xref: /openbmc/linux/net/mac80211/rx.c (revision bdaedca74d6293b6ac643a8ebe8231b52bf1171b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2020 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25 
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35 
36 /*
37  * monitor mode reception
38  *
39  * This function cleans up the SKB, i.e. it removes all the stuff
40  * only useful for monitoring.
41  */
42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 					   unsigned int present_fcs_len,
44 					   unsigned int rtap_space)
45 {
46 	struct ieee80211_hdr *hdr;
47 	unsigned int hdrlen;
48 	__le16 fc;
49 
50 	if (present_fcs_len)
51 		__pskb_trim(skb, skb->len - present_fcs_len);
52 	__pskb_pull(skb, rtap_space);
53 
54 	hdr = (void *)skb->data;
55 	fc = hdr->frame_control;
56 
57 	/*
58 	 * Remove the HT-Control field (if present) on management
59 	 * frames after we've sent the frame to monitoring. We
60 	 * (currently) don't need it, and don't properly parse
61 	 * frames with it present, due to the assumption of a
62 	 * fixed management header length.
63 	 */
64 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 		return skb;
66 
67 	hdrlen = ieee80211_hdrlen(fc);
68 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69 
70 	if (!pskb_may_pull(skb, hdrlen)) {
71 		dev_kfree_skb(skb);
72 		return NULL;
73 	}
74 
75 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 		hdrlen - IEEE80211_HT_CTL_LEN);
77 	__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78 
79 	return skb;
80 }
81 
82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 				     unsigned int rtap_space)
84 {
85 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 	struct ieee80211_hdr *hdr;
87 
88 	hdr = (void *)(skb->data + rtap_space);
89 
90 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 			    RX_FLAG_FAILED_PLCP_CRC |
92 			    RX_FLAG_ONLY_MONITOR |
93 			    RX_FLAG_NO_PSDU))
94 		return true;
95 
96 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 		return true;
98 
99 	if (ieee80211_is_ctl(hdr->frame_control) &&
100 	    !ieee80211_is_pspoll(hdr->frame_control) &&
101 	    !ieee80211_is_back_req(hdr->frame_control))
102 		return true;
103 
104 	return false;
105 }
106 
107 static int
108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 			     struct ieee80211_rx_status *status,
110 			     struct sk_buff *skb)
111 {
112 	int len;
113 
114 	/* always present fields */
115 	len = sizeof(struct ieee80211_radiotap_header) + 8;
116 
117 	/* allocate extra bitmaps */
118 	if (status->chains)
119 		len += 4 * hweight8(status->chains);
120 	/* vendor presence bitmap */
121 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 		len += 4;
123 
124 	if (ieee80211_have_rx_timestamp(status)) {
125 		len = ALIGN(len, 8);
126 		len += 8;
127 	}
128 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 		len += 1;
130 
131 	/* antenna field, if we don't have per-chain info */
132 	if (!status->chains)
133 		len += 1;
134 
135 	/* padding for RX_FLAGS if necessary */
136 	len = ALIGN(len, 2);
137 
138 	if (status->encoding == RX_ENC_HT) /* HT info */
139 		len += 3;
140 
141 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 		len = ALIGN(len, 4);
143 		len += 8;
144 	}
145 
146 	if (status->encoding == RX_ENC_VHT) {
147 		len = ALIGN(len, 2);
148 		len += 12;
149 	}
150 
151 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 		len = ALIGN(len, 8);
153 		len += 12;
154 	}
155 
156 	if (status->encoding == RX_ENC_HE &&
157 	    status->flag & RX_FLAG_RADIOTAP_HE) {
158 		len = ALIGN(len, 2);
159 		len += 12;
160 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 	}
162 
163 	if (status->encoding == RX_ENC_HE &&
164 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 		len = ALIGN(len, 2);
166 		len += 12;
167 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 	}
169 
170 	if (status->flag & RX_FLAG_NO_PSDU)
171 		len += 1;
172 
173 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 		len = ALIGN(len, 2);
175 		len += 4;
176 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 	}
178 
179 	if (status->chains) {
180 		/* antenna and antenna signal fields */
181 		len += 2 * hweight8(status->chains);
182 	}
183 
184 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 		struct ieee80211_vendor_radiotap *rtap;
186 		int vendor_data_offset = 0;
187 
188 		/*
189 		 * The position to look at depends on the existence (or non-
190 		 * existence) of other elements, so take that into account...
191 		 */
192 		if (status->flag & RX_FLAG_RADIOTAP_HE)
193 			vendor_data_offset +=
194 				sizeof(struct ieee80211_radiotap_he);
195 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 			vendor_data_offset +=
197 				sizeof(struct ieee80211_radiotap_he_mu);
198 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 			vendor_data_offset +=
200 				sizeof(struct ieee80211_radiotap_lsig);
201 
202 		rtap = (void *)&skb->data[vendor_data_offset];
203 
204 		/* alignment for fixed 6-byte vendor data header */
205 		len = ALIGN(len, 2);
206 		/* vendor data header */
207 		len += 6;
208 		if (WARN_ON(rtap->align == 0))
209 			rtap->align = 1;
210 		len = ALIGN(len, rtap->align);
211 		len += rtap->len + rtap->pad;
212 	}
213 
214 	return len;
215 }
216 
217 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
218 					 struct sk_buff *skb,
219 					 int rtap_space)
220 {
221 	struct {
222 		struct ieee80211_hdr_3addr hdr;
223 		u8 category;
224 		u8 action_code;
225 	} __packed __aligned(2) action;
226 
227 	if (!sdata)
228 		return;
229 
230 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
231 
232 	if (skb->len < rtap_space + sizeof(action) +
233 		       VHT_MUMIMO_GROUPS_DATA_LEN)
234 		return;
235 
236 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
237 		return;
238 
239 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
240 
241 	if (!ieee80211_is_action(action.hdr.frame_control))
242 		return;
243 
244 	if (action.category != WLAN_CATEGORY_VHT)
245 		return;
246 
247 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
248 		return;
249 
250 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
251 		return;
252 
253 	skb = skb_copy(skb, GFP_ATOMIC);
254 	if (!skb)
255 		return;
256 
257 	skb_queue_tail(&sdata->skb_queue, skb);
258 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
259 }
260 
261 /*
262  * ieee80211_add_rx_radiotap_header - add radiotap header
263  *
264  * add a radiotap header containing all the fields which the hardware provided.
265  */
266 static void
267 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
268 				 struct sk_buff *skb,
269 				 struct ieee80211_rate *rate,
270 				 int rtap_len, bool has_fcs)
271 {
272 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
273 	struct ieee80211_radiotap_header *rthdr;
274 	unsigned char *pos;
275 	__le32 *it_present;
276 	u32 it_present_val;
277 	u16 rx_flags = 0;
278 	u16 channel_flags = 0;
279 	int mpdulen, chain;
280 	unsigned long chains = status->chains;
281 	struct ieee80211_vendor_radiotap rtap = {};
282 	struct ieee80211_radiotap_he he = {};
283 	struct ieee80211_radiotap_he_mu he_mu = {};
284 	struct ieee80211_radiotap_lsig lsig = {};
285 
286 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
287 		he = *(struct ieee80211_radiotap_he *)skb->data;
288 		skb_pull(skb, sizeof(he));
289 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
290 	}
291 
292 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
293 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
294 		skb_pull(skb, sizeof(he_mu));
295 	}
296 
297 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
298 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
299 		skb_pull(skb, sizeof(lsig));
300 	}
301 
302 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
303 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
304 		/* rtap.len and rtap.pad are undone immediately */
305 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
306 	}
307 
308 	mpdulen = skb->len;
309 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
310 		mpdulen += FCS_LEN;
311 
312 	rthdr = skb_push(skb, rtap_len);
313 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
314 	it_present = &rthdr->it_present;
315 
316 	/* radiotap header, set always present flags */
317 	rthdr->it_len = cpu_to_le16(rtap_len);
318 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
319 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
320 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
321 
322 	if (!status->chains)
323 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
324 
325 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
326 		it_present_val |=
327 			BIT(IEEE80211_RADIOTAP_EXT) |
328 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
329 		put_unaligned_le32(it_present_val, it_present);
330 		it_present++;
331 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
332 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
333 	}
334 
335 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
336 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
337 				  BIT(IEEE80211_RADIOTAP_EXT);
338 		put_unaligned_le32(it_present_val, it_present);
339 		it_present++;
340 		it_present_val = rtap.present;
341 	}
342 
343 	put_unaligned_le32(it_present_val, it_present);
344 
345 	pos = (void *)(it_present + 1);
346 
347 	/* the order of the following fields is important */
348 
349 	/* IEEE80211_RADIOTAP_TSFT */
350 	if (ieee80211_have_rx_timestamp(status)) {
351 		/* padding */
352 		while ((pos - (u8 *)rthdr) & 7)
353 			*pos++ = 0;
354 		put_unaligned_le64(
355 			ieee80211_calculate_rx_timestamp(local, status,
356 							 mpdulen, 0),
357 			pos);
358 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
359 		pos += 8;
360 	}
361 
362 	/* IEEE80211_RADIOTAP_FLAGS */
363 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
364 		*pos |= IEEE80211_RADIOTAP_F_FCS;
365 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
366 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
367 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
368 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
369 	pos++;
370 
371 	/* IEEE80211_RADIOTAP_RATE */
372 	if (!rate || status->encoding != RX_ENC_LEGACY) {
373 		/*
374 		 * Without rate information don't add it. If we have,
375 		 * MCS information is a separate field in radiotap,
376 		 * added below. The byte here is needed as padding
377 		 * for the channel though, so initialise it to 0.
378 		 */
379 		*pos = 0;
380 	} else {
381 		int shift = 0;
382 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
383 		if (status->bw == RATE_INFO_BW_10)
384 			shift = 1;
385 		else if (status->bw == RATE_INFO_BW_5)
386 			shift = 2;
387 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
388 	}
389 	pos++;
390 
391 	/* IEEE80211_RADIOTAP_CHANNEL */
392 	/* TODO: frequency offset in KHz */
393 	put_unaligned_le16(status->freq, pos);
394 	pos += 2;
395 	if (status->bw == RATE_INFO_BW_10)
396 		channel_flags |= IEEE80211_CHAN_HALF;
397 	else if (status->bw == RATE_INFO_BW_5)
398 		channel_flags |= IEEE80211_CHAN_QUARTER;
399 
400 	if (status->band == NL80211_BAND_5GHZ ||
401 	    status->band == NL80211_BAND_6GHZ)
402 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
403 	else if (status->encoding != RX_ENC_LEGACY)
404 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
405 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
406 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
407 	else if (rate)
408 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
409 	else
410 		channel_flags |= IEEE80211_CHAN_2GHZ;
411 	put_unaligned_le16(channel_flags, pos);
412 	pos += 2;
413 
414 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
415 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
416 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
417 		*pos = status->signal;
418 		rthdr->it_present |=
419 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
420 		pos++;
421 	}
422 
423 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
424 
425 	if (!status->chains) {
426 		/* IEEE80211_RADIOTAP_ANTENNA */
427 		*pos = status->antenna;
428 		pos++;
429 	}
430 
431 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
432 
433 	/* IEEE80211_RADIOTAP_RX_FLAGS */
434 	/* ensure 2 byte alignment for the 2 byte field as required */
435 	if ((pos - (u8 *)rthdr) & 1)
436 		*pos++ = 0;
437 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
438 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
439 	put_unaligned_le16(rx_flags, pos);
440 	pos += 2;
441 
442 	if (status->encoding == RX_ENC_HT) {
443 		unsigned int stbc;
444 
445 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
446 		*pos++ = local->hw.radiotap_mcs_details;
447 		*pos = 0;
448 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
449 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
450 		if (status->bw == RATE_INFO_BW_40)
451 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
452 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
453 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
454 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
455 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
456 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
457 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
458 		pos++;
459 		*pos++ = status->rate_idx;
460 	}
461 
462 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
463 		u16 flags = 0;
464 
465 		/* ensure 4 byte alignment */
466 		while ((pos - (u8 *)rthdr) & 3)
467 			pos++;
468 		rthdr->it_present |=
469 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
470 		put_unaligned_le32(status->ampdu_reference, pos);
471 		pos += 4;
472 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
473 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
474 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
475 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
476 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
477 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
478 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
479 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
480 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
481 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
482 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
483 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
484 		put_unaligned_le16(flags, pos);
485 		pos += 2;
486 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
487 			*pos++ = status->ampdu_delimiter_crc;
488 		else
489 			*pos++ = 0;
490 		*pos++ = 0;
491 	}
492 
493 	if (status->encoding == RX_ENC_VHT) {
494 		u16 known = local->hw.radiotap_vht_details;
495 
496 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
497 		put_unaligned_le16(known, pos);
498 		pos += 2;
499 		/* flags */
500 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
501 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
502 		/* in VHT, STBC is binary */
503 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
504 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
505 		if (status->enc_flags & RX_ENC_FLAG_BF)
506 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
507 		pos++;
508 		/* bandwidth */
509 		switch (status->bw) {
510 		case RATE_INFO_BW_80:
511 			*pos++ = 4;
512 			break;
513 		case RATE_INFO_BW_160:
514 			*pos++ = 11;
515 			break;
516 		case RATE_INFO_BW_40:
517 			*pos++ = 1;
518 			break;
519 		default:
520 			*pos++ = 0;
521 		}
522 		/* MCS/NSS */
523 		*pos = (status->rate_idx << 4) | status->nss;
524 		pos += 4;
525 		/* coding field */
526 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
527 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
528 		pos++;
529 		/* group ID */
530 		pos++;
531 		/* partial_aid */
532 		pos += 2;
533 	}
534 
535 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
536 		u16 accuracy = 0;
537 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
538 
539 		rthdr->it_present |=
540 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
541 
542 		/* ensure 8 byte alignment */
543 		while ((pos - (u8 *)rthdr) & 7)
544 			pos++;
545 
546 		put_unaligned_le64(status->device_timestamp, pos);
547 		pos += sizeof(u64);
548 
549 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
550 			accuracy = local->hw.radiotap_timestamp.accuracy;
551 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
552 		}
553 		put_unaligned_le16(accuracy, pos);
554 		pos += sizeof(u16);
555 
556 		*pos++ = local->hw.radiotap_timestamp.units_pos;
557 		*pos++ = flags;
558 	}
559 
560 	if (status->encoding == RX_ENC_HE &&
561 	    status->flag & RX_FLAG_RADIOTAP_HE) {
562 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
563 
564 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
565 			he.data6 |= HE_PREP(DATA6_NSTS,
566 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
567 						      status->enc_flags));
568 			he.data3 |= HE_PREP(DATA3_STBC, 1);
569 		} else {
570 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
571 		}
572 
573 #define CHECK_GI(s) \
574 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
575 		     (int)NL80211_RATE_INFO_HE_GI_##s)
576 
577 		CHECK_GI(0_8);
578 		CHECK_GI(1_6);
579 		CHECK_GI(3_2);
580 
581 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
582 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
583 		he.data3 |= HE_PREP(DATA3_CODING,
584 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
585 
586 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
587 
588 		switch (status->bw) {
589 		case RATE_INFO_BW_20:
590 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
591 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
592 			break;
593 		case RATE_INFO_BW_40:
594 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
595 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
596 			break;
597 		case RATE_INFO_BW_80:
598 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
599 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
600 			break;
601 		case RATE_INFO_BW_160:
602 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
603 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
604 			break;
605 		case RATE_INFO_BW_HE_RU:
606 #define CHECK_RU_ALLOC(s) \
607 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
608 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
609 
610 			CHECK_RU_ALLOC(26);
611 			CHECK_RU_ALLOC(52);
612 			CHECK_RU_ALLOC(106);
613 			CHECK_RU_ALLOC(242);
614 			CHECK_RU_ALLOC(484);
615 			CHECK_RU_ALLOC(996);
616 			CHECK_RU_ALLOC(2x996);
617 
618 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
619 					    status->he_ru + 4);
620 			break;
621 		default:
622 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
623 		}
624 
625 		/* ensure 2 byte alignment */
626 		while ((pos - (u8 *)rthdr) & 1)
627 			pos++;
628 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
629 		memcpy(pos, &he, sizeof(he));
630 		pos += sizeof(he);
631 	}
632 
633 	if (status->encoding == RX_ENC_HE &&
634 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
635 		/* ensure 2 byte alignment */
636 		while ((pos - (u8 *)rthdr) & 1)
637 			pos++;
638 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
639 		memcpy(pos, &he_mu, sizeof(he_mu));
640 		pos += sizeof(he_mu);
641 	}
642 
643 	if (status->flag & RX_FLAG_NO_PSDU) {
644 		rthdr->it_present |=
645 			cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
646 		*pos++ = status->zero_length_psdu_type;
647 	}
648 
649 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
650 		/* ensure 2 byte alignment */
651 		while ((pos - (u8 *)rthdr) & 1)
652 			pos++;
653 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
654 		memcpy(pos, &lsig, sizeof(lsig));
655 		pos += sizeof(lsig);
656 	}
657 
658 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
659 		*pos++ = status->chain_signal[chain];
660 		*pos++ = chain;
661 	}
662 
663 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
664 		/* ensure 2 byte alignment for the vendor field as required */
665 		if ((pos - (u8 *)rthdr) & 1)
666 			*pos++ = 0;
667 		*pos++ = rtap.oui[0];
668 		*pos++ = rtap.oui[1];
669 		*pos++ = rtap.oui[2];
670 		*pos++ = rtap.subns;
671 		put_unaligned_le16(rtap.len, pos);
672 		pos += 2;
673 		/* align the actual payload as requested */
674 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
675 			*pos++ = 0;
676 		/* data (and possible padding) already follows */
677 	}
678 }
679 
680 static struct sk_buff *
681 ieee80211_make_monitor_skb(struct ieee80211_local *local,
682 			   struct sk_buff **origskb,
683 			   struct ieee80211_rate *rate,
684 			   int rtap_space, bool use_origskb)
685 {
686 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
687 	int rt_hdrlen, needed_headroom;
688 	struct sk_buff *skb;
689 
690 	/* room for the radiotap header based on driver features */
691 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
692 	needed_headroom = rt_hdrlen - rtap_space;
693 
694 	if (use_origskb) {
695 		/* only need to expand headroom if necessary */
696 		skb = *origskb;
697 		*origskb = NULL;
698 
699 		/*
700 		 * This shouldn't trigger often because most devices have an
701 		 * RX header they pull before we get here, and that should
702 		 * be big enough for our radiotap information. We should
703 		 * probably export the length to drivers so that we can have
704 		 * them allocate enough headroom to start with.
