1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * FIB front-end. 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 */ 9 10 /* Changes: 11 * 12 * YOSHIFUJI Hideaki @USAGI 13 * reworked default router selection. 14 * - respect outgoing interface 15 * - select from (probably) reachable routers (i.e. 16 * routers in REACHABLE, STALE, DELAY or PROBE states). 17 * - always select the same router if it is (probably) 18 * reachable. otherwise, round-robin the list. 19 * Ville Nuorvala 20 * Fixed routing subtrees. 21 */ 22 23 #define pr_fmt(fmt) "IPv6: " fmt 24 25 #include <linux/capability.h> 26 #include <linux/errno.h> 27 #include <linux/export.h> 28 #include <linux/types.h> 29 #include <linux/times.h> 30 #include <linux/socket.h> 31 #include <linux/sockios.h> 32 #include <linux/net.h> 33 #include <linux/route.h> 34 #include <linux/netdevice.h> 35 #include <linux/in6.h> 36 #include <linux/mroute6.h> 37 #include <linux/init.h> 38 #include <linux/if_arp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/nsproxy.h> 42 #include <linux/slab.h> 43 #include <linux/jhash.h> 44 #include <net/net_namespace.h> 45 #include <net/snmp.h> 46 #include <net/ipv6.h> 47 #include <net/ip6_fib.h> 48 #include <net/ip6_route.h> 49 #include <net/ndisc.h> 50 #include <net/addrconf.h> 51 #include <net/tcp.h> 52 #include <linux/rtnetlink.h> 53 #include <net/dst.h> 54 #include <net/dst_metadata.h> 55 #include <net/xfrm.h> 56 #include <net/netevent.h> 57 #include <net/netlink.h> 58 #include <net/rtnh.h> 59 #include <net/lwtunnel.h> 60 #include <net/ip_tunnels.h> 61 #include <net/l3mdev.h> 62 #include <net/ip.h> 63 #include <linux/uaccess.h> 64 #include <linux/btf_ids.h> 65 66 #ifdef CONFIG_SYSCTL 67 #include <linux/sysctl.h> 68 #endif 69 70 static int ip6_rt_type_to_error(u8 fib6_type); 71 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/fib6.h> 74 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); 75 #undef CREATE_TRACE_POINTS 76 77 enum rt6_nud_state { 78 RT6_NUD_FAIL_HARD = -3, 79 RT6_NUD_FAIL_PROBE = -2, 80 RT6_NUD_FAIL_DO_RR = -1, 81 RT6_NUD_SUCCEED = 1 82 }; 83 84 INDIRECT_CALLABLE_SCOPE 85 struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 86 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 87 INDIRECT_CALLABLE_SCOPE 88 unsigned int ip6_mtu(const struct dst_entry *dst); 89 static struct dst_entry *ip6_negative_advice(struct dst_entry *); 90 static void ip6_dst_destroy(struct dst_entry *); 91 static void ip6_dst_ifdown(struct dst_entry *, 92 struct net_device *dev, int how); 93 static int ip6_dst_gc(struct dst_ops *ops); 94 95 static int ip6_pkt_discard(struct sk_buff *skb); 96 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 97 static int ip6_pkt_prohibit(struct sk_buff *skb); 98 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 99 static void ip6_link_failure(struct sk_buff *skb); 100 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 101 struct sk_buff *skb, u32 mtu, 102 bool confirm_neigh); 103 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 104 struct sk_buff *skb); 105 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 106 int strict); 107 static size_t rt6_nlmsg_size(struct fib6_info *f6i); 108 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 109 struct fib6_info *rt, struct dst_entry *dst, 110 struct in6_addr *dest, struct in6_addr *src, 111 int iif, int type, u32 portid, u32 seq, 112 unsigned int flags); 113 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 114 const struct in6_addr *daddr, 115 const struct in6_addr *saddr); 116 117 #ifdef CONFIG_IPV6_ROUTE_INFO 118 static struct fib6_info *rt6_add_route_info(struct net *net, 119 const struct in6_addr *prefix, int prefixlen, 120 const struct in6_addr *gwaddr, 121 struct net_device *dev, 122 unsigned int pref); 123 static struct fib6_info *rt6_get_route_info(struct net *net, 124 const struct in6_addr *prefix, int prefixlen, 125 const struct in6_addr *gwaddr, 126 struct net_device *dev); 127 #endif 128 129 struct uncached_list { 130 spinlock_t lock; 131 struct list_head head; 132 }; 133 134 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 135 136 void rt6_uncached_list_add(struct rt6_info *rt) 137 { 138 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 139 140 rt->rt6i_uncached_list = ul; 141 142 spin_lock_bh(&ul->lock); 143 list_add_tail(&rt->rt6i_uncached, &ul->head); 144 spin_unlock_bh(&ul->lock); 145 } 146 147 void rt6_uncached_list_del(struct rt6_info *rt) 148 { 149 if (!list_empty(&rt->rt6i_uncached)) { 150 struct uncached_list *ul = rt->rt6i_uncached_list; 151 struct net *net = dev_net(rt->dst.dev); 152 153 spin_lock_bh(&ul->lock); 154 list_del(&rt->rt6i_uncached); 155 atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache); 156 spin_unlock_bh(&ul->lock); 157 } 158 } 159 160 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev) 161 { 162 struct net_device *loopback_dev = net->loopback_dev; 163 int cpu; 164 165 if (dev == loopback_dev) 166 return; 167 168 for_each_possible_cpu(cpu) { 169 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 170 struct rt6_info *rt; 171 172 spin_lock_bh(&ul->lock); 173 list_for_each_entry(rt, &ul->head, rt6i_uncached) { 174 struct inet6_dev *rt_idev = rt->rt6i_idev; 175 struct net_device *rt_dev = rt->dst.dev; 176 177 if (rt_idev->dev == dev) { 178 rt->rt6i_idev = in6_dev_get(loopback_dev); 179 in6_dev_put(rt_idev); 180 } 181 182 if (rt_dev == dev) { 183 rt->dst.dev = blackhole_netdev; 184 dev_hold(rt->dst.dev); 185 dev_put(rt_dev); 186 } 187 } 188 spin_unlock_bh(&ul->lock); 189 } 190 } 191 192 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 193 struct sk_buff *skb, 194 const void *daddr) 195 { 196 if (!ipv6_addr_any(p)) 197 return (const void *) p; 198 else if (skb) 199 return &ipv6_hdr(skb)->daddr; 200 return daddr; 201 } 202 203 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 204 struct net_device *dev, 205 struct sk_buff *skb, 206 const void *daddr) 207 { 208 struct neighbour *n; 209 210 daddr = choose_neigh_daddr(gw, skb, daddr); 211 n = __ipv6_neigh_lookup(dev, daddr); 212 if (n) 213 return n; 214 215 n = neigh_create(&nd_tbl, daddr, dev); 216 return IS_ERR(n) ? NULL : n; 217 } 218 219 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 220 struct sk_buff *skb, 221 const void *daddr) 222 { 223 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst); 224 225 return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any), 226 dst->dev, skb, daddr); 227 } 228 229 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 230 { 231 struct net_device *dev = dst->dev; 232 struct rt6_info *rt = (struct rt6_info *)dst; 233 234 daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr); 235 if (!daddr) 236 return; 237 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 238 return; 239 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 240 return; 241 __ipv6_confirm_neigh(dev, daddr); 242 } 243 244 static struct dst_ops ip6_dst_ops_template = { 245 .family = AF_INET6, 246 .gc = ip6_dst_gc, 247 .gc_thresh = 1024, 248 .check = ip6_dst_check, 249 .default_advmss = ip6_default_advmss, 250 .mtu = ip6_mtu, 251 .cow_metrics = dst_cow_metrics_generic, 252 .destroy = ip6_dst_destroy, 253 .ifdown = ip6_dst_ifdown, 254 .negative_advice = ip6_negative_advice, 255 .link_failure = ip6_link_failure, 256 .update_pmtu = ip6_rt_update_pmtu, 257 .redirect = rt6_do_redirect, 258 .local_out = __ip6_local_out, 259 .neigh_lookup = ip6_dst_neigh_lookup, 260 .confirm_neigh = ip6_confirm_neigh, 261 }; 262 263 static struct dst_ops ip6_dst_blackhole_ops = { 264 .family = AF_INET6, 265 .default_advmss = ip6_default_advmss, 266 .neigh_lookup = ip6_dst_neigh_lookup, 267 .check = ip6_dst_check, 268 .destroy = ip6_dst_destroy, 269 .cow_metrics = dst_cow_metrics_generic, 270 .update_pmtu = dst_blackhole_update_pmtu, 271 .redirect = dst_blackhole_redirect, 272 .mtu = dst_blackhole_mtu, 273 }; 274 275 static const u32 ip6_template_metrics[RTAX_MAX] = { 276 [RTAX_HOPLIMIT - 1] = 0, 277 }; 278 279 static const struct fib6_info fib6_null_entry_template = { 280 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 281 .fib6_protocol = RTPROT_KERNEL, 282 .fib6_metric = ~(u32)0, 283 .fib6_ref = REFCOUNT_INIT(1), 284 .fib6_type = RTN_UNREACHABLE, 285 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 286 }; 287 288 static const struct rt6_info ip6_null_entry_template = { 289 .dst = { 290 .__refcnt = ATOMIC_INIT(1), 291 .__use = 1, 292 .obsolete = DST_OBSOLETE_FORCE_CHK, 293 .error = -ENETUNREACH, 294 .input = ip6_pkt_discard, 295 .output = ip6_pkt_discard_out, 296 }, 297 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 298 }; 299 300 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 301 302 static const struct rt6_info ip6_prohibit_entry_template = { 303 .dst = { 304 .__refcnt = ATOMIC_INIT(1), 305 .__use = 1, 306 .obsolete = DST_OBSOLETE_FORCE_CHK, 307 .error = -EACCES, 308 .input = ip6_pkt_prohibit, 309 .output = ip6_pkt_prohibit_out, 310 }, 311 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 312 }; 313 314 static const struct rt6_info ip6_blk_hole_entry_template = { 315 .dst = { 316 .__refcnt = ATOMIC_INIT(1), 317 .__use = 1, 318 .obsolete = DST_OBSOLETE_FORCE_CHK, 319 .error = -EINVAL, 320 .input = dst_discard, 321 .output = dst_discard_out, 322 }, 323 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 324 }; 325 326 #endif 327 328 static void rt6_info_init(struct rt6_info *rt) 329 { 330 struct dst_entry *dst = &rt->dst; 331 332 memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst)); 333 INIT_LIST_HEAD(&rt->rt6i_uncached); 334 } 335 336 /* allocate dst with ip6_dst_ops */ 337 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 338 int flags) 339 { 340 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 341 1, DST_OBSOLETE_FORCE_CHK, flags); 342 343 if (rt) { 344 rt6_info_init(rt); 345 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 346 } 347 348 return rt; 349 } 350 EXPORT_SYMBOL(ip6_dst_alloc); 351 352 static void ip6_dst_destroy(struct dst_entry *dst) 353 { 354 struct rt6_info *rt = (struct rt6_info *)dst; 355 struct fib6_info *from; 356 struct inet6_dev *idev; 357 358 ip_dst_metrics_put(dst); 359 rt6_uncached_list_del(rt); 360 361 idev = rt->rt6i_idev; 362 if (idev) { 363 rt->rt6i_idev = NULL; 364 in6_dev_put(idev); 365 } 366 367 from = xchg((__force struct fib6_info **)&rt->from, NULL); 368 fib6_info_release(from); 369 } 370 371 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 372 int how) 373 { 374 struct rt6_info *rt = (struct rt6_info *)dst; 375 struct inet6_dev *idev = rt->rt6i_idev; 376 struct net_device *loopback_dev = 377 dev_net(dev)->loopback_dev; 378 379 if (idev && idev->dev != loopback_dev) { 380 struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev); 381 if (loopback_idev) { 382 rt->rt6i_idev = loopback_idev; 383 