2040 for_each_possible_cpu(cpu) { 2041 struct ieee80211_sta_rx_stats *cpustats; 2042 2043 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2044 2045 if (time_after(cpustats->last_rx, stats->last_rx)) 2046 stats = cpustats; 2047 } 2048 2049 return stats; 2050 } 2051 2052 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2053 struct rate_info *rinfo) 2054 { 2055 rinfo->bw = STA_STATS_GET(BW, rate); 2056 2057 switch (STA_STATS_GET(TYPE, rate)) { 2058 case STA_STATS_RATE_TYPE_VHT: 2059 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2060 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2061 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2062 if (STA_STATS_GET(SGI, rate)) 2063 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2064 break; 2065 case STA_STATS_RATE_TYPE_HT: 2066 rinfo->flags = RATE_INFO_FLAGS_MCS; 2067 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2068 if (STA_STATS_GET(SGI, rate)) 2069 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2070 break; 2071 case STA_STATS_RATE_TYPE_LEGACY: { 2072 struct ieee80211_supported_band *sband; 2073 u16 brate; 2074 unsigned int shift; 2075 int band = STA_STATS_GET(LEGACY_BAND, rate); 2076 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2077 2078 sband = local->hw.wiphy->bands[band]; 2079 brate = sband->bitrates[rate_idx].bitrate; 2080 if (rinfo->bw == RATE_INFO_BW_5) 2081 shift = 2; 2082 else if (rinfo->bw == RATE_INFO_BW_10) 2083 shift = 1; 2084 else 2085 shift = 0; 2086 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2087 break; 2088 } 2089 case STA_STATS_RATE_TYPE_HE: 2090 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2091 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2092 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2093 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2094 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2095 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2096 break; 2097 } 2098 } 2099 2100 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2101 { 2102 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2103 2104 if (rate == STA_STATS_RATE_INVALID) 2105 return -EINVAL; 2106 2107 sta_stats_decode_rate(sta->local, rate, rinfo); 2108 return 0; 2109 } 2110 2111 static void sta_set_tidstats(struct sta_info *sta, 2112 struct cfg80211_tid_stats *tidstats, 2113 int tid) 2114 { 2115 struct ieee80211_local *local = sta->local; 2116 2117 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2118 unsigned int start; 2119 2120 do { 2121 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2122 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2123 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2124 2125 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2126 } 2127 2128 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2129 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2130 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2131 } 2132 2133 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2134 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2135 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2136 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2137 } 2138 2139 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2140 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2141 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2142 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2143 } 2144 2145 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2146 spin_lock_bh(&local->fq.lock); 2147 rcu_read_lock(); 2148 2149 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2150 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2151 to_txq_info(sta->sta.txq[tid])); 2152 2153 rcu_read_unlock(); 2154 spin_unlock_bh(&local->fq.lock); 2155 } 2156 } 2157 2158 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2159 { 2160 unsigned int start; 2161 u64 value; 2162 2163 do { 2164 start = u64_stats_fetch_begin(&rxstats->syncp); 2165 value = rxstats->bytes; 2166 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2167 2168 return value; 2169 } 2170 2171 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2172 bool tidstats) 2173 { 2174 struct ieee80211_sub_if_data *sdata = sta->sdata; 2175 struct ieee80211_local *local = sdata->local; 2176 u32 thr = 0; 2177 int i, ac, cpu; 2178 struct ieee80211_sta_rx_stats *last_rxstats; 2179 2180 last_rxstats = sta_get_last_rx_stats(sta); 2181 2182 sinfo->generation = sdata->local->sta_generation; 2183 2184 /* do before driver, so beacon filtering drivers have a 2185 * chance to e.g. just add the number of filtered beacons 2186 * (or just modify the value entirely, of course) 2187 */ 2188 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2189 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2190 2191 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2192 2193 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2194 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2195 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2196 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2197 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2198 2199 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2200 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2201 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2202 } 2203 2204 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2205 sinfo->inactive_time = 2206 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2207 2208 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2209 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2210 sinfo->tx_bytes = 0; 2211 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2212 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2213 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2214 } 2215 2216 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2217 sinfo->tx_packets = 0; 2218 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2219 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2220 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2221 } 2222 2223 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2224 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2225 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2226 2227 if (sta->pcpu_rx_stats) { 2228 for_each_possible_cpu(cpu) { 2229 struct ieee80211_sta_rx_stats *cpurxs; 2230 2231 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2232 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2233 } 2234 } 2235 2236 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2237 } 2238 2239 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2240 sinfo->rx_packets = sta->rx_stats.packets; 2241 if (sta->pcpu_rx_stats) { 2242 for_each_possible_cpu(cpu) { 2243 struct ieee80211_sta_rx_stats *cpurxs; 2244 2245 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2246 sinfo->rx_packets += cpurxs->packets; 2247 } 2248 } 2249 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2250 } 2251 2252 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2253 sinfo->tx_retries = sta->status_stats.retry_count; 2254 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2255 } 2256 2257 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2258 sinfo->tx_failed = sta->status_stats.retry_failed; 2259 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2260 } 2261 2262 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2263 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2264 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2265 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2266 } 2267 2268 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2269 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2270 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2271 