705 		 */
706 		if (skb_headroom(skb) < needed_headroom &&
707 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
708 			dev_kfree_skb(skb);
709 			return NULL;
710 		}
711 	} else {
712 		/*
713 		 * Need to make a copy and possibly remove radiotap header
714 		 * and FCS from the original.
715 		 */
716 		skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
717 
718 		if (!skb)
719 			return NULL;
720 	}
721 
722 	/* prepend radiotap information */
723 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
724 
725 	skb_reset_mac_header(skb);
726 	skb->ip_summed = CHECKSUM_UNNECESSARY;
727 	skb->pkt_type = PACKET_OTHERHOST;
728 	skb->protocol = htons(ETH_P_802_2);
729 
730 	return skb;
731 }
732 
733 /*
734  * This function copies a received frame to all monitor interfaces and
735  * returns a cleaned-up SKB that no longer includes the FCS nor the
736  * radiotap header the driver might have added.
737  */
738 static struct sk_buff *
739 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
740 		     struct ieee80211_rate *rate)
741 {
742 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
743 	struct ieee80211_sub_if_data *sdata;
744 	struct sk_buff *monskb = NULL;
745 	int present_fcs_len = 0;
746 	unsigned int rtap_space = 0;
747 	struct ieee80211_sub_if_data *monitor_sdata =
748 		rcu_dereference(local->monitor_sdata);
749 	bool only_monitor = false;
750 	unsigned int min_head_len;
751 
752 	if (status->flag & RX_FLAG_RADIOTAP_HE)
753 		rtap_space += sizeof(struct ieee80211_radiotap_he);
754 
755 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
756 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
757 
758 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
759 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
760 
761 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
762 		struct ieee80211_vendor_radiotap *rtap =
763 			(void *)(origskb->data + rtap_space);
764 
765 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
766 	}
767 
768 	min_head_len = rtap_space;
769 
770 	/*
771 	 * First, we may need to make a copy of the skb because
772 	 *  (1) we need to modify it for radiotap (if not present), and
773 	 *  (2) the other RX handlers will modify the skb we got.
774 	 *
775 	 * We don't need to, of course, if we aren't going to return
776 	 * the SKB because it has a bad FCS/PLCP checksum.
777 	 */
778 
779 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
780 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
781 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
782 				/* driver bug */
783 				WARN_ON(1);
784 				dev_kfree_skb(origskb);
785 				return NULL;
786 			}
787 			present_fcs_len = FCS_LEN;
788 		}
789 
790 		/* also consider the hdr->frame_control */
791 		min_head_len += 2;
792 	}
793 
794 	/* ensure that the expected data elements are in skb head */
795 	if (!pskb_may_pull(origskb, min_head_len)) {
796 		dev_kfree_skb(origskb);
797 		return NULL;
798 	}
799 
800 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
801 
802 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
803 		if (only_monitor) {
804 			dev_kfree_skb(origskb);
805 			return NULL;
806 		}
807 
808 		return ieee80211_clean_skb(origskb, present_fcs_len,
809 					   rtap_space);
810 	}
811 
812 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
813 
814 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
815 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
816 						 &local->mon_list);
817 
818 		if (!monskb)
819 			monskb = ieee80211_make_monitor_skb(local, &origskb,
820 							    rate, rtap_space,
821 							    only_monitor &&
822 							    last_monitor);
823 
824 		if (monskb) {
825 			struct sk_buff *skb;
826 
827 			if (last_monitor) {
828 				skb = monskb;
829 				monskb = NULL;
830 			} else {
831 				skb = skb_clone(monskb, GFP_ATOMIC);
832 			}
833 
834 			if (skb) {
835 				skb->dev = sdata->dev;
836 				dev_sw_netstats_rx_add(skb->dev, skb->len);
837 				netif_receive_skb(skb);
838 			}
839 		}
840 
841 		if (last_monitor)
842 			break;
843 	}
844 
845 	/* this happens if last_monitor was erroneously false */
846 	dev_kfree_skb(monskb);
847 
848 	/* ditto */
849 	if (!origskb)
850 		return NULL;
851 
852 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
853 }
854 
855 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
856 {
857 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
858 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
859 	int tid, seqno_idx, security_idx;
860 
861 	/* does the frame have a qos control field? */
862 	if (ieee80211_is_data_qos(hdr->frame_control)) {
863 		u8 *qc = ieee80211_get_qos_ctl(hdr);
864 		/* frame has qos control */
865 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
866 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
867 			status->rx_flags |= IEEE80211_RX_AMSDU;
868 
869 		seqno_idx = tid;
870 		security_idx = tid;
871 	} else {
872 		/*
873 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
874 		 *
875 		 *	Sequence numbers for management frames, QoS data
876 		 *	frames with a broadcast/multicast address in the
877 		 *	Address 1 field, and all non-QoS data frames sent
878 		 *	by QoS STAs are assigned using an additional single
879 		 *	modulo-4096 counter, [...]
880 		 *
881 		 * We also use that counter for non-QoS STAs.
882 		 */
883 		seqno_idx = IEEE80211_NUM_TIDS;
884 		security_idx = 0;
885 		if (ieee80211_is_mgmt(hdr->frame_control))
886 			security_idx = IEEE80211_NUM_TIDS;
887 		tid = 0;
888 	}
889 
890 	rx->seqno_idx = seqno_idx;
891 	rx->security_idx = security_idx;
892 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
893 	 * For now, set skb->priority to 0 for other cases. */
894 	rx->skb->priority = (tid > 7) ? 0 : tid;
895 }
896 
897 /**
898  * DOC: Packet alignment
899  *
900  * Drivers always need to pass packets that are aligned to two-byte boundaries
901  * to the stack.
902  *
903  * Additionally, should, if possible, align the payload data in a way that
904  * guarantees that the contained IP header is aligned to a four-byte
905  * boundary. In the case of regular frames, this simply means aligning the
906  * payload to a four-byte boundary (because either the IP header is directly
907  * contained, or IV/RFC1042 headers that have a length divisible by four are
908  * in front of it).  If the payload data is not properly aligned and the
909  * architecture doesn't support efficient unaligned operations, mac80211
910  * will align the data.
911  *
912  * With A-MSDU frames, however, the payload data address must yield two modulo
913  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
914  * push the IP header further back to a multiple of four again. Thankfully, the
915  * specs were sane enough this time around to require padding each A-MSDU
916  * subframe to a length that is a multiple of four.
917  *
918  * Padding like Atheros hardware adds which is between the 802.11 header and
919  * the payload is not supported, the driver is required to move the 802.11
920  * header to be directly in front of the payload in that case.
921  */
922 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
923 {
924 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
925 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
926 #endif
927 }
928 
929 
930 /* rx handlers */
931 
932 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
933 {
934 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
935 
936 	if (is_multicast_ether_addr(hdr->addr1))
937 		return 0;
938 
939 	return ieee80211_is_robust_mgmt_frame(skb);
940 }
941 
942 
943 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
944 {
945 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
946 
947 	if (!is_multicast_ether_addr(hdr->addr1))
948 		return 0;
949 
950 	return ieee80211_is_robust_mgmt_frame(skb);
951 }
952 
953 
954 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
955 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
956 {
957 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
958 	struct ieee80211_mmie *mmie;
959 	struct ieee80211_mmie_16 *mmie16;
960 
961 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
962 		return -1;
963 
964 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
965 	    !ieee80211_is_beacon(hdr->frame_control))
966 		return -1; /* not a robust management frame */
967 
968 	mmie = (struct ieee80211_mmie *)
969 		(skb->data + skb->len - sizeof(*mmie));
970 	if (mmie->element_id == WLAN_EID_MMIE &&
971 	    mmie->length == sizeof(*mmie) - 2)
972 		return le16_to_cpu(mmie->key_id);
973 
974 	mmie16 = (struct ieee80211_mmie_16 *)
975 		(skb->data + skb->len - sizeof(*mmie16));
976 	if (skb->len >= 24 + sizeof(*mmie16) &&
977 	    mmie16->element_id == WLAN_EID_MMIE &&
978 	    mmie16->length == sizeof(*mmie16) - 2)
979 		return le16_to_cpu(mmie16->key_id);
980 
981 	return -1;
982 }
983 
984 static int ieee80211_get_keyid(struct sk_buff *skb,
985 			       const struct ieee80211_cipher_scheme *cs)
986 {
987 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
988 	__le16 fc;
989 	int hdrlen;
990 	int minlen;
991 	u8 key_idx_off;
992 	u8 key_idx_shift;
993 	u8 keyid;
994 
995 	fc = hdr->frame_control;
996 	hdrlen = ieee80211_hdrlen(fc);
997 
998 	if (cs) {
999 		minlen = hdrlen + cs->hdr_len;
1000 		key_idx_off = hdrlen + cs->key_idx_off;
1001 		key_idx_shift = cs->key_idx_shift;
1002 	} else {
1003 		/* WEP, TKIP, CCMP and GCMP */
1004 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1005 		key_idx_off = hdrlen + 3;
1006 		key_idx_shift = 6;
1007 	}
1008 
1009 	if (unlikely(skb->len < minlen))
1010 		return -EINVAL;
1011 
1012 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1013 
1014 	if (cs)
1015 		keyid &= cs->key_idx_mask;
1016 	keyid >>= key_idx_shift;
1017 
1018 	/* cs could use more than the usual two bits for the keyid */
1019 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1020 		return -EINVAL;
1021 
1022 	return keyid;
1023 }
1024 
1025 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1026 {
1027 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1028 	char *dev_addr = rx->sdata->vif.addr;
1029 
1030 	if (ieee80211_is_data(hdr->frame_control)) {
1031 		if (is_multicast_ether_addr(hdr->addr1)) {
1032 			if (ieee80211_has_tods(hdr->frame_control) ||
1033 			    !ieee80211_has_fromds(hdr->frame_control))
1034 				return RX_DROP_MONITOR;
1035 			if (ether_addr_equal(hdr->addr3, dev_addr))
1036 				return RX_DROP_MONITOR;
1037 		} else {
1038 			if (!ieee80211_has_a4(hdr->frame_control))
1039 				return RX_DROP_MONITOR;
1040 			if (ether_addr_equal(hdr->addr4, dev_addr))
1041 				return RX_DROP_MONITOR;
1042 		}
1043 	}
1044 
1045 	/* If there is not an established peer link and this is not a peer link
1046 	 * establisment frame, beacon or probe, drop the frame.
1047 	 */
1048 
1049 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1050 		struct ieee80211_mgmt *mgmt;
1051 
1052 		if (!ieee80211_is_mgmt(hdr->frame_control))
1053 			return RX_DROP_MONITOR;
1054 
1055 		if (ieee80211_is_action(hdr->frame_control)) {
1056 			u8 category;
1057 
1058 			/* make sure category field is present */
1059 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1060 				return RX_DROP_MONITOR;
1061 
1062 			mgmt = (struct ieee80211_mgmt *)hdr;
1063 			category = mgmt->u.action.category;
1064 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1065 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1066 				return RX_DROP_MONITOR;
1067 			return RX_CONTINUE;
1068 		}
1069 
1070 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1071 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1072 		    ieee80211_is_beacon(hdr->frame_control) ||
1073 		    ieee80211_is_auth(hdr->frame_control))
1074 			return RX_CONTINUE;
1075 
1076 		return RX_DROP_MONITOR;
1077 	}
1078 
1079 	return RX_CONTINUE;
1080 }
1081 
1082 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1083 					      int index)
1084 {
1085 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1086 	struct sk_buff *tail = skb_peek_tail(frames);
1087 	struct ieee80211_rx_status *status;
1088 
1089 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1090 		return true;
1091 
1092 	if (!tail)
1093 		return false;
1094 
1095 	status = IEEE80211_SKB_RXCB(tail);
1096 	if (status->flag & RX_FLAG_AMSDU_MORE)
1097 		return false;
1098 
1099 	return true;
1100 }
1101 
1102 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1103 					    struct tid_ampdu_rx *tid_agg_rx,
1104 					    int index,
1105 					    struct sk_buff_head *frames)
1106 {
1107 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1108 	struct sk_buff *skb;
1109 	struct ieee80211_rx_status *status;
1110 
1111 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1112 
1113 	if (skb_queue_empty(skb_list))
1114 		goto no_frame;
1115 
1116 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1117 		__skb_queue_purge(skb_list);
1118 		goto no_frame;
1119 	}
1120 
1121 	/* release frames from the reorder ring buffer */
1122 	tid_agg_rx->stored_mpdu_num--;
1123 	while ((skb = __skb_dequeue(skb_list))) {
1124 		status = IEEE80211_SKB_RXCB(skb);
1125 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1126 		__skb_queue_tail(frames, skb);
1127 	}
1128 
1129 no_frame:
1130 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1131 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1132 }
1133 
1134 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1135 					     struct tid_ampdu_rx *tid_agg_rx,
1136 					     u16 head_seq_num,
1137 					     struct sk_buff_head *frames)
1138 {
1139 	int index;
1140 
1141 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1142 
1143 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1144 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1145 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1146 						frames);
1147 	}
1148 }
1149 
1150 /*
1151  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1152  * the skb was added to the buffer longer than this time ago, the earlier
1153  * frames that have not yet been received are assumed to be lost and the skb
1154  * can be released for processing. This may also release other skb's from the
1155  * reorder buffer if there are no additional gaps between the frames.
1156  *
1157  * Callers must hold tid_agg_rx->reorder_lock.
1158  */
1159 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1160 
1161 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1162 					  struct tid_ampdu_rx *tid_agg_rx,
1163 					  struct sk_buff_head *frames)
1164 {
1165 	int index, i, j;
1166 
1167 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1168 
1169 	/* release the buffer until next missing frame */
1170 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1171 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1172 	    tid_agg_rx->stored_mpdu_num) {
1173 		/*
1174 		 * No buffers ready to be released, but check whether any
1175 		 * frames in the reorder buffer have timed out.
1176 		 */
1177 		int skipped = 1;
1178 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1179 		     j = (j + 1) % tid_agg_rx->buf_size) {
1180 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1181 				skipped++;
1182 				continue;
1183 			}
1184 			if (skipped &&
1185 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1186 					HT_RX_REORDER_BUF_TIMEOUT))
1187 				goto set_release_timer;
1188 
1189 			/* don't leave incomplete A-MSDUs around */
1190 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1191 			     i = (i + 1) % tid_agg_rx->buf_size)
1192 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1193 
1194 			ht_dbg_ratelimited(sdata,
1195 					   "release an RX reorder frame due to timeout on earlier frames\n");
1196 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1197 							frames);
1198 
1199 			/*
1200 			 * Increment the head seq# also for the skipped slots.
1201 			 */
1202 			tid_agg_rx->head_seq_num =
1203 				(tid_agg_rx->head_seq_num +
1204 				 skipped) & IEEE80211_SN_MASK;
1205 			skipped = 0;
1206 		}
1207 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1208 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1209 						frames);
1210 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1211 	}
1212 
1213 	if (tid_agg_rx->stored_mpdu_num) {
1214 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1215 
1216 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1217 		     j = (j + 1) % tid_agg_rx->buf_size) {
1218 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1219 				break;
1220 		}
1221 
1222  set_release_timer:
1223 
1224 		if (!tid_agg_rx->removed)
1225 			mod_timer(&tid_agg_rx->reorder_timer,
1226 				  tid_agg_rx->reorder_time[j] + 1 +
1227 				  HT_RX_REORDER_BUF_TIMEOUT);
1228 	} else {
1229 		del_timer(&tid_agg_rx->reorder_timer);
1230 	}
1231 }
1232 
1233 /*
1234  * As this function belongs to the RX path it must be under
1235  * rcu_read_lock protection. It returns false if the frame
1236  * can be processed immediately, true if it was consumed.
1237  */
1238 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1239 					     struct tid_ampdu_rx *tid_agg_rx,
1240 					     struct sk_buff *skb,
1241 					     struct sk_buff_head *frames)
1242 {
1243 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1244 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1245 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1246 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1247 	u16 head_seq_num, buf_size;
1248 	int index;
1249 	bool ret = true;
1250 
1251 	spin_lock(&tid_agg_rx->reorder_lock);
1252 
1253 	/*
1254 	 * Offloaded BA sessions have no known starting sequence number so pick
1255 	 * one from first Rxed frame for this tid after BA was started.
1256 	 */
1257 	if (unlikely(tid_agg_rx->auto_seq)) {
1258 		tid_agg_rx->auto_seq = false;
1259 		tid_agg_rx->ssn = mpdu_seq_num;
1260 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1261 	}
1262 
1263 	buf_size = tid_agg_rx->buf_size;
1264 	head_seq_num = tid_agg_rx->head_seq_num;
1265 
1266 	/*
1267 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1268 	 * be reordered.