in6_dev_put(idev); 384 } 385 } 386 } 387 388 static bool __rt6_check_expired(const struct rt6_info *rt) 389 { 390 if (rt->rt6i_flags & RTF_EXPIRES) 391 return time_after(jiffies, rt->dst.expires); 392 else 393 return false; 394 } 395 396 static bool rt6_check_expired(const struct rt6_info *rt) 397 { 398 struct fib6_info *from; 399 400 from = rcu_dereference(rt->from); 401 402 if (rt->rt6i_flags & RTF_EXPIRES) { 403 if (time_after(jiffies, rt->dst.expires)) 404 return true; 405 } else if (from) { 406 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || 407 fib6_check_expired(from); 408 } 409 return false; 410 } 411 412 void fib6_select_path(const struct net *net, struct fib6_result *res, 413 struct flowi6 *fl6, int oif, bool have_oif_match, 414 const struct sk_buff *skb, int strict) 415 { 416 struct fib6_info *sibling, *next_sibling; 417 struct fib6_info *match = res->f6i; 418 419 if (!match->nh && (!match->fib6_nsiblings || have_oif_match)) 420 goto out; 421 422 if (match->nh && have_oif_match && res->nh) 423 return; 424 425 /* We might have already computed the hash for ICMPv6 errors. In such 426 * case it will always be non-zero. Otherwise now is the time to do it. 427 */ 428 if (!fl6->mp_hash && 429 (!match->nh || nexthop_is_multipath(match->nh))) 430 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 431 432 if (unlikely(match->nh)) { 433 nexthop_path_fib6_result(res, fl6->mp_hash); 434 return; 435 } 436 437 if (fl6->mp_hash <= atomic_read(&match->fib6_nh->fib_nh_upper_bound)) 438 goto out; 439 440 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, 441 fib6_siblings) { 442 const struct fib6_nh *nh = sibling->fib6_nh; 443 int nh_upper_bound; 444 445 nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound); 446 if (fl6->mp_hash > nh_upper_bound) 447 continue; 448 if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0) 449 break; 450 match = sibling; 451 break; 452 } 453 454 out: 455 res->f6i = match; 456 res->nh = match->fib6_nh; 457 } 458 459 /* 460 * Route lookup. rcu_read_lock() should be held. 461 */ 462 463 static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh, 464 const struct in6_addr *saddr, int oif, int flags) 465 { 466 const struct net_device *dev; 467 468 if (nh->fib_nh_flags & RTNH_F_DEAD) 469 return false; 470 471 dev = nh->fib_nh_dev; 472 if (oif) { 473 if (dev->ifindex == oif) 474 return true; 475 } else { 476 if (ipv6_chk_addr(net, saddr, dev, 477 flags & RT6_LOOKUP_F_IFACE)) 478 return true; 479 } 480 481 return false; 482 } 483 484 struct fib6_nh_dm_arg { 485 struct net *net; 486 const struct in6_addr *saddr; 487 int oif; 488 int flags; 489 struct fib6_nh *nh; 490 }; 491 492 static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg) 493 { 494 struct fib6_nh_dm_arg *arg = _arg; 495 496 arg->nh = nh; 497 return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif, 498 arg->flags); 499 } 500 501 /* returns fib6_nh from nexthop or NULL */ 502 static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh, 503 struct fib6_result *res, 504 const struct in6_addr *saddr, 505 int oif, int flags) 506 { 507 struct fib6_nh_dm_arg arg = { 508 .net = net, 509 .saddr = saddr, 510 .oif = oif, 511 .flags = flags, 512 }; 513 514 if (nexthop_is_blackhole(nh)) 515 return NULL; 516 517 if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg)) 518 return arg.nh; 519 520 return NULL; 521 } 522 523 static void rt6_device_match(struct net *net, struct fib6_result *res, 524 const struct in6_addr *saddr, int oif, int flags) 525 { 526 struct fib6_info *f6i = res->f6i; 527 struct fib6_info *spf6i; 528 struct fib6_nh *nh; 529 530 if (!oif && ipv6_addr_any(saddr)) { 531 if (unlikely(f6i->nh)) { 532 nh = nexthop_fib6_nh(f6i->nh); 533 if (nexthop_is_blackhole(f6i->nh)) 534 goto out_blackhole; 535 } else { 536 nh = f6i->fib6_nh; 537 } 538 if (!(nh->fib_nh_flags & RTNH_F_DEAD)) 539 goto out; 540 } 541 542 for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) { 543 bool matched = false; 544 545 if (unlikely(spf6i->nh)) { 546 nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr, 547 oif, flags); 548 if (nh) 549 matched = true; 550 } else { 551 nh = spf6i->fib6_nh; 552 if (__rt6_device_match(net, nh, saddr, oif, flags)) 553 matched = true; 554 } 555 if (matched) { 556 res->f6i = spf6i; 557 goto out; 558 } 559 } 560 561 if (oif && flags & RT6_LOOKUP_F_IFACE) { 562 res->f6i = net->ipv6.fib6_null_entry; 563 nh = res->f6i->fib6_nh; 564 goto out; 565 } 566 567 if (unlikely(f6i->nh)) { 568 nh = nexthop_fib6_nh(f6i->nh); 569 if (nexthop_is_blackhole(f6i->nh)) 570 goto out_blackhole; 571 } else { 572 nh = f6i->fib6_nh; 573 } 574 575 if (nh->fib_nh_flags & RTNH_F_DEAD) { 576 res->f6i = net->ipv6.fib6_null_entry; 577 nh = res->f6i->fib6_nh; 578 } 579 out: 580 res->nh = nh; 581 res->fib6_type = res->f6i->fib6_type; 582 res->fib6_flags = res->f6i->fib6_flags; 583 return; 584 585 out_blackhole: 586 res->fib6_flags |= RTF_REJECT; 587 res->fib6_type = RTN_BLACKHOLE; 588 res->nh = nh; 589 } 590 591 #ifdef CONFIG_IPV6_ROUTER_PREF 592 struct __rt6_probe_work { 593 struct work_struct work; 594 struct in6_addr target; 595 struct net_device *dev; 596 }; 597 598 static void rt6_probe_deferred(struct work_struct *w) 599 { 600 struct in6_addr mcaddr; 601 struct __rt6_probe_work *work = 602 container_of(w, struct __rt6_probe_work, work); 603 604 addrconf_addr_solict_mult(&work->target, &mcaddr); 605 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 606 dev_put(work->dev); 607 kfree(work); 608 } 609 610 static void rt6_probe(struct fib6_nh *fib6_nh) 611 { 612 struct __rt6_probe_work *work = NULL; 613 const struct in6_addr *nh_gw; 614 unsigned long last_probe; 615 struct neighbour *neigh; 616 struct net_device *dev; 617 struct inet6_dev *idev; 618 619 /* 620 * Okay, this does not seem to be appropriate 621 * for now, however, we need to check if it 622 * is really so; aka Router Reachability Probing. 623 * 624 * Router Reachability Probe MUST be rate-limited 625 * to no more than one per minute. 626 */ 627 if (!fib6_nh->fib_nh_gw_family) 628 return; 629 630 nh_gw = &fib6_nh->fib_nh_gw6; 631 dev = fib6_nh->fib_nh_dev; 632 rcu_read_lock_bh(); 633 last_probe = READ_ONCE(fib6_nh->last_probe); 634 idev = __in6_dev_get(dev); 635 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 636 if (neigh) { 637 if (neigh->nud_state & NUD_VALID) 638 goto out; 639 640 write_lock(&neigh->lock); 641 if (!(neigh->nud_state & NUD_VALID) && 642 time_after(jiffies, 643 neigh->updated + idev->cnf.rtr_probe_interval)) { 644 work = kmalloc(sizeof(*work), GFP_ATOMIC); 645 if (work) 646 __neigh_set_probe_once(neigh); 647 } 648 write_unlock(&neigh->lock); 649 } else if (time_after(jiffies, last_probe + 650 idev->cnf.rtr_probe_interval)) { 651 work = kmalloc(sizeof(*work), GFP_ATOMIC); 652 } 653 654 if (!work || cmpxchg(&fib6_nh->last_probe, 655 last_probe, jiffies) != last_probe) { 656 kfree(work); 657 } else { 658 INIT_WORK(&work->work, rt6_probe_deferred); 659 work->target = *nh_gw; 660 dev_hold(dev); 661 work->dev = dev; 662 schedule_work(&work->work); 663 } 664 665 out: 666 rcu_read_unlock_bh(); 667 } 668 #else 669 static inline void rt6_probe(struct fib6_nh *fib6_nh) 670 { 671 } 672 #endif 673 674 /* 675 * Default Router Selection (RFC 2461 6.3.6) 676 */ 677 static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh) 678 { 679 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 680 struct neighbour *neigh; 681 682 rcu_read_lock_bh(); 683 neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev, 684 &fib6_nh->fib_nh_gw6); 685 if (neigh) { 686 read_lock(&neigh->lock); 687 if (neigh->nud_state & NUD_VALID) 688 ret = RT6_NUD_SUCCEED; 689 #ifdef CONFIG_IPV6_ROUTER_PREF 690 else if (!(neigh->nud_state & NUD_FAILED)) 691 ret = RT6_NUD_SUCCEED; 692 else 693 ret = RT6_NUD_FAIL_PROBE; 694 #endif 695 read_unlock(&neigh->lock); 696 } else { 697 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 698 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 699 } 700 rcu_read_unlock_bh(); 701 702 return ret; 703 } 704 705 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 706 int strict) 707 { 708 int m = 0; 709 710 if (!oif || nh->fib_nh_dev->ifindex == oif) 711 m = 2; 712 713 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 714 return RT6_NUD_FAIL_HARD; 715 #ifdef CONFIG_IPV6_ROUTER_PREF 716 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2; 717 #endif 718 if ((strict & RT6_LOOKUP_F_REACHABLE) && 719 !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) { 720 int n = rt6_check_neigh(nh); 721 if (n < 0) 722 return n; 723 } 724 return m; 725 } 726 727 static bool find_match(struct fib6_nh *nh, u32 fib6_flags, 728 int oif, int strict, int *mpri, bool *do_rr) 729 { 730 bool match_do_rr = false; 731 bool rc = false; 732 int m; 733 734 if (nh->fib_nh_flags & RTNH_F_DEAD) 735 goto out; 736 737 if (ip6_ignore_linkdown(nh->fib_nh_dev) && 738 nh->fib_nh_flags & RTNH_F_LINKDOWN && 739 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 740 goto out; 741 742 m = rt6_score_route(nh, fib6_flags, oif, strict); 743 if (m == RT6_NUD_FAIL_DO_RR) { 744 match_do_rr = true; 745 m = 0; /* lowest valid score */ 746 } else if (m == RT6_NUD_FAIL_HARD) { 747 goto out; 748 } 749 750 if (strict & RT6_LOOKUP_F_REACHABLE) 751 rt6_probe(nh); 752 753 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 754 if (m > *mpri) { 755 *do_rr = match_do_rr; 756 *mpri = m; 757 rc = true; 758 } 759 out: 760 return rc; 761 } 762 763 struct fib6_nh_frl_arg { 764 u32 flags; 765 int oif; 766 int strict; 767 int *mpri; 768 bool *do_rr; 769 struct fib6_nh *nh; 770 }; 771 772 static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg) 773 { 774 struct fib6_nh_frl_arg *arg = _arg; 775 776 arg->nh = nh; 777 return find_match(nh, arg->flags, arg->oif, arg->strict, 778 arg->mpri, arg->do_rr); 779 } 780 781 static void __find_rr_leaf(struct fib6_info *f6i_start, 782 struct fib6_info *nomatch, u32 metric, 783 struct fib6_result *res, struct fib6_info **cont, 784 int oif, int strict, bool *do_rr, int *mpri) 785 { 786 struct fib6_info *f6i; 787 788 for (f6i = f6i_start; 789 f6i && f6i != nomatch; 790 f6i = rcu_dereference(f6i->fib6_next)) { 791 bool matched = false; 792 struct fib6_nh *nh; 793 794 if (cont && f6i->fib6_metric != metric) { 795 *cont = f6i; 796 return; 797 } 798 799 if (fib6_check_expired(f6i)) 800 continue; 801 802 if (unlikely(f6i->nh)) { 803 struct fib6_nh_frl_arg arg = { 804 .flags = f6i->fib6_flags, 805 .oif = oif, 806 .strict = strict, 807 .mpri = mpri, 808 .do_rr = do_rr 809 }; 810 811 if (nexthop_is_blackhole(f6i->nh)) { 812 res->fib6_flags = RTF_REJECT; 813 res->fib6_type = RTN_BLACKHOLE; 814 res->f6i = f6i; 815 res->nh = nexthop_fib6_nh(f6i->nh); 816 return; 817 } 818 if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match, 819 &arg)) { 820 matched = true; 