1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2023 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 47 struct ieee80211_hdr *hdr; 48 unsigned int hdrlen; 49 __le16 fc; 50 51 if (present_fcs_len) 52 __pskb_trim(skb, skb->len - present_fcs_len); 53 pskb_pull(skb, rtap_space); 54 55 /* After pulling radiotap header, clear all flags that indicate 56 * info in skb->data. 57 */ 58 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END | 59 RX_FLAG_RADIOTAP_LSIG | 60 RX_FLAG_RADIOTAP_HE_MU | 61 RX_FLAG_RADIOTAP_HE); 62 63 hdr = (void *)skb->data; 64 fc = hdr->frame_control; 65 66 /* 67 * Remove the HT-Control field (if present) on management 68 * frames after we've sent the frame to monitoring. We 69 * (currently) don't need it, and don't properly parse 70 * frames with it present, due to the assumption of a 71 * fixed management header length. 72 */ 73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 74 return skb; 75 76 hdrlen = ieee80211_hdrlen(fc); 77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 78 79 if (!pskb_may_pull(skb, hdrlen)) { 80 dev_kfree_skb(skb); 81 return NULL; 82 } 83 84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 85 hdrlen - IEEE80211_HT_CTL_LEN); 86 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 87 88 return skb; 89 } 90 91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 92 unsigned int rtap_space) 93 { 94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 95 struct ieee80211_hdr *hdr; 96 97 hdr = (void *)(skb->data + rtap_space); 98 99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 100 RX_FLAG_FAILED_PLCP_CRC | 101 RX_FLAG_ONLY_MONITOR | 102 RX_FLAG_NO_PSDU)) 103 return true; 104 105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 106 return true; 107 108 if (ieee80211_is_ctl(hdr->frame_control) && 109 !ieee80211_is_pspoll(hdr->frame_control) && 110 !ieee80211_is_back_req(hdr->frame_control)) 111 return true; 112 113 return false; 114 } 115 116 static int 117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 118 struct ieee80211_rx_status *status, 119 struct sk_buff *skb) 120 { 121 int len; 122 123 /* always present fields */ 124 len = sizeof(struct ieee80211_radiotap_header) + 8; 125 126 /* allocate extra bitmaps */ 127 if (status->chains) 128 len += 4 * hweight8(status->chains); 129 130 if (ieee80211_have_rx_timestamp(status)) { 131 len = ALIGN(len, 8); 132 len += 8; 133 } 134 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 135 len += 1; 136 137 /* antenna field, if we don't have per-chain info */ 138 if (!status->chains) 139 len += 1; 140 141 /* padding for RX_FLAGS if necessary */ 142 len = ALIGN(len, 2); 143 144 if (status->encoding == RX_ENC_HT) /* HT info */ 145 len += 3; 146 147 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 148 len = ALIGN(len, 4); 149 len += 8; 150 } 151 152 if (status->encoding == RX_ENC_VHT) { 153 len = ALIGN(len, 2); 154 len += 12; 155 } 156 157 if (local->hw.radiotap_timestamp.units_pos >= 0) { 158 len = ALIGN(len, 8); 159 len += 12; 160 } 161 162 if (status->encoding == RX_ENC_HE && 163 status->flag & RX_FLAG_RADIOTAP_HE) { 164 len = ALIGN(len, 2); 165 len += 12; 166 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 167 } 168 169 if (status->encoding == RX_ENC_HE && 170 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 171 len = ALIGN(len, 2); 172 len += 12; 173 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 174 } 175 176 if (status->flag & RX_FLAG_NO_PSDU) 177 len += 1; 178 179 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 180 len = ALIGN(len, 2); 181 len += 4; 182 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 183 } 184 185 if (status->chains) { 186 /* antenna and antenna signal fields */ 187 len += 2 * hweight8(status->chains); 188 } 189 190 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 191 int tlv_offset = 0; 192 193 /* 194 * The position to look at depends on the existence (or non- 195 * existence) of other elements, so take that into account... 196 */ 197 if (status->flag & RX_FLAG_RADIOTAP_HE) 198 tlv_offset += 199 sizeof(struct ieee80211_radiotap_he); 200 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 201 tlv_offset += 202 sizeof(struct ieee80211_radiotap_he_mu); 203 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 204 tlv_offset += 205 sizeof(struct ieee80211_radiotap_lsig); 206 207 /* ensure 4 byte alignment for TLV */ 208 len = ALIGN(len, 4); 209 210 /* TLVs until the mac header */ 211 len += skb_mac_header(skb) - &skb->data[tlv_offset]; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 int link_id, 219 struct sta_info *sta, 220 struct sk_buff *skb) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 224 if (link_id >= 0) { 225 status->link_valid = 1; 226 status->link_id = link_id; 227 } else { 228 status->link_valid = 0; 229 } 230 231 skb_queue_tail(&sdata->skb_queue, skb); 232 wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); 233 if (sta) 234 sta->deflink.rx_stats.packets++; 235 } 236 237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 238 int link_id, 239 struct sta_info *sta, 240 struct sk_buff *skb) 241 { 242 skb->protocol = 0; 243 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 244 } 245 246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 247 struct sk_buff *skb, 248 int rtap_space) 249 { 250 struct { 251 struct ieee80211_hdr_3addr hdr; 252 u8 category; 253 u8 action_code; 254 } __packed __aligned(2) action; 255 256 if (!sdata) 257 return; 258 259 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 260 261 if (skb->len < rtap_space + sizeof(action) + 262 VHT_MUMIMO_GROUPS_DATA_LEN) 263 return; 264 265 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 266 return; 267 268 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 269 270 if (!ieee80211_is_action(action.hdr.frame_control)) 271 return; 272 273 if (action.category != WLAN_CATEGORY_VHT) 274 return; 275 276 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 277 return; 278 279 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 280 return; 281 282 skb = skb_copy(skb, GFP_ATOMIC); 283 if (!skb) 284 return; 285 286 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 287 } 288 289 /* 290 * ieee80211_add_rx_radiotap_header - add radiotap header 291 * 292 * add a radiotap header containing all the fields which the hardware provided. 293 */ 294 static void 295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 296 struct sk_buff *skb, 297 struct ieee80211_rate *rate, 298 int rtap_len, bool has_fcs) 299 { 300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 301 struct ieee80211_radiotap_header *rthdr; 302 unsigned char *pos; 303 __le32 *it_present; 304 u32 it_present_val; 305 u16 rx_flags = 0; 306 u16 channel_flags = 0; 307 u32 tlvs_len = 0; 308 int mpdulen, chain; 309 unsigned long chains = status->chains; 310 struct ieee80211_radiotap_he he = {}; 311 struct ieee80211_radiotap_he_mu he_mu = {}; 312 struct ieee80211_radiotap_lsig lsig = {}; 313 314 if (status->flag & RX_FLAG_RADIOTAP_HE) { 315 he = *(struct ieee80211_radiotap_he *)skb->data; 316 skb_pull(skb, sizeof(he)); 317 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 321 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 322 skb_pull(skb, sizeof(he_mu)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 326 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 327 skb_pull(skb, sizeof(lsig)); 328 } 329 330 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 331 /* data is pointer at tlv all other info was pulled off */ 332 tlvs_len = skb_mac_header(skb) - skb->data; 333 } 334 335 mpdulen = skb->len; 336 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 337 mpdulen += FCS_LEN; 338 339 rthdr = skb_push(skb, rtap_len - tlvs_len); 340 memset(rthdr, 0, rtap_len - tlvs_len); 341 it_present = &rthdr->it_present; 342 343 /* radiotap header, set always present flags */ 344 rthdr->it_len = cpu_to_le16(rtap_len); 345 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 346 BIT(IEEE80211_RADIOTAP_CHANNEL) | 347 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 348 349 if (!status->chains) 350 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 351 352 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 353 it_present_val |= 354 BIT(IEEE80211_RADIOTAP_EXT) | 355 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 356 put_unaligned_le32(it_present_val, it_present); 357 it_present++; 358 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 359 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 360 } 361 362 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 363 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV); 364 365 put_unaligned_le32(it_present_val, it_present); 366 367 /* This references through an offset into it_optional[] rather 368 * than via it_present otherwise later uses of pos will cause 369 * the compiler to think we have walked past the end of the 370 * struct member. 371 */ 372 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 373 374 /* the order of the following fields is important */ 375 376 /* IEEE80211_RADIOTAP_TSFT */ 377 if (ieee80211_have_rx_timestamp(status)) { 378 /* padding */ 379 while ((pos - (u8 *)rthdr) & 7) 380 *pos++ = 0; 381 put_unaligned_le64( 382 ieee80211_calculate_rx_timestamp(local, status, 383 mpdulen, 0), 384 pos); 385 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 386 pos += 8; 387 } 388 389 /* IEEE80211_RADIOTAP_FLAGS */ 390 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 391 *pos |= IEEE80211_RADIOTAP_F_FCS; 392 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 393 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 394 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 395 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 396 pos++; 397 398 /* IEEE80211_RADIOTAP_RATE */ 399 if (!rate || status->encoding != RX_ENC_LEGACY) { 400 /* 401 * Without rate information don't add it. If we have, 402 * MCS information is a separate field in radiotap, 403 * added below. The byte here is needed as padding 404 * for the channel though, so initialise it to 0. 405 */ 406 *pos = 0; 407 } else { 408 int shift = 0; 409 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 410 if (status->bw == RATE_INFO_BW_10) 411 shift = 1; 412 else if (status->bw == RATE_INFO_BW_5) 413 shift = 2; 414 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 415 } 416 pos++; 417 418 /* IEEE80211_RADIOTAP_CHANNEL */ 419 /* TODO: frequency offset in KHz */ 420 put_unaligned_le16(status->freq, pos); 421 pos += 2; 422 if (status->bw == RATE_INFO_BW_10) 423 channel_flags |= IEEE80211_CHAN_HALF; 424 else if (status->bw == RATE_INFO_BW_5) 425 channel_flags |= IEEE80211_CHAN_QUARTER; 426 427 if (status->band == NL80211_BAND_5GHZ || 428 status->band == NL80211_BAND_6GHZ) 429 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 430 else if (status->encoding != RX_ENC_LEGACY) 431 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 432 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 433 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 434 else if (rate) 435 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 436 else 437 channel_flags |= IEEE80211_CHAN_2GHZ; 438 put_unaligned_le16(channel_flags, pos); 439 pos += 2; 440 441 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 442 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 443 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 444 *pos = status->signal; 445 rthdr->it_present |= 446 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 447 pos++; 448 } 449 450 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 451 452 if (!status->chains) { 453 /* IEEE80211_RADIOTAP_ANTENNA */ 454 *pos = status->antenna; 455 pos++; 456 } 457 458 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 459 460 /* IEEE80211_RADIOTAP_RX_FLAGS */ 461 /* ensure 2 byte alignment for the 2 byte field as required */ 462 if ((pos - (u8 *)rthdr) & 1) 463 *pos++ = 0; 464 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 465 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 466 put_unaligned_le16(rx_flags, pos); 467 pos += 2; 468 469 if (status->encoding == RX_ENC_HT) { 470 unsigned int stbc; 471 472 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 473 *pos = local->hw.radiotap_mcs_details; 474 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 475 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 476 if (status->enc_flags & RX_ENC_FLAG_LDPC) 477 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 478 pos++; 479 *pos = 0; 480 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 481 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 482 if (status->bw == RATE_INFO_BW_40) 483 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 484 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 485 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 486 if (status->enc_flags & RX_ENC_FLAG_LDPC) 487 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 488 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 489 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 490 pos++; 491 *pos++ = status->rate_idx; 492 } 493 494 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 495 u16 flags = 0; 496 497 /* ensure 4 byte alignment */ 498 while ((pos - (u8 *)rthdr) & 3) 499 pos++; 500 rthdr->it_present |= 501 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 502 put_unaligned_le32(status->ampdu_reference, pos); 503 pos += 4; 504 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 505 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 506 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 507 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 509 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 510 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 511 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 512 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 513 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 514 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 515 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 516 put_unaligned_le16(flags, pos); 517 pos += 2; 518 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 519 *pos++ = status->ampdu_delimiter_crc; 520 else 521 *pos++ = 0; 522 *pos++ = 0; 523 } 524 525 if (status->encoding == RX_ENC_VHT) { 526 u16 known = local->hw.radiotap_vht_details; 527 528 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 529 put_unaligned_le16(known, pos); 530 pos += 2; 531 /* flags */ 532 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 534 /* in VHT, STBC is binary */ 535 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 536 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 537 if (status->enc_flags & RX_ENC_FLAG_BF) 538 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 539 pos++; 540 /* bandwidth */ 541 switch (status->bw) { 542 case RATE_INFO_BW_80: 543 *pos++ = 4; 544 break; 545 case RATE_INFO_BW_160: 546 *pos++ = 11; 547 break; 548 case RATE_INFO_BW_40: 549 *pos++ = 1; 550 break; 551 default: 552 *pos++ = 0; 553 } 554 /* MCS/NSS */ 555 *pos = (status->rate_idx << 4) | status->nss; 556 pos += 4; 557 /* coding field */ 558 if (status->enc_flags & RX_ENC_FLAG_LDPC) 559 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 560 pos++; 561 /* group ID */ 562 pos++; 563 /* partial_aid */ 564 pos += 2; 565 } 566 567 if (local->hw.radiotap_timestamp.units_pos >= 0) { 568 u16 accuracy = 0; 569 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 570 571 rthdr->it_present |= 572 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 573 574 /* ensure 8 byte alignment */ 575 while ((pos - (u8 *)rthdr) & 7) 576 pos++; 577 578 put_unaligned_le64(status->device_timestamp, pos); 579 pos += sizeof(u64); 580 581 if (local->hw.radiotap_timestamp.accuracy >= 0) { 582 accuracy = local->hw.radiotap_timestamp.accuracy; 583 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 584 } 585 put_unaligned_le16(accuracy, pos); 586 pos += sizeof(u16); 587 588 *pos++ = local->hw.radiotap_timestamp.units_pos; 589 *pos++ = flags; 590 } 591 592 if (status->encoding == RX_ENC_HE && 593 status->flag & RX_FLAG_RADIOTAP_HE) { 594 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 595 596 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 597 he.data6 |= HE_PREP(DATA6_NSTS, 598 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 599 status->enc_flags)); 600 he.data3 |= HE_PREP(DATA3_STBC, 1); 601 } else { 602 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 603 } 604 605 #define CHECK_GI(s) \ 606 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 607 (int)NL80211_RATE_INFO_HE_GI_##s) 608 609 CHECK_GI(0_8); 610 CHECK_GI(1_6); 611 CHECK_GI(3_2); 612 613 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 614 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 615 he.data3 |= HE_PREP(DATA3_CODING, 616 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 617 618 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 619 620 switch (status->bw) { 621 case RATE_INFO_BW_20: 622 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 623 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 624 break; 625 case RATE_INFO_BW_40: 626 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 627 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 628 break; 629 case RATE_INFO_BW_80: 630 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 631 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 632 break; 633 case RATE_INFO_BW_160: 634 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 635 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 636 break; 637 case RATE_INFO_BW_HE_RU: 638 #define CHECK_RU_ALLOC(s) \ 639 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 640 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 641 642 CHECK_RU_ALLOC(26); 643 CHECK_RU_ALLOC(52); 644 CHECK_RU_ALLOC(106); 645 CHECK_RU_ALLOC(242); 646 CHECK_RU_ALLOC(484); 647 CHECK_RU_ALLOC(996); 648 CHECK_RU_ALLOC(2x996); 649 650 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 651 status->he_ru + 4); 652 break; 653 default: 654 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 655 } 656 657 /* ensure 2 byte alignment */ 658 while ((pos - (u8 *)rthdr) & 1) 659 pos++; 660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 661 memcpy(pos, &he, sizeof(he)); 662 pos += sizeof(he); 663 } 664 665 if (status->encoding == RX_ENC_HE && 666 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 667 /* ensure 2 byte alignment */ 668 while ((pos - (u8 *)rthdr) & 1) 669 pos++; 670 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 671 memcpy(pos, &he_mu, sizeof(he_mu)); 672 pos += sizeof(he_mu); 673 } 674 675 if (status->flag & RX_FLAG_NO_PSDU) { 676 rthdr->it_present |= 677 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 678 *pos++ = status->zero_length_psdu_type; 679 } 680 681 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 682 /* ensure 2 byte alignment */ 683 while ((pos - (u8 *)rthdr) & 1) 684 pos++; 685 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 686 memcpy(pos, &lsig, sizeof(lsig)); 687 pos += sizeof(lsig); 688 } 689 690 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 691 *pos++ = status->chain_signal[chain]; 692 *pos++ = chain; 693 } 694 } 695 696 static struct sk_buff * 697 ieee80211_make_monitor_skb(struct ieee80211_local *local, 698 struct sk_buff **origskb, 699 struct ieee80211_rate *rate, 700 int rtap_space, bool use_origskb) 701 { 702 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 703 int rt_hdrlen, needed_headroom; 704 struct sk_buff *skb; 705 706 /* room for the radiotap header based on driver features */ 707 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 708 needed_headroom = rt_hdrlen - rtap_space; 709 710 if (use_origskb) { 711 /* only need to expand headroom if necessary */ 712 skb = *origskb; 713 *origskb = NULL; 714 715 /* 716 * This shouldn't trigger often because most devices have an 717 * RX header they pull before we get here, and that should 718 * be big enough for our radiotap information. We should 719 * probably export the length to drivers so that we can have 720 * them allocate enough headroom to start with. 721 */ 722 if (skb_headroom(skb) < needed_headroom && 723 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 724 dev_kfree_skb(skb); 725 return NULL; 726 } 727 } else { 728 /* 729 * Need to make a copy and possibly remove radiotap header 730 * and FCS from the original. 731 */ 732 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 733 0, GFP_ATOMIC); 734 735 if (!skb) 736 return NULL; 737 } 738 739 /* prepend radiotap information */ 740 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 741 742 skb_reset_mac_header(skb); 743 skb->ip_summed = CHECKSUM_UNNECESSARY; 744 skb->pkt_type = PACKET_OTHERHOST; 745 skb->protocol = htons(ETH_P_802_2); 746 747 return skb; 748 } 749 750 /* 751 * This function copies a received frame to all monitor interfaces and 752 * returns a cleaned-up SKB that no longer includes the FCS nor the 753 * radiotap header the driver might have added. 