1269 	 */
1270 	if (unlikely(!tid_agg_rx->started)) {
1271 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1272 			ret = false;
1273 			goto out;
1274 		}
1275 		tid_agg_rx->started = true;
1276 	}
1277 
1278 	/* frame with out of date sequence number */
1279 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1280 		dev_kfree_skb(skb);
1281 		goto out;
1282 	}
1283 
1284 	/*
1285 	 * If frame the sequence number exceeds our buffering window
1286 	 * size release some previous frames to make room for this one.
1287 	 */
1288 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1289 		head_seq_num = ieee80211_sn_inc(
1290 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1291 		/* release stored frames up to new head to stack */
1292 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1293 						 head_seq_num, frames);
1294 	}
1295 
1296 	/* Now the new frame is always in the range of the reordering buffer */
1297 
1298 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1299 
1300 	/* check if we already stored this frame */
1301 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1302 		dev_kfree_skb(skb);
1303 		goto out;
1304 	}
1305 
1306 	/*
1307 	 * If the current MPDU is in the right order and nothing else
1308 	 * is stored we can process it directly, no need to buffer it.
1309 	 * If it is first but there's something stored, we may be able
1310 	 * to release frames after this one.
1311 	 */
1312 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1313 	    tid_agg_rx->stored_mpdu_num == 0) {
1314 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1315 			tid_agg_rx->head_seq_num =
1316 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1317 		ret = false;
1318 		goto out;
1319 	}
1320 
1321 	/* put the frame in the reordering buffer */
1322 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1323 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1324 		tid_agg_rx->reorder_time[index] = jiffies;
1325 		tid_agg_rx->stored_mpdu_num++;
1326 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1327 	}
1328 
1329  out:
1330 	spin_unlock(&tid_agg_rx->reorder_lock);
1331 	return ret;
1332 }
1333 
1334 /*
1335  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1336  * true if the MPDU was buffered, false if it should be processed.
1337  */
1338 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1339 				       struct sk_buff_head *frames)
1340 {
1341 	struct sk_buff *skb = rx->skb;
1342 	struct ieee80211_local *local = rx->local;
1343 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1344 	struct sta_info *sta = rx->sta;
1345 	struct tid_ampdu_rx *tid_agg_rx;
1346 	u16 sc;
1347 	u8 tid, ack_policy;
1348 
1349 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1350 	    is_multicast_ether_addr(hdr->addr1))
1351 		goto dont_reorder;
1352 
1353 	/*
1354 	 * filter the QoS data rx stream according to
1355 	 * STA/TID and check if this STA/TID is on aggregation
1356 	 */
1357 
1358 	if (!sta)
1359 		goto dont_reorder;
1360 
1361 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1362 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1363 	tid = ieee80211_get_tid(hdr);
1364 
1365 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1366 	if (!tid_agg_rx) {
1367 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1368 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1369 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1370 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1371 					     WLAN_BACK_RECIPIENT,
1372 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1373 		goto dont_reorder;
1374 	}
1375 
1376 	/* qos null data frames are excluded */
1377 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1378 		goto dont_reorder;
1379 
1380 	/* not part of a BA session */
1381 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1382 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1383 		goto dont_reorder;
1384 
1385 	/* new, potentially un-ordered, ampdu frame - process it */
1386 
1387 	/* reset session timer */
1388 	if (tid_agg_rx->timeout)
1389 		tid_agg_rx->last_rx = jiffies;
1390 
1391 	/* if this mpdu is fragmented - terminate rx aggregation session */
1392 	sc = le16_to_cpu(hdr->seq_ctrl);
1393 	if (sc & IEEE80211_SCTL_FRAG) {
1394 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1395 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1396 		return;
1397 	}
1398 
1399 	/*
1400 	 * No locking needed -- we will only ever process one
1401 	 * RX packet at a time, and thus own tid_agg_rx. All
1402 	 * other code manipulating it needs to (and does) make
1403 	 * sure that we cannot get to it any more before doing
1404 	 * anything with it.
1405 	 */
1406 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1407 					     frames))
1408 		return;
1409 
1410  dont_reorder:
1411 	__skb_queue_tail(frames, skb);
1412 }
1413 
1414 static ieee80211_rx_result debug_noinline
1415 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1416 {
1417 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1418 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1419 
1420 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1421 		return RX_CONTINUE;
1422 
1423 	/*
1424 	 * Drop duplicate 802.11 retransmissions
1425 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1426 	 */
1427 
1428 	if (rx->skb->len < 24)
1429 		return RX_CONTINUE;
1430 
1431 	if (ieee80211_is_ctl(hdr->frame_control) ||
1432 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1433 	    is_multicast_ether_addr(hdr->addr1))
1434 		return RX_CONTINUE;
1435 
1436 	if (!rx->sta)
1437 		return RX_CONTINUE;
1438 
1439 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1440 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1441 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1442 		rx->sta->rx_stats.num_duplicates++;
1443 		return RX_DROP_UNUSABLE;
1444 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1445 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1446 	}
1447 
1448 	return RX_CONTINUE;
1449 }
1450 
1451 static ieee80211_rx_result debug_noinline
1452 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1453 {
1454 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1455 
1456 	/* Drop disallowed frame classes based on STA auth/assoc state;
1457 	 * IEEE 802.11, Chap 5.5.
1458 	 *
1459 	 * mac80211 filters only based on association state, i.e. it drops
1460 	 * Class 3 frames from not associated stations. hostapd sends
1461 	 * deauth/disassoc frames when needed. In addition, hostapd is
1462 	 * responsible for filtering on both auth and assoc states.
1463 	 */
1464 
1465 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1466 		return ieee80211_rx_mesh_check(rx);
1467 
1468 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1469 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1470 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1471 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1472 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1473 		/*
1474 		 * accept port control frames from the AP even when it's not
1475 		 * yet marked ASSOC to prevent a race where we don't set the
1476 		 * assoc bit quickly enough before it sends the first frame
1477 		 */
1478 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1479 		    ieee80211_is_data_present(hdr->frame_control)) {
1480 			unsigned int hdrlen;
1481 			__be16 ethertype;
1482 
1483 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1484 
1485 			if (rx->skb->len < hdrlen + 8)
1486 				return RX_DROP_MONITOR;
1487 
1488 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1489 			if (ethertype == rx->sdata->control_port_protocol)
1490 				return RX_CONTINUE;
1491 		}
1492 
1493 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1494 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1495 					       hdr->addr2,
1496 					       GFP_ATOMIC))
1497 			return RX_DROP_UNUSABLE;
1498 
1499 		return RX_DROP_MONITOR;
1500 	}
1501 
1502 	return RX_CONTINUE;
1503 }
1504 
1505 
1506 static ieee80211_rx_result debug_noinline
1507 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1508 {
1509 	struct ieee80211_local *local;
1510 	struct ieee80211_hdr *hdr;
1511 	struct sk_buff *skb;
1512 
1513 	local = rx->local;
1514 	skb = rx->skb;
1515 	hdr = (struct ieee80211_hdr *) skb->data;
1516 
1517 	if (!local->pspolling)
1518 		return RX_CONTINUE;
1519 
1520 	if (!ieee80211_has_fromds(hdr->frame_control))
1521 		/* this is not from AP */
1522 		return RX_CONTINUE;
1523 
1524 	if (!ieee80211_is_data(hdr->frame_control))
1525 		return RX_CONTINUE;
1526 
1527 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1528 		/* AP has no more frames buffered for us */
1529 		local->pspolling = false;
1530 		return RX_CONTINUE;
1531 	}
1532 
1533 	/* more data bit is set, let's request a new frame from the AP */
1534 	ieee80211_send_pspoll(local, rx->sdata);
1535 
1536 	return RX_CONTINUE;
1537 }
1538 
1539 static void sta_ps_start(struct sta_info *sta)
1540 {
1541 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1542 	struct ieee80211_local *local = sdata->local;
1543 	struct ps_data *ps;
1544 	int tid;
1545 
1546 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1547 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1548 		ps = &sdata->bss->ps;
1549 	else
1550 		return;
1551 
1552 	atomic_inc(&ps->num_sta_ps);
1553 	set_sta_flag(sta, WLAN_STA_PS_STA);
1554 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1555 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1556 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1557 	       sta->sta.addr, sta->sta.aid);
1558 
1559 	ieee80211_clear_fast_xmit(sta);
1560 
1561 	if (!sta->sta.txq[0])
1562 		return;
1563 
1564 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1565 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1566 		struct txq_info *txqi = to_txq_info(txq);
1567 
1568 		spin_lock(&local->active_txq_lock[txq->ac]);
1569 		if (!list_empty(&txqi->schedule_order))
1570 			list_del_init(&txqi->schedule_order);
1571 		spin_unlock(&local->active_txq_lock[txq->ac]);
1572 
1573 		if (txq_has_queue(txq))
1574 			set_bit(tid, &sta->txq_buffered_tids);
1575 		else
1576 			clear_bit(tid, &sta->txq_buffered_tids);
1577 	}
1578 }
1579 
1580 static void sta_ps_end(struct sta_info *sta)
1581 {
1582 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1583 	       sta->sta.addr, sta->sta.aid);
1584 
1585 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1586 		/*
1587 		 * Clear the flag only if the other one is still set
1588 		 * so that the TX path won't start TX'ing new frames
1589 		 * directly ... In the case that the driver flag isn't
1590 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1591 		 */
1592 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1593 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1594 		       sta->sta.addr, sta->sta.aid);
1595 		return;
1596 	}
1597 
1598 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1599 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1600 	ieee80211_sta_ps_deliver_wakeup(sta);
1601 }
1602 
1603 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1604 {
1605 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1606 	bool in_ps;
1607 
1608 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1609 
1610 	/* Don't let the same PS state be set twice */
1611 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1612 	if ((start && in_ps) || (!start && !in_ps))
1613 		return -EINVAL;
1614 
1615 	if (start)
1616 		sta_ps_start(sta);
1617 	else
1618 		sta_ps_end(sta);
1619 
1620 	return 0;
1621 }
1622 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1623 
1624 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1625 {
1626 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1627 
1628 	if (test_sta_flag(sta, WLAN_STA_SP))
1629 		return;
1630 
1631 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1632 		ieee80211_sta_ps_deliver_poll_response(sta);
1633 	else
1634 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1635 }
1636 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1637 
1638 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1639 {
1640 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1641 	int ac = ieee80211_ac_from_tid(tid);
1642 
1643 	/*
1644 	 * If this AC is not trigger-enabled do nothing unless the
1645 	 * driver is calling us after it already checked.
1646 	 *
1647 	 * NB: This could/should check a separate bitmap of trigger-
1648 	 * enabled queues, but for now we only implement uAPSD w/o
1649 	 * TSPEC changes to the ACs, so they're always the same.
1650 	 */
1651 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1652 	    tid != IEEE80211_NUM_TIDS)
1653 		return;
1654 
1655 	/* if we are in a service period, do nothing */
1656 	if (test_sta_flag(sta, WLAN_STA_SP))
1657 		return;
1658 
1659 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1660 		ieee80211_sta_ps_deliver_uapsd(sta);
1661 	else
1662 		set_sta_flag(sta, WLAN_STA_UAPSD);
1663 }
1664 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1665 
1666 static ieee80211_rx_result debug_noinline
1667 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1668 {
1669 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1670 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1671 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1672 
1673 	if (!rx->sta)
1674 		return RX_CONTINUE;
1675 
1676 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1677 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1678 		return RX_CONTINUE;
1679 
1680 	/*
1681 	 * The device handles station powersave, so don't do anything about
1682 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1683 	 * it to mac80211 since they're handled.)
1684 	 */
1685 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1686 		return RX_CONTINUE;
1687 
1688 	/*
1689 	 * Don't do anything if the station isn't already asleep. In
1690 	 * the uAPSD case, the station will probably be marked asleep,
1691 	 * in the PS-Poll case the station must be confused ...
1692 	 */
1693 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1694 		return RX_CONTINUE;
1695 
1696 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1697 		ieee80211_sta_pspoll(&rx->sta->sta);
1698 
1699 		/* Free PS Poll skb here instead of returning RX_DROP that would
1700 		 * count as an dropped frame. */
1701 		dev_kfree_skb(rx->skb);
1702 
1703 		return RX_QUEUED;
1704 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1705 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1706 		   ieee80211_has_pm(hdr->frame_control) &&
1707 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1708 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1709 		u8 tid = ieee80211_get_tid(hdr);
1710 
1711 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1712 	}
1713 
1714 	return RX_CONTINUE;
1715 }
1716 
1717 static ieee80211_rx_result debug_noinline
1718 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1719 {
1720 	struct sta_info *sta = rx->sta;
1721 	struct sk_buff *skb = rx->skb;
1722 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1723 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1724 	int i;
1725 
1726 	if (!sta)
1727 		return RX_CONTINUE;
1728 
1729 	/*
1730 	 * Update last_rx only for IBSS packets which are for the current
1731 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1732 	 * current IBSS network alive in cases where other STAs start
1733 	 * using different BSSID. This will also give the station another
1734 	 * chance to restart the authentication/authorization in case
1735 	 * something went wrong the first time.
1736 	 */
1737 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1738 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1739 						NL80211_IFTYPE_ADHOC);
1740 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1741 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1742 			sta->rx_stats.last_rx = jiffies;
1743 			if (ieee80211_is_data(hdr->frame_control) &&
1744 			    !is_multicast_ether_addr(hdr->addr1))
1745 				sta->rx_stats.last_rate =
1746 					sta_stats_encode_rate(status);
1747 		}
1748 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1749 		sta->rx_stats.last_rx = jiffies;
1750 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1751 		   !is_multicast_ether_addr(hdr->addr1)) {
1752 		/*
1753 		 * Mesh beacons will update last_rx when if they are found to
1754 		 * match the current local configuration when processed.
1755 		 */
1756 		sta->rx_stats.last_rx = jiffies;
1757 		if (ieee80211_is_data(hdr->frame_control))
1758 			sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1759 	}
1760 
1761 	sta->rx_stats.fragments++;
1762 
1763 	u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1764 	sta->rx_stats.bytes += rx->skb->len;
1765 	u64_stats_update_end(&rx->sta->rx_stats.syncp);
1766 
1767 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1768 		sta->rx_stats.last_signal = status->signal;
1769 		ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1770 	}
1771 
1772 	if (status->chains) {
1773 		sta->rx_stats.chains = status->chains;
1774 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1775 			int signal = status->chain_signal[i];
1776 
1777 			if (!(status->chains & BIT(i)))
1778 				continue;
1779 
1780 			sta->rx_stats.chain_signal_last[i] = signal;
1781 			ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1782 					-signal);
1783 		}
1784 	}
1785 
1786 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1787 		return RX_CONTINUE;
1788 
1789 	/*
1790 	 * Change STA power saving mode only at the end of a frame
1791 	 * exchange sequence, and only for a data or management
1792 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1793 	 */
1794 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1795 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1796 	    !is_multicast_ether_addr(hdr->addr1) &&
1797 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1798 	     ieee80211_is_data(hdr->frame_control)) &&
1799 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1800 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1801 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1802 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1803 			if (!ieee80211_has_pm(hdr->frame_control))
1804 				sta_ps_end(sta);
1805 		} else {
1806 			if (ieee80211_has_pm(hdr->frame_control))
1807 				sta_ps_start(sta);
1808 		}
1809 	}
1810 
1811 	/* mesh power save support */
1812 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1813 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1814 
1815 	/*
1816 	 * Drop (qos-)data::nullfunc frames silently, since they
1817 	 * are used only to control station power saving mode.
1818 	 */
1819 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1820 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1821 
1822 		/*
1823 		 * If we receive a 4-addr nullfunc frame from a STA
1824 		 * that was not moved to a 4-addr STA vlan yet send
1825 		 * the event to userspace and for older hostapd drop
1826 		 * the frame to the monitor interface.
1827 		 */
1828 		if (ieee80211_has_a4(hdr->frame_control) &&
1829 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1830 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1831 		      !rx->sdata->u.vlan.sta))) {
1832 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1833 				cfg80211_rx_unexpected_4addr_frame(
1834 					rx->sdata->dev, sta->sta.addr,
1835 					GFP_ATOMIC);
1836 			return RX_DROP_MONITOR;
1837 		}
1838 		/*
1839 		 * Update counter and free packet here to avoid
1840 		 * counting this as a dropped packed.
1841 		 */
1842 		sta->rx_stats.packets++;
1843 		dev_kfree_skb(rx->skb);
1844 		return RX_QUEUED;
1845 	}
1846 
1847 	return RX_CONTINUE;
1848 } /* ieee80211_rx_h_sta_process */
1849 
1850 static struct ieee80211_key *
1851 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1852 {
1853 	struct ieee80211_key *key = NULL;
1854 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1855 	int idx2;
1856 
1857 	/* Make sure key gets set if either BIGTK key index is set so that
1858 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1859 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1860 	 * index (i.e., a key that we do not have).
1861 	 */
1862 
1863 	if (idx < 0) {
1864 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1865 		idx2 = idx + 1;
1866 	} else {
1867 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1868 			idx2 = idx + 1;
1869 		else
1870 			idx2 = idx - 1;
1871 	}
1872 
1873 	if (rx->sta)
1874 		key = rcu_dereference(rx->sta->gtk[idx]);
1875 	if (!key)
1876 		key = rcu_dereference(sdata->keys[idx]);
1877 	if (!key && rx->sta)
1878 		key = rcu_dereference(rx->sta->gtk[idx2]);
1879 	if (!key)
1880 		key = rcu_dereference(sdata->keys[idx2]);
1881 
1882 	return key;
1883 }
1884 
1885 static ieee80211_rx_result debug_noinline
1886 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1887 {
1888 	struct sk_buff *skb = rx->skb;
1889 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1890 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1891 	int keyidx;
1892 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1893 	struct ieee80211_key *sta_ptk = NULL;
1894 	struct ieee80211_key *ptk_idx = NULL;
1895 	int mmie_keyidx = -1;
1896 	__le16 fc;
1897 	const struct ieee80211_cipher_scheme *cs = NULL;
1898 
1899 	if (ieee80211_is_ext(hdr->frame_control))
1900 		return RX_CONTINUE;
1901 
1902 	/*
1903 	 * Key selection 101
1904 	 *
1905 	 * There are five types of keys:
1906 	 *  - GTK (group keys)
1907 	 *  - IGTK (group keys for management frames)
1908 	 *  - BIGTK (group keys for Beacon frames)
1909 	 *  - PTK (pairwise keys)
1910 	 *  - STK (station-to-station pairwise keys)
1911 	 *
1912 	 * When selecting a key, we have to distinguish between multicast
1913 	 * (including broadcast) and unicast frames, the latter can only
1914 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1915 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1916 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1917 	 * don't have a PTK/STK we check the key index for a WEP key.
