1 /* 2 * net/key/af_key.c An implementation of PF_KEYv2 sockets. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Maxim Giryaev <gem@asplinux.ru> 10 * David S. Miller <davem@redhat.com> 11 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 12 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 13 * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org> 14 * Derek Atkins <derek@ihtfp.com> 15 */ 16 17 #include <linux/capability.h> 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/socket.h> 21 #include <linux/pfkeyv2.h> 22 #include <linux/ipsec.h> 23 #include <linux/skbuff.h> 24 #include <linux/rtnetlink.h> 25 #include <linux/in.h> 26 #include <linux/in6.h> 27 #include <linux/proc_fs.h> 28 #include <linux/init.h> 29 #include <net/net_namespace.h> 30 #include <net/xfrm.h> 31 32 #include <net/sock.h> 33 34 #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x)) 35 #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x)) 36 37 38 /* List of all pfkey sockets. */ 39 static HLIST_HEAD(pfkey_table); 40 static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait); 41 static DEFINE_RWLOCK(pfkey_table_lock); 42 static atomic_t pfkey_table_users = ATOMIC_INIT(0); 43 44 static atomic_t pfkey_socks_nr = ATOMIC_INIT(0); 45 46 struct pfkey_sock { 47 /* struct sock must be the first member of struct pfkey_sock */ 48 struct sock sk; 49 int registered; 50 int promisc; 51 }; 52 53 static inline struct pfkey_sock *pfkey_sk(struct sock *sk) 54 { 55 return (struct pfkey_sock *)sk; 56 } 57 58 static void pfkey_sock_destruct(struct sock *sk) 59 { 60 skb_queue_purge(&sk->sk_receive_queue); 61 62 if (!sock_flag(sk, SOCK_DEAD)) { 63 printk("Attempt to release alive pfkey socket: %p\n", sk); 64 return; 65 } 66 67 BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc)); 68 BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc)); 69 70 atomic_dec(&pfkey_socks_nr); 71 } 72 73 static void pfkey_table_grab(void) 74 { 75 write_lock_bh(&pfkey_table_lock); 76 77 if (atomic_read(&pfkey_table_users)) { 78 DECLARE_WAITQUEUE(wait, current); 79 80 add_wait_queue_exclusive(&pfkey_table_wait, &wait); 81 for(;;) { 82 set_current_state(TASK_UNINTERRUPTIBLE); 83 if (atomic_read(&pfkey_table_users) == 0) 84 break; 85 write_unlock_bh(&pfkey_table_lock); 86 schedule(); 87 write_lock_bh(&pfkey_table_lock); 88 } 89 90 __set_current_state(TASK_RUNNING); 91 remove_wait_queue(&pfkey_table_wait, &wait); 92 } 93 } 94 95 static __inline__ void pfkey_table_ungrab(void) 96 { 97 write_unlock_bh(&pfkey_table_lock); 98 wake_up(&pfkey_table_wait); 99 } 100 101 static __inline__ void pfkey_lock_table(void) 102 { 103 /* read_lock() synchronizes us to pfkey_table_grab */ 104 105 read_lock(&pfkey_table_lock); 106 atomic_inc(&pfkey_table_users); 107 read_unlock(&pfkey_table_lock); 108 } 109 110 static __inline__ void pfkey_unlock_table(void) 111 { 112 if (atomic_dec_and_test(&pfkey_table_users)) 113 wake_up(&pfkey_table_wait); 114 } 115 116 117 static const struct proto_ops pfkey_ops; 118 119 static void pfkey_insert(struct sock *sk) 120 { 121 pfkey_table_grab(); 122 sk_add_node(sk, &pfkey_table); 123 pfkey_table_ungrab(); 124 } 125 126 static void pfkey_remove(struct sock *sk) 127 { 128 pfkey_table_grab(); 129 sk_del_node_init(sk); 130 pfkey_table_ungrab(); 131 } 132 133 static struct proto key_proto = { 134 .name = "KEY", 135 .owner = THIS_MODULE, 136 .obj_size = sizeof(struct pfkey_sock), 137 }; 138 139 static int pfkey_create(struct net *net, struct socket *sock, int protocol) 140 { 141 struct sock *sk; 142 int err; 143 144 if (net != &init_net) 145 return -EAFNOSUPPORT; 146 147 if (!capable(CAP_NET_ADMIN)) 148 return -EPERM; 149 if (sock->type != SOCK_RAW) 150 return -ESOCKTNOSUPPORT; 151 if (protocol != PF_KEY_V2) 152 return -EPROTONOSUPPORT; 153 154 err = -ENOMEM; 155 sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto, 1); 156 if (sk == NULL) 157 goto out; 158 159 sock->ops = &pfkey_ops; 160 sock_init_data(sock, sk); 161 162 sk->sk_family = PF_KEY; 163 sk->sk_destruct = pfkey_sock_destruct; 164 165 atomic_inc(&pfkey_socks_nr); 166 167 pfkey_insert(sk); 168 169 return 0; 170 out: 171 return err; 172 } 173 174 static int pfkey_release(struct socket *sock) 175 { 176 struct sock *sk = sock->sk; 177 178 if (!sk) 179 return 0; 180 181 pfkey_remove(sk); 182 183 sock_orphan(sk); 184 sock->sk = NULL; 185 skb_queue_purge(&sk->sk_write_queue); 186 sock_put(sk); 187 188 return 0; 189 } 190 191 static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2, 192 gfp_t allocation, struct sock *sk) 193 { 194 int err = -ENOBUFS; 195 196 sock_hold(sk); 197 if (*skb2 == NULL) { 198 if (atomic_read(&skb->users) != 1) { 199 *skb2 = skb_clone(skb, allocation); 200 } else { 201 *skb2 = skb; 202 atomic_inc(&skb->users); 203 } 204 } 205 if (*skb2 != NULL) { 206 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) { 207 skb_orphan(*skb2); 208 skb_set_owner_r(*skb2, sk); 209 skb_queue_tail(&sk->sk_receive_queue, *skb2); 210 sk->sk_data_ready(sk, (*skb2)->len); 211 *skb2 = NULL; 212 err = 0; 213 } 214 } 215 sock_put(sk); 216 return err; 217 } 218 219 /* Send SKB to all pfkey sockets matching selected criteria. */ 220 #define BROADCAST_ALL 0 221 #define BROADCAST_ONE 1 222 #define BROADCAST_REGISTERED 2 223 #define BROADCAST_PROMISC_ONLY 4 224 static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation, 225 int broadcast_flags, struct sock *one_sk) 226 { 227 struct sock *sk; 228 struct hlist_node *node; 229 struct sk_buff *skb2 = NULL; 230 int err = -ESRCH; 231 232 /* XXX Do we need something like netlink_overrun? I think 233 * XXX PF_KEY socket apps will not mind current behavior. 234 */ 235 if (!skb) 236 return -ENOMEM; 237 238 pfkey_lock_table(); 239 sk_for_each(sk, node, &pfkey_table) { 240 struct pfkey_sock *pfk = pfkey_sk(sk); 241 int err2; 242 243 /* Yes, it means that if you are meant to receive this 244 * pfkey message you receive it twice as promiscuous 245 * socket. 246 */ 247 if (pfk->promisc) 248 pfkey_broadcast_one(skb, &skb2, allocation, sk); 249 250 /* the exact target will be processed later */ 251 if (sk == one_sk) 252 continue; 253 if (broadcast_flags != BROADCAST_ALL) { 254 if (broadcast_flags & BROADCAST_PROMISC_ONLY) 255 continue; 256 if ((broadcast_flags & BROADCAST_REGISTERED) && 257 !pfk->registered) 258 continue; 259 if (broadcast_flags & BROADCAST_ONE) 260 continue; 261 } 262 263 err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk); 264 265 /* Error is cleare after succecful sending to at least one 266 * registered KM */ 267 if ((broadcast_flags & BROADCAST_REGISTERED) && err) 268 err = err2; 269 } 270 pfkey_unlock_table(); 271 272 if (one_sk != NULL) 273 err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk); 274 275 if (skb2) 276 kfree_skb(skb2); 277 kfree_skb(skb); 278 return err; 279 } 280 281 static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig) 282 { 283 *new = *orig; 284 } 285 286 static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk) 287 { 288 struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL); 289 struct sadb_msg *hdr; 290 291 if (!skb) 292 return -ENOBUFS; 293 294 /* Woe be to the platform trying to support PFKEY yet 295 * having normal errnos outside the 1-255 range, inclusive. 296 */ 297 err = -err; 298 if (err == ERESTARTSYS || 299 err == ERESTARTNOHAND || 300 err == ERESTARTNOINTR) 301 err = EINTR; 302 if (err >= 512) 303 err = EINVAL; 304 BUG_ON(err <= 0 || err >= 256); 305 306 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 307 pfkey_hdr_dup(hdr, orig); 308 hdr->sadb_msg_errno = (uint8_t) err; 309 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / 310 sizeof(uint64_t)); 311 312 pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk); 313 314 return 0; 315 } 316 317 static u8 sadb_ext_min_len[] = { 318 [SADB_EXT_RESERVED] = (u8) 0, 319 [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa), 320 [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime), 321 [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime), 322 [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime), 323 [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address), 324 [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address), 325 [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address), 326 [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key), 327 [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key), 328 [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident), 329 [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident), 330 [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens), 331 [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop), 332 [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported), 333 [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported), 334 [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange), 335 [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate), 336 [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy), 337 [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2), 338 [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type), 339 [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port), 340 [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port), 341 [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address), 342 [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx), 343 }; 344 345 /* Verify sadb_address_{len,prefixlen} against sa_family. */ 346 static int verify_address_len(void *p) 347 { 348 struct sadb_address *sp = p; 349 struct sockaddr *addr = (struct sockaddr *)(sp + 1); 350 struct sockaddr_in *sin; 351 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 352 struct sockaddr_in6 *sin6; 353 #endif 354 int len; 355 356 switch (addr->sa_family) { 357 case AF_INET: 358 len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t)); 359 if (sp->sadb_address_len != len || 360 sp->sadb_address_prefixlen > 32) 361 return -EINVAL; 362 break; 363 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 364 case AF_INET6: 365 len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t)); 366 if (sp->sadb_address_len != len || 367 sp->sadb_address_prefixlen > 128) 368 return -EINVAL; 369 break; 370 #endif 371 default: 372 /* It is user using kernel to keep track of security 373 * associations for another protocol, such as 374 * OSPF/RSVP/RIPV2/MIP. It is user's job to verify 375 * lengths. 376 * 377 * XXX Actually, association/policy database is not yet 378 * XXX able to cope with arbitrary sockaddr families. 379 * XXX When it can, remove this -EINVAL. -DaveM 380 */ 381 return -EINVAL; 382 break; 383 } 384 385 return 0; 386 } 387 388 static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx) 389 { 390 return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) + 391 sec_ctx->sadb_x_ctx_len, 392 sizeof(uint64_t)); 393 } 394 395 static inline int verify_sec_ctx_len(void *p) 396 { 397 struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p; 398 int len; 399 400 if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE) 401 return -EINVAL; 402 403 len = pfkey_sec_ctx_len(sec_ctx); 404 405 if (sec_ctx->sadb_x_sec_len != len) 406 return -EINVAL; 407 408 return 0; 409 } 410 411 static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx) 412 { 413 struct xfrm_user_sec_ctx *uctx = NULL; 414 int ctx_size = sec_ctx->sadb_x_ctx_len; 415 416 uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL); 417 418 if (!uctx) 419 return NULL; 420 421 uctx->len = pfkey_sec_ctx_len(sec_ctx); 422 uctx->exttype = sec_ctx->sadb_x_sec_exttype; 423 uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi; 424 uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg; 425 uctx->ctx_len = sec_ctx->sadb_x_ctx_len; 426 memcpy(uctx + 1, sec_ctx + 1, 427 uctx->ctx_len); 428 429 return uctx; 430 } 431 432 static int present_and_same_family(struct sadb_address *src, 433 struct sadb_address *dst) 434 { 435 struct sockaddr *s_addr, *d_addr; 436 437 if (!src || !dst) 438 return 0; 439 440 s_addr = (struct sockaddr *)(src + 1); 441 d_addr = (struct sockaddr *)(dst + 1); 442 if (s_addr->sa_family != d_addr->sa_family) 443 return 0; 444 if (s_addr->sa_family != AF_INET 445 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 446 && s_addr->sa_family != AF_INET6 447 #endif 448 ) 449 return 0; 450 451 return 1; 452 } 453 454 static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 455 { 456 char *p = (char *) hdr; 457 int len = skb->len; 458 459 len -= sizeof(*hdr); 460 p += sizeof(*hdr); 461 while (len > 0) { 462 struct sadb_ext *ehdr = (struct sadb_ext *) p; 463 uint16_t ext_type; 464 int ext_len; 465 466 ext_len = ehdr->sadb_ext_len; 467 ext_len *= sizeof(uint64_t); 468 ext_type = ehdr->sadb_ext_type; 469 if (ext_len < sizeof(uint64_t) || 470 ext_len > len || 471 ext_type == SADB_EXT_RESERVED) 472 return -EINVAL; 473 474 if (ext_type <= SADB_EXT_MAX) { 475 int min = (int) sadb_ext_min_len[ext_type]; 476 if (ext_len < min) 477 return -EINVAL; 478 if (ext_hdrs[ext_type-1] != NULL) 479 return -EINVAL; 480 if (ext_type == SADB_EXT_ADDRESS_SRC || 481 ext_type == SADB_EXT_ADDRESS_DST || 482 ext_type == SADB_EXT_ADDRESS_PROXY || 483 ext_type == SADB_X_EXT_NAT_T_OA) { 484 if (verify_address_len(p)) 485 return -EINVAL; 486 } 487 if (ext_type == SADB_X_EXT_SEC_CTX) { 488 if (verify_sec_ctx_len(p)) 489 return -EINVAL; 490 } 491 ext_hdrs[ext_type-1] = p; 492 } 493 p += ext_len; 494 len -= ext_len; 495 } 496 497 return 0; 498 } 499 500 static uint16_t 501 pfkey_satype2proto(uint8_t satype) 502 { 503 switch (satype) { 504 case SADB_SATYPE_UNSPEC: 505 return IPSEC_PROTO_ANY; 506 case SADB_SATYPE_AH: 507 return IPPROTO_AH; 508 case SADB_SATYPE_ESP: 509 return IPPROTO_ESP; 510 case SADB_X_SATYPE_IPCOMP: 511 return IPPROTO_COMP; 512 break; 513 default: 514 return 0; 515 } 516 /* NOTREACHED */ 517 } 518 519 static uint8_t 520 pfkey_proto2satype(uint16_t proto) 521 { 522 switch (proto) { 523 case IPPROTO_AH: 524 return SADB_SATYPE_AH; 525 case IPPROTO_ESP: 526 return SADB_SATYPE_ESP; 527 case IPPROTO_COMP: 528 return SADB_X_SATYPE_IPCOMP; 529 break; 530 default: 531 return 0; 532 } 533 /* NOTREACHED */ 534 } 535 536 /* BTW, this scheme means that there is no way with PFKEY2 sockets to 537 * say specifically 'just raw sockets' as we encode them as 255. 