754 */ 755 static struct sk_buff * 756 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 757 struct ieee80211_rate *rate) 758 { 759 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 760 struct ieee80211_sub_if_data *sdata; 761 struct sk_buff *monskb = NULL; 762 int present_fcs_len = 0; 763 unsigned int rtap_space = 0; 764 struct ieee80211_sub_if_data *monitor_sdata = 765 rcu_dereference(local->monitor_sdata); 766 bool only_monitor = false; 767 unsigned int min_head_len; 768 769 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END && 770 !skb_mac_header_was_set(origskb))) { 771 /* with this skb no way to know where frame payload starts */ 772 dev_kfree_skb(origskb); 773 return NULL; 774 } 775 776 if (status->flag & RX_FLAG_RADIOTAP_HE) 777 rtap_space += sizeof(struct ieee80211_radiotap_he); 778 779 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 780 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 781 782 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 783 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 784 785 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 786 rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space]; 787 788 min_head_len = rtap_space; 789 790 /* 791 * First, we may need to make a copy of the skb because 792 * (1) we need to modify it for radiotap (if not present), and 793 * (2) the other RX handlers will modify the skb we got. 794 * 795 * We don't need to, of course, if we aren't going to return 796 * the SKB because it has a bad FCS/PLCP checksum. 797 */ 798 799 if (!(status->flag & RX_FLAG_NO_PSDU)) { 800 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 801 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 802 /* driver bug */ 803 WARN_ON(1); 804 dev_kfree_skb(origskb); 805 return NULL; 806 } 807 present_fcs_len = FCS_LEN; 808 } 809 810 /* also consider the hdr->frame_control */ 811 min_head_len += 2; 812 } 813 814 /* ensure that the expected data elements are in skb head */ 815 if (!pskb_may_pull(origskb, min_head_len)) { 816 dev_kfree_skb(origskb); 817 return NULL; 818 } 819 820 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 821 822 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 823 if (only_monitor) { 824 dev_kfree_skb(origskb); 825 return NULL; 826 } 827 828 return ieee80211_clean_skb(origskb, present_fcs_len, 829 rtap_space); 830 } 831 832 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 833 834 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 835 bool last_monitor = list_is_last(&sdata->u.mntr.list, 836 &local->mon_list); 837 838 if (!monskb) 839 monskb = ieee80211_make_monitor_skb(local, &origskb, 840 rate, rtap_space, 841 only_monitor && 842 last_monitor); 843 844 if (monskb) { 845 struct sk_buff *skb; 846 847 if (last_monitor) { 848 skb = monskb; 849 monskb = NULL; 850 } else { 851 skb = skb_clone(monskb, GFP_ATOMIC); 852 } 853 854 if (skb) { 855 skb->dev = sdata->dev; 856 dev_sw_netstats_rx_add(skb->dev, skb->len); 857 netif_receive_skb(skb); 858 } 859 } 860 861 if (last_monitor) 862 break; 863 } 864 865 /* this happens if last_monitor was erroneously false */ 866 dev_kfree_skb(monskb); 867 868 /* ditto */ 869 if (!origskb) 870 return NULL; 871 872 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 873 } 874 875 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 876 { 877 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 879 int tid, seqno_idx, security_idx; 880 881 /* does the frame have a qos control field? */ 882 if (ieee80211_is_data_qos(hdr->frame_control)) { 883 u8 *qc = ieee80211_get_qos_ctl(hdr); 884 /* frame has qos control */ 885 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 886 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 887 status->rx_flags |= IEEE80211_RX_AMSDU; 888 889 seqno_idx = tid; 890 security_idx = tid; 891 } else { 892 /* 893 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 894 * 895 * Sequence numbers for management frames, QoS data 896 * frames with a broadcast/multicast address in the 897 * Address 1 field, and all non-QoS data frames sent 898 * by QoS STAs are assigned using an additional single 899 * modulo-4096 counter, [...] 900 * 901 * We also use that counter for non-QoS STAs. 902 */ 903 seqno_idx = IEEE80211_NUM_TIDS; 904 security_idx = 0; 905 if (ieee80211_is_mgmt(hdr->frame_control)) 906 security_idx = IEEE80211_NUM_TIDS; 907 tid = 0; 908 } 909 910 rx->seqno_idx = seqno_idx; 911 rx->security_idx = security_idx; 912 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 913 * For now, set skb->priority to 0 for other cases. */ 914 rx->skb->priority = (tid > 7) ? 0 : tid; 915 } 916 917 /** 918 * DOC: Packet alignment 919 * 920 * Drivers always need to pass packets that are aligned to two-byte boundaries 921 * to the stack. 922 * 923 * Additionally, should, if possible, align the payload data in a way that 924 * guarantees that the contained IP header is aligned to a four-byte 925 * boundary. In the case of regular frames, this simply means aligning the 926 * payload to a four-byte boundary (because either the IP header is directly 927 * contained, or IV/RFC1042 headers that have a length divisible by four are 928 * in front of it). If the payload data is not properly aligned and the 929 * architecture doesn't support efficient unaligned operations, mac80211 930 * will align the data. 931 * 932 * With A-MSDU frames, however, the payload data address must yield two modulo 933 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 934 * push the IP header further back to a multiple of four again. Thankfully, the 935 * specs were sane enough this time around to require padding each A-MSDU 936 * subframe to a length that is a multiple of four. 937 * 938 * Padding like Atheros hardware adds which is between the 802.11 header and 939 * the payload is not supported, the driver is required to move the 802.11 940 * header to be directly in front of the payload in that case. 941 */ 942 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 943 { 944 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 945 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 946 #endif 947 } 948 949 950 /* rx handlers */ 951 952 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 953 { 954 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 955 956 if (is_multicast_ether_addr(hdr->addr1)) 957 return 0; 958 959 return ieee80211_is_robust_mgmt_frame(skb); 960 } 961 962 963 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 964 { 965 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 966 967 if (!is_multicast_ether_addr(hdr->addr1)) 968 return 0; 969 970 return ieee80211_is_robust_mgmt_frame(skb); 971 } 972 973 974 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 975 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 976 { 977 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 978 struct ieee80211_mmie *mmie; 979 struct ieee80211_mmie_16 *mmie16; 980 981 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 982 return -1; 983 984 if (!ieee80211_is_robust_mgmt_frame(skb) && 985 !ieee80211_is_beacon(hdr->frame_control)) 986 return -1; /* not a robust management frame */ 987 988 mmie = (struct ieee80211_mmie *) 989 (skb->data + skb->len - sizeof(*mmie)); 990 if (mmie->element_id == WLAN_EID_MMIE && 991 mmie->length == sizeof(*mmie) - 2) 992 return le16_to_cpu(mmie->key_id); 993 994 mmie16 = (struct ieee80211_mmie_16 *) 995 (skb->data + skb->len - sizeof(*mmie16)); 996 if (skb->len >= 24 + sizeof(*mmie16) && 997 mmie16->element_id == WLAN_EID_MMIE && 998 mmie16->length == sizeof(*mmie16) - 2) 999 return le16_to_cpu(mmie16->key_id); 1000 1001 return -1; 1002 } 1003 1004 static int ieee80211_get_keyid(struct sk_buff *skb) 1005 { 1006 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1007 __le16 fc = hdr->frame_control; 1008 int hdrlen = ieee80211_hdrlen(fc); 1009 u8 keyid; 1010 1011 /* WEP, TKIP, CCMP and GCMP */ 1012 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1013 return -EINVAL; 1014 1015 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1016 1017 keyid >>= 6; 1018 1019 return keyid; 1020 } 1021 1022 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1023 { 1024 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1025 char *dev_addr = rx->sdata->vif.addr; 1026 1027 if (ieee80211_is_data(hdr->frame_control)) { 1028 if (is_multicast_ether_addr(hdr->addr1)) { 1029 if (ieee80211_has_tods(hdr->frame_control) || 1030 !ieee80211_has_fromds(hdr->frame_control)) 1031 return RX_DROP_MONITOR; 1032 if (ether_addr_equal(hdr->addr3, dev_addr)) 1033 return RX_DROP_MONITOR; 1034 } else { 1035 if (!ieee80211_has_a4(hdr->frame_control)) 1036 return RX_DROP_MONITOR; 1037 if (ether_addr_equal(hdr->addr4, dev_addr)) 1038 return RX_DROP_MONITOR; 1039 } 1040 } 1041 1042 /* If there is not an established peer link and this is not a peer link 1043 * establisment frame, beacon or probe, drop the frame. 1044 */ 1045 1046 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1047 struct ieee80211_mgmt *mgmt; 1048 1049 if (!ieee80211_is_mgmt(hdr->frame_control)) 1050 return RX_DROP_MONITOR; 1051 1052 if (ieee80211_is_action(hdr->frame_control)) { 1053 u8 category; 1054 1055 /* make sure category field is present */ 1056 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1057 return RX_DROP_MONITOR; 1058 1059 mgmt = (struct ieee80211_mgmt *)hdr; 1060 category = mgmt->u.action.category; 1061 if (category != WLAN_CATEGORY_MESH_ACTION && 1062 category != WLAN_CATEGORY_SELF_PROTECTED) 1063 return RX_DROP_MONITOR; 1064 return RX_CONTINUE; 1065 } 1066 1067 if (ieee80211_is_probe_req(hdr->frame_control) || 1068 ieee80211_is_probe_resp(hdr->frame_control) || 1069 ieee80211_is_beacon(hdr->frame_control) || 1070 ieee80211_is_auth(hdr->frame_control)) 1071 return RX_CONTINUE; 1072 1073 return RX_DROP_MONITOR; 1074 } 1075 1076 return RX_CONTINUE; 1077 } 1078 1079 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1080 int index) 1081 { 1082 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1083 struct sk_buff *tail = skb_peek_tail(frames); 1084 struct ieee80211_rx_status *status; 1085 1086 if (tid_agg_rx->reorder_buf_filtered && 1087 tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1088 return true; 1089 1090 if (!tail) 1091 return false; 1092 1093 status = IEEE80211_SKB_RXCB(tail); 1094 if (status->flag & RX_FLAG_AMSDU_MORE) 1095 return false; 1096 1097 return true; 1098 } 1099 1100 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1101 struct tid_ampdu_rx *tid_agg_rx, 1102 int index, 1103 struct sk_buff_head *frames) 1104 { 1105 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1106 struct sk_buff *skb; 1107 struct ieee80211_rx_status *status; 1108 1109 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1110 1111 if (skb_queue_empty(skb_list)) 1112 goto no_frame; 1113 1114 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1115 __skb_queue_purge(skb_list); 1116 goto no_frame; 1117 } 1118 1119 /* release frames from the reorder ring buffer */ 1120 tid_agg_rx->stored_mpdu_num--; 1121 while ((skb = __skb_dequeue(skb_list))) { 1122 status = IEEE80211_SKB_RXCB(skb); 1123 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1124 __skb_queue_tail(frames, skb); 1125 } 1126 1127 no_frame: 1128 if (tid_agg_rx->reorder_buf_filtered) 1129 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1130 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1131 } 1132 1133 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1134 struct tid_ampdu_rx *tid_agg_rx, 1135 u16 head_seq_num, 1136 struct sk_buff_head *frames) 1137 { 1138 int index; 1139 1140 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1141 1142 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1143 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1144 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1145 frames); 1146 } 1147 } 1148 1149 /* 1150 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1151 * the skb was added to the buffer longer than this time ago, the earlier 1152 * frames that have not yet been received are assumed to be lost and the skb 1153 * can be released for processing. This may also release other skb's from the 1154 * reorder buffer if there are no additional gaps between the frames. 1155 * 1156 * Callers must hold tid_agg_rx->reorder_lock. 1157 */ 1158 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1159 1160 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1161 struct tid_ampdu_rx *tid_agg_rx, 1162 struct sk_buff_head *frames) 1163 { 1164 int index, i, j; 1165 1166 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1167 1168 /* release the buffer until next missing frame */ 1169 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1170 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1171 tid_agg_rx->stored_mpdu_num) { 1172 /* 1173 * No buffers ready to be released, but check whether any 1174 * frames in the reorder buffer have timed out. 1175 */ 1176 int skipped = 1; 1177 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1178 j = (j + 1) % tid_agg_rx->buf_size) { 1179 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1180 skipped++; 1181 continue; 1182 } 1183 if (skipped && 1184 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1185 HT_RX_REORDER_BUF_TIMEOUT)) 1186 goto set_release_timer; 1187 1188 /* don't leave incomplete A-MSDUs around */ 1189 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1190 i = (i + 1) % tid_agg_rx->buf_size) 1191 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1192 1193 ht_dbg_ratelimited(sdata, 1194 "release an RX reorder frame due to timeout on earlier frames\n"); 1195 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1196 frames); 1197 1198 /* 1199 * Increment the head seq# also for the skipped slots. 1200 */ 1201 tid_agg_rx->head_seq_num = 1202 (tid_agg_rx->head_seq_num + 1203 skipped) & IEEE80211_SN_MASK; 1204 skipped = 0; 1205 } 1206 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1207 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1208 frames); 1209 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1210 } 1211 1212 if (tid_agg_rx->stored_mpdu_num) { 1213 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1214 1215 for (; j != (index - 1) % tid_agg_rx->buf_size; 1216 j = (j + 1) % tid_agg_rx->buf_size) { 1217 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1218 break; 1219 } 1220 1221 set_release_timer: 1222 1223 if (!tid_agg_rx->removed) 1224 mod_timer(&tid_agg_rx->reorder_timer, 1225 tid_agg_rx->reorder_time[j] + 1 + 1226 HT_RX_REORDER_BUF_TIMEOUT); 1227 } else { 1228 del_timer(&tid_agg_rx->reorder_timer); 1229 } 1230 } 1231 1232 /* 1233 * As this function belongs to the RX path it must be under 1234 * rcu_read_lock protection. It returns false if the frame 1235 * can be processed immediately, true if it was consumed. 1236 */ 1237 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1238 struct tid_ampdu_rx *tid_agg_rx, 1239 struct sk_buff *skb, 1240 struct sk_buff_head *frames) 1241 { 1242 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1243 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1244 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1245 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1246 u16 head_seq_num, buf_size; 1247 int index; 1248 bool ret = true; 1249 1250 spin_lock(&tid_agg_rx->reorder_lock); 1251 1252 /* 1253 * Offloaded BA sessions have no known starting sequence number so pick 1254 * one from first Rxed frame for this tid after BA was started. 1255 */ 1256 if (unlikely(tid_agg_rx->auto_seq)) { 1257 tid_agg_rx->auto_seq = false; 1258 tid_agg_rx->ssn = mpdu_seq_num; 1259 tid_agg_rx->head_seq_num = mpdu_seq_num; 1260 } 1261 1262 buf_size = tid_agg_rx->buf_size; 1263 head_seq_num = tid_agg_rx->head_seq_num; 1264 1265 /* 1266 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1267 * be reordered. 1268 */ 1269 if (unlikely(!tid_agg_rx->started)) { 1270 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1271 ret = false; 1272 goto out; 1273 } 1274 tid_agg_rx->started = true; 1275 } 1276 1277 /* frame with out of date sequence number */ 1278 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1279 dev_kfree_skb(skb); 1280 goto out; 1281 } 1282 1283 /* 1284 * If frame the sequence number exceeds our buffering window 1285 * size release some previous frames to make room for this one. 1286 */ 1287 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1288 head_seq_num = ieee80211_sn_inc( 1289 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1290 /* release stored frames up to new head to stack */ 1291 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1292 head_seq_num, frames); 1293 } 1294 1295 /* Now the new frame is always in the range of the reordering buffer */ 1296 1297 index = mpdu_seq_num % tid_agg_rx->buf_size; 1298 1299 /* check if we already stored this frame */ 1300 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1301 dev_kfree_skb(skb); 1302 goto out; 1303 } 1304 1305 /* 1306 * If the current MPDU is in the right order and nothing else 1307 * is stored we can process it directly, no need to buffer it. 1308 * If it is first but there's something stored, we may be able 1309 * to release frames after this one. 1310 */ 1311 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1312 tid_agg_rx->stored_mpdu_num == 0) { 1313 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1314 tid_agg_rx->head_seq_num = 1315 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1316 ret = false; 1317 goto out; 1318 } 1319 1320 /* put the frame in the reordering buffer */ 1321 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1322 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1323 tid_agg_rx->reorder_time[index] = jiffies; 1324 tid_agg_rx->stored_mpdu_num++; 1325 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1326 } 1327 1328 out: 1329 spin_unlock(&tid_agg_rx->reorder_lock); 1330 return ret; 1331 } 1332 1333 /* 1334 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1335 * true if the MPDU was buffered, false if it should be processed. 1336 */ 1337 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1338 struct sk_buff_head *frames) 1339 { 1340 struct sk_buff *skb = rx->skb; 1341 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1342 struct sta_info *sta = rx->sta; 1343 struct tid_ampdu_rx *tid_agg_rx; 1344 u16 sc; 1345 u8 tid, ack_policy; 1346 1347 if (!ieee80211_is_data_qos(hdr->frame_control) || 1348 is_multicast_ether_addr(hdr->addr1)) 1349 goto dont_reorder; 1350 1351 /* 1352 * filter the QoS data rx stream according to 1353 * STA/TID and check if this STA/TID is on aggregation 1354 */ 1355 1356 if (!sta) 1357 goto dont_reorder; 1358 1359 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1360 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1361 tid = ieee80211_get_tid(hdr); 1362 1363 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1364 if (!tid_agg_rx) { 1365 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1366 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1367 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1368 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1369 WLAN_BACK_RECIPIENT, 1370 WLAN_REASON_QSTA_REQUIRE_SETUP); 1371 goto dont_reorder; 1372 } 1373 1374 /* qos null data frames are excluded */ 1375 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1376 goto dont_reorder; 1377 1378 /* not part of a BA session */ 1379 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1380 goto dont_reorder; 1381 1382 /* new, potentially un-ordered, ampdu frame - process it */ 1383 1384 /* reset session timer */ 1385 if (tid_agg_rx->timeout) 1386 tid_agg_rx->last_rx = jiffies; 1387 1388 /* if this mpdu is fragmented - terminate rx aggregation session */ 1389 sc = le16_to_cpu(hdr->seq_ctrl); 1390 if (sc & IEEE80211_SCTL_FRAG) { 1391 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1392 return; 1393 } 1394 1395 /* 1396 * No locking needed -- we will only ever process one 1397 * RX packet at a time, and thus own tid_agg_rx. All 1398 * other code manipulating it needs to (and does) make 1399 * sure that we cannot get to it any more before doing 1400 * anything with it. 1401 */ 1402 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1403 frames)) 1404 return; 1405 1406 dont_reorder: 1407 __skb_queue_tail(frames, skb); 1408 } 1409 1410 static ieee80211_rx_result debug_noinline 1411 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1412 { 1413 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1414 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1415 1416 if (status->flag & RX_FLAG_DUP_VALIDATED) 1417 return RX_CONTINUE; 1418 1419 /* 1420 * Drop duplicate 802.11 retransmissions 1421 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1422 */ 1423 1424 if (rx->skb->len < 24) 1425 return RX_CONTINUE; 1426 1427 if (ieee80211_is_ctl(hdr->frame_control) || 1428 ieee80211_is_any_nullfunc(hdr->frame_control) || 1429 is_multicast_ether_addr(hdr->addr1)) 1430 return RX_CONTINUE; 1431 1432 if (!rx->sta) 1433 return RX_CONTINUE; 1434 1435 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1436 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1437 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1438 rx->link_sta->rx_stats.num_duplicates++; 1439 return RX_DROP_UNUSABLE; 1440 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1441 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1442 } 1443 1444 return RX_CONTINUE; 1445 } 1446 1447 static ieee80211_rx_result debug_noinline 1448 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1449 { 1450 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1451 1452 /* Drop disallowed frame classes based on STA auth/assoc state; 1453 * IEEE 802.11, Chap 5.5. 