1 /* 2 * net/key/af_key.c An implementation of PF_KEYv2 sockets. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Maxim Giryaev <gem@asplinux.ru> 10 * David S. Miller <davem@redhat.com> 11 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 12 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 13 * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org> 14 * Derek Atkins <derek@ihtfp.com> 15 */ 16 17 #include <linux/config.h> 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/socket.h> 21 #include <linux/pfkeyv2.h> 22 #include <linux/ipsec.h> 23 #include <linux/skbuff.h> 24 #include <linux/rtnetlink.h> 25 #include <linux/in.h> 26 #include <linux/in6.h> 27 #include <linux/proc_fs.h> 28 #include <linux/init.h> 29 #include <net/xfrm.h> 30 31 #include <net/sock.h> 32 33 #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x)) 34 #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x)) 35 36 37 /* List of all pfkey sockets. */ 38 static HLIST_HEAD(pfkey_table); 39 static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait); 40 static DEFINE_RWLOCK(pfkey_table_lock); 41 static atomic_t pfkey_table_users = ATOMIC_INIT(0); 42 43 static atomic_t pfkey_socks_nr = ATOMIC_INIT(0); 44 45 struct pfkey_sock { 46 /* struct sock must be the first member of struct pfkey_sock */ 47 struct sock sk; 48 int registered; 49 int promisc; 50 }; 51 52 static inline struct pfkey_sock *pfkey_sk(struct sock *sk) 53 { 54 return (struct pfkey_sock *)sk; 55 } 56 57 static void pfkey_sock_destruct(struct sock *sk) 58 { 59 skb_queue_purge(&sk->sk_receive_queue); 60 61 if (!sock_flag(sk, SOCK_DEAD)) { 62 printk("Attempt to release alive pfkey socket: %p\n", sk); 63 return; 64 } 65 66 BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc)); 67 BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc)); 68 69 atomic_dec(&pfkey_socks_nr); 70 } 71 72 static void pfkey_table_grab(void) 73 { 74 write_lock_bh(&pfkey_table_lock); 75 76 if (atomic_read(&pfkey_table_users)) { 77 DECLARE_WAITQUEUE(wait, current); 78 79 add_wait_queue_exclusive(&pfkey_table_wait, &wait); 80 for(;;) { 81 set_current_state(TASK_UNINTERRUPTIBLE); 82 if (atomic_read(&pfkey_table_users) == 0) 83 break; 84 write_unlock_bh(&pfkey_table_lock); 85 schedule(); 86 write_lock_bh(&pfkey_table_lock); 87 } 88 89 __set_current_state(TASK_RUNNING); 90 remove_wait_queue(&pfkey_table_wait, &wait); 91 } 92 } 93 94 static __inline__ void pfkey_table_ungrab(void) 95 { 96 write_unlock_bh(&pfkey_table_lock); 97 wake_up(&pfkey_table_wait); 98 } 99 100 static __inline__ void pfkey_lock_table(void) 101 { 102 /* read_lock() synchronizes us to pfkey_table_grab */ 103 104 read_lock(&pfkey_table_lock); 105 atomic_inc(&pfkey_table_users); 106 read_unlock(&pfkey_table_lock); 107 } 108 109 static __inline__ void pfkey_unlock_table(void) 110 { 111 if (atomic_dec_and_test(&pfkey_table_users)) 112 wake_up(&pfkey_table_wait); 113 } 114 115 116 static struct proto_ops pfkey_ops; 117 118 static void pfkey_insert(struct sock *sk) 119 { 120 pfkey_table_grab(); 121 sk_add_node(sk, &pfkey_table); 122 pfkey_table_ungrab(); 123 } 124 125 static void pfkey_remove(struct sock *sk) 126 { 127 pfkey_table_grab(); 128 sk_del_node_init(sk); 129 pfkey_table_ungrab(); 130 } 131 132 static struct proto key_proto = { 133 .name = "KEY", 134 .owner = THIS_MODULE, 135 .obj_size = sizeof(struct pfkey_sock), 136 }; 137 138 static int pfkey_create(struct socket *sock, int protocol) 139 { 140 struct sock *sk; 141 int err; 142 143 if (!capable(CAP_NET_ADMIN)) 144 return -EPERM; 145 if (sock->type != SOCK_RAW) 146 return -ESOCKTNOSUPPORT; 147 if (protocol != PF_KEY_V2) 148 return -EPROTONOSUPPORT; 149 150 err = -ENOMEM; 151 sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1); 152 if (sk == NULL) 153 goto out; 154 155 sock->ops = &pfkey_ops; 156 sock_init_data(sock, sk); 157 158 sk->sk_family = PF_KEY; 159 sk->sk_destruct = pfkey_sock_destruct; 160 161 atomic_inc(&pfkey_socks_nr); 162 163 pfkey_insert(sk); 164 165 return 0; 166 out: 167 return err; 168 } 169 170 static int pfkey_release(struct socket *sock) 171 { 172 struct sock *sk = sock->sk; 173 174 if (!sk) 175 return 0; 176 177 pfkey_remove(sk); 178 179 sock_orphan(sk); 180 sock->sk = NULL; 181 skb_queue_purge(&sk->sk_write_queue); 182 sock_put(sk); 183 184 return 0; 185 } 186 187 static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2, 188 gfp_t allocation, struct sock *sk) 189 { 190 int err = -ENOBUFS; 191 192 sock_hold(sk); 193 if (*skb2 == NULL) { 194 if (atomic_read(&skb->users) != 1) { 195 *skb2 = skb_clone(skb, allocation); 196 } else { 197 *skb2 = skb; 198 atomic_inc(&skb->users); 199 } 200 } 201 if (*skb2 != NULL) { 202 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) { 203 skb_orphan(*skb2); 204 skb_set_owner_r(*skb2, sk); 205 skb_queue_tail(&sk->sk_receive_queue, *skb2); 206 sk->sk_data_ready(sk, (*skb2)->len); 207 *skb2 = NULL; 208 err = 0; 209 } 210 } 211 sock_put(sk); 212 return err; 213 } 214 215 /* Send SKB to all pfkey sockets matching selected criteria. */ 216 #define BROADCAST_ALL 0 217 #define BROADCAST_ONE 1 218 #define BROADCAST_REGISTERED 2 219 #define BROADCAST_PROMISC_ONLY 4 220 static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation, 221 int broadcast_flags, struct sock *one_sk) 222 { 223 struct sock *sk; 224 struct hlist_node *node; 225 struct sk_buff *skb2 = NULL; 226 int err = -ESRCH; 227 228 /* XXX Do we need something like netlink_overrun? I think 229 * XXX PF_KEY socket apps will not mind current behavior. 230 */ 231 if (!skb) 232 return -ENOMEM; 233 234 pfkey_lock_table(); 235 sk_for_each(sk, node, &pfkey_table) { 236 struct pfkey_sock *pfk = pfkey_sk(sk); 237 int err2; 238 239 /* Yes, it means that if you are meant to receive this 240 * pfkey message you receive it twice as promiscuous 241 * socket. 242 */ 243 if (pfk->promisc) 244 pfkey_broadcast_one(skb, &skb2, allocation, sk); 245 246 /* the exact target will be processed later */ 247 if (sk == one_sk) 248 continue; 249 if (broadcast_flags != BROADCAST_ALL) { 250 if (broadcast_flags & BROADCAST_PROMISC_ONLY) 251 continue; 252 if ((broadcast_flags & BROADCAST_REGISTERED) && 253 !pfk->registered) 254 continue; 255 if (broadcast_flags & BROADCAST_ONE) 256 continue; 257 } 258 259 err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk); 260 261 /* Error is cleare after succecful sending to at least one 262 * registered KM */ 263 if ((broadcast_flags & BROADCAST_REGISTERED) && err) 264 err = err2; 265 } 266 pfkey_unlock_table(); 267 268 if (one_sk != NULL) 269 err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk); 270 271 if (skb2) 272 kfree_skb(skb2); 273 kfree_skb(skb); 274 return err; 275 } 276 277 static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig) 278 { 279 *new = *orig; 280 } 281 282 static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk) 283 { 284 struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL); 285 struct sadb_msg *hdr; 286 287 if (!skb) 288 return -ENOBUFS; 289 290 /* Woe be to the platform trying to support PFKEY yet 291 * having normal errnos outside the 1-255 range, inclusive. 292 */ 293 err = -err; 294 if (err == ERESTARTSYS || 295 err == ERESTARTNOHAND || 296 err == ERESTARTNOINTR) 297 err = EINTR; 298 if (err >= 512) 299 err = EINVAL; 300 if (err <= 0 || err >= 256) 301 BUG(); 302 303 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 304 pfkey_hdr_dup(hdr, orig); 305 hdr->sadb_msg_errno = (uint8_t) err; 306 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / 307 sizeof(uint64_t)); 308 309 pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk); 310 311 return 0; 312 } 313 314 static u8 sadb_ext_min_len[] = { 315 [SADB_EXT_RESERVED] = (u8) 0, 316 [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa), 317 [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime), 318 [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime), 319 [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime), 320 [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address), 321 [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address), 322 [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address), 323 [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key), 324 [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key), 325 [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident), 326 [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident), 327 [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens), 328 [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop), 329 [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported), 330 [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported), 331 [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange), 332 [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate), 333 [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy), 334 [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2), 335 [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type), 336 [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port), 337 [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port), 338 [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address), 339 }; 340 341 /* Verify sadb_address_{len,prefixlen} against sa_family. */ 342 static int verify_address_len(void *p) 343 { 344 struct sadb_address *sp = p; 345 struct sockaddr *addr = (struct sockaddr *)(sp + 1); 346 struct sockaddr_in *sin; 347 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 348 struct sockaddr_in6 *sin6; 349 #endif 350 int len; 351 352 switch (addr->sa_family) { 353 case AF_INET: 354 len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1); 355 len /= sizeof(uint64_t); 356 if (sp->sadb_address_len != len || 357 sp->sadb_address_prefixlen > 32) 358 return -EINVAL; 359 break; 360 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 361 case AF_INET6: 362 len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1); 363 len /= sizeof(uint64_t); 364 if (sp->sadb_address_len != len || 365 sp->sadb_address_prefixlen > 128) 366 return -EINVAL; 367 break; 368 #endif 369 default: 370 /* It is user using kernel to keep track of security 371 * associations for another protocol, such as 372 * OSPF/RSVP/RIPV2/MIP. It is user's job to verify 373 * lengths. 374 * 375 * XXX Actually, association/policy database is not yet 376 * XXX able to cope with arbitrary sockaddr families. 