538 */ 539 540 static uint8_t pfkey_proto_to_xfrm(uint8_t proto) 541 { 542 return (proto == IPSEC_PROTO_ANY ? 0 : proto); 543 } 544 545 static uint8_t pfkey_proto_from_xfrm(uint8_t proto) 546 { 547 return (proto ? proto : IPSEC_PROTO_ANY); 548 } 549 550 static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, 551 xfrm_address_t *xaddr) 552 { 553 switch (((struct sockaddr*)(addr + 1))->sa_family) { 554 case AF_INET: 555 xaddr->a4 = 556 ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr; 557 return AF_INET; 558 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 559 case AF_INET6: 560 memcpy(xaddr->a6, 561 &((struct sockaddr_in6 *)(addr + 1))->sin6_addr, 562 sizeof(struct in6_addr)); 563 return AF_INET6; 564 #endif 565 default: 566 return 0; 567 } 568 /* NOTREACHED */ 569 } 570 571 static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs) 572 { 573 struct sadb_sa *sa; 574 struct sadb_address *addr; 575 uint16_t proto; 576 unsigned short family; 577 xfrm_address_t *xaddr; 578 579 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1]; 580 if (sa == NULL) 581 return NULL; 582 583 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 584 if (proto == 0) 585 return NULL; 586 587 /* sadb_address_len should be checked by caller */ 588 addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1]; 589 if (addr == NULL) 590 return NULL; 591 592 family = ((struct sockaddr *)(addr + 1))->sa_family; 593 switch (family) { 594 case AF_INET: 595 xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr; 596 break; 597 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 598 case AF_INET6: 599 xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr; 600 break; 601 #endif 602 default: 603 xaddr = NULL; 604 } 605 606 if (!xaddr) 607 return NULL; 608 609 return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family); 610 } 611 612 #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1))) 613 static int 614 pfkey_sockaddr_size(sa_family_t family) 615 { 616 switch (family) { 617 case AF_INET: 618 return PFKEY_ALIGN8(sizeof(struct sockaddr_in)); 619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 620 case AF_INET6: 621 return PFKEY_ALIGN8(sizeof(struct sockaddr_in6)); 622 #endif 623 default: 624 return 0; 625 } 626 /* NOTREACHED */ 627 } 628 629 static inline int pfkey_mode_from_xfrm(int mode) 630 { 631 switch(mode) { 632 case XFRM_MODE_TRANSPORT: 633 return IPSEC_MODE_TRANSPORT; 634 case XFRM_MODE_TUNNEL: 635 return IPSEC_MODE_TUNNEL; 636 case XFRM_MODE_BEET: 637 return IPSEC_MODE_BEET; 638 default: 639 return -1; 640 } 641 } 642 643 static inline int pfkey_mode_to_xfrm(int mode) 644 { 645 switch(mode) { 646 case IPSEC_MODE_ANY: /*XXX*/ 647 case IPSEC_MODE_TRANSPORT: 648 return XFRM_MODE_TRANSPORT; 649 case IPSEC_MODE_TUNNEL: 650 return XFRM_MODE_TUNNEL; 651 case IPSEC_MODE_BEET: 652 return XFRM_MODE_BEET; 653 default: 654 return -1; 655 } 656 } 657 658 static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x, 659 int add_keys, int hsc) 660 { 661 struct sk_buff *skb; 662 struct sadb_msg *hdr; 663 struct sadb_sa *sa; 664 struct sadb_lifetime *lifetime; 665 struct sadb_address *addr; 666 struct sadb_key *key; 667 struct sadb_x_sa2 *sa2; 668 struct sockaddr_in *sin; 669 struct sadb_x_sec_ctx *sec_ctx; 670 struct xfrm_sec_ctx *xfrm_ctx; 671 int ctx_size = 0; 672 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 673 struct sockaddr_in6 *sin6; 674 #endif 675 int size; 676 int auth_key_size = 0; 677 int encrypt_key_size = 0; 678 int sockaddr_size; 679 struct xfrm_encap_tmpl *natt = NULL; 680 int mode; 681 682 /* address family check */ 683 sockaddr_size = pfkey_sockaddr_size(x->props.family); 684 if (!sockaddr_size) 685 return ERR_PTR(-EINVAL); 686 687 /* base, SA, (lifetime (HSC),) address(SD), (address(P),) 688 key(AE), (identity(SD),) (sensitivity)> */ 689 size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) + 690 sizeof(struct sadb_lifetime) + 691 ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) + 692 ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) + 693 sizeof(struct sadb_address)*2 + 694 sockaddr_size*2 + 695 sizeof(struct sadb_x_sa2); 696 697 if ((xfrm_ctx = x->security)) { 698 ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len); 699 size += sizeof(struct sadb_x_sec_ctx) + ctx_size; 700 } 701 702 /* identity & sensitivity */ 703 704 if ((x->props.family == AF_INET && 705 x->sel.saddr.a4 != x->props.saddr.a4) 706 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 707 || (x->props.family == AF_INET6 && 708 memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr))) 709 #endif 710 ) 711 size += sizeof(struct sadb_address) + sockaddr_size; 712 713 if (add_keys) { 714 if (x->aalg && x->aalg->alg_key_len) { 715 auth_key_size = 716 PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8); 717 size += sizeof(struct sadb_key) + auth_key_size; 718 } 719 if (x->ealg && x->ealg->alg_key_len) { 720 encrypt_key_size = 721 PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8); 722 size += sizeof(struct sadb_key) + encrypt_key_size; 723 } 724 } 725 if (x->encap) 726 natt = x->encap; 727 728 if (natt && natt->encap_type) { 729 size += sizeof(struct sadb_x_nat_t_type); 730 size += sizeof(struct sadb_x_nat_t_port); 731 size += sizeof(struct sadb_x_nat_t_port); 732 } 733 734 skb = alloc_skb(size + 16, GFP_ATOMIC); 735 if (skb == NULL) 736 return ERR_PTR(-ENOBUFS); 737 738 /* call should fill header later */ 739 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 740 memset(hdr, 0, size); /* XXX do we need this ? */ 741 hdr->sadb_msg_len = size / sizeof(uint64_t); 742 743 /* sa */ 744 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa)); 745 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); 746 sa->sadb_sa_exttype = SADB_EXT_SA; 747 sa->sadb_sa_spi = x->id.spi; 748 sa->sadb_sa_replay = x->props.replay_window; 749 switch (x->km.state) { 750 case XFRM_STATE_VALID: 751 sa->sadb_sa_state = x->km.dying ? 752 SADB_SASTATE_DYING : SADB_SASTATE_MATURE; 753 break; 754 case XFRM_STATE_ACQ: 755 sa->sadb_sa_state = SADB_SASTATE_LARVAL; 756 break; 757 default: 758 sa->sadb_sa_state = SADB_SASTATE_DEAD; 759 break; 760 } 761 sa->sadb_sa_auth = 0; 762 if (x->aalg) { 763 struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0); 764 sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0; 765 } 766 sa->sadb_sa_encrypt = 0; 767 BUG_ON(x->ealg && x->calg); 768 if (x->ealg) { 769 struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0); 770 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0; 771 } 772 /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */ 773 if (x->calg) { 774 struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0); 775 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0; 776 } 777 778 sa->sadb_sa_flags = 0; 779 if (x->props.flags & XFRM_STATE_NOECN) 780 sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN; 781 if (x->props.flags & XFRM_STATE_DECAP_DSCP) 782 sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP; 783 if (x->props.flags & XFRM_STATE_NOPMTUDISC) 784 sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC; 785 786 /* hard time */ 787 if (hsc & 2) { 788 lifetime = (struct sadb_lifetime *) skb_put(skb, 789 sizeof(struct sadb_lifetime)); 790 lifetime->sadb_lifetime_len = 791 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 792 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 793 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit); 794 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit); 795 lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds; 796 lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds; 797 } 798 /* soft time */ 799 if (hsc & 1) { 800 lifetime = (struct sadb_lifetime *) skb_put(skb, 801 sizeof(struct sadb_lifetime)); 802 lifetime->sadb_lifetime_len = 803 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 804 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 805 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit); 806 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit); 807 lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds; 808 lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds; 809 } 810 /* current time */ 811 lifetime = (struct sadb_lifetime *) skb_put(skb, 812 sizeof(struct sadb_lifetime)); 813 lifetime->sadb_lifetime_len = 814 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 815 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 816 lifetime->sadb_lifetime_allocations = x->curlft.packets; 817 lifetime->sadb_lifetime_bytes = x->curlft.bytes; 818 lifetime->sadb_lifetime_addtime = x->curlft.add_time; 819 lifetime->sadb_lifetime_usetime = x->curlft.use_time; 820 /* src address */ 821 addr = (struct sadb_address*) skb_put(skb, 822 sizeof(struct sadb_address)+sockaddr_size); 823 addr->sadb_address_len = 824 (sizeof(struct sadb_address)+sockaddr_size)/ 825 sizeof(uint64_t); 826 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 827 /* "if the ports are non-zero, then the sadb_address_proto field, 828 normally zero, MUST be filled in with the transport 829 protocol's number." - RFC2367 */ 830 addr->sadb_address_proto = 0; 831 addr->sadb_address_reserved = 0; 832 if (x->props.family == AF_INET) { 833 addr->sadb_address_prefixlen = 32; 834 835 sin = (struct sockaddr_in *) (addr + 1); 836 sin->sin_family = AF_INET; 837 sin->sin_addr.s_addr = x->props.saddr.a4; 838 sin->sin_port = 0; 839 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 840 } 841 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 842 else if (x->props.family == AF_INET6) { 843 addr->sadb_address_prefixlen = 128; 844 845 sin6 = (struct sockaddr_in6 *) (addr + 1); 846 sin6->sin6_family = AF_INET6; 847 sin6->sin6_port = 0; 848 sin6->sin6_flowinfo = 0; 849 memcpy(&sin6->sin6_addr, x->props.saddr.a6, 850 sizeof(struct in6_addr)); 851 sin6->sin6_scope_id = 0; 852 } 853 #endif 854 else 855 BUG(); 856 857 /* dst address */ 858 addr = (struct sadb_address*) skb_put(skb, 859 sizeof(struct sadb_address)+sockaddr_size); 860 addr->sadb_address_len = 861 (sizeof(struct sadb_address)+sockaddr_size)/ 862 sizeof(uint64_t); 863 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 864 addr->sadb_address_proto = 0; 865 addr->sadb_address_prefixlen = 32; /* XXX */ 866 addr->sadb_address_reserved = 0; 867 if (x->props.family == AF_INET) { 868 sin = (struct sockaddr_in *) (addr + 1); 869 sin->sin_family = AF_INET; 870 sin->sin_addr.s_addr = x->id.daddr.a4; 871 sin->sin_port = 0; 872 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 873 874 if (x->sel.saddr.a4 != x->props.saddr.a4) { 875 addr = (struct sadb_address*) skb_put(skb, 876 sizeof(struct sadb_address)+sockaddr_size); 877 addr->sadb_address_len = 878 (sizeof(struct sadb_address)+sockaddr_size)/ 879 sizeof(uint64_t); 880 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY; 881 addr->sadb_address_proto = 882 pfkey_proto_from_xfrm(x->sel.proto); 883 addr->sadb_address_prefixlen = x->sel.prefixlen_s; 884 addr->sadb_address_reserved = 0; 885 886 sin = (struct sockaddr_in *) (addr + 1); 887 sin->sin_family = AF_INET; 888 sin->sin_addr.s_addr = x->sel.saddr.a4; 889 sin->sin_port = x->sel.sport; 890 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 891 } 892 } 893 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 894 else if (x->props.family == AF_INET6) { 895 addr->sadb_address_prefixlen = 128; 896 897 sin6 = (struct sockaddr_in6 *) (addr + 1); 898 sin6->sin6_family = AF_INET6; 899 sin6->sin6_port = 0; 900 sin6->sin6_flowinfo = 0; 901 memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr)); 902 sin6->sin6_scope_id = 0; 903 904 if (memcmp (x->sel.saddr.a6, x->props.saddr.a6, 905 sizeof(struct in6_addr))) { 906 addr = (struct sadb_address *) skb_put(skb, 907 sizeof(struct sadb_address)+sockaddr_size); 908 addr->sadb_address_len = 909 (sizeof(struct sadb_address)+sockaddr_size)/ 910 sizeof(uint64_t); 911 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY; 912 addr->sadb_address_proto = 913 pfkey_proto_from_xfrm(x->sel.proto); 914 addr->sadb_address_prefixlen = x->sel.prefixlen_s; 915 addr->sadb_address_reserved = 0; 916 917 sin6 = (struct sockaddr_in6 *) (addr + 1); 918 sin6->sin6_family = AF_INET6; 919 sin6->sin6_port = x->sel.sport; 920 sin6->sin6_flowinfo = 0; 921 memcpy(&sin6->sin6_addr, x->sel.saddr.a6, 922 sizeof(struct in6_addr)); 923 sin6->sin6_scope_id = 0; 924 } 925 } 926 #endif 927 else 928 BUG(); 929 930 /* auth key */ 931 if (add_keys && auth_key_size) { 932 key = (struct sadb_key *) skb_put(skb, 933 sizeof(struct sadb_key)+auth_key_size); 934 key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) / 935 sizeof(uint64_t); 936 key->sadb_key_exttype = SADB_EXT_KEY_AUTH; 937 key->sadb_key_bits = x->aalg->alg_key_len; 938 key->sadb_key_reserved = 0; 939 memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8); 940 } 941 /* encrypt key */ 942 if (add_keys && encrypt_key_size) { 943 key = (struct sadb_key *) skb_put(skb, 944 sizeof(struct sadb_key)+encrypt_key_size); 945 key->sadb_key_len = (sizeof(struct sadb_key) + 946 encrypt_key_size) / sizeof(uint64_t); 947 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT; 948 key->sadb_key_bits = x->ealg->alg_key_len; 949 key->sadb_key_reserved = 0; 950 memcpy(key + 1, x->ealg->alg_key, 951 (x->ealg->alg_key_len+7)/8); 952 } 953 954 /* sa */ 955 sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2)); 956 sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t); 957 sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 958 if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) { 959 kfree_skb(skb); 960 return ERR_PTR(-EINVAL); 961 } 962 sa2->sadb_x_sa2_mode = mode; 963 sa2->sadb_x_sa2_reserved1 = 0; 964 sa2->sadb_x_sa2_reserved2 = 0; 965 sa2->sadb_x_sa2_sequence = 0; 966 sa2->sadb_x_sa2_reqid = x->props.reqid; 967 968 if (natt && natt->encap_type) { 969 struct sadb_x_nat_t_type *n_type; 970 struct sadb_x_nat_t_port *n_port; 971 972 /* type */ 973 n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type)); 974 n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t); 975 