xref: /openbmc/linux/net/mac80211/sta_info.c (revision 6f7a8d26e2668e00de524d3da0122a4411047dd2)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
4  * Copyright 2013-2014  Intel Mobile Communications GmbH
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/etherdevice.h>
14 #include <linux/netdevice.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/if_arp.h>
19 #include <linux/timer.h>
20 #include <linux/rtnetlink.h>
21 
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 /* Caller must hold local->sta_mtx */
68 static int sta_info_hash_del(struct ieee80211_local *local,
69 			     struct sta_info *sta)
70 {
71 	struct sta_info *s;
72 
73 	s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)],
74 				      lockdep_is_held(&local->sta_mtx));
75 	if (!s)
76 		return -ENOENT;
77 	if (s == sta) {
78 		rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)],
79 				   s->hnext);
80 		return 0;
81 	}
82 
83 	while (rcu_access_pointer(s->hnext) &&
84 	       rcu_access_pointer(s->hnext) != sta)
85 		s = rcu_dereference_protected(s->hnext,
86 					lockdep_is_held(&local->sta_mtx));
87 	if (rcu_access_pointer(s->hnext)) {
88 		rcu_assign_pointer(s->hnext, sta->hnext);
89 		return 0;
90 	}
91 
92 	return -ENOENT;
93 }
94 
95 static void __cleanup_single_sta(struct sta_info *sta)
96 {
97 	int ac, i;
98 	struct tid_ampdu_tx *tid_tx;
99 	struct ieee80211_sub_if_data *sdata = sta->sdata;
100 	struct ieee80211_local *local = sdata->local;
101 	struct ps_data *ps;
102 
103 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
104 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
105 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
106 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
107 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
108 			ps = &sdata->bss->ps;
109 		else if (ieee80211_vif_is_mesh(&sdata->vif))
110 			ps = &sdata->u.mesh.ps;
111 		else
112 			return;
113 
114 		clear_sta_flag(sta, WLAN_STA_PS_STA);
115 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
116 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
117 
118 		atomic_dec(&ps->num_sta_ps);
119 		sta_info_recalc_tim(sta);
120 	}
121 
122 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
123 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
124 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
126 	}
127 
128 	if (ieee80211_vif_is_mesh(&sdata->vif))
129 		mesh_sta_cleanup(sta);
130 
131 	cancel_work_sync(&sta->drv_deliver_wk);
132 
133 	/*
134 	 * Destroy aggregation state here. It would be nice to wait for the
135 	 * driver to finish aggregation stop and then clean up, but for now
136 	 * drivers have to handle aggregation stop being requested, followed
137 	 * directly by station destruction.
138 	 */
139 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
140 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
141 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
142 		if (!tid_tx)
143 			continue;
144 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
145 		kfree(tid_tx);
146 	}
147 }
148 
149 static void cleanup_single_sta(struct sta_info *sta)
150 {
151 	struct ieee80211_sub_if_data *sdata = sta->sdata;
152 	struct ieee80211_local *local = sdata->local;
153 
154 	__cleanup_single_sta(sta);
155 	sta_info_free(local, sta);
156 }
157 
158 /* protected by RCU */
159 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
160 			      const u8 *addr)
161 {
162 	struct ieee80211_local *local = sdata->local;
163 	struct sta_info *sta;
164 
165 	sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
166 				    lockdep_is_held(&local->sta_mtx));
167 	while (sta) {
168 		if (sta->sdata == sdata &&
169 		    ether_addr_equal(sta->sta.addr, addr))
170 			break;
171 		sta = rcu_dereference_check(sta->hnext,
172 					    lockdep_is_held(&local->sta_mtx));
173 	}
174 	return sta;
175 }
176 
177 /*
178  * Get sta info either from the specified interface
179  * or from one of its vlans
180  */
181 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
182 				  const u8 *addr)
183 {
184 	struct ieee80211_local *local = sdata->local;
185 	struct sta_info *sta;
186 
187 	sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
188 				    lockdep_is_held(&local->sta_mtx));
189 	while (sta) {
190 		if ((sta->sdata == sdata ||
191 		     (sta->sdata->bss && sta->sdata->bss == sdata->bss)) &&
192 		    ether_addr_equal(sta->sta.addr, addr))
193 			break;
194 		sta = rcu_dereference_check(sta->hnext,
195 					    lockdep_is_held(&local->sta_mtx));
196 	}
197 	return sta;
198 }
199 
200 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
201 				     int idx)
202 {
203 	struct ieee80211_local *local = sdata->local;
204 	struct sta_info *sta;
205 	int i = 0;
206 
207 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
208 		if (sdata != sta->sdata)
209 			continue;
210 		if (i < idx) {
211 			++i;
212 			continue;
213 		}
214 		return sta;
215 	}
216 
217 	return NULL;
218 }
219 
220 /**
221  * sta_info_free - free STA
222  *
223  * @local: pointer to the global information
224  * @sta: STA info to free
225  *
226  * This function must undo everything done by sta_info_alloc()
227  * that may happen before sta_info_insert(). It may only be
228  * called when sta_info_insert() has not been attempted (and
229  * if that fails, the station is freed anyway.)