377 * XXX When it can, remove this -EINVAL. -DaveM 378 */ 379 return -EINVAL; 380 break; 381 }; 382 383 return 0; 384 } 385 386 static int present_and_same_family(struct sadb_address *src, 387 struct sadb_address *dst) 388 { 389 struct sockaddr *s_addr, *d_addr; 390 391 if (!src || !dst) 392 return 0; 393 394 s_addr = (struct sockaddr *)(src + 1); 395 d_addr = (struct sockaddr *)(dst + 1); 396 if (s_addr->sa_family != d_addr->sa_family) 397 return 0; 398 if (s_addr->sa_family != AF_INET 399 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 400 && s_addr->sa_family != AF_INET6 401 #endif 402 ) 403 return 0; 404 405 return 1; 406 } 407 408 static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 409 { 410 char *p = (char *) hdr; 411 int len = skb->len; 412 413 len -= sizeof(*hdr); 414 p += sizeof(*hdr); 415 while (len > 0) { 416 struct sadb_ext *ehdr = (struct sadb_ext *) p; 417 uint16_t ext_type; 418 int ext_len; 419 420 ext_len = ehdr->sadb_ext_len; 421 ext_len *= sizeof(uint64_t); 422 ext_type = ehdr->sadb_ext_type; 423 if (ext_len < sizeof(uint64_t) || 424 ext_len > len || 425 ext_type == SADB_EXT_RESERVED) 426 return -EINVAL; 427 428 if (ext_type <= SADB_EXT_MAX) { 429 int min = (int) sadb_ext_min_len[ext_type]; 430 if (ext_len < min) 431 return -EINVAL; 432 if (ext_hdrs[ext_type-1] != NULL) 433 return -EINVAL; 434 if (ext_type == SADB_EXT_ADDRESS_SRC || 435 ext_type == SADB_EXT_ADDRESS_DST || 436 ext_type == SADB_EXT_ADDRESS_PROXY || 437 ext_type == SADB_X_EXT_NAT_T_OA) { 438 if (verify_address_len(p)) 439 return -EINVAL; 440 } 441 ext_hdrs[ext_type-1] = p; 442 } 443 p += ext_len; 444 len -= ext_len; 445 } 446 447 return 0; 448 } 449 450 static uint16_t 451 pfkey_satype2proto(uint8_t satype) 452 { 453 switch (satype) { 454 case SADB_SATYPE_UNSPEC: 455 return IPSEC_PROTO_ANY; 456 case SADB_SATYPE_AH: 457 return IPPROTO_AH; 458 case SADB_SATYPE_ESP: 459 return IPPROTO_ESP; 460 case SADB_X_SATYPE_IPCOMP: 461 return IPPROTO_COMP; 462 break; 463 default: 464 return 0; 465 } 466 /* NOTREACHED */ 467 } 468 469 static uint8_t 470 pfkey_proto2satype(uint16_t proto) 471 { 472 switch (proto) { 473 case IPPROTO_AH: 474 return SADB_SATYPE_AH; 475 case IPPROTO_ESP: 476 return SADB_SATYPE_ESP; 477 case IPPROTO_COMP: 478 return SADB_X_SATYPE_IPCOMP; 479 break; 480 default: 481 return 0; 482 } 483 /* NOTREACHED */ 484 } 485 486 /* BTW, this scheme means that there is no way with PFKEY2 sockets to 487 * say specifically 'just raw sockets' as we encode them as 255. 488 */ 489 490 static uint8_t pfkey_proto_to_xfrm(uint8_t proto) 491 { 492 return (proto == IPSEC_PROTO_ANY ? 0 : proto); 493 } 494 495 static uint8_t pfkey_proto_from_xfrm(uint8_t proto) 496 { 497 return (proto ? proto : IPSEC_PROTO_ANY); 498 } 499 500 static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, 501 xfrm_address_t *xaddr) 502 { 503 switch (((struct sockaddr*)(addr + 1))->sa_family) { 504 case AF_INET: 505 xaddr->a4 = 506 ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr; 507 return AF_INET; 508 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 509 case AF_INET6: 510 memcpy(xaddr->a6, 511 &((struct sockaddr_in6 *)(addr + 1))->sin6_addr, 512 sizeof(struct in6_addr)); 513 return AF_INET6; 514 #endif 515 default: 516 return 0; 517 } 518 /* NOTREACHED */ 519 } 520 521 static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs) 522 { 523 struct sadb_sa *sa; 524 struct sadb_address *addr; 525 uint16_t proto; 526 unsigned short family; 527 xfrm_address_t *xaddr; 528 529 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1]; 530 if (sa == NULL) 531 return NULL; 532 533 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 534 if (proto == 0) 535 return NULL; 536 537 /* sadb_address_len should be checked by caller */ 538 addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1]; 539 if (addr == NULL) 540 return NULL; 541 542 family = ((struct sockaddr *)(addr + 1))->sa_family; 543 switch (family) { 544 case AF_INET: 545 xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr; 546 break; 547 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 548 case AF_INET6: 549 xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr; 550 break; 551 #endif 552 default: 553 xaddr = NULL; 554 } 555 556 if (!xaddr) 557 return NULL; 558 559 return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family); 560 } 561 562 #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1))) 563 static int 564 pfkey_sockaddr_size(sa_family_t family) 565 { 566 switch (family) { 567 case AF_INET: 568 return PFKEY_ALIGN8(sizeof(struct sockaddr_in)); 569 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 570 case AF_INET6: 571 return PFKEY_ALIGN8(sizeof(struct sockaddr_in6)); 572 #endif 573 default: 574 return 0; 575 } 576 /* NOTREACHED */ 577 } 578 579 static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc) 580 { 581 struct sk_buff *skb; 582 struct sadb_msg *hdr; 583 struct sadb_sa *sa; 584 struct sadb_lifetime *lifetime; 585 struct sadb_address *addr; 586 struct sadb_key *key; 587 struct sadb_x_sa2 *sa2; 588 struct sockaddr_in *sin; 589 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 590 struct sockaddr_in6 *sin6; 591 #endif 592 int size; 593 int auth_key_size = 0; 594 int encrypt_key_size = 0; 595 int sockaddr_size; 596 struct xfrm_encap_tmpl *natt = NULL; 597 598 /* address family check */ 599 sockaddr_size = pfkey_sockaddr_size(x->props.family); 600 if (!sockaddr_size) 601 return ERR_PTR(-EINVAL); 602 603 /* base, SA, (lifetime (HSC),) address(SD), (address(P),) 604 key(AE), (identity(SD),) (sensitivity)> */ 605 size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) + 606 sizeof(struct sadb_lifetime) + 607 ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) + 608 ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) + 609 sizeof(struct sadb_address)*2 + 610 sockaddr_size*2 + 611 sizeof(struct sadb_x_sa2); 612 /* identity & sensitivity */ 613 614 if ((x->props.family == AF_INET && 615 x->sel.saddr.a4 != x->props.saddr.a4) 616 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 617 || (x->props.family == AF_INET6 && 618 memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr))) 619 #endif 620 ) 621 size += sizeof(struct sadb_address) + sockaddr_size; 622 623 if (add_keys) { 624 if (x->aalg && x->aalg->alg_key_len) { 625 auth_key_size = 626 PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8); 627 size += sizeof(struct sadb_key) + auth_key_size; 628 } 629 if (x->ealg && x->ealg->alg_key_len) { 630 encrypt_key_size = 631 PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8); 632 size += sizeof(struct sadb_key) + encrypt_key_size; 633 } 634 } 635 if (x->encap) 636 natt = x->encap; 637 638 if (natt && natt->encap_type) { 639 size += sizeof(struct sadb_x_nat_t_type); 640 size += sizeof(struct sadb_x_nat_t_port); 641 size += sizeof(struct sadb_x_nat_t_port); 642 } 643 644 skb = alloc_skb(size + 16, GFP_ATOMIC); 645 if (skb == NULL) 646 return ERR_PTR(-ENOBUFS); 647 648 /* call should fill header later */ 649 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 650 memset(hdr, 0, size); /* XXX do we need this ? */ 651 hdr->sadb_msg_len = size / sizeof(uint64_t); 652 653 /* sa */ 654 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa)); 655 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); 656 sa->sadb_sa_exttype = SADB_EXT_SA; 657 sa->sadb_sa_spi = x->id.spi; 658 sa->sadb_sa_replay = x->props.replay_window; 659 switch (x->km.state) { 660 case XFRM_STATE_VALID: 661 sa->sadb_sa_state = x->km.dying ? 662 SADB_SASTATE_DYING : SADB_SASTATE_MATURE; 663 break; 664 case XFRM_STATE_ACQ: 665 sa->sadb_sa_state = SADB_SASTATE_LARVAL; 666 break; 667 default: 668 sa->sadb_sa_state = SADB_SASTATE_DEAD; 669 break; 670 } 671 sa->sadb_sa_auth = 0; 672 if (x->aalg) { 673 struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0); 674 sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0; 675 } 676 sa->sadb_sa_encrypt = 0; 677 BUG_ON(x->ealg && x->calg); 678 if (x->ealg) { 679 struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0); 680 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0; 681 } 682 /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */ 683 if (x->calg) { 684 struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0); 685 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0; 686 } 687 688 sa->sadb_sa_flags = 0; 689 if (x->props.flags & XFRM_STATE_NOECN) 690 sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN; 691 if (x->props.flags & XFRM_STATE_DECAP_DSCP) 692 sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP; 693 if (x->props.flags & XFRM_STATE_NOPMTUDISC) 694 sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC; 695 696 /* hard time */ 697 if (hsc & 2) { 698 lifetime = (struct sadb_lifetime *) skb_put(skb, 699 sizeof(struct sadb_lifetime)); 700 lifetime->sadb_lifetime_len = 701 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 702 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 703 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit); 704 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit); 705 lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds; 706 lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds; 707 } 708 /* soft time */ 709 if (hsc & 1) { 710 lifetime = (struct sadb_lifetime *) skb_put(skb, 711 sizeof(struct sadb_lifetime)); 712 lifetime->sadb_lifetime_len = 713 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 714 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 715 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit); 716 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit); 717 lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds; 718 lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds; 719 } 720 /* current time */ 721 lifetime = (struct sadb_lifetime *) skb_put(skb, 722 sizeof(struct sadb_lifetime)); 723 lifetime->sadb_lifetime_len = 724 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 725 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 726 lifetime->sadb_lifetime_allocations = x->curlft.packets; 727 lifetime->sadb_lifetime_bytes = x->curlft.bytes; 728 lifetime->sadb_lifetime_addtime = x->curlft.add_time; 729 lifetime->sadb_lifetime_usetime = x->curlft.use_time; 730 /* src address */ 731 addr = (struct sadb_address*) skb_put(skb, 732 sizeof(struct sadb_address)+sockaddr_size); 733 addr->sadb_address_len = 734 (sizeof(struct sadb_address)+sockaddr_size)/ 735 sizeof(uint64_t); 736 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 737 /* "if the ports are non-zero, then the sadb_address_proto field, 738 normally zero, MUST be filled in with the transport 739 protocol's number." - RFC2367 */ 740 addr->sadb_address_proto = 0; 741 addr->sadb_address_reserved = 0; 742 if (x->props.family == AF_INET) { 743 addr->sadb_address_prefixlen = 32; 744 745 sin = (struct sockaddr_in *) (addr + 1); 746 sin->sin_family = AF_INET; 747 sin->sin_addr.s_addr = x->props.saddr.a4; 748 sin->sin_port = 0; 749 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 750 } 751 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 752 else if (x->props.family == AF_INET6) { 753 addr->sadb_address_prefixlen = 128; 754 755 sin6 = (struct sockaddr_in6 *) (addr + 1); 756 sin6->sin6_family = AF_INET6; 757 sin6->sin6_port = 0; 758 sin6->sin6_flowinfo = 0; 759 memcpy(&sin6->sin6_addr, x->props.saddr.a6, 760 sizeof(struct in6_addr)); 761 sin6->sin6_scope_id = 0; 762 } 763 #endif 764 else 765 BUG(); 766 767 /* dst address */ 768 addr = (struct sadb_address*) skb_put(skb, 769 sizeof(struct sadb_address)+sockaddr_size); 770 addr->sadb_address_len = 771 (sizeof(struct sadb_address)+sockaddr_size)/ 772 sizeof(uint64_t); 773 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 774 addr->sadb_address_proto = 0; 775 addr->sadb_address_prefixlen = 32; /* XXX */ 776 addr->sadb_address_reserved = 0; 777 if (x->props.family == AF_INET) { 778 sin = (struct sockaddr_in *) (addr + 1); 779 sin->sin_family = AF_INET; 780 sin->sin_addr.s_addr = x->id.daddr.a4; 781 sin->sin_port = 0; 782 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 783 784 if (x->sel.saddr.a4 != x->props.saddr.a4) { 785 addr = (struct sadb_address*) skb_put(skb, 786 sizeof(struct sadb_address)+sockaddr_size); 787 addr->sadb_address_len = 788 (sizeof(struct sadb_address)+sockaddr_size)/ 789 sizeof(uint64_t); 790 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY; 