n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 976 n_type->sadb_x_nat_t_type_type = natt->encap_type; 977 n_type->sadb_x_nat_t_type_reserved[0] = 0; 978 n_type->sadb_x_nat_t_type_reserved[1] = 0; 979 n_type->sadb_x_nat_t_type_reserved[2] = 0; 980 981 /* source port */ 982 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 983 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 984 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; 985 n_port->sadb_x_nat_t_port_port = natt->encap_sport; 986 n_port->sadb_x_nat_t_port_reserved = 0; 987 988 /* dest port */ 989 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 990 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 991 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; 992 n_port->sadb_x_nat_t_port_port = natt->encap_dport; 993 n_port->sadb_x_nat_t_port_reserved = 0; 994 } 995 996 /* security context */ 997 if (xfrm_ctx) { 998 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, 999 sizeof(struct sadb_x_sec_ctx) + ctx_size); 1000 sec_ctx->sadb_x_sec_len = 1001 (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t); 1002 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; 1003 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; 1004 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; 1005 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; 1006 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, 1007 xfrm_ctx->ctx_len); 1008 } 1009 1010 return skb; 1011 } 1012 1013 1014 static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x) 1015 { 1016 struct sk_buff *skb; 1017 1018 spin_lock_bh(&x->lock); 1019 skb = __pfkey_xfrm_state2msg(x, 1, 3); 1020 spin_unlock_bh(&x->lock); 1021 1022 return skb; 1023 } 1024 1025 static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x, 1026 int hsc) 1027 { 1028 return __pfkey_xfrm_state2msg(x, 0, hsc); 1029 } 1030 1031 static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr, 1032 void **ext_hdrs) 1033 { 1034 struct xfrm_state *x; 1035 struct sadb_lifetime *lifetime; 1036 struct sadb_sa *sa; 1037 struct sadb_key *key; 1038 struct sadb_x_sec_ctx *sec_ctx; 1039 uint16_t proto; 1040 int err; 1041 1042 1043 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1]; 1044 if (!sa || 1045 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1046 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1047 return ERR_PTR(-EINVAL); 1048 if (hdr->sadb_msg_satype == SADB_SATYPE_ESP && 1049 !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]) 1050 return ERR_PTR(-EINVAL); 1051 if (hdr->sadb_msg_satype == SADB_SATYPE_AH && 1052 !ext_hdrs[SADB_EXT_KEY_AUTH-1]) 1053 return ERR_PTR(-EINVAL); 1054 if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] != 1055 !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) 1056 return ERR_PTR(-EINVAL); 1057 1058 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1059 if (proto == 0) 1060 return ERR_PTR(-EINVAL); 1061 1062 /* default error is no buffer space */ 1063 err = -ENOBUFS; 1064 1065 /* RFC2367: 1066 1067 Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message. 1068 SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not 1069 sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state. 1070 Therefore, the sadb_sa_state field of all submitted SAs MUST be 1071 SADB_SASTATE_MATURE and the kernel MUST return an error if this is 1072 not true. 1073 1074 However, KAME setkey always uses SADB_SASTATE_LARVAL. 1075 Hence, we have to _ignore_ sadb_sa_state, which is also reasonable. 1076 */ 1077 if (sa->sadb_sa_auth > SADB_AALG_MAX || 1078 (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP && 1079 sa->sadb_sa_encrypt > SADB_X_CALG_MAX) || 1080 sa->sadb_sa_encrypt > SADB_EALG_MAX) 1081 return ERR_PTR(-EINVAL); 1082 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1]; 1083 if (key != NULL && 1084 sa->sadb_sa_auth != SADB_X_AALG_NULL && 1085 ((key->sadb_key_bits+7) / 8 == 0 || 1086 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t))) 1087 return ERR_PTR(-EINVAL); 1088 key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; 1089 if (key != NULL && 1090 sa->sadb_sa_encrypt != SADB_EALG_NULL && 1091 ((key->sadb_key_bits+7) / 8 == 0 || 1092 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t))) 1093 return ERR_PTR(-EINVAL); 1094 1095 x = xfrm_state_alloc(); 1096 if (x == NULL) 1097 return ERR_PTR(-ENOBUFS); 1098 1099 x->id.proto = proto; 1100 x->id.spi = sa->sadb_sa_spi; 1101 x->props.replay_window = sa->sadb_sa_replay; 1102 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN) 1103 x->props.flags |= XFRM_STATE_NOECN; 1104 if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP) 1105 x->props.flags |= XFRM_STATE_DECAP_DSCP; 1106 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC) 1107 x->props.flags |= XFRM_STATE_NOPMTUDISC; 1108 1109 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1]; 1110 if (lifetime != NULL) { 1111 x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 1112 x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 1113 x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; 1114 x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; 1115 } 1116 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]; 1117 if (lifetime != NULL) { 1118 x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 1119 x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 1120 x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; 1121 x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; 1122 } 1123 1124 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1]; 1125 if (sec_ctx != NULL) { 1126 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); 1127 1128 if (!uctx) 1129 goto out; 1130 1131 err = security_xfrm_state_alloc(x, uctx); 1132 kfree(uctx); 1133 1134 if (err) 1135 goto out; 1136 } 1137 1138 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1]; 1139 if (sa->sadb_sa_auth) { 1140 int keysize = 0; 1141 struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth); 1142 if (!a) { 1143 err = -ENOSYS; 1144 goto out; 1145 } 1146 if (key) 1147 keysize = (key->sadb_key_bits + 7) / 8; 1148 x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL); 1149 if (!x->aalg) 1150 goto out; 1151 strcpy(x->aalg->alg_name, a->name); 1152 x->aalg->alg_key_len = 0; 1153 if (key) { 1154 x->aalg->alg_key_len = key->sadb_key_bits; 1155 memcpy(x->aalg->alg_key, key+1, keysize); 1156 } 1157 x->props.aalgo = sa->sadb_sa_auth; 1158 /* x->algo.flags = sa->sadb_sa_flags; */ 1159 } 1160 if (sa->sadb_sa_encrypt) { 1161 if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) { 1162 struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt); 1163 if (!a) { 1164 err = -ENOSYS; 1165 goto out; 1166 } 1167 x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL); 1168 if (!x->calg) 1169 goto out; 1170 strcpy(x->calg->alg_name, a->name); 1171 x->props.calgo = sa->sadb_sa_encrypt; 1172 } else { 1173 int keysize = 0; 1174 struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt); 1175 if (!a) { 1176 err = -ENOSYS; 1177 goto out; 1178 } 1179 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; 1180 if (key) 1181 keysize = (key->sadb_key_bits + 7) / 8; 1182 x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL); 1183 if (!x->ealg) 1184 goto out; 1185 strcpy(x->ealg->alg_name, a->name); 1186 x->ealg->alg_key_len = 0; 1187 if (key) { 1188 x->ealg->alg_key_len = key->sadb_key_bits; 1189 memcpy(x->ealg->alg_key, key+1, keysize); 1190 } 1191 x->props.ealgo = sa->sadb_sa_encrypt; 1192 } 1193 } 1194 /* x->algo.flags = sa->sadb_sa_flags; */ 1195 1196 x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1197 &x->props.saddr); 1198 if (!x->props.family) { 1199 err = -EAFNOSUPPORT; 1200 goto out; 1201 } 1202 pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1], 1203 &x->id.daddr); 1204 1205 if (ext_hdrs[SADB_X_EXT_SA2-1]) { 1206 struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1]; 1207 int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode); 1208 if (mode < 0) { 1209 err = -EINVAL; 1210 goto out; 1211 } 1212 x->props.mode = mode; 1213 x->props.reqid = sa2->sadb_x_sa2_reqid; 1214 } 1215 1216 if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) { 1217 struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]; 1218 1219 /* Nobody uses this, but we try. */ 1220 x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr); 1221 x->sel.prefixlen_s = addr->sadb_address_prefixlen; 1222 } 1223 1224 if (!x->sel.family) 1225 x->sel.family = x->props.family; 1226 1227 if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) { 1228 struct sadb_x_nat_t_type* n_type; 1229 struct xfrm_encap_tmpl *natt; 1230 1231 x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL); 1232 if (!x->encap) 1233 goto out; 1234 1235 natt = x->encap; 1236 n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]; 1237 natt->encap_type = n_type->sadb_x_nat_t_type_type; 1238 1239 if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) { 1240 struct sadb_x_nat_t_port* n_port = 1241 ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]; 1242 natt->encap_sport = n_port->sadb_x_nat_t_port_port; 1243 } 1244 if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) { 1245 struct sadb_x_nat_t_port* n_port = 1246 ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]; 1247 natt->encap_dport = n_port->sadb_x_nat_t_port_port; 1248 } 1249 } 1250 1251 err = xfrm_init_state(x); 1252 if (err) 1253 goto out; 1254 1255 x->km.seq = hdr->sadb_msg_seq; 1256 return x; 1257 1258 out: 1259 x->km.state = XFRM_STATE_DEAD; 1260 xfrm_state_put(x); 1261 return ERR_PTR(err); 1262 } 1263 1264 static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1265 { 1266 return -EOPNOTSUPP; 1267 } 1268 1269 static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1270 { 1271 struct sk_buff *resp_skb; 1272 struct sadb_x_sa2 *sa2; 1273 struct sadb_address *saddr, *daddr; 1274 struct sadb_msg *out_hdr; 1275 struct sadb_spirange *range; 1276 struct xfrm_state *x = NULL; 1277 int mode; 1278 int err; 1279 u32 min_spi, max_spi; 1280 u32 reqid; 1281 u8 proto; 1282 unsigned short family; 1283 xfrm_address_t *xsaddr = NULL, *xdaddr = NULL; 1284 1285 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1286 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1287 return -EINVAL; 1288 1289 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1290 if (proto == 0) 1291 return -EINVAL; 1292 1293 if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) { 1294 mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode); 1295 if (mode < 0) 1296 return -EINVAL; 1297 reqid = sa2->sadb_x_sa2_reqid; 1298 } else { 1299 mode = 0; 1300 reqid = 0; 1301 } 1302 1303 saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1]; 1304 daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1]; 1305 1306 family = ((struct sockaddr *)(saddr + 1))->sa_family; 1307 switch (family) { 1308 case AF_INET: 1309 xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr; 1310 xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr; 1311 break; 1312 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1313 case AF_INET6: 1314 xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr; 1315 xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr; 1316 break; 1317 #endif 1318 } 1319 1320 if (hdr->sadb_msg_seq) { 1321 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq); 1322 if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) { 1323 xfrm_state_put(x); 1324 x = NULL; 1325 } 1326 } 1327 1328 if (!x) 1329 x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family); 1330 1331 if (x == NULL) 1332 return -ENOENT; 1333 1334 min_spi = 0x100; 1335 max_spi = 0x0fffffff; 1336 1337 range = ext_hdrs[SADB_EXT_SPIRANGE-1]; 1338 if (range) { 1339 min_spi = range->sadb_spirange_min; 1340 max_spi = range->sadb_spirange_max; 1341 } 1342 1343 err = xfrm_alloc_spi(x, min_spi, max_spi); 1344 resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x); 1345 1346 if (IS_ERR(resp_skb)) { 1347 xfrm_state_put(x); 1348 return PTR_ERR(resp_skb); 1349 } 1350 1351 out_hdr = (struct sadb_msg *) resp_skb->data; 1352 out_hdr->sadb_msg_version = hdr->sadb_msg_version; 1353 out_hdr->sadb_msg_type = SADB_GETSPI; 1354 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); 1355 out_hdr->sadb_msg_errno = 0; 1356 out_hdr->sadb_msg_reserved = 0; 1357 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; 1358 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; 1359 1360 xfrm_state_put(x); 1361 1362 pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk); 1363 1364 return 0; 1365 } 1366 1367 static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1368 { 1369 struct xfrm_state *x; 1370 1371 if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8) 1372 return -EOPNOTSUPP; 1373 1374 if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0) 1375 return 0; 1376 1377 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq); 1378 if (x == NULL) 1379 return 0; 1380 1381 spin_lock_bh(&x->lock); 1382 if (x->km.state == XFRM_STATE_ACQ) { 1383 x->km.state = XFRM_STATE_ERROR; 1384 wake_up(&km_waitq); 1385 } 1386 spin_unlock_bh(&x->lock); 1387 xfrm_state_put(x); 1388 return 0; 1389 } 1390 1391 static inline int event2poltype(int event) 1392 { 1393 switch (event) { 1394 case XFRM_MSG_DELPOLICY: 1395 return SADB_X_SPDDELETE; 1396 case XFRM_MSG_NEWPOLICY: 1397 return SADB_X_SPDADD; 1398 case XFRM_MSG_UPDPOLICY: 1399 return SADB_X_SPDUPDATE; 1400 case XFRM_MSG_POLEXPIRE: 1401 // return SADB_X_SPDEXPIRE; 1402 default: 1403 printk("pfkey: Unknown policy event %d\n", event); 1404 break; 1405 } 1406 1407 return 0; 1408 } 1409 1410 static inline int event2keytype(int event) 1411 { 1412 switch (event) { 1413 case XFRM_MSG_DELSA: 1414 return SADB_DELETE; 1415 case XFRM_MSG_NEWSA: 1416 return SADB_ADD; 1417 case XFRM_MSG_UPDSA: 1418 return SADB_UPDATE; 1419 case XFRM_MSG_EXPIRE: 1420 return SADB_EXPIRE; 1421 default: 1422 printk("pfkey: Unknown SA event %d\n", event); 1423 break; 1424 } 1425 1426 return 0; 1427 } 1428 1429 /* ADD/UPD/DEL */ 1430 static int key_notify_sa(struct xfrm_state *x, struct km_event *c) 1431 { 1432 struct sk_buff *skb; 1433 struct sadb_msg *hdr; 1434 1435 skb = pfkey_xfrm_state2msg(x); 1436 1437 if (IS_ERR(skb)) 1438 return PTR_ERR(skb); 1439 1440 hdr = (struct sadb_msg *) skb->data; 1441 hdr->sadb_msg_version = PF_KEY_V2; 1442 hdr->sadb_msg_type = event2keytype(c->event); 1443 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 1444 hdr->sadb_msg_errno = 0; 1445 hdr->sadb_msg_reserved = 0; 1446 hdr->sadb_msg_seq = c->seq; 1447 hdr->sadb_msg_pid = c->pid; 1448 1449 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 1450 1451 return 0; 1452 } 1453 1454 static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1455 { 1456 struct xfrm_state *x; 1457 int err; 1458 struct km_event c; 1459 1460 x = pfkey_msg2xfrm_state(hdr, ext_hdrs); 1461 if (IS_ERR(x)) 1462 return PTR_ERR(x); 1463 1464 xfrm_state_hold(x); 1465 if (hdr->sadb_msg_type == SADB_ADD) 1466 err = xfrm_state_add(x); 1467 else 1468 err = xfrm_state_update(x); 1469 1470 xfrm_audit_state_add(x, err ? 