1918 	 *
1919 	 * Note that in a regular BSS, multicast frames are sent by the
1920 	 * AP only, associated stations unicast the frame to the AP first
1921 	 * which then multicasts it on their behalf.
1922 	 *
1923 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1924 	 * with each station, that is something we don't currently handle.
1925 	 * The spec seems to expect that one negotiates the same key with
1926 	 * every station but there's no such requirement; VLANs could be
1927 	 * possible.
1928 	 */
1929 
1930 	/* start without a key */
1931 	rx->key = NULL;
1932 	fc = hdr->frame_control;
1933 
1934 	if (rx->sta) {
1935 		int keyid = rx->sta->ptk_idx;
1936 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1937 
1938 		if (ieee80211_has_protected(fc)) {
1939 			cs = rx->sta->cipher_scheme;
1940 			keyid = ieee80211_get_keyid(rx->skb, cs);
1941 
1942 			if (unlikely(keyid < 0))
1943 				return RX_DROP_UNUSABLE;
1944 
1945 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1946 		}
1947 	}
1948 
1949 	if (!ieee80211_has_protected(fc))
1950 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1951 
1952 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1953 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1954 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1955 		    (status->flag & RX_FLAG_IV_STRIPPED))
1956 			return RX_CONTINUE;
1957 		/* Skip decryption if the frame is not protected. */
1958 		if (!ieee80211_has_protected(fc))
1959 			return RX_CONTINUE;
1960 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1961 		/* Broadcast/multicast robust management frame / BIP */
1962 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1963 		    (status->flag & RX_FLAG_IV_STRIPPED))
1964 			return RX_CONTINUE;
1965 
1966 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1967 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1968 		    NUM_DEFAULT_BEACON_KEYS) {
1969 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1970 						     skb->data,
1971 						     skb->len);
1972 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1973 		}
1974 
1975 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1976 		if (!rx->key)
1977 			return RX_CONTINUE; /* Beacon protection not in use */
1978 	} else if (mmie_keyidx >= 0) {
1979 		/* Broadcast/multicast robust management frame / BIP */
1980 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1981 		    (status->flag & RX_FLAG_IV_STRIPPED))
1982 			return RX_CONTINUE;
1983 
1984 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1985 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1986 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1987 		if (rx->sta) {
1988 			if (ieee80211_is_group_privacy_action(skb) &&
1989 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
1990 				return RX_DROP_MONITOR;
1991 
1992 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1993 		}
1994 		if (!rx->key)
1995 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1996 	} else if (!ieee80211_has_protected(fc)) {
1997 		/*
1998 		 * The frame was not protected, so skip decryption. However, we
1999 		 * need to set rx->key if there is a key that could have been
2000 		 * used so that the frame may be dropped if encryption would
2001 		 * have been expected.
2002 		 */
2003 		struct ieee80211_key *key = NULL;
2004 		struct ieee80211_sub_if_data *sdata = rx->sdata;
2005 		int i;
2006 
2007 		if (ieee80211_is_beacon(fc)) {
2008 			key = ieee80211_rx_get_bigtk(rx, -1);
2009 		} else if (ieee80211_is_mgmt(fc) &&
2010 			   is_multicast_ether_addr(hdr->addr1)) {
2011 			key = rcu_dereference(rx->sdata->default_mgmt_key);
2012 		} else {
2013 			if (rx->sta) {
2014 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2015 					key = rcu_dereference(rx->sta->gtk[i]);
2016 					if (key)
2017 						break;
2018 				}
2019 			}
2020 			if (!key) {
2021 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2022 					key = rcu_dereference(sdata->keys[i]);
2023 					if (key)
2024 						break;
2025 				}
2026 			}
2027 		}
2028 		if (key)
2029 			rx->key = key;
2030 		return RX_CONTINUE;
2031 	} else {
2032 		/*
2033 		 * The device doesn't give us the IV so we won't be
2034 		 * able to look up the key. That's ok though, we
2035 		 * don't need to decrypt the frame, we just won't
2036 		 * be able to keep statistics accurate.
2037 		 * Except for key threshold notifications, should
2038 		 * we somehow allow the driver to tell us which key
2039 		 * the hardware used if this flag is set?
2040 		 */
2041 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2042 		    (status->flag & RX_FLAG_IV_STRIPPED))
2043 			return RX_CONTINUE;
2044 
2045 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2046 
2047 		if (unlikely(keyidx < 0))
2048 			return RX_DROP_UNUSABLE;
2049 
2050 		/* check per-station GTK first, if multicast packet */
2051 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2052 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2053 
2054 		/* if not found, try default key */
2055 		if (!rx->key) {
2056 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2057 
2058 			/*
2059 			 * RSNA-protected unicast frames should always be
2060 			 * sent with pairwise or station-to-station keys,
2061 			 * but for WEP we allow using a key index as well.
2062 			 */
2063 			if (rx->key &&
2064 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2065 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2066 			    !is_multicast_ether_addr(hdr->addr1))
2067 				rx->key = NULL;
2068 		}
2069 	}
2070 
2071 	if (rx->key) {
2072 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2073 			return RX_DROP_MONITOR;
2074 
2075 		/* TODO: add threshold stuff again */
2076 	} else {
2077 		return RX_DROP_MONITOR;
2078 	}
2079 
2080 	switch (rx->key->conf.cipher) {
2081 	case WLAN_CIPHER_SUITE_WEP40:
2082 	case WLAN_CIPHER_SUITE_WEP104:
2083 		result = ieee80211_crypto_wep_decrypt(rx);
2084 		break;
2085 	case WLAN_CIPHER_SUITE_TKIP:
2086 		result = ieee80211_crypto_tkip_decrypt(rx);
2087 		break;
2088 	case WLAN_CIPHER_SUITE_CCMP:
2089 		result = ieee80211_crypto_ccmp_decrypt(
2090 			rx, IEEE80211_CCMP_MIC_LEN);
2091 		break;
2092 	case WLAN_CIPHER_SUITE_CCMP_256:
2093 		result = ieee80211_crypto_ccmp_decrypt(
2094 			rx, IEEE80211_CCMP_256_MIC_LEN);
2095 		break;
2096 	case WLAN_CIPHER_SUITE_AES_CMAC:
2097 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2098 		break;
2099 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2100 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2101 		break;
2102 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2103 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2104 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2105 		break;
2106 	case WLAN_CIPHER_SUITE_GCMP:
2107 	case WLAN_CIPHER_SUITE_GCMP_256:
2108 		result = ieee80211_crypto_gcmp_decrypt(rx);
2109 		break;
2110 	default:
2111 		result = ieee80211_crypto_hw_decrypt(rx);
2112 	}
2113 
2114 	/* the hdr variable is invalid after the decrypt handlers */
2115 
2116 	/* either the frame has been decrypted or will be dropped */
2117 	status->flag |= RX_FLAG_DECRYPTED;
2118 
2119 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2120 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2121 					     skb->data, skb->len);
2122 
2123 	return result;
2124 }
2125 
2126 static inline struct ieee80211_fragment_entry *
2127 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2128 			 unsigned int frag, unsigned int seq, int rx_queue,
2129 			 struct sk_buff **skb)
2130 {
2131 	struct ieee80211_fragment_entry *entry;
2132 
2133 	entry = &sdata->fragments[sdata->fragment_next++];
2134 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2135 		sdata->fragment_next = 0;
2136 
2137 	if (!skb_queue_empty(&entry->skb_list))
2138 		__skb_queue_purge(&entry->skb_list);
2139 
2140 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2141 	*skb = NULL;
2142 	entry->first_frag_time = jiffies;
2143 	entry->seq = seq;
2144 	entry->rx_queue = rx_queue;
2145 	entry->last_frag = frag;
2146 	entry->check_sequential_pn = false;
2147 	entry->extra_len = 0;
2148 
2149 	return entry;
2150 }
2151 
2152 static inline struct ieee80211_fragment_entry *
2153 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2154 			  unsigned int frag, unsigned int seq,
2155 			  int rx_queue, struct ieee80211_hdr *hdr)
2156 {
2157 	struct ieee80211_fragment_entry *entry;
2158 	int i, idx;
2159 
2160 	idx = sdata->fragment_next;
2161 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2162 		struct ieee80211_hdr *f_hdr;
2163 		struct sk_buff *f_skb;
2164 
2165 		idx--;
2166 		if (idx < 0)
2167 			idx = IEEE80211_FRAGMENT_MAX - 1;
2168 
2169 		entry = &sdata->fragments[idx];
2170 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2171 		    entry->rx_queue != rx_queue ||
2172 		    entry->last_frag + 1 != frag)
2173 			continue;
2174 
2175 		f_skb = __skb_peek(&entry->skb_list);
2176 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2177 
2178 		/*
2179 		 * Check ftype and addresses are equal, else check next fragment
2180 		 */
2181 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2182 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2183 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2184 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2185 			continue;
2186 
2187 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2188 			__skb_queue_purge(&entry->skb_list);
2189 			continue;
2190 		}
2191 		return entry;
2192 	}
2193 
2194 	return NULL;
2195 }
2196 
2197 static ieee80211_rx_result debug_noinline
2198 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2199 {
2200 	struct ieee80211_hdr *hdr;
2201 	u16 sc;
2202 	__le16 fc;
2203 	unsigned int frag, seq;
2204 	struct ieee80211_fragment_entry *entry;
2205 	struct sk_buff *skb;
2206 
2207 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2208 	fc = hdr->frame_control;
2209 
2210 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2211 		return RX_CONTINUE;
2212 
2213 	sc = le16_to_cpu(hdr->seq_ctrl);
2214 	frag = sc & IEEE80211_SCTL_FRAG;
2215 
2216 	if (is_multicast_ether_addr(hdr->addr1)) {
2217 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2218 		goto out_no_led;
2219 	}
2220 
2221 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2222 		goto out;
2223 
2224 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2225 
2226 	if (skb_linearize(rx->skb))
2227 		return RX_DROP_UNUSABLE;
2228 
2229 	/*
2230 	 *  skb_linearize() might change the skb->data and
2231 	 *  previously cached variables (in this case, hdr) need to
2232 	 *  be refreshed with the new data.
2233 	 */
2234 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2235 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2236 
2237 	if (frag == 0) {
2238 		/* This is the first fragment of a new frame. */
2239 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2240 						 rx->seqno_idx, &(rx->skb));
2241 		if (rx->key &&
2242 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2243 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2244 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2245 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2246 		    ieee80211_has_protected(fc)) {
2247 			int queue = rx->security_idx;
2248 
2249 			/* Store CCMP/GCMP PN so that we can verify that the
2250 			 * next fragment has a sequential PN value.
2251 			 */
2252 			entry->check_sequential_pn = true;
2253 			memcpy(entry->last_pn,
2254 			       rx->key->u.ccmp.rx_pn[queue],
2255 			       IEEE80211_CCMP_PN_LEN);
2256 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2257 					      u.ccmp.rx_pn) !=
2258 				     offsetof(struct ieee80211_key,
2259 					      u.gcmp.rx_pn));
2260 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2261 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2262 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2263 				     IEEE80211_GCMP_PN_LEN);
2264 		}
2265 		return RX_QUEUED;
2266 	}
2267 
2268 	/* This is a fragment for a frame that should already be pending in
2269 	 * fragment cache. Add this fragment to the end of the pending entry.
2270 	 */
2271 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2272 					  rx->seqno_idx, hdr);
2273 	if (!entry) {
2274 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2275 		return RX_DROP_MONITOR;
2276 	}
2277 
2278 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2279 	 *  MPDU PN values are not incrementing in steps of 1."
2280 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2281 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2282 	 */
2283 	if (entry->check_sequential_pn) {
2284 		int i;
2285 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2286 		int queue;
2287 
2288 		if (!rx->key ||
2289 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2290 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2291 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2292 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2293 			return RX_DROP_UNUSABLE;
2294 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2295 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2296 			pn[i]++;
2297 			if (pn[i])
2298 				break;
2299 		}
2300 		queue = rx->security_idx;
2301 		rpn = rx->key->u.ccmp.rx_pn[queue];
2302 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2303 			return RX_DROP_UNUSABLE;
2304 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2305 	}
2306 
2307 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2308 	__skb_queue_tail(&entry->skb_list, rx->skb);
2309 	entry->last_frag = frag;
2310 	entry->extra_len += rx->skb->len;
2311 	if (ieee80211_has_morefrags(fc)) {
2312 		rx->skb = NULL;
2313 		return RX_QUEUED;
2314 	}
2315 
2316 	rx->skb = __skb_dequeue(&entry->skb_list);
2317 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2318 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2319 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2320 					      GFP_ATOMIC))) {
2321 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2322 			__skb_queue_purge(&entry->skb_list);
2323 			return RX_DROP_UNUSABLE;
2324 		}
2325 	}
2326 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2327 		skb_put_data(rx->skb, skb->data, skb->len);
2328 		dev_kfree_skb(skb);
2329 	}
2330 
2331  out:
2332 	ieee80211_led_rx(rx->local);
2333  out_no_led:
2334 	if (rx->sta)
2335 		rx->sta->rx_stats.packets++;
2336 	return RX_CONTINUE;
2337 }
2338 
2339 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2340 {
2341 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2342 		return -EACCES;
2343 
2344 	return 0;
2345 }
2346 
2347 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2348 {
2349 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2350 	struct sk_buff *skb = rx->skb;
2351 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2352 
2353 	/*
2354 	 * Pass through unencrypted frames if the hardware has
2355 	 * decrypted them already.
2356 	 */
2357 	if (status->flag & RX_FLAG_DECRYPTED)
2358 		return 0;
2359 
2360 	/* check mesh EAPOL frames first */
2361 	if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2362 		     ieee80211_is_data(fc))) {
2363 		struct ieee80211s_hdr *mesh_hdr;
2364 		u16 hdr_len = ieee80211_hdrlen(fc);
2365 		u16 ethertype_offset;
2366 		__be16 ethertype;
2367 
2368 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2369 			goto drop_check;
2370 
2371 		/* make sure fixed part of mesh header is there, also checks skb len */
2372 		if (!pskb_may_pull(rx->skb, hdr_len + 6))
2373 			goto drop_check;
2374 
2375 		mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2376 		ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2377 				   sizeof(rfc1042_header);
2378 
2379 		if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2380 		    ethertype == rx->sdata->control_port_protocol)
2381 			return 0;
2382 	}
2383 
2384 drop_check:
2385 	/* Drop unencrypted frames if key is set. */
2386 	if (unlikely(!ieee80211_has_protected(fc) &&
2387 		     !ieee80211_is_any_nullfunc(fc) &&
2388 		     ieee80211_is_data(fc) && rx->key))
2389 		return -EACCES;
2390 
2391 	return 0;
2392 }
2393 
2394 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2395 {
2396 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2397 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2398 	__le16 fc = hdr->frame_control;
2399 
2400 	/*
2401 	 * Pass through unencrypted frames if the hardware has
2402 	 * decrypted them already.
2403 	 */
2404 	if (status->flag & RX_FLAG_DECRYPTED)
2405 		return 0;
2406 
2407 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2408 		if (unlikely(!ieee80211_has_protected(fc) &&
2409 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2410 			     rx->key)) {
2411 			if (ieee80211_is_deauth(fc) ||
2412 			    ieee80211_is_disassoc(fc))
2413 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2414 							     rx->skb->data,
2415 							     rx->skb->len);
2416 			return -EACCES;
2417 		}
2418 		/* BIP does not use Protected field, so need to check MMIE */
2419 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2420 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2421 			if (ieee80211_is_deauth(fc) ||
2422 			    ieee80211_is_disassoc(fc))
2423 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2424 							     rx->skb->data,
2425 							     rx->skb->len);
2426 			return -EACCES;
2427 		}
2428 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2429 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2430 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2431 						     rx->skb->data,
2432 						     rx->skb->len);
2433 			return -EACCES;
2434 		}
2435 		/*
2436 		 * When using MFP, Action frames are not allowed prior to
2437 		 * having configured keys.
2438 		 */
2439 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2440 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2441 			return -EACCES;
2442 	}
2443 
2444 	return 0;
2445 }
2446 
2447 static int
2448 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2449 {
2450 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2451 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2452 	bool check_port_control = false;
2453 	struct ethhdr *ehdr;
2454 	int ret;
2455 
2456 	*port_control = false;
2457 	if (ieee80211_has_a4(hdr->frame_control) &&
2458 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2459 		return -1;
2460 
2461 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2462 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2463 
2464 		if (!sdata->u.mgd.use_4addr)
2465 			return -1;
2466 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2467 			check_port_control = true;
2468 	}
2469 
2470 	if (is_multicast_ether_addr(hdr->addr1) &&
2471 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2472 		return -1;
2473 
2474 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2475 	if (ret < 0)
2476 		return ret;
2477 
2478 	ehdr = (struct ethhdr *) rx->skb->data;
2479 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2480 		*port_control = true;
2481 	else if (check_port_control)
2482 		return -1;
2483 
2484 	return 0;
2485 }
2486 
2487 /*
2488  * requires that rx->skb is a frame with ethernet header
2489  */
2490 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2491 {
2492 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2493 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2494 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2495 
2496 	/*
2497 	 * Allow EAPOL frames to us/the PAE group address regardless
2498 	 * of whether the frame was encrypted or not.