791 addr->sadb_address_proto = 792 pfkey_proto_from_xfrm(x->sel.proto); 793 addr->sadb_address_prefixlen = x->sel.prefixlen_s; 794 addr->sadb_address_reserved = 0; 795 796 sin = (struct sockaddr_in *) (addr + 1); 797 sin->sin_family = AF_INET; 798 sin->sin_addr.s_addr = x->sel.saddr.a4; 799 sin->sin_port = x->sel.sport; 800 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 801 } 802 } 803 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 804 else if (x->props.family == AF_INET6) { 805 addr->sadb_address_prefixlen = 128; 806 807 sin6 = (struct sockaddr_in6 *) (addr + 1); 808 sin6->sin6_family = AF_INET6; 809 sin6->sin6_port = 0; 810 sin6->sin6_flowinfo = 0; 811 memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr)); 812 sin6->sin6_scope_id = 0; 813 814 if (memcmp (x->sel.saddr.a6, x->props.saddr.a6, 815 sizeof(struct in6_addr))) { 816 addr = (struct sadb_address *) skb_put(skb, 817 sizeof(struct sadb_address)+sockaddr_size); 818 addr->sadb_address_len = 819 (sizeof(struct sadb_address)+sockaddr_size)/ 820 sizeof(uint64_t); 821 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY; 822 addr->sadb_address_proto = 823 pfkey_proto_from_xfrm(x->sel.proto); 824 addr->sadb_address_prefixlen = x->sel.prefixlen_s; 825 addr->sadb_address_reserved = 0; 826 827 sin6 = (struct sockaddr_in6 *) (addr + 1); 828 sin6->sin6_family = AF_INET6; 829 sin6->sin6_port = x->sel.sport; 830 sin6->sin6_flowinfo = 0; 831 memcpy(&sin6->sin6_addr, x->sel.saddr.a6, 832 sizeof(struct in6_addr)); 833 sin6->sin6_scope_id = 0; 834 } 835 } 836 #endif 837 else 838 BUG(); 839 840 /* auth key */ 841 if (add_keys && auth_key_size) { 842 key = (struct sadb_key *) skb_put(skb, 843 sizeof(struct sadb_key)+auth_key_size); 844 key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) / 845 sizeof(uint64_t); 846 key->sadb_key_exttype = SADB_EXT_KEY_AUTH; 847 key->sadb_key_bits = x->aalg->alg_key_len; 848 key->sadb_key_reserved = 0; 849 memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8); 850 } 851 /* encrypt key */ 852 if (add_keys && encrypt_key_size) { 853 key = (struct sadb_key *) skb_put(skb, 854 sizeof(struct sadb_key)+encrypt_key_size); 855 key->sadb_key_len = (sizeof(struct sadb_key) + 856 encrypt_key_size) / sizeof(uint64_t); 857 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT; 858 key->sadb_key_bits = x->ealg->alg_key_len; 859 key->sadb_key_reserved = 0; 860 memcpy(key + 1, x->ealg->alg_key, 861 (x->ealg->alg_key_len+7)/8); 862 } 863 864 /* sa */ 865 sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2)); 866 sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t); 867 sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 868 sa2->sadb_x_sa2_mode = x->props.mode + 1; 869 sa2->sadb_x_sa2_reserved1 = 0; 870 sa2->sadb_x_sa2_reserved2 = 0; 871 sa2->sadb_x_sa2_sequence = 0; 872 sa2->sadb_x_sa2_reqid = x->props.reqid; 873 874 if (natt && natt->encap_type) { 875 struct sadb_x_nat_t_type *n_type; 876 struct sadb_x_nat_t_port *n_port; 877 878 /* type */ 879 n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type)); 880 n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t); 881 n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 882 n_type->sadb_x_nat_t_type_type = natt->encap_type; 883 n_type->sadb_x_nat_t_type_reserved[0] = 0; 884 n_type->sadb_x_nat_t_type_reserved[1] = 0; 885 n_type->sadb_x_nat_t_type_reserved[2] = 0; 886 887 /* source port */ 888 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 889 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 890 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; 891 n_port->sadb_x_nat_t_port_port = natt->encap_sport; 892 n_port->sadb_x_nat_t_port_reserved = 0; 893 894 /* dest port */ 895 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 896 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 897 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; 898 n_port->sadb_x_nat_t_port_port = natt->encap_dport; 899 n_port->sadb_x_nat_t_port_reserved = 0; 900 } 901 902 return skb; 903 } 904 905 static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr, 906 void **ext_hdrs) 907 { 908 struct xfrm_state *x; 909 struct sadb_lifetime *lifetime; 910 struct sadb_sa *sa; 911 struct sadb_key *key; 912 uint16_t proto; 913 int err; 914 915 916 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1]; 917 if (!sa || 918 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 919 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 920 return ERR_PTR(-EINVAL); 921 if (hdr->sadb_msg_satype == SADB_SATYPE_ESP && 922 !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]) 923 return ERR_PTR(-EINVAL); 924 if (hdr->sadb_msg_satype == SADB_SATYPE_AH && 925 !ext_hdrs[SADB_EXT_KEY_AUTH-1]) 926 return ERR_PTR(-EINVAL); 927 if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] != 928 !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) 929 return ERR_PTR(-EINVAL); 930 931 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 932 if (proto == 0) 933 return ERR_PTR(-EINVAL); 934 935 /* default error is no buffer space */ 936 err = -ENOBUFS; 937 938 /* RFC2367: 939 940 Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message. 941 SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not 942 sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state. 943 Therefore, the sadb_sa_state field of all submitted SAs MUST be 944 SADB_SASTATE_MATURE and the kernel MUST return an error if this is 945 not true. 946 947 However, KAME setkey always uses SADB_SASTATE_LARVAL. 948 Hence, we have to _ignore_ sadb_sa_state, which is also reasonable. 949 */ 950 if (sa->sadb_sa_auth > SADB_AALG_MAX || 951 (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP && 952 sa->sadb_sa_encrypt > SADB_X_CALG_MAX) || 953 sa->sadb_sa_encrypt > SADB_EALG_MAX) 954 return ERR_PTR(-EINVAL); 955 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1]; 956 if (key != NULL && 957 sa->sadb_sa_auth != SADB_X_AALG_NULL && 958 ((key->sadb_key_bits+7) / 8 == 0 || 959 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t))) 960 return ERR_PTR(-EINVAL); 961 key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; 962 if (key != NULL && 963 sa->sadb_sa_encrypt != SADB_EALG_NULL && 964 ((key->sadb_key_bits+7) / 8 == 0 || 965 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t))) 966 return ERR_PTR(-EINVAL); 967 968 x = xfrm_state_alloc(); 969 if (x == NULL) 970 return ERR_PTR(-ENOBUFS); 971 972 x->id.proto = proto; 973 x->id.spi = sa->sadb_sa_spi; 974 x->props.replay_window = sa->sadb_sa_replay; 975 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN) 976 x->props.flags |= XFRM_STATE_NOECN; 977 if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP) 978 x->props.flags |= XFRM_STATE_DECAP_DSCP; 979 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC) 980 x->props.flags |= XFRM_STATE_NOPMTUDISC; 981 982 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1]; 983 if (lifetime != NULL) { 984 x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 985 x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 986 x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; 987 x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; 988 } 989 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]; 990 if (lifetime != NULL) { 991 x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 992 x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 993 x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; 994 x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; 995 } 996 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1]; 997 if (sa->sadb_sa_auth) { 998 int keysize = 0; 999 struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth); 1000 if (!a) { 1001 err = -ENOSYS; 1002 goto out; 1003 } 1004 if (key) 1005 keysize = (key->sadb_key_bits + 7) / 8; 1006 x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL); 1007 if (!x->aalg) 1008 goto out; 1009 strcpy(x->aalg->alg_name, a->name); 1010 x->aalg->alg_key_len = 0; 1011 if (key) { 1012 x->aalg->alg_key_len = key->sadb_key_bits; 1013 memcpy(x->aalg->alg_key, key+1, keysize); 1014 } 1015 x->props.aalgo = sa->sadb_sa_auth; 1016 /* x->algo.flags = sa->sadb_sa_flags; */ 1017 } 1018 if (sa->sadb_sa_encrypt) { 1019 if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) { 1020 struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt); 1021 if (!a) { 1022 err = -ENOSYS; 1023 goto out; 1024 } 1025 x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL); 1026 if (!x->calg) 1027 goto out; 1028 strcpy(x->calg->alg_name, a->name); 1029 x->props.calgo = sa->sadb_sa_encrypt; 1030 } else { 1031 int keysize = 0; 1032 struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt); 1033 if (!a) { 1034 err = -ENOSYS; 1035 goto out; 1036 } 1037 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; 1038 if (key) 1039 keysize = (key->sadb_key_bits + 7) / 8; 1040 x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL); 1041 if (!x->ealg) 1042 goto out; 1043 strcpy(x->ealg->alg_name, a->name); 1044 x->ealg->alg_key_len = 0; 1045 if (key) { 1046 x->ealg->alg_key_len = key->sadb_key_bits; 1047 memcpy(x->ealg->alg_key, key+1, keysize); 1048 } 1049 x->props.ealgo = sa->sadb_sa_encrypt; 1050 } 1051 } 1052 /* x->algo.flags = sa->sadb_sa_flags; */ 1053 1054 x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1055 &x->props.saddr); 1056 if (!x->props.family) { 1057 err = -EAFNOSUPPORT; 1058 goto out; 1059 } 1060 pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1], 1061 &x->id.daddr); 1062 1063 if (ext_hdrs[SADB_X_EXT_SA2-1]) { 1064 struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1]; 1065 x->props.mode = sa2->sadb_x_sa2_mode; 1066 if (x->props.mode) 1067 x->props.mode--; 1068 x->props.reqid = sa2->sadb_x_sa2_reqid; 1069 } 1070 1071 if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) { 1072 struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]; 1073 1074 /* Nobody uses this, but we try. */ 1075 x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr); 1076 x->sel.prefixlen_s = addr->sadb_address_prefixlen; 1077 } 1078 1079 if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) { 1080 struct sadb_x_nat_t_type* n_type; 1081 struct xfrm_encap_tmpl *natt; 1082 1083 x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL); 1084 if (!x->encap) 1085 goto out; 1086 1087 natt = x->encap; 1088 n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]; 1089 natt->encap_type = n_type->sadb_x_nat_t_type_type; 1090 1091 if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) { 1092 struct sadb_x_nat_t_port* n_port = 1093 ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]; 1094 natt->encap_sport = n_port->sadb_x_nat_t_port_port; 1095 } 1096 if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) { 1097 struct sadb_x_nat_t_port* n_port = 1098 ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]; 1099 natt->encap_dport = n_port->sadb_x_nat_t_port_port; 1100 } 1101 } 1102 1103 err = xfrm_init_state(x); 1104 if (err) 1105 goto out; 1106 1107 x->km.seq = hdr->sadb_msg_seq; 1108 return x; 1109 1110 out: 1111 x->km.state = XFRM_STATE_DEAD; 1112 xfrm_state_put(x); 1113 return ERR_PTR(err); 1114 } 1115 1116 static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1117 { 1118 return -EOPNOTSUPP; 1119 } 1120 1121 static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1122 { 1123 struct sk_buff *resp_skb; 1124 struct sadb_x_sa2 *sa2; 1125 struct sadb_address *saddr, *daddr; 1126 struct sadb_msg *out_hdr; 1127 struct xfrm_state *x = NULL; 1128 u8 mode; 1129 u32 reqid; 1130 u8 proto; 1131 unsigned short family; 1132 xfrm_address_t *xsaddr = NULL, *xdaddr = NULL; 1133 1134 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1135 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1136 return -EINVAL; 1137 1138 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1139 if (proto == 0) 1140 return -EINVAL; 1141 1142 if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) { 1143 mode = sa2->sadb_x_sa2_mode - 1; 1144 reqid = sa2->sadb_x_sa2_reqid; 1145 } else { 1146 mode = 0; 1147 reqid = 0; 1148 } 1149 1150 saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1]; 1151 daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1]; 1152 1153 family = ((struct sockaddr *)(saddr + 1))->sa_family; 1154 switch (family) { 1155 case AF_INET: 1156 xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr; 1157 xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr; 1158 break; 1159 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1160 case AF_INET6: 1161 xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr; 1162 xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr; 1163 break; 1164 #endif 1165 } 1166 1167 if (hdr->sadb_msg_seq) { 1168 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq); 1169 if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) { 1170 xfrm_state_put(x); 1171 x = NULL; 1172 } 1173 } 1174 1175 if (!x) 1176 x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family); 1177 1178 if (x == NULL) 1179 return -ENOENT; 1180 1181 resp_skb = ERR_PTR(-ENOENT); 1182 1183 spin_lock_bh(&x->lock); 1184 if (x->km.state != XFRM_STATE_DEAD) { 1185 struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1]; 1186 u32 min_spi, max_spi; 1187 1188 if (range != NULL) { 1189 min_spi = range->sadb_spirange_min; 1190 max_spi = range->sadb_spirange_max; 1191 } else { 1192 min_spi = 0x100; 1193 max_spi = 0x0fffffff; 1194 } 1195 xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi)); 1196 if (x->id.spi) 1197 resp_skb = pfkey_xfrm_state2msg(x, 0, 3); 1198 } 1199 spin_unlock_bh(&x->lock); 1200 1201 if (IS_ERR(resp_skb)) { 1202 xfrm_state_put(x); 1203 return PTR_ERR(resp_skb); 1204 } 1205 1206 out_hdr = (struct sadb_msg *) resp_skb->data; 1207 out_hdr->sadb_msg_version = hdr->sadb_msg_version; 1208 out_hdr->sadb_msg_type = SADB_GETSPI; 1209 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); 1210 out_hdr->sadb_msg_errno = 0; 1211 out_hdr->sadb_msg_reserved = 0; 1212 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; 1213 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; 1214 1215 xfrm_state_put(x); 1216 1217 pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk); 1218 1219 return 0; 1220 } 1221 1222 static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1223 { 1224 struct xfrm_state *x; 1225 1226 if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8) 1227 return -EOPNOTSUPP; 1228 1229 if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0) 1230 return 0; 1231 1232 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq); 1233 if (x == NULL) 1234 return 0; 1235 1236 spin_lock_bh(&x->lock); 1237 if (x->km.state == XFRM_STATE_ACQ) { 1238 x->km.state = XFRM_STATE_ERROR; 1239 wake_up(&km_waitq); 1240 } 1241 spin_unlock_bh(&x->lock); 1242 xfrm_state_put(x); 1243 return 0; 1244 } 1245 1246 static inline int event2poltype(int event) 1247 { 1248 switch (event) { 1249 case XFRM_MSG_DELPOLICY: 1250 return SADB_X_SPDDELETE; 1251 case XFRM_MSG_NEWPOLICY: 1252 return SADB_X_SPDADD; 1253 case XFRM_MSG_UPDPOLICY: 1254 return SADB_X_SPDUPDATE; 1255 case XFRM_MSG_POLEXPIRE: 1256 // return SADB_X_SPDEXPIRE; 1257 default: 1258 printk("pfkey: Unknown policy event %d\n", event); 1259 break; 1260 } 1261 1262 return 0; 1263 } 1264 1265 static inline int event2keytype(int event) 1266 { 1267 switch (event) { 1268 case XFRM_MSG_DELSA: 1269 return SADB_DELETE; 1270 case XFRM_MSG_NEWSA: 1271 return SADB_ADD; 1272 case XFRM_MSG_UPDSA: 1273 return SADB_UPDATE; 1274 case XFRM_MSG_EXPIRE: 1275 return SADB_EXPIRE; 1276 default: 1277 printk("pfkey: Unknown SA event %d\n", event); 1278 break; 1279 } 1280 1281 return 0; 1282 } 1283 1284 /* ADD/UPD/DEL */ 1285 static int key_notify_sa(struct xfrm_state *x, struct km_event *c) 1286 { 1287 struct sk_buff *skb; 1288 struct sadb_msg *hdr; 1289 int hsc = 3; 1290 1291 if (c->event == XFRM_MSG_DELSA) 1292 hsc = 0; 1293 1294 skb = pfkey_xfrm_state2msg(x, 0, hsc); 1295 1296 if (IS_ERR(skb)) 1297 return PTR_ERR(skb); 1298 1299 hdr = (struct sadb_msg *) skb->data; 1300 hdr->sadb_msg_version = PF_KEY_V2; 1301 hdr->sadb_msg_type = event2keytype(c->event); 1302 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 1303 hdr->sadb_msg_errno = 0; 1304 hdr->sadb_msg_reserved = 0; 1305 hdr->sadb_msg_seq = c->seq; 1306 hdr->sadb_msg_pid = c->pid; 1307 1308 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 1309 1310 return 0; 1311 } 1312 1313 static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1314 { 1315 struct xfrm_state *x; 1316 int err; 1317 struct km_event c; 1318 1319 xfrm_probe_algs(); 1320 1321 x = pfkey_msg2xfrm_state(hdr, ext_hdrs); 1322 if (IS_ERR(x)) 1323 return PTR_ERR(x); 1324 1325 xfrm_state_hold(x); 1326 if (hdr->sadb_msg_type == SADB_ADD) 1327 err = xfrm_state_add(x); 1328 else 1329 err = xfrm_state_update(x); 1330 1331 if (err < 0) { 1332 x->km.state = XFRM_STATE_DEAD; 1333 xfrm_state_put(x); 1334 goto out; 1335 } 1336 1337 if (hdr->sadb_msg_type == SADB_ADD) 1338 c.event = XFRM_MSG_NEWSA; 1339 else 1340 c.event = XFRM_MSG_UPDSA; 1341 c.seq = hdr->sadb_msg_seq; 1342 c.pid = hdr->sadb_msg_pid; 1343 km_state_notify(x, &c); 1344 out: 1345 xfrm_state_put(x); 1346 return err; 1347 } 1348 1349 static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1350 { 1351 struct xfrm_state *x; 1352 struct km_event c; 1353 int err; 1354 1355 if (!ext_hdrs[SADB_EXT_SA-1] || 1356 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1357 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1358 return -EINVAL; 1359 1360 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs); 1361 if (x == NULL) 1362 return -ESRCH; 1363 1364 if (xfrm_state_kern(x)) { 1365 xfrm_state_put(x); 1366 return -EPERM; 1367 } 1368 1369 err = xfrm_state_delete(x); 1370 if (err < 0) { 1371 xfrm_state_put(x); 1372 return err; 1373 } 1374 1375 c.seq = hdr->sadb_msg_seq; 1376 c.pid = hdr->sadb_msg_pid; 1377 c.event = XFRM_MSG_DELSA; 1378 km_state_notify(x, &c); 1379 xfrm_state_put(x); 1380 1381 return err; 1382 } 1383 1384 static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1385 { 1386 __u8 proto; 1387 struct sk_buff *out_skb; 1388 struct sadb_msg *out_hdr; 1389 struct xfrm_state *x; 1390 1391 if (!ext_hdrs[SADB_EXT_SA-1] || 1392 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1393 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1394 return -EINVAL; 1395 1396 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs); 1397 if (x == NULL) 1398 return -ESRCH; 1399 1400 out_skb = pfkey_xfrm_state2msg(x, 1, 3); 1401 proto = x->id.proto; 1402 xfrm_state_put(x); 1403 if (IS_ERR(out_skb)) 1404 return PTR_ERR(out_skb); 1405 1406 out_hdr = (struct sadb_msg *) out_skb->data; 1407 out_hdr->sadb_msg_version = hdr->sadb_msg_version; 1408 out_hdr->sadb_msg_type = SADB_DUMP; 1409 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); 1410 out_hdr->sadb_msg_errno = 0; 1411 out_hdr->sadb_msg_reserved = 0; 1412 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; 1413 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; 1414 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk); 1415 1416 return 0; 1417 } 1418 1419 static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig, 1420 gfp_t allocation) 1421 { 1422 struct sk_buff *skb; 1423 struct sadb_msg *hdr; 1424 int len, auth_len, enc_len, i; 1425 1426 auth_len = xfrm_count_auth_supported(); 1427 if (auth_len) { 1428 auth_len *= sizeof(struct sadb_alg); 1429 auth_len += sizeof(struct sadb_supported); 1430 } 1431 1432 enc_len = xfrm_count_enc_supported(); 1433 if (enc_len) { 1434 enc_len *= sizeof(struct sadb_alg); 1435 enc_len += sizeof(struct sadb_supported); 1436 } 1437 1438 len = enc_len + auth_len + sizeof(struct sadb_msg); 1439 1440 skb = alloc_skb(len + 16, allocation); 1441 if (!skb) 1442 goto out_put_algs; 1443 1444 hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr)); 1445 pfkey_hdr_dup(hdr, orig); 1446 hdr->sadb_msg_errno = 0; 1447 hdr->sadb_msg_len = len / sizeof(uint64_t); 1448 1449 if (auth_len) { 1450 struct sadb_supported *sp; 1451 struct sadb_alg *ap; 1452 1453 sp = (struct sadb_supported *) skb_put(skb, auth_len); 1454 ap = (struct sadb_alg *) (sp + 1); 1455 1456 sp->sadb_supported_len = auth_len / sizeof(uint64_t); 1457 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 1458 1459 for (i = 0; ; i++) { 1460 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); 1461 if (!aalg) 1462 break; 1463 if (aalg->available) 1464 *ap++ = aalg->desc; 1465 } 1466 } 1467 1468 if (enc_len) { 1469 struct sadb_supported *sp; 1470 struct sadb_alg *ap; 1471 1472 sp = (struct sadb_supported *) skb_put(skb, enc_len); 1473 ap = (struct sadb_alg *) (sp + 1); 1474 1475 sp->sadb_supported_len = enc_len / sizeof(uint64_t); 1476 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 1477 1478 for (i = 0; ; i++) { 1479 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); 1480 if (!ealg) 1481 break; 1482 if (ealg->available) 1483 *ap++ = ealg->desc; 1484 } 1485 } 1486 1487 out_put_algs: 1488 return skb; 1489 } 1490 1491 static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1492 { 1493 struct pfkey_sock *pfk = pfkey_sk(sk); 1494 struct sk_buff *supp_skb; 1495 1496 if (hdr->sadb_msg_satype > SADB_SATYPE_MAX) 1497 return -EINVAL; 1498 1499 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) { 1500 if (pfk->registered&(1<<hdr->sadb_msg_satype)) 1501 return -EEXIST; 1502 pfk->registered |= (1<<hdr->sadb_msg_satype); 1503 } 1504 1505 xfrm_probe_algs(); 1506 1507 supp_skb = compose_sadb_supported(hdr, GFP_KERNEL); 1508 if (!supp_skb) { 1509 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) 1510 pfk->registered &= ~(1<<hdr->sadb_msg_satype); 1511 1512 return -ENOBUFS; 1513 } 1514 1515 pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk); 1516 1517 return 0; 1518 } 1519 1520 static int key_notify_sa_flush(struct km_event *c) 1521 { 1522 struct sk_buff *skb; 1523 struct sadb_msg *hdr; 1524 1525 skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); 1526 if (!skb) 1527 return -ENOBUFS; 1528 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 1529 hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto); 1530 hdr->sadb_msg_seq = c->seq; 1531 hdr->sadb_msg_pid = c->pid; 1532 hdr->sadb_msg_version = PF_KEY_V2; 1533 hdr->sadb_msg_errno = (uint8_t) 0; 1534 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); 1535 1536 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 1537 1538 return 0; 1539 } 1540 1541 static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1542 { 1543 unsigned proto; 1544 struct km_event c; 1545 1546 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1547 if (proto == 0) 1548 return -EINVAL; 1549 1550 xfrm_state_flush(proto); 1551 c.data.proto = proto; 1552 c.seq = hdr->sadb_msg_seq; 1553 c.pid = hdr->sadb_msg_pid; 1554 c.event = XFRM_MSG_FLUSHSA; 1555 