230  */
231 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
232 {
233 	int i;
234 
235 	if (sta->rate_ctrl)
236 		rate_control_free_sta(sta);
237 
238 	if (sta->tx_lat) {
239 		for (i = 0; i < IEEE80211_NUM_TIDS; i++)
240 			kfree(sta->tx_lat[i].bins);
241 		kfree(sta->tx_lat);
242 	}
243 
244 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
245 
246 	kfree(rcu_dereference_raw(sta->sta.rates));
247 	kfree(sta);
248 }
249 
250 /* Caller must hold local->sta_mtx */
251 static void sta_info_hash_add(struct ieee80211_local *local,
252 			      struct sta_info *sta)
253 {
254 	lockdep_assert_held(&local->sta_mtx);
255 	sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)];
256 	rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta);
257 }
258 
259 static void sta_deliver_ps_frames(struct work_struct *wk)
260 {
261 	struct sta_info *sta;
262 
263 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
264 
265 	if (sta->dead)
266 		return;
267 
268 	local_bh_disable();
269 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
270 		ieee80211_sta_ps_deliver_wakeup(sta);
271 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
272 		ieee80211_sta_ps_deliver_poll_response(sta);
273 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
274 		ieee80211_sta_ps_deliver_uapsd(sta);
275 	local_bh_enable();
276 }
277 
278 static int sta_prepare_rate_control(struct ieee80211_local *local,
279 				    struct sta_info *sta, gfp_t gfp)
280 {
281 	if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)
282 		return 0;
283 
284 	sta->rate_ctrl = local->rate_ctrl;
285 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
286 						     &sta->sta, gfp);
287 	if (!sta->rate_ctrl_priv)
288 		return -ENOMEM;
289 
290 	return 0;
291 }
292 
293 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
294 				const u8 *addr, gfp_t gfp)
295 {
296 	struct ieee80211_local *local = sdata->local;
297 	struct sta_info *sta;
298 	struct timespec uptime;
299 	struct ieee80211_tx_latency_bin_ranges *tx_latency;
300 	int i;
301 
302 	sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp);
303 	if (!sta)
304 		return NULL;
305 
306 	rcu_read_lock();
307 	tx_latency = rcu_dereference(local->tx_latency);
308 	/* init stations Tx latency statistics && TID bins */
309 	if (tx_latency) {
310 		sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS *
311 				      sizeof(struct ieee80211_tx_latency_stat),
312 				      GFP_ATOMIC);
313 		if (!sta->tx_lat) {
314 			rcu_read_unlock();
315 			goto free;
316 		}
317 
318 		if (tx_latency->n_ranges) {
319 			for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
320 				/* size of bins is size of the ranges +1 */
321 				sta->tx_lat[i].bin_count =
322 					tx_latency->n_ranges + 1;
323 				sta->tx_lat[i].bins =
324 					kcalloc(sta->tx_lat[i].bin_count,
325 						sizeof(u32), GFP_ATOMIC);
326 				if (!sta->tx_lat[i].bins) {
327 					rcu_read_unlock();
328 					goto free;
329 				}
330 			}
331 		}
332 	}
333 	rcu_read_unlock();
334 
335 	spin_lock_init(&sta->lock);
336 	spin_lock_init(&sta->ps_lock);
337 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
338 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
339 	mutex_init(&sta->ampdu_mlme.mtx);
340 #ifdef CONFIG_MAC80211_MESH
341 	if (ieee80211_vif_is_mesh(&sdata->vif) &&
342 	    !sdata->u.mesh.user_mpm)
343 		init_timer(&sta->plink_timer);
344 	sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
345 #endif
346 
347 	memcpy(sta->sta.addr, addr, ETH_ALEN);
348 	sta->local = local;
349 	sta->sdata = sdata;
350 	sta->last_rx = jiffies;
351 
352 	sta->sta_state = IEEE80211_STA_NONE;
353 
354 	/* Mark TID as unreserved */
355 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
356 
357 	ktime_get_ts(&uptime);
358 	sta->last_connected = uptime.tv_sec;
359 	ewma_init(&sta->avg_signal, 1024, 8);
360 	for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++)
361 		ewma_init(&sta->chain_signal_avg[i], 1024, 8);
362 
363 	if (sta_prepare_rate_control(local, sta, gfp))
364 		goto free;
365 
366 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
367 		/*
368 		 * timer_to_tid must be initialized with identity mapping
369 		 * to enable session_timer's data differentiation. See
370 		 * sta_rx_agg_session_timer_expired for usage.
371 		 */
372 		sta->timer_to_tid[i] = i;
373 	}
374 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
375 		skb_queue_head_init(&sta->ps_tx_buf[i]);
376 		skb_queue_head_init(&sta->tx_filtered[i]);
377 	}
378 
379 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
380 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
381 
382 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
383 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
384 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
385 		struct ieee80211_supported_band *sband =
386 			local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)];
387 		u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
388 				IEEE80211_HT_CAP_SM_PS_SHIFT;
389 		/*
390 		 * Assume that hostapd advertises our caps in the beacon and
391 		 * this is the known_smps_mode for a station that just assciated
392 		 */
393 		switch (smps) {
394 		case WLAN_HT_SMPS_CONTROL_DISABLED:
395 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
396 			break;
397 		case WLAN_HT_SMPS_CONTROL_STATIC:
398 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
399 			break;
400 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
401 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
402 			break;
403 		default:
404 			WARN_ON(1);
405 		}
406 	}
407 
408 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
409 	return sta;
410 
411 free:
412 	if (sta->tx_lat) {
413 		for (i = 0; i < IEEE80211_NUM_TIDS; i++)
414 			kfree(sta->tx_lat[i].bins);
415 		kfree(sta->tx_lat);
416 	}
417 	kfree(sta);
418 	return NULL;
419 }
420 
421 static int sta_info_insert_check(struct sta_info *sta)
422 {
423 	struct ieee80211_sub_if_data *sdata = sta->sdata;
424 
425 	/*
426 	 * Can't be a WARN_ON because it can be triggered through a race:
427 	 * something inserts a STA (on one CPU) without holding the RTNL
428 	 * and another CPU turns off the net device.
429 	 */
430 	if (unlikely(!ieee80211_sdata_running(sdata)))
431 		return -ENETDOWN;
432 
433 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
434 		    is_multicast_ether_addr(sta->sta.addr)))
435 		return -EINVAL;
436 
437 	return 0;
438 }
439 
440 static int sta_info_insert_drv_state(struct ieee80211_local *local,
441 				     struct ieee80211_sub_if_data *sdata,
442 				     struct sta_info *sta)
443 {
444 	enum ieee80211_sta_state state;
445 	int err = 0;
446 
447 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
448 		err = drv_sta_state(local, sdata, sta, state, state + 1);
449 		if (err)
450 			break;
451 	}
452 
453 	if (!err) {
454 		/*
455 		 * Drivers using legacy sta_add/sta_remove callbacks only
456 		 * get uploaded set to true after sta_add is called.