0 : 1, 1471 audit_get_loginuid(current->audit_context), 0); 1472 1473 if (err < 0) { 1474 x->km.state = XFRM_STATE_DEAD; 1475 __xfrm_state_put(x); 1476 goto out; 1477 } 1478 1479 if (hdr->sadb_msg_type == SADB_ADD) 1480 c.event = XFRM_MSG_NEWSA; 1481 else 1482 c.event = XFRM_MSG_UPDSA; 1483 c.seq = hdr->sadb_msg_seq; 1484 c.pid = hdr->sadb_msg_pid; 1485 km_state_notify(x, &c); 1486 out: 1487 xfrm_state_put(x); 1488 return err; 1489 } 1490 1491 static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1492 { 1493 struct xfrm_state *x; 1494 struct km_event c; 1495 int err; 1496 1497 if (!ext_hdrs[SADB_EXT_SA-1] || 1498 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1499 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1500 return -EINVAL; 1501 1502 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs); 1503 if (x == NULL) 1504 return -ESRCH; 1505 1506 if ((err = security_xfrm_state_delete(x))) 1507 goto out; 1508 1509 if (xfrm_state_kern(x)) { 1510 err = -EPERM; 1511 goto out; 1512 } 1513 1514 err = xfrm_state_delete(x); 1515 1516 if (err < 0) 1517 goto out; 1518 1519 c.seq = hdr->sadb_msg_seq; 1520 c.pid = hdr->sadb_msg_pid; 1521 c.event = XFRM_MSG_DELSA; 1522 km_state_notify(x, &c); 1523 out: 1524 xfrm_audit_state_delete(x, err ? 0 : 1, 1525 audit_get_loginuid(current->audit_context), 0); 1526 xfrm_state_put(x); 1527 1528 return err; 1529 } 1530 1531 static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1532 { 1533 __u8 proto; 1534 struct sk_buff *out_skb; 1535 struct sadb_msg *out_hdr; 1536 struct xfrm_state *x; 1537 1538 if (!ext_hdrs[SADB_EXT_SA-1] || 1539 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1540 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1541 return -EINVAL; 1542 1543 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs); 1544 if (x == NULL) 1545 return -ESRCH; 1546 1547 out_skb = pfkey_xfrm_state2msg(x); 1548 proto = x->id.proto; 1549 xfrm_state_put(x); 1550 if (IS_ERR(out_skb)) 1551 return PTR_ERR(out_skb); 1552 1553 out_hdr = (struct sadb_msg *) out_skb->data; 1554 out_hdr->sadb_msg_version = hdr->sadb_msg_version; 1555 out_hdr->sadb_msg_type = SADB_DUMP; 1556 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); 1557 out_hdr->sadb_msg_errno = 0; 1558 out_hdr->sadb_msg_reserved = 0; 1559 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; 1560 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; 1561 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk); 1562 1563 return 0; 1564 } 1565 1566 static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig, 1567 gfp_t allocation) 1568 { 1569 struct sk_buff *skb; 1570 struct sadb_msg *hdr; 1571 int len, auth_len, enc_len, i; 1572 1573 auth_len = xfrm_count_auth_supported(); 1574 if (auth_len) { 1575 auth_len *= sizeof(struct sadb_alg); 1576 auth_len += sizeof(struct sadb_supported); 1577 } 1578 1579 enc_len = xfrm_count_enc_supported(); 1580 if (enc_len) { 1581 enc_len *= sizeof(struct sadb_alg); 1582 enc_len += sizeof(struct sadb_supported); 1583 } 1584 1585 len = enc_len + auth_len + sizeof(struct sadb_msg); 1586 1587 skb = alloc_skb(len + 16, allocation); 1588 if (!skb) 1589 goto out_put_algs; 1590 1591 hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr)); 1592 pfkey_hdr_dup(hdr, orig); 1593 hdr->sadb_msg_errno = 0; 1594 hdr->sadb_msg_len = len / sizeof(uint64_t); 1595 1596 if (auth_len) { 1597 struct sadb_supported *sp; 1598 struct sadb_alg *ap; 1599 1600 sp = (struct sadb_supported *) skb_put(skb, auth_len); 1601 ap = (struct sadb_alg *) (sp + 1); 1602 1603 sp->sadb_supported_len = auth_len / sizeof(uint64_t); 1604 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 1605 1606 for (i = 0; ; i++) { 1607 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); 1608 if (!aalg) 1609 break; 1610 if (aalg->available) 1611 *ap++ = aalg->desc; 1612 } 1613 } 1614 1615 if (enc_len) { 1616 struct sadb_supported *sp; 1617 struct sadb_alg *ap; 1618 1619 sp = (struct sadb_supported *) skb_put(skb, enc_len); 1620 ap = (struct sadb_alg *) (sp + 1); 1621 1622 sp->sadb_supported_len = enc_len / sizeof(uint64_t); 1623 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 1624 1625 for (i = 0; ; i++) { 1626 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); 1627 if (!ealg) 1628 break; 1629 if (ealg->available) 1630 *ap++ = ealg->desc; 1631 } 1632 } 1633 1634 out_put_algs: 1635 return skb; 1636 } 1637 1638 static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1639 { 1640 struct pfkey_sock *pfk = pfkey_sk(sk); 1641 struct sk_buff *supp_skb; 1642 1643 if (hdr->sadb_msg_satype > SADB_SATYPE_MAX) 1644 return -EINVAL; 1645 1646 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) { 1647 if (pfk->registered&(1<<hdr->sadb_msg_satype)) 1648 return -EEXIST; 1649 pfk->registered |= (1<<hdr->sadb_msg_satype); 1650 } 1651 1652 xfrm_probe_algs(); 1653 1654 supp_skb = compose_sadb_supported(hdr, GFP_KERNEL); 1655 if (!supp_skb) { 1656 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) 1657 pfk->registered &= ~(1<<hdr->sadb_msg_satype); 1658 1659 return -ENOBUFS; 1660 } 1661 1662 pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk); 1663 1664 return 0; 1665 } 1666 1667 static int key_notify_sa_flush(struct km_event *c) 1668 { 1669 struct sk_buff *skb; 1670 struct sadb_msg *hdr; 1671 1672 skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); 1673 if (!skb) 1674 return -ENOBUFS; 1675 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 1676 hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto); 1677 hdr->sadb_msg_type = SADB_FLUSH; 1678 hdr->sadb_msg_seq = c->seq; 1679 hdr->sadb_msg_pid = c->pid; 1680 hdr->sadb_msg_version = PF_KEY_V2; 1681 hdr->sadb_msg_errno = (uint8_t) 0; 1682 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); 1683 1684 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 1685 1686 return 0; 1687 } 1688 1689 static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1690 { 1691 unsigned proto; 1692 struct km_event c; 1693 struct xfrm_audit audit_info; 1694 int err; 1695 1696 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1697 if (proto == 0) 1698 return -EINVAL; 1699 1700 audit_info.loginuid = audit_get_loginuid(current->audit_context); 1701 audit_info.secid = 0; 1702 err = xfrm_state_flush(proto, &audit_info); 1703 if (err) 1704 return err; 1705 c.data.proto = proto; 1706 c.seq = hdr->sadb_msg_seq; 1707 c.pid = hdr->sadb_msg_pid; 1708 c.event = XFRM_MSG_FLUSHSA; 1709 km_state_notify(NULL, &c); 1710 1711 return 0; 1712 } 1713 1714 struct pfkey_dump_data 1715 { 1716 struct sk_buff *skb; 1717 struct sadb_msg *hdr; 1718 struct sock *sk; 1719 }; 1720 1721 static int dump_sa(struct xfrm_state *x, int count, void *ptr) 1722 { 1723 struct pfkey_dump_data *data = ptr; 1724 struct sk_buff *out_skb; 1725 struct sadb_msg *out_hdr; 1726 1727 out_skb = pfkey_xfrm_state2msg(x); 1728 if (IS_ERR(out_skb)) 1729 return PTR_ERR(out_skb); 1730 1731 out_hdr = (struct sadb_msg *) out_skb->data; 1732 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version; 1733 out_hdr->sadb_msg_type = SADB_DUMP; 1734 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 1735 out_hdr->sadb_msg_errno = 0; 1736 out_hdr->sadb_msg_reserved = 0; 1737 out_hdr->sadb_msg_seq = count; 1738 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid; 1739 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk); 1740 return 0; 1741 } 1742 1743 static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1744 { 1745 u8 proto; 1746 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk }; 1747 1748 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1749 if (proto == 0) 1750 return -EINVAL; 1751 1752 return xfrm_state_walk(proto, dump_sa, &data); 1753 } 1754 1755 static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1756 { 1757 struct pfkey_sock *pfk = pfkey_sk(sk); 1758 int satype = hdr->sadb_msg_satype; 1759 1760 if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) { 1761 /* XXX we mangle packet... */ 1762 hdr->sadb_msg_errno = 0; 1763 if (satype != 0 && satype != 1) 1764 return -EINVAL; 1765 pfk->promisc = satype; 1766 } 1767 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL); 1768 return 0; 1769 } 1770 1771 static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr) 1772 { 1773 int i; 1774 u32 reqid = *(u32*)ptr; 1775 1776 for (i=0; i<xp->xfrm_nr; i++) { 1777 if (xp->xfrm_vec[i].reqid == reqid) 1778 return -EEXIST; 1779 } 1780 return 0; 1781 } 1782 1783 static u32 gen_reqid(void) 1784 { 1785 u32 start; 1786 static u32 reqid = IPSEC_MANUAL_REQID_MAX; 1787 1788 start = reqid; 1789 do { 1790 ++reqid; 1791 if (reqid == 0) 1792 reqid = IPSEC_MANUAL_REQID_MAX+1; 1793 if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid, 1794 (void*)&reqid) != -EEXIST) 1795 return reqid; 1796 } while (reqid != start); 1797 return 0; 1798 } 1799 1800 static int 1801 parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq) 1802 { 1803 struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr; 1804 struct sockaddr_in *sin; 1805 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1806 struct sockaddr_in6 *sin6; 1807 #endif 1808 int mode; 1809 1810 if (xp->xfrm_nr >= XFRM_MAX_DEPTH) 1811 return -ELOOP; 1812 1813 if (rq->sadb_x_ipsecrequest_mode == 0) 1814 return -EINVAL; 1815 1816 t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */ 1817 if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0) 1818 return -EINVAL; 1819 t->mode = mode; 1820 if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE) 1821 t->optional = 1; 1822 else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) { 1823 t->reqid = rq->sadb_x_ipsecrequest_reqid; 1824 if (t->reqid > IPSEC_MANUAL_REQID_MAX) 1825 t->reqid = 0; 1826 if (!t->reqid && !(t->reqid = gen_reqid())) 1827 return -ENOBUFS; 1828 } 1829 1830 /* addresses present only in tunnel mode */ 1831 if (t->mode == XFRM_MODE_TUNNEL) { 1832 struct sockaddr *sa; 1833 sa = (struct sockaddr *)(rq+1); 1834 switch(sa->sa_family) { 1835 case AF_INET: 1836 sin = (struct sockaddr_in*)sa; 1837 t->saddr.a4 = sin->sin_addr.s_addr; 1838 sin++; 1839 if (sin->sin_family != AF_INET) 1840 return -EINVAL; 1841 t->id.daddr.a4 = sin->sin_addr.s_addr; 1842 break; 1843 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1844 case AF_INET6: 1845 sin6 = (struct sockaddr_in6*)sa; 1846 memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr)); 1847 sin6++; 1848 if (sin6->sin6_family != AF_INET6) 1849 return -EINVAL; 1850 memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr)); 1851 break; 1852 #endif 1853 default: 1854 return -EINVAL; 1855 } 1856 t->encap_family = sa->sa_family; 1857 } else 1858 t->encap_family = xp->family; 1859 1860 /* No way to set this via kame pfkey */ 1861 t->aalgos = t->ealgos = t->calgos = ~0; 1862 xp->xfrm_nr++; 1863 return 0; 1864 } 1865 1866 static int 1867 parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol) 1868 { 1869 int err; 1870 int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy); 1871 struct sadb_x_ipsecrequest *rq = (void*)(pol+1); 1872 1873 while (len >= sizeof(struct sadb_x_ipsecrequest)) { 1874 if ((err = parse_ipsecrequest(xp, rq)) < 0) 1875 return err; 1876 len -= rq->sadb_x_ipsecrequest_len; 1877 rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len); 1878 } 1879 return 0; 1880 } 1881 1882 static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp) 1883 { 1884 struct xfrm_sec_ctx *xfrm_ctx = xp->security; 1885 1886 if (xfrm_ctx) { 1887 int len = sizeof(struct sadb_x_sec_ctx); 1888 len += xfrm_ctx->ctx_len; 1889 return PFKEY_ALIGN8(len); 1890 } 1891 return 0; 1892 } 1893 1894 static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp) 1895 { 1896 struct xfrm_tmpl *t; 1897 int sockaddr_size = pfkey_sockaddr_size(xp->family); 1898 int socklen = 0; 1899 int i; 1900 1901 for (i=0; i<xp->xfrm_nr; i++) { 1902 t = xp->xfrm_vec + i; 1903 socklen += (t->encap_family == AF_INET ? 1904 sizeof(struct sockaddr_in) : 1905 sizeof(struct sockaddr_in6)); 1906 } 1907 1908 return sizeof(struct sadb_msg) + 1909 (sizeof(struct sadb_lifetime) * 3) + 1910 (sizeof(struct sadb_address) * 2) + 1911 (sockaddr_size * 2) + 1912 sizeof(struct sadb_x_policy) + 1913 (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) + 1914 (socklen * 2) + 1915 pfkey_xfrm_policy2sec_ctx_size(xp); 1916 } 1917 1918 static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp) 1919 { 1920 struct sk_buff *skb; 1921 int size; 1922 1923 size = pfkey_xfrm_policy2msg_size(xp); 1924 1925 skb = alloc_skb(size + 16, GFP_ATOMIC); 1926 if (skb == NULL) 1927 return ERR_PTR(-ENOBUFS); 1928 1929 return skb; 1930 } 1931 1932 static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir) 1933 { 1934 struct sadb_msg *hdr; 1935 struct sadb_address *addr; 1936 struct sadb_lifetime *lifetime; 1937 struct sadb_x_policy *pol; 1938 struct sockaddr_in *sin; 1939 struct sadb_x_sec_ctx *sec_ctx; 1940 struct xfrm_sec_ctx *xfrm_ctx; 1941 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1942 struct sockaddr_in6 *sin6; 1943 #endif 1944 int i; 1945 int size; 1946 int sockaddr_size = pfkey_sockaddr_size(xp->family); 1947 int socklen = (xp->family == AF_INET ? 