1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/etherdevice.h> 14 #include <linux/netdevice.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/if_arp.h> 19 #include <linux/timer.h> 20 #include <linux/rtnetlink.h> 21 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 /* Caller must hold local->sta_mtx */ 68 static int sta_info_hash_del(struct ieee80211_local *local, 69 struct sta_info *sta) 70 { 71 struct sta_info *s; 72 73 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)], 74 lockdep_is_held(&local->sta_mtx)); 75 if (!s) 76 return -ENOENT; 77 if (s == sta) { 78 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], 79 s->hnext); 80 return 0; 81 } 82 83 while (rcu_access_pointer(s->hnext) && 84 rcu_access_pointer(s->hnext) != sta) 85 s = rcu_dereference_protected(s->hnext, 86 lockdep_is_held(&local->sta_mtx)); 87 if (rcu_access_pointer(s->hnext)) { 88 rcu_assign_pointer(s->hnext, sta->hnext); 89 return 0; 90 } 91 92 return -ENOENT; 93 } 94 95 static void __cleanup_single_sta(struct sta_info *sta) 96 { 97 int ac, i; 98 struct tid_ampdu_tx *tid_tx; 99 struct ieee80211_sub_if_data *sdata = sta->sdata; 100 struct ieee80211_local *local = sdata->local; 101 struct ps_data *ps; 102 103 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 104 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 105 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 106 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 107 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 108 ps = &sdata->bss->ps; 109 else if (ieee80211_vif_is_mesh(&sdata->vif)) 110 ps = &sdata->u.mesh.ps; 111 else 112 return; 113 114 clear_sta_flag(sta, WLAN_STA_PS_STA); 115 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 116 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 117 118 atomic_dec(&ps->num_sta_ps); 119 sta_info_recalc_tim(sta); 120 } 121 122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 123 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 126 } 127 128 if (ieee80211_vif_is_mesh(&sdata->vif)) 129 mesh_sta_cleanup(sta); 130 131 cancel_work_sync(&sta->drv_deliver_wk); 132 133 /* 134 * Destroy aggregation state here. It would be nice to wait for the 135 * driver to finish aggregation stop and then clean up, but for now 136 * drivers have to handle aggregation stop being requested, followed 137 * directly by station destruction. 138 */ 139 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 140 kfree(sta->ampdu_mlme.tid_start_tx[i]); 141 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 142 if (!tid_tx) 143 continue; 144 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 145 kfree(tid_tx); 146 } 147 } 148 149 static void cleanup_single_sta(struct sta_info *sta) 150 { 151 struct ieee80211_sub_if_data *sdata = sta->sdata; 152 struct ieee80211_local *local = sdata->local; 153 154 __cleanup_single_sta(sta); 155 sta_info_free(local, sta); 156 } 157 158 /* protected by RCU */ 159 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 160 const u8 *addr) 161 { 162 struct ieee80211_local *local = sdata->local; 163 struct sta_info *sta; 164 165 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 166 lockdep_is_held(&local->sta_mtx)); 167 while (sta) { 168 if (sta->sdata == sdata && 169 ether_addr_equal(sta->sta.addr, addr)) 170 break; 171 sta = rcu_dereference_check(sta->hnext, 172 lockdep_is_held(&local->sta_mtx)); 173 } 174 return sta; 175 } 176 177 /* 178 * Get sta info either from the specified interface 179 * or from one of its vlans 180 */ 181 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 182 const u8 *addr) 183 { 184 struct ieee80211_local *local = sdata->local; 185 struct sta_info *sta; 186 187 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 188 lockdep_is_held(&local->sta_mtx)); 189 while (sta) { 190 if ((sta->sdata == sdata || 191 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) && 192 ether_addr_equal(sta->sta.addr, addr)) 193 break; 194 sta = rcu_dereference_check(sta->hnext, 195 lockdep_is_held(&local->sta_mtx)); 196 } 197 return sta; 198 } 199 200 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 201 int idx) 202 { 203 struct ieee80211_local *local = sdata->local; 204 struct sta_info *sta; 205 int i = 0; 206 207 list_for_each_entry_rcu(sta, &local->sta_list, list) { 208 if (sdata != sta->sdata) 209 continue; 210 if (i < idx) { 211 ++i; 212 continue; 213 } 214 return sta; 215 } 216 217 return NULL; 218 } 219 220 /** 221 * sta_info_free - free STA 222 * 223 * @local: pointer to the global information 224 * @sta: STA info to free 225 * 226 * This function must undo everything done by sta_info_alloc() 227 * that may happen before sta_info_insert(). It may only be 228 * called when sta_info_insert() has not been attempted (and 229 * if that fails, the station is freed anyway.) 230 */ 231 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 232 { 233 int i; 234 235 if (sta->rate_ctrl) 236 rate_control_free_sta(sta); 237 238 if (sta->tx_lat) { 239 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 240 kfree(sta->tx_lat[i].bins); 241 kfree(sta->tx_lat); 242 } 243 244 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 245 246 kfree(rcu_dereference_raw(sta->sta.rates)); 247 kfree(sta); 248 } 249 250 /* Caller must hold local->sta_mtx */ 251 static void sta_info_hash_add(struct ieee80211_local *local, 252 struct sta_info *sta) 253 { 254 lockdep_assert_held(&local->sta_mtx); 255 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)]; 256 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta); 257 } 258 259 static void sta_deliver_ps_frames(struct work_struct *wk) 260 { 261 struct sta_info *sta; 262 263 sta = container_of(wk, struct sta_info, drv_deliver_wk); 264 265 if (sta->dead) 266 return; 267 268 local_bh_disable(); 269 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 270 ieee80211_sta_ps_deliver_wakeup(sta); 271 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 272 ieee80211_sta_ps_deliver_poll_response(sta); 273 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 274 ieee80211_sta_ps_deliver_uapsd(sta); 275 local_bh_enable(); 276 } 277 278 static int sta_prepare_rate_control(struct ieee80211_local *local, 279 struct sta_info *sta, gfp_t gfp) 280 { 281 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) 282 return 0; 283 284 sta->rate_ctrl = local->rate_ctrl; 285 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 286 &sta->sta, gfp); 287 if (!sta->rate_ctrl_priv) 288 return -ENOMEM; 289 290 return 0; 291 } 292 293 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 294 const u8 *addr, gfp_t gfp) 295 { 296 struct