1454 * 1455 * mac80211 filters only based on association state, i.e. it drops 1456 * Class 3 frames from not associated stations. hostapd sends 1457 * deauth/disassoc frames when needed. In addition, hostapd is 1458 * responsible for filtering on both auth and assoc states. 1459 */ 1460 1461 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1462 return ieee80211_rx_mesh_check(rx); 1463 1464 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1465 ieee80211_is_pspoll(hdr->frame_control)) && 1466 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1467 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1468 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1469 /* 1470 * accept port control frames from the AP even when it's not 1471 * yet marked ASSOC to prevent a race where we don't set the 1472 * assoc bit quickly enough before it sends the first frame 1473 */ 1474 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1475 ieee80211_is_data_present(hdr->frame_control)) { 1476 unsigned int hdrlen; 1477 __be16 ethertype; 1478 1479 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1480 1481 if (rx->skb->len < hdrlen + 8) 1482 return RX_DROP_MONITOR; 1483 1484 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1485 if (ethertype == rx->sdata->control_port_protocol) 1486 return RX_CONTINUE; 1487 } 1488 1489 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1490 cfg80211_rx_spurious_frame(rx->sdata->dev, 1491 hdr->addr2, 1492 GFP_ATOMIC)) 1493 return RX_DROP_UNUSABLE; 1494 1495 return RX_DROP_MONITOR; 1496 } 1497 1498 return RX_CONTINUE; 1499 } 1500 1501 1502 static ieee80211_rx_result debug_noinline 1503 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1504 { 1505 struct ieee80211_local *local; 1506 struct ieee80211_hdr *hdr; 1507 struct sk_buff *skb; 1508 1509 local = rx->local; 1510 skb = rx->skb; 1511 hdr = (struct ieee80211_hdr *) skb->data; 1512 1513 if (!local->pspolling) 1514 return RX_CONTINUE; 1515 1516 if (!ieee80211_has_fromds(hdr->frame_control)) 1517 /* this is not from AP */ 1518 return RX_CONTINUE; 1519 1520 if (!ieee80211_is_data(hdr->frame_control)) 1521 return RX_CONTINUE; 1522 1523 if (!ieee80211_has_moredata(hdr->frame_control)) { 1524 /* AP has no more frames buffered for us */ 1525 local->pspolling = false; 1526 return RX_CONTINUE; 1527 } 1528 1529 /* more data bit is set, let's request a new frame from the AP */ 1530 ieee80211_send_pspoll(local, rx->sdata); 1531 1532 return RX_CONTINUE; 1533 } 1534 1535 static void sta_ps_start(struct sta_info *sta) 1536 { 1537 struct ieee80211_sub_if_data *sdata = sta->sdata; 1538 struct ieee80211_local *local = sdata->local; 1539 struct ps_data *ps; 1540 int tid; 1541 1542 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1543 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1544 ps = &sdata->bss->ps; 1545 else 1546 return; 1547 1548 atomic_inc(&ps->num_sta_ps); 1549 set_sta_flag(sta, WLAN_STA_PS_STA); 1550 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1551 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1552 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1553 sta->sta.addr, sta->sta.aid); 1554 1555 ieee80211_clear_fast_xmit(sta); 1556 1557 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1558 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1559 struct txq_info *txqi = to_txq_info(txq); 1560 1561 spin_lock(&local->active_txq_lock[txq->ac]); 1562 if (!list_empty(&txqi->schedule_order)) 1563 list_del_init(&txqi->schedule_order); 1564 spin_unlock(&local->active_txq_lock[txq->ac]); 1565 1566 if (txq_has_queue(txq)) 1567 set_bit(tid, &sta->txq_buffered_tids); 1568 else 1569 clear_bit(tid, &sta->txq_buffered_tids); 1570 } 1571 } 1572 1573 static void sta_ps_end(struct sta_info *sta) 1574 { 1575 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1576 sta->sta.addr, sta->sta.aid); 1577 1578 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1579 /* 1580 * Clear the flag only if the other one is still set 1581 * so that the TX path won't start TX'ing new frames 1582 * directly ... In the case that the driver flag isn't 1583 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1584 */ 1585 clear_sta_flag(sta, WLAN_STA_PS_STA); 1586 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1587 sta->sta.addr, sta->sta.aid); 1588 return; 1589 } 1590 1591 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1592 clear_sta_flag(sta, WLAN_STA_PS_STA); 1593 ieee80211_sta_ps_deliver_wakeup(sta); 1594 } 1595 1596 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1597 { 1598 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1599 bool in_ps; 1600 1601 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1602 1603 /* Don't let the same PS state be set twice */ 1604 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1605 if ((start && in_ps) || (!start && !in_ps)) 1606 return -EINVAL; 1607 1608 if (start) 1609 sta_ps_start(sta); 1610 else 1611 sta_ps_end(sta); 1612 1613 return 0; 1614 } 1615 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1616 1617 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1618 { 1619 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1620 1621 if (test_sta_flag(sta, WLAN_STA_SP)) 1622 return; 1623 1624 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1625 ieee80211_sta_ps_deliver_poll_response(sta); 1626 else 1627 set_sta_flag(sta, WLAN_STA_PSPOLL); 1628 } 1629 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1630 1631 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1632 { 1633 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1634 int ac = ieee80211_ac_from_tid(tid); 1635 1636 /* 1637 * If this AC is not trigger-enabled do nothing unless the 1638 * driver is calling us after it already checked. 1639 * 1640 * NB: This could/should check a separate bitmap of trigger- 1641 * enabled queues, but for now we only implement uAPSD w/o 1642 * TSPEC changes to the ACs, so they're always the same. 1643 */ 1644 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1645 tid != IEEE80211_NUM_TIDS) 1646 return; 1647 1648 /* if we are in a service period, do nothing */ 1649 if (test_sta_flag(sta, WLAN_STA_SP)) 1650 return; 1651 1652 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1653 ieee80211_sta_ps_deliver_uapsd(sta); 1654 else 1655 set_sta_flag(sta, WLAN_STA_UAPSD); 1656 } 1657 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1658 1659 static ieee80211_rx_result debug_noinline 1660 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1661 { 1662 struct ieee80211_sub_if_data *sdata = rx->sdata; 1663 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1664 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1665 1666 if (!rx->sta) 1667 return RX_CONTINUE; 1668 1669 if (sdata->vif.type != NL80211_IFTYPE_AP && 1670 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1671 return RX_CONTINUE; 1672 1673 /* 1674 * The device handles station powersave, so don't do anything about 1675 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1676 * it to mac80211 since they're handled.) 1677 */ 1678 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1679 return RX_CONTINUE; 1680 1681 /* 1682 * Don't do anything if the station isn't already asleep. In 1683 * the uAPSD case, the station will probably be marked asleep, 1684 * in the PS-Poll case the station must be confused ... 1685 */ 1686 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1687 return RX_CONTINUE; 1688 1689 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1690 ieee80211_sta_pspoll(&rx->sta->sta); 1691 1692 /* Free PS Poll skb here instead of returning RX_DROP that would 1693 * count as an dropped frame. */ 1694 dev_kfree_skb(rx->skb); 1695 1696 return RX_QUEUED; 1697 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1698 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1699 ieee80211_has_pm(hdr->frame_control) && 1700 (ieee80211_is_data_qos(hdr->frame_control) || 1701 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1702 u8 tid = ieee80211_get_tid(hdr); 1703 1704 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1705 } 1706 1707 return RX_CONTINUE; 1708 } 1709 1710 static ieee80211_rx_result debug_noinline 1711 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1712 { 1713 struct sta_info *sta = rx->sta; 1714 struct link_sta_info *link_sta = rx->link_sta; 1715 struct sk_buff *skb = rx->skb; 1716 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1717 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1718 int i; 1719 1720 if (!sta || !link_sta) 1721 return RX_CONTINUE; 1722 1723 /* 1724 * Update last_rx only for IBSS packets which are for the current 1725 * BSSID and for station already AUTHORIZED to avoid keeping the 1726 * current IBSS network alive in cases where other STAs start 1727 * using different BSSID. This will also give the station another 1728 * chance to restart the authentication/authorization in case 1729 * something went wrong the first time. 1730 */ 1731 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1732 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1733 NL80211_IFTYPE_ADHOC); 1734 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1735 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1736 link_sta->rx_stats.last_rx = jiffies; 1737 if (ieee80211_is_data_present(hdr->frame_control) && 1738 !is_multicast_ether_addr(hdr->addr1)) 1739 link_sta->rx_stats.last_rate = 1740 sta_stats_encode_rate(status); 1741 } 1742 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1743 link_sta->rx_stats.last_rx = jiffies; 1744 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1745 !is_multicast_ether_addr(hdr->addr1)) { 1746 /* 1747 * Mesh beacons will update last_rx when if they are found to 1748 * match the current local configuration when processed. 1749 */ 1750 link_sta->rx_stats.last_rx = jiffies; 1751 if (ieee80211_is_data_present(hdr->frame_control)) 1752 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1753 } 1754 1755 link_sta->rx_stats.fragments++; 1756 1757 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1758 link_sta->rx_stats.bytes += rx->skb->len; 1759 u64_stats_update_end(&link_sta->rx_stats.syncp); 1760 1761 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1762 link_sta->rx_stats.last_signal = status->signal; 1763 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1764 -status->signal); 1765 } 1766 1767 if (status->chains) { 1768 link_sta->rx_stats.chains = status->chains; 1769 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1770 int signal = status->chain_signal[i]; 1771 1772 if (!(status->chains & BIT(i))) 1773 continue; 1774 1775 link_sta->rx_stats.chain_signal_last[i] = signal; 1776 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1777 -signal); 1778 } 1779 } 1780 1781 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1782 return RX_CONTINUE; 1783 1784 /* 1785 * Change STA power saving mode only at the end of a frame 1786 * exchange sequence, and only for a data or management 1787 * frame as specified in IEEE 802.11-2016 11.2.3.2 1788 */ 1789 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1790 !ieee80211_has_morefrags(hdr->frame_control) && 1791 !is_multicast_ether_addr(hdr->addr1) && 1792 (ieee80211_is_mgmt(hdr->frame_control) || 1793 ieee80211_is_data(hdr->frame_control)) && 1794 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1795 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1796 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1797 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1798 if (!ieee80211_has_pm(hdr->frame_control)) 1799 sta_ps_end(sta); 1800 } else { 1801 if (ieee80211_has_pm(hdr->frame_control)) 1802 sta_ps_start(sta); 1803 } 1804 } 1805 1806 /* mesh power save support */ 1807 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1808 ieee80211_mps_rx_h_sta_process(sta, hdr); 1809 1810 /* 1811 * Drop (qos-)data::nullfunc frames silently, since they 1812 * are used only to control station power saving mode. 1813 */ 1814 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1815 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1816 1817 /* 1818 * If we receive a 4-addr nullfunc frame from a STA 1819 * that was not moved to a 4-addr STA vlan yet send 1820 * the event to userspace and for older hostapd drop 1821 * the frame to the monitor interface. 1822 */ 1823 if (ieee80211_has_a4(hdr->frame_control) && 1824 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1825 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1826 !rx->sdata->u.vlan.sta))) { 1827 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1828 cfg80211_rx_unexpected_4addr_frame( 1829 rx->sdata->dev, sta->sta.addr, 1830 GFP_ATOMIC); 1831 return RX_DROP_M_UNEXPECTED_4ADDR_FRAME; 1832 } 1833 /* 1834 * Update counter and free packet here to avoid 1835 * counting this as a dropped packed. 1836 */ 1837 link_sta->rx_stats.packets++; 1838 dev_kfree_skb(rx->skb); 1839 return RX_QUEUED; 1840 } 1841 1842 return RX_CONTINUE; 1843 } /* ieee80211_rx_h_sta_process */ 1844 1845 static struct ieee80211_key * 1846 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1847 { 1848 struct ieee80211_key *key = NULL; 1849 int idx2; 1850 1851 /* Make sure key gets set if either BIGTK key index is set so that 1852 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1853 * Beacon frames and Beacon frames that claim to use another BIGTK key 1854 * index (i.e., a key that we do not have). 1855 */ 1856 1857 if (idx < 0) { 1858 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1859 idx2 = idx + 1; 1860 } else { 1861 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1862 idx2 = idx + 1; 1863 else 1864 idx2 = idx - 1; 1865 } 1866 1867 if (rx->link_sta) 1868 key = rcu_dereference(rx->link_sta->gtk[idx]); 1869 if (!key) 1870 key = rcu_dereference(rx->link->gtk[idx]); 1871 if (!key && rx->link_sta) 1872 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1873 if (!key) 1874 key = rcu_dereference(rx->link->gtk[idx2]); 1875 1876 return key; 1877 } 1878 1879 static ieee80211_rx_result debug_noinline 1880 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1881 { 1882 struct sk_buff *skb = rx->skb; 1883 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1884 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1885 int keyidx; 1886 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1887 struct ieee80211_key *sta_ptk = NULL; 1888 struct ieee80211_key *ptk_idx = NULL; 1889 int mmie_keyidx = -1; 1890 __le16 fc; 1891 1892 if (ieee80211_is_ext(hdr->frame_control)) 1893 return RX_CONTINUE; 1894 1895 /* 1896 * Key selection 101 1897 * 1898 * There are five types of keys: 1899 * - GTK (group keys) 1900 * - IGTK (group keys for management frames) 1901 * - BIGTK (group keys for Beacon frames) 1902 * - PTK (pairwise keys) 1903 * - STK (station-to-station pairwise keys) 1904 * 1905 * When selecting a key, we have to distinguish between multicast 1906 * (including broadcast) and unicast frames, the latter can only 1907 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1908 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1909 * then unicast frames can also use key indices like GTKs. Hence, if we 1910 * don't have a PTK/STK we check the key index for a WEP key. 1911 * 1912 * Note that in a regular BSS, multicast frames are sent by the 1913 * AP only, associated stations unicast the frame to the AP first 1914 * which then multicasts it on their behalf. 1915 * 1916 * There is also a slight problem in IBSS mode: GTKs are negotiated 1917 * with each station, that is something we don't currently handle. 1918 * The spec seems to expect that one negotiates the same key with 1919 * every station but there's no such requirement; VLANs could be 1920 * possible. 1921 */ 1922 1923 /* start without a key */ 1924 rx->key = NULL; 1925 fc = hdr->frame_control; 1926 1927 if (rx->sta) { 1928 int keyid = rx->sta->ptk_idx; 1929 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1930 1931 if (ieee80211_has_protected(fc) && 1932 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1933 keyid = ieee80211_get_keyid(rx->skb); 1934 1935 if (unlikely(keyid < 0)) 1936 return RX_DROP_UNUSABLE; 1937 1938 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1939 } 1940 } 1941 1942 if (!ieee80211_has_protected(fc)) 1943 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1944 1945 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1946 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1947 if ((status->flag & RX_FLAG_DECRYPTED) && 1948 (status->flag & RX_FLAG_IV_STRIPPED)) 1949 return RX_CONTINUE; 1950 /* Skip decryption if the frame is not protected. */ 1951 if (!ieee80211_has_protected(fc)) 1952 return RX_CONTINUE; 1953 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1954 /* Broadcast/multicast robust management frame / BIP */ 1955 if ((status->flag & RX_FLAG_DECRYPTED) && 1956 (status->flag & RX_FLAG_IV_STRIPPED)) 1957 return RX_CONTINUE; 1958 1959 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1960 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1961 NUM_DEFAULT_BEACON_KEYS) { 1962 if (rx->sdata->dev) 1963 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1964 skb->data, 1965 skb->len); 1966 return RX_DROP_M_BAD_BCN_KEYIDX; 1967 } 1968 1969 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1970 if (!rx->key) 1971 return RX_CONTINUE; /* Beacon protection not in use */ 1972 } else if (mmie_keyidx >= 0) { 1973 /* Broadcast/multicast robust management frame / BIP */ 1974 if ((status->flag & RX_FLAG_DECRYPTED) && 1975 (status->flag & RX_FLAG_IV_STRIPPED)) 1976 return RX_CONTINUE; 1977 1978 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1979 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1980 return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */ 1981 if (rx->link_sta) { 1982 if (ieee80211_is_group_privacy_action(skb) && 1983 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1984 return RX_DROP_MONITOR; 1985 1986 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 1987 } 1988 if (!rx->key) 1989 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 1990 } else if (!ieee80211_has_protected(fc)) { 1991 /* 1992 * The frame was not protected, so skip decryption. However, we 1993 * need to set rx->key if there is a key that could have been 1994 * used so that the frame may be dropped if encryption would 1995 * have been expected. 1996 */ 1997 struct ieee80211_key *key = NULL; 1998 int i; 1999 2000 if (ieee80211_is_beacon(fc)) { 2001 key = ieee80211_rx_get_bigtk(rx, -1); 2002 } else if (ieee80211_is_mgmt(fc) && 2003 is_multicast_ether_addr(hdr->addr1)) { 2004 key = rcu_dereference(rx->link->default_mgmt_key); 2005 } else { 2006 if (rx->link_sta) { 2007 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2008 key = rcu_dereference(rx->link_sta->gtk[i]); 2009 if (key) 2010 break; 2011 } 2012 } 2013 if (!key) { 2014 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2015 key = rcu_dereference(rx->link->gtk[i]); 2016 if (key) 2017 break; 2018 } 2019 } 2020 } 2021 if (key) 2022 rx->key = key; 2023 return RX_CONTINUE; 2024 } else { 2025 /* 2026 * The device doesn't give us the IV so we won't be 2027 * able to look up the key. That's ok though, we 2028 * don't need to decrypt the frame, we just won't 2029 * be able to keep statistics accurate. 