1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/mac80211.h> 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "rate.h" 25 #include "sta_info.h" 26 #include "debugfs_sta.h" 27 #include "mesh.h" 28 #include "wme.h" 29 30 /** 31 * DOC: STA information lifetime rules 32 * 33 * STA info structures (&struct sta_info) are managed in a hash table 34 * for faster lookup and a list for iteration. They are managed using 35 * RCU, i.e. access to the list and hash table is protected by RCU. 36 * 37 * Upon allocating a STA info structure with sta_info_alloc(), the caller 38 * owns that structure. It must then insert it into the hash table using 39 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 40 * case (which acquires an rcu read section but must not be called from 41 * within one) will the pointer still be valid after the call. Note that 42 * the caller may not do much with the STA info before inserting it, in 43 * particular, it may not start any mesh peer link management or add 44 * encryption keys. 45 * 46 * When the insertion fails (sta_info_insert()) returns non-zero), the 47 * structure will have been freed by sta_info_insert()! 48 * 49 * Station entries are added by mac80211 when you establish a link with a 50 * peer. This means different things for the different type of interfaces 51 * we support. For a regular station this mean we add the AP sta when we 52 * receive an association response from the AP. For IBSS this occurs when 53 * get to know about a peer on the same IBSS. For WDS we add the sta for 54 * the peer immediately upon device open. When using AP mode we add stations 55 * for each respective station upon request from userspace through nl80211. 56 * 57 * In order to remove a STA info structure, various sta_info_destroy_*() 58 * calls are available. 59 * 60 * There is no concept of ownership on a STA entry, each structure is 61 * owned by the global hash table/list until it is removed. All users of 62 * the structure need to be RCU protected so that the structure won't be 63 * freed before they are done using it. 64 */ 65 66 /* Caller must hold local->sta_mtx */ 67 static int sta_info_hash_del(struct ieee80211_local *local, 68 struct sta_info *sta) 69 { 70 struct sta_info *s; 71 72 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)], 73 lockdep_is_held(&local->sta_mtx)); 74 if (!s) 75 return -ENOENT; 76 if (s == sta) { 77 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], 78 s->hnext); 79 return 0; 80 } 81 82 while (rcu_access_pointer(s->hnext) && 83 rcu_access_pointer(s->hnext) != sta) 84 s = rcu_dereference_protected(s->hnext, 85 lockdep_is_held(&local->sta_mtx)); 86 if (rcu_access_pointer(s->hnext)) { 87 rcu_assign_pointer(s->hnext, sta->hnext); 88 return 0; 89 } 90 91 return -ENOENT; 92 } 93 94 static void __cleanup_single_sta(struct sta_info *sta) 95 { 96 int ac, i; 97 struct tid_ampdu_tx *tid_tx; 98 struct ieee80211_sub_if_data *sdata = sta->sdata; 99 struct ieee80211_local *local = sdata->local; 100 struct ps_data *ps; 101 102 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 103 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 104 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 105 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 106 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 107 ps = &sdata->bss->ps; 108 else if (ieee80211_vif_is_mesh(&sdata->vif)) 109 ps = &sdata->u.mesh.ps; 110 else 111 return; 112 113 clear_sta_flag(sta, WLAN_STA_PS_STA); 114 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 115 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 116 117 atomic_dec(&ps->num_sta_ps); 118 sta_info_recalc_tim(sta); 119 } 120 121 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 122 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 123 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 125 } 126 127 if (ieee80211_vif_is_mesh(&sdata->vif)) 128 mesh_sta_cleanup(sta); 129 130 cancel_work_sync(&sta->drv_deliver_wk); 131 132 /* 133 * Destroy aggregation state here. It would be nice to wait for the 134 * driver to finish aggregation stop and then clean up, but for now 135 * drivers have to handle aggregation stop being requested, followed 136 * directly by station destruction. 137 */ 138 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 139 kfree(sta->ampdu_mlme.tid_start_tx[i]); 140 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 141 if (!tid_tx) 142 continue; 143 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 144 kfree(tid_tx); 145 } 146 } 147 148 static void cleanup_single_sta(struct sta_info *sta) 149 { 150 struct ieee80211_sub_if_data *sdata = sta->sdata; 151 struct ieee80211_local *local = sdata->local; 152 153 __cleanup_single_sta(sta); 154 sta_info_free(local, sta); 155 } 156 157 /* protected by RCU */ 158 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 159 const u8 *addr) 160 { 161 struct ieee80211_local *local = sdata->local; 162 struct sta_info *sta; 163 164 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 165 lockdep_is_held(&local->sta_mtx)); 166 while (sta) { 167 if (sta->sdata == sdata && 168 ether_addr_equal(sta->sta.addr, addr)) 169 break; 170 sta = rcu_dereference_check(sta->hnext, 171 lockdep_is_held(&local->sta_mtx)); 172 } 173 return sta; 174 } 175 176 /* 177 * Get sta info either from the specified interface 178 * or from one of its vlans 179 */ 180 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 181 const u8 *addr) 182 { 183 struct ieee80211_local *local = sdata->local; 184 struct sta_info *sta; 185 186 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 187 lockdep_is_held(&local->sta_mtx)); 188 while (sta) { 189 if ((sta->sdata == sdata || 190 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) && 191 ether_addr_equal(sta->sta.addr, addr)) 192 break; 193 sta = rcu_dereference_check(sta->hnext, 194 lockdep_is_held(&local->sta_mtx)); 195 } 196 return sta; 197 } 198 199 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 200 int idx) 201 { 202 struct ieee80211_local *local = sdata->local; 203 struct sta_info *sta; 204 int i = 0; 205 206 list_for_each_entry_rcu(sta, &local->sta_list, list) { 207 if (sdata != sta->sdata) 208 continue; 209 if (i < idx) { 210 ++i; 211 continue; 212 } 213 return sta; 214 } 215 216 return NULL; 217 } 218 219 /** 220 * sta_info_free - free STA 221 * 222 * @local: pointer to the global information 223 * @sta: STA info to free 224 * 225 * This function must undo everything done by sta_info_alloc() 226 * that may happen before sta_info_insert(). It may only be 227 * called when sta_info_insert() has not been attempted (and 228 * if that fails, the station is freed anyway.) 