km_state_notify(NULL, &c); 1556 1557 return 0; 1558 } 1559 1560 struct pfkey_dump_data 1561 { 1562 struct sk_buff *skb; 1563 struct sadb_msg *hdr; 1564 struct sock *sk; 1565 }; 1566 1567 static int dump_sa(struct xfrm_state *x, int count, void *ptr) 1568 { 1569 struct pfkey_dump_data *data = ptr; 1570 struct sk_buff *out_skb; 1571 struct sadb_msg *out_hdr; 1572 1573 out_skb = pfkey_xfrm_state2msg(x, 1, 3); 1574 if (IS_ERR(out_skb)) 1575 return PTR_ERR(out_skb); 1576 1577 out_hdr = (struct sadb_msg *) out_skb->data; 1578 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version; 1579 out_hdr->sadb_msg_type = SADB_DUMP; 1580 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 1581 out_hdr->sadb_msg_errno = 0; 1582 out_hdr->sadb_msg_reserved = 0; 1583 out_hdr->sadb_msg_seq = count; 1584 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid; 1585 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk); 1586 return 0; 1587 } 1588 1589 static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1590 { 1591 u8 proto; 1592 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk }; 1593 1594 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1595 if (proto == 0) 1596 return -EINVAL; 1597 1598 return xfrm_state_walk(proto, dump_sa, &data); 1599 } 1600 1601 static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1602 { 1603 struct pfkey_sock *pfk = pfkey_sk(sk); 1604 int satype = hdr->sadb_msg_satype; 1605 1606 if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) { 1607 /* XXX we mangle packet... */ 1608 hdr->sadb_msg_errno = 0; 1609 if (satype != 0 && satype != 1) 1610 return -EINVAL; 1611 pfk->promisc = satype; 1612 } 1613 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL); 1614 return 0; 1615 } 1616 1617 static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr) 1618 { 1619 int i; 1620 u32 reqid = *(u32*)ptr; 1621 1622 for (i=0; i<xp->xfrm_nr; i++) { 1623 if (xp->xfrm_vec[i].reqid == reqid) 1624 return -EEXIST; 1625 } 1626 return 0; 1627 } 1628 1629 static u32 gen_reqid(void) 1630 { 1631 u32 start; 1632 static u32 reqid = IPSEC_MANUAL_REQID_MAX; 1633 1634 start = reqid; 1635 do { 1636 ++reqid; 1637 if (reqid == 0) 1638 reqid = IPSEC_MANUAL_REQID_MAX+1; 1639 if (xfrm_policy_walk(check_reqid, (void*)&reqid) != -EEXIST) 1640 return reqid; 1641 } while (reqid != start); 1642 return 0; 1643 } 1644 1645 static int 1646 parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq) 1647 { 1648 struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr; 1649 struct sockaddr_in *sin; 1650 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1651 struct sockaddr_in6 *sin6; 1652 #endif 1653 1654 if (xp->xfrm_nr >= XFRM_MAX_DEPTH) 1655 return -ELOOP; 1656 1657 if (rq->sadb_x_ipsecrequest_mode == 0) 1658 return -EINVAL; 1659 1660 t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */ 1661 t->mode = rq->sadb_x_ipsecrequest_mode-1; 1662 if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE) 1663 t->optional = 1; 1664 else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) { 1665 t->reqid = rq->sadb_x_ipsecrequest_reqid; 1666 if (t->reqid > IPSEC_MANUAL_REQID_MAX) 1667 t->reqid = 0; 1668 if (!t->reqid && !(t->reqid = gen_reqid())) 1669 return -ENOBUFS; 1670 } 1671 1672 /* addresses present only in tunnel mode */ 1673 if (t->mode) { 1674 switch (xp->family) { 1675 case AF_INET: 1676 sin = (void*)(rq+1); 1677 if (sin->sin_family != AF_INET) 1678 return -EINVAL; 1679 t->saddr.a4 = sin->sin_addr.s_addr; 1680 sin++; 1681 if (sin->sin_family != AF_INET) 1682 return -EINVAL; 1683 t->id.daddr.a4 = sin->sin_addr.s_addr; 1684 break; 1685 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1686 case AF_INET6: 1687 sin6 = (void *)(rq+1); 1688 if (sin6->sin6_family != AF_INET6) 1689 return -EINVAL; 1690 memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr)); 1691 sin6++; 1692 if (sin6->sin6_family != AF_INET6) 1693 return -EINVAL; 1694 memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr)); 1695 break; 1696 #endif 1697 default: 1698 return -EINVAL; 1699 } 1700 } 1701 /* No way to set this via kame pfkey */ 1702 t->aalgos = t->ealgos = t->calgos = ~0; 1703 xp->xfrm_nr++; 1704 return 0; 1705 } 1706 1707 static int 1708 parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol) 1709 { 1710 int err; 1711 int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy); 1712 struct sadb_x_ipsecrequest *rq = (void*)(pol+1); 1713 1714 while (len >= sizeof(struct sadb_x_ipsecrequest)) { 1715 if ((err = parse_ipsecrequest(xp, rq)) < 0) 1716 return err; 1717 len -= rq->sadb_x_ipsecrequest_len; 1718 rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len); 1719 } 1720 return 0; 1721 } 1722 1723 static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp) 1724 { 1725 int sockaddr_size = pfkey_sockaddr_size(xp->family); 1726 int socklen = (xp->family == AF_INET ? 1727 sizeof(struct sockaddr_in) : 1728 sizeof(struct sockaddr_in6)); 1729 1730 return sizeof(struct sadb_msg) + 1731 (sizeof(struct sadb_lifetime) * 3) + 1732 (sizeof(struct sadb_address) * 2) + 1733 (sockaddr_size * 2) + 1734 sizeof(struct sadb_x_policy) + 1735 (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) + 1736 (socklen * 2))); 1737 } 1738 1739 static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp) 1740 { 1741 struct sk_buff *skb; 1742 int size; 1743 1744 size = pfkey_xfrm_policy2msg_size(xp); 1745 1746 skb = alloc_skb(size + 16, GFP_ATOMIC); 1747 if (skb == NULL) 1748 return ERR_PTR(-ENOBUFS); 1749 1750 return skb; 1751 } 1752 1753 static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir) 1754 { 1755 struct sadb_msg *hdr; 1756 struct sadb_address *addr; 1757 struct sadb_lifetime *lifetime; 1758 struct sadb_x_policy *pol; 1759 struct sockaddr_in *sin; 1760 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1761 struct sockaddr_in6 *sin6; 1762 #endif 1763 int i; 1764 int size; 1765 int sockaddr_size = pfkey_sockaddr_size(xp->family); 1766 int socklen = (xp->family == AF_INET ? 1767 sizeof(struct sockaddr_in) : 1768 sizeof(struct sockaddr_in6)); 1769 1770 size = pfkey_xfrm_policy2msg_size(xp); 1771 1772 /* call should fill header later */ 1773 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 1774 memset(hdr, 0, size); /* XXX do we need this ? */ 1775 1776 /* src address */ 1777 addr = (struct sadb_address*) skb_put(skb, 1778 sizeof(struct sadb_address)+sockaddr_size); 1779 addr->sadb_address_len = 1780 (sizeof(struct sadb_address)+sockaddr_size)/ 1781 sizeof(uint64_t); 1782 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 1783 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); 1784 addr->sadb_address_prefixlen = xp->selector.prefixlen_s; 1785 addr->sadb_address_reserved = 0; 1786 /* src address */ 1787 if (xp->family == AF_INET) { 1788 sin = (struct sockaddr_in *) (addr + 1); 1789 sin->sin_family = AF_INET; 1790 sin->sin_addr.s_addr = xp->selector.saddr.a4; 1791 sin->sin_port = xp->selector.sport; 1792 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1793 } 1794 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1795 else if (xp->family == AF_INET6) { 1796 sin6 = (struct sockaddr_in6 *) (addr + 1); 1797 sin6->sin6_family = AF_INET6; 1798 sin6->sin6_port = xp->selector.sport; 1799 sin6->sin6_flowinfo = 0; 1800 memcpy(&sin6->sin6_addr, xp->selector.saddr.a6, 1801 sizeof(struct in6_addr)); 1802 sin6->sin6_scope_id = 0; 1803 } 1804 #endif 1805 else 1806 BUG(); 1807 1808 /* dst address */ 1809 addr = (struct sadb_address*) skb_put(skb, 1810 sizeof(struct sadb_address)+sockaddr_size); 1811 addr->sadb_address_len = 1812 (sizeof(struct sadb_address)+sockaddr_size)/ 1813 sizeof(uint64_t); 1814 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 1815 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); 1816 addr->sadb_address_prefixlen = xp->selector.prefixlen_d; 1817 addr->sadb_address_reserved = 0; 1818 if (xp->family == AF_INET) { 1819 sin = (struct sockaddr_in *) (addr + 1); 1820 sin->sin_family = AF_INET; 1821 sin->sin_addr.s_addr = xp->selector.daddr.a4; 1822 sin->sin_port = xp->selector.dport; 1823 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1824 } 1825 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1826 else if (xp->family == AF_INET6) { 1827 sin6 = (struct sockaddr_in6 *) (addr + 1); 1828 sin6->sin6_family = AF_INET6; 1829 sin6->sin6_port = xp->selector.dport; 1830 sin6->sin6_flowinfo = 0; 1831 memcpy(&sin6->sin6_addr, xp->selector.daddr.a6, 1832 sizeof(struct in6_addr)); 1833 sin6->sin6_scope_id = 0; 1834 } 1835 #endif 1836 else 1837 BUG(); 1838 1839 /* hard time */ 1840 lifetime = (struct sadb_lifetime *) skb_put(skb, 1841 sizeof(struct sadb_lifetime)); 1842 lifetime->sadb_lifetime_len = 1843 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 1844 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 1845 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit); 1846 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit); 1847 lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds; 1848 lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds; 1849 /* soft time */ 1850 lifetime = (struct sadb_lifetime *) skb_put(skb, 1851 sizeof(struct sadb_lifetime)); 1852 lifetime->sadb_lifetime_len = 1853 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 1854 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 1855 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit); 1856 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit); 1857 lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds; 1858 lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds; 1859 /* current time */ 1860 lifetime = (struct sadb_lifetime *) skb_put(skb, 1861 sizeof(struct sadb_lifetime)); 1862 lifetime->sadb_lifetime_len = 1863 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 1864 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 1865 lifetime->sadb_lifetime_allocations = xp->curlft.packets; 1866 lifetime->sadb_lifetime_bytes = xp->curlft.bytes; 1867 lifetime->sadb_lifetime_addtime = xp->curlft.add_time; 1868 lifetime->sadb_lifetime_usetime = xp->curlft.use_time; 1869 1870 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy)); 1871 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); 1872 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1873 pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD; 1874 if (xp->action == XFRM_POLICY_ALLOW) { 1875 if (xp->xfrm_nr) 1876 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; 1877 else 1878 pol->sadb_x_policy_type = IPSEC_POLICY_NONE; 1879 } 1880 pol->sadb_x_policy_dir = dir+1; 1881 pol->sadb_x_policy_id = xp->index; 1882 pol->sadb_x_policy_priority = xp->priority; 1883 1884 for (i=0; i<xp->xfrm_nr; i++) { 1885 struct sadb_x_ipsecrequest *rq; 1886 struct xfrm_tmpl *t = xp->xfrm_vec + i; 1887 int req_size; 1888 1889 req_size = sizeof(struct sadb_x_ipsecrequest); 1890 if (t->mode) 1891 req_size += 2*socklen; 1892 else 1893 size -= 2*socklen; 1894 rq = (void*)skb_put(skb, req_size); 1895 pol->sadb_x_policy_len += req_size/8; 1896 memset(rq, 0, sizeof(*rq)); 1897 rq->sadb_x_ipsecrequest_len = req_size; 1898 rq->sadb_x_ipsecrequest_proto = t->id.proto; 1899 rq->sadb_x_ipsecrequest_mode = t->mode+1; 1900 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE; 1901 if (t->reqid) 1902 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE; 1903 if (t->optional) 1904 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE; 1905 rq->sadb_x_ipsecrequest_reqid = t->reqid; 1906 if (t->mode) { 1907 switch (xp->family) { 1908 case AF_INET: 1909 sin = (void*)(rq+1); 1910 sin->sin_family = AF_INET; 1911 sin->sin_addr.s_addr = t->saddr.a4; 1912 sin->sin_port = 0; 1913 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1914 sin++; 1915 sin->sin_family = AF_INET; 1916 sin->sin_addr.s_addr = t->id.daddr.a4; 1917 sin->sin_port = 0; 1918 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1919 break; 1920 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1921 case AF_INET6: 1922 sin6 = (void*)(rq+1); 1923 sin6->sin6_family = AF_INET6; 1924 sin6->sin6_port = 0; 1925 sin6->sin6_flowinfo = 0; 1926 memcpy(&sin6->sin6_addr, t->saddr.a6, 1927 sizeof(struct in6_addr)); 1928 sin6->sin6_scope_id = 0; 1929 1930 sin6++; 1931 sin6->sin6_family = AF_INET6; 1932 sin6->sin6_port = 0; 1933 sin6->sin6_flowinfo = 0; 1934 memcpy(&sin6->sin6_addr, t->id.daddr.a6, 1935 sizeof(struct in6_addr)); 1936 sin6->sin6_scope_id = 0; 1937 break; 1938 #endif 1939 default: 1940 break; 1941 } 1942 } 1943 } 1944 hdr->sadb_msg_len = size / sizeof(uint64_t); 1945 hdr->sadb_msg_reserved = atomic_read(&xp->refcnt); 1946 } 1947 1948 static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c) 1949 { 1950 struct sk_buff *out_skb; 1951 struct sadb_msg *out_hdr; 1952 int err; 1953 1954 out_skb = pfkey_xfrm_policy2msg_prep(xp); 1955 if (IS_ERR(out_skb)) { 1956 err = PTR_ERR(out_skb); 1957 goto out; 1958 } 1959 pfkey_xfrm_policy2msg(out_skb, xp, dir); 1960 1961 out_hdr = (struct sadb_msg *) out_skb->data; 1962 out_hdr->sadb_msg_version = PF_KEY_V2; 1963 1964 if (c->data.byid && c->event == XFRM_MSG_DELPOLICY) 1965 out_hdr->sadb_msg_type = SADB_X_SPDDELETE2; 1966 else 1967 out_hdr->sadb_msg_type = event2poltype(c->event); 1968 out_hdr->sadb_msg_errno = 0; 1969 out_hdr->sadb_msg_seq = c->seq; 1970 out_hdr->sadb_msg_pid = c->pid; 1971 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 1972 out: 1973 return 0; 1974 1975 } 1976 1977 static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1978 { 1979 int err; 1980 struct sadb_lifetime *lifetime; 1981 struct sadb_address *sa; 1982 struct sadb_x_policy *pol; 1983 struct xfrm_policy *xp; 1984 struct km_event c; 1985 1986 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1987 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || 1988 !ext_hdrs[SADB_X_EXT_POLICY-1]) 1989 return -EINVAL; 1990 1991 pol = ext_hdrs[SADB_X_EXT_POLICY-1]; 1992 if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC) 1993 return -EINVAL; 1994 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) 1995 return -EINVAL; 1996 1997 xp = xfrm_policy_alloc(GFP_KERNEL); 1998 if (xp == NULL) 1999 return -ENOBUFS; 2000 2001 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? 2002 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); 2003 xp->priority = pol->sadb_x_policy_priority; 2004 2005 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2006 xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr); 2007 if (!xp->family) { 2008 err = -EINVAL; 2009 goto out; 2010 } 2011 xp->selector.family = xp->family; 2012 xp->selector.prefixlen_s = sa->sadb_address_prefixlen; 2013 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2014 xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port; 2015 if (xp->selector.sport) 2016 xp->selector.sport_mask = ~0; 2017 2018 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1], 2019 pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr); 2020 xp->selector.prefixlen_d = sa->sadb_address_prefixlen; 2021 2022 /* Amusing, we set this twice. KAME apps appear to set same value 2023 * in both addresses. 2024 */ 2025 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2026 2027 xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port; 2028 if (xp->selector.dport) 2029 xp->selector.dport_mask = ~0; 2030 2031 xp->lft.soft_byte_limit = XFRM_INF; 2032 xp->lft.hard_byte_limit = XFRM_INF; 2033 xp->lft.soft_packet_limit = XFRM_INF; 2034 xp->lft.hard_packet_limit = XFRM_INF; 2035 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) { 2036 xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 2037 xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 2038 xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; 2039 xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; 2040 } 2041 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) { 2042 xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 2043 xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 2044 xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; 2045 xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; 2046 } 2047 xp->xfrm_nr = 0; 2048 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2049 (err = parse_ipsecrequests(xp, pol)) < 0) 2050 goto out; 2051 2052 err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp, 2053 hdr->sadb_msg_type != SADB_X_SPDUPDATE); 2054 if (err) { 2055 kfree(xp); 2056 return err; 2057 } 2058 2059 if (hdr->sadb_msg_type == SADB_X_SPDUPDATE) 2060 c.event = XFRM_MSG_UPDPOLICY; 2061 else 2062 c.event = XFRM_MSG_NEWPOLICY; 2063 2064 c.seq = hdr->sadb_msg_seq; 2065 c.pid = hdr->sadb_msg_pid; 2066 2067 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); 2068 xfrm_pol_put(xp); 2069 return 0; 2070 2071 out: 2072 kfree(xp); 2073 return err; 2074 } 2075 2076 static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2077 { 2078 int err; 2079 struct sadb_address *sa; 2080 struct sadb_x_policy *pol; 2081 struct xfrm_policy *xp; 2082 struct xfrm_selector sel; 2083 struct km_event c; 2084 2085 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2086 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || 2087 !ext_hdrs[SADB_X_EXT_POLICY-1]) 2088 return -EINVAL; 2089 2090 pol = ext_hdrs[SADB_X_EXT_POLICY-1]; 2091 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) 2092 return -EINVAL; 2093 2094 memset(&sel, 0, sizeof(sel)); 2095 2096 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2097 sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr); 2098 sel.prefixlen_s = sa->sadb_address_prefixlen; 2099 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2100 sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port; 2101 if (sel.sport) 2102 sel.sport_mask = ~0; 2103 2104 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1], 2105 pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr); 2106 sel.prefixlen_d = sa->sadb_address_prefixlen; 2107 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2108 sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port; 2109 if (sel.dport) 2110 sel.dport_mask = ~0; 2111 2112 xp = xfrm_policy_bysel(pol->sadb_x_policy_dir-1, &sel, 1); 2113 if (xp == NULL) 2114 return -ENOENT; 2115 2116 err = 0; 2117 2118 c.seq = hdr->sadb_msg_seq; 2119 c.pid = hdr->sadb_msg_pid; 2120 c.event = XFRM_MSG_DELPOLICY; 2121 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); 2122 2123 xfrm_pol_put(xp); 2124 return err; 2125 } 2126 2127 static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir) 2128 { 2129 int err; 2130 struct sk_buff *out_skb; 2131 struct sadb_msg *out_hdr; 2132 err = 0; 2133 2134 out_skb = pfkey_xfrm_policy2msg_prep(xp); 2135 if (IS_ERR(out_skb)) { 2136 err = PTR_ERR(out_skb); 2137 goto out; 2138 } 2139 pfkey_xfrm_policy2msg(out_skb, xp, dir); 2140 2141 out_hdr = (struct sadb_msg *) out_skb->data; 2142 out_hdr->sadb_msg_version = hdr->sadb_msg_version; 2143 out_hdr->sadb_msg_type = hdr->sadb_msg_type; 2144 out_hdr->sadb_msg_satype = 0; 2145 out_hdr->sadb_msg_errno = 0; 2146 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; 2147 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; 2148 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk); 2149 err = 0; 2150 2151 out: 2152 return err; 2153 } 2154 2155 static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2156 { 2157 unsigned int dir; 2158 int err; 2159 struct sadb_x_policy *pol; 2160 struct xfrm_policy *xp; 2161 struct km_event c; 2162 2163 if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL) 2164 return -EINVAL; 2165 2166 dir = xfrm_policy_id2dir(pol->sadb_x_policy_id); 2167 if (dir >= XFRM_POLICY_MAX) 2168 return -EINVAL; 2169 2170 xp = xfrm_policy_byid(dir, pol->sadb_x_policy_id, 2171 hdr->sadb_msg_type == SADB_X_SPDDELETE2); 2172 if (xp == NULL) 2173 return -ENOENT; 2174 2175 err = 0; 2176 2177 c.seq = hdr->sadb_msg_seq; 2178 c.pid = hdr->sadb_msg_pid; 2179 if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) { 2180 c.data.byid = 1; 2181 c.event = XFRM_MSG_DELPOLICY; 2182 km_policy_notify(xp, dir, &c); 2183 } else { 2184 err = key_pol_get_resp(sk, xp, hdr, dir); 2185 } 2186 2187 xfrm_pol_put(xp); 2188 return err; 2189 } 2190 2191 static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr) 2192 { 2193 struct pfkey_dump_data *data = ptr; 2194 struct sk_buff *out_skb; 2195 struct sadb_msg *out_hdr; 2196 2197 out_skb = pfkey_xfrm_policy2msg_prep(xp); 2198 if (IS_ERR(out_skb)) 2199 return PTR_ERR(out_skb); 2200 2201 pfkey_xfrm_policy2msg(out_skb, xp, dir); 2202 2203 out_hdr = (struct sadb_msg *) out_skb->data; 2204 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version; 2205 out_hdr->sadb_msg_type = SADB_X_SPDDUMP; 2206 out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC; 2207 out_hdr->sadb_msg_errno = 0; 2208 out_hdr->sadb_msg_seq = count; 2209 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid; 2210 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk); 2211 return 0; 2212 } 2213 2214 static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2215 { 2216 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk }; 2217 2218 return xfrm_policy_walk(dump_sp, &data); 2219 } 2220 2221 static int key_notify_policy_flush(struct km_event *c) 2222 { 2223 struct sk_buff *skb_out; 2224 struct sadb_msg *hdr; 2225 2226 skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); 2227 if (!skb_out) 2228 return -ENOBUFS; 2229 hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg)); 2230 hdr->sadb_msg_seq = c->seq; 2231 hdr->sadb_msg_pid = c->pid; 2232 hdr->sadb_msg_version = PF_KEY_V2; 2233 hdr->sadb_msg_errno = (uint8_t) 0; 2234 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); 2235 pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL); 2236 return 0; 2237 2238 } 2239 2240 static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2241 { 2242 struct km_event c; 2243 2244 xfrm_policy_flush(); 2245 c.event = XFRM_MSG_FLUSHPOLICY; 2246 c.pid = hdr->sadb_msg_pid; 2247 c.seq = hdr->sadb_msg_seq; 2248 km_policy_notify(NULL, 0, &c); 2249 2250 return 0; 2251 } 2252 2253 typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb, 2254 struct sadb_msg *hdr, void **ext_hdrs); 2255 static pfkey_handler pfkey_funcs[SADB_MAX + 1] = { 2256 [SADB_RESERVED] = pfkey_reserved, 2257 [SADB_GETSPI] = pfkey_getspi, 2258 [SADB_UPDATE] = pfkey_add, 2259 [SADB_ADD] = pfkey_add, 2260 [SADB_DELETE] = pfkey_delete, 2261 [SADB_GET] = pfkey_get, 2262 [SADB_ACQUIRE] = pfkey_acquire, 2263 [SADB_REGISTER] = pfkey_register, 2264 [SADB_EXPIRE] = NULL, 2265 [SADB_FLUSH] = pfkey_flush, 2266 [SADB_DUMP] = pfkey_dump, 2267 [SADB_X_PROMISC] = pfkey_promisc, 2268 [SADB_X_PCHANGE] = NULL, 2269 [SADB_X_SPDUPDATE] = pfkey_spdadd, 2270 [SADB_X_SPDADD] = pfkey_spdadd, 2271 [SADB_X_SPDDELETE] = pfkey_spddelete, 2272 [SADB_X_SPDGET] = pfkey_spdget, 2273 [SADB_X_SPDACQUIRE] = NULL, 2274 [SADB_X_SPDDUMP] = pfkey_spddump, 2275 [SADB_X_SPDFLUSH] = pfkey_spdflush, 