2030 * Except for key threshold notifications, should 2031 * we somehow allow the driver to tell us which key 2032 * the hardware used if this flag is set? 2033 */ 2034 if ((status->flag & RX_FLAG_DECRYPTED) && 2035 (status->flag & RX_FLAG_IV_STRIPPED)) 2036 return RX_CONTINUE; 2037 2038 keyidx = ieee80211_get_keyid(rx->skb); 2039 2040 if (unlikely(keyidx < 0)) 2041 return RX_DROP_UNUSABLE; 2042 2043 /* check per-station GTK first, if multicast packet */ 2044 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2045 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2046 2047 /* if not found, try default key */ 2048 if (!rx->key) { 2049 if (is_multicast_ether_addr(hdr->addr1)) 2050 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2051 if (!rx->key) 2052 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2053 2054 /* 2055 * RSNA-protected unicast frames should always be 2056 * sent with pairwise or station-to-station keys, 2057 * but for WEP we allow using a key index as well. 2058 */ 2059 if (rx->key && 2060 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2061 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2062 !is_multicast_ether_addr(hdr->addr1)) 2063 rx->key = NULL; 2064 } 2065 } 2066 2067 if (rx->key) { 2068 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2069 return RX_DROP_MONITOR; 2070 2071 /* TODO: add threshold stuff again */ 2072 } else { 2073 return RX_DROP_MONITOR; 2074 } 2075 2076 switch (rx->key->conf.cipher) { 2077 case WLAN_CIPHER_SUITE_WEP40: 2078 case WLAN_CIPHER_SUITE_WEP104: 2079 result = ieee80211_crypto_wep_decrypt(rx); 2080 break; 2081 case WLAN_CIPHER_SUITE_TKIP: 2082 result = ieee80211_crypto_tkip_decrypt(rx); 2083 break; 2084 case WLAN_CIPHER_SUITE_CCMP: 2085 result = ieee80211_crypto_ccmp_decrypt( 2086 rx, IEEE80211_CCMP_MIC_LEN); 2087 break; 2088 case WLAN_CIPHER_SUITE_CCMP_256: 2089 result = ieee80211_crypto_ccmp_decrypt( 2090 rx, IEEE80211_CCMP_256_MIC_LEN); 2091 break; 2092 case WLAN_CIPHER_SUITE_AES_CMAC: 2093 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2094 break; 2095 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2096 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2097 break; 2098 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2099 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2100 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2101 break; 2102 case WLAN_CIPHER_SUITE_GCMP: 2103 case WLAN_CIPHER_SUITE_GCMP_256: 2104 result = ieee80211_crypto_gcmp_decrypt(rx); 2105 break; 2106 default: 2107 result = RX_DROP_UNUSABLE; 2108 } 2109 2110 /* the hdr variable is invalid after the decrypt handlers */ 2111 2112 /* either the frame has been decrypted or will be dropped */ 2113 status->flag |= RX_FLAG_DECRYPTED; 2114 2115 if (unlikely(ieee80211_is_beacon(fc) && RX_RES_IS_UNUSABLE(result) && 2116 rx->sdata->dev)) 2117 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2118 skb->data, skb->len); 2119 2120 return result; 2121 } 2122 2123 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2124 { 2125 int i; 2126 2127 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2128 skb_queue_head_init(&cache->entries[i].skb_list); 2129 } 2130 2131 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2132 { 2133 int i; 2134 2135 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2136 __skb_queue_purge(&cache->entries[i].skb_list); 2137 } 2138 2139 static inline struct ieee80211_fragment_entry * 2140 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2141 unsigned int frag, unsigned int seq, int rx_queue, 2142 struct sk_buff **skb) 2143 { 2144 struct ieee80211_fragment_entry *entry; 2145 2146 entry = &cache->entries[cache->next++]; 2147 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2148 cache->next = 0; 2149 2150 __skb_queue_purge(&entry->skb_list); 2151 2152 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2153 *skb = NULL; 2154 entry->first_frag_time = jiffies; 2155 entry->seq = seq; 2156 entry->rx_queue = rx_queue; 2157 entry->last_frag = frag; 2158 entry->check_sequential_pn = false; 2159 entry->extra_len = 0; 2160 2161 return entry; 2162 } 2163 2164 static inline struct ieee80211_fragment_entry * 2165 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2166 unsigned int frag, unsigned int seq, 2167 int rx_queue, struct ieee80211_hdr *hdr) 2168 { 2169 struct ieee80211_fragment_entry *entry; 2170 int i, idx; 2171 2172 idx = cache->next; 2173 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2174 struct ieee80211_hdr *f_hdr; 2175 struct sk_buff *f_skb; 2176 2177 idx--; 2178 if (idx < 0) 2179 idx = IEEE80211_FRAGMENT_MAX - 1; 2180 2181 entry = &cache->entries[idx]; 2182 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2183 entry->rx_queue != rx_queue || 2184 entry->last_frag + 1 != frag) 2185 continue; 2186 2187 f_skb = __skb_peek(&entry->skb_list); 2188 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2189 2190 /* 2191 * Check ftype and addresses are equal, else check next fragment 2192 */ 2193 if (((hdr->frame_control ^ f_hdr->frame_control) & 2194 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2195 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2196 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2197 continue; 2198 2199 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2200 __skb_queue_purge(&entry->skb_list); 2201 continue; 2202 } 2203 return entry; 2204 } 2205 2206 return NULL; 2207 } 2208 2209 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2210 { 2211 return rx->key && 2212 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2213 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2214 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2215 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2216 ieee80211_has_protected(fc); 2217 } 2218 2219 static ieee80211_rx_result debug_noinline 2220 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2221 { 2222 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2223 struct ieee80211_hdr *hdr; 2224 u16 sc; 2225 __le16 fc; 2226 unsigned int frag, seq; 2227 struct ieee80211_fragment_entry *entry; 2228 struct sk_buff *skb; 2229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2230 2231 hdr = (struct ieee80211_hdr *)rx->skb->data; 2232 fc = hdr->frame_control; 2233 2234 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2235 return RX_CONTINUE; 2236 2237 sc = le16_to_cpu(hdr->seq_ctrl); 2238 frag = sc & IEEE80211_SCTL_FRAG; 2239 2240 if (rx->sta) 2241 cache = &rx->sta->frags; 2242 2243 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2244 goto out; 2245 2246 if (is_multicast_ether_addr(hdr->addr1)) 2247 return RX_DROP_MONITOR; 2248 2249 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2250 2251 if (skb_linearize(rx->skb)) 2252 return RX_DROP_UNUSABLE; 2253 2254 /* 2255 * skb_linearize() might change the skb->data and 2256 * previously cached variables (in this case, hdr) need to 2257 * be refreshed with the new data. 2258 */ 2259 hdr = (struct ieee80211_hdr *)rx->skb->data; 2260 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2261 2262 if (frag == 0) { 2263 /* This is the first fragment of a new frame. */ 2264 entry = ieee80211_reassemble_add(cache, frag, seq, 2265 rx->seqno_idx, &(rx->skb)); 2266 if (requires_sequential_pn(rx, fc)) { 2267 int queue = rx->security_idx; 2268 2269 /* Store CCMP/GCMP PN so that we can verify that the 2270 * next fragment has a sequential PN value. 2271 */ 2272 entry->check_sequential_pn = true; 2273 entry->is_protected = true; 2274 entry->key_color = rx->key->color; 2275 memcpy(entry->last_pn, 2276 rx->key->u.ccmp.rx_pn[queue], 2277 IEEE80211_CCMP_PN_LEN); 2278 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2279 u.ccmp.rx_pn) != 2280 offsetof(struct ieee80211_key, 2281 u.gcmp.rx_pn)); 2282 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2283 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2284 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2285 IEEE80211_GCMP_PN_LEN); 2286 } else if (rx->key && 2287 (ieee80211_has_protected(fc) || 2288 (status->flag & RX_FLAG_DECRYPTED))) { 2289 entry->is_protected = true; 2290 entry->key_color = rx->key->color; 2291 } 2292 return RX_QUEUED; 2293 } 2294 2295 /* This is a fragment for a frame that should already be pending in 2296 * fragment cache. Add this fragment to the end of the pending entry. 2297 */ 2298 entry = ieee80211_reassemble_find(cache, frag, seq, 2299 rx->seqno_idx, hdr); 2300 if (!entry) { 2301 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2302 return RX_DROP_MONITOR; 2303 } 2304 2305 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2306 * MPDU PN values are not incrementing in steps of 1." 2307 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2308 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2309 */ 2310 if (entry->check_sequential_pn) { 2311 int i; 2312 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2313 2314 if (!requires_sequential_pn(rx, fc)) 2315 return RX_DROP_UNUSABLE; 2316 2317 /* Prevent mixed key and fragment cache attacks */ 2318 if (entry->key_color != rx->key->color) 2319 return RX_DROP_UNUSABLE; 2320 2321 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2322 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2323 pn[i]++; 2324 if (pn[i]) 2325 break; 2326 } 2327 2328 rpn = rx->ccm_gcm.pn; 2329 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2330 return RX_DROP_UNUSABLE; 2331 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2332 } else if (entry->is_protected && 2333 (!rx->key || 2334 (!ieee80211_has_protected(fc) && 2335 !(status->flag & RX_FLAG_DECRYPTED)) || 2336 rx->key->color != entry->key_color)) { 2337 /* Drop this as a mixed key or fragment cache attack, even 2338 * if for TKIP Michael MIC should protect us, and WEP is a 2339 * lost cause anyway. 2340 */ 2341 return RX_DROP_UNUSABLE; 2342 } else if (entry->is_protected && rx->key && 2343 entry->key_color != rx->key->color && 2344 (status->flag & RX_FLAG_DECRYPTED)) { 2345 return RX_DROP_UNUSABLE; 2346 } 2347 2348 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2349 __skb_queue_tail(&entry->skb_list, rx->skb); 2350 entry->last_frag = frag; 2351 entry->extra_len += rx->skb->len; 2352 if (ieee80211_has_morefrags(fc)) { 2353 rx->skb = NULL; 2354 return RX_QUEUED; 2355 } 2356 2357 rx->skb = __skb_dequeue(&entry->skb_list); 2358 if (skb_tailroom(rx->skb) < entry->extra_len) { 2359 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2360 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2361 GFP_ATOMIC))) { 2362 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2363 __skb_queue_purge(&entry->skb_list); 2364 return RX_DROP_UNUSABLE; 2365 } 2366 } 2367 while ((skb = __skb_dequeue(&entry->skb_list))) { 2368 skb_put_data(rx->skb, skb->data, skb->len); 2369 dev_kfree_skb(skb); 2370 } 2371 2372 out: 2373 ieee80211_led_rx(rx->local); 2374 if (rx->sta) 2375 rx->link_sta->rx_stats.packets++; 2376 return RX_CONTINUE; 2377 } 2378 2379 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2380 { 2381 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2382 return -EACCES; 2383 2384 return 0; 2385 } 2386 2387 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2388 { 2389 struct sk_buff *skb = rx->skb; 2390 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2391 2392 /* 2393 * Pass through unencrypted frames if the hardware has 2394 * decrypted them already. 2395 */ 2396 if (status->flag & RX_FLAG_DECRYPTED) 2397 return 0; 2398 2399 /* Drop unencrypted frames if key is set. */ 2400 if (unlikely(!ieee80211_has_protected(fc) && 2401 !ieee80211_is_any_nullfunc(fc) && 2402 ieee80211_is_data(fc) && rx->key)) 2403 return -EACCES; 2404 2405 return 0; 2406 } 2407 2408 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2409 { 2410 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2411 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2412 __le16 fc = mgmt->frame_control; 2413 2414 /* 2415 * Pass through unencrypted frames if the hardware has 2416 * decrypted them already. 2417 */ 2418 if (status->flag & RX_FLAG_DECRYPTED) 2419 return 0; 2420 2421 /* drop unicast protected dual (that wasn't protected) */ 2422 if (ieee80211_is_action(fc) && 2423 mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 2424 return -EACCES; 2425 2426 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2427 if (unlikely(!ieee80211_has_protected(fc) && 2428 ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) { 2429 if (ieee80211_is_deauth(fc) || 2430 ieee80211_is_disassoc(fc)) { 2431 /* 2432 * Permit unprotected deauth/disassoc frames 2433 * during 4-way-HS (key is installed after HS). 2434 */ 2435 if (!rx->key) 2436 return 0; 2437 2438 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2439 rx->skb->data, 2440 rx->skb->len); 2441 } 2442 return -EACCES; 2443 } 2444 /* BIP does not use Protected field, so need to check MMIE */ 2445 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2446 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2447 if (ieee80211_is_deauth(fc) || 2448 ieee80211_is_disassoc(fc)) 2449 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2450 rx->skb->data, 2451 rx->skb->len); 2452 return -EACCES; 2453 } 2454 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2455 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2456 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2457 rx->skb->data, 2458 rx->skb->len); 2459 return -EACCES; 2460 } 2461 /* 2462 * When using MFP, Action frames are not allowed prior to 2463 * having configured keys. 2464 */ 2465 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2466 ieee80211_is_robust_mgmt_frame(rx->skb))) 2467 return -EACCES; 2468 2469 /* drop unicast public action frames when using MPF */ 2470 if (is_unicast_ether_addr(mgmt->da) && 2471 ieee80211_is_protected_dual_of_public_action(rx->skb)) 2472 return -EACCES; 2473 } 2474 2475 return 0; 2476 } 2477 2478 static int 2479 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2480 { 2481 struct ieee80211_sub_if_data *sdata = rx->sdata; 2482 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2483 bool check_port_control = false; 2484 struct ethhdr *ehdr; 2485 int ret; 2486 2487 *port_control = false; 2488 if (ieee80211_has_a4(hdr->frame_control) && 2489 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2490 return -1; 2491 2492 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2493 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2494 2495 if (!sdata->u.mgd.use_4addr) 2496 return -1; 2497 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2498 check_port_control = true; 2499 } 2500 2501 if (is_multicast_ether_addr(hdr->addr1) && 2502 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2503 return -1; 2504 2505 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2506 if (ret < 0) 2507 return ret; 2508 2509 ehdr = (struct ethhdr *) rx->skb->data; 2510 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2511 *port_control = true; 2512 else if (check_port_control) 2513 return -1; 2514 2515 return 0; 2516 } 2517 2518 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2519 const u8 *addr, int *out_link_id) 2520 { 2521 unsigned int link_id; 2522 2523 /* non-MLO, or MLD address replaced by hardware */ 2524 if (ether_addr_equal(sdata->vif.addr, addr)) 2525 return true; 2526 2527 if (!ieee80211_vif_is_mld(&sdata->vif)) 2528 return false; 2529 2530 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2531 struct ieee80211_bss_conf *conf; 2532 2533 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2534 2535 if (!conf) 2536 continue; 2537 if (ether_addr_equal(conf->addr, addr)) { 2538 if (out_link_id) 2539 *out_link_id = link_id; 2540 return true; 2541 } 2542 } 2543 2544 return false; 2545 } 2546 2547 /* 2548 * requires that rx->skb is a frame with ethernet header 2549 */ 2550 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2551 { 2552 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2553 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2554 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2555 2556 /* 2557 * Allow EAPOL frames to us/the PAE group address regardless of 2558 * whether the frame was encrypted or not, and always disallow 2559 * all other destination addresses for them. 2560 */ 2561 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2562 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2563 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2564 2565 if (ieee80211_802_1x_port_control(rx) || 2566 ieee80211_drop_unencrypted(rx, fc)) 2567 return false; 2568 2569 return true; 2570 } 2571 2572 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2573 struct ieee80211_rx_data *rx) 2574 { 2575 struct ieee80211_sub_if_data *sdata = rx->sdata; 2576 struct net_device *dev = sdata->dev; 2577 2578 if (unlikely((skb->protocol == sdata->control_port_protocol || 2579 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2580 !sdata->control_port_no_preauth)) && 2581 sdata->control_port_over_nl80211)) { 2582 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2583 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2584 2585 cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id); 2586 dev_kfree_skb(skb); 2587 } else { 2588 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2589 2590 memset(skb->cb, 0, sizeof(skb->cb)); 2591 2592 /* 2593 * 802.1X over 802.11 requires that the authenticator address 2594 * be used for EAPOL frames. However, 802.1X allows the use of 2595 * the PAE group address instead. If the interface is part of 2596 * a bridge and we pass the frame with the PAE group address, 2597 * then the bridge will forward it to the network (even if the 2598 * client was not associated yet), which isn't supposed to 2599 * happen. 2600 * To avoid that, rewrite the destination address to our own 2601 * address, so that the authenticator (e.g. hostapd) will see 2602 * the frame, but bridge won't forward it anywhere else. Note 2603 * that due to earlier filtering, the only other address can 2604 * be the PAE group address, unless the hardware allowed them 2605 * through in 802.3 offloaded mode. 2606 */ 2607 if (unlikely(skb->protocol == sdata->control_port_protocol && 2608 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2609 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2610 2611 /* deliver to local stack */ 2612 if (rx->list) 2613 list_add_tail(&skb->list, rx->list); 2614 else 2615 netif_receive_skb(skb); 2616 } 2617 } 2618 2619 /* 2620 * requires that rx->skb is a frame with ethernet header 2621 */ 2622 static void 2623 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2624 { 2625 struct ieee80211_sub_if_data *sdata = rx->sdata; 2626 struct net_device *dev = sdata->dev; 2627 struct sk_buff *skb, *xmit_skb; 2628 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2629 struct sta_info *dsta; 2630 2631 skb = rx->skb; 2632 xmit_skb = NULL; 2633 2634 dev_sw_netstats_rx_add(dev, skb->len); 2635 2636 if (rx->sta) { 2637 /* The seqno index has the same property as needed 2638 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2639 * for non-QoS-data frames. Here we know it's a data 2640 * frame, so count MSDUs. 2641 */ 2642 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2643 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2644 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2645 } 2646 2647 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2648 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2649 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2650 ehdr->h_proto != rx->sdata->control_port_protocol && 2651 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2652 if (is_multicast_ether_addr(ehdr->h_dest) && 2653 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2654 /* 2655 * send multicast frames both to higher layers in 2656 * local net stack and back to the wireless medium 2657 */ 2658 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2659 if (!xmit_skb) 2660 net_info_ratelimited("%s: failed to clone multicast frame\n", 2661 dev->name); 2662 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2663 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2664 dsta = sta_info_get(sdata, ehdr->h_dest); 2665 if (dsta) { 2666 /* 2667 * The destination station is associated to 2668 * this AP (in this VLAN), so send the frame 2669 * directly to it and do not pass it to local 2670 * net stack. 