229 */ 230 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 231 { 232 int i; 233 234 if (sta->rate_ctrl) 235 rate_control_free_sta(sta); 236 237 if (sta->tx_lat) { 238 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 239 kfree(sta->tx_lat[i].bins); 240 kfree(sta->tx_lat); 241 } 242 243 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 244 245 kfree(rcu_dereference_raw(sta->sta.rates)); 246 kfree(sta); 247 } 248 249 /* Caller must hold local->sta_mtx */ 250 static void sta_info_hash_add(struct ieee80211_local *local, 251 struct sta_info *sta) 252 { 253 lockdep_assert_held(&local->sta_mtx); 254 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)]; 255 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta); 256 } 257 258 static void sta_deliver_ps_frames(struct work_struct *wk) 259 { 260 struct sta_info *sta; 261 262 sta = container_of(wk, struct sta_info, drv_deliver_wk); 263 264 if (sta->dead) 265 return; 266 267 local_bh_disable(); 268 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 269 ieee80211_sta_ps_deliver_wakeup(sta); 270 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 271 ieee80211_sta_ps_deliver_poll_response(sta); 272 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 273 ieee80211_sta_ps_deliver_uapsd(sta); 274 local_bh_enable(); 275 } 276 277 static int sta_prepare_rate_control(struct ieee80211_local *local, 278 struct sta_info *sta, gfp_t gfp) 279 { 280 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) 281 return 0; 282 283 sta->rate_ctrl = local->rate_ctrl; 284 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 285 &sta->sta, gfp); 286 if (!sta->rate_ctrl_priv) 287 return -ENOMEM; 288 289 return 0; 290 } 291 292 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 293 const u8 *addr, gfp_t gfp) 294 { 295 struct ieee80211_local *local = sdata->local; 296 struct sta_info *sta; 297 struct timespec uptime; 298 struct ieee80211_tx_latency_bin_ranges *tx_latency; 299 int i; 300 301 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp); 302 if (!sta) 303 return NULL; 304 305 rcu_read_lock(); 306 tx_latency = rcu_dereference(local->tx_latency); 307 /* init stations Tx latency statistics && TID bins */ 308 if (tx_latency) { 309 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS * 310 sizeof(struct ieee80211_tx_latency_stat), 311 GFP_ATOMIC); 312 if (!sta->tx_lat) { 313 rcu_read_unlock(); 314 goto free; 315 } 316 317 if (tx_latency->n_ranges) { 318 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 319 /* size of bins is size of the ranges +1 */ 320 sta->tx_lat[i].bin_count = 321 tx_latency->n_ranges + 1; 322 sta->tx_lat[i].bins = 323 kcalloc(sta->tx_lat[i].bin_count, 324 sizeof(u32), GFP_ATOMIC); 325 if (!sta->tx_lat[i].bins) { 326 rcu_read_unlock(); 327 goto free; 328 } 329 } 330 } 331 } 332 rcu_read_unlock(); 333 334 spin_lock_init(&sta->lock); 335 spin_lock_init(&sta->ps_lock); 336 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 337 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 338 mutex_init(&sta->ampdu_mlme.mtx); 339 #ifdef CONFIG_MAC80211_MESH 340 if (ieee80211_vif_is_mesh(&sdata->vif) && 341 !sdata->u.mesh.user_mpm) 342 init_timer(&sta->plink_timer); 343 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 344 #endif 345 346 memcpy(sta->sta.addr, addr, ETH_ALEN); 347 sta->local = local; 348 sta->sdata = sdata; 349 sta->last_rx = jiffies; 350 351 sta->sta_state = IEEE80211_STA_NONE; 352 353 ktime_get_ts(&uptime); 354 sta->last_connected = uptime.tv_sec; 355 ewma_init(&sta->avg_signal, 1024, 8); 356 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 357 ewma_init(&sta->chain_signal_avg[i], 1024, 8); 358 359 if (sta_prepare_rate_control(local, sta, gfp)) 360 goto free; 361 362 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 363 /* 364 * timer_to_tid must be initialized with identity mapping 365 * to enable session_timer's data differentiation. See 366 * sta_rx_agg_session_timer_expired for usage. 367 */ 368 sta->timer_to_tid[i] = i; 369 } 370 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 371 skb_queue_head_init(&sta->ps_tx_buf[i]); 372 skb_queue_head_init(&sta->tx_filtered[i]); 373 } 374 375 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 376 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 377 378 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 379 if (sdata->vif.type == NL80211_IFTYPE_AP || 380 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 381 struct ieee80211_supported_band *sband = 382 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)]; 383 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 384 IEEE80211_HT_CAP_SM_PS_SHIFT; 385 /* 386 * Assume that hostapd advertises our caps in the beacon and 387 * this is the known_smps_mode for a station that just assciated 388 */ 389 switch (smps) { 390 case WLAN_HT_SMPS_CONTROL_DISABLED: 391 sta->known_smps_mode = IEEE80211_SMPS_OFF; 392 break; 393 case WLAN_HT_SMPS_CONTROL_STATIC: 394 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 395 break; 396 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 397 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 398 break; 399 default: 400 WARN_ON(1); 401 } 402 } 403 404 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 405 return sta; 406 407 free: 408 if (sta->tx_lat) { 409 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 410 kfree(sta->tx_lat[i].bins); 411 kfree(sta->tx_lat); 412 } 413 kfree(sta); 414 return NULL; 415 } 416 417 static int sta_info_insert_check(struct sta_info *sta) 418 { 419 struct ieee80211_sub_if_data *sdata = sta->sdata; 420 421 /* 422 * Can't be a WARN_ON because it can be triggered through a race: 423 * something inserts a STA (on one CPU) without holding the RTNL 424 * and another CPU turns off the net device. 425 */ 426 if (unlikely(!ieee80211_sdata_running(sdata))) 427 return -ENETDOWN; 428 429 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 430 is_multicast_ether_addr(sta->sta.addr))) 431 return -EINVAL; 432 433 return 0; 434 } 435 436 static int sta_info_insert_drv_state(struct ieee80211_local *local, 437 struct ieee80211_sub_if_data *sdata, 438 struct sta_info *sta) 439 { 440 enum ieee80211_sta_state state; 441 int err = 0; 442 443 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 444 err = drv_sta_state(local, sdata, sta, state, state + 1); 445 if (err) 446 break; 447 } 448 449 if (!err) { 450 /* 451 * Drivers using legacy sta_add/sta_remove callbacks only 452 * get uploaded set to true after sta_add is called. 