457 		 */
458 		if (!local->ops->sta_add)
459 			sta->uploaded = true;
460 		return 0;
461 	}
462 
463 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
464 		sdata_info(sdata,
465 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
466 			   sta->sta.addr, state + 1, err);
467 		err = 0;
468 	}
469 
470 	/* unwind on error */
471 	for (; state > IEEE80211_STA_NOTEXIST; state--)
472 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
473 
474 	return err;
475 }
476 
477 /*
478  * should be called with sta_mtx locked
479  * this function replaces the mutex lock
480  * with a RCU lock
481  */
482 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
483 {
484 	struct ieee80211_local *local = sta->local;
485 	struct ieee80211_sub_if_data *sdata = sta->sdata;
486 	struct station_info sinfo;
487 	int err = 0;
488 
489 	lockdep_assert_held(&local->sta_mtx);
490 
491 	/* check if STA exists already */
492 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
493 		err = -EEXIST;
494 		goto out_err;
495 	}
496 
497 	local->num_sta++;
498 	local->sta_generation++;
499 	smp_mb();
500 
501 	/* simplify things and don't accept BA sessions yet */
502 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
503 
504 	/* make the station visible */
505 	sta_info_hash_add(local, sta);
506 
507 	list_add_tail_rcu(&sta->list, &local->sta_list);
508 
509 	/* notify driver */
510 	err = sta_info_insert_drv_state(local, sdata, sta);
511 	if (err)
512 		goto out_remove;
513 
514 	set_sta_flag(sta, WLAN_STA_INSERTED);
515 	/* accept BA sessions now */
516 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
517 
518 	ieee80211_recalc_min_chandef(sdata);
519 	ieee80211_sta_debugfs_add(sta);
520 	rate_control_add_sta_debugfs(sta);
521 
522 	memset(&sinfo, 0, sizeof(sinfo));
523 	sinfo.filled = 0;
524 	sinfo.generation = local->sta_generation;
525 	cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
526 
527 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
528 
529 	/* move reference to rcu-protected */
530 	rcu_read_lock();
531 	mutex_unlock(&local->sta_mtx);
532 
533 	if (ieee80211_vif_is_mesh(&sdata->vif))
534 		mesh_accept_plinks_update(sdata);
535 
536 	return 0;
537  out_remove:
538 	sta_info_hash_del(local, sta);
539 	list_del_rcu(&sta->list);
540 	local->num_sta--;
541 	synchronize_net();
542 	__cleanup_single_sta(sta);
543  out_err:
544 	mutex_unlock(&local->sta_mtx);
545 	rcu_read_lock();
546 	return err;
547 }
548 
549 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
550 {
551 	struct ieee80211_local *local = sta->local;
552 	int err;
553 
554 	might_sleep();
555 
556 	err = sta_info_insert_check(sta);
557 	if (err) {
558 		rcu_read_lock();
559 		goto out_free;
560 	}
561 
562 	mutex_lock(&local->sta_mtx);
563 
564 	err = sta_info_insert_finish(sta);
565 	if (err)
566 		goto out_free;
567 
568 	return 0;
569  out_free:
570 	sta_info_free(local, sta);
571 	return err;
572 }
573 
574 int sta_info_insert(struct sta_info *sta)
575 {
576 	int err = sta_info_insert_rcu(sta);
577 
578 	rcu_read_unlock();
579 
580 	return err;
581 }
582 
583 static inline void __bss_tim_set(u8 *tim, u16 id)
584 {
585 	/*
586 	 * This format has been mandated by the IEEE specifications,
587 	 * so this line may not be changed to use the __set_bit() format.
588 	 */
589 	tim[id / 8] |= (1 << (id % 8));
590 }
591 
592 static inline void __bss_tim_clear(u8 *tim, u16 id)
593 {
594 	/*
595 	 * This format has been mandated by the IEEE specifications,
596 	 * so this line may not be changed to use the __clear_bit() format.
597 	 */
598 	tim[id / 8] &= ~(1 << (id % 8));
599 }
600 
601 static inline bool __bss_tim_get(u8 *tim, u16 id)
602 {
603 	/*
604 	 * This format has been mandated by the IEEE specifications,
605 	 * so this line may not be changed to use the test_bit() format.
606 	 */
607 	return tim[id / 8] & (1 << (id % 8));
608 }
609 
610 static unsigned long ieee80211_tids_for_ac(int ac)
611 {
612 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
613 	switch (ac) {
614 	case IEEE80211_AC_VO:
615 		return BIT(6) | BIT(7);
616 	case IEEE80211_AC_VI:
617 		return BIT(4) | BIT(5);
618 	case IEEE80211_AC_BE:
619 		return BIT(0) | BIT(3);
620 	case IEEE80211_AC_BK:
621 		return BIT(1) | BIT(2);
622 	default:
623 		WARN_ON(1);
624 		return 0;
625 	}
626 }
627 
628 void sta_info_recalc_tim(struct sta_info *sta)
629 {
630 	struct ieee80211_local *local = sta->local;
631 	struct ps_data *ps;
632 	bool indicate_tim = false;
633 	u8 ignore_for_tim = sta->sta.uapsd_queues;
634 	int ac;
635 	u16 id;
636 
637 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
638 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
639 		if (WARN_ON_ONCE(!sta->sdata->bss))
640 			return;
641 
642 		ps = &sta->sdata->bss->ps;
643 		id = sta->sta.aid;
644 #ifdef CONFIG_MAC80211_MESH
645 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
646 		ps = &sta->sdata->u.mesh.ps;
647 		/* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */
648 		id = sta->plid % (IEEE80211_MAX_AID + 1);
649 #endif
650 	} else {
651 		return;
652 	}
653 
654 	/* No need to do anything if the driver does all */
655 	if (local->hw.flags & IEEE80211_HW_AP_LINK_PS)
656 		return;
657 
658 	if (sta->dead)
659 		goto done;
660 
661 	/*
662 	 * If all ACs are delivery-enabled then we should build
663 	 * the TIM bit for all ACs anyway; if only some are then
664 	 * we ignore those and build the TIM bit using only the
665 	 * non-enabled ones.
666 	 */
667 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
668 		ignore_for_tim = 0;
669 
670 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
671 		unsigned long tids;
672 
673 		if (ignore_for_tim & BIT(ac))
674 			continue;
675 
676 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
677 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
678 		if (indicate_tim)
679 			break;
680 
681 		tids = ieee80211_tids_for_ac(ac);
682 
683 		indicate_tim |=
684 			sta->driver_buffered_tids & tids;
685 	}
686 
687  done:
688 	spin_lock_bh(&local->tim_lock);
689 
690 	if (indicate_tim == __bss_tim_get(ps->tim, id))
691 		goto out_unlock;
692 
693 	if (indicate_tim)
694 		__bss_tim_set(ps->tim, id);
695 	else
696 		__bss_tim_clear(ps->tim, id);
697 
698 	if (local->ops->set_tim) {
699 		local->tim_in_locked_section = true;
700 		drv_set_tim(local, &sta->sta, indicate_tim);
701 		local->tim_in_locked_section = false;
702 	}
703 
704 out_unlock:
705 	spin_unlock_bh(&local->tim_lock);
706 }
707 
708 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
709 {
710 	struct ieee80211_tx_info *info;
711 	int timeout;
712 
713 	if (!skb)
714 		return false;
715 
716 	info = IEEE80211_SKB_CB(skb);
717 
718 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
719 	timeout = (sta->listen_interval *
720 		   sta->sdata->vif.bss_conf.beacon_int *
721 		   32 / 15625) * HZ;
722 	if (timeout < STA_TX_BUFFER_EXPIRE)
723 		timeout = STA_TX_BUFFER_EXPIRE;
724 	return time_after(jiffies, info->control.jiffies + timeout);
725 }
726 
727 
728 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
729 						struct sta_info *sta, int ac)
730 {
731 	unsigned long flags;
732 	struct sk_buff *skb;
733 
734 	/*
735 	 * First check for frames that should expire on the filtered
736 	 * queue. Frames here were rejected by the driver and are on
737 	 * a separate queue to avoid reordering with normal PS-buffered
738 	 * frames. They also aren't accounted for right now in the
739 	 * total_ps_buffered counter.
740 	 */
741 	for (;;) {
742 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
743 		skb = skb_peek(&sta->tx_filtered[ac]);
744 		if (sta_info_buffer_expired(sta, skb))
745 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
746 		else
747 			skb = NULL;
748 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
749 
750 		/*
751 		 * Frames are queued in order, so if this one
752 		 * hasn't expired yet we can stop testing. If
753 		 * we actually reached the end of the queue we
754 		 * also need to stop, of course.