2499 	 */
2500 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2501 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2502 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2503 		return true;
2504 
2505 	if (ieee80211_802_1x_port_control(rx) ||
2506 	    ieee80211_drop_unencrypted(rx, fc))
2507 		return false;
2508 
2509 	return true;
2510 }
2511 
2512 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2513 						 struct ieee80211_rx_data *rx)
2514 {
2515 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2516 	struct net_device *dev = sdata->dev;
2517 
2518 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2519 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2520 		      !sdata->control_port_no_preauth)) &&
2521 		     sdata->control_port_over_nl80211)) {
2522 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2523 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2524 
2525 		cfg80211_rx_control_port(dev, skb, noencrypt);
2526 		dev_kfree_skb(skb);
2527 	} else {
2528 		memset(skb->cb, 0, sizeof(skb->cb));
2529 
2530 		/* deliver to local stack */
2531 		if (rx->list)
2532 			list_add_tail(&skb->list, rx->list);
2533 		else
2534 			netif_receive_skb(skb);
2535 	}
2536 }
2537 
2538 /*
2539  * requires that rx->skb is a frame with ethernet header
2540  */
2541 static void
2542 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2543 {
2544 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2545 	struct net_device *dev = sdata->dev;
2546 	struct sk_buff *skb, *xmit_skb;
2547 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2548 	struct sta_info *dsta;
2549 
2550 	skb = rx->skb;
2551 	xmit_skb = NULL;
2552 
2553 	dev_sw_netstats_rx_add(dev, skb->len);
2554 
2555 	if (rx->sta) {
2556 		/* The seqno index has the same property as needed
2557 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2558 		 * for non-QoS-data frames. Here we know it's a data
2559 		 * frame, so count MSDUs.
2560 		 */
2561 		u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2562 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2563 		u64_stats_update_end(&rx->sta->rx_stats.syncp);
2564 	}
2565 
2566 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2567 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2568 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2569 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2570 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2571 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2572 			/*
2573 			 * send multicast frames both to higher layers in
2574 			 * local net stack and back to the wireless medium
2575 			 */
2576 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2577 			if (!xmit_skb)
2578 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2579 						    dev->name);
2580 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2581 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2582 			dsta = sta_info_get(sdata, ehdr->h_dest);
2583 			if (dsta) {
2584 				/*
2585 				 * The destination station is associated to
2586 				 * this AP (in this VLAN), so send the frame
2587 				 * directly to it and do not pass it to local
2588 				 * net stack.
2589 				 */
2590 				xmit_skb = skb;
2591 				skb = NULL;
2592 			}
2593 		}
2594 	}
2595 
2596 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2597 	if (skb) {
2598 		/* 'align' will only take the values 0 or 2 here since all
2599 		 * frames are required to be aligned to 2-byte boundaries
2600 		 * when being passed to mac80211; the code here works just
2601 		 * as well if that isn't true, but mac80211 assumes it can
2602 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2603 		 */
2604 		int align;
2605 
2606 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2607 		if (align) {
2608 			if (WARN_ON(skb_headroom(skb) < 3)) {
2609 				dev_kfree_skb(skb);
2610 				skb = NULL;
2611 			} else {
2612 				u8 *data = skb->data;
2613 				size_t len = skb_headlen(skb);
2614 				skb->data -= align;
2615 				memmove(skb->data, data, len);
2616 				skb_set_tail_pointer(skb, len);
2617 			}
2618 		}
2619 	}
2620 #endif
2621 
2622 	if (skb) {
2623 		skb->protocol = eth_type_trans(skb, dev);
2624 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2625 	}
2626 
2627 	if (xmit_skb) {
2628 		/*
2629 		 * Send to wireless media and increase priority by 256 to
2630 		 * keep the received priority instead of reclassifying
2631 		 * the frame (see cfg80211_classify8021d).
2632 		 */
2633 		xmit_skb->priority += 256;
2634 		xmit_skb->protocol = htons(ETH_P_802_3);
2635 		skb_reset_network_header(xmit_skb);
2636 		skb_reset_mac_header(xmit_skb);
2637 		dev_queue_xmit(xmit_skb);
2638 	}
2639 }
2640 
2641 static ieee80211_rx_result debug_noinline
2642 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2643 {
2644 	struct net_device *dev = rx->sdata->dev;
2645 	struct sk_buff *skb = rx->skb;
2646 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2647 	__le16 fc = hdr->frame_control;
2648 	struct sk_buff_head frame_list;
2649 	struct ethhdr ethhdr;
2650 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2651 
2652 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2653 		check_da = NULL;
2654 		check_sa = NULL;
2655 	} else switch (rx->sdata->vif.type) {
2656 		case NL80211_IFTYPE_AP:
2657 		case NL80211_IFTYPE_AP_VLAN:
2658 			check_da = NULL;
2659 			break;
2660 		case NL80211_IFTYPE_STATION:
2661 			if (!rx->sta ||
2662 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2663 				check_sa = NULL;
2664 			break;
2665 		case NL80211_IFTYPE_MESH_POINT:
2666 			check_sa = NULL;
2667 			break;
2668 		default:
2669 			break;
2670 	}
2671 
2672 	skb->dev = dev;
2673 	__skb_queue_head_init(&frame_list);
2674 
2675 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2676 					  rx->sdata->vif.addr,
2677 					  rx->sdata->vif.type,
2678 					  data_offset))
2679 		return RX_DROP_UNUSABLE;
2680 
2681 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2682 				 rx->sdata->vif.type,
2683 				 rx->local->hw.extra_tx_headroom,
2684 				 check_da, check_sa);
2685 
2686 	while (!skb_queue_empty(&frame_list)) {
2687 		rx->skb = __skb_dequeue(&frame_list);
2688 
2689 		if (!ieee80211_frame_allowed(rx, fc)) {
2690 			dev_kfree_skb(rx->skb);
2691 			continue;
2692 		}
2693 
2694 		ieee80211_deliver_skb(rx);
2695 	}
2696 
2697 	return RX_QUEUED;
2698 }
2699 
2700 static ieee80211_rx_result debug_noinline
2701 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2702 {
2703 	struct sk_buff *skb = rx->skb;
2704 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2705 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2706 	__le16 fc = hdr->frame_control;
2707 
2708 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2709 		return RX_CONTINUE;
2710 
2711 	if (unlikely(!ieee80211_is_data(fc)))
2712 		return RX_CONTINUE;
2713 
2714 	if (unlikely(!ieee80211_is_data_present(fc)))
2715 		return RX_DROP_MONITOR;
2716 
2717 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2718 		switch (rx->sdata->vif.type) {
2719 		case NL80211_IFTYPE_AP_VLAN:
2720 			if (!rx->sdata->u.vlan.sta)
2721 				return RX_DROP_UNUSABLE;
2722 			break;
2723 		case NL80211_IFTYPE_STATION:
2724 			if (!rx->sdata->u.mgd.use_4addr)
2725 				return RX_DROP_UNUSABLE;
2726 			break;
2727 		default:
2728 			return RX_DROP_UNUSABLE;
2729 		}
2730 	}
2731 
2732 	if (is_multicast_ether_addr(hdr->addr1))
2733 		return RX_DROP_UNUSABLE;
2734 
2735 	return __ieee80211_rx_h_amsdu(rx, 0);
2736 }
2737 
2738 #ifdef CONFIG_MAC80211_MESH
2739 static ieee80211_rx_result
2740 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2741 {
2742 	struct ieee80211_hdr *fwd_hdr, *hdr;
2743 	struct ieee80211_tx_info *info;
2744 	struct ieee80211s_hdr *mesh_hdr;
2745 	struct sk_buff *skb = rx->skb, *fwd_skb;
2746 	struct ieee80211_local *local = rx->local;
2747 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2748 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2749 	u16 ac, q, hdrlen;
2750 	int tailroom = 0;
2751 
2752 	hdr = (struct ieee80211_hdr *) skb->data;
2753 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2754 
2755 	/* make sure fixed part of mesh header is there, also checks skb len */
2756 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2757 		return RX_DROP_MONITOR;
2758 
2759 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2760 
2761 	/* make sure full mesh header is there, also checks skb len */
2762 	if (!pskb_may_pull(rx->skb,
2763 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2764 		return RX_DROP_MONITOR;
2765 
2766 	/* reload pointers */
2767 	hdr = (struct ieee80211_hdr *) skb->data;
2768 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2769 
2770 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2771 		return RX_DROP_MONITOR;
2772 
2773 	/* frame is in RMC, don't forward */
2774 	if (ieee80211_is_data(hdr->frame_control) &&
2775 	    is_multicast_ether_addr(hdr->addr1) &&
2776 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2777 		return RX_DROP_MONITOR;
2778 
2779 	if (!ieee80211_is_data(hdr->frame_control))
2780 		return RX_CONTINUE;
2781 
2782 	if (!mesh_hdr->ttl)
2783 		return RX_DROP_MONITOR;
2784 
2785 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2786 		struct mesh_path *mppath;
2787 		char *proxied_addr;
2788 		char *mpp_addr;
2789 
2790 		if (is_multicast_ether_addr(hdr->addr1)) {
2791 			mpp_addr = hdr->addr3;
2792 			proxied_addr = mesh_hdr->eaddr1;
2793 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2794 			    MESH_FLAGS_AE_A5_A6) {
2795 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2796 			mpp_addr = hdr->addr4;
2797 			proxied_addr = mesh_hdr->eaddr2;
2798 		} else {
2799 			return RX_DROP_MONITOR;
2800 		}
2801 
2802 		rcu_read_lock();
2803 		mppath = mpp_path_lookup(sdata, proxied_addr);
2804 		if (!mppath) {
2805 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2806 		} else {
2807 			spin_lock_bh(&mppath->state_lock);
2808 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2809 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2810 			mppath->exp_time = jiffies;
2811 			spin_unlock_bh(&mppath->state_lock);
2812 		}
2813 		rcu_read_unlock();
2814 	}
2815 
2816 	/* Frame has reached destination.  Don't forward */
2817 	if (!is_multicast_ether_addr(hdr->addr1) &&
2818 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2819 		return RX_CONTINUE;
2820 
2821 	ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2822 	q = sdata->vif.hw_queue[ac];
2823 	if (ieee80211_queue_stopped(&local->hw, q)) {
2824 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2825 		return RX_DROP_MONITOR;
2826 	}
2827 	skb_set_queue_mapping(skb, q);
2828 
2829 	if (!--mesh_hdr->ttl) {
2830 		if (!is_multicast_ether_addr(hdr->addr1))
2831 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2832 						     dropped_frames_ttl);
2833 		goto out;
2834 	}
2835 
2836 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2837 		goto out;
2838 
2839 	if (sdata->crypto_tx_tailroom_needed_cnt)
2840 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2841 
2842 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2843 				       sdata->encrypt_headroom,
2844 				  tailroom, GFP_ATOMIC);
2845 	if (!fwd_skb)
2846 		goto out;
2847 
2848 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2849 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2850 	info = IEEE80211_SKB_CB(fwd_skb);
2851 	memset(info, 0, sizeof(*info));
2852 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2853 	info->control.vif = &rx->sdata->vif;
2854 	info->control.jiffies = jiffies;
2855 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2856 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2857 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2858 		/* update power mode indication when forwarding */
2859 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2860 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2861 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2862 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2863 	} else {
2864 		/* unable to resolve next hop */
2865 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2866 				   fwd_hdr->addr3, 0,
2867 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2868 				   fwd_hdr->addr2);
2869 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2870 		kfree_skb(fwd_skb);
2871 		return RX_DROP_MONITOR;
2872 	}
2873 
2874 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2875 	ieee80211_add_pending_skb(local, fwd_skb);
2876  out:
2877 	if (is_multicast_ether_addr(hdr->addr1))
2878 		return RX_CONTINUE;
2879 	return RX_DROP_MONITOR;
2880 }
2881 #endif
2882 
2883 static ieee80211_rx_result debug_noinline
2884 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2885 {
2886 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2887 	struct ieee80211_local *local = rx->local;
2888 	struct net_device *dev = sdata->dev;
2889 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2890 	__le16 fc = hdr->frame_control;
2891 	bool port_control;
2892 	int err;
2893 
2894 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2895 		return RX_CONTINUE;
2896 
2897 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2898 		return RX_DROP_MONITOR;
2899 
2900 	/*
2901 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2902 	 * also drop the frame to cooked monitor interfaces.
2903 	 */
2904 	if (ieee80211_has_a4(hdr->frame_control) &&
2905 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2906 		if (rx->sta &&
2907 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2908 			cfg80211_rx_unexpected_4addr_frame(
2909 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2910 		return RX_DROP_MONITOR;
2911 	}
2912 
2913 	err = __ieee80211_data_to_8023(rx, &port_control);
2914 	if (unlikely(err))
2915 		return RX_DROP_UNUSABLE;
2916 
2917 	if (!ieee80211_frame_allowed(rx, fc))
2918 		return RX_DROP_MONITOR;
2919 
2920 	/* directly handle TDLS channel switch requests/responses */
2921 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2922 						cpu_to_be16(ETH_P_TDLS))) {
2923 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2924 
2925 		if (pskb_may_pull(rx->skb,
2926 				  offsetof(struct ieee80211_tdls_data, u)) &&
2927 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2928 		    tf->category == WLAN_CATEGORY_TDLS &&
2929 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2930 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2931 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2932 			schedule_work(&local->tdls_chsw_work);
2933 			if (rx->sta)
2934 				rx->sta->rx_stats.packets++;
2935 
2936 			return RX_QUEUED;
2937 		}
2938 	}
2939 
2940 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2941 	    unlikely(port_control) && sdata->bss) {
2942 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2943 				     u.ap);
2944 		dev = sdata->dev;
2945 		rx->sdata = sdata;
2946 	}
2947 
2948 	rx->skb->dev = dev;
2949 
2950 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2951 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2952 	    !is_multicast_ether_addr(
2953 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2954 	    (!local->scanning &&
2955 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2956 		mod_timer(&local->dynamic_ps_timer, jiffies +
2957 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2958 
2959 	ieee80211_deliver_skb(rx);
2960 
2961 	return RX_QUEUED;
2962 }
2963 
2964 static ieee80211_rx_result debug_noinline
2965 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2966 {
2967 	struct sk_buff *skb = rx->skb;
2968 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2969 	struct tid_ampdu_rx *tid_agg_rx;
2970 	u16 start_seq_num;
2971 	u16 tid;
2972 
2973 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2974 		return RX_CONTINUE;
2975 
2976 	if (ieee80211_is_back_req(bar->frame_control)) {
2977 		struct {
2978 			__le16 control, start_seq_num;
2979 		} __packed bar_data;
2980 		struct ieee80211_event event = {
2981 			.type = BAR_RX_EVENT,
2982 		};
2983 
2984 		if (!rx->sta)
2985 			return RX_DROP_MONITOR;
2986 
2987 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2988 				  &bar_data, sizeof(bar_data)))
2989 			return RX_DROP_MONITOR;
2990 
2991 		tid = le16_to_cpu(bar_data.control) >> 12;
2992 
2993 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2994 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2995 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2996 					     WLAN_BACK_RECIPIENT,
2997 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
2998 
2999 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3000 		if (!tid_agg_rx)
3001 			return RX_DROP_MONITOR;
3002 
3003 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3004 		event.u.ba.tid = tid;
3005 		event.u.ba.ssn = start_seq_num;
3006 		event.u.ba.sta = &rx->sta->sta;
3007 
3008 		/* reset session timer */
3009 		if (tid_agg_rx->timeout)
3010 			mod_timer(&tid_agg_rx->session_timer,
3011 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3012 
3013 		spin_lock(&tid_agg_rx->reorder_lock);
3014 		/* release stored frames up to start of BAR */
3015 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3016 						 start_seq_num, frames);
3017 		spin_unlock(&tid_agg_rx->reorder_lock);
3018 
3019 		drv_event_callback(rx->local, rx->sdata, &event);
3020 
3021 		kfree_skb(skb);
3022 		return RX_QUEUED;
3023 	}
3024 
3025 	/*
3026 	 * After this point, we only want management frames,
3027 	 * so we can drop all remaining control frames to
3028 	 * cooked monitor interfaces.
3029 	 */
3030 	return RX_DROP_MONITOR;
3031 }
3032 
3033 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3034 					   struct ieee80211_mgmt *mgmt,
3035 					   size_t len)
3036 {
3037 	struct ieee80211_local *local = sdata->local;
3038 	struct sk_buff *skb;
3039 	struct ieee80211_mgmt *resp;
3040 
3041 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3042 		/* Not to own unicast address */
3043 		return;
3044 	}
3045 
3046 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3047 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3048 		/* Not from the current AP or not associated yet. */
3049 		return;
3050 	}
3051 
3052 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3053 		/* Too short SA Query request frame */
3054 		return;
3055 	}
3056 
3057 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3058 	if (skb == NULL)
3059 		return;
3060 
3061 	skb_reserve(skb, local->hw.extra_tx_headroom);
3062 	resp = skb_put_zero(skb, 24);
3063 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3064 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3065 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3066 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3067 					  IEEE80211_STYPE_ACTION);
3068 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3069 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3070 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3071 	memcpy(resp->u.action.u.sa_query.trans_id,
3072 	       mgmt->u.action.u.sa_query.trans_id,
3073 	       WLAN_SA_QUERY_TR_ID_LEN);
3074 
3075 	ieee80211_tx_skb(sdata, skb);
3076 }
3077 
3078 static ieee80211_rx_result debug_noinline
3079 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3080 {
3081 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3082 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3083 
3084 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3085 		return RX_CONTINUE;
3086 
3087 	/*
3088 	 * From here on, look only at management frames.