453 */ 454 if (!local->ops->sta_add) 455 sta->uploaded = true; 456 return 0; 457 } 458 459 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 460 sdata_info(sdata, 461 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 462 sta->sta.addr, state + 1, err); 463 err = 0; 464 } 465 466 /* unwind on error */ 467 for (; state > IEEE80211_STA_NOTEXIST; state--) 468 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 469 470 return err; 471 } 472 473 /* 474 * should be called with sta_mtx locked 475 * this function replaces the mutex lock 476 * with a RCU lock 477 */ 478 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 479 { 480 struct ieee80211_local *local = sta->local; 481 struct ieee80211_sub_if_data *sdata = sta->sdata; 482 struct station_info sinfo; 483 int err = 0; 484 485 lockdep_assert_held(&local->sta_mtx); 486 487 /* check if STA exists already */ 488 if (sta_info_get_bss(sdata, sta->sta.addr)) { 489 err = -EEXIST; 490 goto out_err; 491 } 492 493 local->num_sta++; 494 local->sta_generation++; 495 smp_mb(); 496 497 /* simplify things and don't accept BA sessions yet */ 498 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 499 500 /* make the station visible */ 501 sta_info_hash_add(local, sta); 502 503 list_add_rcu(&sta->list, &local->sta_list); 504 505 /* notify driver */ 506 err = sta_info_insert_drv_state(local, sdata, sta); 507 if (err) 508 goto out_remove; 509 510 set_sta_flag(sta, WLAN_STA_INSERTED); 511 /* accept BA sessions now */ 512 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 513 514 ieee80211_recalc_min_chandef(sdata); 515 ieee80211_sta_debugfs_add(sta); 516 rate_control_add_sta_debugfs(sta); 517 518 memset(&sinfo, 0, sizeof(sinfo)); 519 sinfo.filled = 0; 520 sinfo.generation = local->sta_generation; 521 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 522 523 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 524 525 /* move reference to rcu-protected */ 526 rcu_read_lock(); 527 mutex_unlock(&local->sta_mtx); 528 529 if (ieee80211_vif_is_mesh(&sdata->vif)) 530 mesh_accept_plinks_update(sdata); 531 532 return 0; 533 out_remove: 534 sta_info_hash_del(local, sta); 535 list_del_rcu(&sta->list); 536 local->num_sta--; 537 synchronize_net(); 538 __cleanup_single_sta(sta); 539 out_err: 540 mutex_unlock(&local->sta_mtx); 541 rcu_read_lock(); 542 return err; 543 } 544 545 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 546 { 547 struct ieee80211_local *local = sta->local; 548 int err; 549 550 might_sleep(); 551 552 err = sta_info_insert_check(sta); 553 if (err) { 554 rcu_read_lock(); 555 goto out_free; 556 } 557 558 mutex_lock(&local->sta_mtx); 559 560 err = sta_info_insert_finish(sta); 561 if (err) 562 goto out_free; 563 564 return 0; 565 out_free: 566 sta_info_free(local, sta); 567 return err; 568 } 569 570 int sta_info_insert(struct sta_info *sta) 571 { 572 int err = sta_info_insert_rcu(sta); 573 574 rcu_read_unlock(); 575 576 return err; 577 } 578 579 static inline void __bss_tim_set(u8 *tim, u16 id) 580 { 581 /* 582 * This format has been mandated by the IEEE specifications, 583 * so this line may not be changed to use the __set_bit() format. 584 */ 585 tim[id / 8] |= (1 << (id % 8)); 586 } 587 588 static inline void __bss_tim_clear(u8 *tim, u16 id) 589 { 590 /* 591 * This format has been mandated by the IEEE specifications, 592 * so this line may not be changed to use the __clear_bit() format. 593 */ 594 tim[id / 8] &= ~(1 << (id % 8)); 595 } 596 597 static inline bool __bss_tim_get(u8 *tim, u16 id) 598 { 599 /* 600 * This format has been mandated by the IEEE specifications, 601 * so this line may not be changed to use the test_bit() format. 602 */ 603 return tim[id / 8] & (1 << (id % 8)); 604 } 605 606 static unsigned long ieee80211_tids_for_ac(int ac) 607 { 608 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 609 switch (ac) { 610 case IEEE80211_AC_VO: 611 return BIT(6) | BIT(7); 612 case IEEE80211_AC_VI: 613 return BIT(4) | BIT(5); 614 case IEEE80211_AC_BE: 615 return BIT(0) | BIT(3); 616 case IEEE80211_AC_BK: 617 return BIT(1) | BIT(2); 618 default: 619 WARN_ON(1); 620 return 0; 621 } 622 } 623 624 void sta_info_recalc_tim(struct sta_info *sta) 625 { 626 struct ieee80211_local *local = sta->local; 627 struct ps_data *ps; 628 bool indicate_tim = false; 629 u8 ignore_for_tim = sta->sta.uapsd_queues; 630 int ac; 631 u16 id; 632 633 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 634 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 635 if (WARN_ON_ONCE(!sta->sdata->bss)) 636 return; 637 638 ps = &sta->sdata->bss->ps; 639 id = sta->sta.aid; 640 #ifdef CONFIG_MAC80211_MESH 641 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 642 ps = &sta->sdata->u.mesh.ps; 643 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */ 644 id = sta->plid % (IEEE80211_MAX_AID + 1); 645 #endif 646 } else { 647 return; 648 } 649 650 /* No need to do anything if the driver does all */ 651 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS) 652 return; 653 654 if (sta->dead) 655 goto done; 656 657 /* 658 * If all ACs are delivery-enabled then we should build 659 * the TIM bit for all ACs anyway; if only some are then 660 * we ignore those and build the TIM bit using only the 661 * non-enabled ones. 662 */ 663 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 664 ignore_for_tim = 0; 665 666 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 667 unsigned long tids; 668 669 if (ignore_for_tim & BIT(ac)) 670 continue; 671 672 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 673 !skb_queue_empty(&sta->ps_tx_buf[ac]); 674 if (indicate_tim) 675 break; 676 677 tids = ieee80211_tids_for_ac(ac); 678 679 indicate_tim |= 680 sta->driver_buffered_tids & tids; 681 } 682 683 done: 684 spin_lock_bh(&local->tim_lock); 685 686 if (indicate_tim == __bss_tim_get(ps->tim, id)) 687 goto out_unlock; 688 689 if (indicate_tim) 690 __bss_tim_set(ps->tim, id); 691 else 692 __bss_tim_clear(ps->tim, id); 693 694 if (local->ops->set_tim) { 695 local->tim_in_locked_section = true; 696 drv_set_tim(local, &sta->sta, indicate_tim); 697 local->tim_in_locked_section = false; 698 } 699 700 out_unlock: 701 spin_unlock_bh(&local->tim_lock); 702 } 703 704 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 705 { 706 struct ieee80211_tx_info *info; 707 int timeout; 708 709 if (!skb) 710 return false; 711 712 info = IEEE80211_SKB_CB(skb); 713 714 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 715 timeout = (sta->listen_interval * 716 sta->sdata->vif.bss_conf.beacon_int * 717 32 / 15625) * HZ; 718 if (timeout < STA_TX_BUFFER_EXPIRE) 719 timeout = STA_TX_BUFFER_EXPIRE; 720 return time_after(jiffies, info->control.jiffies + timeout); 721 } 722 723 724 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 725 struct sta_info *sta, int ac) 726 { 727 unsigned long flags; 728 struct sk_buff *skb; 729 730 /* 731 * First check for frames that should expire on the filtered 732 * queue. Frames here were rejected by the driver and are on 733 * a separate queue to avoid reordering with normal PS-buffered 734 * frames. They also aren't accounted for right now in the 735 * total_ps_buffered counter. 