2276 [SADB_X_SPDSETIDX] = pfkey_spdadd, 2277 [SADB_X_SPDDELETE2] = pfkey_spdget, 2278 }; 2279 2280 static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr) 2281 { 2282 void *ext_hdrs[SADB_EXT_MAX]; 2283 int err; 2284 2285 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, 2286 BROADCAST_PROMISC_ONLY, NULL); 2287 2288 memset(ext_hdrs, 0, sizeof(ext_hdrs)); 2289 err = parse_exthdrs(skb, hdr, ext_hdrs); 2290 if (!err) { 2291 err = -EOPNOTSUPP; 2292 if (pfkey_funcs[hdr->sadb_msg_type]) 2293 err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs); 2294 } 2295 return err; 2296 } 2297 2298 static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp) 2299 { 2300 struct sadb_msg *hdr = NULL; 2301 2302 if (skb->len < sizeof(*hdr)) { 2303 *errp = -EMSGSIZE; 2304 } else { 2305 hdr = (struct sadb_msg *) skb->data; 2306 if (hdr->sadb_msg_version != PF_KEY_V2 || 2307 hdr->sadb_msg_reserved != 0 || 2308 (hdr->sadb_msg_type <= SADB_RESERVED || 2309 hdr->sadb_msg_type > SADB_MAX)) { 2310 hdr = NULL; 2311 *errp = -EINVAL; 2312 } else if (hdr->sadb_msg_len != (skb->len / 2313 sizeof(uint64_t)) || 2314 hdr->sadb_msg_len < (sizeof(struct sadb_msg) / 2315 sizeof(uint64_t))) { 2316 hdr = NULL; 2317 *errp = -EMSGSIZE; 2318 } else { 2319 *errp = 0; 2320 } 2321 } 2322 return hdr; 2323 } 2324 2325 static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d) 2326 { 2327 return t->aalgos & (1 << d->desc.sadb_alg_id); 2328 } 2329 2330 static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d) 2331 { 2332 return t->ealgos & (1 << d->desc.sadb_alg_id); 2333 } 2334 2335 static int count_ah_combs(struct xfrm_tmpl *t) 2336 { 2337 int i, sz = 0; 2338 2339 for (i = 0; ; i++) { 2340 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); 2341 if (!aalg) 2342 break; 2343 if (aalg_tmpl_set(t, aalg) && aalg->available) 2344 sz += sizeof(struct sadb_comb); 2345 } 2346 return sz + sizeof(struct sadb_prop); 2347 } 2348 2349 static int count_esp_combs(struct xfrm_tmpl *t) 2350 { 2351 int i, k, sz = 0; 2352 2353 for (i = 0; ; i++) { 2354 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); 2355 if (!ealg) 2356 break; 2357 2358 if (!(ealg_tmpl_set(t, ealg) && ealg->available)) 2359 continue; 2360 2361 for (k = 1; ; k++) { 2362 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); 2363 if (!aalg) 2364 break; 2365 2366 if (aalg_tmpl_set(t, aalg) && aalg->available) 2367 sz += sizeof(struct sadb_comb); 2368 } 2369 } 2370 return sz + sizeof(struct sadb_prop); 2371 } 2372 2373 static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t) 2374 { 2375 struct sadb_prop *p; 2376 int i; 2377 2378 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop)); 2379 p->sadb_prop_len = sizeof(struct sadb_prop)/8; 2380 p->sadb_prop_exttype = SADB_EXT_PROPOSAL; 2381 p->sadb_prop_replay = 32; 2382 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); 2383 2384 for (i = 0; ; i++) { 2385 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); 2386 if (!aalg) 2387 break; 2388 2389 if (aalg_tmpl_set(t, aalg) && aalg->available) { 2390 struct sadb_comb *c; 2391 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb)); 2392 memset(c, 0, sizeof(*c)); 2393 p->sadb_prop_len += sizeof(struct sadb_comb)/8; 2394 c->sadb_comb_auth = aalg->desc.sadb_alg_id; 2395 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; 2396 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; 2397 c->sadb_comb_hard_addtime = 24*60*60; 2398 c->sadb_comb_soft_addtime = 20*60*60; 2399 c->sadb_comb_hard_usetime = 8*60*60; 2400 c->sadb_comb_soft_usetime = 7*60*60; 2401 } 2402 } 2403 } 2404 2405 static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t) 2406 { 2407 struct sadb_prop *p; 2408 int i, k; 2409 2410 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop)); 2411 p->sadb_prop_len = sizeof(struct sadb_prop)/8; 2412 p->sadb_prop_exttype = SADB_EXT_PROPOSAL; 2413 p->sadb_prop_replay = 32; 2414 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); 2415 2416 for (i=0; ; i++) { 2417 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); 2418 if (!ealg) 2419 break; 2420 2421 if (!(ealg_tmpl_set(t, ealg) && ealg->available)) 2422 continue; 2423 2424 for (k = 1; ; k++) { 2425 struct sadb_comb *c; 2426 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); 2427 if (!aalg) 2428 break; 2429 if (!(aalg_tmpl_set(t, aalg) && aalg->available)) 2430 continue; 2431 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb)); 2432 memset(c, 0, sizeof(*c)); 2433 p->sadb_prop_len += sizeof(struct sadb_comb)/8; 2434 c->sadb_comb_auth = aalg->desc.sadb_alg_id; 2435 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; 2436 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; 2437 c->sadb_comb_encrypt = ealg->desc.sadb_alg_id; 2438 c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits; 2439 c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits; 2440 c->sadb_comb_hard_addtime = 24*60*60; 2441 c->sadb_comb_soft_addtime = 20*60*60; 2442 c->sadb_comb_hard_usetime = 8*60*60; 2443 c->sadb_comb_soft_usetime = 7*60*60; 2444 } 2445 } 2446 } 2447 2448 static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c) 2449 { 2450 return 0; 2451 } 2452 2453 static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c) 2454 { 2455 struct sk_buff *out_skb; 2456 struct sadb_msg *out_hdr; 2457 int hard; 2458 int hsc; 2459 2460 hard = c->data.hard; 2461 if (hard) 2462 hsc = 2; 2463 else 2464 hsc = 1; 2465 2466 out_skb = pfkey_xfrm_state2msg(x, 0, hsc); 2467 if (IS_ERR(out_skb)) 2468 return PTR_ERR(out_skb); 2469 2470 out_hdr = (struct sadb_msg *) out_skb->data; 2471 out_hdr->sadb_msg_version = PF_KEY_V2; 2472 out_hdr->sadb_msg_type = SADB_EXPIRE; 2473 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 2474 out_hdr->sadb_msg_errno = 0; 2475 out_hdr->sadb_msg_reserved = 0; 2476 out_hdr->sadb_msg_seq = 0; 2477 out_hdr->sadb_msg_pid = 0; 2478 2479 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); 2480 return 0; 2481 } 2482 2483 static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c) 2484 { 2485 switch (c->event) { 2486 case XFRM_MSG_EXPIRE: 2487 return key_notify_sa_expire(x, c); 2488 case XFRM_MSG_DELSA: 2489 case XFRM_MSG_NEWSA: 2490 case XFRM_MSG_UPDSA: 2491 return key_notify_sa(x, c); 2492 case XFRM_MSG_FLUSHSA: 2493 return key_notify_sa_flush(c); 2494 default: 2495 printk("pfkey: Unknown SA event %d\n", c->event); 2496 break; 2497 } 2498 2499 return 0; 2500 } 2501 2502 static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c) 2503 { 2504 switch (c->event) { 2505 case XFRM_MSG_POLEXPIRE: 2506 return key_notify_policy_expire(xp, c); 2507 case XFRM_MSG_DELPOLICY: 2508 case XFRM_MSG_NEWPOLICY: 2509 case XFRM_MSG_UPDPOLICY: 2510 return key_notify_policy(xp, dir, c); 2511 case XFRM_MSG_FLUSHPOLICY: 2512 return key_notify_policy_flush(c); 2513 default: 2514 printk("pfkey: Unknown policy event %d\n", c->event); 2515 break; 2516 } 2517 2518 return 0; 2519 } 2520 2521 static u32 get_acqseq(void) 2522 { 2523 u32 res; 2524 static u32 acqseq; 2525 static DEFINE_SPINLOCK(acqseq_lock); 2526 2527 spin_lock_bh(&acqseq_lock); 2528 res = (++acqseq ? : ++acqseq); 2529 spin_unlock_bh(&acqseq_lock); 2530 return res; 2531 } 2532 2533 static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir) 2534 { 2535 struct sk_buff *skb; 2536 struct sadb_msg *hdr; 2537 struct sadb_address *addr; 2538 struct sadb_x_policy *pol; 2539 struct sockaddr_in *sin; 2540 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2541 struct sockaddr_in6 *sin6; 2542 #endif 2543 int sockaddr_size; 2544 int size; 2545 2546 sockaddr_size = pfkey_sockaddr_size(x->props.family); 2547 if (!sockaddr_size) 2548 return -EINVAL; 2549 2550 size = sizeof(struct sadb_msg) + 2551 (sizeof(struct sadb_address) * 2) + 2552 (sockaddr_size * 2) + 2553 sizeof(struct sadb_x_policy); 2554 2555 if (x->id.proto == IPPROTO_AH) 2556 size += count_ah_combs(t); 2557 else if (x->id.proto == IPPROTO_ESP) 2558 size += count_esp_combs(t); 2559 2560 skb = alloc_skb(size + 16, GFP_ATOMIC); 2561 if (skb == NULL) 2562 return -ENOMEM; 2563 2564 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 2565 hdr->sadb_msg_version = PF_KEY_V2; 2566 hdr->sadb_msg_type = SADB_ACQUIRE; 2567 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 2568 hdr->sadb_msg_len = size / sizeof(uint64_t); 2569 hdr->sadb_msg_errno = 0; 2570 hdr->sadb_msg_reserved = 0; 2571 hdr->sadb_msg_seq = x->km.seq = get_acqseq(); 2572 hdr->sadb_msg_pid = 0; 2573 2574 /* src address */ 2575 addr = (struct sadb_address*) skb_put(skb, 2576 sizeof(struct sadb_address)+sockaddr_size); 2577 addr->sadb_address_len = 2578 (sizeof(struct sadb_address)+sockaddr_size)/ 2579 sizeof(uint64_t); 2580 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 2581 addr->sadb_address_proto = 0; 2582 addr->sadb_address_reserved = 0; 2583 if (x->props.family == AF_INET) { 2584 addr->sadb_address_prefixlen = 32; 2585 2586 sin = (struct sockaddr_in *) (addr + 1); 2587 sin->sin_family = AF_INET; 2588 sin->sin_addr.s_addr = x->props.saddr.a4; 2589 sin->sin_port = 0; 2590 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2591 } 2592 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2593 else if (x->props.family == AF_INET6) { 2594 addr->sadb_address_prefixlen = 128; 2595 2596 sin6 = (struct sockaddr_in6 *) (addr + 1); 2597 sin6->sin6_family = AF_INET6; 2598 sin6->sin6_port = 0; 2599 sin6->sin6_flowinfo = 0; 2600 memcpy(&sin6->sin6_addr, 2601 x->props.saddr.a6, sizeof(struct in6_addr)); 2602 sin6->sin6_scope_id = 0; 2603 } 2604 #endif 2605 else 2606 BUG(); 2607 2608 /* dst address */ 2609 addr = (struct sadb_address*) skb_put(skb, 2610 sizeof(struct sadb_address)+sockaddr_size); 2611 addr->sadb_address_len = 2612 (sizeof(struct sadb_address)+sockaddr_size)/ 2613 sizeof(uint64_t); 2614 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 2615 addr->sadb_address_proto = 0; 2616 addr->sadb_address_reserved = 0; 2617 if (x->props.family == AF_INET) { 2618 addr->sadb_address_prefixlen = 32; 2619 2620 sin = (struct sockaddr_in *) (addr + 1); 2621 sin->sin_family = AF_INET; 2622 sin->sin_addr.s_addr = x->id.daddr.a4; 2623 sin->sin_port = 0; 2624 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2625 } 2626 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2627 else if (x->props.family == AF_INET6) { 2628 addr->sadb_address_prefixlen = 128; 2629 2630 sin6 = (struct sockaddr_in6 *) (addr + 1); 2631 sin6->sin6_family = AF_INET6; 2632 sin6->sin6_port = 0; 2633 sin6->sin6_flowinfo = 0; 2634 memcpy(&sin6->sin6_addr, 2635 x->id.daddr.a6, sizeof(struct in6_addr)); 2636 sin6->sin6_scope_id = 0; 2637 } 2638 #endif 2639 else 2640 BUG(); 2641 2642 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy)); 2643 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); 2644 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2645 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; 2646 pol->sadb_x_policy_dir = dir+1; 2647 pol->sadb_x_policy_id = xp->index; 2648 2649 /* Set sadb_comb's. */ 2650 if (x->id.proto == IPPROTO_AH) 2651 dump_ah_combs(skb, t); 2652 else if (x->id.proto == IPPROTO_ESP) 2653 dump_esp_combs(skb, t); 2654 2655 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); 2656 } 2657 2658 static struct xfrm_policy *pfkey_compile_policy(u16 family, int opt, 2659 u8 *data, int len, int *dir) 2660 { 2661 struct xfrm_policy *xp; 2662 struct sadb_x_policy *pol = (struct sadb_x_policy*)data; 2663 2664 switch (family) { 2665 case AF_INET: 2666 if (opt != IP_IPSEC_POLICY) { 2667 *dir = -EOPNOTSUPP; 2668 return NULL; 2669 } 2670 break; 2671 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2672 case AF_INET6: 2673 if (opt != IPV6_IPSEC_POLICY) { 2674 *dir = -EOPNOTSUPP; 2675 return NULL; 2676 } 2677 break; 2678 #endif 2679 default: 2680 *dir = -EINVAL; 2681 return NULL; 2682 } 2683 2684 *dir = -EINVAL; 2685 2686 if (len < sizeof(struct sadb_x_policy) || 2687 pol->sadb_x_policy_len*8 > len || 2688 pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS || 2689 (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND)) 2690 return NULL; 2691 2692 xp = xfrm_policy_alloc(GFP_ATOMIC); 2693 if (xp == NULL) { 2694 *dir = -ENOBUFS; 2695 return NULL; 2696 } 2697 2698 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? 