3089 	 * Data and control frames are already handled,
3090 	 * and unknown (reserved) frames are useless.
3091 	 */
3092 	if (rx->skb->len < 24)
3093 		return RX_DROP_MONITOR;
3094 
3095 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3096 		return RX_DROP_MONITOR;
3097 
3098 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3099 	    ieee80211_is_beacon(mgmt->frame_control) &&
3100 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3101 		int sig = 0;
3102 
3103 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3104 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3105 			sig = status->signal;
3106 
3107 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3108 						rx->skb->data, rx->skb->len,
3109 						ieee80211_rx_status_to_khz(status),
3110 						sig);
3111 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3112 	}
3113 
3114 	if (ieee80211_drop_unencrypted_mgmt(rx))
3115 		return RX_DROP_UNUSABLE;
3116 
3117 	return RX_CONTINUE;
3118 }
3119 
3120 static ieee80211_rx_result debug_noinline
3121 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3122 {
3123 	struct ieee80211_local *local = rx->local;
3124 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3125 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3126 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3127 	int len = rx->skb->len;
3128 
3129 	if (!ieee80211_is_action(mgmt->frame_control))
3130 		return RX_CONTINUE;
3131 
3132 	/* drop too small frames */
3133 	if (len < IEEE80211_MIN_ACTION_SIZE)
3134 		return RX_DROP_UNUSABLE;
3135 
3136 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3137 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3138 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3139 		return RX_DROP_UNUSABLE;
3140 
3141 	switch (mgmt->u.action.category) {
3142 	case WLAN_CATEGORY_HT:
3143 		/* reject HT action frames from stations not supporting HT */
3144 		if (!rx->sta->sta.ht_cap.ht_supported)
3145 			goto invalid;
3146 
3147 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3148 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3149 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3150 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3151 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3152 			break;
3153 
3154 		/* verify action & smps_control/chanwidth are present */
3155 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3156 			goto invalid;
3157 
3158 		switch (mgmt->u.action.u.ht_smps.action) {
3159 		case WLAN_HT_ACTION_SMPS: {
3160 			struct ieee80211_supported_band *sband;
3161 			enum ieee80211_smps_mode smps_mode;
3162 			struct sta_opmode_info sta_opmode = {};
3163 
3164 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3165 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3166 				goto handled;
3167 
3168 			/* convert to HT capability */
3169 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3170 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3171 				smps_mode = IEEE80211_SMPS_OFF;
3172 				break;
3173 			case WLAN_HT_SMPS_CONTROL_STATIC:
3174 				smps_mode = IEEE80211_SMPS_STATIC;
3175 				break;
3176 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3177 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3178 				break;
3179 			default:
3180 				goto invalid;
3181 			}
3182 
3183 			/* if no change do nothing */
3184 			if (rx->sta->sta.smps_mode == smps_mode)
3185 				goto handled;
3186 			rx->sta->sta.smps_mode = smps_mode;
3187 			sta_opmode.smps_mode =
3188 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3189 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3190 
3191 			sband = rx->local->hw.wiphy->bands[status->band];
3192 
3193 			rate_control_rate_update(local, sband, rx->sta,
3194 						 IEEE80211_RC_SMPS_CHANGED);
3195 			cfg80211_sta_opmode_change_notify(sdata->dev,
3196 							  rx->sta->addr,
3197 							  &sta_opmode,
3198 							  GFP_ATOMIC);
3199 			goto handled;
3200 		}
3201 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3202 			struct ieee80211_supported_band *sband;
3203 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3204 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3205 			struct sta_opmode_info sta_opmode = {};
3206 
3207 			/* If it doesn't support 40 MHz it can't change ... */
3208 			if (!(rx->sta->sta.ht_cap.cap &
3209 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3210 				goto handled;
3211 
3212 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3213 				max_bw = IEEE80211_STA_RX_BW_20;
3214 			else
3215 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3216 
3217 			/* set cur_max_bandwidth and recalc sta bw */
3218 			rx->sta->cur_max_bandwidth = max_bw;
3219 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3220 
3221 			if (rx->sta->sta.bandwidth == new_bw)
3222 				goto handled;
3223 
3224 			rx->sta->sta.bandwidth = new_bw;
3225 			sband = rx->local->hw.wiphy->bands[status->band];
3226 			sta_opmode.bw =
3227 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3228 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3229 
3230 			rate_control_rate_update(local, sband, rx->sta,
3231 						 IEEE80211_RC_BW_CHANGED);
3232 			cfg80211_sta_opmode_change_notify(sdata->dev,
3233 							  rx->sta->addr,
3234 							  &sta_opmode,
3235 							  GFP_ATOMIC);
3236 			goto handled;
3237 		}
3238 		default:
3239 			goto invalid;
3240 		}
3241 
3242 		break;
3243 	case WLAN_CATEGORY_PUBLIC:
3244 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3245 			goto invalid;
3246 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3247 			break;
3248 		if (!rx->sta)
3249 			break;
3250 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3251 			break;
3252 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3253 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3254 			break;
3255 		if (len < offsetof(struct ieee80211_mgmt,
3256 				   u.action.u.ext_chan_switch.variable))
3257 			goto invalid;
3258 		goto queue;
3259 	case WLAN_CATEGORY_VHT:
3260 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3261 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3262 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3263 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3264 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3265 			break;
3266 
3267 		/* verify action code is present */
3268 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3269 			goto invalid;
3270 
3271 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3272 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3273 			/* verify opmode is present */
3274 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3275 				goto invalid;
3276 			goto queue;
3277 		}
3278 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3279 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3280 				goto invalid;
3281 			goto queue;
3282 		}
3283 		default:
3284 			break;
3285 		}
3286 		break;
3287 	case WLAN_CATEGORY_BACK:
3288 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3289 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3290 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3291 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3292 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3293 			break;
3294 
3295 		/* verify action_code is present */
3296 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3297 			break;
3298 
3299 		switch (mgmt->u.action.u.addba_req.action_code) {
3300 		case WLAN_ACTION_ADDBA_REQ:
3301 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3302 				   sizeof(mgmt->u.action.u.addba_req)))
3303 				goto invalid;
3304 			break;
3305 		case WLAN_ACTION_ADDBA_RESP:
3306 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3307 				   sizeof(mgmt->u.action.u.addba_resp)))
3308 				goto invalid;
3309 			break;
3310 		case WLAN_ACTION_DELBA:
3311 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3312 				   sizeof(mgmt->u.action.u.delba)))
3313 				goto invalid;
3314 			break;
3315 		default:
3316 			goto invalid;
3317 		}
3318 
3319 		goto queue;
3320 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3321 		/* verify action_code is present */
3322 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3323 			break;
3324 
3325 		switch (mgmt->u.action.u.measurement.action_code) {
3326 		case WLAN_ACTION_SPCT_MSR_REQ:
3327 			if (status->band != NL80211_BAND_5GHZ)
3328 				break;
3329 
3330 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3331 				   sizeof(mgmt->u.action.u.measurement)))
3332 				break;
3333 
3334 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3335 				break;
3336 
3337 			ieee80211_process_measurement_req(sdata, mgmt, len);
3338 			goto handled;
3339 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3340 			u8 *bssid;
3341 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3342 				   sizeof(mgmt->u.action.u.chan_switch)))
3343 				break;
3344 
3345 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3346 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3347 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3348 				break;
3349 
3350 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3351 				bssid = sdata->u.mgd.bssid;
3352 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3353 				bssid = sdata->u.ibss.bssid;
3354 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3355 				bssid = mgmt->sa;
3356 			else
3357 				break;
3358 
3359 			if (!ether_addr_equal(mgmt->bssid, bssid))
3360 				break;
3361 
3362 			goto queue;
3363 			}
3364 		}
3365 		break;
3366 	case WLAN_CATEGORY_SELF_PROTECTED:
3367 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3368 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3369 			break;
3370 
3371 		switch (mgmt->u.action.u.self_prot.action_code) {
3372 		case WLAN_SP_MESH_PEERING_OPEN:
3373 		case WLAN_SP_MESH_PEERING_CLOSE:
3374 		case WLAN_SP_MESH_PEERING_CONFIRM:
3375 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3376 				goto invalid;
3377 			if (sdata->u.mesh.user_mpm)
3378 				/* userspace handles this frame */
3379 				break;
3380 			goto queue;
3381 		case WLAN_SP_MGK_INFORM:
3382 		case WLAN_SP_MGK_ACK:
3383 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3384 				goto invalid;
3385 			break;
3386 		}
3387 		break;
3388 	case WLAN_CATEGORY_MESH_ACTION:
3389 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3390 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3391 			break;
3392 
3393 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3394 			break;
3395 		if (mesh_action_is_path_sel(mgmt) &&
3396 		    !mesh_path_sel_is_hwmp(sdata))
3397 			break;
3398 		goto queue;
3399 	}
3400 
3401 	return RX_CONTINUE;
3402 
3403  invalid:
3404 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3405 	/* will return in the next handlers */
3406 	return RX_CONTINUE;
3407 
3408  handled:
3409 	if (rx->sta)
3410 		rx->sta->rx_stats.packets++;
3411 	dev_kfree_skb(rx->skb);
3412 	return RX_QUEUED;
3413 
3414  queue:
3415 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3416 	ieee80211_queue_work(&local->hw, &sdata->work);
3417 	if (rx->sta)
3418 		rx->sta->rx_stats.packets++;
3419 	return RX_QUEUED;
3420 }
3421 
3422 static ieee80211_rx_result debug_noinline
3423 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3424 {
3425 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3426 	int sig = 0;
3427 
3428 	/* skip known-bad action frames and return them in the next handler */
3429 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3430 		return RX_CONTINUE;
3431 
3432 	/*
3433 	 * Getting here means the kernel doesn't know how to handle
3434 	 * it, but maybe userspace does ... include returned frames
3435 	 * so userspace can register for those to know whether ones
3436 	 * it transmitted were processed or returned.
3437 	 */
3438 
3439 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3440 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3441 		sig = status->signal;
3442 
3443 	if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3444 				 ieee80211_rx_status_to_khz(status), sig,
3445 				 rx->skb->data, rx->skb->len, 0)) {
3446 		if (rx->sta)
3447 			rx->sta->rx_stats.packets++;
3448 		dev_kfree_skb(rx->skb);
3449 		return RX_QUEUED;
3450 	}
3451 
3452 	return RX_CONTINUE;
3453 }
3454 
3455 static ieee80211_rx_result debug_noinline
3456 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3457 {
3458 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3459 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3460 	int len = rx->skb->len;
3461 
3462 	if (!ieee80211_is_action(mgmt->frame_control))
3463 		return RX_CONTINUE;
3464 
3465 	switch (mgmt->u.action.category) {
3466 	case WLAN_CATEGORY_SA_QUERY:
3467 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3468 			   sizeof(mgmt->u.action.u.sa_query)))
3469 			break;
3470 
3471 		switch (mgmt->u.action.u.sa_query.action) {
3472 		case WLAN_ACTION_SA_QUERY_REQUEST:
3473 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3474 				break;
3475 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3476 			goto handled;
3477 		}
3478 		break;
3479 	}
3480 
3481 	return RX_CONTINUE;
3482 
3483  handled:
3484 	if (rx->sta)
3485 		rx->sta->rx_stats.packets++;
3486 	dev_kfree_skb(rx->skb);
3487 	return RX_QUEUED;
3488 }
3489 
3490 static ieee80211_rx_result debug_noinline
3491 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3492 {
3493 	struct ieee80211_local *local = rx->local;
3494 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3495 	struct sk_buff *nskb;
3496 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3497 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3498 
3499 	if (!ieee80211_is_action(mgmt->frame_control))
3500 		return RX_CONTINUE;
3501 
3502 	/*
3503 	 * For AP mode, hostapd is responsible for handling any action
3504 	 * frames that we didn't handle, including returning unknown
3505 	 * ones. For all other modes we will return them to the sender,
3506 	 * setting the 0x80 bit in the action category, as required by
3507 	 * 802.11-2012 9.24.4.
3508 	 * Newer versions of hostapd shall also use the management frame
3509 	 * registration mechanisms, but older ones still use cooked
3510 	 * monitor interfaces so push all frames there.
3511 	 */
3512 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3513 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3514 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3515 		return RX_DROP_MONITOR;
3516 
3517 	if (is_multicast_ether_addr(mgmt->da))
3518 		return RX_DROP_MONITOR;
3519 
3520 	/* do not return rejected action frames */
3521 	if (mgmt->u.action.category & 0x80)
3522 		return RX_DROP_UNUSABLE;
3523 
3524 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3525 			       GFP_ATOMIC);
3526 	if (nskb) {
3527 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3528 
3529 		nmgmt->u.action.category |= 0x80;
3530 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3531 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3532 
3533 		memset(nskb->cb, 0, sizeof(nskb->cb));
3534 
3535 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3536 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3537 
3538 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3539 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3540 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3541 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3542 				info->hw_queue =
3543 					local->hw.offchannel_tx_hw_queue;
3544 		}
3545 
3546 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3547 					    status->band);
3548 	}
3549 	dev_kfree_skb(rx->skb);
3550 	return RX_QUEUED;
3551 }
3552 
3553 static ieee80211_rx_result debug_noinline
3554 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3555 {
3556 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3557 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3558 
3559 	if (!ieee80211_is_ext(hdr->frame_control))
3560 		return RX_CONTINUE;
3561 
3562 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3563 		return RX_DROP_MONITOR;
3564 
3565 	/* for now only beacons are ext, so queue them */
3566 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3567 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3568 	if (rx->sta)
3569 		rx->sta->rx_stats.packets++;
3570 
3571 	return RX_QUEUED;
3572 }
3573 
3574 static ieee80211_rx_result debug_noinline
3575 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3576 {
3577 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3578 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3579 	__le16 stype;
3580 
3581 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3582 
3583 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3584 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3585 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3586 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3587 		return RX_DROP_MONITOR;
3588 
3589 	switch (stype) {
3590 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3591 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3592 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3593 		/* process for all: mesh, mlme, ibss */
3594 		break;
3595 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3596 		if (is_multicast_ether_addr(mgmt->da) &&
3597 		    !is_broadcast_ether_addr(mgmt->da))
3598 			return RX_DROP_MONITOR;
3599 
3600 		/* process only for station/IBSS */
3601 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3602 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3603 			return RX_DROP_MONITOR;
3604 		break;
3605 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3606 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3607 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3608 		if (is_multicast_ether_addr(mgmt->da) &&
3609 		    !is_broadcast_ether_addr(mgmt->da))
3610 			return RX_DROP_MONITOR;
3611 
3612 		/* process only for station */
3613 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3614 			return RX_DROP_MONITOR;
3615 		break;
3616 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3617 		/* process only for ibss and mesh */
3618 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3619 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3620 			return RX_DROP_MONITOR;
3621 		break;
3622 	default:
3623 		return RX_DROP_MONITOR;
3624 	}
3625 
3626 	/* queue up frame and kick off work to process it */
3627 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3628 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3629 	if (rx->sta)
3630 		rx->sta->rx_stats.packets++;
3631 
3632 	return RX_QUEUED;
3633 }
3634 
3635 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3636 					struct ieee80211_rate *rate)
3637 {
3638 	struct ieee80211_sub_if_data *sdata;
3639 	struct ieee80211_local *local = rx->local;
3640 	struct sk_buff *skb = rx->skb, *skb2;
3641 	struct net_device *prev_dev = NULL;
3642 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3643 	int needed_headroom;
3644 
3645 	/*
3646 	 * If cooked monitor has been processed already, then
3647 	 * don't do it again. If not, set the flag.
3648 	 */
3649 	if (rx->flags & IEEE80211_RX_CMNTR)
3650 		goto out_free_skb;
3651 	rx->flags |= IEEE80211_RX_CMNTR;
3652 
3653 	/* If there are no cooked monitor interfaces, just free the SKB */
3654 	if (!local->cooked_mntrs)
3655 		goto out_free_skb;
3656 
3657 	/* vendor data is long removed here */
3658 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3659 	/* room for the radiotap header based on driver features */
3660 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3661 
3662 	if (skb_headroom(skb) < needed_headroom &&
3663 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3664 		goto out_free_skb;
3665 
3666 	/* prepend radiotap information */
3667 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3668 					 false);
3669 
3670 	skb_reset_mac_header(skb);
3671 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3672 	skb->pkt_type = PACKET_OTHERHOST;
3673 	skb->protocol = htons(ETH_P_802_2);
3674 
3675 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3676 		if (!ieee80211_sdata_running(sdata))
3677 			continue;
3678 
3679 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3680 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3681 			continue;
3682 
3683 		if (prev_dev) {
3684 			skb2 = skb_clone(skb, GFP_ATOMIC);
3685 			if (skb2) {
3686 				skb2->dev = prev_dev;
3687 				netif_receive_skb(skb2);
3688 			}
3689 		}
3690 
3691 		prev_dev = sdata->dev;
3692 		dev_sw_netstats_rx_add(sdata->dev, skb->len);
3693 	}
3694 
3695 	if (prev_dev) {
3696 		skb->dev = prev_dev;
3697 		netif_receive_skb(skb);
3698 		return;
3699 	}
3700 
3701  out_free_skb:
3702 	dev_kfree_skb(skb);
3703 }
3704 
3705 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3706 					 ieee80211_rx_result res)
3707 {
3708 	switch (res) {
3709 	case RX_DROP_MONITOR:
3710 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3711 		if (rx->sta)
3712 			rx->sta->rx_stats.dropped++;
3713 		fallthrough;
3714 	case RX_CONTINUE: {
3715 		struct ieee80211_rate *rate = NULL;
3716 		struct ieee80211_supported_band *sband;
3717 		struct ieee80211_rx_status *status;
3718 
3719 		status = IEEE80211_SKB_RXCB((rx->skb));
3720 
3721 		sband = rx->local->hw.wiphy->bands[status->band];
3722 		if (status->encoding == RX_ENC_LEGACY)
3723 			rate = &sband->bitrates[status->rate_idx];
3724 
3725 		ieee80211_rx_cooked_monitor(rx, rate);
3726 		break;
3727 		}
3728 	case RX_DROP_UNUSABLE:
3729 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3730 		if (rx->sta)
3731 			rx->sta->rx_stats.dropped++;
3732 		dev_kfree_skb(rx->skb);
3733 		break;
3734 	case RX_QUEUED:
3735 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3736 		break;
3737 	}
3738 }
3739 
3740 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3741 				  struct sk_buff_head *frames)
3742 {
3743 	ieee80211_rx_result res = RX_DROP_MONITOR;
3744 	struct sk_buff *skb;
3745 
3746 #define CALL_RXH(rxh)			\
3747 	do {				\
3748 		res = rxh(rx);		\
3749 		if (res != RX_CONTINUE)	\
3750 			goto rxh_next;  \
3751 	} while (0)
3752 
3753 	/* Lock here to avoid hitting all of the data used in the RX
3754 	 * path (e.g. key data, station data, ...) concurrently when
3755 	 * a frame is released from the reorder buffer due to timeout
3756 	 * from the timer, potentially concurrently with RX from the
3757 	 * driver.