736 */ 737 for (;;) { 738 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 739 skb = skb_peek(&sta->tx_filtered[ac]); 740 if (sta_info_buffer_expired(sta, skb)) 741 skb = __skb_dequeue(&sta->tx_filtered[ac]); 742 else 743 skb = NULL; 744 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 745 746 /* 747 * Frames are queued in order, so if this one 748 * hasn't expired yet we can stop testing. If 749 * we actually reached the end of the queue we 750 * also need to stop, of course. 751 */ 752 if (!skb) 753 break; 754 ieee80211_free_txskb(&local->hw, skb); 755 } 756 757 /* 758 * Now also check the normal PS-buffered queue, this will 759 * only find something if the filtered queue was emptied 760 * since the filtered frames are all before the normal PS 761 * buffered frames. 762 */ 763 for (;;) { 764 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 765 skb = skb_peek(&sta->ps_tx_buf[ac]); 766 if (sta_info_buffer_expired(sta, skb)) 767 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 768 else 769 skb = NULL; 770 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 771 772 /* 773 * frames are queued in order, so if this one 774 * hasn't expired yet (or we reached the end of 775 * the queue) we can stop testing 776 */ 777 if (!skb) 778 break; 779 780 local->total_ps_buffered--; 781 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 782 sta->sta.addr); 783 ieee80211_free_txskb(&local->hw, skb); 784 } 785 786 /* 787 * Finally, recalculate the TIM bit for this station -- it might 788 * now be clear because the station was too slow to retrieve its 789 * frames. 790 */ 791 sta_info_recalc_tim(sta); 792 793 /* 794 * Return whether there are any frames still buffered, this is 795 * used to check whether the cleanup timer still needs to run, 796 * if there are no frames we don't need to rearm the timer. 797 */ 798 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 799 skb_queue_empty(&sta->tx_filtered[ac])); 800 } 801 802 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 803 struct sta_info *sta) 804 { 805 bool have_buffered = false; 806 int ac; 807 808 /* This is only necessary for stations on BSS/MBSS interfaces */ 809 if (!sta->sdata->bss && 810 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 811 return false; 812 813 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 814 have_buffered |= 815 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 816 817 return have_buffered; 818 } 819 820 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 821 { 822 struct ieee80211_local *local; 823 struct ieee80211_sub_if_data *sdata; 824 int ret; 825 826 might_sleep(); 827 828 if (!sta) 829 return -ENOENT; 830 831 local = sta->local; 832 sdata = sta->sdata; 833 834 lockdep_assert_held(&local->sta_mtx); 835 836 /* 837 * Before removing the station from the driver and 838 * rate control, it might still start new aggregation 839 * sessions -- block that to make sure the tear-down 840 * will be sufficient. 841 */ 842 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 843 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 844 845 ret = sta_info_hash_del(local, sta); 846 if (WARN_ON(ret)) 847 return ret; 848 849 list_del_rcu(&sta->list); 850 851 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 852 853 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 854 rcu_access_pointer(sdata->u.vlan.sta) == sta) 855 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 856 857 return 0; 858 } 859 860 static void __sta_info_destroy_part2(struct sta_info *sta) 861 { 862 struct ieee80211_local *local = sta->local; 863 struct ieee80211_sub_if_data *sdata = sta->sdata; 864 int ret; 865 866 /* 867 * NOTE: This assumes at least synchronize_net() was done 868 * after _part1 and before _part2! 869 */ 870 871 might_sleep(); 872 lockdep_assert_held(&local->sta_mtx); 873 874 /* now keys can no longer be reached */ 875 ieee80211_free_sta_keys(local, sta); 876 877 sta->dead = true; 878 879 local->num_sta--; 880 local->sta_generation++; 881 882 while (sta->sta_state > IEEE80211_STA_NONE) { 883 ret = sta_info_move_state(sta, sta->sta_state - 1); 884 if (ret) { 885 WARN_ON_ONCE(1); 886 break; 887 } 888 } 889 890 if (sta->uploaded) { 891 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 892 IEEE80211_STA_NOTEXIST); 893 WARN_ON_ONCE(ret != 0); 894 } 895 896 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 897 898 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL); 899 900 rate_control_remove_sta_debugfs(sta); 901 ieee80211_sta_debugfs_remove(sta); 902 ieee80211_recalc_min_chandef(sdata); 903 904 cleanup_single_sta(sta); 905 } 906 907 int __must_check __sta_info_destroy(struct sta_info *sta) 908 { 909 int err = __sta_info_destroy_part1(sta); 910 911 if (err) 912 return err; 913 914 synchronize_net(); 915 916 __sta_info_destroy_part2(sta); 917 918 return 0; 919 } 920 921 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 922 { 923 struct sta_info *sta; 924 int ret; 925 926 mutex_lock(&sdata->local->sta_mtx); 927 sta = sta_info_get(sdata, addr); 928 ret = __sta_info_destroy(sta); 929 mutex_unlock(&sdata->local->sta_mtx); 930 931 return ret; 932 } 933 934 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 935 const u8 *addr) 936 { 937 struct sta_info *sta; 938 int ret; 939 940 mutex_lock(&sdata->local->sta_mtx); 941 sta = sta_info_get_bss(sdata, addr); 942 ret = __sta_info_destroy(sta); 943 mutex_unlock(&sdata->local->sta_mtx); 944 945 return ret; 946 } 947 948 static void sta_info_cleanup(unsigned long data) 949 { 950 struct ieee80211_local *local = (struct ieee80211_local *) data; 951 struct sta_info *sta; 952 bool timer_needed = false; 953 954 rcu_read_lock(); 955 list_for_each_entry_rcu(sta, &local->sta_list, list) 956 if (sta_info_cleanup_expire_buffered(local, sta)) 957 timer_needed = true; 958 rcu_read_unlock(); 959 960 if (local->quiescing) 961 return; 962 963 if (!timer_needed) 964 return; 965 966 mod_timer(&local->sta_cleanup, 967 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 968 } 969 970 void sta_info_init(struct ieee80211_local *local) 971 { 972 spin_lock_init(&local->tim_lock); 973 mutex_init(&local->sta_mtx); 974 INIT_LIST_HEAD(&local->sta_list); 975 976 setup_timer(&local->sta_cleanup, sta_info_cleanup, 977 (unsigned long)local); 978 } 979 980 void sta_info_stop(struct ieee80211_local *local) 981 { 982 del_timer_sync(&local->sta_cleanup); 983 } 984 985 986 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 987 { 988 struct ieee80211_local *local = sdata->local; 989 struct sta_info *sta, *tmp; 990 LIST_HEAD(free_list); 991 int ret = 0; 992 993 might_sleep(); 994 995 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 996 WARN_ON(vlans && !sdata->bss); 997 998 mutex_lock(&local->sta_mtx); 999 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1000 