1948 sizeof(struct sockaddr_in) : 1949 sizeof(struct sockaddr_in6)); 1950 1951 size = pfkey_xfrm_policy2msg_size(xp); 1952 1953 /* call should fill header later */ 1954 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 1955 memset(hdr, 0, size); /* XXX do we need this ? */ 1956 1957 /* src address */ 1958 addr = (struct sadb_address*) skb_put(skb, 1959 sizeof(struct sadb_address)+sockaddr_size); 1960 addr->sadb_address_len = 1961 (sizeof(struct sadb_address)+sockaddr_size)/ 1962 sizeof(uint64_t); 1963 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 1964 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); 1965 addr->sadb_address_prefixlen = xp->selector.prefixlen_s; 1966 addr->sadb_address_reserved = 0; 1967 /* src address */ 1968 if (xp->family == AF_INET) { 1969 sin = (struct sockaddr_in *) (addr + 1); 1970 sin->sin_family = AF_INET; 1971 sin->sin_addr.s_addr = xp->selector.saddr.a4; 1972 sin->sin_port = xp->selector.sport; 1973 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1974 } 1975 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1976 else if (xp->family == AF_INET6) { 1977 sin6 = (struct sockaddr_in6 *) (addr + 1); 1978 sin6->sin6_family = AF_INET6; 1979 sin6->sin6_port = xp->selector.sport; 1980 sin6->sin6_flowinfo = 0; 1981 memcpy(&sin6->sin6_addr, xp->selector.saddr.a6, 1982 sizeof(struct in6_addr)); 1983 sin6->sin6_scope_id = 0; 1984 } 1985 #endif 1986 else 1987 BUG(); 1988 1989 /* dst address */ 1990 addr = (struct sadb_address*) skb_put(skb, 1991 sizeof(struct sadb_address)+sockaddr_size); 1992 addr->sadb_address_len = 1993 (sizeof(struct sadb_address)+sockaddr_size)/ 1994 sizeof(uint64_t); 1995 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 1996 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); 1997 addr->sadb_address_prefixlen = xp->selector.prefixlen_d; 1998 addr->sadb_address_reserved = 0; 1999 if (xp->family == AF_INET) { 2000 sin = (struct sockaddr_in *) (addr + 1); 2001 sin->sin_family = AF_INET; 2002 sin->sin_addr.s_addr = xp->selector.daddr.a4; 2003 sin->sin_port = xp->selector.dport; 2004 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2005 } 2006 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2007 else if (xp->family == AF_INET6) { 2008 sin6 = (struct sockaddr_in6 *) (addr + 1); 2009 sin6->sin6_family = AF_INET6; 2010 sin6->sin6_port = xp->selector.dport; 2011 sin6->sin6_flowinfo = 0; 2012 memcpy(&sin6->sin6_addr, xp->selector.daddr.a6, 2013 sizeof(struct in6_addr)); 2014 sin6->sin6_scope_id = 0; 2015 } 2016 #endif 2017 else 2018 BUG(); 2019 2020 /* hard time */ 2021 lifetime = (struct sadb_lifetime *) skb_put(skb, 2022 sizeof(struct sadb_lifetime)); 2023 lifetime->sadb_lifetime_len = 2024 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 2025 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2026 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit); 2027 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit); 2028 lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds; 2029 lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds; 2030 /* soft time */ 2031 lifetime = (struct sadb_lifetime *) skb_put(skb, 2032 sizeof(struct sadb_lifetime)); 2033 lifetime->sadb_lifetime_len = 2034 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 2035 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 2036 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit); 2037 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit); 2038 lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds; 2039 lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds; 2040 /* current time */ 2041 lifetime = (struct sadb_lifetime *) skb_put(skb, 2042 sizeof(struct sadb_lifetime)); 2043 lifetime->sadb_lifetime_len = 2044 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 2045 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2046 lifetime->sadb_lifetime_allocations = xp->curlft.packets; 2047 lifetime->sadb_lifetime_bytes = xp->curlft.bytes; 2048 lifetime->sadb_lifetime_addtime = xp->curlft.add_time; 2049 lifetime->sadb_lifetime_usetime = xp->curlft.use_time; 2050 2051 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy)); 2052 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); 2053 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2054 pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD; 2055 if (xp->action == XFRM_POLICY_ALLOW) { 2056 if (xp->xfrm_nr) 2057 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; 2058 else 2059 pol->sadb_x_policy_type = IPSEC_POLICY_NONE; 2060 } 2061 pol->sadb_x_policy_dir = dir+1; 2062 pol->sadb_x_policy_id = xp->index; 2063 pol->sadb_x_policy_priority = xp->priority; 2064 2065 for (i=0; i<xp->xfrm_nr; i++) { 2066 struct sadb_x_ipsecrequest *rq; 2067 struct xfrm_tmpl *t = xp->xfrm_vec + i; 2068 int req_size; 2069 int mode; 2070 2071 req_size = sizeof(struct sadb_x_ipsecrequest); 2072 if (t->mode == XFRM_MODE_TUNNEL) 2073 req_size += ((t->encap_family == AF_INET ? 2074 sizeof(struct sockaddr_in) : 2075 sizeof(struct sockaddr_in6)) * 2); 2076 else 2077 size -= 2*socklen; 2078 rq = (void*)skb_put(skb, req_size); 2079 pol->sadb_x_policy_len += req_size/8; 2080 memset(rq, 0, sizeof(*rq)); 2081 rq->sadb_x_ipsecrequest_len = req_size; 2082 rq->sadb_x_ipsecrequest_proto = t->id.proto; 2083 if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0) 2084 return -EINVAL; 2085 rq->sadb_x_ipsecrequest_mode = mode; 2086 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE; 2087 if (t->reqid) 2088 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE; 2089 if (t->optional) 2090 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE; 2091 rq->sadb_x_ipsecrequest_reqid = t->reqid; 2092 if (t->mode == XFRM_MODE_TUNNEL) { 2093 switch (t->encap_family) { 2094 case AF_INET: 2095 sin = (void*)(rq+1); 2096 sin->sin_family = AF_INET; 2097 sin->sin_addr.s_addr = t->saddr.a4; 2098 sin->sin_port = 0; 2099 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2100 sin++; 2101 sin->sin_family = AF_INET; 2102 sin->sin_addr.s_addr = t->id.daddr.a4; 2103 sin->sin_port = 0; 2104 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2105 break; 2106 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2107 case AF_INET6: 2108 sin6 = (void*)(rq+1); 2109 sin6->sin6_family = AF_INET6; 2110 sin6->sin6_port = 0; 2111 sin6->sin6_flowinfo = 0; 2112 memcpy(&sin6->sin6_addr, t->saddr.a6, 2113 sizeof(struct in6_addr)); 2114 sin6->sin6_scope_id = 0; 2115 2116 sin6++; 2117 sin6->sin6_family = AF_INET6; 2118 sin6->sin6_port = 0; 2119 sin6->sin6_flowinfo = 0; 2120 memcpy(&sin6->sin6_addr, t->id.daddr.a6, 2121 sizeof(struct in6_addr)); 2122 sin6->sin6_scope_id = 0; 2123 break; 2124 #endif 2125 default: 2126 break; 2127 } 2128 } 2129 } 2130 2131 /* security context */ 2132 if ((xfrm_ctx = xp->security)) { 2133 int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp); 2134 2135 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size); 2136 sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t); 2137 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; 2138 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; 2139 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; 2140 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; 2141 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, 2142 xfrm_ctx->ctx_len); 2143 } 2144 2145 hdr->sadb_msg_len = size / sizeof(uint64_t); 2146 hdr->sadb_msg_reserved = atomic_read(&xp->refcnt); 2147 2148 return 0; 2149 } 2150 2151 static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c) 2152 { 2153 struct sk_buff *out_skb; 2154 struct sadb_msg *out_hdr; 2155 int err; 2156 2157 out_skb = pfkey_xfrm_policy2msg_prep(xp); 2158 if (IS_ERR(out_skb)) { 2159 err = PTR_ERR(out_skb); 2160 goto out; 2161 } 2162 err = pfkey_xfrm_policy2msg(out_skb, xp, dir); 2163 if (err < 0) 2164 return err; 2165 2166 out_hdr = (struct sadb_msg *) out_skb->data; 2167 out_hdr->sadb_msg_version = PF_KEY_V2; 2168 2169 if (c->data.byid && c->event == XFRM_MSG_DELPOLICY) 2170 out_hdr->sadb_msg_type = SADB_X_SPDDELETE2; 2171 else 2172 out_hdr->sadb_msg_type = event2poltype(c->event); 2173 out_hdr->sadb_msg_errno = 0; 2174 out_hdr->sadb_msg_seq = c->seq; 2175 out_hdr->sadb_msg_pid = c->pid; 2176 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 2177 out: 2178 return 0; 2179 2180 } 2181 2182 static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2183 { 2184 int err = 0; 2185 struct sadb_lifetime *lifetime; 2186 struct sadb_address *sa; 2187 struct sadb_x_policy *pol; 2188 struct xfrm_policy *xp; 2189 struct km_event c; 2190 struct sadb_x_sec_ctx *sec_ctx; 2191 2192 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2193 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || 2194 !ext_hdrs[SADB_X_EXT_POLICY-1]) 2195 return -EINVAL; 2196 2197 pol = ext_hdrs[SADB_X_EXT_POLICY-1]; 2198 if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC) 2199 return -EINVAL; 2200 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) 2201 return -EINVAL; 2202 2203 xp = xfrm_policy_alloc(GFP_KERNEL); 2204 if (xp == NULL) 2205 return -ENOBUFS; 2206 2207 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? 2208 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); 2209 xp->priority = pol->sadb_x_policy_priority; 2210 2211 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2212 xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr); 2213 if (!xp->family) { 2214 err = -EINVAL; 2215 goto out; 2216 } 2217 xp->selector.family = xp->family; 2218 xp->selector.prefixlen_s = sa->sadb_address_prefixlen; 2219 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2220 xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port; 2221 if (xp->selector.sport) 2222 xp->selector.sport_mask = htons(0xffff); 2223 2224 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1], 2225 pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr); 2226 xp->selector.prefixlen_d = sa->sadb_address_prefixlen; 2227 2228 /* Amusing, we set this twice. KAME apps appear to set same value 2229 * in both addresses. 2230 */ 2231 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2232 2233 xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port; 2234 if (xp->selector.dport) 2235 xp->selector.dport_mask = htons(0xffff); 2236 2237 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1]; 2238 if (sec_ctx != NULL) { 2239 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); 2240 2241 if (!uctx) { 2242 err = -ENOBUFS; 2243 goto out; 2244 } 2245 2246 err = security_xfrm_policy_alloc(xp, uctx); 2247 kfree(uctx); 2248 2249 if (err) 2250 goto out; 2251 } 2252 2253 xp->lft.soft_byte_limit = XFRM_INF; 2254 xp->lft.hard_byte_limit = XFRM_INF; 2255 xp->lft.soft_packet_limit = XFRM_INF; 2256 xp->lft.hard_packet_limit = XFRM_INF; 2257 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) { 2258 xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 2259 xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 2260 xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; 2261 xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; 2262 } 2263 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) { 2264 xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 2265 xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 2266 xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; 2267 xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; 2268 } 2269 xp->xfrm_nr = 0; 2270 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2271 (err = parse_ipsecrequests(xp, pol)) < 0) 2272 goto out; 2273 2274 err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp, 2275 hdr->sadb_msg_type != SADB_X_SPDUPDATE); 2276 2277 xfrm_audit_policy_add(xp, err ? 0 : 1, 2278 audit_get_loginuid(current->audit_context), 0); 2279 2280 if (err) 2281 goto out; 2282 2283 if (hdr->sadb_msg_type == SADB_X_SPDUPDATE) 2284 c.event = XFRM_MSG_UPDPOLICY; 2285 else 2286 c.event = XFRM_MSG_NEWPOLICY; 2287 2288 c.seq = hdr->sadb_msg_seq; 2289 c.pid = hdr->sadb_msg_pid; 2290 2291 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); 2292 xfrm_pol_put(xp); 2293 return 0; 2294 2295 out: 2296 security_xfrm_policy_free(xp); 2297 kfree(xp); 2298 return err; 2299 } 2300 2301 static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2302 { 2303 int err; 2304 struct sadb_address *sa; 2305 struct sadb_x_policy *pol; 2306 struct xfrm_policy *xp, tmp; 2307 struct xfrm_selector sel; 2308 struct km_event c; 2309 struct sadb_x_sec_ctx *sec_ctx; 2310 2311 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2312 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || 2313 !ext_hdrs[SADB_X_EXT_POLICY-1]) 2314 return -EINVAL; 2315 2316 pol = ext_hdrs[SADB_X_EXT_POLICY-1]; 2317 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) 2318 return -EINVAL; 2319 2320 memset(&sel, 0, sizeof(sel)); 2321 2322 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2323 sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr); 2324 sel.prefixlen_s = sa->sadb_address_prefixlen; 2325 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2326 sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port; 2327 if (sel.sport) 2328 sel.sport_mask = htons(0xffff); 2329 2330 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1], 2331 pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr); 2332 sel.prefixlen_d = sa->sadb_address_prefixlen; 2333 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2334 sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port; 2335 if (sel.dport) 2336 sel.dport_mask = htons(0xffff); 2337 2338 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1]; 2339 memset(&tmp, 0, sizeof(struct xfrm_policy)); 2340 2341 if (sec_ctx != NULL) { 2342 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); 2343 2344 if (!uctx) 2345 return -ENOMEM; 2346 2347 err = security_xfrm_policy_alloc(&tmp, uctx); 2348 kfree(uctx); 2349 2350 if (err) 2351 return err; 2352 } 2353 2354 xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1, 2355 &sel, tmp.security, 1, &err); 2356 security_xfrm_policy_free(&tmp); 2357 2358 if (xp == NULL) 2359 return -ENOENT; 2360 2361 xfrm_audit_policy_delete(xp, err ? 