821 nh = arg.nh; 822 } 823 } else { 824 nh = f6i->fib6_nh; 825 if (find_match(nh, f6i->fib6_flags, oif, strict, 826 mpri, do_rr)) 827 matched = true; 828 } 829 if (matched) { 830 res->f6i = f6i; 831 res->nh = nh; 832 res->fib6_flags = f6i->fib6_flags; 833 res->fib6_type = f6i->fib6_type; 834 } 835 } 836 } 837 838 static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf, 839 struct fib6_info *rr_head, int oif, int strict, 840 bool *do_rr, struct fib6_result *res) 841 { 842 u32 metric = rr_head->fib6_metric; 843 struct fib6_info *cont = NULL; 844 int mpri = -1; 845 846 __find_rr_leaf(rr_head, NULL, metric, res, &cont, 847 oif, strict, do_rr, &mpri); 848 849 __find_rr_leaf(leaf, rr_head, metric, res, &cont, 850 oif, strict, do_rr, &mpri); 851 852 if (res->f6i || !cont) 853 return; 854 855 __find_rr_leaf(cont, NULL, metric, res, NULL, 856 oif, strict, do_rr, &mpri); 857 } 858 859 static void rt6_select(struct net *net, struct fib6_node *fn, int oif, 860 struct fib6_result *res, int strict) 861 { 862 struct fib6_info *leaf = rcu_dereference(fn->leaf); 863 struct fib6_info *rt0; 864 bool do_rr = false; 865 int key_plen; 866 867 /* make sure this function or its helpers sets f6i */ 868 res->f6i = NULL; 869 870 if (!leaf || leaf == net->ipv6.fib6_null_entry) 871 goto out; 872 873 rt0 = rcu_dereference(fn->rr_ptr); 874 if (!rt0) 875 rt0 = leaf; 876 877 /* Double check to make sure fn is not an intermediate node 878 * and fn->leaf does not points to its child's leaf 879 * (This might happen if all routes under fn are deleted from 880 * the tree and fib6_repair_tree() is called on the node.) 881 */ 882 key_plen = rt0->fib6_dst.plen; 883 #ifdef CONFIG_IPV6_SUBTREES 884 if (rt0->fib6_src.plen) 885 key_plen = rt0->fib6_src.plen; 886 #endif 887 if (fn->fn_bit != key_plen) 888 goto out; 889 890 find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res); 891 if (do_rr) { 892 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 893 894 /* no entries matched; do round-robin */ 895 if (!next || next->fib6_metric != rt0->fib6_metric) 896 next = leaf; 897 898 if (next != rt0) { 899 spin_lock_bh(&leaf->fib6_table->tb6_lock); 900 /* make sure next is not being deleted from the tree */ 901 if (next->fib6_node) 902 rcu_assign_pointer(fn->rr_ptr, next); 903 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 904 } 905 } 906 907 out: 908 if (!res->f6i) { 909 res->f6i = net->ipv6.fib6_null_entry; 910 res->nh = res->f6i->fib6_nh; 911 res->fib6_flags = res->f6i->fib6_flags; 912 res->fib6_type = res->f6i->fib6_type; 913 } 914 } 915 916 static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res) 917 { 918 return (res->f6i->fib6_flags & RTF_NONEXTHOP) || 919 res->nh->fib_nh_gw_family; 920 } 921 922 #ifdef CONFIG_IPV6_ROUTE_INFO 923 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 924 const struct in6_addr *gwaddr) 925 { 926 struct net *net = dev_net(dev); 927 struct route_info *rinfo = (struct route_info *) opt; 928 struct in6_addr prefix_buf, *prefix; 929 unsigned int pref; 930 unsigned long lifetime; 931 struct fib6_info *rt; 932 933 if (len < sizeof(struct route_info)) { 934 return -EINVAL; 935 } 936 937 /* Sanity check for prefix_len and length */ 938 if (rinfo->length > 3) { 939 return -EINVAL; 940 } else if (rinfo->prefix_len > 128) { 941 return -EINVAL; 942 } else if (rinfo->prefix_len > 64) { 943 if (rinfo->length < 2) { 944 return -EINVAL; 945 } 946 } else if (rinfo->prefix_len > 0) { 947 if (rinfo->length < 1) { 948 return -EINVAL; 949 } 950 } 951 952 pref = rinfo->route_pref; 953 if (pref == ICMPV6_ROUTER_PREF_INVALID) 954 return -EINVAL; 955 956 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 957 958 if (rinfo->length == 3) 959 prefix = (struct in6_addr *)rinfo->prefix; 960 else { 961 /* this function is safe */ 962 ipv6_addr_prefix(&prefix_buf, 963 (struct in6_addr *)rinfo->prefix, 964 rinfo->prefix_len); 965 prefix = &prefix_buf; 966 } 967 968 if (rinfo->prefix_len == 0) 969 rt = rt6_get_dflt_router(net, gwaddr, dev); 970 else 971 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 972 gwaddr, dev); 973 974 if (rt && !lifetime) { 975 ip6_del_rt(net, rt, false); 976 rt = NULL; 977 } 978 979 if (!rt && lifetime) 980 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 981 dev, pref); 982 else if (rt) 983 rt->fib6_flags = RTF_ROUTEINFO | 984 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 985 986 if (rt) { 987 if (!addrconf_finite_timeout(lifetime)) 988 fib6_clean_expires(rt); 989 else 990 fib6_set_expires(rt, jiffies + HZ * lifetime); 991 992 fib6_info_release(rt); 993 } 994 return 0; 995 } 996 #endif 997 998 /* 999 * Misc support functions 1000 */ 1001 1002 /* called with rcu_lock held */ 1003 static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res) 1004 { 1005 struct net_device *dev = res->nh->fib_nh_dev; 1006 1007 if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 1008 /* for copies of local routes, dst->dev needs to be the 1009 * device if it is a master device, the master device if 1010 * device is enslaved, and the loopback as the default 1011 */ 1012 if (netif_is_l3_slave(dev) && 1013 !rt6_need_strict(&res->f6i->fib6_dst.addr)) 1014 dev = l3mdev_master_dev_rcu(dev); 1015 else if (!netif_is_l3_master(dev)) 1016 dev = dev_net(dev)->loopback_dev; 1017 /* last case is netif_is_l3_master(dev) is true in which 1018 * case we want dev returned to be dev 1019 */ 1020 } 1021 1022 return dev; 1023 } 1024 1025 static const int fib6_prop[RTN_MAX + 1] = { 1026 [RTN_UNSPEC] = 0, 1027 [RTN_UNICAST] = 0, 1028 [RTN_LOCAL] = 0, 1029 [RTN_BROADCAST] = 0, 1030 [RTN_ANYCAST] = 0, 1031 [RTN_MULTICAST] = 0, 1032 [RTN_BLACKHOLE] = -EINVAL, 1033 [RTN_UNREACHABLE] = -EHOSTUNREACH, 1034 [RTN_PROHIBIT] = -EACCES, 1035 [RTN_THROW] = -EAGAIN, 1036 [RTN_NAT] = -EINVAL, 1037 [RTN_XRESOLVE] = -EINVAL, 1038 }; 1039 1040 static int ip6_rt_type_to_error(u8 fib6_type) 1041 { 1042 return fib6_prop[fib6_type]; 1043 } 1044 1045 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 1046 { 1047 unsigned short flags = 0; 1048 1049 if (rt->dst_nocount) 1050 flags |= DST_NOCOUNT; 1051 if (rt->dst_nopolicy) 1052 flags |= DST_NOPOLICY; 1053 1054 return flags; 1055 } 1056 1057 static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type) 1058 { 1059 rt->dst.error = ip6_rt_type_to_error(fib6_type); 1060 1061 switch (fib6_type) { 1062 case RTN_BLACKHOLE: 1063 rt->dst.output = dst_discard_out; 1064 rt->dst.input = dst_discard; 1065 break; 1066 case RTN_PROHIBIT: 1067 rt->dst.output = ip6_pkt_prohibit_out; 1068 rt->dst.input = ip6_pkt_prohibit; 1069 break; 1070 case RTN_THROW: 1071 case RTN_UNREACHABLE: 1072 default: 1073 rt->dst.output = ip6_pkt_discard_out; 1074 rt->dst.input = ip6_pkt_discard; 1075 break; 1076 } 1077 } 1078 1079 static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res) 1080 { 1081 struct fib6_info *f6i = res->f6i; 1082 1083 if (res->fib6_flags & RTF_REJECT) { 1084 ip6_rt_init_dst_reject(rt, res->fib6_type); 1085 return; 1086 } 1087 1088 rt->dst.error = 0; 1089 rt->dst.output = ip6_output; 1090 1091 if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) { 1092 rt->dst.input = ip6_input; 1093 } else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 1094 rt->dst.input = ip6_mc_input; 1095 } else { 1096 rt->dst.input = ip6_forward; 1097 } 1098 1099 if (res->nh->fib_nh_lws) { 1100 rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws); 1101 lwtunnel_set_redirect(&rt->dst); 1102 } 1103 1104 rt->dst.lastuse = jiffies; 1105 } 1106 1107 /* Caller must already hold reference to @from */ 1108 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 1109 { 1110 rt->rt6i_flags &= ~RTF_EXPIRES; 1111 rcu_assign_pointer(rt->from, from); 1112 ip_dst_init_metrics(&rt->dst, from->fib6_metrics); 1113 } 1114 1115 /* Caller must already hold reference to f6i in result */ 1116 static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res) 1117 { 1118 const struct fib6_nh *nh = res->nh; 1119 const struct net_device *dev = nh->fib_nh_dev; 1120 struct fib6_info *f6i = res->f6i; 1121 1122 ip6_rt_init_dst(rt, res); 1123 1124 rt->rt6i_dst = f6i->fib6_dst; 1125 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 1126 rt->rt6i_flags = res->fib6_flags; 1127 if (nh->fib_nh_gw_family) { 1128 rt->rt6i_gateway = nh->fib_nh_gw6; 1129 rt->rt6i_flags |= RTF_GATEWAY; 1130 } 1131 rt6_set_from(rt, f6i); 1132 #ifdef CONFIG_IPV6_SUBTREES 1133 rt->rt6i_src = f6i->fib6_src; 1134 #endif 1135 } 1136 1137 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 1138 struct in6_addr *saddr) 1139 { 1140 struct fib6_node *pn, *sn; 1141 while (1) { 1142 if (fn->fn_flags & RTN_TL_ROOT) 1143 return NULL; 1144 pn = rcu_dereference(fn->parent); 1145 sn = FIB6_SUBTREE(pn); 1146 if (sn && sn != fn) 1147 fn = fib6_node_lookup(sn, NULL, saddr); 1148 else 1149 fn = pn; 1150 if (fn->fn_flags & RTN_RTINFO) 1151 return fn; 1152 } 1153 } 1154 1155 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt) 1156 { 1157 struct rt6_info *rt = *prt; 1158 1159 if (dst_hold_safe(&rt->dst)) 1160 return true; 1161 if (net) { 1162 rt = net->ipv6.ip6_null_entry; 1163 dst_hold(&rt->dst); 1164 } else { 1165 rt = NULL; 1166 } 1167 *prt = rt; 1168 return false; 1169 } 1170 1171 /* called with rcu_lock held */ 1172 static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res) 1173 { 1174 struct net_device *dev = res->nh->fib_nh_dev; 1175 struct fib6_info *f6i = res->f6i; 1176 unsigned short flags; 1177 struct rt6_info *nrt; 1178 1179 if (!fib6_info_hold_safe(f6i)) 1180 goto fallback; 1181 1182 flags = fib6_info_dst_flags(f6i); 1183 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1184 if (!nrt) { 1185 fib6_info_release(f6i); 1186 goto fallback; 1187 } 1188 1189 ip6_rt_copy_init(nrt, res); 1190 return nrt; 1191 1192 fallback: 1193 nrt = dev_net(dev)->ipv6.ip6_null_entry; 1194 dst_hold(&nrt->dst); 1195 return nrt; 1196 } 1197 1198 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net, 1199 struct fib6_table *table, 1200 struct flowi6 *fl6, 1201 const struct sk_buff *skb, 1202 int flags) 1203 { 1204 struct fib6_result res = {}; 1205 struct fib6_node *fn; 1206 struct rt6_info *rt; 1207 1208 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 1209 flags &= ~RT6_LOOKUP_F_IFACE; 1210 1211 rcu_read_lock(); 1212 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1213 restart: 1214 res.f6i = rcu_dereference(fn->leaf); 1215 if (!res.f6i) 1216 res.f6i = net->ipv6.fib6_null_entry; 1217 else 1218 rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif, 1219 flags); 1220 1221 if (res.f6i == net->ipv6.fib6_null_entry) { 1222 fn = fib6_backtrack(fn, &fl6->saddr); 1223 if (fn) 1224 goto restart; 1225 1226 rt = net->ipv6.ip6_null_entry; 1227 dst_hold(&rt->dst); 1228 goto out; 1229 } else if (res.fib6_flags & RTF_REJECT) { 1230 goto do_create; 1231 } 1232 1233 fib6_select_path(net, &res, fl6, fl6->flowi6_oif, 1234 fl6->flowi6_oif != 0, skb, flags); 1235 1236 /* Search through exception table */ 1237 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 1238 if (rt) { 1239 if (ip6_hold_safe(net, &rt)) 1240 dst_use_noref(&rt->dst, jiffies); 1241 } else { 1242 do_create: 1243 rt = ip6_create_rt_rcu(&res); 1244 } 1245 1246 out: 1247 trace_fib6_table_lookup(net, &res, table, fl6); 1248 1249 rcu_read_unlock(); 1250 1251 return rt; 1252 } 1253 1254 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1255 const struct sk_buff *skb, int flags) 1256 { 1257 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1258 } 1259 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1260 1261 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1262 const struct in6_addr *saddr, int oif, 1263 const struct sk_buff *skb, int strict) 1264 { 1265 struct flowi6 fl6 = { 1266 .flowi6_oif = oif, 1267 .daddr = *daddr, 1268 }; 1269 struct dst_entry *dst; 1270 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1271 1272 if (saddr) { 1273 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1274 flags |= RT6_LOOKUP_F_HAS_SADDR; 1275 } 1276 1277 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1278 if (dst->error == 0) 1279 return (struct rt6_info *) dst; 1280 1281 dst_release(dst); 1282 1283 return NULL; 1284 } 1285 EXPORT_SYMBOL(rt6_lookup); 1286 1287 /* ip6_ins_rt is called with FREE table->tb6_lock. 1288 * It takes new route entry, the addition fails by any reason the 1289 * route is released. 