if (sdata == sta->sdata || 1001 (vlans && sdata->bss == sta->sdata->bss)) { 1002 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1003 list_add(&sta->free_list, &free_list); 1004 ret++; 1005 } 1006 } 1007 1008 if (!list_empty(&free_list)) { 1009 synchronize_net(); 1010 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1011 __sta_info_destroy_part2(sta); 1012 } 1013 mutex_unlock(&local->sta_mtx); 1014 1015 return ret; 1016 } 1017 1018 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1019 unsigned long exp_time) 1020 { 1021 struct ieee80211_local *local = sdata->local; 1022 struct sta_info *sta, *tmp; 1023 1024 mutex_lock(&local->sta_mtx); 1025 1026 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1027 if (sdata != sta->sdata) 1028 continue; 1029 1030 if (time_after(jiffies, sta->last_rx + exp_time)) { 1031 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1032 sta->sta.addr); 1033 1034 if (ieee80211_vif_is_mesh(&sdata->vif) && 1035 test_sta_flag(sta, WLAN_STA_PS_STA)) 1036 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1037 1038 WARN_ON(__sta_info_destroy(sta)); 1039 } 1040 } 1041 1042 mutex_unlock(&local->sta_mtx); 1043 } 1044 1045 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1046 const u8 *addr, 1047 const u8 *localaddr) 1048 { 1049 struct sta_info *sta, *nxt; 1050 1051 /* 1052 * Just return a random station if localaddr is NULL 1053 * ... first in list. 1054 */ 1055 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) { 1056 if (localaddr && 1057 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1058 continue; 1059 if (!sta->uploaded) 1060 return NULL; 1061 return &sta->sta; 1062 } 1063 1064 return NULL; 1065 } 1066 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1067 1068 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1069 const u8 *addr) 1070 { 1071 struct sta_info *sta; 1072 1073 if (!vif) 1074 return NULL; 1075 1076 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1077 if (!sta) 1078 return NULL; 1079 1080 if (!sta->uploaded) 1081 return NULL; 1082 1083 return &sta->sta; 1084 } 1085 EXPORT_SYMBOL(ieee80211_find_sta); 1086 1087 /* powersave support code */ 1088 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1089 { 1090 struct ieee80211_sub_if_data *sdata = sta->sdata; 1091 struct ieee80211_local *local = sdata->local; 1092 struct sk_buff_head pending; 1093 int filtered = 0, buffered = 0, ac; 1094 unsigned long flags; 1095 struct ps_data *ps; 1096 1097 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1098 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1099 u.ap); 1100 1101 if (sdata->vif.type == NL80211_IFTYPE_AP) 1102 ps = &sdata->bss->ps; 1103 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1104 ps = &sdata->u.mesh.ps; 1105 else 1106 return; 1107 1108 clear_sta_flag(sta, WLAN_STA_SP); 1109 1110 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1111 sta->driver_buffered_tids = 0; 1112 1113 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1114 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1115 1116 skb_queue_head_init(&pending); 1117 1118 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1119 spin_lock(&sta->ps_lock); 1120 /* Send all buffered frames to the station */ 1121 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1122 int count = skb_queue_len(&pending), tmp; 1123 1124 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1125 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1126 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1127 tmp = skb_queue_len(&pending); 1128 filtered += tmp - count; 1129 count = tmp; 1130 1131 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1132 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1133 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1134 tmp = skb_queue_len(&pending); 1135 buffered += tmp - count; 1136 } 1137 1138 ieee80211_add_pending_skbs(local, &pending); 1139 1140 /* now we're no longer in the deliver code */ 1141 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1142 1143 /* The station might have polled and then woken up before we responded, 1144 * so clear these flags now to avoid them sticking around. 1145 */ 1146 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1147 clear_sta_flag(sta, WLAN_STA_UAPSD); 1148 spin_unlock(&sta->ps_lock); 1149 1150 atomic_dec(&ps->num_sta_ps); 1151 1152 /* This station just woke up and isn't aware of our SMPS state */ 1153 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1154 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1155 sdata->smps_mode) && 1156 sta->known_smps_mode != sdata->bss->req_smps && 1157 sta_info_tx_streams(sta) != 1) { 1158 ht_dbg(sdata, 1159 "%pM just woke up and MIMO capable - update SMPS\n", 1160 sta->sta.addr); 1161 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1162 sta->sta.addr, 1163 sdata->vif.bss_conf.bssid); 1164 } 1165 1166 local->total_ps_buffered -= buffered; 1167 1168 sta_info_recalc_tim(sta); 1169 1170 ps_dbg(sdata, 1171 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1172 sta->sta.addr, sta->sta.aid, filtered, buffered); 1173 } 1174 1175 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1176 struct sta_info *sta, int tid, 1177 enum ieee80211_frame_release_type reason, 1178 bool call_driver) 1179 { 1180 struct ieee80211_local *local = sdata->local; 1181 struct ieee80211_qos_hdr *nullfunc; 1182 struct sk_buff *skb; 1183 int size = sizeof(*nullfunc); 1184 __le16 fc; 1185 bool qos = test_sta_flag(sta, WLAN_STA_WME); 1186 struct ieee80211_tx_info *info; 1187 struct ieee80211_chanctx_conf *chanctx_conf; 1188 1189 if (qos) { 1190 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1191 IEEE80211_STYPE_QOS_NULLFUNC | 1192 IEEE80211_FCTL_FROMDS); 1193 } else { 1194 size -= 2; 1195 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1196 IEEE80211_STYPE_NULLFUNC | 1197 IEEE80211_FCTL_FROMDS); 1198 } 1199 1200 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1201 if (!skb) 1202 return; 1203 1204 skb_reserve(skb, local->hw.extra_tx_headroom); 1205 1206 nullfunc = (void *) skb_put(skb, size); 1207 nullfunc->frame_control = fc; 1208 nullfunc->duration_id = 0; 1209 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1210 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1211 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1212 nullfunc->seq_ctrl = 0; 1213 1214 skb->priority = tid; 1215 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1216 if (qos) { 1217 nullfunc->qos_ctrl = cpu_to_le16(tid); 1218 1219 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1220 nullfunc->qos_ctrl |= 1221 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1222 } 1223 1224 info = IEEE80211_SKB_CB(skb); 1225 1226 /* 1227 * Tell TX path to send this frame even though the 1228 * STA may still remain is PS mode after this frame 1229 * exchange. Also set EOSP to indicate this packet 1230 * ends the poll/service period. 