755 		 */
756 		if (!skb)
757 			break;
758 		ieee80211_free_txskb(&local->hw, skb);
759 	}
760 
761 	/*
762 	 * Now also check the normal PS-buffered queue, this will
763 	 * only find something if the filtered queue was emptied
764 	 * since the filtered frames are all before the normal PS
765 	 * buffered frames.
766 	 */
767 	for (;;) {
768 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
769 		skb = skb_peek(&sta->ps_tx_buf[ac]);
770 		if (sta_info_buffer_expired(sta, skb))
771 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
772 		else
773 			skb = NULL;
774 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
775 
776 		/*
777 		 * frames are queued in order, so if this one
778 		 * hasn't expired yet (or we reached the end of
779 		 * the queue) we can stop testing
780 		 */
781 		if (!skb)
782 			break;
783 
784 		local->total_ps_buffered--;
785 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
786 		       sta->sta.addr);
787 		ieee80211_free_txskb(&local->hw, skb);
788 	}
789 
790 	/*
791 	 * Finally, recalculate the TIM bit for this station -- it might
792 	 * now be clear because the station was too slow to retrieve its
793 	 * frames.
794 	 */
795 	sta_info_recalc_tim(sta);
796 
797 	/*
798 	 * Return whether there are any frames still buffered, this is
799 	 * used to check whether the cleanup timer still needs to run,
800 	 * if there are no frames we don't need to rearm the timer.
801 	 */
802 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
803 		 skb_queue_empty(&sta->tx_filtered[ac]));
804 }
805 
806 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
807 					     struct sta_info *sta)
808 {
809 	bool have_buffered = false;
810 	int ac;
811 
812 	/* This is only necessary for stations on BSS/MBSS interfaces */
813 	if (!sta->sdata->bss &&
814 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
815 		return false;
816 
817 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
818 		have_buffered |=
819 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
820 
821 	return have_buffered;
822 }
823 
824 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
825 {
826 	struct ieee80211_local *local;
827 	struct ieee80211_sub_if_data *sdata;
828 	int ret;
829 
830 	might_sleep();
831 
832 	if (!sta)
833 		return -ENOENT;
834 
835 	local = sta->local;
836 	sdata = sta->sdata;
837 
838 	lockdep_assert_held(&local->sta_mtx);
839 
840 	/*
841 	 * Before removing the station from the driver and
842 	 * rate control, it might still start new aggregation
843 	 * sessions -- block that to make sure the tear-down
844 	 * will be sufficient.
845 	 */
846 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
847 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
848 
849 	ret = sta_info_hash_del(local, sta);
850 	if (WARN_ON(ret))
851 		return ret;
852 
853 	/*
854 	 * for TDLS peers, make sure to return to the base channel before
855 	 * removal.
856 	 */
857 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
858 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
859 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
860 	}
861 
862 	list_del_rcu(&sta->list);
863 
864 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
865 
866 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
867 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
868 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
869 
870 	return 0;
871 }
872 
873 static void __sta_info_destroy_part2(struct sta_info *sta)
874 {
875 	struct ieee80211_local *local = sta->local;
876 	struct ieee80211_sub_if_data *sdata = sta->sdata;
877 	struct station_info sinfo = {};
878 	int ret;
879 
880 	/*
881 	 * NOTE: This assumes at least synchronize_net() was done
882 	 *	 after _part1 and before _part2!
883 	 */
884 
885 	might_sleep();
886 	lockdep_assert_held(&local->sta_mtx);
887 
888 	/* now keys can no longer be reached */
889 	ieee80211_free_sta_keys(local, sta);
890 
891 	sta->dead = true;
892 
893 	local->num_sta--;
894 	local->sta_generation++;
895 
896 	while (sta->sta_state > IEEE80211_STA_NONE) {
897 		ret = sta_info_move_state(sta, sta->sta_state - 1);
898 		if (ret) {
899 			WARN_ON_ONCE(1);
900 			break;
901 		}
902 	}
903 
904 	if (sta->uploaded) {
905 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
906 				    IEEE80211_STA_NOTEXIST);
907 		WARN_ON_ONCE(ret != 0);
908 	}
909 
910 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
911 
912 	sta_set_sinfo(sta, &sinfo);
913 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
914 
915 	rate_control_remove_sta_debugfs(sta);
916 	ieee80211_sta_debugfs_remove(sta);
917 	ieee80211_recalc_min_chandef(sdata);
918 
919 	cleanup_single_sta(sta);
920 }
921 
922 int __must_check __sta_info_destroy(struct sta_info *sta)
923 {
924 	int err = __sta_info_destroy_part1(sta);
925 
926 	if (err)
927 		return err;
928 
929 	synchronize_net();
930 
931 	__sta_info_destroy_part2(sta);
932 
933 	return 0;
934 }
935 
936 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
937 {
938 	struct sta_info *sta;
939 	int ret;
940 
941 	mutex_lock(&sdata->local->sta_mtx);
942 	sta = sta_info_get(sdata, addr);
943 	ret = __sta_info_destroy(sta);
944 	mutex_unlock(&sdata->local->sta_mtx);
945 
946 	return ret;
947 }
948 
949 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
950 			      const u8 *addr)
951 {
952 	struct sta_info *sta;
953 	int ret;
954 
955 	mutex_lock(&sdata->local->sta_mtx);
956 	sta = sta_info_get_bss(sdata, addr);
957 	ret = __sta_info_destroy(sta);
958 	mutex_unlock(&sdata->local->sta_mtx);
959 
960 	return ret;
961 }
962 
963 static void sta_info_cleanup(unsigned long data)
964 {
965 	struct ieee80211_local *local = (struct ieee80211_local *) data;
966 	struct sta_info *sta;
967 	bool timer_needed = false;
968 
969 	rcu_read_lock();
970 	list_for_each_entry_rcu(sta, &local->sta_list, list)
971 		if (sta_info_cleanup_expire_buffered(local, sta))
972 			timer_needed = true;
973 	rcu_read_unlock();
974 
975 	if (local->quiescing)
976 		return;
977 
978 	if (!timer_needed)
979 		return;
980 
981 	mod_timer(&local->sta_cleanup,
982 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
983 }
984 
985 void sta_info_init(struct ieee80211_local *local)
986 {
987 	spin_lock_init(&local->tim_lock);
988 	mutex_init(&local->sta_mtx);
989 	INIT_LIST_HEAD(&local->sta_list);
990 
991 	setup_timer(&local->sta_cleanup, sta_info_cleanup,
992 		    (unsigned long)local);
993 }
994 
995 void sta_info_stop(struct ieee80211_local *local)
996 {
997 	del_timer_sync(&local->sta_cleanup);
998 }
999 
1000 
1001 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1002 {
1003 	struct ieee80211_local *local = sdata->local;
1004 	struct sta_info *sta, *tmp;
1005 	LIST_HEAD(free_list);
1006 	int ret = 0;
1007 
1008 	might_sleep();
1009 
1010 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1011 	WARN_ON(vlans && !sdata->bss);
1012 
1013 	mutex_lock(&local->sta_mtx);
1014 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1015 		if (sdata == sta->sdata ||
1016 		    (vlans && sdata->bss == sta->sdata->bss)) {
1017 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1018 				list_add(&sta->free_list, &free_list);
1019 			ret++;
1020 		}
1021 	}
1022 
1023 	if (!list_empty(&free_list)) {
1024 		synchronize_net();
1025 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1026 			__sta_info_destroy_part2(sta);
1027 	}
1028 	mutex_unlock(&local->sta_mtx);
1029 
1030 	return ret;
1031 }
1032 
1033 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1034 			  unsigned long exp_time)
1035 {
1036 	struct ieee80211_local *local = sdata->local;
1037 	struct sta_info *sta, *tmp;
1038 
1039 	mutex_lock(&local->sta_mtx);
1040 
1041 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1042 		if (sdata != sta->sdata)
1043 			continue;
1044 
1045 		if (time_after(jiffies, sta->last_rx + exp_time)) {
1046 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1047 				sta->sta.addr);
1048 
1049 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1050 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1051 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1052 
1053 			WARN_ON(__sta_info_destroy(sta));
1054 		}
1055 	}
1056 
1057 	mutex_unlock(&local->sta_mtx);
1058 }
1059 
1060 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1061 					       const u8 *addr,
1062 					       const u8 *localaddr)
1063 {
1064 	struct sta_info *sta, *nxt;
1065 
1066 	/*
1067 	 * Just return a random station if localaddr is NULL
1068 	 * ... first in list.