ieee80211_local *local = sdata->local; 297 struct sta_info *sta; 298 struct timespec uptime; 299 struct ieee80211_tx_latency_bin_ranges *tx_latency; 300 int i; 301 302 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp); 303 if (!sta) 304 return NULL; 305 306 rcu_read_lock(); 307 tx_latency = rcu_dereference(local->tx_latency); 308 /* init stations Tx latency statistics && TID bins */ 309 if (tx_latency) { 310 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS * 311 sizeof(struct ieee80211_tx_latency_stat), 312 GFP_ATOMIC); 313 if (!sta->tx_lat) { 314 rcu_read_unlock(); 315 goto free; 316 } 317 318 if (tx_latency->n_ranges) { 319 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 320 /* size of bins is size of the ranges +1 */ 321 sta->tx_lat[i].bin_count = 322 tx_latency->n_ranges + 1; 323 sta->tx_lat[i].bins = 324 kcalloc(sta->tx_lat[i].bin_count, 325 sizeof(u32), GFP_ATOMIC); 326 if (!sta->tx_lat[i].bins) { 327 rcu_read_unlock(); 328 goto free; 329 } 330 } 331 } 332 } 333 rcu_read_unlock(); 334 335 spin_lock_init(&sta->lock); 336 spin_lock_init(&sta->ps_lock); 337 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 338 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 339 mutex_init(&sta->ampdu_mlme.mtx); 340 #ifdef CONFIG_MAC80211_MESH 341 if (ieee80211_vif_is_mesh(&sdata->vif) && 342 !sdata->u.mesh.user_mpm) 343 init_timer(&sta->plink_timer); 344 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 345 #endif 346 347 memcpy(sta->sta.addr, addr, ETH_ALEN); 348 sta->local = local; 349 sta->sdata = sdata; 350 sta->last_rx = jiffies; 351 352 sta->sta_state = IEEE80211_STA_NONE; 353 354 /* Mark TID as unreserved */ 355 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 356 357 ktime_get_ts(&uptime); 358 sta->last_connected = uptime.tv_sec; 359 ewma_init(&sta->avg_signal, 1024, 8); 360 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 361 ewma_init(&sta->chain_signal_avg[i], 1024, 8); 362 363 if (sta_prepare_rate_control(local, sta, gfp)) 364 goto free; 365 366 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 367 /* 368 * timer_to_tid must be initialized with identity mapping 369 * to enable session_timer's data differentiation. See 370 * sta_rx_agg_session_timer_expired for usage. 371 */ 372 sta->timer_to_tid[i] = i; 373 } 374 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 375 skb_queue_head_init(&sta->ps_tx_buf[i]); 376 skb_queue_head_init(&sta->tx_filtered[i]); 377 } 378 379 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 380 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 381 382 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 383 if (sdata->vif.type == NL80211_IFTYPE_AP || 384 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 385 struct ieee80211_supported_band *sband = 386 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)]; 387 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 388 IEEE80211_HT_CAP_SM_PS_SHIFT; 389 /* 390 * Assume that hostapd advertises our caps in the beacon and 391 * this is the known_smps_mode for a station that just assciated 392 */ 393 switch (smps) { 394 case WLAN_HT_SMPS_CONTROL_DISABLED: 395 sta->known_smps_mode = IEEE80211_SMPS_OFF; 396 break; 397 case WLAN_HT_SMPS_CONTROL_STATIC: 398 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 399 break; 400 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 401 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 402 break; 403 default: 404 WARN_ON(1); 405 } 406 } 407 408 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 409 return sta; 410 411 free: 412 if (sta->tx_lat) { 413 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 414 kfree(sta->tx_lat[i].bins); 415 kfree(sta->tx_lat); 416 } 417 kfree(sta); 418 return NULL; 419 } 420 421 static int sta_info_insert_check(struct sta_info *sta) 422 { 423 struct ieee80211_sub_if_data *sdata = sta->sdata; 424 425 /* 426 * Can't be a WARN_ON because it can be triggered through a race: 427 * something inserts a STA (on one CPU) without holding the RTNL 428 * and another CPU turns off the net device. 429 */ 430 if (unlikely(!ieee80211_sdata_running(sdata))) 431 return -ENETDOWN; 432 433 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 434 is_multicast_ether_addr(sta->sta.addr))) 435 return -EINVAL; 436 437 return 0; 438 } 439 440 static int sta_info_insert_drv_state(struct ieee80211_local *local, 441 struct ieee80211_sub_if_data *sdata, 442 struct sta_info *sta) 443 { 444 enum ieee80211_sta_state state; 445 int err = 0; 446 447 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 448 err = drv_sta_state(local, sdata, sta, state, state + 1); 449 if (err) 450 break; 451 } 452 453 if (!err) { 454 /* 455 * Drivers using legacy sta_add/sta_remove callbacks only 456 * get uploaded set to true after sta_add is called. 457 */ 458 if (!local->ops->sta_add) 459 sta->uploaded = true; 460 return 0; 461 } 462 463 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 464 sdata_info(sdata, 465 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 466 sta->sta.addr, state + 1, err); 467 err = 0; 468 } 469 470 /* unwind on error */ 471 for (; state > IEEE80211_STA_NOTEXIST; state--) 472 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 473 474 return err; 475 } 476 477 /* 478 * should be called with sta_mtx locked 479 * this function replaces the mutex lock 480 * with a RCU lock 481 */ 482 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 483 { 484 struct ieee80211_local *local = sta->local; 485 struct ieee80211_sub_if_data *sdata = sta->sdata; 486 struct station_info sinfo; 487 int err = 0; 488 489 lockdep_assert_held(&local->sta_mtx); 490 491 /* check if STA exists already */ 492 if (sta_info_get_bss(sdata, sta->sta.addr)) { 493 err = -EEXIST; 494 goto out_err; 495 } 496 497 local->num_sta++; 498 local->sta_generation++; 499 smp_mb(); 500 501 /* simplify things and don't accept BA sessions yet */ 502 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 503 504 /* make the station visible */ 505 sta_info_hash_add(local, sta); 506 507 list_add_tail_rcu(&sta->list, &local->sta_list); 508 509 /* notify driver */ 510 err = sta_info_insert_drv_state(local, sdata, sta); 511 if (err) 512 goto out_remove; 513 514 set_sta_flag(sta, WLAN_STA_INSERTED); 515 /* accept BA sessions now */ 516 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 517 518 ieee80211_recalc_min_chandef(sdata); 519 ieee80211_sta_debugfs_add(sta); 520 rate_control_add_sta_debugfs(sta); 521 522 memset(&sinfo, 0, sizeof(sinfo)); 523 sinfo.filled = 0; 524 sinfo.generation = local->sta_generation; 525 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 