1231 */ 1232 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1233 IEEE80211_TX_CTL_PS_RESPONSE | 1234 IEEE80211_TX_STATUS_EOSP | 1235 IEEE80211_TX_CTL_REQ_TX_STATUS; 1236 1237 if (call_driver) 1238 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1239 reason, false); 1240 1241 skb->dev = sdata->dev; 1242 1243 rcu_read_lock(); 1244 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1245 if (WARN_ON(!chanctx_conf)) { 1246 rcu_read_unlock(); 1247 kfree_skb(skb); 1248 return; 1249 } 1250 1251 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band); 1252 rcu_read_unlock(); 1253 } 1254 1255 static int find_highest_prio_tid(unsigned long tids) 1256 { 1257 /* lower 3 TIDs aren't ordered perfectly */ 1258 if (tids & 0xF8) 1259 return fls(tids) - 1; 1260 /* TID 0 is BE just like TID 3 */ 1261 if (tids & BIT(0)) 1262 return 0; 1263 return fls(tids) - 1; 1264 } 1265 1266 static void 1267 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1268 int n_frames, u8 ignored_acs, 1269 enum ieee80211_frame_release_type reason) 1270 { 1271 struct ieee80211_sub_if_data *sdata = sta->sdata; 1272 struct ieee80211_local *local = sdata->local; 1273 bool more_data = false; 1274 int ac; 1275 unsigned long driver_release_tids = 0; 1276 struct sk_buff_head frames; 1277 1278 /* Service or PS-Poll period starts */ 1279 set_sta_flag(sta, WLAN_STA_SP); 1280 1281 __skb_queue_head_init(&frames); 1282 1283 /* Get response frame(s) and more data bit for the last one. */ 1284 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1285 unsigned long tids; 1286 1287 if (ignored_acs & BIT(ac)) 1288 continue; 1289 1290 tids = ieee80211_tids_for_ac(ac); 1291 1292 /* if we already have frames from software, then we can't also 1293 * release from hardware queues 1294 */ 1295 if (skb_queue_empty(&frames)) 1296 driver_release_tids |= sta->driver_buffered_tids & tids; 1297 1298 if (driver_release_tids) { 1299 /* If the driver has data on more than one TID then 1300 * certainly there's more data if we release just a 1301 * single frame now (from a single TID). This will 1302 * only happen for PS-Poll. 1303 */ 1304 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1305 hweight16(driver_release_tids) > 1) { 1306 more_data = true; 1307 driver_release_tids = 1308 BIT(find_highest_prio_tid( 1309 driver_release_tids)); 1310 break; 1311 } 1312 } else { 1313 struct sk_buff *skb; 1314 1315 while (n_frames > 0) { 1316 skb = skb_dequeue(&sta->tx_filtered[ac]); 1317 if (!skb) { 1318 skb = skb_dequeue( 1319 &sta->ps_tx_buf[ac]); 1320 if (skb) 1321 local->total_ps_buffered--; 1322 } 1323 if (!skb) 1324 break; 1325 n_frames--; 1326 __skb_queue_tail(&frames, skb); 1327 } 1328 } 1329 1330 /* If we have more frames buffered on this AC, then set the 1331 * more-data bit and abort the loop since we can't send more 1332 * data from other ACs before the buffered frames from this. 1333 */ 1334 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1335 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1336 more_data = true; 1337 break; 1338 } 1339 } 1340 1341 if (skb_queue_empty(&frames) && !driver_release_tids) { 1342 int tid; 1343 1344 /* 1345 * For PS-Poll, this can only happen due to a race condition 1346 * when we set the TIM bit and the station notices it, but 1347 * before it can poll for the frame we expire it. 1348 * 1349 * For uAPSD, this is said in the standard (11.2.1.5 h): 1350 * At each unscheduled SP for a non-AP STA, the AP shall 1351 * attempt to transmit at least one MSDU or MMPDU, but no 1352 * more than the value specified in the Max SP Length field 1353 * in the QoS Capability element from delivery-enabled ACs, 1354 * that are destined for the non-AP STA. 1355 * 1356 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1357 */ 1358 1359 /* This will evaluate to 1, 3, 5 or 7. */ 1360 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1361 1362 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1363 } else if (!driver_release_tids) { 1364 struct sk_buff_head pending; 1365 struct sk_buff *skb; 1366 int num = 0; 1367 u16 tids = 0; 1368 bool need_null = false; 1369 1370 skb_queue_head_init(&pending); 1371 1372 while ((skb = __skb_dequeue(&frames))) { 1373 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1374 struct ieee80211_hdr *hdr = (void *) skb->data; 1375 u8 *qoshdr = NULL; 1376 1377 num++; 1378 1379 /* 1380 * Tell TX path to send this frame even though the 1381 * STA may still remain is PS mode after this frame 1382 * exchange. 1383 */ 1384 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1385 IEEE80211_TX_CTL_PS_RESPONSE; 1386 1387 /* 1388 * Use MoreData flag to indicate whether there are 1389 * more buffered frames for this STA 1390 */ 1391 if (more_data || !skb_queue_empty(&frames)) 1392 hdr->frame_control |= 1393 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1394 else 1395 hdr->frame_control &= 1396 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1397 1398 if (ieee80211_is_data_qos(hdr->frame_control) || 1399 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1400 qoshdr = ieee80211_get_qos_ctl(hdr); 1401 1402 tids |= BIT(skb->priority); 1403 1404 __skb_queue_tail(&pending, skb); 1405 1406 /* end service period after last frame or add one */ 1407 if (!skb_queue_empty(&frames)) 1408 continue; 1409 1410 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1411 /* for PS-Poll, there's only one frame */ 1412 info->flags |= IEEE80211_TX_STATUS_EOSP | 1413 IEEE80211_TX_CTL_REQ_TX_STATUS; 1414 break; 1415 } 1416 1417 /* For uAPSD, things are a bit more complicated. If the 1418 * last frame has a QoS header (i.e. is a QoS-data or 1419 * QoS-nulldata frame) then just set the EOSP bit there 1420 * and be done. 1421 * If the frame doesn't have a QoS header (which means 1422 * it should be a bufferable MMPDU) then we can't set 1423 * the EOSP bit in the QoS header; add a QoS-nulldata 1424 * frame to the list to send it after the MMPDU. 1425 * 1426 * Note that this code is only in the mac80211-release 1427 * code path, we assume that the driver will not buffer 1428 * anything but QoS-data frames, or if it does, will 1429 * create the QoS-nulldata frame by itself if needed. 1430 * 1431 * Cf. 802.11-2012 10.2.1.10 (c). 1432 */ 1433 if (qoshdr) { 1434 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1435 1436 info->flags |= IEEE80211_TX_STATUS_EOSP | 1437 IEEE80211_TX_CTL_REQ_TX_STATUS; 1438 } else { 1439 /* The standard isn't completely clear on this 1440 * as it says the more-data bit should be set 1441 * if there are more BUs. The QoS-Null frame 1442 * we're about to send isn't buffered yet, we 1443 * only create it below, but let's pretend it 1444 * was buffered just in case some clients only 1445 * expect more-data=0 when eosp=1. 