1069 	 */
1070 	for_each_sta_info(hw_to_local(hw), addr, sta, nxt) {
1071 		if (localaddr &&
1072 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1073 			continue;
1074 		if (!sta->uploaded)
1075 			return NULL;
1076 		return &sta->sta;
1077 	}
1078 
1079 	return NULL;
1080 }
1081 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1082 
1083 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1084 					 const u8 *addr)
1085 {
1086 	struct sta_info *sta;
1087 
1088 	if (!vif)
1089 		return NULL;
1090 
1091 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1092 	if (!sta)
1093 		return NULL;
1094 
1095 	if (!sta->uploaded)
1096 		return NULL;
1097 
1098 	return &sta->sta;
1099 }
1100 EXPORT_SYMBOL(ieee80211_find_sta);
1101 
1102 /* powersave support code */
1103 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1104 {
1105 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1106 	struct ieee80211_local *local = sdata->local;
1107 	struct sk_buff_head pending;
1108 	int filtered = 0, buffered = 0, ac;
1109 	unsigned long flags;
1110 	struct ps_data *ps;
1111 
1112 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1113 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1114 				     u.ap);
1115 
1116 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1117 		ps = &sdata->bss->ps;
1118 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1119 		ps = &sdata->u.mesh.ps;
1120 	else
1121 		return;
1122 
1123 	clear_sta_flag(sta, WLAN_STA_SP);
1124 
1125 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1126 	sta->driver_buffered_tids = 0;
1127 
1128 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1129 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1130 
1131 	skb_queue_head_init(&pending);
1132 
1133 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1134 	spin_lock(&sta->ps_lock);
1135 	/* Send all buffered frames to the station */
1136 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1137 		int count = skb_queue_len(&pending), tmp;
1138 
1139 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1140 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1141 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1142 		tmp = skb_queue_len(&pending);
1143 		filtered += tmp - count;
1144 		count = tmp;
1145 
1146 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1147 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1148 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1149 		tmp = skb_queue_len(&pending);
1150 		buffered += tmp - count;
1151 	}
1152 
1153 	ieee80211_add_pending_skbs(local, &pending);
1154 
1155 	/* now we're no longer in the deliver code */
1156 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1157 
1158 	/* The station might have polled and then woken up before we responded,
1159 	 * so clear these flags now to avoid them sticking around.
1160 	 */
1161 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1162 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1163 	spin_unlock(&sta->ps_lock);
1164 
1165 	atomic_dec(&ps->num_sta_ps);
1166 
1167 	/* This station just woke up and isn't aware of our SMPS state */
1168 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1169 	    !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1170 					   sdata->smps_mode) &&
1171 	    sta->known_smps_mode != sdata->bss->req_smps &&
1172 	    sta_info_tx_streams(sta) != 1) {
1173 		ht_dbg(sdata,
1174 		       "%pM just woke up and MIMO capable - update SMPS\n",
1175 		       sta->sta.addr);
1176 		ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1177 					   sta->sta.addr,
1178 					   sdata->vif.bss_conf.bssid);
1179 	}
1180 
1181 	local->total_ps_buffered -= buffered;
1182 
1183 	sta_info_recalc_tim(sta);
1184 
1185 	ps_dbg(sdata,
1186 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1187 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1188 }
1189 
1190 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata,
1191 					 struct sta_info *sta, int tid,
1192 					 enum ieee80211_frame_release_type reason,
1193 					 bool call_driver)
1194 {
1195 	struct ieee80211_local *local = sdata->local;
1196 	struct ieee80211_qos_hdr *nullfunc;
1197 	struct sk_buff *skb;
1198 	int size = sizeof(*nullfunc);
1199 	__le16 fc;
1200 	bool qos = sta->sta.wme;
1201 	struct ieee80211_tx_info *info;
1202 	struct ieee80211_chanctx_conf *chanctx_conf;
1203 
1204 	if (qos) {
1205 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1206 				 IEEE80211_STYPE_QOS_NULLFUNC |
1207 				 IEEE80211_FCTL_FROMDS);
1208 	} else {
1209 		size -= 2;
1210 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1211 				 IEEE80211_STYPE_NULLFUNC |
1212 				 IEEE80211_FCTL_FROMDS);
1213 	}
1214 
1215 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1216 	if (!skb)
1217 		return;
1218 
1219 	skb_reserve(skb, local->hw.extra_tx_headroom);
1220 
1221 	nullfunc = (void *) skb_put(skb, size);
1222 	nullfunc->frame_control = fc;
1223 	nullfunc->duration_id = 0;
1224 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1225 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1226 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1227 	nullfunc->seq_ctrl = 0;
1228 
1229 	skb->priority = tid;
1230 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1231 	if (qos) {
1232 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1233 
1234 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD)
1235 			nullfunc->qos_ctrl |=
1236 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1237 	}
1238 
1239 	info = IEEE80211_SKB_CB(skb);
1240 
1241 	/*
1242 	 * Tell TX path to send this frame even though the
1243 	 * STA may still remain is PS mode after this frame
1244 	 * exchange. Also set EOSP to indicate this packet
1245 	 * ends the poll/service period.