0 : 1, 2362 audit_get_loginuid(current->audit_context), 0); 2363 2364 if (err) 2365 goto out; 2366 2367 c.seq = hdr->sadb_msg_seq; 2368 c.pid = hdr->sadb_msg_pid; 2369 c.event = XFRM_MSG_DELPOLICY; 2370 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); 2371 2372 out: 2373 xfrm_pol_put(xp); 2374 return err; 2375 } 2376 2377 static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir) 2378 { 2379 int err; 2380 struct sk_buff *out_skb; 2381 struct sadb_msg *out_hdr; 2382 err = 0; 2383 2384 out_skb = pfkey_xfrm_policy2msg_prep(xp); 2385 if (IS_ERR(out_skb)) { 2386 err = PTR_ERR(out_skb); 2387 goto out; 2388 } 2389 err = pfkey_xfrm_policy2msg(out_skb, xp, dir); 2390 if (err < 0) 2391 goto out; 2392 2393 out_hdr = (struct sadb_msg *) out_skb->data; 2394 out_hdr->sadb_msg_version = hdr->sadb_msg_version; 2395 out_hdr->sadb_msg_type = hdr->sadb_msg_type; 2396 out_hdr->sadb_msg_satype = 0; 2397 out_hdr->sadb_msg_errno = 0; 2398 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; 2399 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; 2400 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk); 2401 err = 0; 2402 2403 out: 2404 return err; 2405 } 2406 2407 #ifdef CONFIG_NET_KEY_MIGRATE 2408 static int pfkey_sockaddr_pair_size(sa_family_t family) 2409 { 2410 switch (family) { 2411 case AF_INET: 2412 return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2); 2413 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2414 case AF_INET6: 2415 return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2); 2416 #endif 2417 default: 2418 return 0; 2419 } 2420 /* NOTREACHED */ 2421 } 2422 2423 static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq, 2424 xfrm_address_t *saddr, xfrm_address_t *daddr, 2425 u16 *family) 2426 { 2427 struct sockaddr *sa = (struct sockaddr *)(rq + 1); 2428 if (rq->sadb_x_ipsecrequest_len < 2429 pfkey_sockaddr_pair_size(sa->sa_family)) 2430 return -EINVAL; 2431 2432 switch (sa->sa_family) { 2433 case AF_INET: 2434 { 2435 struct sockaddr_in *sin; 2436 sin = (struct sockaddr_in *)sa; 2437 if ((sin+1)->sin_family != AF_INET) 2438 return -EINVAL; 2439 memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4)); 2440 sin++; 2441 memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4)); 2442 *family = AF_INET; 2443 break; 2444 } 2445 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2446 case AF_INET6: 2447 { 2448 struct sockaddr_in6 *sin6; 2449 sin6 = (struct sockaddr_in6 *)sa; 2450 if ((sin6+1)->sin6_family != AF_INET6) 2451 return -EINVAL; 2452 memcpy(&saddr->a6, &sin6->sin6_addr, 2453 sizeof(saddr->a6)); 2454 sin6++; 2455 memcpy(&daddr->a6, &sin6->sin6_addr, 2456 sizeof(daddr->a6)); 2457 *family = AF_INET6; 2458 break; 2459 } 2460 #endif 2461 default: 2462 return -EINVAL; 2463 } 2464 2465 return 0; 2466 } 2467 2468 static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len, 2469 struct xfrm_migrate *m) 2470 { 2471 int err; 2472 struct sadb_x_ipsecrequest *rq2; 2473 int mode; 2474 2475 if (len <= sizeof(struct sadb_x_ipsecrequest) || 2476 len < rq1->sadb_x_ipsecrequest_len) 2477 return -EINVAL; 2478 2479 /* old endoints */ 2480 err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr, 2481 &m->old_family); 2482 if (err) 2483 return err; 2484 2485 rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len); 2486 len -= rq1->sadb_x_ipsecrequest_len; 2487 2488 if (len <= sizeof(struct sadb_x_ipsecrequest) || 2489 len < rq2->sadb_x_ipsecrequest_len) 2490 return -EINVAL; 2491 2492 /* new endpoints */ 2493 err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr, 2494 &m->new_family); 2495 if (err) 2496 return err; 2497 2498 if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto || 2499 rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode || 2500 rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid) 2501 return -EINVAL; 2502 2503 m->proto = rq1->sadb_x_ipsecrequest_proto; 2504 if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0) 2505 return -EINVAL; 2506 m->mode = mode; 2507 m->reqid = rq1->sadb_x_ipsecrequest_reqid; 2508 2509 return ((int)(rq1->sadb_x_ipsecrequest_len + 2510 rq2->sadb_x_ipsecrequest_len)); 2511 } 2512 2513 static int pfkey_migrate(struct sock *sk, struct sk_buff *skb, 2514 struct sadb_msg *hdr, void **ext_hdrs) 2515 { 2516 int i, len, ret, err = -EINVAL; 2517 u8 dir; 2518 struct sadb_address *sa; 2519 struct sadb_x_policy *pol; 2520 struct sadb_x_ipsecrequest *rq; 2521 struct xfrm_selector sel; 2522 struct xfrm_migrate m[XFRM_MAX_DEPTH]; 2523 2524 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1], 2525 ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) || 2526 !ext_hdrs[SADB_X_EXT_POLICY - 1]) { 2527 err = -EINVAL; 2528 goto out; 2529 } 2530 2531 pol = ext_hdrs[SADB_X_EXT_POLICY - 1]; 2532 if (!pol) { 2533 err = -EINVAL; 2534 goto out; 2535 } 2536 2537 if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) { 2538 err = -EINVAL; 2539 goto out; 2540 } 2541 2542 dir = pol->sadb_x_policy_dir - 1; 2543 memset(&sel, 0, sizeof(sel)); 2544 2545 /* set source address info of selector */ 2546 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1]; 2547 sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr); 2548 sel.prefixlen_s = sa->sadb_address_prefixlen; 2549 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2550 sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port; 2551 if (sel.sport) 2552 sel.sport_mask = htons(0xffff); 2553 2554 /* set destination address info of selector */ 2555 sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1], 2556 pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr); 2557 sel.prefixlen_d = sa->sadb_address_prefixlen; 2558 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2559 sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port; 2560 if (sel.dport) 2561 sel.dport_mask = htons(0xffff); 2562 2563 rq = (struct sadb_x_ipsecrequest *)(pol + 1); 2564 2565 /* extract ipsecrequests */ 2566 i = 0; 2567 len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy); 2568 2569 while (len > 0 && i < XFRM_MAX_DEPTH) { 2570 ret = ipsecrequests_to_migrate(rq, len, &m[i]); 2571 if (ret < 0) { 2572 err = ret; 2573 goto out; 2574 } else { 2575 rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret); 2576 len -= ret; 2577 i++; 2578 } 2579 } 2580 2581 if (!i || len > 0) { 2582 err = -EINVAL; 2583 goto out; 2584 } 2585 2586 return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i); 2587 2588 out: 2589 return err; 2590 } 2591 #else 2592 static int pfkey_migrate(struct sock *sk, struct sk_buff *skb, 2593 struct sadb_msg *hdr, void **ext_hdrs) 2594 { 2595 return -ENOPROTOOPT; 2596 } 2597 #endif 2598 2599 2600 static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2601 { 2602 unsigned int dir; 2603 int err = 0, delete; 2604 struct sadb_x_policy *pol; 2605 struct xfrm_policy *xp; 2606 struct km_event c; 2607 2608 if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL) 2609 return -EINVAL; 2610 2611 dir = xfrm_policy_id2dir(pol->sadb_x_policy_id); 2612 if (dir >= XFRM_POLICY_MAX) 2613 return -EINVAL; 2614 2615 delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2); 2616 xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id, 2617 delete, &err); 2618 if (xp == NULL) 2619 return -ENOENT; 2620 2621 if (delete) { 2622 xfrm_audit_policy_delete(xp, err ? 0 : 1, 2623 audit_get_loginuid(current->audit_context), 0); 2624 2625 if (err) 2626 goto out; 2627 c.seq = hdr->sadb_msg_seq; 2628 c.pid = hdr->sadb_msg_pid; 2629 c.data.byid = 1; 2630 c.event = XFRM_MSG_DELPOLICY; 2631 km_policy_notify(xp, dir, &c); 2632 } else { 2633 err = key_pol_get_resp(sk, xp, hdr, dir); 2634 } 2635 2636 out: 2637 xfrm_pol_put(xp); 2638 return err; 2639 } 2640 2641 static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr) 2642 { 2643 struct pfkey_dump_data *data = ptr; 2644 struct sk_buff *out_skb; 2645 struct sadb_msg *out_hdr; 2646 int err; 2647 2648 out_skb = pfkey_xfrm_policy2msg_prep(xp); 2649 if (IS_ERR(out_skb)) 2650 return PTR_ERR(out_skb); 2651 2652 err = pfkey_xfrm_policy2msg(out_skb, xp, dir); 2653 if (err < 0) 2654 return err; 2655 2656 out_hdr = (struct sadb_msg *) out_skb->data; 2657 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version; 2658 out_hdr->sadb_msg_type = SADB_X_SPDDUMP; 2659 out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC; 2660 out_hdr->sadb_msg_errno = 0; 2661 out_hdr->sadb_msg_seq = count; 2662 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid; 2663 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk); 2664 return 0; 2665 } 2666 2667 static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2668 { 2669 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk }; 2670 2671 return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data); 2672 } 2673 2674 static int key_notify_policy_flush(struct km_event *c) 2675 { 2676 struct sk_buff *skb_out; 2677 struct sadb_msg *hdr; 2678 2679 skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); 2680 if (!skb_out) 2681 return -ENOBUFS; 2682 hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg)); 2683 hdr->sadb_msg_type = SADB_X_SPDFLUSH; 2684 hdr->sadb_msg_seq = c->seq; 2685 hdr->sadb_msg_pid = c->pid; 2686 hdr->sadb_msg_version = PF_KEY_V2; 2687 hdr->sadb_msg_errno = (uint8_t) 0; 2688 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); 2689 pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL); 2690 return 0; 2691 2692 } 2693 2694 static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2695 { 2696 struct km_event c; 2697 struct xfrm_audit audit_info; 2698 int err; 2699 2700 audit_info.loginuid = audit_get_loginuid(current->audit_context); 2701 audit_info.secid = 0; 2702 err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info); 2703 if (err) 2704 return err; 2705 c.data.type = XFRM_POLICY_TYPE_MAIN; 2706 c.event = XFRM_MSG_FLUSHPOLICY; 2707 c.pid = hdr->sadb_msg_pid; 2708 c.seq = hdr->sadb_msg_seq; 2709 km_policy_notify(NULL, 0, &c); 2710 2711 return 0; 2712 } 2713 2714 typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb, 2715 struct sadb_msg *hdr, void **ext_hdrs); 2716 static pfkey_handler pfkey_funcs[SADB_MAX + 1] = { 2717 [SADB_RESERVED] = pfkey_reserved, 2718 [SADB_GETSPI] = pfkey_getspi, 2719 [SADB_UPDATE] = pfkey_add, 2720 [SADB_ADD] = pfkey_add, 2721 [SADB_DELETE] = pfkey_delete, 2722 [SADB_GET] = pfkey_get, 2723 [SADB_ACQUIRE] = pfkey_acquire, 2724 [SADB_REGISTER] = pfkey_register, 2725 [SADB_EXPIRE] = NULL, 2726 [SADB_FLUSH] = pfkey_flush, 2727 [SADB_DUMP] = pfkey_dump, 2728 [SADB_X_PROMISC] = pfkey_promisc, 2729 [SADB_X_PCHANGE] = NULL, 2730 [SADB_X_SPDUPDATE] = pfkey_spdadd, 2731 [SADB_X_SPDADD] = pfkey_spdadd, 2732 [SADB_X_SPDDELETE] = pfkey_spddelete, 2733 [SADB_X_SPDGET] = pfkey_spdget, 2734 [SADB_X_SPDACQUIRE] = NULL, 2735 [SADB_X_SPDDUMP] = pfkey_spddump, 2736 [SADB_X_SPDFLUSH] = pfkey_spdflush, 2737 [SADB_X_SPDSETIDX] = pfkey_spdadd, 2738 [SADB_X_SPDDELETE2] = pfkey_spdget, 2739 [SADB_X_MIGRATE] = pfkey_migrate, 2740 }; 2741 2742 static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr) 2743 { 2744 void *ext_hdrs[SADB_EXT_MAX]; 2745 int err; 2746 2747 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, 2748 BROADCAST_PROMISC_ONLY, NULL); 2749 2750 memset(ext_hdrs, 0, sizeof(ext_hdrs)); 2751 err = parse_exthdrs(skb, hdr, ext_hdrs); 2752 if (!err) { 2753 err = -EOPNOTSUPP; 2754 if (pfkey_funcs[hdr->sadb_msg_type]) 2755 err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs); 2756 } 2757 return err; 2758 } 2759 2760 static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp) 2761 { 2762 struct sadb_msg *hdr = NULL; 2763 2764 if (skb->len < sizeof(*hdr)) { 2765 *errp = -EMSGSIZE; 2766 } else { 2767 hdr = (struct sadb_msg *) skb->data; 2768 if (hdr->sadb_msg_version != PF_KEY_V2 || 2769 hdr->sadb_msg_reserved != 0 || 2770 (hdr->sadb_msg_type <= SADB_RESERVED || 2771 hdr->sadb_msg_type > SADB_MAX)) { 2772 hdr = NULL; 2773 *errp = -EINVAL; 2774 } else if (hdr->sadb_msg_len != (skb->len / 2775 sizeof(uint64_t)) || 2776 hdr->sadb_msg_len < (sizeof(struct sadb_msg) / 2777 sizeof(uint64_t))) { 2778 hdr = NULL; 2779 *errp = -EMSGSIZE; 2780 } else { 2781 *errp = 0; 2782 } 2783 } 2784 return hdr; 2785 } 2786 2787 static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d) 2788 { 2789 return t->aalgos & (1 << d->desc.sadb_alg_id); 2790 } 2791 2792 static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d) 2793 { 2794 return t->ealgos & (1 << d->desc.sadb_alg_id); 2795 } 2796 2797 static int count_ah_combs(struct xfrm_tmpl *t) 2798 { 2799 int i, sz = 0; 2800 2801 for (i = 0; ; i++) { 2802 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); 2803 if (!aalg) 2804 break; 2805 if (aalg_tmpl_set(t, aalg) && aalg->available) 2806 sz += sizeof(struct sadb_comb); 2807 } 2808 return sz + sizeof(struct sadb_prop); 2809 } 2810 2811 static int count_esp_combs(struct xfrm_tmpl *t) 2812 { 2813 int i, k, sz = 0; 2814 2815 for (i = 0; ; i++) { 2816 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); 2817 if (!ealg) 2818 break; 2819 2820 if (!(ealg_tmpl_set(t, ealg) && ealg->available)) 2821 continue; 2822 2823 for (k = 1; ; k++) { 2824 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); 2825 if (!aalg) 2826 break; 2827 2828 if (aalg_tmpl_set(t, aalg) && aalg->available) 2829 sz += sizeof(struct sadb_comb); 2830 } 2831 } 2832 return sz + sizeof(struct sadb_prop); 2833 } 2834 2835 static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t) 2836 { 2837 struct sadb_prop *p; 2838 int i; 2839 2840 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop)); 2841 p->sadb_prop_len = sizeof(struct sadb_prop)/8; 2842 p->sadb_prop_exttype = SADB_EXT_PROPOSAL; 2843 p->sadb_prop_replay = 32; 2844 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); 2845 2846 for (i = 0; ; i++) { 2847 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); 2848 if (!aalg) 2849 break; 2850 2851 if (aalg_tmpl_set(t, aalg) && aalg->available) { 2852 struct sadb_comb *c; 2853 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb)); 2854 memset(c, 0, sizeof(*c)); 2855 p->sadb_prop_len += sizeof(struct sadb_comb)/8; 2856 c->sadb_comb_auth = aalg->desc.sadb_alg_id; 2857 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; 2858 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; 2859 c->sadb_comb_hard_addtime = 24*60*60; 2860 c->sadb_comb_soft_addtime = 20*60*60; 2861 c->sadb_comb_hard_usetime = 8*60*60; 2862 c->sadb_comb_soft_usetime = 7*60*60; 2863 } 2864 } 2865 } 2866 2867 static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t) 2868 { 2869 struct sadb_prop *p; 2870 int i, k; 2871 2872 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop)); 2873 p->sadb_prop_len = sizeof(struct sadb_prop)/8; 2874 p->sadb_prop_exttype = SADB_EXT_PROPOSAL; 2875 p->sadb_prop_replay = 32; 2876 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); 2877 2878 for (i=0; ; i++) { 2879 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); 2880 if (!ealg) 2881 break; 2882 2883 if (!