526 527 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 528 529 /* move reference to rcu-protected */ 530 rcu_read_lock(); 531 mutex_unlock(&local->sta_mtx); 532 533 if (ieee80211_vif_is_mesh(&sdata->vif)) 534 mesh_accept_plinks_update(sdata); 535 536 return 0; 537 out_remove: 538 sta_info_hash_del(local, sta); 539 list_del_rcu(&sta->list); 540 local->num_sta--; 541 synchronize_net(); 542 __cleanup_single_sta(sta); 543 out_err: 544 mutex_unlock(&local->sta_mtx); 545 rcu_read_lock(); 546 return err; 547 } 548 549 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 550 { 551 struct ieee80211_local *local = sta->local; 552 int err; 553 554 might_sleep(); 555 556 err = sta_info_insert_check(sta); 557 if (err) { 558 rcu_read_lock(); 559 goto out_free; 560 } 561 562 mutex_lock(&local->sta_mtx); 563 564 err = sta_info_insert_finish(sta); 565 if (err) 566 goto out_free; 567 568 return 0; 569 out_free: 570 sta_info_free(local, sta); 571 return err; 572 } 573 574 int sta_info_insert(struct sta_info *sta) 575 { 576 int err = sta_info_insert_rcu(sta); 577 578 rcu_read_unlock(); 579 580 return err; 581 } 582 583 static inline void __bss_tim_set(u8 *tim, u16 id) 584 { 585 /* 586 * This format has been mandated by the IEEE specifications, 587 * so this line may not be changed to use the __set_bit() format. 588 */ 589 tim[id / 8] |= (1 << (id % 8)); 590 } 591 592 static inline void __bss_tim_clear(u8 *tim, u16 id) 593 { 594 /* 595 * This format has been mandated by the IEEE specifications, 596 * so this line may not be changed to use the __clear_bit() format. 597 */ 598 tim[id / 8] &= ~(1 << (id % 8)); 599 } 600 601 static inline bool __bss_tim_get(u8 *tim, u16 id) 602 { 603 /* 604 * This format has been mandated by the IEEE specifications, 605 * so this line may not be changed to use the test_bit() format. 606 */ 607 return tim[id / 8] & (1 << (id % 8)); 608 } 609 610 static unsigned long ieee80211_tids_for_ac(int ac) 611 { 612 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 613 switch (ac) { 614 case IEEE80211_AC_VO: 615 return BIT(6) | BIT(7); 616 case IEEE80211_AC_VI: 617 return BIT(4) | BIT(5); 618 case IEEE80211_AC_BE: 619 return BIT(0) | BIT(3); 620 case IEEE80211_AC_BK: 621 return BIT(1) | BIT(2); 622 default: 623 WARN_ON(1); 624 return 0; 625 } 626 } 627 628 void sta_info_recalc_tim(struct sta_info *sta) 629 { 630 struct ieee80211_local *local = sta->local; 631 struct ps_data *ps; 632 bool indicate_tim = false; 633 u8 ignore_for_tim = sta->sta.uapsd_queues; 634 int ac; 635 u16 id; 636 637 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 638 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 639 if (WARN_ON_ONCE(!sta->sdata->bss)) 640 return; 641 642 ps = &sta->sdata->bss->ps; 643 id = sta->sta.aid; 644 #ifdef CONFIG_MAC80211_MESH 645 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 646 ps = &sta->sdata->u.mesh.ps; 647 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */ 648 id = sta->plid % (IEEE80211_MAX_AID + 1); 649 #endif 650 } else { 651 return; 652 } 653 654 /* No need to do anything if the driver does all */ 655 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS) 656 return; 657 658 if (sta->dead) 659 goto done; 660 661 /* 662 * If all ACs are delivery-enabled then we should build 663 * the TIM bit for all ACs anyway; if only some are then 664 * we ignore those and build the TIM bit using only the 665 * non-enabled ones. 666 */ 667 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 668 ignore_for_tim = 0; 669 670 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 671 unsigned long tids; 672 673 if (ignore_for_tim & BIT(ac)) 674 continue; 675 676 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 677 !skb_queue_empty(&sta->ps_tx_buf[ac]); 678 if (indicate_tim) 679 break; 680 681 tids = ieee80211_tids_for_ac(ac); 682 683 indicate_tim |= 684 sta->driver_buffered_tids & tids; 685 } 686 687 done: 688 spin_lock_bh(&local->tim_lock); 689 690 if (indicate_tim == __bss_tim_get(ps->tim, id)) 691 goto out_unlock; 692 693 if (indicate_tim) 694 __bss_tim_set(ps->tim, id); 695 else 696 __bss_tim_clear(ps->tim, id); 697 698 if (local->ops->set_tim) { 699 local->tim_in_locked_section = true; 700 drv_set_tim(local, &sta->sta, indicate_tim); 701 local->tim_in_locked_section = false; 702 } 703 704 out_unlock: 705 spin_unlock_bh(&local->tim_lock); 706 } 707 708 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 709 { 710 struct ieee80211_tx_info *info; 711 int timeout; 712 713 if (!skb) 714 return false; 715 716 info = IEEE80211_SKB_CB(skb); 717 718 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 719 timeout = (sta->listen_interval * 720 sta->sdata->vif.bss_conf.beacon_int * 721 32 / 15625) * HZ; 722 if (timeout < STA_TX_BUFFER_EXPIRE) 723 timeout = STA_TX_BUFFER_EXPIRE; 724 return time_after(jiffies, info->control.jiffies + timeout); 725 } 726 727 728 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 729 struct sta_info *sta, int ac) 730 { 731 unsigned long flags; 732 struct sk_buff *skb; 733 734 /* 735 * First check for frames that should expire on the filtered 736 * queue. Frames here were rejected by the driver and are on 737 * a separate queue to avoid reordering with normal PS-buffered 738 * frames. They also aren't accounted for right now in the 739 * total_ps_buffered counter. 740 */ 741 for (;;) { 742 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 743 skb = skb_peek(&sta->tx_filtered[ac]); 744 if (sta_info_buffer_expired(sta, skb)) 745 skb = __skb_dequeue(&sta->tx_filtered[ac]); 746 else 747 skb = NULL; 748 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 749 750 /* 751 * Frames are queued in order, so if this one 752 * hasn't expired yet we can stop testing. If 753 * we actually reached the end of the queue we 754 * also need to stop, of course. 755 */ 756 if (!skb) 757 break; 758 ieee80211_free_txskb(&local->hw, skb); 759 } 760 761 /* 762 * Now also check the normal PS-buffered queue, this will 763 * only find something if the filtered queue was emptied 764 * since the filtered frames are all before the normal PS 765 * buffered frames. 766 */ 767 for (;;) { 768 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 769 skb = skb_peek(&sta->ps_tx_buf[ac]); 770 if (sta_info_buffer_expired(sta, skb)) 771 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 772 else 773 skb = NULL; 774 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 775 776 /* 777 * frames are queued in order, so if this one 778 * hasn't expired yet (or we reached the end of 779 * the queue) we can stop testing 780 */ 781 if (!skb) 782 break; 783 784 local->total_ps_buffered--; 785 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 786 sta->sta.addr); 787 ieee80211_free_txskb(&local->hw, skb); 788 } 789 790 /* 791 * Finally, recalculate the TIM bit for this station -- it might 792 * now be clear because the station was too slow to retrieve its 793 * frames. 