1290 * Caller must hold dst before calling it. 1291 */ 1292 1293 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1294 struct netlink_ext_ack *extack) 1295 { 1296 int err; 1297 struct fib6_table *table; 1298 1299 table = rt->fib6_table; 1300 spin_lock_bh(&table->tb6_lock); 1301 err = fib6_add(&table->tb6_root, rt, info, extack); 1302 spin_unlock_bh(&table->tb6_lock); 1303 1304 return err; 1305 } 1306 1307 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1308 { 1309 struct nl_info info = { .nl_net = net, }; 1310 1311 return __ip6_ins_rt(rt, &info, NULL); 1312 } 1313 1314 static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res, 1315 const struct in6_addr *daddr, 1316 const struct in6_addr *saddr) 1317 { 1318 struct fib6_info *f6i = res->f6i; 1319 struct net_device *dev; 1320 struct rt6_info *rt; 1321 1322 /* 1323 * Clone the route. 1324 */ 1325 1326 if (!fib6_info_hold_safe(f6i)) 1327 return NULL; 1328 1329 dev = ip6_rt_get_dev_rcu(res); 1330 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1331 if (!rt) { 1332 fib6_info_release(f6i); 1333 return NULL; 1334 } 1335 1336 ip6_rt_copy_init(rt, res); 1337 rt->rt6i_flags |= RTF_CACHE; 1338 rt->rt6i_dst.addr = *daddr; 1339 rt->rt6i_dst.plen = 128; 1340 1341 if (!rt6_is_gw_or_nonexthop(res)) { 1342 if (f6i->fib6_dst.plen != 128 && 1343 ipv6_addr_equal(&f6i->fib6_dst.addr, daddr)) 1344 rt->rt6i_flags |= RTF_ANYCAST; 1345 #ifdef CONFIG_IPV6_SUBTREES 1346 if (rt->rt6i_src.plen && saddr) { 1347 rt->rt6i_src.addr = *saddr; 1348 rt->rt6i_src.plen = 128; 1349 } 1350 #endif 1351 } 1352 1353 return rt; 1354 } 1355 1356 static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res) 1357 { 1358 struct fib6_info *f6i = res->f6i; 1359 unsigned short flags = fib6_info_dst_flags(f6i); 1360 struct net_device *dev; 1361 struct rt6_info *pcpu_rt; 1362 1363 if (!fib6_info_hold_safe(f6i)) 1364 return NULL; 1365 1366 rcu_read_lock(); 1367 dev = ip6_rt_get_dev_rcu(res); 1368 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT); 1369 rcu_read_unlock(); 1370 if (!pcpu_rt) { 1371 fib6_info_release(f6i); 1372 return NULL; 1373 } 1374 ip6_rt_copy_init(pcpu_rt, res); 1375 pcpu_rt->rt6i_flags |= RTF_PCPU; 1376 1377 if (f6i->nh) 1378 pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev)); 1379 1380 return pcpu_rt; 1381 } 1382 1383 static bool rt6_is_valid(const struct rt6_info *rt6) 1384 { 1385 return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev)); 1386 } 1387 1388 /* It should be called with rcu_read_lock() acquired */ 1389 static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res) 1390 { 1391 struct rt6_info *pcpu_rt; 1392 1393 pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu); 1394 1395 if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) { 1396 struct rt6_info *prev, **p; 1397 1398 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1399 prev = xchg(p, NULL); 1400 if (prev) { 1401 dst_dev_put(&prev->dst); 1402 dst_release(&prev->dst); 1403 } 1404 1405 pcpu_rt = NULL; 1406 } 1407 1408 return pcpu_rt; 1409 } 1410 1411 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1412 const struct fib6_result *res) 1413 { 1414 struct rt6_info *pcpu_rt, *prev, **p; 1415 1416 pcpu_rt = ip6_rt_pcpu_alloc(res); 1417 if (!pcpu_rt) 1418 return NULL; 1419 1420 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1421 prev = cmpxchg(p, NULL, pcpu_rt); 1422 BUG_ON(prev); 1423 1424 if (res->f6i->fib6_destroying) { 1425 struct fib6_info *from; 1426 1427 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 1428 fib6_info_release(from); 1429 } 1430 1431 return pcpu_rt; 1432 } 1433 1434 /* exception hash table implementation 1435 */ 1436 static DEFINE_SPINLOCK(rt6_exception_lock); 1437 1438 /* Remove rt6_ex from hash table and free the memory 1439 * Caller must hold rt6_exception_lock 1440 */ 1441 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1442 struct rt6_exception *rt6_ex) 1443 { 1444 struct fib6_info *from; 1445 struct net *net; 1446 1447 if (!bucket || !rt6_ex) 1448 return; 1449 1450 net = dev_net(rt6_ex->rt6i->dst.dev); 1451 net->ipv6.rt6_stats->fib_rt_cache--; 1452 1453 /* purge completely the exception to allow releasing the held resources: 1454 * some [sk] cache may keep the dst around for unlimited time 1455 */ 1456 from = xchg((__force struct fib6_info **)&rt6_ex->rt6i->from, NULL); 1457 fib6_info_release(from); 1458 dst_dev_put(&rt6_ex->rt6i->dst); 1459 1460 hlist_del_rcu(&rt6_ex->hlist); 1461 dst_release(&rt6_ex->rt6i->dst); 1462 kfree_rcu(rt6_ex, rcu); 1463 WARN_ON_ONCE(!bucket->depth); 1464 bucket->depth--; 1465 } 1466 1467 /* Remove oldest rt6_ex in bucket and free the memory 1468 * Caller must hold rt6_exception_lock 1469 */ 1470 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1471 { 1472 struct rt6_exception *rt6_ex, *oldest = NULL; 1473 1474 if (!bucket) 1475 return; 1476 1477 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1478 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1479 oldest = rt6_ex; 1480 } 1481 rt6_remove_exception(bucket, oldest); 1482 } 1483 1484 static u32 rt6_exception_hash(const struct in6_addr *dst, 1485 const struct in6_addr *src) 1486 { 1487 static u32 seed __read_mostly; 1488 u32 val; 1489 1490 net_get_random_once(&seed, sizeof(seed)); 1491 val = jhash2((const u32 *)dst, sizeof(*dst)/sizeof(u32), seed); 1492 1493 #ifdef CONFIG_IPV6_SUBTREES 1494 if (src) 1495 val = jhash2((const u32 *)src, sizeof(*src)/sizeof(u32), val); 1496 #endif 1497 return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1498 } 1499 1500 /* Helper function to find the cached rt in the hash table 1501 * and update bucket pointer to point to the bucket for this 1502 * (daddr, saddr) pair 1503 * Caller must hold rt6_exception_lock 1504 */ 1505 static struct rt6_exception * 1506 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1507 const struct in6_addr *daddr, 1508 const struct in6_addr *saddr) 1509 { 1510 struct rt6_exception *rt6_ex; 1511 u32 hval; 1512 1513 if (!(*bucket) || !daddr) 1514 return NULL; 1515 1516 hval = rt6_exception_hash(daddr, saddr); 1517 *bucket += hval; 1518 1519 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1520 struct rt6_info *rt6 = rt6_ex->rt6i; 1521 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1522 1523 #ifdef CONFIG_IPV6_SUBTREES 1524 if (matched && saddr) 1525 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1526 #endif 1527 if (matched) 1528 return rt6_ex; 1529 } 1530 return NULL; 1531 } 1532 1533 /* Helper function to find the cached rt in the hash table 1534 * and update bucket pointer to point to the bucket for this 1535 * (daddr, saddr) pair 1536 * Caller must hold rcu_read_lock() 1537 */ 1538 static struct rt6_exception * 1539 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1540 const struct in6_addr *daddr, 1541 const struct in6_addr *saddr) 1542 { 1543 struct rt6_exception *rt6_ex; 1544 u32 hval; 1545 1546 WARN_ON_ONCE(!rcu_read_lock_held()); 1547 1548 if (!(*bucket) || !daddr) 1549 return NULL; 1550 1551 hval = rt6_exception_hash(daddr, saddr); 1552 *bucket += hval; 1553 1554 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1555 struct rt6_info *rt6 = rt6_ex->rt6i; 1556 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1557 1558 #ifdef CONFIG_IPV6_SUBTREES 1559 if (matched && saddr) 1560 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1561 #endif 1562 if (matched) 1563 return rt6_ex; 1564 } 1565 return NULL; 1566 } 1567 1568 static unsigned int fib6_mtu(const struct fib6_result *res) 1569 { 1570 const struct fib6_nh *nh = res->nh; 1571 unsigned int mtu; 1572 1573 if (res->f6i->fib6_pmtu) { 1574 mtu = res->f6i->fib6_pmtu; 1575 } else { 1576 struct net_device *dev = nh->fib_nh_dev; 1577 struct inet6_dev *idev; 1578 1579 rcu_read_lock(); 1580 idev = __in6_dev_get(dev); 1581 mtu = idev->cnf.mtu6; 1582 rcu_read_unlock(); 1583 } 1584 1585 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1586 1587 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 1588 } 1589 1590 #define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL 1591 1592 /* used when the flushed bit is not relevant, only access to the bucket 1593 * (ie., all bucket users except rt6_insert_exception); 1594 * 1595 * called under rcu lock; sometimes called with rt6_exception_lock held 1596 */ 1597 static 1598 struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh, 1599 spinlock_t *lock) 1600 { 1601 struct rt6_exception_bucket *bucket; 1602 1603 if (lock) 1604 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1605 lockdep_is_held(lock)); 1606 else 1607 bucket = rcu_dereference(nh->rt6i_exception_bucket); 1608 1609 /* remove bucket flushed bit if set */ 1610 if (bucket) { 1611 unsigned long p = (unsigned long)bucket; 1612 1613 p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED; 1614 bucket = (struct rt6_exception_bucket *)p; 1615 } 1616 1617 return bucket; 1618 } 1619 1620 static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket) 1621 { 1622 unsigned long p = (unsigned long)bucket; 1623 1624 return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED); 1625 } 1626 1627 /* called with rt6_exception_lock held */ 1628 static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh, 1629 spinlock_t *lock) 1630 { 1631 struct rt6_exception_bucket *bucket; 1632 unsigned long p; 1633 1634 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1635 lockdep_is_held(lock)); 1636 1637 p = (unsigned long)bucket; 1638 p |= FIB6_EXCEPTION_BUCKET_FLUSHED; 1639 bucket = (struct rt6_exception_bucket *)p; 1640 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1641 } 1642 1643 static int rt6_insert_exception(struct rt6_info *nrt, 1644 const struct fib6_result *res) 1645 { 1646 struct net *net = dev_net(nrt->dst.dev); 1647 struct rt6_exception_bucket *bucket; 1648 struct fib6_info *f6i = res->f6i; 1649 struct in6_addr *src_key = NULL; 1650 struct rt6_exception *rt6_ex; 1651 struct fib6_nh *nh = res->nh; 1652 int err = 0; 1653 1654 spin_lock_bh(&rt6_exception_lock); 1655 1656 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1657 lockdep_is_held(&rt6_exception_lock)); 1658 if (!bucket) { 1659 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1660 GFP_ATOMIC); 1661 if (!bucket) { 1662 err = -ENOMEM; 1663 goto out; 1664 } 1665 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1666 } else if (fib6_nh_excptn_bucket_flushed(bucket)) { 1667 err = -EINVAL; 1668 goto out; 1669 } 1670 1671 #ifdef CONFIG_IPV6_SUBTREES 1672 /* fib6_src.plen != 0 indicates f6i is in subtree 1673 * and exception table is indexed by a hash of 1674 * both fib6_dst and fib6_src. 1675 * Otherwise, the exception table is indexed by 1676 * a hash of only fib6_dst. 1677 */ 1678 if (f6i->fib6_src.plen) 1679 src_key = &nrt->rt6i_src.addr; 1680 #endif 1681 /* rt6_mtu_change() might lower mtu on f6i. 1682 * Only insert this exception route if its mtu 1683 * is less than f6i's mtu value. 