(ealg_tmpl_set(t, ealg) && ealg->available)) 2884 continue; 2885 2886 for (k = 1; ; k++) { 2887 struct sadb_comb *c; 2888 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); 2889 if (!aalg) 2890 break; 2891 if (!(aalg_tmpl_set(t, aalg) && aalg->available)) 2892 continue; 2893 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb)); 2894 memset(c, 0, sizeof(*c)); 2895 p->sadb_prop_len += sizeof(struct sadb_comb)/8; 2896 c->sadb_comb_auth = aalg->desc.sadb_alg_id; 2897 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; 2898 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; 2899 c->sadb_comb_encrypt = ealg->desc.sadb_alg_id; 2900 c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits; 2901 c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits; 2902 c->sadb_comb_hard_addtime = 24*60*60; 2903 c->sadb_comb_soft_addtime = 20*60*60; 2904 c->sadb_comb_hard_usetime = 8*60*60; 2905 c->sadb_comb_soft_usetime = 7*60*60; 2906 } 2907 } 2908 } 2909 2910 static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c) 2911 { 2912 return 0; 2913 } 2914 2915 static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c) 2916 { 2917 struct sk_buff *out_skb; 2918 struct sadb_msg *out_hdr; 2919 int hard; 2920 int hsc; 2921 2922 hard = c->data.hard; 2923 if (hard) 2924 hsc = 2; 2925 else 2926 hsc = 1; 2927 2928 out_skb = pfkey_xfrm_state2msg_expire(x, hsc); 2929 if (IS_ERR(out_skb)) 2930 return PTR_ERR(out_skb); 2931 2932 out_hdr = (struct sadb_msg *) out_skb->data; 2933 out_hdr->sadb_msg_version = PF_KEY_V2; 2934 out_hdr->sadb_msg_type = SADB_EXPIRE; 2935 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 2936 out_hdr->sadb_msg_errno = 0; 2937 out_hdr->sadb_msg_reserved = 0; 2938 out_hdr->sadb_msg_seq = 0; 2939 out_hdr->sadb_msg_pid = 0; 2940 2941 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); 2942 return 0; 2943 } 2944 2945 static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c) 2946 { 2947 switch (c->event) { 2948 case XFRM_MSG_EXPIRE: 2949 return key_notify_sa_expire(x, c); 2950 case XFRM_MSG_DELSA: 2951 case XFRM_MSG_NEWSA: 2952 case XFRM_MSG_UPDSA: 2953 return key_notify_sa(x, c); 2954 case XFRM_MSG_FLUSHSA: 2955 return key_notify_sa_flush(c); 2956 case XFRM_MSG_NEWAE: /* not yet supported */ 2957 break; 2958 default: 2959 printk("pfkey: Unknown SA event %d\n", c->event); 2960 break; 2961 } 2962 2963 return 0; 2964 } 2965 2966 static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c) 2967 { 2968 if (xp && xp->type != XFRM_POLICY_TYPE_MAIN) 2969 return 0; 2970 2971 switch (c->event) { 2972 case XFRM_MSG_POLEXPIRE: 2973 return key_notify_policy_expire(xp, c); 2974 case XFRM_MSG_DELPOLICY: 2975 case XFRM_MSG_NEWPOLICY: 2976 case XFRM_MSG_UPDPOLICY: 2977 return key_notify_policy(xp, dir, c); 2978 case XFRM_MSG_FLUSHPOLICY: 2979 if (c->data.type != XFRM_POLICY_TYPE_MAIN) 2980 break; 2981 return key_notify_policy_flush(c); 2982 default: 2983 printk("pfkey: Unknown policy event %d\n", c->event); 2984 break; 2985 } 2986 2987 return 0; 2988 } 2989 2990 static u32 get_acqseq(void) 2991 { 2992 u32 res; 2993 static u32 acqseq; 2994 static DEFINE_SPINLOCK(acqseq_lock); 2995 2996 spin_lock_bh(&acqseq_lock); 2997 res = (++acqseq ? : ++acqseq); 2998 spin_unlock_bh(&acqseq_lock); 2999 return res; 3000 } 3001 3002 static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir) 3003 { 3004 struct sk_buff *skb; 3005 struct sadb_msg *hdr; 3006 struct sadb_address *addr; 3007 struct sadb_x_policy *pol; 3008 struct sockaddr_in *sin; 3009 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3010 struct sockaddr_in6 *sin6; 3011 #endif 3012 int sockaddr_size; 3013 int size; 3014 struct sadb_x_sec_ctx *sec_ctx; 3015 struct xfrm_sec_ctx *xfrm_ctx; 3016 int ctx_size = 0; 3017 3018 sockaddr_size = pfkey_sockaddr_size(x->props.family); 3019 if (!sockaddr_size) 3020 return -EINVAL; 3021 3022 size = sizeof(struct sadb_msg) + 3023 (sizeof(struct sadb_address) * 2) + 3024 (sockaddr_size * 2) + 3025 sizeof(struct sadb_x_policy); 3026 3027 if (x->id.proto == IPPROTO_AH) 3028 size += count_ah_combs(t); 3029 else if (x->id.proto == IPPROTO_ESP) 3030 size += count_esp_combs(t); 3031 3032 if ((xfrm_ctx = x->security)) { 3033 ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len); 3034 size += sizeof(struct sadb_x_sec_ctx) + ctx_size; 3035 } 3036 3037 skb = alloc_skb(size + 16, GFP_ATOMIC); 3038 if (skb == NULL) 3039 return -ENOMEM; 3040 3041 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 3042 hdr->sadb_msg_version = PF_KEY_V2; 3043 hdr->sadb_msg_type = SADB_ACQUIRE; 3044 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 3045 hdr->sadb_msg_len = size / sizeof(uint64_t); 3046 hdr->sadb_msg_errno = 0; 3047 hdr->sadb_msg_reserved = 0; 3048 hdr->sadb_msg_seq = x->km.seq = get_acqseq(); 3049 hdr->sadb_msg_pid = 0; 3050 3051 /* src address */ 3052 addr = (struct sadb_address*) skb_put(skb, 3053 sizeof(struct sadb_address)+sockaddr_size); 3054 addr->sadb_address_len = 3055 (sizeof(struct sadb_address)+sockaddr_size)/ 3056 sizeof(uint64_t); 3057 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 3058 addr->sadb_address_proto = 0; 3059 addr->sadb_address_reserved = 0; 3060 if (x->props.family == AF_INET) { 3061 addr->sadb_address_prefixlen = 32; 3062 3063 sin = (struct sockaddr_in *) (addr + 1); 3064 sin->sin_family = AF_INET; 3065 sin->sin_addr.s_addr = x->props.saddr.a4; 3066 sin->sin_port = 0; 3067 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3068 } 3069 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3070 else if (x->props.family == AF_INET6) { 3071 addr->sadb_address_prefixlen = 128; 3072 3073 sin6 = (struct sockaddr_in6 *) (addr + 1); 3074 sin6->sin6_family = AF_INET6; 3075 sin6->sin6_port = 0; 3076 sin6->sin6_flowinfo = 0; 3077 memcpy(&sin6->sin6_addr, 3078 x->props.saddr.a6, sizeof(struct in6_addr)); 3079 sin6->sin6_scope_id = 0; 3080 } 3081 #endif 3082 else 3083 BUG(); 3084 3085 /* dst address */ 3086 addr = (struct sadb_address*) skb_put(skb, 3087 sizeof(struct sadb_address)+sockaddr_size); 3088 addr->sadb_address_len = 3089 (sizeof(struct sadb_address)+sockaddr_size)/ 3090 sizeof(uint64_t); 3091 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 3092 addr->sadb_address_proto = 0; 3093 addr->sadb_address_reserved = 0; 3094 if (x->props.family == AF_INET) { 3095 addr->sadb_address_prefixlen = 32; 3096 3097 sin = (struct sockaddr_in *) (addr + 1); 3098 sin->sin_family = AF_INET; 3099 sin->sin_addr.s_addr = x->id.daddr.a4; 3100 sin->sin_port = 0; 3101 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3102 } 3103 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3104 else if (x->props.family == AF_INET6) { 3105 addr->sadb_address_prefixlen = 128; 3106 3107 sin6 = (struct sockaddr_in6 *) (addr + 1); 3108 sin6->sin6_family = AF_INET6; 3109 sin6->sin6_port = 0; 3110 sin6->sin6_flowinfo = 0; 3111 memcpy(&sin6->sin6_addr, 3112 x->id.daddr.a6, sizeof(struct in6_addr)); 3113 sin6->sin6_scope_id = 0; 3114 } 3115 #endif 3116 else 3117 BUG(); 3118 3119 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy)); 3120 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); 3121 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3122 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; 3123 pol->sadb_x_policy_dir = dir+1; 3124 pol->sadb_x_policy_id = xp->index; 3125 3126 /* Set sadb_comb's. */ 3127 if (x->id.proto == IPPROTO_AH) 3128 dump_ah_combs(skb, t); 3129 else if (x->id.proto == IPPROTO_ESP) 3130 dump_esp_combs(skb, t); 3131 3132 /* security context */ 3133 if (xfrm_ctx) { 3134 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, 3135 sizeof(struct sadb_x_sec_ctx) + ctx_size); 3136 sec_ctx->sadb_x_sec_len = 3137 (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t); 3138 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; 3139 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; 3140 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; 3141 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; 3142 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, 3143 xfrm_ctx->ctx_len); 3144 } 3145 3146 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); 3147 } 3148 3149 static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt, 3150 u8 *data, int len, int *dir) 3151 { 3152 struct xfrm_policy *xp; 3153 struct sadb_x_policy *pol = (struct sadb_x_policy*)data; 3154 struct sadb_x_sec_ctx *sec_ctx; 3155 3156 switch (sk->sk_family) { 3157 case AF_INET: 3158 if (opt != IP_IPSEC_POLICY) { 3159 *dir = -EOPNOTSUPP; 3160 return NULL; 3161 } 3162 break; 3163 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3164 case AF_INET6: 3165 if (opt != IPV6_IPSEC_POLICY) { 3166 *dir = -EOPNOTSUPP; 3167 return NULL; 3168 } 3169 break; 3170 #endif 3171 default: 3172 *dir = -EINVAL; 3173 return NULL; 3174 } 3175 3176 *dir = -EINVAL; 3177 3178 if (len < sizeof(struct sadb_x_policy) || 3179 pol->sadb_x_policy_len*8 > len || 3180 pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS || 3181 (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND)) 3182 return NULL; 3183 3184 xp = xfrm_policy_alloc(GFP_ATOMIC); 3185 if (xp == NULL) { 3186 *dir = -ENOBUFS; 3187 return NULL; 3188 } 3189 3190 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? 3191 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); 3192 3193 xp->lft.soft_byte_limit = XFRM_INF; 3194 xp->lft.hard_byte_limit = XFRM_INF; 3195 xp->lft.soft_packet_limit = XFRM_INF; 3196 xp->lft.hard_packet_limit = XFRM_INF; 3197 xp->family = sk->sk_family; 3198 3199 xp->xfrm_nr = 0; 3200 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 3201 (*dir = parse_ipsecrequests(xp, pol)) < 0) 3202 goto out; 3203 3204 /* security context too */ 3205 if (len >= (pol->sadb_x_policy_len*8 + 3206 sizeof(struct sadb_x_sec_ctx))) { 3207 char *p = (char *)pol; 3208 struct xfrm_user_sec_ctx *uctx; 3209 3210 p += pol->sadb_x_policy_len*8; 3211 sec_ctx = (struct sadb_x_sec_ctx *)p; 3212 if (len < pol->sadb_x_policy_len*8 + 3213 sec_ctx->sadb_x_sec_len) { 3214 *dir = -EINVAL; 3215 goto out; 3216 } 3217 if ((*dir = verify_sec_ctx_len(p))) 3218 goto out; 3219 uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); 3220 *dir = security_xfrm_policy_alloc(xp, uctx); 3221 kfree(uctx); 3222 3223 if (*dir) 3224 goto out; 3225 } 3226 3227 *dir = pol->sadb_x_policy_dir-1; 3228 return xp; 3229 3230 out: 3231 security_xfrm_policy_free(xp); 3232 kfree(xp); 3233 return NULL; 3234 } 3235 3236 static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 3237 { 3238 struct sk_buff *skb; 3239 struct sadb_msg *hdr; 3240 struct sadb_sa *sa; 3241 struct sadb_address *addr; 3242 struct sadb_x_nat_t_port *n_port; 3243 struct sockaddr_in *sin; 3244 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3245 struct sockaddr_in6 *sin6; 3246 #endif 3247 int sockaddr_size; 3248 int size; 3249 __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0); 3250 struct xfrm_encap_tmpl *natt = NULL; 3251 3252 sockaddr_size = pfkey_sockaddr_size(x->props.family); 3253 if (!sockaddr_size) 3254 return -EINVAL; 3255 3256 if (!satype) 3257 return -EINVAL; 3258 3259 if (!x->encap) 3260 return -EINVAL; 3261 3262 natt = x->encap; 3263 3264 /* Build an SADB_X_NAT_T_NEW_MAPPING message: 3265 * 3266 * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) | 3267 * ADDRESS_DST (new addr) | NAT_T_DPORT (new port) 3268 */ 3269 3270 size = sizeof(struct sadb_msg) + 3271 sizeof(struct sadb_sa) + 3272 (sizeof(struct sadb_address) * 2) + 3273 (sockaddr_size * 2) + 3274 (sizeof(struct sadb_x_nat_t_port) * 2); 3275 3276 skb = alloc_skb(size + 16, GFP_ATOMIC); 3277 if (skb == NULL) 3278 return -ENOMEM; 3279 3280 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 3281 hdr->sadb_msg_version = PF_KEY_V2; 3282 hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING; 3283 hdr->sadb_msg_satype = satype; 3284 hdr->sadb_msg_len = size / sizeof(uint64_t); 3285 hdr->sadb_msg_errno = 0; 3286 hdr->sadb_msg_reserved = 0; 3287 hdr->sadb_msg_seq = x->km.seq = get_acqseq(); 3288 hdr->sadb_msg_pid = 0; 3289 3290 /* SA */ 3291 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa)); 3292 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); 3293 sa->sadb_sa_exttype = SADB_EXT_SA; 3294 sa->sadb_sa_spi = x->id.spi; 3295 sa->sadb_sa_replay = 0; 3296 sa->sadb_sa_state = 0; 3297 sa->sadb_sa_auth = 0; 3298 sa->sadb_sa_encrypt = 0; 3299 sa->sadb_sa_flags = 0; 3300 3301 /* ADDRESS_SRC (old addr) */ 3302 addr = (struct sadb_address*) 3303 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); 3304 addr->sadb_address_len = 3305 (sizeof(struct sadb_address)+sockaddr_size)/ 3306 sizeof(uint64_t); 3307 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 3308 addr->sadb_address_proto = 0; 3309 addr->sadb_address_reserved = 0; 3310 if (x->props.family == AF_INET) { 3311 addr->sadb_address_prefixlen = 32; 3312 3313 sin = (struct sockaddr_in *) (addr + 1); 3314 sin->sin_family = AF_INET; 3315 sin->sin_addr.s_addr = x->props.saddr.a4; 3316 sin->sin_port = 0; 3317 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3318 } 3319 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3320 else if (x->props.family == AF_INET6) { 3321 addr->sadb_address_prefixlen = 128; 3322 3323 sin6 = (struct sockaddr_in6 *) (addr + 1); 3324 sin6->sin6_family = AF_INET6; 3325 sin6->sin6_port = 0; 3326 sin6->sin6_flowinfo = 0; 3327 memcpy(&sin6->sin6_addr, 3328 x->props.saddr.a6, sizeof(struct in6_addr)); 3329 sin6->sin6_scope_id = 0; 3330 } 3331 #endif 3332 else 3333 BUG(); 3334 3335 /* NAT_T_SPORT (old port) */ 3336 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 3337 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 3338 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; 