2699 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); 2700 2701 xp->lft.soft_byte_limit = XFRM_INF; 2702 xp->lft.hard_byte_limit = XFRM_INF; 2703 xp->lft.soft_packet_limit = XFRM_INF; 2704 xp->lft.hard_packet_limit = XFRM_INF; 2705 xp->family = family; 2706 2707 xp->xfrm_nr = 0; 2708 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2709 (*dir = parse_ipsecrequests(xp, pol)) < 0) 2710 goto out; 2711 2712 *dir = pol->sadb_x_policy_dir-1; 2713 return xp; 2714 2715 out: 2716 kfree(xp); 2717 return NULL; 2718 } 2719 2720 static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport) 2721 { 2722 struct sk_buff *skb; 2723 struct sadb_msg *hdr; 2724 struct sadb_sa *sa; 2725 struct sadb_address *addr; 2726 struct sadb_x_nat_t_port *n_port; 2727 struct sockaddr_in *sin; 2728 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2729 struct sockaddr_in6 *sin6; 2730 #endif 2731 int sockaddr_size; 2732 int size; 2733 __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0); 2734 struct xfrm_encap_tmpl *natt = NULL; 2735 2736 sockaddr_size = pfkey_sockaddr_size(x->props.family); 2737 if (!sockaddr_size) 2738 return -EINVAL; 2739 2740 if (!satype) 2741 return -EINVAL; 2742 2743 if (!x->encap) 2744 return -EINVAL; 2745 2746 natt = x->encap; 2747 2748 /* Build an SADB_X_NAT_T_NEW_MAPPING message: 2749 * 2750 * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) | 2751 * ADDRESS_DST (new addr) | NAT_T_DPORT (new port) 2752 */ 2753 2754 size = sizeof(struct sadb_msg) + 2755 sizeof(struct sadb_sa) + 2756 (sizeof(struct sadb_address) * 2) + 2757 (sockaddr_size * 2) + 2758 (sizeof(struct sadb_x_nat_t_port) * 2); 2759 2760 skb = alloc_skb(size + 16, GFP_ATOMIC); 2761 if (skb == NULL) 2762 return -ENOMEM; 2763 2764 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 2765 hdr->sadb_msg_version = PF_KEY_V2; 2766 hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING; 2767 hdr->sadb_msg_satype = satype; 2768 hdr->sadb_msg_len = size / sizeof(uint64_t); 2769 hdr->sadb_msg_errno = 0; 2770 hdr->sadb_msg_reserved = 0; 2771 hdr->sadb_msg_seq = x->km.seq = get_acqseq(); 2772 hdr->sadb_msg_pid = 0; 2773 2774 /* SA */ 2775 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa)); 2776 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); 2777 sa->sadb_sa_exttype = SADB_EXT_SA; 2778 sa->sadb_sa_spi = x->id.spi; 2779 sa->sadb_sa_replay = 0; 2780 sa->sadb_sa_state = 0; 2781 sa->sadb_sa_auth = 0; 2782 sa->sadb_sa_encrypt = 0; 2783 sa->sadb_sa_flags = 0; 2784 2785 /* ADDRESS_SRC (old addr) */ 2786 addr = (struct sadb_address*) 2787 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); 2788 addr->sadb_address_len = 2789 (sizeof(struct sadb_address)+sockaddr_size)/ 2790 sizeof(uint64_t); 2791 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 2792 addr->sadb_address_proto = 0; 2793 addr->sadb_address_reserved = 0; 2794 if (x->props.family == AF_INET) { 2795 addr->sadb_address_prefixlen = 32; 2796 2797 sin = (struct sockaddr_in *) (addr + 1); 2798 sin->sin_family = AF_INET; 2799 sin->sin_addr.s_addr = x->props.saddr.a4; 2800 sin->sin_port = 0; 2801 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2802 } 2803 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2804 else if (x->props.family == AF_INET6) { 2805 addr->sadb_address_prefixlen = 128; 2806 2807 sin6 = (struct sockaddr_in6 *) (addr + 1); 2808 sin6->sin6_family = AF_INET6; 2809 sin6->sin6_port = 0; 2810 sin6->sin6_flowinfo = 0; 2811 memcpy(&sin6->sin6_addr, 2812 x->props.saddr.a6, sizeof(struct in6_addr)); 2813 sin6->sin6_scope_id = 0; 2814 } 2815 #endif 2816 else 2817 BUG(); 2818 2819 /* NAT_T_SPORT (old port) */ 2820 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 2821 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 2822 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; 2823 n_port->sadb_x_nat_t_port_port = natt->encap_sport; 2824 n_port->sadb_x_nat_t_port_reserved = 0; 2825 2826 /* ADDRESS_DST (new addr) */ 2827 addr = (struct sadb_address*) 2828 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); 2829 addr->sadb_address_len = 2830 (sizeof(struct sadb_address)+sockaddr_size)/ 2831 sizeof(uint64_t); 2832 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 2833 addr->sadb_address_proto = 0; 2834 addr->sadb_address_reserved = 0; 2835 if (x->props.family == AF_INET) { 2836 addr->sadb_address_prefixlen = 32; 2837 2838 sin = (struct sockaddr_in *) (addr + 1); 2839 sin->sin_family = AF_INET; 2840 sin->sin_addr.s_addr = ipaddr->a4; 2841 sin->sin_port = 0; 2842 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2843 } 2844 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2845 else if (x->props.family == AF_INET6) { 2846 addr->sadb_address_prefixlen = 128; 2847 2848 sin6 = (struct sockaddr_in6 *) (addr + 1); 2849 sin6->sin6_family = AF_INET6; 2850 sin6->sin6_port = 0; 2851 sin6->sin6_flowinfo = 0; 2852 memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr)); 2853 sin6->sin6_scope_id = 0; 2854 } 2855 #endif 2856 else 2857 BUG(); 2858 2859 /* NAT_T_DPORT (new port) */ 2860 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 2861 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 2862 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; 2863 n_port->sadb_x_nat_t_port_port = sport; 2864 n_port->sadb_x_nat_t_port_reserved = 0; 2865 2866 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); 2867 } 2868 2869 static int pfkey_sendmsg(struct kiocb *kiocb, 2870 struct socket *sock, struct msghdr *msg, size_t len) 2871 { 2872 struct sock *sk = sock->sk; 2873 struct sk_buff *skb = NULL; 2874 struct sadb_msg *hdr = NULL; 2875 int err; 2876 2877 err = -EOPNOTSUPP; 2878 if (msg->msg_flags & MSG_OOB) 2879 goto out; 2880 2881 err = -EMSGSIZE; 2882 if ((unsigned)len > sk->sk_sndbuf - 32) 2883 goto out; 2884 2885 err = -ENOBUFS; 2886 skb = alloc_skb(len, GFP_KERNEL); 2887 if (skb == NULL) 2888 goto out; 2889 2890 err = -EFAULT; 2891 if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) 2892 goto out; 2893 2894 hdr = pfkey_get_base_msg(skb, &err); 2895 if (!hdr) 2896 goto out; 2897 2898 down(&xfrm_cfg_sem); 2899 err = pfkey_process(sk, skb, hdr); 2900 up(&xfrm_cfg_sem); 2901 2902 out: 2903 if (err && hdr && pfkey_error(hdr, err, sk) == 0) 2904 err = 0; 2905 if (skb) 2906 kfree_skb(skb); 2907 2908 return err ? : len; 2909 } 2910 2911 static int pfkey_recvmsg(struct kiocb *kiocb, 2912 struct socket *sock, struct msghdr *msg, size_t len, 2913 int flags) 2914 { 2915 struct sock *sk = sock->sk; 2916 struct sk_buff *skb; 2917 int copied, err; 2918 2919 err = -EINVAL; 2920 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT)) 2921 goto out; 2922 2923 msg->msg_namelen = 0; 2924 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 2925 if (skb == NULL) 2926 goto out; 2927 2928 copied = skb->len; 2929 if (copied > len) { 2930 msg->msg_flags |= MSG_TRUNC; 2931 copied = len; 2932 } 2933 2934 skb->h.raw = skb->data; 2935 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2936 if (err) 2937 goto out_free; 2938 2939 sock_recv_timestamp(msg, sk, skb); 2940 2941 err = (flags & MSG_TRUNC) ? skb->len : copied; 2942 2943 out_free: 2944 skb_free_datagram(sk, skb); 2945 out: 2946 return err; 2947 } 2948 2949 static struct proto_ops pfkey_ops = { 2950 .family = PF_KEY, 2951 .owner = THIS_MODULE, 2952 /* Operations that make no sense on pfkey sockets. */ 2953 .bind = sock_no_bind, 2954 .connect = sock_no_connect, 2955 .socketpair = sock_no_socketpair, 2956 .accept = sock_no_accept, 2957 .getname = sock_no_getname, 2958 .ioctl = sock_no_ioctl, 2959 .listen = sock_no_listen, 2960 .shutdown = sock_no_shutdown, 2961 .setsockopt = sock_no_setsockopt, 2962 .getsockopt = sock_no_getsockopt, 2963 .mmap = sock_no_mmap, 2964 .sendpage = sock_no_sendpage, 2965 2966 /* Now the operations that really occur. */ 2967 .release = pfkey_release, 2968 .poll = datagram_poll, 2969 .sendmsg = pfkey_sendmsg, 2970 .recvmsg = pfkey_recvmsg, 2971 }; 2972 2973 static struct net_proto_family pfkey_family_ops = { 2974 .family = PF_KEY, 2975 .create = pfkey_create, 2976 .owner = THIS_MODULE, 2977 }; 2978 2979 #ifdef CONFIG_PROC_FS 2980 static int pfkey_read_proc(char *buffer, char **start, off_t offset, 2981 int length, int *eof, void *data) 2982 { 2983 off_t pos = 0; 2984 off_t begin = 0; 2985 int len = 0; 2986 struct sock *s; 2987 struct hlist_node *node; 2988 2989 len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n"); 2990 2991 read_lock(&pfkey_table_lock); 2992 2993 sk_for_each(s, node, &pfkey_table) { 2994 len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu", 2995 s, 2996 atomic_read(&s->sk_refcnt), 2997 atomic_read(&s->sk_rmem_alloc), 2998 atomic_read(&s->sk_wmem_alloc), 2999 sock_i_uid(s), 3000 sock_i_ino(s) 3001 ); 3002 3003 buffer[len++] = '\n'; 3004 3005 pos = begin + len; 3006 if (pos < offset) { 3007 len = 0; 3008 begin = pos; 3009 } 3010 if(pos > offset + length) 3011 goto done; 3012 } 3013 *eof = 1; 3014 3015 done: 3016 read_unlock(&pfkey_table_lock); 3017 3018 *start = buffer + (offset - begin); 3019 len -= (offset - begin); 3020 3021 if (len > length) 3022 len = length; 3023 if (len < 0) 3024 len = 0; 3025 3026 return len; 3027 } 3028 #endif 3029 3030 static struct xfrm_mgr pfkeyv2_mgr = 3031 { 3032 .id = "pfkeyv2", 3033 .notify = pfkey_send_notify, 3034 .acquire = pfkey_send_acquire, 3035 .compile_policy = pfkey_compile_policy, 3036 .new_mapping = pfkey_send_new_mapping, 3037 .notify_policy = pfkey_send_policy_notify, 3038 }; 3039 3040 static void __exit ipsec_pfkey_exit(void) 3041 { 3042 xfrm_unregister_km(&pfkeyv2_mgr); 3043 remove_proc_entry("net/pfkey", NULL); 3044 sock_unregister(PF_KEY); 3045 proto_unregister(&key_proto); 3046 } 3047 3048 static int __init ipsec_pfkey_init(void) 3049 { 3050 int err = proto_register(&key_proto, 0); 3051 3052 if (err != 0) 3053 goto out; 3054 3055 err = sock_register(&pfkey_family_ops); 3056 if (err != 0) 3057 goto out_unregister_key_proto; 3058 #ifdef CONFIG_PROC_FS 3059 err = -ENOMEM; 3060 if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL) 3061 goto out_sock_unregister; 3062 #endif 3063 err = xfrm_register_km(&pfkeyv2_mgr); 3064 if (err != 0) 3065 goto out_remove_proc_entry; 3066 out: 3067 return err; 3068 out_remove_proc_entry: 3069 #ifdef CONFIG_PROC_FS 3070 remove_proc_entry("net/pfkey", NULL); 3071 out_sock_unregister: 3072 #endif 3073 sock_unregister(PF_KEY); 3074 out_unregister_key_proto: 3075 proto_unregister(&key_proto); 3076 goto out; 3077 } 3078 3079 module_init(ipsec_pfkey_init); 3080 module_exit(ipsec_pfkey_exit); 3081 MODULE_LICENSE("GPL"); 3082 MODULE_ALIAS_NETPROTO(PF_KEY); 3083