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2272 } 2273 2274 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2275 sinfo->airtime_weight = sta->airtime_weight; 2276 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2277 } 2278 2279 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2280 if (sta->pcpu_rx_stats) { 2281 for_each_possible_cpu(cpu) { 2282 struct ieee80211_sta_rx_stats *cpurxs; 2283 2284 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2285 sinfo->rx_dropped_misc += cpurxs->dropped; 2286 } 2287 } 2288 2289 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2290 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2291 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2292 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2293 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2294 } 2295 2296 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2297 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2298 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2299 sinfo->signal = (s8)last_rxstats->last_signal; 2300 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2301 } 2302 2303 if (!sta->pcpu_rx_stats && 2304 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2305 sinfo->signal_avg = 2306 -ewma_signal_read(&sta->rx_stats_avg.signal); 2307 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2308 } 2309 } 2310 2311 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2312 * the sta->rx_stats struct, so the check here is fine with and without 2313 * pcpu statistics 2314 */ 2315 if (last_rxstats->chains && 2316 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2317 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2318 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2319 if (!sta->pcpu_rx_stats) 2320 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2321 2322 sinfo->chains = last_rxstats->chains; 2323 2324 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2325 sinfo->chain_signal[i] = 2326 last_rxstats->chain_signal_last[i]; 2327 sinfo->chain_signal_avg[i] = 2328 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2329 } 2330 } 2331 2332 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2333 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2334 &sinfo->txrate); 2335 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2336 } 2337 2338 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2339 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2340 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2341 } 2342 2343 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2344 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2345 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2346 } 2347 2348 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2349 #ifdef CONFIG_MAC80211_MESH 2350 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2351 BIT_ULL(NL80211_STA_INFO_PLID) | 2352 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2353 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2354 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2355 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2356 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE); 2357 2358 sinfo->llid = sta->mesh->llid; 2359 sinfo->plid = sta->mesh->plid; 2360 sinfo->plink_state = sta->mesh->plink_state; 2361 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2362 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2363 sinfo->t_offset = sta->mesh->t_offset; 2364 } 2365 sinfo->local_pm = sta->mesh->local_pm; 2366 sinfo->peer_pm = sta->mesh->peer_pm; 2367 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2368 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2369 #endif 2370 } 2371 2372 sinfo->bss_param.flags = 0; 2373 if (sdata->vif.bss_conf.use_cts_prot) 2374 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2375 if (sdata->vif.bss_conf.use_short_preamble) 2376 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2377 if (sdata->vif.bss_conf.use_short_slot) 2378 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2379 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2380 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2381 2382 sinfo->sta_flags.set = 0; 2383 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2384 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2385 BIT(NL80211_STA_FLAG_WME) | 2386 BIT(NL80211_STA_FLAG_MFP) | 2387 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2388 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2389 BIT(NL80211_STA_FLAG_TDLS_PEER); 2390 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2391 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2392 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2393 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2394 if (sta->sta.wme) 2395 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2396 if (test_sta_flag(sta, WLAN_STA_MFP)) 2397 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2398 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2399 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2400 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2401 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2402 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2403 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2404 2405 thr = sta_get_expected_throughput(sta); 2406 2407 if (thr != 0) { 2408 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2409 sinfo->expected_throughput = thr; 2410 } 2411 2412 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2413 sta->status_stats.ack_signal_filled) { 2414 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2415 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2416 } 2417 2418 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2419 sta->status_stats.ack_signal_filled) { 2420 sinfo->avg_ack_signal = 2421 -(s8)ewma_avg_signal_read( 2422 &sta->status_stats.avg_ack_signal); 2423 sinfo->filled |= 2424 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2425 } 2426 2427 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2428 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2429 sinfo->airtime_link_metric = 2430 airtime_link_metric_get(local, sta); 2431 } 2432 } 2433 2434 u32 sta_get_expected_throughput(struct sta_info *sta) 2435 { 2436 struct ieee80211_sub_if_data *sdata = sta->sdata; 2437 struct ieee80211_local *local = sdata->local; 2438 struct rate_control_ref *ref = NULL; 2439 u32 thr = 0; 2440 2441 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2442 ref = local->rate_ctrl; 2443 2444 /* check if the driver has a SW RC implementation */ 2445 if (ref && ref->ops->get_expected_throughput) 2446 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2447 else 2448 thr = drv_get_expected_throughput(local, sta); 2449 2450 return thr; 2451 } 2452 2453 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2454 { 2455 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2456 2457 if (time_after(stats->last_rx, sta->status_stats.last_ack)) 2458 return stats->last_rx; 2459 return sta->status_stats.last_ack; 2460 } 2461 2462 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2463 { 2464 if (!sta->sdata->local->ops->wake_tx_queue) 2465 return; 2466 2467 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2468 sta->cparams.target = MS2TIME(50); 2469 sta->cparams.interval = MS2TIME(300); 2470 sta->cparams.ecn = false; 2471 } else { 2472 sta->cparams.target = MS2TIME(20); 2473 sta->cparams.interval = MS2TIME(100); 2474 sta->cparams.ecn = true; 2475 } 2476 } 2477 2478 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2479 u32 thr) 2480 { 2481 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2482 2483 sta_update_codel_params(sta, thr); 2484 } 2485