2671 */ 2672 xmit_skb = skb; 2673 skb = NULL; 2674 } 2675 } 2676 } 2677 2678 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2679 if (skb) { 2680 /* 'align' will only take the values 0 or 2 here since all 2681 * frames are required to be aligned to 2-byte boundaries 2682 * when being passed to mac80211; the code here works just 2683 * as well if that isn't true, but mac80211 assumes it can 2684 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2685 */ 2686 int align; 2687 2688 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2689 if (align) { 2690 if (WARN_ON(skb_headroom(skb) < 3)) { 2691 dev_kfree_skb(skb); 2692 skb = NULL; 2693 } else { 2694 u8 *data = skb->data; 2695 size_t len = skb_headlen(skb); 2696 skb->data -= align; 2697 memmove(skb->data, data, len); 2698 skb_set_tail_pointer(skb, len); 2699 } 2700 } 2701 } 2702 #endif 2703 2704 if (skb) { 2705 skb->protocol = eth_type_trans(skb, dev); 2706 ieee80211_deliver_skb_to_local_stack(skb, rx); 2707 } 2708 2709 if (xmit_skb) { 2710 /* 2711 * Send to wireless media and increase priority by 256 to 2712 * keep the received priority instead of reclassifying 2713 * the frame (see cfg80211_classify8021d). 2714 */ 2715 xmit_skb->priority += 256; 2716 xmit_skb->protocol = htons(ETH_P_802_3); 2717 skb_reset_network_header(xmit_skb); 2718 skb_reset_mac_header(xmit_skb); 2719 dev_queue_xmit(xmit_skb); 2720 } 2721 } 2722 2723 #ifdef CONFIG_MAC80211_MESH 2724 static bool 2725 ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata, 2726 struct sk_buff *skb, int hdrlen) 2727 { 2728 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2729 struct ieee80211_mesh_fast_tx_key key = { 2730 .type = MESH_FAST_TX_TYPE_FORWARDED 2731 }; 2732 struct ieee80211_mesh_fast_tx *entry; 2733 struct ieee80211s_hdr *mesh_hdr; 2734 struct tid_ampdu_tx *tid_tx; 2735 struct sta_info *sta; 2736 struct ethhdr eth; 2737 u8 tid; 2738 2739 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth)); 2740 if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2741 ether_addr_copy(key.addr, mesh_hdr->eaddr1); 2742 else if (!(mesh_hdr->flags & MESH_FLAGS_AE)) 2743 ether_addr_copy(key.addr, skb->data); 2744 else 2745 return false; 2746 2747 entry = mesh_fast_tx_get(sdata, &key); 2748 if (!entry) 2749 return false; 2750 2751 sta = rcu_dereference(entry->mpath->next_hop); 2752 if (!sta) 2753 return false; 2754 2755 if (skb_linearize(skb)) 2756 return false; 2757 2758 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; 2759 tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); 2760 if (tid_tx) { 2761 if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) 2762 return false; 2763 2764 if (tid_tx->timeout) 2765 tid_tx->last_tx = jiffies; 2766 } 2767 2768 ieee80211_aggr_check(sdata, sta, skb); 2769 2770 if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 2771 &skb->protocol)) 2772 hdrlen += ETH_ALEN; 2773 else 2774 skb->protocol = htons(skb->len - hdrlen); 2775 skb_set_network_header(skb, hdrlen + 2); 2776 2777 skb->dev = sdata->dev; 2778 memcpy(ð, skb->data, ETH_HLEN - 2); 2779 skb_pull(skb, 2); 2780 __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, 2781 eth.h_dest, eth.h_source); 2782 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2783 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2784 2785 return true; 2786 } 2787 #endif 2788 2789 static ieee80211_rx_result 2790 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, 2791 struct sk_buff *skb) 2792 { 2793 #ifdef CONFIG_MAC80211_MESH 2794 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2795 struct ieee80211_local *local = sdata->local; 2796 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; 2797 struct ieee80211_hdr hdr = { 2798 .frame_control = cpu_to_le16(fc) 2799 }; 2800 struct ieee80211_hdr *fwd_hdr; 2801 struct ieee80211s_hdr *mesh_hdr; 2802 struct ieee80211_tx_info *info; 2803 struct sk_buff *fwd_skb; 2804 struct ethhdr *eth; 2805 bool multicast; 2806 int tailroom = 0; 2807 int hdrlen, mesh_hdrlen; 2808 u8 *qos; 2809 2810 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2811 return RX_CONTINUE; 2812 2813 if (!pskb_may_pull(skb, sizeof(*eth) + 6)) 2814 return RX_DROP_MONITOR; 2815 2816 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); 2817 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); 2818 2819 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) 2820 return RX_DROP_MONITOR; 2821 2822 eth = (struct ethhdr *)skb->data; 2823 multicast = is_multicast_ether_addr(eth->h_dest); 2824 2825 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); 2826 if (!mesh_hdr->ttl) 2827 return RX_DROP_MONITOR; 2828 2829 /* frame is in RMC, don't forward */ 2830 if (is_multicast_ether_addr(eth->h_dest) && 2831 mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) 2832 return RX_DROP_MONITOR; 2833 2834 /* forward packet */ 2835 if (sdata->crypto_tx_tailroom_needed_cnt) 2836 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2837 2838 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2839 struct mesh_path *mppath; 2840 char *proxied_addr; 2841 bool update = false; 2842 2843 if (multicast) 2844 proxied_addr = mesh_hdr->eaddr1; 2845 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2846 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2847 proxied_addr = mesh_hdr->eaddr2; 2848 else 2849 return RX_DROP_MONITOR; 2850 2851 rcu_read_lock(); 2852 mppath = mpp_path_lookup(sdata, proxied_addr); 2853 if (!mppath) { 2854 mpp_path_add(sdata, proxied_addr, eth->h_source); 2855 } else { 2856 spin_lock_bh(&mppath->state_lock); 2857 if (!ether_addr_equal(mppath->mpp, eth->h_source)) { 2858 memcpy(mppath->mpp, eth->h_source, ETH_ALEN); 2859 update = true; 2860 } 2861 mppath->exp_time = jiffies; 2862 spin_unlock_bh(&mppath->state_lock); 2863 } 2864 2865 /* flush fast xmit cache if the address path changed */ 2866 if (update) 2867 mesh_fast_tx_flush_addr(sdata, proxied_addr); 2868 2869 rcu_read_unlock(); 2870 } 2871 2872 /* Frame has reached destination. Don't forward */ 2873 if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) 2874 goto rx_accept; 2875 2876 if (!--mesh_hdr->ttl) { 2877 if (multicast) 2878 goto rx_accept; 2879 2880 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2881 return RX_DROP_MONITOR; 2882 } 2883 2884 if (!ifmsh->mshcfg.dot11MeshForwarding) { 2885 if (is_multicast_ether_addr(eth->h_dest)) 2886 goto rx_accept; 2887 2888 return RX_DROP_MONITOR; 2889 } 2890 2891 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); 2892 2893 if (!multicast && 2894 ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen)) 2895 return RX_QUEUED; 2896 2897 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, 2898 eth->h_dest, eth->h_source); 2899 hdrlen = ieee80211_hdrlen(hdr.frame_control); 2900 if (multicast) { 2901 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); 2902 2903 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + 2904 IEEE80211_ENCRYPT_HEADROOM, 2905 tailroom, GFP_ATOMIC); 2906 if (!fwd_skb) 2907 goto rx_accept; 2908 } else { 2909 fwd_skb = skb; 2910 skb = NULL; 2911 2912 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) 2913 return RX_DROP_UNUSABLE; 2914 2915 if (skb_linearize(fwd_skb)) 2916 return RX_DROP_UNUSABLE; 2917 } 2918 2919 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); 2920 memcpy(fwd_hdr, &hdr, hdrlen - 2); 2921 qos = ieee80211_get_qos_ctl(fwd_hdr); 2922 qos[0] = qos[1] = 0; 2923 2924 skb_reset_mac_header(fwd_skb); 2925 hdrlen += mesh_hdrlen; 2926 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, 2927 &fwd_skb->protocol)) 2928 hdrlen += ETH_ALEN; 2929 else 2930 fwd_skb->protocol = htons(fwd_skb->len - hdrlen); 2931 skb_set_network_header(fwd_skb, hdrlen + 2); 2932 2933 info = IEEE80211_SKB_CB(fwd_skb); 2934 memset(info, 0, sizeof(*info)); 2935 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2936 info->control.vif = &sdata->vif; 2937 info->control.jiffies = jiffies; 2938 fwd_skb->dev = sdata->dev; 2939 if (multicast) { 2940 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2941 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2942 /* update power mode indication when forwarding */ 2943 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2944 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2945 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2946 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2947 } else { 2948 /* unable to resolve next hop */ 2949 if (sta) 2950 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2951 hdr.addr3, 0, 2952 WLAN_REASON_MESH_PATH_NOFORWARD, 2953 sta->sta.addr); 2954 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2955 kfree_skb(fwd_skb); 2956 goto rx_accept; 2957 } 2958 2959 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2960 ieee80211_set_qos_hdr(sdata, fwd_skb); 2961 ieee80211_add_pending_skb(local, fwd_skb); 2962 2963 rx_accept: 2964 if (!skb) 2965 return RX_QUEUED; 2966 2967 ieee80211_strip_8023_mesh_hdr(skb); 2968 #endif 2969 2970 return RX_CONTINUE; 2971 } 2972 2973 static ieee80211_rx_result debug_noinline 2974 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2975 { 2976 struct net_device *dev = rx->sdata->dev; 2977 struct sk_buff *skb = rx->skb; 2978 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2979 __le16 fc = hdr->frame_control; 2980 struct sk_buff_head frame_list; 2981 ieee80211_rx_result res; 2982 struct ethhdr ethhdr; 2983 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2984 2985 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2986 check_da = NULL; 2987 check_sa = NULL; 2988 } else switch (rx->sdata->vif.type) { 2989 case NL80211_IFTYPE_AP: 2990 case NL80211_IFTYPE_AP_VLAN: 2991 check_da = NULL; 2992 break; 2993 case NL80211_IFTYPE_STATION: 2994 if (!rx->sta || 2995 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2996 check_sa = NULL; 2997 break; 2998 case NL80211_IFTYPE_MESH_POINT: 2999 check_sa = NULL; 3000 check_da = NULL; 3001 break; 3002 default: 3003 break; 3004 } 3005 3006 skb->dev = dev; 3007 __skb_queue_head_init(&frame_list); 3008 3009 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 3010 rx->sdata->vif.addr, 3011 rx->sdata->vif.type, 3012 data_offset, true)) 3013 return RX_DROP_UNUSABLE; 3014 3015 if (rx->sta->amsdu_mesh_control < 0) { 3016 s8 valid = -1; 3017 int i; 3018 3019 for (i = 0; i <= 2; i++) { 3020 if (!ieee80211_is_valid_amsdu(skb, i)) 3021 continue; 3022 3023 if (valid >= 0) { 3024 /* ambiguous */ 3025 valid = -1; 3026 break; 3027 } 3028 3029 valid = i; 3030 } 3031 3032 rx->sta->amsdu_mesh_control = valid; 3033 } 3034 3035 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 3036 rx->sdata->vif.type, 3037 rx->local->hw.extra_tx_headroom, 3038 check_da, check_sa, 3039 rx->sta->amsdu_mesh_control); 3040 3041 while (!skb_queue_empty(&frame_list)) { 3042 rx->skb = __skb_dequeue(&frame_list); 3043 3044 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3045 switch (res) { 3046 case RX_QUEUED: 3047 continue; 3048 case RX_CONTINUE: 3049 break; 3050 default: 3051 goto free; 3052 } 3053 3054 if (!ieee80211_frame_allowed(rx, fc)) 3055 goto free; 3056 3057 ieee80211_deliver_skb(rx); 3058 continue; 3059 3060 free: 3061 dev_kfree_skb(rx->skb); 3062 } 3063 3064 return RX_QUEUED; 3065 } 3066 3067 static ieee80211_rx_result debug_noinline 3068 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 3069 { 3070 struct sk_buff *skb = rx->skb; 3071 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3072 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3073 __le16 fc = hdr->frame_control; 3074 3075 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 3076 return RX_CONTINUE; 3077 3078 if (unlikely(!ieee80211_is_data(fc))) 3079 return RX_CONTINUE; 3080 3081 if (unlikely(!ieee80211_is_data_present(fc))) 3082 return RX_DROP_MONITOR; 3083 3084 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 3085 switch (rx->sdata->vif.type) { 3086 case NL80211_IFTYPE_AP_VLAN: 3087 if (!rx->sdata->u.vlan.sta) 3088 return RX_DROP_UNUSABLE; 3089 break; 3090 case NL80211_IFTYPE_STATION: 3091 if (!rx->sdata->u.mgd.use_4addr) 3092 return RX_DROP_UNUSABLE; 3093 break; 3094 case NL80211_IFTYPE_MESH_POINT: 3095 break; 3096 default: 3097 return RX_DROP_UNUSABLE; 3098 } 3099 } 3100 3101 if (is_multicast_ether_addr(hdr->addr1) || !rx->sta) 3102 return RX_DROP_UNUSABLE; 3103 3104 if (rx->key) { 3105 /* 3106 * We should not receive A-MSDUs on pre-HT connections, 3107 * and HT connections cannot use old ciphers. Thus drop 3108 * them, as in those cases we couldn't even have SPP 3109 * A-MSDUs or such. 3110 */ 3111 switch (rx->key->conf.cipher) { 3112 case WLAN_CIPHER_SUITE_WEP40: 3113 case WLAN_CIPHER_SUITE_WEP104: 3114 case WLAN_CIPHER_SUITE_TKIP: 3115 return RX_DROP_UNUSABLE; 3116 default: 3117 break; 3118 } 3119 } 3120 3121 return __ieee80211_rx_h_amsdu(rx, 0); 3122 } 3123 3124 static ieee80211_rx_result debug_noinline 3125 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3126 { 3127 struct ieee80211_sub_if_data *sdata = rx->sdata; 3128 struct ieee80211_local *local = rx->local; 3129 struct net_device *dev = sdata->dev; 3130 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3131 __le16 fc = hdr->frame_control; 3132 ieee80211_rx_result res; 3133 bool port_control; 3134 int err; 3135 3136 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3137 return RX_CONTINUE; 3138 3139 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3140 return RX_DROP_MONITOR; 3141 3142 /* 3143 * Send unexpected-4addr-frame event to hostapd. For older versions, 3144 * also drop the frame to cooked monitor interfaces. 3145 */ 3146 if (ieee80211_has_a4(hdr->frame_control) && 3147 sdata->vif.type == NL80211_IFTYPE_AP) { 3148 if (rx->sta && 3149 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3150 cfg80211_rx_unexpected_4addr_frame( 3151 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3152 return RX_DROP_MONITOR; 3153 } 3154 3155 err = __ieee80211_data_to_8023(rx, &port_control); 3156 if (unlikely(err)) 3157 return RX_DROP_UNUSABLE; 3158 3159 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3160 if (res != RX_CONTINUE) 3161 return res; 3162 3163 if (!ieee80211_frame_allowed(rx, fc)) 3164 return RX_DROP_MONITOR; 3165 3166 /* directly handle TDLS channel switch requests/responses */ 3167 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3168 cpu_to_be16(ETH_P_TDLS))) { 3169 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3170 3171 if (pskb_may_pull(rx->skb, 3172 offsetof(struct ieee80211_tdls_data, u)) && 3173 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3174 tf->category == WLAN_CATEGORY_TDLS && 3175 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3176 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3177 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3178 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3179 rx->sta, rx->skb); 3180 return RX_QUEUED; 3181 } 3182 } 3183 3184 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3185 unlikely(port_control) && sdata->bss) { 3186 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3187 u.ap); 3188 dev = sdata->dev; 3189 rx->sdata = sdata; 3190 } 3191 3192 rx->skb->dev = dev; 3193 3194 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3195 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3196 !is_multicast_ether_addr( 3197 ((struct ethhdr *)rx->skb->data)->h_dest) && 3198 (!local->scanning && 3199 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3200 mod_timer(&local->dynamic_ps_timer, jiffies + 3201 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3202 3203 ieee80211_deliver_skb(rx); 3204 3205 return RX_QUEUED; 3206 } 3207 3208 static ieee80211_rx_result debug_noinline 3209 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3210 { 3211 struct sk_buff *skb = rx->skb; 3212 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3213 struct tid_ampdu_rx *tid_agg_rx; 3214 u16 start_seq_num; 3215 u16 tid; 3216 3217 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3218 return RX_CONTINUE; 3219 3220 if (ieee80211_is_back_req(bar->frame_control)) { 3221 struct { 3222 __le16 control, start_seq_num; 3223 } __packed bar_data; 3224 struct ieee80211_event event = { 3225 .type = BAR_RX_EVENT, 3226 }; 3227 3228 if (!rx->sta) 3229 return RX_DROP_MONITOR; 3230 3231 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3232 &bar_data, sizeof(bar_data))) 3233 return RX_DROP_MONITOR; 3234 3235 tid = le16_to_cpu(bar_data.control) >> 12; 3236 3237 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3238 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3239 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3240 WLAN_BACK_RECIPIENT, 3241 WLAN_REASON_QSTA_REQUIRE_SETUP); 3242 3243 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3244 if (!tid_agg_rx) 3245 return RX_DROP_MONITOR; 3246 3247 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3248 event.u.ba.tid = tid; 3249 event.u.ba.ssn = start_seq_num; 3250 event.u.ba.sta = &rx->sta->sta; 3251 3252 /* reset session timer */ 3253 if (tid_agg_rx->timeout) 3254 mod_timer(&tid_agg_rx->session_timer, 3255 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3256 3257 spin_lock(&tid_agg_rx->reorder_lock); 3258 /* release stored frames up to start of BAR */ 3259 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3260 start_seq_num, frames); 3261 spin_unlock(&tid_agg_rx->reorder_lock); 3262 3263 drv_event_callback(rx->local, rx->sdata, &event); 3264 3265 kfree_skb(skb); 3266 return RX_QUEUED; 3267 } 3268 3269 /* 3270 * After this point, we only want management frames, 3271 * so we can drop all remaining control frames to 3272 * cooked monitor interfaces. 3273 */ 3274 return RX_DROP_MONITOR; 3275 } 3276 3277 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3278 struct ieee80211_mgmt *mgmt, 3279 size_t len) 3280 { 3281 struct ieee80211_local *local = sdata->local; 3282 struct sk_buff *skb; 3283 struct ieee80211_mgmt *resp; 3284 3285 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3286 /* Not to own unicast address */ 3287 return; 3288 } 3289 3290 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3291 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3292 /* Not from the current AP or not associated yet. */ 3293 return; 3294 } 3295 3296 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3297 /* Too short SA Query request frame */ 3298 return; 3299 } 3300 3301 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3302 if (skb == NULL) 3303 return; 3304 3305 skb_reserve(skb, local->hw.extra_tx_headroom); 3306 resp = skb_put_zero(skb, 24); 3307 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3308 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3309 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3310 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3311 IEEE80211_STYPE_ACTION); 3312 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3313 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3314 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3315 memcpy(resp->u.action.u.sa_query.trans_id, 3316 mgmt->u.action.u.sa_query.trans_id, 3317 WLAN_SA_QUERY_TR_ID_LEN); 3318 3319 ieee80211_tx_skb(sdata, skb); 3320 } 3321 3322 static void 3323 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3324 { 3325 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3326 const struct element *ie; 3327 size_t baselen; 3328 3329 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3330 NL80211_EXT_FEATURE_BSS_COLOR)) 3331 return; 3332 3333 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3334 return; 3335 3336 if (rx->sdata->vif.bss_conf.csa_active) 3337 return; 3338 3339 baselen = mgmt->u.beacon.variable - rx->skb->data; 3340 if (baselen > rx->skb->len) 3341 return; 3342 3343 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3344 mgmt->u.beacon.variable, 3345 rx->skb->len - baselen); 3346 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3347 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3348 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3349 const struct ieee80211_he_operation *he_oper; 3350 u8 color; 3351 3352 he_oper = (void *)(ie->data + 1); 3353 if (le32_get_bits(he_oper->he_oper_params, 3354 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3355 return; 3356 3357 color = le32_get_bits(he_oper->he_oper_params, 3358 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3359 if (color == bss_conf->he_bss_color.color) 3360 ieee80211_obss_color_collision_notify(&rx->sdata->vif, 3361 BIT_ULL(color), 3362 GFP_ATOMIC); 3363 } 3364 } 3365 3366 static ieee80211_rx_result debug_noinline 3367 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3368 { 3369 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3370 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3371 3372 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3373 return RX_CONTINUE; 3374 3375 /* 3376 * From here on, look only at management frames. 3377 * Data and control frames are already handled, 3378 * and unknown (reserved) frames are useless. 