1246 	 */
1247 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1248 		       IEEE80211_TX_STATUS_EOSP |
1249 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1250 
1251 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1252 
1253 	if (call_driver)
1254 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1255 					  reason, false);
1256 
1257 	skb->dev = sdata->dev;
1258 
1259 	rcu_read_lock();
1260 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1261 	if (WARN_ON(!chanctx_conf)) {
1262 		rcu_read_unlock();
1263 		kfree_skb(skb);
1264 		return;
1265 	}
1266 
1267 	info->band = chanctx_conf->def.chan->band;
1268 	ieee80211_xmit(sdata, skb);
1269 	rcu_read_unlock();
1270 }
1271 
1272 static int find_highest_prio_tid(unsigned long tids)
1273 {
1274 	/* lower 3 TIDs aren't ordered perfectly */
1275 	if (tids & 0xF8)
1276 		return fls(tids) - 1;
1277 	/* TID 0 is BE just like TID 3 */
1278 	if (tids & BIT(0))
1279 		return 0;
1280 	return fls(tids) - 1;
1281 }
1282 
1283 static void
1284 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1285 				  int n_frames, u8 ignored_acs,
1286 				  enum ieee80211_frame_release_type reason)
1287 {
1288 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1289 	struct ieee80211_local *local = sdata->local;
1290 	bool more_data = false;
1291 	int ac;
1292 	unsigned long driver_release_tids = 0;
1293 	struct sk_buff_head frames;
1294 
1295 	/* Service or PS-Poll period starts */
1296 	set_sta_flag(sta, WLAN_STA_SP);
1297 
1298 	__skb_queue_head_init(&frames);
1299 
1300 	/* Get response frame(s) and more data bit for the last one. */
1301 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1302 		unsigned long tids;
1303 
1304 		if (ignored_acs & BIT(ac))
1305 			continue;
1306 
1307 		tids = ieee80211_tids_for_ac(ac);
1308 
1309 		/* if we already have frames from software, then we can't also
1310 		 * release from hardware queues
1311 		 */
1312 		if (skb_queue_empty(&frames))
1313 			driver_release_tids |= sta->driver_buffered_tids & tids;
1314 
1315 		if (driver_release_tids) {
1316 			/* If the driver has data on more than one TID then
1317 			 * certainly there's more data if we release just a
1318 			 * single frame now (from a single TID). This will
1319 			 * only happen for PS-Poll.
1320 			 */
1321 			if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1322 			    hweight16(driver_release_tids) > 1) {
1323 				more_data = true;
1324 				driver_release_tids =
1325 					BIT(find_highest_prio_tid(
1326 						driver_release_tids));
1327 				break;
1328 			}
1329 		} else {
1330 			struct sk_buff *skb;
1331 
1332 			while (n_frames > 0) {
1333 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1334 				if (!skb) {
1335 					skb = skb_dequeue(
1336 						&sta->ps_tx_buf[ac]);
1337 					if (skb)
1338 						local->total_ps_buffered--;
1339 				}
1340 				if (!skb)
1341 					break;
1342 				n_frames--;
1343 				__skb_queue_tail(&frames, skb);
1344 			}
1345 		}
1346 
1347 		/* If we have more frames buffered on this AC, then set the
1348 		 * more-data bit and abort the loop since we can't send more
1349 		 * data from other ACs before the buffered frames from this.
1350 		 */
1351 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1352 		    !skb_queue_empty(&sta->ps_tx_buf[ac])) {
1353 			more_data = true;
1354 			break;
1355 		}
1356 	}
1357 
1358 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1359 		int tid;
1360 
1361 		/*
1362 		 * For PS-Poll, this can only happen due to a race condition
1363 		 * when we set the TIM bit and the station notices it, but
1364 		 * before it can poll for the frame we expire it.
1365 		 *
1366 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1367 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1368 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1369 		 *	more than the value specified in the Max SP Length field
1370 		 *	in the QoS Capability element from delivery-enabled ACs,
1371 		 *	that are destined for the non-AP STA.
1372 		 *
1373 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1374 		 */
1375 
1376 		/* This will evaluate to 1, 3, 5 or 7. */
1377 		tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1378 
1379 		ieee80211_send_null_response(sdata, sta, tid, reason, true);
1380 	} else if (!driver_release_tids) {
1381 		struct sk_buff_head pending;
1382 		struct sk_buff *skb;
1383 		int num = 0;
1384 		u16 tids = 0;
1385 		bool need_null = false;
1386 
1387 		skb_queue_head_init(&pending);
1388 
1389 		while ((skb = __skb_dequeue(&frames))) {
1390 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1391 			struct ieee80211_hdr *hdr = (void *) skb->data;
1392 			u8 *qoshdr = NULL;
1393 
1394 			num++;
1395 
1396 			/*
1397 			 * Tell TX path to send this frame even though the
1398 			 * STA may still remain is PS mode after this frame
1399 			 * exchange.
1400 			 */
1401 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1402 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1403 
1404 			/*
1405 			 * Use MoreData flag to indicate whether there are
1406 			 * more buffered frames for this STA
1407 			 */
1408 			if (more_data || !skb_queue_empty(&frames))
1409 				hdr->frame_control |=
1410 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1411 			else
1412 				hdr->frame_control &=
1413 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1414 
1415 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1416 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1417 				qoshdr = ieee80211_get_qos_ctl(hdr);
1418 
1419 			tids |= BIT(skb->priority);
1420 
1421 			__skb_queue_tail(&pending, skb);
1422 
1423 			/* end service period after last frame or add one */
1424 			if (!skb_queue_empty(&frames))
1425 				continue;
1426 
1427 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1428 				/* for PS-Poll, there's only one frame */
1429 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1430 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1431 				break;
1432 			}
1433 
1434 			/* For uAPSD, things are a bit more complicated. If the
1435 			 * last frame has a QoS header (i.e. is a QoS-data or
1436 			 * QoS-nulldata frame) then just set the EOSP bit there
1437 			 * and be done.
1438 			 * If the frame doesn't have a QoS header (which means
1439 			 * it should be a bufferable MMPDU) then we can't set
1440 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1441 			 * frame to the list to send it after the MMPDU.
1442 			 *
1443 			 * Note that this code is only in the mac80211-release
1444 			 * code path, we assume that the driver will not buffer
1445 			 * anything but QoS-data frames, or if it does, will
1446 			 * create the QoS-nulldata frame by itself if needed.
1447 			 *
1448 			 * Cf. 802.11-2012 10.2.1.10 (c).
1449 			 */
1450 			if (qoshdr) {
1451 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1452 
1453 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1454 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1455 			} else {
1456 				/* The standard isn't completely clear on this
1457 				 * as it says the more-data bit should be set
1458 				 * if there are more BUs. The QoS-Null frame
1459 				 * we're about to send isn't buffered yet, we
1460 				 * only create it below, but let's pretend it
1461 				 * was buffered just in case some clients only
1462 				 * expect more-data=0 when eosp=1.