794 */ 795 sta_info_recalc_tim(sta); 796 797 /* 798 * Return whether there are any frames still buffered, this is 799 * used to check whether the cleanup timer still needs to run, 800 * if there are no frames we don't need to rearm the timer. 801 */ 802 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 803 skb_queue_empty(&sta->tx_filtered[ac])); 804 } 805 806 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 807 struct sta_info *sta) 808 { 809 bool have_buffered = false; 810 int ac; 811 812 /* This is only necessary for stations on BSS/MBSS interfaces */ 813 if (!sta->sdata->bss && 814 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 815 return false; 816 817 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 818 have_buffered |= 819 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 820 821 return have_buffered; 822 } 823 824 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 825 { 826 struct ieee80211_local *local; 827 struct ieee80211_sub_if_data *sdata; 828 int ret; 829 830 might_sleep(); 831 832 if (!sta) 833 return -ENOENT; 834 835 local = sta->local; 836 sdata = sta->sdata; 837 838 lockdep_assert_held(&local->sta_mtx); 839 840 /* 841 * Before removing the station from the driver and 842 * rate control, it might still start new aggregation 843 * sessions -- block that to make sure the tear-down 844 * will be sufficient. 845 */ 846 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 847 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 848 849 ret = sta_info_hash_del(local, sta); 850 if (WARN_ON(ret)) 851 return ret; 852 853 /* 854 * for TDLS peers, make sure to return to the base channel before 855 * removal. 856 */ 857 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 858 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 859 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 860 } 861 862 list_del_rcu(&sta->list); 863 864 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 865 866 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 867 rcu_access_pointer(sdata->u.vlan.sta) == sta) 868 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 869 870 return 0; 871 } 872 873 static void __sta_info_destroy_part2(struct sta_info *sta) 874 { 875 struct ieee80211_local *local = sta->local; 876 struct ieee80211_sub_if_data *sdata = sta->sdata; 877 struct station_info sinfo = {}; 878 int ret; 879 880 /* 881 * NOTE: This assumes at least synchronize_net() was done 882 * after _part1 and before _part2! 883 */ 884 885 might_sleep(); 886 lockdep_assert_held(&local->sta_mtx); 887 888 /* now keys can no longer be reached */ 889 ieee80211_free_sta_keys(local, sta); 890 891 sta->dead = true; 892 893 local->num_sta--; 894 local->sta_generation++; 895 896 while (sta->sta_state > IEEE80211_STA_NONE) { 897 ret = sta_info_move_state(sta, sta->sta_state - 1); 898 if (ret) { 899 WARN_ON_ONCE(1); 900 break; 901 } 902 } 903 904 if (sta->uploaded) { 905 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 906 IEEE80211_STA_NOTEXIST); 907 WARN_ON_ONCE(ret != 0); 908 } 909 910 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 911 912 sta_set_sinfo(sta, &sinfo); 913 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 914 915 rate_control_remove_sta_debugfs(sta); 916 ieee80211_sta_debugfs_remove(sta); 917 ieee80211_recalc_min_chandef(sdata); 918 919 cleanup_single_sta(sta); 920 } 921 922 int __must_check __sta_info_destroy(struct sta_info *sta) 923 { 924 int err = __sta_info_destroy_part1(sta); 925 926 if (err) 927 return err; 928 929 synchronize_net(); 930 931 __sta_info_destroy_part2(sta); 932 933 return 0; 934 } 935 936 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 937 { 938 struct sta_info *sta; 939 int ret; 940 941 mutex_lock(&sdata->local->sta_mtx); 942 sta = sta_info_get(sdata, addr); 943 ret = __sta_info_destroy(sta); 944 mutex_unlock(&sdata->local->sta_mtx); 945 946 return ret; 947 } 948 949 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 950 const u8 *addr) 951 { 952 struct sta_info *sta; 953 int ret; 954 955 mutex_lock(&sdata->local->sta_mtx); 956 sta = sta_info_get_bss(sdata, addr); 957 ret = __sta_info_destroy(sta); 958 mutex_unlock(&sdata->local->sta_mtx); 959 960 return ret; 961 } 962 963 static void sta_info_cleanup(unsigned long data) 964 { 965 struct ieee80211_local *local = (struct ieee80211_local *) data; 966 struct sta_info *sta; 967 bool timer_needed = false; 968 969 rcu_read_lock(); 970 list_for_each_entry_rcu(sta, &local->sta_list, list) 971 if (sta_info_cleanup_expire_buffered(local, sta)) 972 timer_needed = true; 973 rcu_read_unlock(); 974 975 if (local->quiescing) 976 return; 977 978 if (!timer_needed) 979 return; 980 981 mod_timer(&local->sta_cleanup, 982 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 983 } 984 985 void sta_info_init(struct ieee80211_local *local) 986 { 987 spin_lock_init(&local->tim_lock); 988 mutex_init(&local->sta_mtx); 989 INIT_LIST_HEAD(&local->sta_list); 990 991 setup_timer(&local->sta_cleanup, sta_info_cleanup, 992 (unsigned long)local); 993 } 994 995 void sta_info_stop(struct ieee80211_local *local) 996 { 997 del_timer_sync(&local->sta_cleanup); 998 } 999 1000 1001 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1002 { 1003 struct ieee80211_local *local = sdata->local; 1004 struct sta_info *sta, *tmp; 1005 LIST_HEAD(free_list); 1006 int ret = 0; 1007 1008 might_sleep(); 1009 1010 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1011 WARN_ON(vlans && !sdata->bss); 1012 1013 mutex_lock(&local->sta_mtx); 1014 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1015 if (sdata == sta->sdata || 1016 (vlans && sdata->bss == sta->sdata->bss)) { 1017 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1018 list_add(&sta->free_list, &free_list); 1019 ret++; 1020 } 1021 } 1022 1023 if (!list_empty(&free_list)) { 1024 synchronize_net(); 1025 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1026 __sta_info_destroy_part2(sta); 1027 } 1028 mutex_unlock(&local->sta_mtx); 1029 1030 return ret; 1031 } 1032 1033 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1034 unsigned long exp_time) 1035 { 1036 struct ieee80211_local *local = sdata->local; 1037 struct sta_info *sta, *tmp; 1038 1039 mutex_lock(&local->sta_mtx); 1040 1041 