1684 */ 1685 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) { 1686 err = -EINVAL; 1687 goto out; 1688 } 1689 1690 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1691 src_key); 1692 if (rt6_ex) 1693 rt6_remove_exception(bucket, rt6_ex); 1694 1695 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1696 if (!rt6_ex) { 1697 err = -ENOMEM; 1698 goto out; 1699 } 1700 rt6_ex->rt6i = nrt; 1701 rt6_ex->stamp = jiffies; 1702 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1703 bucket->depth++; 1704 net->ipv6.rt6_stats->fib_rt_cache++; 1705 1706 if (bucket->depth > FIB6_MAX_DEPTH) 1707 rt6_exception_remove_oldest(bucket); 1708 1709 out: 1710 spin_unlock_bh(&rt6_exception_lock); 1711 1712 /* Update fn->fn_sernum to invalidate all cached dst */ 1713 if (!err) { 1714 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1715 fib6_update_sernum(net, f6i); 1716 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1717 fib6_force_start_gc(net); 1718 } 1719 1720 return err; 1721 } 1722 1723 static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from) 1724 { 1725 struct rt6_exception_bucket *bucket; 1726 struct rt6_exception *rt6_ex; 1727 struct hlist_node *tmp; 1728 int i; 1729 1730 spin_lock_bh(&rt6_exception_lock); 1731 1732 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1733 if (!bucket) 1734 goto out; 1735 1736 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1737 if (!from) 1738 fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock); 1739 1740 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1741 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { 1742 if (!from || 1743 rcu_access_pointer(rt6_ex->rt6i->from) == from) 1744 rt6_remove_exception(bucket, rt6_ex); 1745 } 1746 WARN_ON_ONCE(!from && bucket->depth); 1747 bucket++; 1748 } 1749 out: 1750 spin_unlock_bh(&rt6_exception_lock); 1751 } 1752 1753 static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg) 1754 { 1755 struct fib6_info *f6i = arg; 1756 1757 fib6_nh_flush_exceptions(nh, f6i); 1758 1759 return 0; 1760 } 1761 1762 void rt6_flush_exceptions(struct fib6_info *f6i) 1763 { 1764 if (f6i->nh) 1765 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions, 1766 f6i); 1767 else 1768 fib6_nh_flush_exceptions(f6i->fib6_nh, f6i); 1769 } 1770 1771 /* Find cached rt in the hash table inside passed in rt 1772 * Caller has to hold rcu_read_lock() 1773 */ 1774 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 1775 const struct in6_addr *daddr, 1776 const struct in6_addr *saddr) 1777 { 1778 const struct in6_addr *src_key = NULL; 1779 struct rt6_exception_bucket *bucket; 1780 struct rt6_exception *rt6_ex; 1781 struct rt6_info *ret = NULL; 1782 1783 #ifdef CONFIG_IPV6_SUBTREES 1784 /* fib6i_src.plen != 0 indicates f6i is in subtree 1785 * and exception table is indexed by a hash of 1786 * both fib6_dst and fib6_src. 1787 * However, the src addr used to create the hash 1788 * might not be exactly the passed in saddr which 1789 * is a /128 addr from the flow. 1790 * So we need to use f6i->fib6_src to redo lookup 1791 * if the passed in saddr does not find anything. 1792 * (See the logic in ip6_rt_cache_alloc() on how 1793 * rt->rt6i_src is updated.) 1794 */ 1795 if (res->f6i->fib6_src.plen) 1796 src_key = saddr; 1797 find_ex: 1798 #endif 1799 bucket = fib6_nh_get_excptn_bucket(res->nh, NULL); 1800 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1801 1802 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1803 ret = rt6_ex->rt6i; 1804 1805 #ifdef CONFIG_IPV6_SUBTREES 1806 /* Use fib6_src as src_key and redo lookup */ 1807 if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) { 1808 src_key = &res->f6i->fib6_src.addr; 1809 goto find_ex; 1810 } 1811 #endif 1812 1813 return ret; 1814 } 1815 1816 /* Remove the passed in cached rt from the hash table that contains it */ 1817 static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen, 1818 const struct rt6_info *rt) 1819 { 1820 const struct in6_addr *src_key = NULL; 1821 struct rt6_exception_bucket *bucket; 1822 struct rt6_exception *rt6_ex; 1823 int err; 1824 1825 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 1826 return -ENOENT; 1827 1828 spin_lock_bh(&rt6_exception_lock); 1829 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1830 1831 #ifdef CONFIG_IPV6_SUBTREES 1832 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1833 * and exception table is indexed by a hash of 1834 * both rt6i_dst and rt6i_src. 1835 * Otherwise, the exception table is indexed by 1836 * a hash of only rt6i_dst. 1837 */ 1838 if (plen) 1839 src_key = &rt->rt6i_src.addr; 1840 #endif 1841 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1842 &rt->rt6i_dst.addr, 1843 src_key); 1844 if (rt6_ex) { 1845 rt6_remove_exception(bucket, rt6_ex); 1846 err = 0; 1847 } else { 1848 err = -ENOENT; 1849 } 1850 1851 spin_unlock_bh(&rt6_exception_lock); 1852 return err; 1853 } 1854 1855 struct fib6_nh_excptn_arg { 1856 struct rt6_info *rt; 1857 int plen; 1858 }; 1859 1860 static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg) 1861 { 1862 struct fib6_nh_excptn_arg *arg = _arg; 1863 int err; 1864 1865 err = fib6_nh_remove_exception(nh, arg->plen, arg->rt); 1866 if (err == 0) 1867 return 1; 1868 1869 return 0; 1870 } 1871 1872 static int rt6_remove_exception_rt(struct rt6_info *rt) 1873 { 1874 struct fib6_info *from; 1875 1876 from = rcu_dereference(rt->from); 1877 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1878 return -EINVAL; 1879 1880 if (from->nh) { 1881 struct fib6_nh_excptn_arg arg = { 1882 .rt = rt, 1883 .plen = from->fib6_src.plen 1884 }; 1885 int rc; 1886 1887 /* rc = 1 means an entry was found */ 1888 rc = nexthop_for_each_fib6_nh(from->nh, 1889 rt6_nh_remove_exception_rt, 1890 &arg); 1891 return rc ? 0 : -ENOENT; 1892 } 1893 1894 return fib6_nh_remove_exception(from->fib6_nh, 1895 from->fib6_src.plen, rt); 1896 } 1897 1898 /* Find rt6_ex which contains the passed in rt cache and 1899 * refresh its stamp 1900 */ 1901 static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen, 1902 const struct rt6_info *rt) 1903 { 1904 const struct in6_addr *src_key = NULL; 1905 struct rt6_exception_bucket *bucket; 1906 struct rt6_exception *rt6_ex; 1907 1908 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 1909 #ifdef CONFIG_IPV6_SUBTREES 1910 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1911 * and exception table is indexed by a hash of 1912 * both rt6i_dst and rt6i_src. 1913 * Otherwise, the exception table is indexed by 1914 * a hash of only rt6i_dst. 1915 */ 1916 if (plen) 1917 src_key = &rt->rt6i_src.addr; 1918 #endif 1919 rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key); 1920 if (rt6_ex) 1921 rt6_ex->stamp = jiffies; 1922 } 1923 1924 struct fib6_nh_match_arg { 1925 const struct net_device *dev; 1926 const struct in6_addr *gw; 1927 struct fib6_nh *match; 1928 }; 1929 1930 /* determine if fib6_nh has given device and gateway */ 1931 static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg) 1932 { 1933 struct fib6_nh_match_arg *arg = _arg; 1934 1935 if (arg->dev != nh->fib_nh_dev || 1936 (arg->gw && !nh->fib_nh_gw_family) || 1937 (!arg->gw && nh->fib_nh_gw_family) || 1938 (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6))) 1939 return 0; 1940 1941 arg->match = nh; 1942 1943 /* found a match, break the loop */ 1944 return 1; 1945 } 1946 1947 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 1948 { 1949 struct fib6_info *from; 1950 struct fib6_nh *fib6_nh; 1951 1952 rcu_read_lock(); 1953 1954 from = rcu_dereference(rt->from); 1955 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1956 goto unlock; 1957 1958 if (from->nh) { 1959 struct fib6_nh_match_arg arg = { 1960 .dev = rt->dst.dev, 1961 .gw = &rt->rt6i_gateway, 1962 }; 1963 1964 nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg); 1965 1966 if (!arg.match) 1967 goto unlock; 1968 fib6_nh = arg.match; 1969 } else { 1970 fib6_nh = from->fib6_nh; 1971 } 1972 fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt); 1973 unlock: 1974 rcu_read_unlock(); 1975 } 1976 1977 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 1978 struct rt6_info *rt, int mtu) 1979 { 1980 /* If the new MTU is lower than the route PMTU, this new MTU will be the 1981 * lowest MTU in the path: always allow updating the route PMTU to 1982 * reflect PMTU decreases. 1983 * 1984 * If the new MTU is higher, and the route PMTU is equal to the local 1985 * MTU, this means the old MTU is the lowest in the path, so allow 1986 * updating it: if other nodes now have lower MTUs, PMTU discovery will 1987 * handle this. 1988 */ 1989 1990 if (dst_mtu(&rt->dst) >= mtu) 1991 return true; 1992 1993 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 1994 return true; 1995 1996 return false; 1997 } 1998 1999 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 2000 const struct fib6_nh *nh, int mtu) 2001 { 2002 struct rt6_exception_bucket *bucket; 2003 struct rt6_exception *rt6_ex; 2004 int i; 2005 2006 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2007 if (!bucket) 2008 return; 2009 2010 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2011 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 2012 struct rt6_info *entry = rt6_ex->rt6i; 2013 2014 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 2015 * route), the metrics of its rt->from have already 2016 * been updated. 