3379 */ 3380 if (rx->skb->len < 24) 3381 return RX_DROP_MONITOR; 3382 3383 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3384 return RX_DROP_MONITOR; 3385 3386 /* drop too small action frames */ 3387 if (ieee80211_is_action(mgmt->frame_control) && 3388 rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 3389 return RX_DROP_UNUSABLE; 3390 3391 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3392 ieee80211_is_beacon(mgmt->frame_control) && 3393 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3394 int sig = 0; 3395 3396 /* sw bss color collision detection */ 3397 ieee80211_rx_check_bss_color_collision(rx); 3398 3399 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3400 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3401 sig = status->signal; 3402 3403 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3404 rx->skb->data, rx->skb->len, 3405 ieee80211_rx_status_to_khz(status), 3406 sig); 3407 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3408 } 3409 3410 if (ieee80211_drop_unencrypted_mgmt(rx)) 3411 return RX_DROP_UNUSABLE; 3412 3413 return RX_CONTINUE; 3414 } 3415 3416 static bool 3417 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3418 { 3419 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3420 struct ieee80211_sub_if_data *sdata = rx->sdata; 3421 3422 /* TWT actions are only supported in AP for the moment */ 3423 if (sdata->vif.type != NL80211_IFTYPE_AP) 3424 return false; 3425 3426 if (!rx->local->ops->add_twt_setup) 3427 return false; 3428 3429 if (!sdata->vif.bss_conf.twt_responder) 3430 return false; 3431 3432 if (!rx->sta) 3433 return false; 3434 3435 switch (mgmt->u.action.u.s1g.action_code) { 3436 case WLAN_S1G_TWT_SETUP: { 3437 struct ieee80211_twt_setup *twt; 3438 3439 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3440 1 + /* action code */ 3441 sizeof(struct ieee80211_twt_setup) + 3442 2 /* TWT req_type agrt */) 3443 break; 3444 3445 twt = (void *)mgmt->u.action.u.s1g.variable; 3446 if (twt->element_id != WLAN_EID_S1G_TWT) 3447 break; 3448 3449 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3450 4 + /* action code + token + tlv */ 3451 twt->length) 3452 break; 3453 3454 return true; /* queue the frame */ 3455 } 3456 case WLAN_S1G_TWT_TEARDOWN: 3457 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3458 break; 3459 3460 return true; /* queue the frame */ 3461 default: 3462 break; 3463 } 3464 3465 return false; 3466 } 3467 3468 static ieee80211_rx_result debug_noinline 3469 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3470 { 3471 struct ieee80211_local *local = rx->local; 3472 struct ieee80211_sub_if_data *sdata = rx->sdata; 3473 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3474 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3475 int len = rx->skb->len; 3476 3477 if (!ieee80211_is_action(mgmt->frame_control)) 3478 return RX_CONTINUE; 3479 3480 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3481 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3482 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3483 return RX_DROP_UNUSABLE; 3484 3485 switch (mgmt->u.action.category) { 3486 case WLAN_CATEGORY_HT: 3487 /* reject HT action frames from stations not supporting HT */ 3488 if (!rx->link_sta->pub->ht_cap.ht_supported) 3489 goto invalid; 3490 3491 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3492 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3493 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3494 sdata->vif.type != NL80211_IFTYPE_AP && 3495 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3496 break; 3497 3498 /* verify action & smps_control/chanwidth are present */ 3499 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3500 goto invalid; 3501 3502 switch (mgmt->u.action.u.ht_smps.action) { 3503 case WLAN_HT_ACTION_SMPS: { 3504 struct ieee80211_supported_band *sband; 3505 enum ieee80211_smps_mode smps_mode; 3506 struct sta_opmode_info sta_opmode = {}; 3507 3508 if (sdata->vif.type != NL80211_IFTYPE_AP && 3509 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3510 goto handled; 3511 3512 /* convert to HT capability */ 3513 switch (mgmt->u.action.u.ht_smps.smps_control) { 3514 case WLAN_HT_SMPS_CONTROL_DISABLED: 3515 smps_mode = IEEE80211_SMPS_OFF; 3516 break; 3517 case WLAN_HT_SMPS_CONTROL_STATIC: 3518 smps_mode = IEEE80211_SMPS_STATIC; 3519 break; 3520 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3521 smps_mode = IEEE80211_SMPS_DYNAMIC; 3522 break; 3523 default: 3524 goto invalid; 3525 } 3526 3527 /* if no change do nothing */ 3528 if (rx->link_sta->pub->smps_mode == smps_mode) 3529 goto handled; 3530 rx->link_sta->pub->smps_mode = smps_mode; 3531 sta_opmode.smps_mode = 3532 ieee80211_smps_mode_to_smps_mode(smps_mode); 3533 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3534 3535 sband = rx->local->hw.wiphy->bands[status->band]; 3536 3537 rate_control_rate_update(local, sband, rx->sta, 0, 3538 IEEE80211_RC_SMPS_CHANGED); 3539 cfg80211_sta_opmode_change_notify(sdata->dev, 3540 rx->sta->addr, 3541 &sta_opmode, 3542 GFP_ATOMIC); 3543 goto handled; 3544 } 3545 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3546 struct ieee80211_supported_band *sband; 3547 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3548 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3549 struct sta_opmode_info sta_opmode = {}; 3550 3551 /* If it doesn't support 40 MHz it can't change ... */ 3552 if (!(rx->link_sta->pub->ht_cap.cap & 3553 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3554 goto handled; 3555 3556 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3557 max_bw = IEEE80211_STA_RX_BW_20; 3558 else 3559 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3560 3561 /* set cur_max_bandwidth and recalc sta bw */ 3562 rx->link_sta->cur_max_bandwidth = max_bw; 3563 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3564 3565 if (rx->link_sta->pub->bandwidth == new_bw) 3566 goto handled; 3567 3568 rx->link_sta->pub->bandwidth = new_bw; 3569 sband = rx->local->hw.wiphy->bands[status->band]; 3570 sta_opmode.bw = 3571 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3572 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3573 3574 rate_control_rate_update(local, sband, rx->sta, 0, 3575 IEEE80211_RC_BW_CHANGED); 3576 cfg80211_sta_opmode_change_notify(sdata->dev, 3577 rx->sta->addr, 3578 &sta_opmode, 3579 GFP_ATOMIC); 3580 goto handled; 3581 } 3582 default: 3583 goto invalid; 3584 } 3585 3586 break; 3587 case WLAN_CATEGORY_PUBLIC: 3588 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3589 goto invalid; 3590 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3591 break; 3592 if (!rx->sta) 3593 break; 3594 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3595 break; 3596 if (mgmt->u.action.u.ext_chan_switch.action_code != 3597 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3598 break; 3599 if (len < offsetof(struct ieee80211_mgmt, 3600 u.action.u.ext_chan_switch.variable)) 3601 goto invalid; 3602 goto queue; 3603 case WLAN_CATEGORY_VHT: 3604 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3605 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3606 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3607 sdata->vif.type != NL80211_IFTYPE_AP && 3608 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3609 break; 3610 3611 /* verify action code is present */ 3612 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3613 goto invalid; 3614 3615 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3616 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3617 /* verify opmode is present */ 3618 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3619 goto invalid; 3620 goto queue; 3621 } 3622 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3623 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3624 goto invalid; 3625 goto queue; 3626 } 3627 default: 3628 break; 3629 } 3630 break; 3631 case WLAN_CATEGORY_BACK: 3632 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3633 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3634 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3635 sdata->vif.type != NL80211_IFTYPE_AP && 3636 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3637 break; 3638 3639 /* verify action_code is present */ 3640 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3641 break; 3642 3643 switch (mgmt->u.action.u.addba_req.action_code) { 3644 case WLAN_ACTION_ADDBA_REQ: 3645 if (len < (IEEE80211_MIN_ACTION_SIZE + 3646 sizeof(mgmt->u.action.u.addba_req))) 3647 goto invalid; 3648 break; 3649 case WLAN_ACTION_ADDBA_RESP: 3650 if (len < (IEEE80211_MIN_ACTION_SIZE + 3651 sizeof(mgmt->u.action.u.addba_resp))) 3652 goto invalid; 3653 break; 3654 case WLAN_ACTION_DELBA: 3655 if (len < (IEEE80211_MIN_ACTION_SIZE + 3656 sizeof(mgmt->u.action.u.delba))) 3657 goto invalid; 3658 break; 3659 default: 3660 goto invalid; 3661 } 3662 3663 goto queue; 3664 case WLAN_CATEGORY_SPECTRUM_MGMT: 3665 /* verify action_code is present */ 3666 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3667 break; 3668 3669 switch (mgmt->u.action.u.measurement.action_code) { 3670 case WLAN_ACTION_SPCT_MSR_REQ: 3671 if (status->band != NL80211_BAND_5GHZ) 3672 break; 3673 3674 if (len < (IEEE80211_MIN_ACTION_SIZE + 3675 sizeof(mgmt->u.action.u.measurement))) 3676 break; 3677 3678 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3679 break; 3680 3681 ieee80211_process_measurement_req(sdata, mgmt, len); 3682 goto handled; 3683 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3684 u8 *bssid; 3685 if (len < (IEEE80211_MIN_ACTION_SIZE + 3686 sizeof(mgmt->u.action.u.chan_switch))) 3687 break; 3688 3689 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3690 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3691 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3692 break; 3693 3694 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3695 bssid = sdata->deflink.u.mgd.bssid; 3696 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3697 bssid = sdata->u.ibss.bssid; 3698 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3699 bssid = mgmt->sa; 3700 else 3701 break; 3702 3703 if (!ether_addr_equal(mgmt->bssid, bssid)) 3704 break; 3705 3706 goto queue; 3707 } 3708 } 3709 break; 3710 case WLAN_CATEGORY_SELF_PROTECTED: 3711 if (len < (IEEE80211_MIN_ACTION_SIZE + 3712 sizeof(mgmt->u.action.u.self_prot.action_code))) 3713 break; 3714 3715 switch (mgmt->u.action.u.self_prot.action_code) { 3716 case WLAN_SP_MESH_PEERING_OPEN: 3717 case WLAN_SP_MESH_PEERING_CLOSE: 3718 case WLAN_SP_MESH_PEERING_CONFIRM: 3719 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3720 goto invalid; 3721 if (sdata->u.mesh.user_mpm) 3722 /* userspace handles this frame */ 3723 break; 3724 goto queue; 3725 case WLAN_SP_MGK_INFORM: 3726 case WLAN_SP_MGK_ACK: 3727 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3728 goto invalid; 3729 break; 3730 } 3731 break; 3732 case WLAN_CATEGORY_MESH_ACTION: 3733 if (len < (IEEE80211_MIN_ACTION_SIZE + 3734 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3735 break; 3736 3737 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3738 break; 3739 if (mesh_action_is_path_sel(mgmt) && 3740 !mesh_path_sel_is_hwmp(sdata)) 3741 break; 3742 goto queue; 3743 case WLAN_CATEGORY_S1G: 3744 if (len < offsetofend(typeof(*mgmt), 3745 u.action.u.s1g.action_code)) 3746 break; 3747 3748 switch (mgmt->u.action.u.s1g.action_code) { 3749 case WLAN_S1G_TWT_SETUP: 3750 case WLAN_S1G_TWT_TEARDOWN: 3751 if (ieee80211_process_rx_twt_action(rx)) 3752 goto queue; 3753 break; 3754 default: 3755 break; 3756 } 3757 break; 3758 } 3759 3760 return RX_CONTINUE; 3761 3762 invalid: 3763 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3764 /* will return in the next handlers */ 3765 return RX_CONTINUE; 3766 3767 handled: 3768 if (rx->sta) 3769 rx->link_sta->rx_stats.packets++; 3770 dev_kfree_skb(rx->skb); 3771 return RX_QUEUED; 3772 3773 queue: 3774 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3775 return RX_QUEUED; 3776 } 3777 3778 static ieee80211_rx_result debug_noinline 3779 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3780 { 3781 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3782 struct cfg80211_rx_info info = { 3783 .freq = ieee80211_rx_status_to_khz(status), 3784 .buf = rx->skb->data, 3785 .len = rx->skb->len, 3786 .link_id = rx->link_id, 3787 .have_link_id = rx->link_id >= 0, 3788 }; 3789 3790 /* skip known-bad action frames and return them in the next handler */ 3791 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3792 return RX_CONTINUE; 3793 3794 /* 3795 * Getting here means the kernel doesn't know how to handle 3796 * it, but maybe userspace does ... include returned frames 3797 * so userspace can register for those to know whether ones 3798 * it transmitted were processed or returned. 3799 */ 3800 3801 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3802 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3803 info.sig_dbm = status->signal; 3804 3805 if (ieee80211_is_timing_measurement(rx->skb) || 3806 ieee80211_is_ftm(rx->skb)) { 3807 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3808 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3809 } 3810 3811 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3812 if (rx->sta) 3813 rx->link_sta->rx_stats.packets++; 3814 dev_kfree_skb(rx->skb); 3815 return RX_QUEUED; 3816 } 3817 3818 return RX_CONTINUE; 3819 } 3820 3821 static ieee80211_rx_result debug_noinline 3822 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3823 { 3824 struct ieee80211_sub_if_data *sdata = rx->sdata; 3825 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3826 int len = rx->skb->len; 3827 3828 if (!ieee80211_is_action(mgmt->frame_control)) 3829 return RX_CONTINUE; 3830 3831 switch (mgmt->u.action.category) { 3832 case WLAN_CATEGORY_SA_QUERY: 3833 if (len < (IEEE80211_MIN_ACTION_SIZE + 3834 sizeof(mgmt->u.action.u.sa_query))) 3835 break; 3836 3837 switch (mgmt->u.action.u.sa_query.action) { 3838 case WLAN_ACTION_SA_QUERY_REQUEST: 3839 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3840 break; 3841 ieee80211_process_sa_query_req(sdata, mgmt, len); 3842 goto handled; 3843 } 3844 break; 3845 } 3846 3847 return RX_CONTINUE; 3848 3849 handled: 3850 if (rx->sta) 3851 rx->link_sta->rx_stats.packets++; 3852 dev_kfree_skb(rx->skb); 3853 return RX_QUEUED; 3854 } 3855 3856 static ieee80211_rx_result debug_noinline 3857 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3858 { 3859 struct ieee80211_local *local = rx->local; 3860 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3861 struct sk_buff *nskb; 3862 struct ieee80211_sub_if_data *sdata = rx->sdata; 3863 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3864 3865 if (!ieee80211_is_action(mgmt->frame_control)) 3866 return RX_CONTINUE; 3867 3868 /* 3869 * For AP mode, hostapd is responsible for handling any action 3870 * frames that we didn't handle, including returning unknown 3871 * ones. For all other modes we will return them to the sender, 3872 * setting the 0x80 bit in the action category, as required by 3873 * 802.11-2012 9.24.4. 3874 * Newer versions of hostapd shall also use the management frame 3875 * registration mechanisms, but older ones still use cooked 3876 * monitor interfaces so push all frames there. 3877 */ 3878 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3879 (sdata->vif.type == NL80211_IFTYPE_AP || 3880 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3881 return RX_DROP_MONITOR; 3882 3883 if (is_multicast_ether_addr(mgmt->da)) 3884 return RX_DROP_MONITOR; 3885 3886 /* do not return rejected action frames */ 3887 if (mgmt->u.action.category & 0x80) 3888 return RX_DROP_UNUSABLE; 3889 3890 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3891 GFP_ATOMIC); 3892 if (nskb) { 3893 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3894 3895 nmgmt->u.action.category |= 0x80; 3896 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3897 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3898 3899 memset(nskb->cb, 0, sizeof(nskb->cb)); 3900 3901 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3902 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3903 3904 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3905 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3906 IEEE80211_TX_CTL_NO_CCK_RATE; 3907 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3908 info->hw_queue = 3909 local->hw.offchannel_tx_hw_queue; 3910 } 3911 3912 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3913 status->band); 3914 } 3915 dev_kfree_skb(rx->skb); 3916 return RX_QUEUED; 3917 } 3918 3919 static ieee80211_rx_result debug_noinline 3920 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3921 { 3922 struct ieee80211_sub_if_data *sdata = rx->sdata; 3923 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3924 3925 if (!ieee80211_is_ext(hdr->frame_control)) 3926 return RX_CONTINUE; 3927 3928 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3929 return RX_DROP_MONITOR; 3930 3931 /* for now only beacons are ext, so queue them */ 3932 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3933 3934 return RX_QUEUED; 3935 } 3936 3937 static ieee80211_rx_result debug_noinline 3938 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3939 { 3940 struct ieee80211_sub_if_data *sdata = rx->sdata; 3941 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3942 __le16 stype; 3943 3944 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3945 3946 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3947 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3948 sdata->vif.type != NL80211_IFTYPE_OCB && 3949 sdata->vif.type != NL80211_IFTYPE_STATION) 3950 return RX_DROP_MONITOR; 3951 3952 switch (stype) { 3953 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3954 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3955 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3956 /* process for all: mesh, mlme, ibss */ 3957 break; 3958 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3959 if (is_multicast_ether_addr(mgmt->da) && 3960 !is_broadcast_ether_addr(mgmt->da)) 3961 return RX_DROP_MONITOR; 3962 3963 /* process only for station/IBSS */ 3964 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3965 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3966 return RX_DROP_MONITOR; 3967 break; 3968 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3969 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3970 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3971 if (is_multicast_ether_addr(mgmt->da) && 3972 !is_broadcast_ether_addr(mgmt->da)) 3973 return RX_DROP_MONITOR; 3974 3975 /* process only for station */ 3976 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3977 return RX_DROP_MONITOR; 3978 break; 3979 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3980 /* process only for ibss and mesh */ 3981 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3982 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3983 return RX_DROP_MONITOR; 3984 break; 3985 default: 3986 return RX_DROP_MONITOR; 3987 } 3988 3989 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3990 3991 return RX_QUEUED; 3992 } 3993 3994 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3995 struct ieee80211_rate *rate, 3996 ieee80211_rx_result reason) 3997 { 3998 struct ieee80211_sub_if_data *sdata; 3999 struct ieee80211_local *local = rx->local; 4000 struct sk_buff *skb = rx->skb, *skb2; 4001 struct net_device *prev_dev = NULL; 4002 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4003 int needed_headroom; 4004 4005 /* 4006 * If cooked monitor has been processed already, then 4007 * don't do it again. If not, set the flag. 4008 */ 4009 if (rx->flags & IEEE80211_RX_CMNTR) 4010 goto out_free_skb; 4011 rx->flags |= IEEE80211_RX_CMNTR; 4012 4013 /* If there are no cooked monitor interfaces, just free the SKB */ 4014 if (!local->cooked_mntrs) 4015 goto out_free_skb; 4016 4017 /* room for the radiotap header based on driver features */ 4018 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 4019 4020 if (skb_headroom(skb) < needed_headroom && 4021 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 4022 goto out_free_skb; 4023 4024 /* prepend radiotap information */ 4025 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 4026 false); 4027 4028 skb_reset_mac_header(skb); 4029 skb->ip_summed = CHECKSUM_UNNECESSARY; 4030 skb->pkt_type = PACKET_OTHERHOST; 4031 skb->protocol = htons(ETH_P_802_2); 4032 4033 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4034 if (!ieee80211_sdata_running(sdata)) 4035 continue; 4036 4037 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 4038 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 4039 continue; 4040 4041 if (prev_dev) { 4042 skb2 = skb_clone(skb, GFP_ATOMIC); 4043 if (skb2) { 4044 skb2->dev = prev_dev; 4045 netif_receive_skb(skb2); 4046 } 4047 } 4048 4049 prev_dev = sdata->dev; 4050 dev_sw_netstats_rx_add(sdata->dev, skb->len); 4051 } 4052 4053 if (prev_dev) { 4054 skb->dev = prev_dev; 4055 netif_receive_skb(skb); 4056 return; 4057 } 4058 4059 out_free_skb: 4060 kfree_skb_reason(skb, (__force u32)reason); 4061 } 4062 4063 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 4064 ieee80211_rx_result res) 4065 { 4066 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4067 struct ieee80211_supported_band *sband; 4068 struct ieee80211_rate *rate = NULL; 4069 4070 if (res == RX_QUEUED) { 4071 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 4072 return; 4073 } 4074 4075 if (res != RX_CONTINUE) { 4076 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 4077 if (rx->sta) 4078 rx->link_sta->rx_stats.dropped++; 4079 } 4080 4081 if (u32_get_bits((__force u32)res, SKB_DROP_REASON_SUBSYS_MASK) == 4082 SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) { 4083 kfree_skb_reason(rx->skb, (__force u32)res); 4084 return; 4085 } 4086 4087 sband = rx->local->hw.wiphy->bands[status->band]; 4088 if (status->encoding == RX_ENC_LEGACY) 4089 rate = &sband->bitrates[status->rate_idx]; 4090 4091 ieee80211_rx_cooked_monitor(rx, rate, res); 4092 } 4093 4094 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 4095 struct sk_buff_head *frames) 4096 { 4097 ieee80211_rx_result res = RX_DROP_MONITOR; 4098 struct sk_buff *skb; 4099 4100 #define CALL_RXH(rxh) \ 4101 do { \ 4102 res = rxh(rx); \ 4103 if (res != RX_CONTINUE) \ 4104 goto rxh_next; \ 4105 } while (0) 4106 4107 /* Lock here to avoid hitting all of the data used in the RX 4108 * path (e.g. key data, station data, ...) concurrently when 4109 * a frame is released from the reorder buffer due to timeout 4110 * from the timer, potentially concurrently with RX from the 4111 * driver. 