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1042 if (sdata != sta->sdata) 1043 continue; 1044 1045 if (time_after(jiffies, sta->last_rx + exp_time)) { 1046 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1047 sta->sta.addr); 1048 1049 if (ieee80211_vif_is_mesh(&sdata->vif) && 1050 test_sta_flag(sta, WLAN_STA_PS_STA)) 1051 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1052 1053 WARN_ON(__sta_info_destroy(sta)); 1054 } 1055 } 1056 1057 mutex_unlock(&local->sta_mtx); 1058 } 1059 1060 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1061 const u8 *addr, 1062 const u8 *localaddr) 1063 { 1064 struct sta_info *sta, *nxt; 1065 1066 /* 1067 * Just return a random station if localaddr is NULL 1068 * ... first in list. 1069 */ 1070 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) { 1071 if (localaddr && 1072 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1073 continue; 1074 if (!sta->uploaded) 1075 return NULL; 1076 return &sta->sta; 1077 } 1078 1079 return NULL; 1080 } 1081 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1082 1083 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1084 const u8 *addr) 1085 { 1086 struct sta_info *sta; 1087 1088 if (!vif) 1089 return NULL; 1090 1091 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1092 if (!sta) 1093 return NULL; 1094 1095 if (!sta->uploaded) 1096 return NULL; 1097 1098 return &sta->sta; 1099 } 1100 EXPORT_SYMBOL(ieee80211_find_sta); 1101 1102 /* powersave support code */ 1103 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1104 { 1105 struct ieee80211_sub_if_data *sdata = sta->sdata; 1106 struct ieee80211_local *local = sdata->local; 1107 struct sk_buff_head pending; 1108 int filtered = 0, buffered = 0, ac; 1109 unsigned long flags; 1110 struct ps_data *ps; 1111 1112 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1113 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1114 u.ap); 1115 1116 if (sdata->vif.type == NL80211_IFTYPE_AP) 1117 ps = &sdata->bss->ps; 1118 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1119 ps = &sdata->u.mesh.ps; 1120 else 1121 return; 1122 1123 clear_sta_flag(sta, WLAN_STA_SP); 1124 1125 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1126 sta->driver_buffered_tids = 0; 1127 1128 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1129 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1130 1131 skb_queue_head_init(&pending); 1132 1133 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1134 spin_lock(&sta->ps_lock); 1135 /* Send all buffered frames to the station */ 1136 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1137 int count = skb_queue_len(&pending), tmp; 1138 1139 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1140 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1141 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1142 tmp = skb_queue_len(&pending); 1143 filtered += tmp - count; 1144 count = tmp; 1145 1146 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1147 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1148 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1149 tmp = skb_queue_len(&pending); 1150 buffered += tmp - count; 1151 } 1152 1153 ieee80211_add_pending_skbs(local, &pending); 1154 1155 /* now we're no longer in the deliver code */ 1156 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1157 1158 /* The station might have polled and then woken up before we responded, 1159 * so clear these flags now to avoid them sticking around. 1160 */ 1161 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1162 clear_sta_flag(sta, WLAN_STA_UAPSD); 1163 spin_unlock(&sta->ps_lock); 1164 1165 atomic_dec(&ps->num_sta_ps); 1166 1167 /* This station just woke up and isn't aware of our SMPS state */ 1168 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1169 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1170 sdata->smps_mode) && 1171 sta->known_smps_mode != sdata->bss->req_smps && 1172 sta_info_tx_streams(sta) != 1) { 1173 ht_dbg(sdata, 1174 "%pM just woke up and MIMO capable - update SMPS\n", 1175 sta->sta.addr); 1176 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1177 sta->sta.addr, 1178 sdata->vif.bss_conf.bssid); 1179 } 1180 1181 local->total_ps_buffered -= buffered; 1182 1183 sta_info_recalc_tim(sta); 1184 1185 ps_dbg(sdata, 1186 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1187 sta->sta.addr, sta->sta.aid, filtered, buffered); 1188 } 1189 1190 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1191 struct sta_info *sta, int tid, 1192 enum ieee80211_frame_release_type reason, 1193 bool call_driver) 1194 { 1195 struct ieee80211_local *local = sdata->local; 1196 struct ieee80211_qos_hdr *nullfunc; 1197 struct sk_buff *skb; 1198 int size = sizeof(*nullfunc); 1199 __le16 fc; 1200 bool qos = sta->sta.wme; 1201 struct ieee80211_tx_info *info; 1202 struct ieee80211_chanctx_conf *chanctx_conf; 1203 1204 if (qos) { 1205 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1206 IEEE80211_STYPE_QOS_NULLFUNC | 1207 IEEE80211_FCTL_FROMDS); 1208 } else { 1209 size -= 2; 1210 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1211 IEEE80211_STYPE_NULLFUNC | 1212 IEEE80211_FCTL_FROMDS); 1213 } 1214 1215 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1216 if (!skb) 1217 return; 1218 1219 skb_reserve(skb, local->hw.extra_tx_headroom); 1220 1221 nullfunc = (void *) skb_put(skb, size); 1222 nullfunc->frame_control = fc; 1223 nullfunc->duration_id = 0; 1224 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1225 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1226 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1227 nullfunc->seq_ctrl = 0; 1228 1229 skb->priority = tid; 1230 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1231 if (qos) { 1232 nullfunc->qos_ctrl = cpu_to_le16(tid); 1233 1234 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1235 nullfunc->qos_ctrl |= 1236 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1237 } 1238 1239 info = IEEE80211_SKB_CB(skb); 1240 1241 /* 1242 * Tell TX path to send this frame even though the 1243 * STA may still remain is PS mode after this frame 1244 * exchange. Also set EOSP to indicate this packet 1245 * ends the poll/service period. 