3758 	 */
3759 	spin_lock_bh(&rx->local->rx_path_lock);
3760 
3761 	while ((skb = __skb_dequeue(frames))) {
3762 		/*
3763 		 * all the other fields are valid across frames
3764 		 * that belong to an aMPDU since they are on the
3765 		 * same TID from the same station
3766 		 */
3767 		rx->skb = skb;
3768 
3769 		CALL_RXH(ieee80211_rx_h_check_more_data);
3770 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3771 		CALL_RXH(ieee80211_rx_h_sta_process);
3772 		CALL_RXH(ieee80211_rx_h_decrypt);
3773 		CALL_RXH(ieee80211_rx_h_defragment);
3774 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3775 		/* must be after MMIC verify so header is counted in MPDU mic */
3776 #ifdef CONFIG_MAC80211_MESH
3777 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3778 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3779 #endif
3780 		CALL_RXH(ieee80211_rx_h_amsdu);
3781 		CALL_RXH(ieee80211_rx_h_data);
3782 
3783 		/* special treatment -- needs the queue */
3784 		res = ieee80211_rx_h_ctrl(rx, frames);
3785 		if (res != RX_CONTINUE)
3786 			goto rxh_next;
3787 
3788 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3789 		CALL_RXH(ieee80211_rx_h_action);
3790 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3791 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
3792 		CALL_RXH(ieee80211_rx_h_action_return);
3793 		CALL_RXH(ieee80211_rx_h_ext);
3794 		CALL_RXH(ieee80211_rx_h_mgmt);
3795 
3796  rxh_next:
3797 		ieee80211_rx_handlers_result(rx, res);
3798 
3799 #undef CALL_RXH
3800 	}
3801 
3802 	spin_unlock_bh(&rx->local->rx_path_lock);
3803 }
3804 
3805 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3806 {
3807 	struct sk_buff_head reorder_release;
3808 	ieee80211_rx_result res = RX_DROP_MONITOR;
3809 
3810 	__skb_queue_head_init(&reorder_release);
3811 
3812 #define CALL_RXH(rxh)			\
3813 	do {				\
3814 		res = rxh(rx);		\
3815 		if (res != RX_CONTINUE)	\
3816 			goto rxh_next;  \
3817 	} while (0)
3818 
3819 	CALL_RXH(ieee80211_rx_h_check_dup);
3820 	CALL_RXH(ieee80211_rx_h_check);
3821 
3822 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3823 
3824 	ieee80211_rx_handlers(rx, &reorder_release);
3825 	return;
3826 
3827  rxh_next:
3828 	ieee80211_rx_handlers_result(rx, res);
3829 
3830 #undef CALL_RXH
3831 }
3832 
3833 /*
3834  * This function makes calls into the RX path, therefore
3835  * it has to be invoked under RCU read lock.
3836  */
3837 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3838 {
3839 	struct sk_buff_head frames;
3840 	struct ieee80211_rx_data rx = {
3841 		.sta = sta,
3842 		.sdata = sta->sdata,
3843 		.local = sta->local,
3844 		/* This is OK -- must be QoS data frame */
3845 		.security_idx = tid,
3846 		.seqno_idx = tid,
3847 	};
3848 	struct tid_ampdu_rx *tid_agg_rx;
3849 
3850 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3851 	if (!tid_agg_rx)
3852 		return;
3853 
3854 	__skb_queue_head_init(&frames);
3855 
3856 	spin_lock(&tid_agg_rx->reorder_lock);
3857 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3858 	spin_unlock(&tid_agg_rx->reorder_lock);
3859 
3860 	if (!skb_queue_empty(&frames)) {
3861 		struct ieee80211_event event = {
3862 			.type = BA_FRAME_TIMEOUT,
3863 			.u.ba.tid = tid,
3864 			.u.ba.sta = &sta->sta,
3865 		};
3866 		drv_event_callback(rx.local, rx.sdata, &event);
3867 	}
3868 
3869 	ieee80211_rx_handlers(&rx, &frames);
3870 }
3871 
3872 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3873 					  u16 ssn, u64 filtered,
3874 					  u16 received_mpdus)
3875 {
3876 	struct sta_info *sta;
3877 	struct tid_ampdu_rx *tid_agg_rx;
3878 	struct sk_buff_head frames;
3879 	struct ieee80211_rx_data rx = {
3880 		/* This is OK -- must be QoS data frame */
3881 		.security_idx = tid,
3882 		.seqno_idx = tid,
3883 	};
3884 	int i, diff;
3885 
3886 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3887 		return;
3888 
3889 	__skb_queue_head_init(&frames);
3890 
3891 	sta = container_of(pubsta, struct sta_info, sta);
3892 
3893 	rx.sta = sta;
3894 	rx.sdata = sta->sdata;
3895 	rx.local = sta->local;
3896 
3897 	rcu_read_lock();
3898 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3899 	if (!tid_agg_rx)
3900 		goto out;
3901 
3902 	spin_lock_bh(&tid_agg_rx->reorder_lock);
3903 
3904 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3905 		int release;
3906 
3907 		/* release all frames in the reorder buffer */
3908 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3909 			   IEEE80211_SN_MODULO;
3910 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3911 						 release, &frames);
3912 		/* update ssn to match received ssn */
3913 		tid_agg_rx->head_seq_num = ssn;
3914 	} else {
3915 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3916 						 &frames);
3917 	}
3918 
3919 	/* handle the case that received ssn is behind the mac ssn.
3920 	 * it can be tid_agg_rx->buf_size behind and still be valid */
3921 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3922 	if (diff >= tid_agg_rx->buf_size) {
3923 		tid_agg_rx->reorder_buf_filtered = 0;
3924 		goto release;
3925 	}
3926 	filtered = filtered >> diff;
3927 	ssn += diff;
3928 
3929 	/* update bitmap */
3930 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
3931 		int index = (ssn + i) % tid_agg_rx->buf_size;
3932 
3933 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3934 		if (filtered & BIT_ULL(i))
3935 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3936 	}
3937 
3938 	/* now process also frames that the filter marking released */
3939 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3940 
3941 release:
3942 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
3943 
3944 	ieee80211_rx_handlers(&rx, &frames);
3945 
3946  out:
3947 	rcu_read_unlock();
3948 }
3949 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3950 
3951 /* main receive path */
3952 
3953 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3954 {
3955 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3956 	struct sk_buff *skb = rx->skb;
3957 	struct ieee80211_hdr *hdr = (void *)skb->data;
3958 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3959 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3960 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
3961 			 ieee80211_is_s1g_beacon(hdr->frame_control);
3962 
3963 	switch (sdata->vif.type) {
3964 	case NL80211_IFTYPE_STATION:
3965 		if (!bssid && !sdata->u.mgd.use_4addr)
3966 			return false;
3967 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
3968 			return false;
3969 		if (multicast)
3970 			return true;
3971 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3972 	case NL80211_IFTYPE_ADHOC:
3973 		if (!bssid)
3974 			return false;
3975 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3976 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3977 			return false;
3978 		if (ieee80211_is_beacon(hdr->frame_control))
3979 			return true;
3980 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3981 			return false;
3982 		if (!multicast &&
3983 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3984 			return false;
3985 		if (!rx->sta) {
3986 			int rate_idx;
3987 			if (status->encoding != RX_ENC_LEGACY)
3988 				rate_idx = 0; /* TODO: HT/VHT rates */
3989 			else
3990 				rate_idx = status->rate_idx;
3991 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3992 						 BIT(rate_idx));
3993 		}
3994 		return true;
3995 	case NL80211_IFTYPE_OCB:
3996 		if (!bssid)
3997 			return false;
3998 		if (!ieee80211_is_data_present(hdr->frame_control))
3999 			return false;
4000 		if (!is_broadcast_ether_addr(bssid))
4001 			return false;
4002 		if (!multicast &&
4003 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4004 			return false;
4005 		if (!rx->sta) {
4006 			int rate_idx;
4007 			if (status->encoding != RX_ENC_LEGACY)
4008 				rate_idx = 0; /* TODO: HT rates */
4009 			else
4010 				rate_idx = status->rate_idx;
4011 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4012 						BIT(rate_idx));
4013 		}
4014 		return true;
4015 	case NL80211_IFTYPE_MESH_POINT:
4016 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4017 			return false;
4018 		if (multicast)
4019 			return true;
4020 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4021 	case NL80211_IFTYPE_AP_VLAN:
4022 	case NL80211_IFTYPE_AP:
4023 		if (!bssid)
4024 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4025 
4026 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4027 			/*
4028 			 * Accept public action frames even when the
4029 			 * BSSID doesn't match, this is used for P2P
4030 			 * and location updates. Note that mac80211
4031 			 * itself never looks at these frames.
4032 			 */
4033 			if (!multicast &&
4034 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4035 				return false;
4036 			if (ieee80211_is_public_action(hdr, skb->len))
4037 				return true;
4038 			return ieee80211_is_beacon(hdr->frame_control);
4039 		}
4040 
4041 		if (!ieee80211_has_tods(hdr->frame_control)) {
4042 			/* ignore data frames to TDLS-peers */
4043 			if (ieee80211_is_data(hdr->frame_control))
4044 				return false;
4045 			/* ignore action frames to TDLS-peers */
4046 			if (ieee80211_is_action(hdr->frame_control) &&
4047 			    !is_broadcast_ether_addr(bssid) &&
4048 			    !ether_addr_equal(bssid, hdr->addr1))
4049 				return false;
4050 		}
4051 
4052 		/*
4053 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4054 		 * the BSSID - we've checked that already but may have accepted
4055 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4056 		 *
4057 		 * It also says:
4058 		 *	The BSSID of the Data frame is determined as follows:
4059 		 *	a) If the STA is contained within an AP or is associated
4060 		 *	   with an AP, the BSSID is the address currently in use
4061 		 *	   by the STA contained in the AP.
4062 		 *
4063 		 * So we should not accept data frames with an address that's
4064 		 * multicast.
4065 		 *
4066 		 * Accepting it also opens a security problem because stations
4067 		 * could encrypt it with the GTK and inject traffic that way.
4068 		 */
4069 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4070 			return false;
4071 
4072 		return true;
4073 	case NL80211_IFTYPE_P2P_DEVICE:
4074 		return ieee80211_is_public_action(hdr, skb->len) ||
4075 		       ieee80211_is_probe_req(hdr->frame_control) ||
4076 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4077 		       ieee80211_is_beacon(hdr->frame_control);
4078 	case NL80211_IFTYPE_NAN:
4079 		/* Currently no frames on NAN interface are allowed */
4080 		return false;
4081 	default:
4082 		break;
4083 	}
4084 
4085 	WARN_ON_ONCE(1);
4086 	return false;
4087 }
4088 
4089 void ieee80211_check_fast_rx(struct sta_info *sta)
4090 {
4091 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4092 	struct ieee80211_local *local = sdata->local;
4093 	struct ieee80211_key *key;
4094 	struct ieee80211_fast_rx fastrx = {
4095 		.dev = sdata->dev,
4096 		.vif_type = sdata->vif.type,
4097 		.control_port_protocol = sdata->control_port_protocol,
4098 	}, *old, *new = NULL;
4099 	bool set_offload = false;
4100 	bool assign = false;
4101 	bool offload;
4102 
4103 	/* use sparse to check that we don't return without updating */
4104 	__acquire(check_fast_rx);
4105 
4106 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4107 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4108 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4109 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4110 
4111 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4112 
4113 	/* fast-rx doesn't do reordering */
4114 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4115 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4116 		goto clear;
4117 
4118 	switch (sdata->vif.type) {
4119 	case NL80211_IFTYPE_STATION:
4120 		if (sta->sta.tdls) {
4121 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4122 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4123 			fastrx.expected_ds_bits = 0;
4124 		} else {
4125 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4126 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4127 			fastrx.expected_ds_bits =
4128 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4129 		}
4130 
4131 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4132 			fastrx.expected_ds_bits |=
4133 				cpu_to_le16(IEEE80211_FCTL_TODS);
4134 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4135 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4136 		}
4137 
4138 		if (!sdata->u.mgd.powersave)
4139 			break;
4140 
4141 		/* software powersave is a huge mess, avoid all of it */
4142 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4143 			goto clear;
4144 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4145 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4146 			goto clear;
4147 		break;
4148 	case NL80211_IFTYPE_AP_VLAN:
4149 	case NL80211_IFTYPE_AP:
4150 		/* parallel-rx requires this, at least with calls to
4151 		 * ieee80211_sta_ps_transition()
4152 		 */
4153 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4154 			goto clear;
4155 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4156 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4157 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4158 
4159 		fastrx.internal_forward =
4160 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4161 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4162 			 !sdata->u.vlan.sta);
4163 
4164 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4165 		    sdata->u.vlan.sta) {
4166 			fastrx.expected_ds_bits |=
4167 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4168 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4169 			fastrx.internal_forward = 0;
4170 		}
4171 
4172 		break;
4173 	default:
4174 		goto clear;
4175 	}
4176 
4177 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4178 		goto clear;
4179 
4180 	rcu_read_lock();
4181 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4182 	if (!key)
4183 		key = rcu_dereference(sdata->default_unicast_key);
4184 	if (key) {
4185 		switch (key->conf.cipher) {
4186 		case WLAN_CIPHER_SUITE_TKIP:
4187 			/* we don't want to deal with MMIC in fast-rx */
4188 			goto clear_rcu;
4189 		case WLAN_CIPHER_SUITE_CCMP:
4190 		case WLAN_CIPHER_SUITE_CCMP_256:
4191 		case WLAN_CIPHER_SUITE_GCMP:
4192 		case WLAN_CIPHER_SUITE_GCMP_256:
4193 			break;
4194 		default:
4195 			/* We also don't want to deal with
4196 			 * WEP or cipher scheme.
4197 			 */
4198 			goto clear_rcu;
4199 		}
4200 
4201 		fastrx.key = true;
4202 		fastrx.icv_len = key->conf.icv_len;
4203 	}
4204 
4205 	assign = true;
4206  clear_rcu:
4207 	rcu_read_unlock();
4208  clear:
4209 	__release(check_fast_rx);
4210 
4211 	if (assign)
4212 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4213 
4214 	offload = assign &&
4215 		  (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4216 
4217 	if (offload)
4218 		set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4219 	else
4220 		set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4221 
4222 	if (set_offload)
4223 		drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4224 
4225 	spin_lock_bh(&sta->lock);
4226 	old = rcu_dereference_protected(sta->fast_rx, true);
4227 	rcu_assign_pointer(sta->fast_rx, new);
4228 	spin_unlock_bh(&sta->lock);
4229 
4230 	if (old)
4231 		kfree_rcu(old, rcu_head);
4232 }
4233 
4234 void ieee80211_clear_fast_rx(struct sta_info *sta)
4235 {
4236 	struct ieee80211_fast_rx *old;
4237 
4238 	spin_lock_bh(&sta->lock);
4239 	old = rcu_dereference_protected(sta->fast_rx, true);
4240 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4241 	spin_unlock_bh(&sta->lock);
4242 
4243 	if (old)
4244 		kfree_rcu(old, rcu_head);
4245 }
4246 
4247 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4248 {
4249 	struct ieee80211_local *local = sdata->local;
4250 	struct sta_info *sta;
4251 
4252 	lockdep_assert_held(&local->sta_mtx);
4253 
4254 	list_for_each_entry(sta, &local->sta_list, list) {
4255 		if (sdata != sta->sdata &&
4256 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4257 			continue;
4258 		ieee80211_check_fast_rx(sta);
4259 	}
4260 }
4261 
4262 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4263 {
4264 	struct ieee80211_local *local = sdata->local;
4265 
4266 	mutex_lock(&local->sta_mtx);
4267 	__ieee80211_check_fast_rx_iface(sdata);
4268 	mutex_unlock(&local->sta_mtx);
4269 }
4270 
4271 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4272 			      struct ieee80211_fast_rx *fast_rx,
4273 			      int orig_len)
4274 {
4275 	struct ieee80211_sta_rx_stats *stats;
4276 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4277 	struct sta_info *sta = rx->sta;
4278 	struct sk_buff *skb = rx->skb;
4279 	void *sa = skb->data + ETH_ALEN;
4280 	void *da = skb->data;
4281 
4282 	stats = &sta->rx_stats;
4283 	if (fast_rx->uses_rss)
4284 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4285 
4286 	/* statistics part of ieee80211_rx_h_sta_process() */
4287 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4288 		stats->last_signal = status->signal;
4289 		if (!fast_rx->uses_rss)
4290 			ewma_signal_add(&sta->rx_stats_avg.signal,
4291 					-status->signal);
4292 	}
4293 
4294 	if (status->chains) {
4295 		int i;
4296 
4297 		stats->chains = status->chains;
4298 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4299 			int signal = status->chain_signal[i];
4300 
4301 			if (!(status->chains & BIT(i)))
4302 				continue;
4303 
4304 			stats->chain_signal_last[i] = signal;
4305 			if (!fast_rx->uses_rss)
4306 				ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4307 						-signal);
4308 		}
4309 	}
4310 	/* end of statistics */
4311 
4312 	stats->last_rx = jiffies;
4313 	stats->last_rate = sta_stats_encode_rate(status);
4314 
4315 	stats->fragments++;
4316 	stats->packets++;
4317 
4318 	skb->dev = fast_rx->dev;
4319 
4320 	dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4321 
4322 	/* The seqno index has the same property as needed
4323 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4324 	 * for non-QoS-data frames. Here we know it's a data
4325 	 * frame, so count MSDUs.