2017 */ 2018 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 2019 rt6_mtu_change_route_allowed(idev, entry, mtu)) 2020 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 2021 } 2022 bucket++; 2023 } 2024 } 2025 2026 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 2027 2028 static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh, 2029 const struct in6_addr *gateway) 2030 { 2031 struct rt6_exception_bucket *bucket; 2032 struct rt6_exception *rt6_ex; 2033 struct hlist_node *tmp; 2034 int i; 2035 2036 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2037 return; 2038 2039 spin_lock_bh(&rt6_exception_lock); 2040 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2041 if (bucket) { 2042 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2043 hlist_for_each_entry_safe(rt6_ex, tmp, 2044 &bucket->chain, hlist) { 2045 struct rt6_info *entry = rt6_ex->rt6i; 2046 2047 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 2048 RTF_CACHE_GATEWAY && 2049 ipv6_addr_equal(gateway, 2050 &entry->rt6i_gateway)) { 2051 rt6_remove_exception(bucket, rt6_ex); 2052 } 2053 } 2054 bucket++; 2055 } 2056 } 2057 2058 spin_unlock_bh(&rt6_exception_lock); 2059 } 2060 2061 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 2062 struct rt6_exception *rt6_ex, 2063 struct fib6_gc_args *gc_args, 2064 unsigned long now) 2065 { 2066 struct rt6_info *rt = rt6_ex->rt6i; 2067 2068 /* we are pruning and obsoleting aged-out and non gateway exceptions 2069 * even if others have still references to them, so that on next 2070 * dst_check() such references can be dropped. 2071 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 2072 * expired, independently from their aging, as per RFC 8201 section 4 2073 */ 2074 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 2075 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { 2076 RT6_TRACE("aging clone %p\n", rt); 2077 rt6_remove_exception(bucket, rt6_ex); 2078 return; 2079 } 2080 } else if (time_after(jiffies, rt->dst.expires)) { 2081 RT6_TRACE("purging expired route %p\n", rt); 2082 rt6_remove_exception(bucket, rt6_ex); 2083 return; 2084 } 2085 2086 if (rt->rt6i_flags & RTF_GATEWAY) { 2087 struct neighbour *neigh; 2088 __u8 neigh_flags = 0; 2089 2090 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 2091 if (neigh) 2092 neigh_flags = neigh->flags; 2093 2094 if (!(neigh_flags & NTF_ROUTER)) { 2095 RT6_TRACE("purging route %p via non-router but gateway\n", 2096 rt); 2097 rt6_remove_exception(bucket, rt6_ex); 2098 return; 2099 } 2100 } 2101 2102 gc_args->more++; 2103 } 2104 2105 static void fib6_nh_age_exceptions(const struct fib6_nh *nh, 2106 struct fib6_gc_args *gc_args, 2107 unsigned long now) 2108 { 2109 struct rt6_exception_bucket *bucket; 2110 struct rt6_exception *rt6_ex; 2111 struct hlist_node *tmp; 2112 int i; 2113 2114 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2115 return; 2116 2117 rcu_read_lock_bh(); 2118 spin_lock(&rt6_exception_lock); 2119 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2120 if (bucket) { 2121 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2122 hlist_for_each_entry_safe(rt6_ex, tmp, 2123 &bucket->chain, hlist) { 2124 rt6_age_examine_exception(bucket, rt6_ex, 2125 gc_args, now); 2126 } 2127 bucket++; 2128 } 2129 } 2130 spin_unlock(&rt6_exception_lock); 2131 rcu_read_unlock_bh(); 2132 } 2133 2134 struct fib6_nh_age_excptn_arg { 2135 struct fib6_gc_args *gc_args; 2136 unsigned long now; 2137 }; 2138 2139 static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg) 2140 { 2141 struct fib6_nh_age_excptn_arg *arg = _arg; 2142 2143 fib6_nh_age_exceptions(nh, arg->gc_args, arg->now); 2144 return 0; 2145 } 2146 2147 void rt6_age_exceptions(struct fib6_info *f6i, 2148 struct fib6_gc_args *gc_args, 2149 unsigned long now) 2150 { 2151 if (f6i->nh) { 2152 struct fib6_nh_age_excptn_arg arg = { 2153 .gc_args = gc_args, 2154 .now = now 2155 }; 2156 2157 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions, 2158 &arg); 2159 } else { 2160 fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now); 2161 } 2162 } 2163 2164 /* must be called with rcu lock held */ 2165 int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, 2166 struct flowi6 *fl6, struct fib6_result *res, int strict) 2167 { 2168 struct fib6_node *fn, *saved_fn; 2169 2170 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2171 saved_fn = fn; 2172 2173 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 2174 oif = 0; 2175 2176 redo_rt6_select: 2177 rt6_select(net, fn, oif, res, strict); 2178 if (res->f6i == net->ipv6.fib6_null_entry) { 2179 fn = fib6_backtrack(fn, &fl6->saddr); 2180 if (fn) 2181 goto redo_rt6_select; 2182 else if (strict & RT6_LOOKUP_F_REACHABLE) { 2183 /* also consider unreachable route */ 2184 strict &= ~RT6_LOOKUP_F_REACHABLE; 2185 fn = saved_fn; 2186 goto redo_rt6_select; 2187 } 2188 } 2189 2190 trace_fib6_table_lookup(net, res, table, fl6); 2191 2192 return 0; 2193 } 2194 2195 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 2196 int oif, struct flowi6 *fl6, 2197 const struct sk_buff *skb, int flags) 2198 { 2199 struct fib6_result res = {}; 2200 struct rt6_info *rt = NULL; 2201 int strict = 0; 2202 2203 WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) && 2204 !rcu_read_lock_held()); 2205 2206 strict |= flags & RT6_LOOKUP_F_IFACE; 2207 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 2208 if (net->ipv6.devconf_all->forwarding == 0) 2209 strict |= RT6_LOOKUP_F_REACHABLE; 2210 2211 rcu_read_lock(); 2212 2213 fib6_table_lookup(net, table, oif, fl6, &res, strict); 2214 if (res.f6i == net->ipv6.fib6_null_entry) 2215 goto out; 2216 2217 fib6_select_path(net, &res, fl6, oif, false, skb, strict); 2218 2219 /*Search through exception table */ 2220 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 2221 if (rt) { 2222 goto out; 2223 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 2224 !res.nh->fib_nh_gw_family)) { 2225 /* Create a RTF_CACHE clone which will not be 2226 * owned by the fib6 tree. It is for the special case where 2227 * the daddr in the skb during the neighbor look-up is different 2228 * from the fl6->daddr used to look-up route here. 2229 */ 2230 rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL); 2231 2232 if (rt) { 2233 /* 1 refcnt is taken during ip6_rt_cache_alloc(). 2234 * As rt6_uncached_list_add() does not consume refcnt, 2235 * this refcnt is always returned to the caller even 2236 * if caller sets RT6_LOOKUP_F_DST_NOREF flag. 2237 */ 2238 rt6_uncached_list_add(rt); 2239 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 2240 rcu_read_unlock(); 2241 2242 return rt; 2243 } 2244 } else { 2245 /* Get a percpu copy */ 2246 local_bh_disable(); 2247 rt = rt6_get_pcpu_route(&res); 2248 2249 if (!rt) 2250 rt = rt6_make_pcpu_route(net, &res); 2251 2252 local_bh_enable(); 2253 } 2254 out: 2255 if (!rt) 2256 rt = net->ipv6.ip6_null_entry; 2257 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 2258 ip6_hold_safe(net, &rt); 2259 rcu_read_unlock(); 2260 2261 return rt; 2262 } 2263 EXPORT_SYMBOL_GPL(ip6_pol_route); 2264 2265 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net, 2266 struct fib6_table *table, 2267 struct flowi6 *fl6, 2268 const struct sk_buff *skb, 2269 int flags) 2270 { 2271 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 2272 } 2273 2274 struct dst_entry *ip6_route_input_lookup(struct net *net, 2275 struct net_device *dev, 2276 struct flowi6 *fl6, 2277 const struct sk_buff *skb, 2278 int flags) 2279 { 2280 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 2281 flags |= RT6_LOOKUP_F_IFACE; 2282 2283 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 2284 } 2285 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 2286 2287 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 2288 struct flow_keys *keys, 2289 struct flow_keys *flkeys) 2290 { 2291 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 2292 const struct ipv6hdr *key_iph = outer_iph; 2293 struct flow_keys *_flkeys = flkeys; 2294 const struct ipv6hdr *inner_iph; 2295 const struct icmp6hdr *icmph; 2296 struct ipv6hdr _inner_iph; 2297 struct icmp6hdr _icmph; 2298 2299 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 2300 goto out; 2301 2302 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 2303 sizeof(_icmph), &_icmph); 2304 if (!icmph) 2305 goto out; 2306 2307 if (!icmpv6_is_err(icmph->icmp6_type)) 2308 goto out; 2309 2310 inner_iph = skb_header_pointer(skb, 2311 skb_transport_offset(skb) + sizeof(*icmph), 2312 sizeof(_inner_iph), &_inner_iph); 2313 if (!inner_iph) 2314 goto out; 2315 2316 key_iph = inner_iph; 2317 _flkeys = NULL; 2318 out: 2319 if (_flkeys) { 2320 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 2321 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 2322 keys->tags.flow_label = _flkeys->tags.flow_label; 2323 keys->basic.ip_proto = _flkeys->basic.ip_proto; 2324 } else { 2325 keys->addrs.v6addrs.src = key_iph->saddr; 2326 keys->addrs.v6addrs.dst = key_iph->daddr; 2327 keys->tags.flow_label = ip6_flowlabel(key_iph); 2328 keys->basic.ip_proto = key_iph->nexthdr; 2329 } 2330 } 2331 2332 /* if skb is set it will be used and fl6 can be NULL */ 2333 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 2334 const struct sk_buff *skb, struct flow_keys *flkeys) 2335 { 2336 struct flow_keys hash_keys; 2337 u32 mhash; 2338 2339 switch (ip6_multipath_hash_policy(net)) { 2340 case 0: 2341 memset(&hash_keys, 0, sizeof(hash_keys)); 2342 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2343 if (skb) { 2344 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2345 } else { 2346 hash_keys.addrs.v6addrs.src = fl6->saddr; 2347 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2348 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2349 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2350 } 2351 break; 2352 case 1: 2353 if (skb) { 2354 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 2355 struct flow_keys keys; 2356 2357 /* short-circuit if we already have L4 hash present */ 2358 if (skb->l4_hash) 2359 return skb_get_hash_raw(skb) >> 1; 2360 2361 memset(&hash_keys, 0, sizeof(hash_keys)); 2362 2363 if (!flkeys) { 2364 skb_flow_dissect_flow_keys(skb, &keys, flag); 2365 flkeys = &keys; 2366 } 2367 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2368 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2369 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2370 hash_keys.ports.src = flkeys->ports.src; 2371 hash_keys.ports.dst = flkeys->ports.dst; 2372 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2373 } else { 2374 memset(&hash_keys, 0, sizeof(hash_keys)); 2375 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2376 hash_keys.addrs.v6addrs.src = fl6->saddr; 2377 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2378 hash_keys.ports.src = fl6->fl6_sport; 2379 hash_keys.ports.dst = fl6->fl6_dport; 2380 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2381 } 2382 break; 2383 case 2: 2384 memset(&hash_keys, 0, sizeof(hash_keys)); 2385 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2386 if (skb) { 2387 struct flow_keys keys; 2388 2389 if (!flkeys) { 2390 skb_flow_dissect_flow_keys(skb, &keys, 0); 2391 flkeys = &keys; 2392 } 2393 2394 /* Inner can be v4 or v6 */ 2395 if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2396 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2397 hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src; 2398 hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst; 2399 } else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2400 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2401 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2402 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2403 hash_keys.tags.flow_label = flkeys->tags.flow_label; 2404 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2405 } else { 2406 /* Same as case 0 */ 2407 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2408 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2409 } 2410 } else { 2411 /* Same as case 0 */ 2412 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2413 hash_keys.addrs.v6addrs.src = fl6->saddr; 2414 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2415 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2416 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2417 } 2418 break; 2419 } 2420 mhash = flow_hash_from_keys(&hash_keys); 2421 2422 return mhash >> 1; 2423 } 2424 2425 /* Called with rcu held */ 2426 void ip6_route_input(struct sk_buff *skb) 2427 { 2428 const struct ipv6hdr *iph = ipv6_hdr(skb); 2429 struct net *net = dev_net(skb->dev); 2430 int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF; 2431 struct ip_tunnel_info *tun_info; 2432 struct flowi6 fl6 = { 2433 .flowi6_iif = skb->dev->ifindex, 2434 .daddr = iph->daddr, 2435 .saddr = iph->saddr, 2436 .flowlabel = ip6_flowinfo(iph), 2437 .flowi6_mark = skb->mark, 2438 .flowi6_proto = iph->nexthdr, 2439 }; 2440 struct flow_keys *flkeys = NULL, _flkeys; 2441 2442 tun_info = skb_tunnel_info(skb); 2443 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2444 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2445 2446 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2447 flkeys = &_flkeys; 2448 2449 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2450 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2451 skb_dst_drop(skb); 2452 skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev, 2453 &fl6, skb, flags)); 2454 } 2455 2456 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net, 2457 struct fib6_table *table, 2458 struct flowi6 *fl6, 2459 const struct sk_buff *skb, 2460 int flags) 2461 { 2462 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2463 } 2464 2465 struct dst_entry *ip6_route_output_flags_noref(struct net *net, 2466 const struct sock *sk, 2467 struct flowi6 *fl6, int flags) 2468 { 2469 bool any_src; 2470 2471 if (ipv6_addr_type(&fl6->daddr) & 2472 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { 2473 struct dst_entry *dst; 2474 2475 /* This function does not take refcnt on the dst */ 2476 dst = l3mdev_link_scope_lookup(net, fl6); 2477 if (dst) 2478 return dst; 2479 } 2480 2481 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2482 2483 flags |= RT6_LOOKUP_F_DST_NOREF; 2484 any_src = ipv6_addr_any(&fl6->saddr); 2485 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2486 (fl6->flowi6_oif && any_src)) 2487 flags |= RT6_LOOKUP_F_IFACE; 2488 2489 if (!any_src) 2490 flags |= RT6_LOOKUP_F_HAS_SADDR; 2491 else if (sk) 2492 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); 2493 2494 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2495 } 2496 EXPORT_SYMBOL_GPL(ip6_route_output_flags_noref); 2497 2498 struct dst_entry *ip6_route_output_flags(struct net *net, 2499 const struct sock *sk, 2500 struct flowi6 *fl6, 2501 int flags) 2502 { 2503 struct dst_entry *dst; 2504 struct rt6_info *rt6; 2505 2506 rcu_read_lock(); 2507 dst = ip6_route_output_flags_noref(net, sk, fl6, flags); 2508 rt6 = (struct rt6_info *)dst; 2509 /* For dst cached in uncached_list, refcnt is already taken. */ 2510 if (list_empty(&rt6->rt6i_uncached) && !dst_hold_safe(dst)) { 2511 dst = &net->ipv6.ip6_null_entry->dst; 2512 dst_hold(dst); 2513 } 2514 rcu_read_unlock(); 2515 2516 return dst; 2517 } 2518 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2519 2520 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2521 { 2522 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; 2523 struct net_device *loopback_dev = net->loopback_dev; 2524 struct dst_entry *new = NULL; 2525 2526 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1, 2527 DST_OBSOLETE_DEAD, 0); 2528 if (rt) { 2529 rt6_info_init(rt); 2530 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2531 2532 new = &rt->dst; 2533 new->__use = 1; 2534 new->input = dst_discard; 2535 new->output = dst_discard_out; 2536 2537 dst_copy_metrics(new, &ort->dst); 2538 2539 rt->rt6i_idev = in6_dev_get(loopback_dev); 2540 rt->rt6i_gateway = ort->rt6i_gateway; 2541 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2542 2543 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2544 #ifdef CONFIG_IPV6_SUBTREES 2545 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2546 #endif 2547 } 2548 2549 dst_release(dst_orig); 2550 return new ? new : ERR_PTR(-ENOMEM); 2551 } 2552 2553 /* 2554 * Destination cache support functions 2555 */ 2556 2557 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2558 { 2559 u32 rt_cookie = 0; 2560 2561 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2562 return false; 2563 2564 if (fib6_check_expired(f6i)) 2565 return false; 2566 2567 return true; 2568 } 2569 2570 static struct dst_entry *rt6_check(struct rt6_info *rt, 2571 struct fib6_info *from, 2572 u32 cookie) 2573 { 2574 u32 rt_cookie = 0; 2575 2576 if (!from || !fib6_get_cookie_safe(from, &rt_cookie) || 2577 rt_cookie != cookie) 2578 return NULL; 2579 2580 if (rt6_check_expired(rt)) 2581 return NULL; 2582 2583 return &rt->dst; 2584 } 2585 2586 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2587 struct fib6_info *from, 2588 u32 cookie) 2589 { 2590 if (!__rt6_check_expired(rt) && 2591 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && 2592 fib6_check(from, cookie)) 2593 return &rt->dst; 2594 else 2595 return NULL; 2596 } 2597 2598 INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, 2599 u32 cookie) 2600 { 2601 struct dst_entry *dst_ret; 2602 struct fib6_info *from; 2603 struct rt6_info *rt; 2604 2605 rt = container_of(dst, struct rt6_info, dst); 2606 2607 if (rt->sernum) 2608 return rt6_is_valid(rt) ? dst : NULL; 2609 2610 rcu_read_lock(); 2611 2612 /* All IPV6 dsts are created with ->obsolete set to the value 2613 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2614 * into this function always. 2615 */ 2616 2617 from = rcu_dereference(rt->from); 2618 2619 if (from && (rt->rt6i_flags & RTF_PCPU || 2620 unlikely(!list_empty(&rt->rt6i_uncached)))) 2621 dst_ret = rt6_dst_from_check(rt, from, cookie); 2622 else 2623 dst_ret = rt6_check(rt, from, cookie); 2624 2625 rcu_read_unlock(); 2626 2627 return dst_ret; 2628 } 2629 EXPORT_INDIRECT_CALLABLE(ip6_dst_check); 2630 2631 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) 2632 { 2633 struct rt6_info *rt = (struct rt6_info *) dst; 2634 2635 if (rt) { 2636 if (rt->rt6i_flags & RTF_CACHE) { 2637 rcu_read_lock(); 2638 if (rt6_check_expired(rt)) { 2639 rt6_remove_exception_rt(rt); 2640 dst = NULL; 2641 } 2642 rcu_read_unlock(); 2643 } else { 2644 dst_release(dst); 2645 dst = NULL; 2646 } 2647 } 2648 return dst; 2649 } 2650 2651 static void ip6_link_failure(struct sk_buff *skb) 2652 { 2653 struct rt6_info *rt; 2654 2655 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2656 2657 rt = (struct rt6_info *) skb_dst(skb); 2658 if (rt) { 2659 rcu_read_lock(); 2660 if (rt->rt6i_flags & RTF_CACHE) { 2661 rt6_remove_exception_rt(rt); 2662 } else { 2663 struct fib6_info *from; 2664 struct fib6_node *fn; 2665 2666 from = rcu_dereference(rt->from); 2667 if (from) { 2668 fn = rcu_dereference(from->fib6_node); 2669 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2670 fn->fn_sernum = -1; 2671 } 2672 } 2673 rcu_read_unlock(); 2674 } 2675 } 2676 2677 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2678 { 2679 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2680 struct fib6_info *from; 2681 2682 rcu_read_lock(); 2683 from = rcu_dereference(rt0->from); 2684 if (from) 2685 rt0->dst.expires = from->expires; 2686 rcu_read_unlock(); 2687 } 2688 2689 dst_set_expires(&rt0->dst, timeout); 2690 rt0->rt6i_flags |= RTF_EXPIRES; 2691 } 2692 2693 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2694 { 2695 struct net *net = dev_net(rt->dst.dev); 2696 2697 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2698 rt->rt6i_flags |= RTF_MODIFIED; 2699 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2700 } 2701 2702 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2703 { 2704 return !(rt->rt6i_flags & RTF_CACHE) && 2705 (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from)); 2706 } 2707 2708 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2709 const struct ipv6hdr *iph, u32 mtu, 2710 bool confirm_neigh) 2711 { 2712 const struct in6_addr *daddr, *saddr; 2713 struct rt6_info *rt6 = (struct rt6_info *)dst; 2714 2715 /* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU) 2716 * IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it. 2717 * [see also comment in rt6_mtu_change_route()] 2718 */ 2719 2720 if (iph) { 2721 daddr = &iph->daddr; 2722 saddr = &iph->saddr; 2723 } else if (sk) { 2724 daddr = &sk->sk_v6_daddr; 2725 saddr = &inet6_sk(sk)->saddr; 2726 } else { 2727 daddr = NULL; 2728 saddr = NULL; 2729 } 2730 2731 if (confirm_neigh) 2732 dst_confirm_neigh(dst, daddr); 2733 2734 if (mtu < IPV6_MIN_MTU) 2735 return; 2736 if (mtu >= dst_mtu(dst)) 2737 return; 2738 2739 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2740 rt6_do_update_pmtu(rt6, mtu); 2741 /* update rt6_ex->stamp for cache */ 2742 if (rt6->rt6i_flags & RTF_CACHE) 2743 rt6_update_exception_stamp_rt(rt6); 2744 } else if (daddr) { 2745 struct fib6_result res = {}; 2746 struct rt6_info *nrt6; 2747 2748 rcu_read_lock(); 2749 res.f6i = rcu_dereference(rt6->from); 2750 if (!res.f6i) 2751 goto out_unlock; 2752 2753 res.fib6_flags = res.f6i->fib6_flags; 2754 res.fib6_type = res.f6i->fib6_type; 2755 2756 if (res.f6i->nh) { 2757 struct fib6_nh_match_arg arg = { 2758 .dev = dst->dev, 2759 .gw = &rt6->rt6i_gateway, 2760 }; 2761 2762 nexthop_for_each_fib6_nh(res.f6i->nh, 2763 fib6_nh_find_match, &arg); 2764 2765 /* fib6_info uses a nexthop that does not have fib6_nh 2766 * using the dst->dev + gw. Should be impossible. 