1246 */ 1247 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1248 IEEE80211_TX_STATUS_EOSP | 1249 IEEE80211_TX_CTL_REQ_TX_STATUS; 1250 1251 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1252 1253 if (call_driver) 1254 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1255 reason, false); 1256 1257 skb->dev = sdata->dev; 1258 1259 rcu_read_lock(); 1260 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1261 if (WARN_ON(!chanctx_conf)) { 1262 rcu_read_unlock(); 1263 kfree_skb(skb); 1264 return; 1265 } 1266 1267 info->band = chanctx_conf->def.chan->band; 1268 ieee80211_xmit(sdata, skb); 1269 rcu_read_unlock(); 1270 } 1271 1272 static int find_highest_prio_tid(unsigned long tids) 1273 { 1274 /* lower 3 TIDs aren't ordered perfectly */ 1275 if (tids & 0xF8) 1276 return fls(tids) - 1; 1277 /* TID 0 is BE just like TID 3 */ 1278 if (tids & BIT(0)) 1279 return 0; 1280 return fls(tids) - 1; 1281 } 1282 1283 static void 1284 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1285 int n_frames, u8 ignored_acs, 1286 enum ieee80211_frame_release_type reason) 1287 { 1288 struct ieee80211_sub_if_data *sdata = sta->sdata; 1289 struct ieee80211_local *local = sdata->local; 1290 bool more_data = false; 1291 int ac; 1292 unsigned long driver_release_tids = 0; 1293 struct sk_buff_head frames; 1294 1295 /* Service or PS-Poll period starts */ 1296 set_sta_flag(sta, WLAN_STA_SP); 1297 1298 __skb_queue_head_init(&frames); 1299 1300 /* Get response frame(s) and more data bit for the last one. */ 1301 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1302 unsigned long tids; 1303 1304 if (ignored_acs & BIT(ac)) 1305 continue; 1306 1307 tids = ieee80211_tids_for_ac(ac); 1308 1309 /* if we already have frames from software, then we can't also 1310 * release from hardware queues 1311 */ 1312 if (skb_queue_empty(&frames)) 1313 driver_release_tids |= sta->driver_buffered_tids & tids; 1314 1315 if (driver_release_tids) { 1316 /* If the driver has data on more than one TID then 1317 * certainly there's more data if we release just a 1318 * single frame now (from a single TID). This will 1319 * only happen for PS-Poll. 1320 */ 1321 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1322 hweight16(driver_release_tids) > 1) { 1323 more_data = true; 1324 driver_release_tids = 1325 BIT(find_highest_prio_tid( 1326 driver_release_tids)); 1327 break; 1328 } 1329 } else { 1330 struct sk_buff *skb; 1331 1332 while (n_frames > 0) { 1333 skb = skb_dequeue(&sta->tx_filtered[ac]); 1334 if (!skb) { 1335 skb = skb_dequeue( 1336 &sta->ps_tx_buf[ac]); 1337 if (skb) 1338 local->total_ps_buffered--; 1339 } 1340 if (!skb) 1341 break; 1342 n_frames--; 1343 __skb_queue_tail(&frames, skb); 1344 } 1345 } 1346 1347 /* If we have more frames buffered on this AC, then set the 1348 * more-data bit and abort the loop since we can't send more 1349 * data from other ACs before the buffered frames from this. 1350 */ 1351 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1352 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1353 more_data = true; 1354 break; 1355 } 1356 } 1357 1358 if (skb_queue_empty(&frames) && !driver_release_tids) { 1359 int tid; 1360 1361 /* 1362 * For PS-Poll, this can only happen due to a race condition 1363 * when we set the TIM bit and the station notices it, but 1364 * before it can poll for the frame we expire it. 1365 * 1366 * For uAPSD, this is said in the standard (11.2.1.5 h): 1367 * At each unscheduled SP for a non-AP STA, the AP shall 1368 * attempt to transmit at least one MSDU or MMPDU, but no 1369 * more than the value specified in the Max SP Length field 1370 * in the QoS Capability element from delivery-enabled ACs, 1371 * that are destined for the non-AP STA. 1372 * 1373 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1374 */ 1375 1376 /* This will evaluate to 1, 3, 5 or 7. */ 1377 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1378 1379 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1380 } else if (!driver_release_tids) { 1381 struct sk_buff_head pending; 1382 struct sk_buff *skb; 1383 int num = 0; 1384 u16 tids = 0; 1385 bool need_null = false; 1386 1387 skb_queue_head_init(&pending); 1388 1389 while ((skb = __skb_dequeue(&frames))) { 1390 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1391 struct ieee80211_hdr *hdr = (void *) skb->data; 1392 u8 *qoshdr = NULL; 1393 1394 num++; 1395 1396 /* 1397 * Tell TX path to send this frame even though the 1398 * STA may still remain is PS mode after this frame 1399 * exchange. 1400 */ 1401 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1402 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1403 1404 /* 1405 * Use MoreData flag to indicate whether there are 1406 * more buffered frames for this STA 1407 */ 1408 if (more_data || !skb_queue_empty(&frames)) 1409 hdr->frame_control |= 1410 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1411 else 1412 hdr->frame_control &= 1413 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1414 1415 if (ieee80211_is_data_qos(hdr->frame_control) || 1416 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1417 qoshdr = ieee80211_get_qos_ctl(hdr); 1418 1419 tids |= BIT(skb->priority); 1420 1421 __skb_queue_tail(&pending, skb); 1422 1423 /* end service period after last frame or add one */ 1424 if (!skb_queue_empty(&frames)) 1425 continue; 1426 1427 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1428 /* for PS-Poll, there's only one frame */ 1429 info->flags |= IEEE80211_TX_STATUS_EOSP | 1430 IEEE80211_TX_CTL_REQ_TX_STATUS; 1431 break; 1432 } 1433 1434 /* For uAPSD, things are a bit more complicated. If the 1435 * last frame has a QoS header (i.e. is a QoS-data or 1436 * QoS-nulldata frame) then just set the EOSP bit there 1437 * and be done. 1438 * If the frame doesn't have a QoS header (which means 1439 * it should be a bufferable MMPDU) then we can't set 1440 * the EOSP bit in the QoS header; add a QoS-nulldata 1441 * frame to the list to send it after the MMPDU. 1442 * 1443 * Note that this code is only in the mac80211-release 1444 * code path, we assume that the driver will not buffer 1445 * anything but QoS-data frames, or if it does, will 1446 * create the QoS-nulldata frame by itself if needed. 1447 * 1448 * Cf. 802.11-2012 10.2.1.10 (c). 1449 */ 1450 if (qoshdr) { 1451 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1452 1453 info->flags |= IEEE80211_TX_STATUS_EOSP | 1454 IEEE80211_TX_CTL_REQ_TX_STATUS; 1455 } else { 1456 /* The standard isn't completely clear on this 1457 * as it says the more-data bit should be set 1458 * if there are more BUs. The QoS-Null frame 1459 * we're about to send isn't buffered yet, we 1460 * only create it below, but let's pretend it 1461 * was buffered just in case some clients only 1462 * expect more-data=0 when eosp=1. 