1463 				 */
1464 				hdr->frame_control |=
1465 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1466 				need_null = true;
1467 				num++;
1468 			}
1469 			break;
1470 		}
1471 
1472 		drv_allow_buffered_frames(local, sta, tids, num,
1473 					  reason, more_data);
1474 
1475 		ieee80211_add_pending_skbs(local, &pending);
1476 
1477 		if (need_null)
1478 			ieee80211_send_null_response(
1479 				sdata, sta, find_highest_prio_tid(tids),
1480 				reason, false);
1481 
1482 		sta_info_recalc_tim(sta);
1483 	} else {
1484 		/*
1485 		 * We need to release a frame that is buffered somewhere in the
1486 		 * driver ... it'll have to handle that.
1487 		 * Note that the driver also has to check the number of frames
1488 		 * on the TIDs we're releasing from - if there are more than
1489 		 * n_frames it has to set the more-data bit (if we didn't ask
1490 		 * it to set it anyway due to other buffered frames); if there
1491 		 * are fewer than n_frames it has to make sure to adjust that
1492 		 * to allow the service period to end properly.
1493 		 */
1494 		drv_release_buffered_frames(local, sta, driver_release_tids,
1495 					    n_frames, reason, more_data);
1496 
1497 		/*
1498 		 * Note that we don't recalculate the TIM bit here as it would
1499 		 * most likely have no effect at all unless the driver told us
1500 		 * that the TID(s) became empty before returning here from the
1501 		 * release function.
1502 		 * Either way, however, when the driver tells us that the TID(s)
1503 		 * became empty we'll do the TIM recalculation.
1504 		 */
1505 	}
1506 }
1507 
1508 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1509 {
1510 	u8 ignore_for_response = sta->sta.uapsd_queues;
1511 
1512 	/*
1513 	 * If all ACs are delivery-enabled then we should reply
1514 	 * from any of them, if only some are enabled we reply
1515 	 * only from the non-enabled ones.
1516 	 */
1517 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1518 		ignore_for_response = 0;
1519 
1520 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1521 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1522 }
1523 
1524 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1525 {
1526 	int n_frames = sta->sta.max_sp;
1527 	u8 delivery_enabled = sta->sta.uapsd_queues;
1528 
1529 	/*
1530 	 * If we ever grow support for TSPEC this might happen if
1531 	 * the TSPEC update from hostapd comes in between a trigger
1532 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1533 	 * actually getting called.
1534 	 */
1535 	if (!delivery_enabled)
1536 		return;
1537 
1538 	switch (sta->sta.max_sp) {
1539 	case 1:
1540 		n_frames = 2;
1541 		break;
1542 	case 2:
1543 		n_frames = 4;
1544 		break;
1545 	case 3:
1546 		n_frames = 6;
1547 		break;
1548 	case 0:
1549 		/* XXX: what is a good value? */
1550 		n_frames = 128;
1551 		break;
1552 	}
1553 
1554 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1555 					  IEEE80211_FRAME_RELEASE_UAPSD);
1556 }
1557 
1558 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1559 			       struct ieee80211_sta *pubsta, bool block)
1560 {
1561 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1562 
1563 	trace_api_sta_block_awake(sta->local, pubsta, block);
1564 
1565 	if (block) {
1566 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1567 		return;
1568 	}
1569 
1570 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1571 		return;
1572 
1573 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1574 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1575 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1576 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1577 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1578 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1579 		/* must be asleep in this case */
1580 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1581 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1582 	} else {
1583 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1584 	}
1585 }
1586 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1587 
1588 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1589 {
1590 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1591 	struct ieee80211_local *local = sta->local;
1592 
1593 	trace_api_eosp(local, pubsta);
1594 
1595 	clear_sta_flag(sta, WLAN_STA_SP);
1596 }
1597 EXPORT_SYMBOL(ieee80211_sta_eosp);
1598 
1599 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1600 				u8 tid, bool buffered)
1601 {
1602 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1603 
1604 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1605 		return;
1606 
1607 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1608 
1609 	if (buffered)
1610 		set_bit(tid, &sta->driver_buffered_tids);
1611 	else
1612 		clear_bit(tid, &sta->driver_buffered_tids);
1613 
1614 	sta_info_recalc_tim(sta);
1615 }
1616 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1617 
1618 int sta_info_move_state(struct sta_info *sta,
1619 			enum ieee80211_sta_state new_state)
1620 {
1621 	might_sleep();
1622 
1623 	if (sta->sta_state == new_state)
1624 		return 0;
1625 
1626 	/* check allowed transitions first */
1627 
1628 	switch (new_state) {
1629 	case IEEE80211_STA_NONE:
1630 		if (sta->sta_state != IEEE80211_STA_AUTH)
1631 			return -EINVAL;
1632 		break;
1633 	case IEEE80211_STA_AUTH:
1634 		if (sta->sta_state != IEEE80211_STA_NONE &&
1635 		    sta->sta_state != IEEE80211_STA_ASSOC)
1636 			return -EINVAL;
1637 		break;
1638 	case IEEE80211_STA_ASSOC:
1639 		if (sta->sta_state != IEEE80211_STA_AUTH &&
1640 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
1641 			return -EINVAL;
1642 		break;
1643 	case IEEE80211_STA_AUTHORIZED:
1644 		if (sta->sta_state != IEEE80211_STA_ASSOC)
1645 			return -EINVAL;
1646 		break;
1647 	default:
1648 		WARN(1, "invalid state %d", new_state);
1649 		return -EINVAL;
1650 	}
1651 
1652 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1653 		sta->sta.addr, new_state);
1654 
1655 	/*
1656 	 * notify the driver before the actual changes so it can
1657 	 * fail the transition
1658 	 */
1659 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1660 		int err = drv_sta_state(sta->local, sta->sdata, sta,
1661 					sta->sta_state, new_state);
1662 		if (err)
1663 			return err;
1664 	}
1665 
1666 	/* reflect the change in all state variables */
1667 
1668 	switch (new_state) {
1669 	case IEEE80211_STA_NONE:
1670 		if (sta->sta_state == IEEE80211_STA_AUTH)
1671 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
1672 		break;
1673 	case IEEE80211_STA_AUTH:
1674 		if (sta->sta_state == IEEE80211_STA_NONE)
1675 			set_bit(WLAN_STA_AUTH, &sta->_flags);
1676 		else if (sta->sta_state == IEEE80211_STA_ASSOC)
1677 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1678 		break;
1679 	case IEEE80211_STA_ASSOC:
1680 		if (sta->sta_state == IEEE80211_STA_AUTH) {
1681 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
1682 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1683 			if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1684 			    (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1685 			     !sta->sdata->u.vlan.sta))