4112 */ 4113 spin_lock_bh(&rx->local->rx_path_lock); 4114 4115 while ((skb = __skb_dequeue(frames))) { 4116 /* 4117 * all the other fields are valid across frames 4118 * that belong to an aMPDU since they are on the 4119 * same TID from the same station 4120 */ 4121 rx->skb = skb; 4122 4123 if (WARN_ON_ONCE(!rx->link)) 4124 goto rxh_next; 4125 4126 CALL_RXH(ieee80211_rx_h_check_more_data); 4127 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4128 CALL_RXH(ieee80211_rx_h_sta_process); 4129 CALL_RXH(ieee80211_rx_h_decrypt); 4130 CALL_RXH(ieee80211_rx_h_defragment); 4131 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4132 /* must be after MMIC verify so header is counted in MPDU mic */ 4133 CALL_RXH(ieee80211_rx_h_amsdu); 4134 CALL_RXH(ieee80211_rx_h_data); 4135 4136 /* special treatment -- needs the queue */ 4137 res = ieee80211_rx_h_ctrl(rx, frames); 4138 if (res != RX_CONTINUE) 4139 goto rxh_next; 4140 4141 CALL_RXH(ieee80211_rx_h_mgmt_check); 4142 CALL_RXH(ieee80211_rx_h_action); 4143 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4144 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4145 CALL_RXH(ieee80211_rx_h_action_return); 4146 CALL_RXH(ieee80211_rx_h_ext); 4147 CALL_RXH(ieee80211_rx_h_mgmt); 4148 4149 rxh_next: 4150 ieee80211_rx_handlers_result(rx, res); 4151 4152 #undef CALL_RXH 4153 } 4154 4155 spin_unlock_bh(&rx->local->rx_path_lock); 4156 } 4157 4158 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4159 { 4160 struct sk_buff_head reorder_release; 4161 ieee80211_rx_result res = RX_DROP_MONITOR; 4162 4163 __skb_queue_head_init(&reorder_release); 4164 4165 #define CALL_RXH(rxh) \ 4166 do { \ 4167 res = rxh(rx); \ 4168 if (res != RX_CONTINUE) \ 4169 goto rxh_next; \ 4170 } while (0) 4171 4172 CALL_RXH(ieee80211_rx_h_check_dup); 4173 CALL_RXH(ieee80211_rx_h_check); 4174 4175 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4176 4177 ieee80211_rx_handlers(rx, &reorder_release); 4178 return; 4179 4180 rxh_next: 4181 ieee80211_rx_handlers_result(rx, res); 4182 4183 #undef CALL_RXH 4184 } 4185 4186 static bool 4187 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4188 { 4189 return !!(sta->valid_links & BIT(link_id)); 4190 } 4191 4192 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, 4193 u8 link_id) 4194 { 4195 rx->link_id = link_id; 4196 rx->link = rcu_dereference(rx->sdata->link[link_id]); 4197 4198 if (!rx->sta) 4199 return rx->link; 4200 4201 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) 4202 return false; 4203 4204 rx->link_sta = rcu_dereference(rx->sta->link[link_id]); 4205 4206 return rx->link && rx->link_sta; 4207 } 4208 4209 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, 4210 struct sta_info *sta, int link_id) 4211 { 4212 rx->link_id = link_id; 4213 rx->sta = sta; 4214 4215 if (sta) { 4216 rx->local = sta->sdata->local; 4217 if (!rx->sdata) 4218 rx->sdata = sta->sdata; 4219 rx->link_sta = &sta->deflink; 4220 } else { 4221 rx->link_sta = NULL; 4222 } 4223 4224 if (link_id < 0) 4225 rx->link = &rx->sdata->deflink; 4226 else if (!ieee80211_rx_data_set_link(rx, link_id)) 4227 return false; 4228 4229 return true; 4230 } 4231 4232 /* 4233 * This function makes calls into the RX path, therefore 4234 * it has to be invoked under RCU read lock. 4235 */ 4236 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4237 { 4238 struct sk_buff_head frames; 4239 struct ieee80211_rx_data rx = { 4240 /* This is OK -- must be QoS data frame */ 4241 .security_idx = tid, 4242 .seqno_idx = tid, 4243 }; 4244 struct tid_ampdu_rx *tid_agg_rx; 4245 int link_id = -1; 4246 4247 /* FIXME: statistics won't be right with this */ 4248 if (sta->sta.valid_links) 4249 link_id = ffs(sta->sta.valid_links) - 1; 4250 4251 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4252 return; 4253 4254 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4255 if (!tid_agg_rx) 4256 return; 4257 4258 __skb_queue_head_init(&frames); 4259 4260 spin_lock(&tid_agg_rx->reorder_lock); 4261 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4262 spin_unlock(&tid_agg_rx->reorder_lock); 4263 4264 if (!skb_queue_empty(&frames)) { 4265 struct ieee80211_event event = { 4266 .type = BA_FRAME_TIMEOUT, 4267 .u.ba.tid = tid, 4268 .u.ba.sta = &sta->sta, 4269 }; 4270 drv_event_callback(rx.local, rx.sdata, &event); 4271 } 4272 4273 ieee80211_rx_handlers(&rx, &frames); 4274 } 4275 4276 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4277 u16 ssn, u64 filtered, 4278 u16 received_mpdus) 4279 { 4280 struct ieee80211_local *local; 4281 struct sta_info *sta; 4282 struct tid_ampdu_rx *tid_agg_rx; 4283 struct sk_buff_head frames; 4284 struct ieee80211_rx_data rx = { 4285 /* This is OK -- must be QoS data frame */ 4286 .security_idx = tid, 4287 .seqno_idx = tid, 4288 }; 4289 int i, diff; 4290 4291 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4292 return; 4293 4294 __skb_queue_head_init(&frames); 4295 4296 sta = container_of(pubsta, struct sta_info, sta); 4297 4298 local = sta->sdata->local; 4299 WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64, 4300 "RX BA marker can't support max_rx_aggregation_subframes %u > 64\n", 4301 local->hw.max_rx_aggregation_subframes); 4302 4303 if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) 4304 return; 4305 4306 rcu_read_lock(); 4307 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4308 if (!tid_agg_rx) 4309 goto out; 4310 4311 spin_lock_bh(&tid_agg_rx->reorder_lock); 4312 4313 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4314 int release; 4315 4316 /* release all frames in the reorder buffer */ 4317 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4318 IEEE80211_SN_MODULO; 4319 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4320 release, &frames); 4321 /* update ssn to match received ssn */ 4322 tid_agg_rx->head_seq_num = ssn; 4323 } else { 4324 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4325 &frames); 4326 } 4327 4328 /* handle the case that received ssn is behind the mac ssn. 4329 * it can be tid_agg_rx->buf_size behind and still be valid */ 4330 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4331 if (diff >= tid_agg_rx->buf_size) { 4332 tid_agg_rx->reorder_buf_filtered = 0; 4333 goto release; 4334 } 4335 filtered = filtered >> diff; 4336 ssn += diff; 4337 4338 /* update bitmap */ 4339 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4340 int index = (ssn + i) % tid_agg_rx->buf_size; 4341 4342 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4343 if (filtered & BIT_ULL(i)) 4344 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4345 } 4346 4347 /* now process also frames that the filter marking released */ 4348 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4349 4350 release: 4351 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4352 4353 ieee80211_rx_handlers(&rx, &frames); 4354 4355 out: 4356 rcu_read_unlock(); 4357 } 4358 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4359 4360 /* main receive path */ 4361 4362 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4363 { 4364 return ether_addr_equal(raddr, addr) || 4365 is_broadcast_ether_addr(raddr); 4366 } 4367 4368 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4369 { 4370 struct ieee80211_sub_if_data *sdata = rx->sdata; 4371 struct sk_buff *skb = rx->skb; 4372 struct ieee80211_hdr *hdr = (void *)skb->data; 4373 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4374 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4375 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4376 ieee80211_is_s1g_beacon(hdr->frame_control); 4377 4378 switch (sdata->vif.type) { 4379 case NL80211_IFTYPE_STATION: 4380 if (!bssid && !sdata->u.mgd.use_4addr) 4381 return false; 4382 if (ieee80211_is_first_frag(hdr->seq_ctrl) && 4383 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4384 return false; 4385 if (multicast) 4386 return true; 4387 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4388 case NL80211_IFTYPE_ADHOC: 4389 if (!bssid) 4390 return false; 4391 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4392 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4393 !is_valid_ether_addr(hdr->addr2)) 4394 return false; 4395 if (ieee80211_is_beacon(hdr->frame_control)) 4396 return true; 4397 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4398 return false; 4399 if (!multicast && 4400 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4401 return false; 4402 if (!rx->sta) { 4403 int rate_idx; 4404 if (status->encoding != RX_ENC_LEGACY) 4405 rate_idx = 0; /* TODO: HT/VHT rates */ 4406 else 4407 rate_idx = status->rate_idx; 4408 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4409 BIT(rate_idx)); 4410 } 4411 return true; 4412 case NL80211_IFTYPE_OCB: 4413 if (!bssid) 4414 return false; 4415 if (!ieee80211_is_data_present(hdr->frame_control)) 4416 return false; 4417 if (!is_broadcast_ether_addr(bssid)) 4418 return false; 4419 if (!multicast && 4420 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4421 return false; 4422 if (!rx->sta) { 4423 int rate_idx; 4424 if (status->encoding != RX_ENC_LEGACY) 4425 rate_idx = 0; /* TODO: HT rates */ 4426 else 4427 rate_idx = status->rate_idx; 4428 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4429 BIT(rate_idx)); 4430 } 4431 return true; 4432 case NL80211_IFTYPE_MESH_POINT: 4433 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4434 return false; 4435 if (multicast) 4436 return true; 4437 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4438 case NL80211_IFTYPE_AP_VLAN: 4439 case NL80211_IFTYPE_AP: 4440 if (!bssid) 4441 return ieee80211_is_our_addr(sdata, hdr->addr1, 4442 &rx->link_id); 4443 4444 if (!is_broadcast_ether_addr(bssid) && 4445 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4446 /* 4447 * Accept public action frames even when the 4448 * BSSID doesn't match, this is used for P2P 4449 * and location updates. Note that mac80211 4450 * itself never looks at these frames. 4451 */ 4452 if (!multicast && 4453 !ieee80211_is_our_addr(sdata, hdr->addr1, 4454 &rx->link_id)) 4455 return false; 4456 if (ieee80211_is_public_action(hdr, skb->len)) 4457 return true; 4458 return ieee80211_is_beacon(hdr->frame_control); 4459 } 4460 4461 if (!ieee80211_has_tods(hdr->frame_control)) { 4462 /* ignore data frames to TDLS-peers */ 4463 if (ieee80211_is_data(hdr->frame_control)) 4464 return false; 4465 /* ignore action frames to TDLS-peers */ 4466 if (ieee80211_is_action(hdr->frame_control) && 4467 !is_broadcast_ether_addr(bssid) && 4468 !ether_addr_equal(bssid, hdr->addr1)) 4469 return false; 4470 } 4471 4472 /* 4473 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4474 * the BSSID - we've checked that already but may have accepted 4475 * the wildcard (ff:ff:ff:ff:ff:ff). 4476 * 4477 * It also says: 4478 * The BSSID of the Data frame is determined as follows: 4479 * a) If the STA is contained within an AP or is associated 4480 * with an AP, the BSSID is the address currently in use 4481 * by the STA contained in the AP. 4482 * 4483 * So we should not accept data frames with an address that's 4484 * multicast. 4485 * 4486 * Accepting it also opens a security problem because stations 4487 * could encrypt it with the GTK and inject traffic that way. 4488 */ 4489 if (ieee80211_is_data(hdr->frame_control) && multicast) 4490 return false; 4491 4492 return true; 4493 case NL80211_IFTYPE_P2P_DEVICE: 4494 return ieee80211_is_public_action(hdr, skb->len) || 4495 ieee80211_is_probe_req(hdr->frame_control) || 4496 ieee80211_is_probe_resp(hdr->frame_control) || 4497 ieee80211_is_beacon(hdr->frame_control); 4498 case NL80211_IFTYPE_NAN: 4499 /* Currently no frames on NAN interface are allowed */ 4500 return false; 4501 default: 4502 break; 4503 } 4504 4505 WARN_ON_ONCE(1); 4506 return false; 4507 } 4508 4509 void ieee80211_check_fast_rx(struct sta_info *sta) 4510 { 4511 struct ieee80211_sub_if_data *sdata = sta->sdata; 4512 struct ieee80211_local *local = sdata->local; 4513 struct ieee80211_key *key; 4514 struct ieee80211_fast_rx fastrx = { 4515 .dev = sdata->dev, 4516 .vif_type = sdata->vif.type, 4517 .control_port_protocol = sdata->control_port_protocol, 4518 }, *old, *new = NULL; 4519 u32 offload_flags; 4520 bool set_offload = false; 4521 bool assign = false; 4522 bool offload; 4523 4524 /* use sparse to check that we don't return without updating */ 4525 __acquire(check_fast_rx); 4526 4527 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4528 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4529 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4530 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4531 4532 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4533 4534 /* fast-rx doesn't do reordering */ 4535 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4536 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4537 goto clear; 4538 4539 switch (sdata->vif.type) { 4540 case NL80211_IFTYPE_STATION: 4541 if (sta->sta.tdls) { 4542 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4543 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4544 fastrx.expected_ds_bits = 0; 4545 } else { 4546 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4547 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4548 fastrx.expected_ds_bits = 4549 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4550 } 4551 4552 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4553 fastrx.expected_ds_bits |= 4554 cpu_to_le16(IEEE80211_FCTL_TODS); 4555 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4556 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4557 } 4558 4559 if (!sdata->u.mgd.powersave) 4560 break; 4561 4562 /* software powersave is a huge mess, avoid all of it */ 4563 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4564 goto clear; 4565 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4566 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4567 goto clear; 4568 break; 4569 case NL80211_IFTYPE_AP_VLAN: 4570 case NL80211_IFTYPE_AP: 4571 /* parallel-rx requires this, at least with calls to 4572 * ieee80211_sta_ps_transition() 4573 */ 4574 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4575 goto clear; 4576 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4577 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4578 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4579 4580 fastrx.internal_forward = 4581 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4582 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4583 !sdata->u.vlan.sta); 4584 4585 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4586 sdata->u.vlan.sta) { 4587 fastrx.expected_ds_bits |= 4588 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4589 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4590 fastrx.internal_forward = 0; 4591 } 4592 4593 break; 4594 case NL80211_IFTYPE_MESH_POINT: 4595 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS | 4596 IEEE80211_FCTL_TODS); 4597 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4598 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4599 break; 4600 default: 4601 goto clear; 4602 } 4603 4604 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4605 goto clear; 4606 4607 rcu_read_lock(); 4608 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4609 if (!key) 4610 key = rcu_dereference(sdata->default_unicast_key); 4611 if (key) { 4612 switch (key->conf.cipher) { 4613 case WLAN_CIPHER_SUITE_TKIP: 4614 /* we don't want to deal with MMIC in fast-rx */ 4615 goto clear_rcu; 4616 case WLAN_CIPHER_SUITE_CCMP: 4617 case WLAN_CIPHER_SUITE_CCMP_256: 4618 case WLAN_CIPHER_SUITE_GCMP: 4619 case WLAN_CIPHER_SUITE_GCMP_256: 4620 break; 4621 default: 4622 /* We also don't want to deal with 4623 * WEP or cipher scheme. 4624 */ 4625 goto clear_rcu; 4626 } 4627 4628 fastrx.key = true; 4629 fastrx.icv_len = key->conf.icv_len; 4630 } 4631 4632 assign = true; 4633 clear_rcu: 4634 rcu_read_unlock(); 4635 clear: 4636 __release(check_fast_rx); 4637 4638 if (assign) 4639 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4640 4641 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4642 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4643 4644 if (assign && offload) 4645 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4646 else 4647 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4648 4649 if (set_offload) 4650 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4651 4652 spin_lock_bh(&sta->lock); 4653 old = rcu_dereference_protected(sta->fast_rx, true); 4654 rcu_assign_pointer(sta->fast_rx, new); 4655 spin_unlock_bh(&sta->lock); 4656 4657 if (old) 4658 kfree_rcu(old, rcu_head); 4659 } 4660 4661 void ieee80211_clear_fast_rx(struct sta_info *sta) 4662 { 4663 struct ieee80211_fast_rx *old; 4664 4665 spin_lock_bh(&sta->lock); 4666 old = rcu_dereference_protected(sta->fast_rx, true); 4667 RCU_INIT_POINTER(sta->fast_rx, NULL); 4668 spin_unlock_bh(&sta->lock); 4669 4670 if (old) 4671 kfree_rcu(old, rcu_head); 4672 } 4673 4674 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4675 { 4676 struct ieee80211_local *local = sdata->local; 4677 struct sta_info *sta; 4678 4679 lockdep_assert_held(&local->sta_mtx); 4680 4681 list_for_each_entry(sta, &local->sta_list, list) { 4682 if (sdata != sta->sdata && 4683 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4684 continue; 4685 ieee80211_check_fast_rx(sta); 4686 } 4687 } 4688 4689 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4690 { 4691 struct ieee80211_local *local = sdata->local; 4692 4693 mutex_lock(&local->sta_mtx); 4694 __ieee80211_check_fast_rx_iface(sdata); 4695 mutex_unlock(&local->sta_mtx); 4696 } 4697 4698 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4699 struct ieee80211_fast_rx *fast_rx, 4700 int orig_len) 4701 { 4702 struct ieee80211_sta_rx_stats *stats; 4703 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4704 struct sta_info *sta = rx->sta; 4705 struct link_sta_info *link_sta; 4706 struct sk_buff *skb = rx->skb; 4707 void *sa = skb->data + ETH_ALEN; 4708 void *da = skb->data; 4709 4710 if (rx->link_id >= 0) { 4711 link_sta = rcu_dereference(sta->link[rx->link_id]); 4712 if (WARN_ON_ONCE(!link_sta)) { 4713 dev_kfree_skb(rx->skb); 4714 return; 4715 } 4716 } else { 4717 link_sta = &sta->deflink; 4718 } 4719 4720 stats = &link_sta->rx_stats; 4721 if (fast_rx->uses_rss) 4722 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4723 4724 /* statistics part of ieee80211_rx_h_sta_process() */ 4725 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4726 stats->last_signal = status->signal; 4727 if (!fast_rx->uses_rss) 4728 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4729 -status->signal); 4730 } 4731 4732 if (status->chains) { 4733 int i; 4734 4735 stats->chains = status->chains; 4736 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4737 int signal = status->chain_signal[i]; 4738 4739 if (!