1463 */ 1464 hdr->frame_control |= 1465 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1466 need_null = true; 1467 num++; 1468 } 1469 break; 1470 } 1471 1472 drv_allow_buffered_frames(local, sta, tids, num, 1473 reason, more_data); 1474 1475 ieee80211_add_pending_skbs(local, &pending); 1476 1477 if (need_null) 1478 ieee80211_send_null_response( 1479 sdata, sta, find_highest_prio_tid(tids), 1480 reason, false); 1481 1482 sta_info_recalc_tim(sta); 1483 } else { 1484 /* 1485 * We need to release a frame that is buffered somewhere in the 1486 * driver ... it'll have to handle that. 1487 * Note that the driver also has to check the number of frames 1488 * on the TIDs we're releasing from - if there are more than 1489 * n_frames it has to set the more-data bit (if we didn't ask 1490 * it to set it anyway due to other buffered frames); if there 1491 * are fewer than n_frames it has to make sure to adjust that 1492 * to allow the service period to end properly. 1493 */ 1494 drv_release_buffered_frames(local, sta, driver_release_tids, 1495 n_frames, reason, more_data); 1496 1497 /* 1498 * Note that we don't recalculate the TIM bit here as it would 1499 * most likely have no effect at all unless the driver told us 1500 * that the TID(s) became empty before returning here from the 1501 * release function. 1502 * Either way, however, when the driver tells us that the TID(s) 1503 * became empty we'll do the TIM recalculation. 1504 */ 1505 } 1506 } 1507 1508 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1509 { 1510 u8 ignore_for_response = sta->sta.uapsd_queues; 1511 1512 /* 1513 * If all ACs are delivery-enabled then we should reply 1514 * from any of them, if only some are enabled we reply 1515 * only from the non-enabled ones. 1516 */ 1517 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1518 ignore_for_response = 0; 1519 1520 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1521 IEEE80211_FRAME_RELEASE_PSPOLL); 1522 } 1523 1524 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1525 { 1526 int n_frames = sta->sta.max_sp; 1527 u8 delivery_enabled = sta->sta.uapsd_queues; 1528 1529 /* 1530 * If we ever grow support for TSPEC this might happen if 1531 * the TSPEC update from hostapd comes in between a trigger 1532 * frame setting WLAN_STA_UAPSD in the RX path and this 1533 * actually getting called. 1534 */ 1535 if (!delivery_enabled) 1536 return; 1537 1538 switch (sta->sta.max_sp) { 1539 case 1: 1540 n_frames = 2; 1541 break; 1542 case 2: 1543 n_frames = 4; 1544 break; 1545 case 3: 1546 n_frames = 6; 1547 break; 1548 case 0: 1549 /* XXX: what is a good value? */ 1550 n_frames = 128; 1551 break; 1552 } 1553 1554 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1555 IEEE80211_FRAME_RELEASE_UAPSD); 1556 } 1557 1558 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1559 struct ieee80211_sta *pubsta, bool block) 1560 { 1561 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1562 1563 trace_api_sta_block_awake(sta->local, pubsta, block); 1564 1565 if (block) { 1566 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1567 return; 1568 } 1569 1570 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1571 return; 1572 1573 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1574 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1575 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1576 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1577 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1578 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1579 /* must be asleep in this case */ 1580 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1581 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1582 } else { 1583 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1584 } 1585 } 1586 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1587 1588 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1589 { 1590 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1591 struct ieee80211_local *local = sta->local; 1592 1593 trace_api_eosp(local, pubsta); 1594 1595 clear_sta_flag(sta, WLAN_STA_SP); 1596 } 1597 EXPORT_SYMBOL(ieee80211_sta_eosp); 1598 1599 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1600 u8 tid, bool buffered) 1601 { 1602 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1603 1604 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1605 return; 1606 1607 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1608 1609 if (buffered) 1610 set_bit(tid, &sta->driver_buffered_tids); 1611 else 1612 clear_bit(tid, &sta->driver_buffered_tids); 1613 1614 sta_info_recalc_tim(sta); 1615 } 1616 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1617 1618 int sta_info_move_state(struct sta_info *sta, 1619 enum ieee80211_sta_state new_state) 1620 { 1621 might_sleep(); 1622 1623 if (sta->sta_state == new_state) 1624 return 0; 1625 1626 /* check allowed transitions first */ 1627 1628 switch (new_state) { 1629 case IEEE80211_STA_NONE: 1630 if (sta->sta_state != IEEE80211_STA_AUTH) 1631 return -EINVAL; 1632 break; 1633 case IEEE80211_STA_AUTH: 1634 if (sta->sta_state != IEEE80211_STA_NONE && 1635 sta->sta_state != IEEE80211_STA_ASSOC) 1636 return -EINVAL; 1637 break; 1638 case IEEE80211_STA_ASSOC: 1639 if (sta->sta_state != IEEE80211_STA_AUTH && 1640 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1641 return -EINVAL; 1642 break; 1643 case IEEE80211_STA_AUTHORIZED: 1644 if (sta->sta_state != IEEE80211_STA_ASSOC) 1645 return -EINVAL; 1646 break; 1647 default: 1648 WARN(1, "invalid state %d", new_state); 1649 return -EINVAL; 1650 } 1651 1652 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1653 sta->sta.addr, new_state); 1654 1655 /* 1656 * notify the driver before the actual changes so it can 1657 * fail the transition 1658 */ 1659 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1660 int err = drv_sta_state(sta->local, sta->sdata, sta, 1661 sta->sta_state, new_state); 1662 if (err) 1663 return err; 1664 } 1665 1666 /* reflect the change in all state variables */ 1667 1668 switch (new_state) { 1669 case IEEE80211_STA_NONE: 1670 if (sta->sta_state == IEEE80211_STA_AUTH) 1671 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1672 break; 1673 case IEEE80211_STA_AUTH: 1674 if (sta->sta_state == IEEE80211_STA_NONE) 1675 set_bit(WLAN_STA_AUTH, &sta->_flags); 1676 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1677 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1678 break; 1679 case IEEE80211_STA_ASSOC: 1680 if (sta->sta_state == IEEE80211_STA_AUTH) { 1681 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1682 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1683 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1684 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1685 !sta->sdata->u.vlan.sta)) 1686 