1446 */ 1447 hdr->frame_control |= 1448 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1449 need_null = true; 1450 num++; 1451 } 1452 break; 1453 } 1454 1455 drv_allow_buffered_frames(local, sta, tids, num, 1456 reason, more_data); 1457 1458 ieee80211_add_pending_skbs(local, &pending); 1459 1460 if (need_null) 1461 ieee80211_send_null_response( 1462 sdata, sta, find_highest_prio_tid(tids), 1463 reason, false); 1464 1465 sta_info_recalc_tim(sta); 1466 } else { 1467 /* 1468 * We need to release a frame that is buffered somewhere in the 1469 * driver ... it'll have to handle that. 1470 * Note that the driver also has to check the number of frames 1471 * on the TIDs we're releasing from - if there are more than 1472 * n_frames it has to set the more-data bit (if we didn't ask 1473 * it to set it anyway due to other buffered frames); if there 1474 * are fewer than n_frames it has to make sure to adjust that 1475 * to allow the service period to end properly. 1476 */ 1477 drv_release_buffered_frames(local, sta, driver_release_tids, 1478 n_frames, reason, more_data); 1479 1480 /* 1481 * Note that we don't recalculate the TIM bit here as it would 1482 * most likely have no effect at all unless the driver told us 1483 * that the TID(s) became empty before returning here from the 1484 * release function. 1485 * Either way, however, when the driver tells us that the TID(s) 1486 * became empty we'll do the TIM recalculation. 1487 */ 1488 } 1489 } 1490 1491 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1492 { 1493 u8 ignore_for_response = sta->sta.uapsd_queues; 1494 1495 /* 1496 * If all ACs are delivery-enabled then we should reply 1497 * from any of them, if only some are enabled we reply 1498 * only from the non-enabled ones. 1499 */ 1500 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1501 ignore_for_response = 0; 1502 1503 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1504 IEEE80211_FRAME_RELEASE_PSPOLL); 1505 } 1506 1507 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1508 { 1509 int n_frames = sta->sta.max_sp; 1510 u8 delivery_enabled = sta->sta.uapsd_queues; 1511 1512 /* 1513 * If we ever grow support for TSPEC this might happen if 1514 * the TSPEC update from hostapd comes in between a trigger 1515 * frame setting WLAN_STA_UAPSD in the RX path and this 1516 * actually getting called. 1517 */ 1518 if (!delivery_enabled) 1519 return; 1520 1521 switch (sta->sta.max_sp) { 1522 case 1: 1523 n_frames = 2; 1524 break; 1525 case 2: 1526 n_frames = 4; 1527 break; 1528 case 3: 1529 n_frames = 6; 1530 break; 1531 case 0: 1532 /* XXX: what is a good value? */ 1533 n_frames = 8; 1534 break; 1535 } 1536 1537 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1538 IEEE80211_FRAME_RELEASE_UAPSD); 1539 } 1540 1541 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1542 struct ieee80211_sta *pubsta, bool block) 1543 { 1544 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1545 1546 trace_api_sta_block_awake(sta->local, pubsta, block); 1547 1548 if (block) { 1549 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1550 return; 1551 } 1552 1553 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1554 return; 1555 1556 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1557 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1558 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1559 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1560 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1561 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1562 /* must be asleep in this case */ 1563 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1564 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1565 } else { 1566 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1567 } 1568 } 1569 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1570 1571 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1572 { 1573 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1574 struct ieee80211_local *local = sta->local; 1575 1576 trace_api_eosp(local, pubsta); 1577 1578 clear_sta_flag(sta, WLAN_STA_SP); 1579 } 1580 EXPORT_SYMBOL(ieee80211_sta_eosp); 1581 1582 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1583 u8 tid, bool buffered) 1584 { 1585 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1586 1587 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1588 return; 1589 1590 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1591 1592 if (buffered) 1593 set_bit(tid, &sta->driver_buffered_tids); 1594 else 1595 clear_bit(tid, &sta->driver_buffered_tids); 1596 1597 sta_info_recalc_tim(sta); 1598 } 1599 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1600 1601 int sta_info_move_state(struct sta_info *sta, 1602 enum ieee80211_sta_state new_state) 1603 { 1604 might_sleep(); 1605 1606 if (sta->sta_state == new_state) 1607 return 0; 1608 1609 /* check allowed transitions first */ 1610 1611 switch (new_state) { 1612 case IEEE80211_STA_NONE: 1613 if (sta->sta_state != IEEE80211_STA_AUTH) 1614 return -EINVAL; 1615 break; 1616 case IEEE80211_STA_AUTH: 1617 if (sta->sta_state != IEEE80211_STA_NONE && 1618 sta->sta_state != IEEE80211_STA_ASSOC) 1619 return -EINVAL; 1620 break; 1621 case IEEE80211_STA_ASSOC: 1622 if (sta->sta_state != IEEE80211_STA_AUTH && 1623 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1624 return -EINVAL; 1625 break; 1626 case IEEE80211_STA_AUTHORIZED: 1627 if (sta->sta_state != IEEE80211_STA_ASSOC) 1628 return -EINVAL; 1629 break; 1630 default: 1631 WARN(1, "invalid state %d", new_state); 1632 return -EINVAL; 1633 } 1634 1635 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1636 sta->sta.addr, new_state); 1637 1638 /* 1639 * notify the driver before the actual changes so it can 1640 * fail the transition 1641 */ 1642 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1643 int err = drv_sta_state(sta->local, sta->sdata, sta, 1644 sta->sta_state, new_state); 1645 if (err) 1646 return err; 1647 } 1648 1649 /* reflect the change in all state variables */ 1650 1651 switch (new_state) { 1652 case IEEE80211_STA_NONE: 1653 if (sta->sta_state == IEEE80211_STA_AUTH) 1654 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1655 break; 1656 case IEEE80211_STA_AUTH: 1657 if (sta->sta_state == IEEE80211_STA_NONE) 1658 set_bit(WLAN_STA_AUTH, &sta->_flags); 1659 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1660 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1661 break; 1662 case IEEE80211_STA_ASSOC: 1663 if (sta->sta_state == IEEE80211_STA_AUTH) { 1664 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1665 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1666 