1686 				atomic_dec(&sta->sdata->bss->num_mcast_sta);
1687 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1688 		}
1689 		break;
1690 	case IEEE80211_STA_AUTHORIZED:
1691 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
1692 			if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1693 			    (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1694 			     !sta->sdata->u.vlan.sta))
1695 				atomic_inc(&sta->sdata->bss->num_mcast_sta);
1696 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1697 		}
1698 		break;
1699 	default:
1700 		break;
1701 	}
1702 
1703 	sta->sta_state = new_state;
1704 
1705 	return 0;
1706 }
1707 
1708 u8 sta_info_tx_streams(struct sta_info *sta)
1709 {
1710 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1711 	u8 rx_streams;
1712 
1713 	if (!sta->sta.ht_cap.ht_supported)
1714 		return 1;
1715 
1716 	if (sta->sta.vht_cap.vht_supported) {
1717 		int i;
1718 		u16 tx_mcs_map =
1719 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1720 
1721 		for (i = 7; i >= 0; i--)
1722 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
1723 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
1724 				return i + 1;
1725 	}
1726 
1727 	if (ht_cap->mcs.rx_mask[3])
1728 		rx_streams = 4;
1729 	else if (ht_cap->mcs.rx_mask[2])
1730 		rx_streams = 3;
1731 	else if (ht_cap->mcs.rx_mask[1])
1732 		rx_streams = 2;
1733 	else
1734 		rx_streams = 1;
1735 
1736 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1737 		return rx_streams;
1738 
1739 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1740 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1741 }
1742 
1743 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
1744 {
1745 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1746 	struct ieee80211_local *local = sdata->local;
1747 	struct rate_control_ref *ref = NULL;
1748 	struct timespec uptime;
1749 	u64 packets = 0;
1750 	u32 thr = 0;
1751 	int i, ac;
1752 
1753 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
1754 		ref = local->rate_ctrl;
1755 
1756 	sinfo->generation = sdata->local->sta_generation;
1757 
1758 	sinfo->filled = STATION_INFO_INACTIVE_TIME |
1759 			STATION_INFO_RX_BYTES64 |
1760 			STATION_INFO_TX_BYTES64 |
1761 			STATION_INFO_RX_PACKETS |
1762 			STATION_INFO_TX_PACKETS |
1763 			STATION_INFO_TX_RETRIES |
1764 			STATION_INFO_TX_FAILED |
1765 			STATION_INFO_TX_BITRATE |
1766 			STATION_INFO_RX_BITRATE |
1767 			STATION_INFO_RX_DROP_MISC |
1768 			STATION_INFO_BSS_PARAM |
1769 			STATION_INFO_CONNECTED_TIME |
1770 			STATION_INFO_STA_FLAGS |
1771 			STATION_INFO_BEACON_LOSS_COUNT;
1772 
1773 	ktime_get_ts(&uptime);
1774 	sinfo->connected_time = uptime.tv_sec - sta->last_connected;
1775 
1776 	sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx);
1777 	sinfo->tx_bytes = 0;
1778 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1779 		sinfo->tx_bytes += sta->tx_bytes[ac];
1780 		packets += sta->tx_packets[ac];
1781 	}
1782 	sinfo->tx_packets = packets;
1783 	sinfo->rx_bytes = sta->rx_bytes;
1784 	sinfo->rx_packets = sta->rx_packets;
1785 	sinfo->tx_retries = sta->tx_retry_count;
1786 	sinfo->tx_failed = sta->tx_retry_failed;
1787 	sinfo->rx_dropped_misc = sta->rx_dropped;
1788 	sinfo->beacon_loss_count = sta->beacon_loss_count;
1789 
1790 	if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ||
1791 	    (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) {
1792 		sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG;
1793 		if (!local->ops->get_rssi ||
1794 		    drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal))
1795 			sinfo->signal = (s8)sta->last_signal;
1796 		sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal);
1797 	}
1798 	if (sta->chains) {
1799 		sinfo->filled |= STATION_INFO_CHAIN_SIGNAL |
1800 				 STATION_INFO_CHAIN_SIGNAL_AVG;
1801 
1802 		sinfo->chains = sta->chains;
1803 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
1804 			sinfo->chain_signal[i] = sta->chain_signal_last[i];
1805 			sinfo->chain_signal_avg[i] =
1806 				(s8) -ewma_read(&sta->chain_signal_avg[i]);
1807 		}
1808 	}
1809 
1810 	sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate);
1811 	sta_set_rate_info_rx(sta, &sinfo->rxrate);
1812 
1813 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
1814 #ifdef CONFIG_MAC80211_MESH
1815 		sinfo->filled |= STATION_INFO_LLID |
1816 				 STATION_INFO_PLID |
1817 				 STATION_INFO_PLINK_STATE |
1818 				 STATION_INFO_LOCAL_PM |
1819 				 STATION_INFO_PEER_PM |
1820 				 STATION_INFO_NONPEER_PM;
1821 
1822 		sinfo->llid = sta->llid;
1823 		sinfo->plid = sta->plid;
1824 		sinfo->plink_state = sta->plink_state;
1825 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
1826 			sinfo->filled |= STATION_INFO_T_OFFSET;
1827 			sinfo->t_offset = sta->t_offset;
1828 		}
1829 		sinfo->local_pm = sta->local_pm;
1830 		sinfo->peer_pm = sta->peer_pm;
1831 		sinfo->nonpeer_pm = sta->nonpeer_pm;
1832 #endif
1833 	}
1834 
1835 	sinfo->bss_param.flags = 0;
1836 	if (sdata->vif.bss_conf.use_cts_prot)
1837 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
1838 	if (sdata->vif.bss_conf.use_short_preamble)
1839 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
1840 	if (sdata->vif.bss_conf.use_short_slot)
1841 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
1842 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
1843 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
1844 
1845 	sinfo->sta_flags.set = 0;
1846 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
1847 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
1848 				BIT(NL80211_STA_FLAG_WME) |
1849 				BIT(NL80211_STA_FLAG_MFP) |
1850 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
1851 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
1852 				BIT(NL80211_STA_FLAG_TDLS_PEER);
1853 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
1854 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
1855 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
1856 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
1857 	if (sta->sta.wme)
1858 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
1859 	if (test_sta_flag(sta, WLAN_STA_MFP))
1860 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
1861 	if (test_sta_flag(sta, WLAN_STA_AUTH))
1862 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
1863 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
1864 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
1865 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
1866 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
1867 
1868 	/* check if the driver has a SW RC implementation */
1869 	if (ref && ref->ops->get_expected_throughput)
1870 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
1871 	else
1872 		thr = drv_get_expected_throughput(local, &sta->sta);
1873 
1874 	if (thr != 0) {
1875 		sinfo->filled |= STATION_INFO_EXPECTED_THROUGHPUT;
1876 		sinfo->expected_throughput = thr;
1877 	}
1878 }
1879