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1687 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1688 } 1689 break; 1690 case IEEE80211_STA_AUTHORIZED: 1691 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1692 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1693 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1694 !sta->sdata->u.vlan.sta)) 1695 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1696 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1697 } 1698 break; 1699 default: 1700 break; 1701 } 1702 1703 sta->sta_state = new_state; 1704 1705 return 0; 1706 } 1707 1708 u8 sta_info_tx_streams(struct sta_info *sta) 1709 { 1710 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1711 u8 rx_streams; 1712 1713 if (!sta->sta.ht_cap.ht_supported) 1714 return 1; 1715 1716 if (sta->sta.vht_cap.vht_supported) { 1717 int i; 1718 u16 tx_mcs_map = 1719 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1720 1721 for (i = 7; i >= 0; i--) 1722 if ((tx_mcs_map & (0x3 << (i * 2))) != 1723 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1724 return i + 1; 1725 } 1726 1727 if (ht_cap->mcs.rx_mask[3]) 1728 rx_streams = 4; 1729 else if (ht_cap->mcs.rx_mask[2]) 1730 rx_streams = 3; 1731 else if (ht_cap->mcs.rx_mask[1]) 1732 rx_streams = 2; 1733 else 1734 rx_streams = 1; 1735 1736 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1737 return rx_streams; 1738 1739 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1740 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1741 } 1742 1743 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1744 { 1745 struct ieee80211_sub_if_data *sdata = sta->sdata; 1746 struct ieee80211_local *local = sdata->local; 1747 struct rate_control_ref *ref = NULL; 1748 struct timespec uptime; 1749 u64 packets = 0; 1750 u32 thr = 0; 1751 int i, ac; 1752 1753 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1754 ref = local->rate_ctrl; 1755 1756 sinfo->generation = sdata->local->sta_generation; 1757 1758 sinfo->filled = STATION_INFO_INACTIVE_TIME | 1759 STATION_INFO_RX_BYTES64 | 1760 STATION_INFO_TX_BYTES64 | 1761 STATION_INFO_RX_PACKETS | 1762 STATION_INFO_TX_PACKETS | 1763 STATION_INFO_TX_RETRIES | 1764 STATION_INFO_TX_FAILED | 1765 STATION_INFO_TX_BITRATE | 1766 STATION_INFO_RX_BITRATE | 1767 STATION_INFO_RX_DROP_MISC | 1768 STATION_INFO_BSS_PARAM | 1769 STATION_INFO_CONNECTED_TIME | 1770 STATION_INFO_STA_FLAGS | 1771 STATION_INFO_BEACON_LOSS_COUNT; 1772 1773 ktime_get_ts(&uptime); 1774 sinfo->connected_time = uptime.tv_sec - sta->last_connected; 1775 1776 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx); 1777 sinfo->tx_bytes = 0; 1778 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1779 sinfo->tx_bytes += sta->tx_bytes[ac]; 1780 packets += sta->tx_packets[ac]; 1781 } 1782 sinfo->tx_packets = packets; 1783 sinfo->rx_bytes = sta->rx_bytes; 1784 sinfo->rx_packets = sta->rx_packets; 1785 sinfo->tx_retries = sta->tx_retry_count; 1786 sinfo->tx_failed = sta->tx_retry_failed; 1787 sinfo->rx_dropped_misc = sta->rx_dropped; 1788 sinfo->beacon_loss_count = sta->beacon_loss_count; 1789 1790 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) || 1791 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) { 1792 sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG; 1793 if (!local->ops->get_rssi || 1794 drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal)) 1795 sinfo->signal = (s8)sta->last_signal; 1796 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal); 1797 } 1798 if (sta->chains) { 1799 sinfo->filled |= STATION_INFO_CHAIN_SIGNAL | 1800 STATION_INFO_CHAIN_SIGNAL_AVG; 1801 1802 sinfo->chains = sta->chains; 1803 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 1804 sinfo->chain_signal[i] = sta->chain_signal_last[i]; 1805 sinfo->chain_signal_avg[i] = 1806 (s8) -ewma_read(&sta->chain_signal_avg[i]); 1807 } 1808 } 1809 1810 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate); 1811 sta_set_rate_info_rx(sta, &sinfo->rxrate); 1812 1813 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1814 #ifdef CONFIG_MAC80211_MESH 1815 sinfo->filled |= STATION_INFO_LLID | 1816 STATION_INFO_PLID | 1817 STATION_INFO_PLINK_STATE | 1818 STATION_INFO_LOCAL_PM | 1819 STATION_INFO_PEER_PM | 1820 STATION_INFO_NONPEER_PM; 1821 1822 sinfo->llid = sta->llid; 1823 sinfo->plid = sta->plid; 1824 sinfo->plink_state = sta->plink_state; 1825 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 1826 sinfo->filled |= STATION_INFO_T_OFFSET; 1827 sinfo->t_offset = sta->t_offset; 1828 } 1829 sinfo->local_pm = sta->local_pm; 1830 sinfo->peer_pm = sta->peer_pm; 1831 sinfo->nonpeer_pm = sta->nonpeer_pm; 1832 #endif 1833 } 1834 1835 sinfo->bss_param.flags = 0; 1836 if (sdata->vif.bss_conf.use_cts_prot) 1837 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 1838 if (sdata->vif.bss_conf.use_short_preamble) 1839 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 1840 if (sdata->vif.bss_conf.use_short_slot) 1841 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 1842 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 1843 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 1844 1845 sinfo->sta_flags.set = 0; 1846 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 1847 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 1848 BIT(NL80211_STA_FLAG_WME) | 1849 BIT(NL80211_STA_FLAG_MFP) | 1850 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 1851 BIT(NL80211_STA_FLAG_ASSOCIATED) | 1852 BIT(NL80211_STA_FLAG_TDLS_PEER); 1853 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 1854 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 1855 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 1856 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 1857 if (sta->sta.wme) 1858 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 1859 if (test_sta_flag(sta, WLAN_STA_MFP)) 1860 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 1861 if (test_sta_flag(sta, WLAN_STA_AUTH)) 1862 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 1863 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 1864 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 1865 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 1866 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 1867 1868 /* check if the driver has a SW RC implementation */ 1869 if (ref && ref->ops->get_expected_throughput) 1870 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 1871 else 1872 thr = drv_get_expected_throughput(local, &sta->sta); 1873 1874 if (thr != 0) { 1875 sinfo->filled |= STATION_INFO_EXPECTED_THROUGHPUT; 1876 sinfo->expected_throughput = thr; 1877 } 1878 } 1879