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1667 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1668 !sta->sdata->u.vlan.sta)) 1669 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1670 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1671 } 1672 break; 1673 case IEEE80211_STA_AUTHORIZED: 1674 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1675 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1676 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1677 !sta->sdata->u.vlan.sta)) 1678 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1679 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1680 } 1681 break; 1682 default: 1683 break; 1684 } 1685 1686 sta->sta_state = new_state; 1687 1688 return 0; 1689 } 1690 1691 u8 sta_info_tx_streams(struct sta_info *sta) 1692 { 1693 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1694 u8 rx_streams; 1695 1696 if (!sta->sta.ht_cap.ht_supported) 1697 return 1; 1698 1699 if (sta->sta.vht_cap.vht_supported) { 1700 int i; 1701 u16 tx_mcs_map = 1702 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1703 1704 for (i = 7; i >= 0; i--) 1705 if ((tx_mcs_map & (0x3 << (i * 2))) != 1706 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1707 return i + 1; 1708 } 1709 1710 if (ht_cap->mcs.rx_mask[3]) 1711 rx_streams = 4; 1712 else if (ht_cap->mcs.rx_mask[2]) 1713 rx_streams = 3; 1714 else if (ht_cap->mcs.rx_mask[1]) 1715 rx_streams = 2; 1716 else 1717 rx_streams = 1; 1718 1719 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1720 return rx_streams; 1721 1722 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1723 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1724 } 1725 1726 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1727 { 1728 struct ieee80211_sub_if_data *sdata = sta->sdata; 1729 struct ieee80211_local *local = sdata->local; 1730 struct rate_control_ref *ref = NULL; 1731 struct timespec uptime; 1732 u64 packets = 0; 1733 u32 thr = 0; 1734 int i, ac; 1735 1736 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1737 ref = local->rate_ctrl; 1738 1739 sinfo->generation = sdata->local->sta_generation; 1740 1741 sinfo->filled = STATION_INFO_INACTIVE_TIME | 1742 STATION_INFO_RX_BYTES64 | 1743 STATION_INFO_TX_BYTES64 | 1744 STATION_INFO_RX_PACKETS | 1745 STATION_INFO_TX_PACKETS | 1746 STATION_INFO_TX_RETRIES | 1747 STATION_INFO_TX_FAILED | 1748 STATION_INFO_TX_BITRATE | 1749 STATION_INFO_RX_BITRATE | 1750 STATION_INFO_RX_DROP_MISC | 1751 STATION_INFO_BSS_PARAM | 1752 STATION_INFO_CONNECTED_TIME | 1753 STATION_INFO_STA_FLAGS | 1754 STATION_INFO_BEACON_LOSS_COUNT; 1755 1756 ktime_get_ts(&uptime); 1757 sinfo->connected_time = uptime.tv_sec - sta->last_connected; 1758 1759 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx); 1760 sinfo->tx_bytes = 0; 1761 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1762 sinfo->tx_bytes += sta->tx_bytes[ac]; 1763 packets += sta->tx_packets[ac]; 1764 } 1765 sinfo->tx_packets = packets; 1766 sinfo->rx_bytes = sta->rx_bytes; 1767 sinfo->rx_packets = sta->rx_packets; 1768 sinfo->tx_retries = sta->tx_retry_count; 1769 sinfo->tx_failed = sta->tx_retry_failed; 1770 sinfo->rx_dropped_misc = sta->rx_dropped; 1771 sinfo->beacon_loss_count = sta->beacon_loss_count; 1772 1773 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) || 1774 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) { 1775 sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG; 1776 if (!local->ops->get_rssi || 1777 drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal)) 1778 sinfo->signal = (s8)sta->last_signal; 1779 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal); 1780 } 1781 if (sta->chains) { 1782 sinfo->filled |= STATION_INFO_CHAIN_SIGNAL | 1783 STATION_INFO_CHAIN_SIGNAL_AVG; 1784 1785 sinfo->chains = sta->chains; 1786 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 1787 sinfo->chain_signal[i] = sta->chain_signal_last[i]; 1788 sinfo->chain_signal_avg[i] = 1789 (s8) -ewma_read(&sta->chain_signal_avg[i]); 1790 } 1791 } 1792 1793 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate); 1794 sta_set_rate_info_rx(sta, &sinfo->rxrate); 1795 1796 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1797 #ifdef CONFIG_MAC80211_MESH 1798 sinfo->filled |= STATION_INFO_LLID | 1799 STATION_INFO_PLID | 1800 STATION_INFO_PLINK_STATE | 1801 STATION_INFO_LOCAL_PM | 1802 STATION_INFO_PEER_PM | 1803 STATION_INFO_NONPEER_PM; 1804 1805 sinfo->llid = sta->llid; 1806 sinfo->plid = sta->plid; 1807 sinfo->plink_state = sta->plink_state; 1808 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 1809 sinfo->filled |= STATION_INFO_T_OFFSET; 1810 sinfo->t_offset = sta->t_offset; 1811 } 1812 sinfo->local_pm = sta->local_pm; 1813 sinfo->peer_pm = sta->peer_pm; 1814 sinfo->nonpeer_pm = sta->nonpeer_pm; 1815 #endif 1816 } 1817 1818 sinfo->bss_param.flags = 0; 1819 if (sdata->vif.bss_conf.use_cts_prot) 1820 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 1821 if (sdata->vif.bss_conf.use_short_preamble) 1822 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 1823 if (sdata->vif.bss_conf.use_short_slot) 1824 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 1825 sinfo->bss_param.dtim_period = sdata->local->hw.conf.ps_dtim_period; 1826 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 1827 1828 sinfo->sta_flags.set = 0; 1829 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 1830 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 1831 BIT(NL80211_STA_FLAG_WME) | 1832 BIT(NL80211_STA_FLAG_MFP) | 1833 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 1834 BIT(NL80211_STA_FLAG_ASSOCIATED) | 1835 BIT(NL80211_STA_FLAG_TDLS_PEER); 1836 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 1837 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 1838 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 1839 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 1840 if (test_sta_flag(sta, WLAN_STA_WME)) 1841 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 1842 if (test_sta_flag(sta, WLAN_STA_MFP)) 1843 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 1844 if (test_sta_flag(sta, WLAN_STA_AUTH)) 1845 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 1846 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 1847 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 1848 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 1849 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 1850 1851 /* check if the driver has a SW RC implementation */ 1852 if (ref && ref->ops->get_expected_throughput) 1853 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 1854 else 1855 thr = drv_get_expected_throughput(local, &sta->sta); 1856 1857 if (thr != 0) { 1858 sinfo->filled |= STATION_INFO_EXPECTED_THROUGHPUT; 1859 sinfo->expected_throughput = thr; 1860 } 1861 } 1862