4326 	 */
4327 	u64_stats_update_begin(&stats->syncp);
4328 	stats->msdu[rx->seqno_idx]++;
4329 	stats->bytes += orig_len;
4330 	u64_stats_update_end(&stats->syncp);
4331 
4332 	if (fast_rx->internal_forward) {
4333 		struct sk_buff *xmit_skb = NULL;
4334 		if (is_multicast_ether_addr(da)) {
4335 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4336 		} else if (!ether_addr_equal(da, sa) &&
4337 			   sta_info_get(rx->sdata, da)) {
4338 			xmit_skb = skb;
4339 			skb = NULL;
4340 		}
4341 
4342 		if (xmit_skb) {
4343 			/*
4344 			 * Send to wireless media and increase priority by 256
4345 			 * to keep the received priority instead of
4346 			 * reclassifying the frame (see cfg80211_classify8021d).
4347 			 */
4348 			xmit_skb->priority += 256;
4349 			xmit_skb->protocol = htons(ETH_P_802_3);
4350 			skb_reset_network_header(xmit_skb);
4351 			skb_reset_mac_header(xmit_skb);
4352 			dev_queue_xmit(xmit_skb);
4353 		}
4354 
4355 		if (!skb)
4356 			return;
4357 	}
4358 
4359 	/* deliver to local stack */
4360 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4361 	memset(skb->cb, 0, sizeof(skb->cb));
4362 	if (rx->list)
4363 		list_add_tail(&skb->list, rx->list);
4364 	else
4365 		netif_receive_skb(skb);
4366 
4367 }
4368 
4369 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4370 				     struct ieee80211_fast_rx *fast_rx)
4371 {
4372 	struct sk_buff *skb = rx->skb;
4373 	struct ieee80211_hdr *hdr = (void *)skb->data;
4374 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4375 	struct sta_info *sta = rx->sta;
4376 	int orig_len = skb->len;
4377 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4378 	int snap_offs = hdrlen;
4379 	struct {
4380 		u8 snap[sizeof(rfc1042_header)];
4381 		__be16 proto;
4382 	} *payload __aligned(2);
4383 	struct {
4384 		u8 da[ETH_ALEN];
4385 		u8 sa[ETH_ALEN];
4386 	} addrs __aligned(2);
4387 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4388 
4389 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4390 	 * to a common data structure; drivers can implement that per queue
4391 	 * but we don't have that information in mac80211
4392 	 */
4393 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4394 		return false;
4395 
4396 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4397 
4398 	/* If using encryption, we also need to have:
4399 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4400 	 *  - DECRYPTED: necessary for PN_VALIDATED
4401 	 */
4402 	if (fast_rx->key &&
4403 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4404 		return false;
4405 
4406 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4407 		return false;
4408 
4409 	if (unlikely(ieee80211_is_frag(hdr)))
4410 		return false;
4411 
4412 	/* Since our interface address cannot be multicast, this
4413 	 * implicitly also rejects multicast frames without the
4414 	 * explicit check.
4415 	 *
4416 	 * We shouldn't get any *data* frames not addressed to us
4417 	 * (AP mode will accept multicast *management* frames), but
4418 	 * punting here will make it go through the full checks in
4419 	 * ieee80211_accept_frame().
4420 	 */
4421 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4422 		return false;
4423 
4424 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4425 					      IEEE80211_FCTL_TODS)) !=
4426 	    fast_rx->expected_ds_bits)
4427 		return false;
4428 
4429 	/* assign the key to drop unencrypted frames (later)
4430 	 * and strip the IV/MIC if necessary
4431 	 */
4432 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4433 		/* GCMP header length is the same */
4434 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4435 	}
4436 
4437 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4438 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4439 			goto drop;
4440 
4441 		payload = (void *)(skb->data + snap_offs);
4442 
4443 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4444 			return false;
4445 
4446 		/* Don't handle these here since they require special code.
4447 		 * Accept AARP and IPX even though they should come with a
4448 		 * bridge-tunnel header - but if we get them this way then
4449 		 * there's little point in discarding them.
4450 		 */
4451 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4452 			     payload->proto == fast_rx->control_port_protocol))
4453 			return false;
4454 	}
4455 
4456 	/* after this point, don't punt to the slowpath! */
4457 
4458 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4459 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4460 		goto drop;
4461 
4462 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4463 		goto drop;
4464 
4465 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4466 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4467 		    RX_QUEUED)
4468 			goto drop;
4469 
4470 		return true;
4471 	}
4472 
4473 	/* do the header conversion - first grab the addresses */
4474 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4475 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4476 	/* remove the SNAP but leave the ethertype */
4477 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4478 	/* push the addresses in front */
4479 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4480 
4481 	ieee80211_rx_8023(rx, fast_rx, orig_len);
4482 
4483 	return true;
4484  drop:
4485 	dev_kfree_skb(skb);
4486 	if (fast_rx->uses_rss)
4487 		stats = this_cpu_ptr(sta->pcpu_rx_stats);
4488 
4489 	stats->dropped++;
4490 	return true;
4491 }
4492 
4493 /*
4494  * This function returns whether or not the SKB
4495  * was destined for RX processing or not, which,
4496  * if consume is true, is equivalent to whether
4497  * or not the skb was consumed.
4498  */
4499 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4500 					    struct sk_buff *skb, bool consume)
4501 {
4502 	struct ieee80211_local *local = rx->local;
4503 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4504 
4505 	rx->skb = skb;
4506 
4507 	/* See if we can do fast-rx; if we have to copy we already lost,
4508 	 * so punt in that case. We should never have to deliver a data
4509 	 * frame to multiple interfaces anyway.
4510 	 *
4511 	 * We skip the ieee80211_accept_frame() call and do the necessary
4512 	 * checking inside ieee80211_invoke_fast_rx().
4513 	 */
4514 	if (consume && rx->sta) {
4515 		struct ieee80211_fast_rx *fast_rx;
4516 
4517 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4518 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4519 			return true;
4520 	}
4521 
4522 	if (!ieee80211_accept_frame(rx))
4523 		return false;
4524 
4525 	if (!consume) {
4526 		skb = skb_copy(skb, GFP_ATOMIC);
4527 		if (!skb) {
4528 			if (net_ratelimit())
4529 				wiphy_debug(local->hw.wiphy,
4530 					"failed to copy skb for %s\n",
4531 					sdata->name);
4532 			return true;
4533 		}
4534 
4535 		rx->skb = skb;
4536 	}
4537 
4538 	ieee80211_invoke_rx_handlers(rx);
4539 	return true;
4540 }
4541 
4542 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4543 				       struct ieee80211_sta *pubsta,
4544 				       struct sk_buff *skb,
4545 				       struct list_head *list)
4546 {
4547 	struct ieee80211_local *local = hw_to_local(hw);
4548 	struct ieee80211_fast_rx *fast_rx;
4549 	struct ieee80211_rx_data rx;
4550 
4551 	memset(&rx, 0, sizeof(rx));
4552 	rx.skb = skb;
4553 	rx.local = local;
4554 	rx.list = list;
4555 
4556 	I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4557 
4558 	/* drop frame if too short for header */
4559 	if (skb->len < sizeof(struct ethhdr))
4560 		goto drop;
4561 
4562 	if (!pubsta)
4563 		goto drop;
4564 
4565 	rx.sta = container_of(pubsta, struct sta_info, sta);
4566 	rx.sdata = rx.sta->sdata;
4567 
4568 	fast_rx = rcu_dereference(rx.sta->fast_rx);
4569 	if (!fast_rx)
4570 		goto drop;
4571 
4572 	ieee80211_rx_8023(&rx, fast_rx, skb->len);
4573 	return;
4574 
4575 drop:
4576 	dev_kfree_skb(skb);
4577 }
4578 
4579 /*
4580  * This is the actual Rx frames handler. as it belongs to Rx path it must
4581  * be called with rcu_read_lock protection.
4582  */
4583 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4584 					 struct ieee80211_sta *pubsta,
4585 					 struct sk_buff *skb,
4586 					 struct list_head *list)
4587 {
4588 	struct ieee80211_local *local = hw_to_local(hw);
4589 	struct ieee80211_sub_if_data *sdata;
4590 	struct ieee80211_hdr *hdr;
4591 	__le16 fc;
4592 	struct ieee80211_rx_data rx;
4593 	struct ieee80211_sub_if_data *prev;
4594 	struct rhlist_head *tmp;
4595 	int err = 0;
4596 
4597 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4598 	memset(&rx, 0, sizeof(rx));
4599 	rx.skb = skb;
4600 	rx.local = local;
4601 	rx.list = list;
4602 
4603 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4604 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4605 
4606 	if (ieee80211_is_mgmt(fc)) {
4607 		/* drop frame if too short for header */
4608 		if (skb->len < ieee80211_hdrlen(fc))
4609 			err = -ENOBUFS;
4610 		else
4611 			err = skb_linearize(skb);
4612 	} else {
4613 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4614 	}
4615 
4616 	if (err) {
4617 		dev_kfree_skb(skb);
4618 		return;
4619 	}
4620 
4621 	hdr = (struct ieee80211_hdr *)skb->data;
4622 	ieee80211_parse_qos(&rx);
4623 	ieee80211_verify_alignment(&rx);
4624 
4625 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4626 		     ieee80211_is_beacon(hdr->frame_control) ||
4627 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
4628 		ieee80211_scan_rx(local, skb);
4629 
4630 	if (ieee80211_is_data(fc)) {
4631 		struct sta_info *sta, *prev_sta;
4632 
4633 		if (pubsta) {
4634 			rx.sta = container_of(pubsta, struct sta_info, sta);
4635 			rx.sdata = rx.sta->sdata;
4636 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4637 				return;
4638 			goto out;
4639 		}
4640 
4641 		prev_sta = NULL;
4642 
4643 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4644 			if (!prev_sta) {
4645 				prev_sta = sta;
4646 				continue;
4647 			}
4648 
4649 			rx.sta = prev_sta;
4650 			rx.sdata = prev_sta->sdata;
4651 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4652 
4653 			prev_sta = sta;
4654 		}
4655 
4656 		if (prev_sta) {
4657 			rx.sta = prev_sta;
4658 			rx.sdata = prev_sta->sdata;
4659 
4660 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4661 				return;
4662 			goto out;
4663 		}
4664 	}
4665 
4666 	prev = NULL;
4667 
4668 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4669 		if (!ieee80211_sdata_running(sdata))
4670 			continue;
4671 
4672 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4673 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4674 			continue;
4675 
4676 		/*
4677 		 * frame is destined for this interface, but if it's
4678 		 * not also for the previous one we handle that after
4679 		 * the loop to avoid copying the SKB once too much
4680 		 */
4681 
4682 		if (!prev) {
4683 			prev = sdata;
4684 			continue;
4685 		}
4686 
4687 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4688 		rx.sdata = prev;
4689 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4690 
4691 		prev = sdata;
4692 	}
4693 
4694 	if (prev) {
4695 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4696 		rx.sdata = prev;
4697 
4698 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4699 			return;
4700 	}
4701 
4702  out:
4703 	dev_kfree_skb(skb);
4704 }
4705 
4706 /*
4707  * This is the receive path handler. It is called by a low level driver when an
4708  * 802.11 MPDU is received from the hardware.
4709  */
4710 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4711 		       struct sk_buff *skb, struct list_head *list)
4712 {
4713 	struct ieee80211_local *local = hw_to_local(hw);
4714 	struct ieee80211_rate *rate = NULL;
4715 	struct ieee80211_supported_band *sband;
4716 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4717 
4718 	WARN_ON_ONCE(softirq_count() == 0);
4719 
4720 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4721 		goto drop;
4722 
4723 	sband = local->hw.wiphy->bands[status->band];
4724 	if (WARN_ON(!sband))
4725 		goto drop;
4726 
4727 	/*
4728 	 * If we're suspending, it is possible although not too likely
4729 	 * that we'd be receiving frames after having already partially
4730 	 * quiesced the stack. We can't process such frames then since
4731 	 * that might, for example, cause stations to be added or other
4732 	 * driver callbacks be invoked.
4733 	 */
4734 	if (unlikely(local->quiescing || local->suspended))
4735 		goto drop;
4736 
4737 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4738 	if (unlikely(local->in_reconfig))
4739 		goto drop;
4740 
4741 	/*
4742 	 * The same happens when we're not even started,
4743 	 * but that's worth a warning.
4744 	 */
4745 	if (WARN_ON(!local->started))
4746 		goto drop;
4747 
4748 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4749 		/*
4750 		 * Validate the rate, unless a PLCP error means that
4751 		 * we probably can't have a valid rate here anyway.
4752 		 */
4753 
4754 		switch (status->encoding) {
4755 		case RX_ENC_HT:
4756 			/*
4757 			 * rate_idx is MCS index, which can be [0-76]
4758 			 * as documented on:
4759 			 *
4760 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4761 			 *
4762 			 * Anything else would be some sort of driver or
4763 			 * hardware error. The driver should catch hardware
4764 			 * errors.
4765 			 */
4766 			if (WARN(status->rate_idx > 76,
4767 				 "Rate marked as an HT rate but passed "
4768 				 "status->rate_idx is not "
4769 				 "an MCS index [0-76]: %d (0x%02x)\n",
4770 				 status->rate_idx,
4771 				 status->rate_idx))
4772 				goto drop;
4773 			break;
4774 		case RX_ENC_VHT:
4775 			if (WARN_ONCE(status->rate_idx > 9 ||
4776 				      !status->nss ||
4777 				      status->nss > 8,
4778 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4779 				      status->rate_idx, status->nss))
4780 				goto drop;
4781 			break;
4782 		case RX_ENC_HE:
4783 			if (WARN_ONCE(status->rate_idx > 11 ||
4784 				      !status->nss ||
4785 				      status->nss > 8,
4786 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4787 				      status->rate_idx, status->nss))
4788 				goto drop;
4789 			break;
4790 		default:
4791 			WARN_ON_ONCE(1);
4792 			fallthrough;
4793 		case RX_ENC_LEGACY:
4794 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4795 				goto drop;
4796 			rate = &sband->bitrates[status->rate_idx];
4797 		}
4798 	}
4799 
4800 	status->rx_flags = 0;
4801 
4802 	kcov_remote_start_common(skb_get_kcov_handle(skb));
4803 
4804 	/*
4805 	 * Frames with failed FCS/PLCP checksum are not returned,
4806 	 * all other frames are returned without radiotap header
4807 	 * if it was previously present.
4808 	 * Also, frames with less than 16 bytes are dropped.
4809 	 */
4810 	if (!(status->flag & RX_FLAG_8023))
4811 		skb = ieee80211_rx_monitor(local, skb, rate);
4812 	if (skb) {
4813 		ieee80211_tpt_led_trig_rx(local,
4814 					  ((struct ieee80211_hdr *)skb->data)->frame_control,
4815 					  skb->len);
4816 
4817 		if (status->flag & RX_FLAG_8023)
4818 			__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
4819 		else
4820 			__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4821 	}
4822 
4823 	kcov_remote_stop();
4824 	return;
4825  drop:
4826 	kfree_skb(skb);
4827 }
4828 EXPORT_SYMBOL(ieee80211_rx_list);
4829 
4830 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4831 		       struct sk_buff *skb, struct napi_struct *napi)
4832 {
4833 	struct sk_buff *tmp;
4834 	LIST_HEAD(list);
4835 
4836 
4837 	/*
4838 	 * key references and virtual interfaces are protected using RCU
4839 	 * and this requires that we are in a read-side RCU section during
4840 	 * receive processing
4841 	 */
4842 	rcu_read_lock();
4843 	ieee80211_rx_list(hw, pubsta, skb, &list);
4844 	rcu_read_unlock();
4845 
4846 	if (!napi) {
4847 		netif_receive_skb_list(&list);
4848 		return;
4849 	}
4850 
4851 	list_for_each_entry_safe(skb, tmp, &list, list) {
4852 		skb_list_del_init(skb);
4853 		napi_gro_receive(napi, skb);
4854 	}
4855 }
4856 EXPORT_SYMBOL(ieee80211_rx_napi);
4857 
4858 /* This is a version of the rx handler that can be called from hard irq
4859  * context. Post the skb on the queue and schedule the tasklet */
4860 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4861 {
4862 	struct ieee80211_local *local = hw_to_local(hw);
4863 
4864 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4865 
4866 	skb->pkt_type = IEEE80211_RX_MSG;
4867 	skb_queue_tail(&local->skb_queue, skb);
4868 	tasklet_schedule(&local->tasklet);
4869 }
4870 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4871