3339 n_port->sadb_x_nat_t_port_port = natt->encap_sport; 3340 n_port->sadb_x_nat_t_port_reserved = 0; 3341 3342 /* ADDRESS_DST (new addr) */ 3343 addr = (struct sadb_address*) 3344 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); 3345 addr->sadb_address_len = 3346 (sizeof(struct sadb_address)+sockaddr_size)/ 3347 sizeof(uint64_t); 3348 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 3349 addr->sadb_address_proto = 0; 3350 addr->sadb_address_reserved = 0; 3351 if (x->props.family == AF_INET) { 3352 addr->sadb_address_prefixlen = 32; 3353 3354 sin = (struct sockaddr_in *) (addr + 1); 3355 sin->sin_family = AF_INET; 3356 sin->sin_addr.s_addr = ipaddr->a4; 3357 sin->sin_port = 0; 3358 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3359 } 3360 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3361 else if (x->props.family == AF_INET6) { 3362 addr->sadb_address_prefixlen = 128; 3363 3364 sin6 = (struct sockaddr_in6 *) (addr + 1); 3365 sin6->sin6_family = AF_INET6; 3366 sin6->sin6_port = 0; 3367 sin6->sin6_flowinfo = 0; 3368 memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr)); 3369 sin6->sin6_scope_id = 0; 3370 } 3371 #endif 3372 else 3373 BUG(); 3374 3375 /* NAT_T_DPORT (new port) */ 3376 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 3377 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 3378 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; 3379 n_port->sadb_x_nat_t_port_port = sport; 3380 n_port->sadb_x_nat_t_port_reserved = 0; 3381 3382 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); 3383 } 3384 3385 #ifdef CONFIG_NET_KEY_MIGRATE 3386 static int set_sadb_address(struct sk_buff *skb, int sasize, int type, 3387 struct xfrm_selector *sel) 3388 { 3389 struct sadb_address *addr; 3390 struct sockaddr_in *sin; 3391 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3392 struct sockaddr_in6 *sin6; 3393 #endif 3394 addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize); 3395 addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8; 3396 addr->sadb_address_exttype = type; 3397 addr->sadb_address_proto = sel->proto; 3398 addr->sadb_address_reserved = 0; 3399 3400 switch (type) { 3401 case SADB_EXT_ADDRESS_SRC: 3402 if (sel->family == AF_INET) { 3403 addr->sadb_address_prefixlen = sel->prefixlen_s; 3404 sin = (struct sockaddr_in *)(addr + 1); 3405 sin->sin_family = AF_INET; 3406 memcpy(&sin->sin_addr.s_addr, &sel->saddr, 3407 sizeof(sin->sin_addr.s_addr)); 3408 sin->sin_port = 0; 3409 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3410 } 3411 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3412 else if (sel->family == AF_INET6) { 3413 addr->sadb_address_prefixlen = sel->prefixlen_s; 3414 sin6 = (struct sockaddr_in6 *)(addr + 1); 3415 sin6->sin6_family = AF_INET6; 3416 sin6->sin6_port = 0; 3417 sin6->sin6_flowinfo = 0; 3418 sin6->sin6_scope_id = 0; 3419 memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr, 3420 sizeof(sin6->sin6_addr.s6_addr)); 3421 } 3422 #endif 3423 break; 3424 case SADB_EXT_ADDRESS_DST: 3425 if (sel->family == AF_INET) { 3426 addr->sadb_address_prefixlen = sel->prefixlen_d; 3427 sin = (struct sockaddr_in *)(addr + 1); 3428 sin->sin_family = AF_INET; 3429 memcpy(&sin->sin_addr.s_addr, &sel->daddr, 3430 sizeof(sin->sin_addr.s_addr)); 3431 sin->sin_port = 0; 3432 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3433 } 3434 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3435 else if (sel->family == AF_INET6) { 3436 addr->sadb_address_prefixlen = sel->prefixlen_d; 3437 sin6 = (struct sockaddr_in6 *)(addr + 1); 3438 sin6->sin6_family = AF_INET6; 3439 sin6->sin6_port = 0; 3440 sin6->sin6_flowinfo = 0; 3441 sin6->sin6_scope_id = 0; 3442 memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr, 3443 sizeof(sin6->sin6_addr.s6_addr)); 3444 } 3445 #endif 3446 break; 3447 default: 3448 return -EINVAL; 3449 } 3450 3451 return 0; 3452 } 3453 3454 static int set_ipsecrequest(struct sk_buff *skb, 3455 uint8_t proto, uint8_t mode, int level, 3456 uint32_t reqid, uint8_t family, 3457 xfrm_address_t *src, xfrm_address_t *dst) 3458 { 3459 struct sadb_x_ipsecrequest *rq; 3460 struct sockaddr_in *sin; 3461 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3462 struct sockaddr_in6 *sin6; 3463 #endif 3464 int size_req; 3465 3466 size_req = sizeof(struct sadb_x_ipsecrequest) + 3467 pfkey_sockaddr_pair_size(family); 3468 3469 rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req); 3470 memset(rq, 0, size_req); 3471 rq->sadb_x_ipsecrequest_len = size_req; 3472 rq->sadb_x_ipsecrequest_proto = proto; 3473 rq->sadb_x_ipsecrequest_mode = mode; 3474 rq->sadb_x_ipsecrequest_level = level; 3475 rq->sadb_x_ipsecrequest_reqid = reqid; 3476 3477 switch (family) { 3478 case AF_INET: 3479 sin = (struct sockaddr_in *)(rq + 1); 3480 sin->sin_family = AF_INET; 3481 memcpy(&sin->sin_addr.s_addr, src, 3482 sizeof(sin->sin_addr.s_addr)); 3483 sin++; 3484 sin->sin_family = AF_INET; 3485 memcpy(&sin->sin_addr.s_addr, dst, 3486 sizeof(sin->sin_addr.s_addr)); 3487 break; 3488 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3489 case AF_INET6: 3490 sin6 = (struct sockaddr_in6 *)(rq + 1); 3491 sin6->sin6_family = AF_INET6; 3492 sin6->sin6_port = 0; 3493 sin6->sin6_flowinfo = 0; 3494 sin6->sin6_scope_id = 0; 3495 memcpy(&sin6->sin6_addr.s6_addr, src, 3496 sizeof(sin6->sin6_addr.s6_addr)); 3497 sin6++; 3498 sin6->sin6_family = AF_INET6; 3499 sin6->sin6_port = 0; 3500 sin6->sin6_flowinfo = 0; 3501 sin6->sin6_scope_id = 0; 3502 memcpy(&sin6->sin6_addr.s6_addr, dst, 3503 sizeof(sin6->sin6_addr.s6_addr)); 3504 break; 3505 #endif 3506 default: 3507 return -EINVAL; 3508 } 3509 3510 return 0; 3511 } 3512 #endif 3513 3514 #ifdef CONFIG_NET_KEY_MIGRATE 3515 static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type, 3516 struct xfrm_migrate *m, int num_bundles) 3517 { 3518 int i; 3519 int sasize_sel; 3520 int size = 0; 3521 int size_pol = 0; 3522 struct sk_buff *skb; 3523 struct sadb_msg *hdr; 3524 struct sadb_x_policy *pol; 3525 struct xfrm_migrate *mp; 3526 3527 if (type != XFRM_POLICY_TYPE_MAIN) 3528 return 0; 3529 3530 if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH) 3531 return -EINVAL; 3532 3533 /* selector */ 3534 sasize_sel = pfkey_sockaddr_size(sel->family); 3535 if (!sasize_sel) 3536 return -EINVAL; 3537 size += (sizeof(struct sadb_address) + sasize_sel) * 2; 3538 3539 /* policy info */ 3540 size_pol += sizeof(struct sadb_x_policy); 3541 3542 /* ipsecrequests */ 3543 for (i = 0, mp = m; i < num_bundles; i++, mp++) { 3544 /* old locator pair */ 3545 size_pol += sizeof(struct sadb_x_ipsecrequest) + 3546 pfkey_sockaddr_pair_size(mp->old_family); 3547 /* new locator pair */ 3548 size_pol += sizeof(struct sadb_x_ipsecrequest) + 3549 pfkey_sockaddr_pair_size(mp->new_family); 3550 } 3551 3552 size += sizeof(struct sadb_msg) + size_pol; 3553 3554 /* alloc buffer */ 3555 skb = alloc_skb(size, GFP_ATOMIC); 3556 if (skb == NULL) 3557 return -ENOMEM; 3558 3559 hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg)); 3560 hdr->sadb_msg_version = PF_KEY_V2; 3561 hdr->sadb_msg_type = SADB_X_MIGRATE; 3562 hdr->sadb_msg_satype = pfkey_proto2satype(m->proto); 3563 hdr->sadb_msg_len = size / 8; 3564 hdr->sadb_msg_errno = 0; 3565 hdr->sadb_msg_reserved = 0; 3566 hdr->sadb_msg_seq = 0; 3567 hdr->sadb_msg_pid = 0; 3568 3569 /* selector src */ 3570 set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel); 3571 3572 /* selector dst */ 3573 set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel); 3574 3575 /* policy information */ 3576 pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy)); 3577 pol->sadb_x_policy_len = size_pol / 8; 3578 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3579 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; 3580 pol->sadb_x_policy_dir = dir + 1; 3581 pol->sadb_x_policy_id = 0; 3582 pol->sadb_x_policy_priority = 0; 3583 3584 for (i = 0, mp = m; i < num_bundles; i++, mp++) { 3585 /* old ipsecrequest */ 3586 int mode = pfkey_mode_from_xfrm(mp->mode); 3587 if (mode < 0) 3588 return -EINVAL; 3589 if (set_ipsecrequest(skb, mp->proto, mode, 3590 (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE), 3591 mp->reqid, mp->old_family, 3592 &mp->old_saddr, &mp->old_daddr) < 0) { 3593 return -EINVAL; 3594 } 3595 3596 /* new ipsecrequest */ 3597 if (set_ipsecrequest(skb, mp->proto, mode, 3598 (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE), 3599 mp->reqid, mp->new_family, 3600 &mp->new_saddr, &mp->new_daddr) < 0) { 3601 return -EINVAL; 3602 } 3603 } 3604 3605 /* broadcast migrate message to sockets */ 3606 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 3607 3608 return 0; 3609 } 3610 #else 3611 static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type, 3612 struct xfrm_migrate *m, int num_bundles) 3613 { 3614 return -ENOPROTOOPT; 3615 } 3616 #endif 3617 3618 static int pfkey_sendmsg(struct kiocb *kiocb, 3619 struct socket *sock, struct msghdr *msg, size_t len) 3620 { 3621 struct sock *sk = sock->sk; 3622 struct sk_buff *skb = NULL; 3623 struct sadb_msg *hdr = NULL; 3624 int err; 3625 3626 err = -EOPNOTSUPP; 3627 if (msg->msg_flags & MSG_OOB) 3628 goto out; 3629 3630 err = -EMSGSIZE; 3631 if ((unsigned)len > sk->sk_sndbuf - 32) 3632 goto out; 3633 3634 err = -ENOBUFS; 3635 skb = alloc_skb(len, GFP_KERNEL); 3636 if (skb == NULL) 3637 goto out; 3638 3639 err = -EFAULT; 3640 if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) 3641 goto out; 3642 3643 hdr = pfkey_get_base_msg(skb, &err); 3644 if (!hdr) 3645 goto out; 3646 3647 mutex_lock(&xfrm_cfg_mutex); 3648 err = pfkey_process(sk, skb, hdr); 3649 mutex_unlock(&xfrm_cfg_mutex); 3650 3651 out: 3652 if (err && hdr && pfkey_error(hdr, err, sk) == 0) 3653 err = 0; 3654 if (skb) 3655 kfree_skb(skb); 3656 3657 return err ? : len; 3658 } 3659 3660 static int pfkey_recvmsg(struct kiocb *kiocb, 3661 struct socket *sock, struct msghdr *msg, size_t len, 3662 int flags) 3663 { 3664 struct sock *sk = sock->sk; 3665 struct sk_buff *skb; 3666 int copied, err; 3667 3668 err = -EINVAL; 3669 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT)) 3670 goto out; 3671 3672 msg->msg_namelen = 0; 3673 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3674 if (skb == NULL) 3675 goto out; 3676 3677 copied = skb->len; 3678 if (copied > len) { 3679 msg->msg_flags |= MSG_TRUNC; 3680 copied = len; 3681 } 3682 3683 skb_reset_transport_header(skb); 3684 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 3685 if (err) 3686 goto out_free; 3687 3688 sock_recv_timestamp(msg, sk, skb); 3689 3690 err = (flags & MSG_TRUNC) ? skb->len : copied; 3691 3692 out_free: 3693 skb_free_datagram(sk, skb); 3694 out: 3695 return err; 3696 } 3697 3698 static const struct proto_ops pfkey_ops = { 3699 .family = PF_KEY, 3700 .owner = THIS_MODULE, 3701 /* Operations that make no sense on pfkey sockets. */ 3702 .bind = sock_no_bind, 3703 .connect = sock_no_connect, 3704 .socketpair = sock_no_socketpair, 3705 .accept = sock_no_accept, 3706 .getname = sock_no_getname, 3707 .ioctl = sock_no_ioctl, 3708 .listen = sock_no_listen, 3709 .shutdown = sock_no_shutdown, 3710 .setsockopt = sock_no_setsockopt, 3711 .getsockopt = sock_no_getsockopt, 3712 .mmap = sock_no_mmap, 3713 .sendpage = sock_no_sendpage, 3714 3715 /* Now the operations that really occur. */ 3716 .release = pfkey_release, 3717 .poll = datagram_poll, 3718 .sendmsg = pfkey_sendmsg, 3719 .recvmsg = pfkey_recvmsg, 3720 }; 3721 3722 static struct net_proto_family pfkey_family_ops = { 3723 .family = PF_KEY, 3724 .create = pfkey_create, 3725 .owner = THIS_MODULE, 3726 }; 3727 3728 #ifdef CONFIG_PROC_FS 3729 static int pfkey_read_proc(char *buffer, char **start, off_t offset, 3730 int length, int *eof, void *data) 3731 { 3732 off_t pos = 0; 3733 off_t begin = 0; 3734 int len = 0; 3735 struct sock *s; 3736 struct hlist_node *node; 3737 3738 len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n"); 3739 3740 read_lock(&pfkey_table_lock); 3741 3742 sk_for_each(s, node, &pfkey_table) { 3743 len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu", 3744 s, 3745 atomic_read(&s->sk_refcnt), 3746 atomic_read(&s->sk_rmem_alloc), 3747 atomic_read(&s->sk_wmem_alloc), 3748 sock_i_uid(s), 3749 sock_i_ino(s) 3750 ); 3751 3752 buffer[len++] = '\n'; 3753 3754 pos = begin + len; 3755 if (pos < offset) { 3756 len = 0; 3757 begin = pos; 3758 } 3759 if(pos > offset + length) 3760 goto done; 3761 } 3762 *eof = 1; 3763 3764 done: 3765 read_unlock(&pfkey_table_lock); 3766 3767 *start = buffer + (offset - begin); 3768 len -= (offset - begin); 3769 3770 if (len > length) 3771 len = length; 3772 if (len < 0) 3773 len = 0; 3774 3775 return len; 3776 } 3777 #endif 3778 3779 static struct xfrm_mgr pfkeyv2_mgr = 3780 { 3781 .id = "pfkeyv2", 3782 .notify = pfkey_send_notify, 3783 .acquire = pfkey_send_acquire, 3784 .compile_policy = pfkey_compile_policy, 3785 .new_mapping = pfkey_send_new_mapping, 3786 .notify_policy = pfkey_send_policy_notify, 3787 .migrate = pfkey_send_migrate, 3788 }; 3789 3790 static void __exit ipsec_pfkey_exit(void) 3791 { 3792 xfrm_unregister_km(&pfkeyv2_mgr); 3793 remove_proc_entry("pfkey", init_net.proc_net); 3794 sock_unregister(PF_KEY); 3795 proto_unregister(&key_proto); 3796 } 3797 3798 static int __init ipsec_pfkey_init(void) 3799 { 3800 int err = proto_register(&key_proto, 0); 3801 3802 if (err != 0) 3803 goto out; 3804 3805 err = sock_register(&pfkey_family_ops); 3806 if (err != 0) 3807 goto out_unregister_key_proto; 3808 #ifdef CONFIG_PROC_FS 3809 err = -ENOMEM; 3810 if (create_proc_read_entry("pfkey", 0, init_net.proc_net, pfkey_read_proc, NULL) == NULL) 3811 goto out_sock_unregister; 3812 #endif 3813 err = xfrm_register_km(&pfkeyv2_mgr); 3814 if (err != 0) 3815 goto out_remove_proc_entry; 3816 out: 3817 return err; 3818 out_remove_proc_entry: 3819 #ifdef CONFIG_PROC_FS 3820 remove_proc_entry("net/pfkey", NULL); 3821 out_sock_unregister: 3822 #endif 3823 sock_unregister(PF_KEY); 3824 out_unregister_key_proto: 3825 proto_unregister(&key_proto); 3826 goto out; 3827 } 3828 3829 module_init(ipsec_pfkey_init); 3830 module_exit(ipsec_pfkey_exit); 3831 MODULE_LICENSE("GPL"); 3832 MODULE_ALIAS_NETPROTO(PF_KEY); 3833