(status->chains & BIT(i))) 4740 continue; 4741 4742 stats->chain_signal_last[i] = signal; 4743 if (!fast_rx->uses_rss) 4744 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4745 -signal); 4746 } 4747 } 4748 /* end of statistics */ 4749 4750 stats->last_rx = jiffies; 4751 stats->last_rate = sta_stats_encode_rate(status); 4752 4753 stats->fragments++; 4754 stats->packets++; 4755 4756 skb->dev = fast_rx->dev; 4757 4758 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4759 4760 /* The seqno index has the same property as needed 4761 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4762 * for non-QoS-data frames. Here we know it's a data 4763 * frame, so count MSDUs. 4764 */ 4765 u64_stats_update_begin(&stats->syncp); 4766 stats->msdu[rx->seqno_idx]++; 4767 stats->bytes += orig_len; 4768 u64_stats_update_end(&stats->syncp); 4769 4770 if (fast_rx->internal_forward) { 4771 struct sk_buff *xmit_skb = NULL; 4772 if (is_multicast_ether_addr(da)) { 4773 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4774 } else if (!ether_addr_equal(da, sa) && 4775 sta_info_get(rx->sdata, da)) { 4776 xmit_skb = skb; 4777 skb = NULL; 4778 } 4779 4780 if (xmit_skb) { 4781 /* 4782 * Send to wireless media and increase priority by 256 4783 * to keep the received priority instead of 4784 * reclassifying the frame (see cfg80211_classify8021d). 4785 */ 4786 xmit_skb->priority += 256; 4787 xmit_skb->protocol = htons(ETH_P_802_3); 4788 skb_reset_network_header(xmit_skb); 4789 skb_reset_mac_header(xmit_skb); 4790 dev_queue_xmit(xmit_skb); 4791 } 4792 4793 if (!skb) 4794 return; 4795 } 4796 4797 /* deliver to local stack */ 4798 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4799 ieee80211_deliver_skb_to_local_stack(skb, rx); 4800 } 4801 4802 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4803 struct ieee80211_fast_rx *fast_rx) 4804 { 4805 struct sk_buff *skb = rx->skb; 4806 struct ieee80211_hdr *hdr = (void *)skb->data; 4807 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4808 static ieee80211_rx_result res; 4809 int orig_len = skb->len; 4810 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4811 int snap_offs = hdrlen; 4812 struct { 4813 u8 snap[sizeof(rfc1042_header)]; 4814 __be16 proto; 4815 } *payload __aligned(2); 4816 struct { 4817 u8 da[ETH_ALEN]; 4818 u8 sa[ETH_ALEN]; 4819 } addrs __aligned(2); 4820 struct ieee80211_sta_rx_stats *stats; 4821 4822 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4823 * to a common data structure; drivers can implement that per queue 4824 * but we don't have that information in mac80211 4825 */ 4826 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4827 return false; 4828 4829 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4830 4831 /* If using encryption, we also need to have: 4832 * - PN_VALIDATED: similar, but the implementation is tricky 4833 * - DECRYPTED: necessary for PN_VALIDATED 4834 */ 4835 if (fast_rx->key && 4836 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4837 return false; 4838 4839 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4840 return false; 4841 4842 if (unlikely(ieee80211_is_frag(hdr))) 4843 return false; 4844 4845 /* Since our interface address cannot be multicast, this 4846 * implicitly also rejects multicast frames without the 4847 * explicit check. 4848 * 4849 * We shouldn't get any *data* frames not addressed to us 4850 * (AP mode will accept multicast *management* frames), but 4851 * punting here will make it go through the full checks in 4852 * ieee80211_accept_frame(). 4853 */ 4854 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4855 return false; 4856 4857 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4858 IEEE80211_FCTL_TODS)) != 4859 fast_rx->expected_ds_bits) 4860 return false; 4861 4862 /* assign the key to drop unencrypted frames (later) 4863 * and strip the IV/MIC if necessary 4864 */ 4865 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4866 /* GCMP header length is the same */ 4867 snap_offs += IEEE80211_CCMP_HDR_LEN; 4868 } 4869 4870 if (!ieee80211_vif_is_mesh(&rx->sdata->vif) && 4871 !(status->rx_flags & IEEE80211_RX_AMSDU)) { 4872 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4873 return false; 4874 4875 payload = (void *)(skb->data + snap_offs); 4876 4877 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4878 return false; 4879 4880 /* Don't handle these here since they require special code. 4881 * Accept AARP and IPX even though they should come with a 4882 * bridge-tunnel header - but if we get them this way then 4883 * there's little point in discarding them. 4884 */ 4885 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4886 payload->proto == fast_rx->control_port_protocol)) 4887 return false; 4888 } 4889 4890 /* after this point, don't punt to the slowpath! */ 4891 4892 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4893 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4894 goto drop; 4895 4896 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4897 goto drop; 4898 4899 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4900 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4901 RX_QUEUED) 4902 goto drop; 4903 4904 return true; 4905 } 4906 4907 /* do the header conversion - first grab the addresses */ 4908 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4909 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4910 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) { 4911 skb_pull(skb, snap_offs - 2); 4912 put_unaligned_be16(skb->len - 2, skb->data); 4913 } else { 4914 skb_postpull_rcsum(skb, skb->data + snap_offs, 4915 sizeof(rfc1042_header) + 2); 4916 4917 /* remove the SNAP but leave the ethertype */ 4918 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4919 } 4920 /* push the addresses in front */ 4921 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4922 4923 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 4924 switch (res) { 4925 case RX_QUEUED: 4926 return true; 4927 case RX_CONTINUE: 4928 break; 4929 default: 4930 goto drop; 4931 } 4932 4933 ieee80211_rx_8023(rx, fast_rx, orig_len); 4934 4935 return true; 4936 drop: 4937 dev_kfree_skb(skb); 4938 4939 if (fast_rx->uses_rss) 4940 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); 4941 else 4942 stats = &rx->link_sta->rx_stats; 4943 4944 stats->dropped++; 4945 return true; 4946 } 4947 4948 /* 4949 * This function returns whether or not the SKB 4950 * was destined for RX processing or not, which, 4951 * if consume is true, is equivalent to whether 4952 * or not the skb was consumed. 4953 */ 4954 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4955 struct sk_buff *skb, bool consume) 4956 { 4957 struct ieee80211_local *local = rx->local; 4958 struct ieee80211_sub_if_data *sdata = rx->sdata; 4959 struct ieee80211_hdr *hdr = (void *)skb->data; 4960 struct link_sta_info *link_sta = rx->link_sta; 4961 struct ieee80211_link_data *link = rx->link; 4962 4963 rx->skb = skb; 4964 4965 /* See if we can do fast-rx; if we have to copy we already lost, 4966 * so punt in that case. We should never have to deliver a data 4967 * frame to multiple interfaces anyway. 4968 * 4969 * We skip the ieee80211_accept_frame() call and do the necessary 4970 * checking inside ieee80211_invoke_fast_rx(). 4971 */ 4972 if (consume && rx->sta) { 4973 struct ieee80211_fast_rx *fast_rx; 4974 4975 fast_rx = rcu_dereference(rx->sta->fast_rx); 4976 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4977 return true; 4978 } 4979 4980 if (!ieee80211_accept_frame(rx)) 4981 return false; 4982 4983 if (!consume) { 4984 struct skb_shared_hwtstamps *shwt; 4985 4986 rx->skb = skb_copy(skb, GFP_ATOMIC); 4987 if (!rx->skb) { 4988 if (net_ratelimit()) 4989 wiphy_debug(local->hw.wiphy, 4990 "failed to copy skb for %s\n", 4991 sdata->name); 4992 return true; 4993 } 4994 4995 /* skb_copy() does not copy the hw timestamps, so copy it 4996 * explicitly 4997 */ 4998 shwt = skb_hwtstamps(rx->skb); 4999 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 5000 5001 /* Update the hdr pointer to the new skb for translation below */ 5002 hdr = (struct ieee80211_hdr *)rx->skb->data; 5003 } 5004 5005 if (unlikely(rx->sta && rx->sta->sta.mlo) && 5006 is_unicast_ether_addr(hdr->addr1) && 5007 !ieee80211_is_probe_resp(hdr->frame_control) && 5008 !ieee80211_is_beacon(hdr->frame_control)) { 5009 /* translate to MLD addresses */ 5010 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 5011 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 5012 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 5013 ether_addr_copy(hdr->addr2, rx->sta->addr); 5014 /* translate A3 only if it's the BSSID */ 5015 if (!ieee80211_has_tods(hdr->frame_control) && 5016 !ieee80211_has_fromds(hdr->frame_control)) { 5017 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 5018 ether_addr_copy(hdr->addr3, rx->sta->addr); 5019 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 5020 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 5021 } 5022 /* not needed for A4 since it can only carry the SA */ 5023 } 5024 5025 ieee80211_invoke_rx_handlers(rx); 5026 return true; 5027 } 5028 5029 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 5030 struct ieee80211_sta *pubsta, 5031 struct sk_buff *skb, 5032 struct list_head *list) 5033 { 5034 struct ieee80211_local *local = hw_to_local(hw); 5035 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5036 struct ieee80211_fast_rx *fast_rx; 5037 struct ieee80211_rx_data rx; 5038 struct sta_info *sta; 5039 int link_id = -1; 5040 5041 memset(&rx, 0, sizeof(rx)); 5042 rx.skb = skb; 5043 rx.local = local; 5044 rx.list = list; 5045 rx.link_id = -1; 5046 5047 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5048 5049 /* drop frame if too short for header */ 5050 if (skb->len < sizeof(struct ethhdr)) 5051 goto drop; 5052 5053 if (!pubsta) 5054 goto drop; 5055 5056 if (status->link_valid) 5057 link_id = status->link_id; 5058 5059 /* 5060 * TODO: Should the frame be dropped if the right link_id is not 5061 * available? Or may be it is fine in the current form to proceed with 5062 * the frame processing because with frame being in 802.3 format, 5063 * link_id is used only for stats purpose and updating the stats on 5064 * the deflink is fine? 5065 */ 5066 sta = container_of(pubsta, struct sta_info, sta); 5067 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5068 goto drop; 5069 5070 fast_rx = rcu_dereference(rx.sta->fast_rx); 5071 if (!fast_rx) 5072 goto drop; 5073 5074 ieee80211_rx_8023(&rx, fast_rx, skb->len); 5075 return; 5076 5077 drop: 5078 dev_kfree_skb(skb); 5079 } 5080 5081 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 5082 struct sk_buff *skb, bool consume) 5083 { 5084 struct link_sta_info *link_sta; 5085 struct ieee80211_hdr *hdr = (void *)skb->data; 5086 struct sta_info *sta; 5087 int link_id = -1; 5088 5089 /* 5090 * Look up link station first, in case there's a 5091 * chance that they might have a link address that 5092 * is identical to the MLD address, that way we'll 5093 * have the link information if needed. 5094 */ 5095 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 5096 if (link_sta) { 5097 sta = link_sta->sta; 5098 link_id = link_sta->link_id; 5099 } else { 5100 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5101 5102 sta = sta_info_get_bss(rx->sdata, hdr->addr2); 5103 if (status->link_valid) 5104 link_id = status->link_id; 5105 } 5106 5107 if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) 5108 return false; 5109 5110 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 5111 } 5112 5113 /* 5114 * This is the actual Rx frames handler. as it belongs to Rx path it must 5115 * be called with rcu_read_lock protection. 5116 */ 5117 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 5118 struct ieee80211_sta *pubsta, 5119 struct sk_buff *skb, 5120 struct list_head *list) 5121 { 5122 struct ieee80211_local *local = hw_to_local(hw); 5123 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5124 struct ieee80211_sub_if_data *sdata; 5125 struct ieee80211_hdr *hdr; 5126 __le16 fc; 5127 struct ieee80211_rx_data rx; 5128 struct ieee80211_sub_if_data *prev; 5129 struct rhlist_head *tmp; 5130 int err = 0; 5131 5132 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 5133 memset(&rx, 0, sizeof(rx)); 5134 rx.skb = skb; 5135 rx.local = local; 5136 rx.list = list; 5137 rx.link_id = -1; 5138 5139 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5140 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5141 5142 if (ieee80211_is_mgmt(fc)) { 5143 /* drop frame if too short for header */ 5144 if (skb->len < ieee80211_hdrlen(fc)) 5145 err = -ENOBUFS; 5146 else 5147 err = skb_linearize(skb); 5148 } else { 5149 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5150 } 5151 5152 if (err) { 5153 dev_kfree_skb(skb); 5154 return; 5155 } 5156 5157 hdr = (struct ieee80211_hdr *)skb->data; 5158 ieee80211_parse_qos(&rx); 5159 ieee80211_verify_alignment(&rx); 5160 5161 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5162 ieee80211_is_beacon(hdr->frame_control) || 5163 ieee80211_is_s1g_beacon(hdr->frame_control))) 5164 ieee80211_scan_rx(local, skb); 5165 5166 if (ieee80211_is_data(fc)) { 5167 struct sta_info *sta, *prev_sta; 5168 int link_id = -1; 5169 5170 if (status->link_valid) 5171 link_id = status->link_id; 5172 5173 if (pubsta) { 5174 sta = container_of(pubsta, struct sta_info, sta); 5175 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5176 goto out; 5177 5178 /* 5179 * In MLO connection, fetch the link_id using addr2 5180 * when the driver does not pass link_id in status. 5181 * When the address translation is already performed by 5182 * driver/hw, the valid link_id must be passed in 5183 * status. 5184 */ 5185 5186 if (!status->link_valid && pubsta->mlo) { 5187 struct ieee80211_hdr *hdr = (void *)skb->data; 5188 struct link_sta_info *link_sta; 5189 5190 link_sta = link_sta_info_get_bss(rx.sdata, 5191 hdr->addr2); 5192 if (!link_sta) 5193 goto out; 5194 5195 ieee80211_rx_data_set_link(&rx, link_sta->link_id); 5196 } 5197 5198 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5199 return; 5200 goto out; 5201 } 5202 5203 prev_sta = NULL; 5204 5205 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5206 if (!prev_sta) { 5207 prev_sta = sta; 5208 continue; 5209 } 5210 5211 rx.sdata = prev_sta->sdata; 5212 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5213 goto out; 5214 5215 if (!status->link_valid && prev_sta->sta.mlo) 5216 continue; 5217 5218 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5219 5220 prev_sta = sta; 5221 } 5222 5223 if (prev_sta) { 5224 rx.sdata = prev_sta->sdata; 5225 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5226 goto out; 5227 5228 if (!status->link_valid && prev_sta->sta.mlo) 5229 goto out; 5230 5231 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5232 return; 5233 goto out; 5234 } 5235 } 5236 5237 prev = NULL; 5238 5239 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5240 if (!ieee80211_sdata_running(sdata)) 5241 continue; 5242 5243 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5244 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5245 continue; 5246 5247 /* 5248 * frame is destined for this interface, but if it's 5249 * not also for the previous one we handle that after 5250 * the loop to avoid copying the SKB once too much 5251 */ 5252 5253 if (!prev) { 5254 prev = sdata; 5255 continue; 5256 } 5257 5258 rx.sdata = prev; 5259 ieee80211_rx_for_interface(&rx, skb, false); 5260 5261 prev = sdata; 5262 } 5263 5264 if (prev) { 5265 rx.sdata = prev; 5266 5267 if (ieee80211_rx_for_interface(&rx, skb, true)) 5268 return; 5269 } 5270 5271 out: 5272 dev_kfree_skb(skb); 5273 } 5274 5275 /* 5276 * This is the receive path handler. It is called by a low level driver when an 5277 * 802.11 MPDU is received from the hardware. 5278 */ 5279 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5280 struct sk_buff *skb, struct list_head *list) 5281 { 5282 struct ieee80211_local *local = hw_to_local(hw); 5283 struct ieee80211_rate *rate = NULL; 5284 struct ieee80211_supported_band *sband; 5285 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5286 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5287 5288 WARN_ON_ONCE(softirq_count() == 0); 5289 5290 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5291 goto drop; 5292 5293 sband = local->hw.wiphy->bands[status->band]; 5294 if (WARN_ON(!sband)) 5295 goto drop; 5296 5297 /* 5298 * If we're suspending, it is possible although not too likely 5299 * that we'd be receiving frames after having already partially 5300 * quiesced the stack. We can't process such frames then since 5301 * that might, for example, cause stations to be added or other 5302 * driver callbacks be invoked. 5303 */ 5304 if (unlikely(local->quiescing || local->suspended)) 5305 goto drop; 5306 5307 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5308 if (unlikely(local->in_reconfig)) 5309 goto drop; 5310 5311 /* 5312 * The same happens when we're not even started, 5313 * but that's worth a warning. 5314 */ 5315 if (WARN_ON(!local->started)) 5316 goto drop; 5317 5318 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5319 /* 5320 * Validate the rate, unless a PLCP error means that 5321 * we probably can't have a valid rate here anyway. 5322 */ 5323 5324 switch (status->encoding) { 5325 case RX_ENC_HT: 5326 /* 5327 * rate_idx is MCS index, which can be [0-76] 5328 * as documented on: 5329 * 5330 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5331 * 5332 * Anything else would be some sort of driver or 5333 * hardware error. The driver should catch hardware 5334 * errors. 5335 */ 5336 if (WARN(status->rate_idx > 76, 5337 "Rate marked as an HT rate but passed " 5338 "status->rate_idx is not " 5339 "an MCS index [0-76]: %d (0x%02x)\n", 5340 status->rate_idx, 5341 status->rate_idx)) 5342 goto drop; 5343 break; 5344 case RX_ENC_VHT: 5345 if (WARN_ONCE(status->rate_idx > 11 || 5346 !status->nss || 5347 status->nss > 8, 5348 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5349 status->rate_idx, status->nss)) 5350 goto drop; 5351 break; 5352 case RX_ENC_HE: 5353 if (WARN_ONCE(status->rate_idx > 11 || 5354 !status->nss || 5355 status->nss > 8, 5356 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5357 status->rate_idx, status->nss)) 5358 goto drop; 5359 break; 5360 case RX_ENC_EHT: 5361 if (WARN_ONCE(status->rate_idx > 15 || 5362 !status->nss || 5363 status->nss > 8 || 5364 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, 5365 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", 5366 status->rate_idx, status->nss, status->eht.gi)) 5367 goto drop; 5368 break; 5369 default: 5370 WARN_ON_ONCE(1); 5371 fallthrough; 5372 case RX_ENC_LEGACY: 5373 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5374 goto drop; 5375 rate = &sband->bitrates[status->rate_idx]; 5376 } 5377 } 5378 5379 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5380 goto drop; 5381 5382 status->rx_flags = 0; 5383 5384 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5385 5386 /* 5387 * Frames with failed FCS/PLCP checksum are not returned, 5388 * all other frames are returned without radiotap header 5389 * if it was previously present. 5390 * Also, frames with less than 16 bytes are dropped. 5391 */ 5392 if (!(status->flag & RX_FLAG_8023)) 5393 skb = ieee80211_rx_monitor(local, skb, rate); 5394 if (skb) { 5395 if ((status->flag & RX_FLAG_8023) || 5396 ieee80211_is_data_present(hdr->frame_control)) 5397 ieee80211_tpt_led_trig_rx(local, skb->len); 5398 5399 if (status->flag & RX_FLAG_8023) 5400 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5401 else 5402 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5403 } 5404 5405 kcov_remote_stop(); 5406 return; 5407 drop: 5408 kfree_skb(skb); 5409 } 5410 EXPORT_SYMBOL(ieee80211_rx_list); 5411 5412 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5413 struct sk_buff *skb, struct napi_struct *napi) 5414 { 5415 struct sk_buff *tmp; 5416 LIST_HEAD(list); 5417 5418 5419 /* 5420 * key references and virtual interfaces are protected using RCU 5421 * and this requires that we are in a read-side RCU section during 5422 * receive processing 5423 */ 5424 rcu_read_lock(); 5425 ieee80211_rx_list(hw, pubsta, skb, &list); 5426 rcu_read_unlock(); 5427 5428 if (!napi) { 5429 netif_receive_skb_list(&list); 5430 return; 5431 } 5432 5433 list_for_each_entry_safe(skb, tmp, &list, list) { 5434 skb_list_del_init(skb); 5435 napi_gro_receive(napi, skb); 5436 } 5437 } 5438 EXPORT_SYMBOL(ieee80211_rx_napi); 5439 5440 /* This is a version of the rx handler that can be called from hard irq 5441 * context. Post the skb on the queue and schedule the tasklet */ 5442 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5443 { 5444 struct ieee80211_local *local = hw_to_local(hw); 5445 5446 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5447 5448 skb->pkt_type = IEEE80211_RX_MSG; 5449 skb_queue_tail(&local->skb_queue, skb); 5450 tasklet_schedule(&local->tasklet); 5451 } 5452 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5453