2767 */ 2768 if (!arg.match) 2769 goto out_unlock; 2770 2771 res.nh = arg.match; 2772 } else { 2773 res.nh = res.f6i->fib6_nh; 2774 } 2775 2776 nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr); 2777 if (nrt6) { 2778 rt6_do_update_pmtu(nrt6, mtu); 2779 if (rt6_insert_exception(nrt6, &res)) 2780 dst_release_immediate(&nrt6->dst); 2781 } 2782 out_unlock: 2783 rcu_read_unlock(); 2784 } 2785 } 2786 2787 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2788 struct sk_buff *skb, u32 mtu, 2789 bool confirm_neigh) 2790 { 2791 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu, 2792 confirm_neigh); 2793 } 2794 2795 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2796 int oif, u32 mark, kuid_t uid) 2797 { 2798 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2799 struct dst_entry *dst; 2800 struct flowi6 fl6 = { 2801 .flowi6_oif = oif, 2802 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), 2803 .daddr = iph->daddr, 2804 .saddr = iph->saddr, 2805 .flowlabel = ip6_flowinfo(iph), 2806 .flowi6_uid = uid, 2807 }; 2808 2809 dst = ip6_route_output(net, NULL, &fl6); 2810 if (!dst->error) 2811 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true); 2812 dst_release(dst); 2813 } 2814 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 2815 2816 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 2817 { 2818 int oif = sk->sk_bound_dev_if; 2819 struct dst_entry *dst; 2820 2821 if (!oif && skb->dev) 2822 oif = l3mdev_master_ifindex(skb->dev); 2823 2824 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid); 2825 2826 dst = __sk_dst_get(sk); 2827 if (!dst || !dst->obsolete || 2828 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 2829 return; 2830 2831 bh_lock_sock(sk); 2832 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 2833 ip6_datagram_dst_update(sk, false); 2834 bh_unlock_sock(sk); 2835 } 2836 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 2837 2838 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 2839 const struct flowi6 *fl6) 2840 { 2841 #ifdef CONFIG_IPV6_SUBTREES 2842 struct ipv6_pinfo *np = inet6_sk(sk); 2843 #endif 2844 2845 ip6_dst_store(sk, dst, 2846 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? 2847 &sk->sk_v6_daddr : NULL, 2848 #ifdef CONFIG_IPV6_SUBTREES 2849 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 2850 &np->saddr : 2851 #endif 2852 NULL); 2853 } 2854 2855 static bool ip6_redirect_nh_match(const struct fib6_result *res, 2856 struct flowi6 *fl6, 2857 const struct in6_addr *gw, 2858 struct rt6_info **ret) 2859 { 2860 const struct fib6_nh *nh = res->nh; 2861 2862 if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family || 2863 fl6->flowi6_oif != nh->fib_nh_dev->ifindex) 2864 return false; 2865 2866 /* rt_cache's gateway might be different from its 'parent' 2867 * in the case of an ip redirect. 2868 * So we keep searching in the exception table if the gateway 2869 * is different. 2870 */ 2871 if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) { 2872 struct rt6_info *rt_cache; 2873 2874 rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr); 2875 if (rt_cache && 2876 ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) { 2877 *ret = rt_cache; 2878 return true; 2879 } 2880 return false; 2881 } 2882 return true; 2883 } 2884 2885 struct fib6_nh_rd_arg { 2886 struct fib6_result *res; 2887 struct flowi6 *fl6; 2888 const struct in6_addr *gw; 2889 struct rt6_info **ret; 2890 }; 2891 2892 static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg) 2893 { 2894 struct fib6_nh_rd_arg *arg = _arg; 2895 2896 arg->res->nh = nh; 2897 return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret); 2898 } 2899 2900 /* Handle redirects */ 2901 struct ip6rd_flowi { 2902 struct flowi6 fl6; 2903 struct in6_addr gateway; 2904 }; 2905 2906 INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net, 2907 struct fib6_table *table, 2908 struct flowi6 *fl6, 2909 const struct sk_buff *skb, 2910 int flags) 2911 { 2912 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 2913 struct rt6_info *ret = NULL; 2914 struct fib6_result res = {}; 2915 struct fib6_nh_rd_arg arg = { 2916 .res = &res, 2917 .fl6 = fl6, 2918 .gw = &rdfl->gateway, 2919 .ret = &ret 2920 }; 2921 struct fib6_info *rt; 2922 struct fib6_node *fn; 2923 2924 /* l3mdev_update_flow overrides oif if the device is enslaved; in 2925 * this case we must match on the real ingress device, so reset it 2926 */ 2927 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 2928 fl6->flowi6_oif = skb->dev->ifindex; 2929 2930 /* Get the "current" route for this destination and 2931 * check if the redirect has come from appropriate router. 2932 * 2933 * RFC 4861 specifies that redirects should only be 2934 * accepted if they come from the nexthop to the target. 2935 * Due to the way the routes are chosen, this notion 2936 * is a bit fuzzy and one might need to check all possible 2937 * routes. 2938 */ 2939 2940 rcu_read_lock(); 2941 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2942 restart: 2943 for_each_fib6_node_rt_rcu(fn) { 2944 res.f6i = rt; 2945 if (fib6_check_expired(rt)) 2946 continue; 2947 if (rt->fib6_flags & RTF_REJECT) 2948 break; 2949 if (unlikely(rt->nh)) { 2950 if (nexthop_is_blackhole(rt->nh)) 2951 continue; 2952 /* on match, res->nh is filled in and potentially ret */ 2953 if (nexthop_for_each_fib6_nh(rt->nh, 2954 fib6_nh_redirect_match, 2955 &arg)) 2956 goto out; 2957 } else { 2958 res.nh = rt->fib6_nh; 2959 if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway, 2960 &ret)) 2961 goto out; 2962 } 2963 } 2964 2965 if (!rt) 2966 rt = net->ipv6.fib6_null_entry; 2967 else if (rt->fib6_flags & RTF_REJECT) { 2968 ret = net->ipv6.ip6_null_entry; 2969 goto out; 2970 } 2971 2972 if (rt == net->ipv6.fib6_null_entry) { 2973 fn = fib6_backtrack(fn, &fl6->saddr); 2974 if (fn) 2975 goto restart; 2976 } 2977 2978 res.f6i = rt; 2979 res.nh = rt->fib6_nh; 2980 out: 2981 if (ret) { 2982 ip6_hold_safe(net, &ret); 2983 } else { 2984 res.fib6_flags = res.f6i->fib6_flags; 2985 res.fib6_type = res.f6i->fib6_type; 2986 ret = ip6_create_rt_rcu(&res); 2987 } 2988 2989 rcu_read_unlock(); 2990 2991 trace_fib6_table_lookup(net, &res, table, fl6); 2992 return ret; 2993 }; 2994 2995 static struct dst_entry *ip6_route_redirect(struct net *net, 2996 const struct flowi6 *fl6, 2997 const struct sk_buff *skb, 2998 const struct in6_addr *gateway) 2999 { 3000 int flags = RT6_LOOKUP_F_HAS_SADDR; 3001 struct ip6rd_flowi rdfl; 3002 3003 rdfl.fl6 = *fl6; 3004 rdfl.gateway = *gateway; 3005 3006 return fib6_rule_lookup(net, &rdfl.fl6, skb, 3007 flags, __ip6_route_redirect); 3008 } 3009 3010 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 3011 kuid_t uid) 3012 { 3013 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 3014 struct dst_entry *dst; 3015 struct flowi6 fl6 = { 3016 .flowi6_iif = LOOPBACK_IFINDEX, 3017 .flowi6_oif = oif, 3018 .flowi6_mark = mark, 3019 .daddr = iph->daddr, 3020 .saddr = iph->saddr, 3021 .flowlabel = ip6_flowinfo(iph), 3022 .flowi6_uid = uid, 3023 }; 3024 3025 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 3026 rt6_do_redirect(dst, NULL, skb); 3027 dst_release(dst); 3028 } 3029 EXPORT_SYMBOL_GPL(ip6_redirect); 3030 3031 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) 3032 { 3033 const struct ipv6hdr *iph = ipv6_hdr(skb); 3034 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 3035 struct dst_entry *dst; 3036 struct flowi6 fl6 = { 3037 .flowi6_iif = LOOPBACK_IFINDEX, 3038 .flowi6_oif = oif, 3039 .daddr = msg->dest, 3040 .saddr = iph->daddr, 3041 .flowi6_uid = sock_net_uid(net, NULL), 3042 }; 3043 3044 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 3045 rt6_do_redirect(dst, NULL, skb); 3046 dst_release(dst); 3047 } 3048 3049 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 3050 { 3051 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark, 3052 sk->sk_uid); 3053 } 3054 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 3055 3056 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 3057 { 3058 struct net_device *dev = dst->dev; 3059 unsigned int mtu = dst_mtu(dst); 3060 struct net *net = dev_net(dev); 3061 3062 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 3063 3064 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 3065 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 3066 3067 /* 3068 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 3069 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 3070 * IPV6_MAXPLEN is also valid and means: "any MSS, 3071 * rely only on pmtu discovery" 3072 */ 3073 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 3074 mtu = IPV6_MAXPLEN; 3075 return mtu; 3076 } 3077 3078 INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst) 3079 { 3080 struct inet6_dev *idev; 3081 unsigned int mtu; 3082 3083 mtu = dst_metric_raw(dst, RTAX_MTU); 3084 if (mtu) 3085 goto out; 3086 3087 mtu = IPV6_MIN_MTU; 3088 3089 rcu_read_lock(); 3090 idev = __in6_dev_get(dst->dev); 3091 if (idev) 3092 mtu = idev->cnf.mtu6; 3093 rcu_read_unlock(); 3094 3095 out: 3096 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3097 3098 return mtu - lwtunnel_headroom(dst->lwtstate, mtu); 3099 } 3100 EXPORT_INDIRECT_CALLABLE(ip6_mtu); 3101 3102 /* MTU selection: 3103 * 1. mtu on route is locked - use it 3104 * 2. mtu from nexthop exception 3105 * 3. mtu from egress device 3106 * 3107 * based on ip6_dst_mtu_forward and exception logic of 3108 * rt6_find_cached_rt; called with rcu_read_lock 3109 */ 3110 u32 ip6_mtu_from_fib6(const struct fib6_result *res, 3111 const struct in6_addr *daddr, 3112 const struct in6_addr *saddr) 3113 { 3114 const struct fib6_nh *nh = res->nh; 3115 struct fib6_info *f6i = res->f6i; 3116 struct inet6_dev *idev; 3117 struct rt6_info *rt; 3118 u32 mtu = 0; 3119 3120 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { 3121 mtu = f6i->fib6_pmtu; 3122 if (mtu) 3123 goto out; 3124 } 3125 3126 rt = rt6_find_cached_rt(res, daddr, saddr); 3127 if (unlikely(rt)) { 3128 mtu = dst_metric_raw(&rt->dst, RTAX_MTU); 3129 } else { 3130 struct net_device *dev = nh->fib_nh_dev; 3131 3132 mtu = IPV6_MIN_MTU; 3133 idev = __in6_dev_get(dev); 3134 if (idev && idev->cnf.mtu6 > mtu) 3135 mtu = idev->cnf.mtu6; 3136 } 3137 3138 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3139 out: 3140 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 3141 } 3142 3143 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 3144 struct flowi6 *fl6) 3145 { 3146 struct dst_entry *dst; 3147 struct rt6_info *rt; 3148 struct inet6_dev *idev = in6_dev_get(dev); 3149 struct net *net = dev_net(dev); 3150 3151 if (unlikely(!idev)) 3152 return ERR_PTR(-ENODEV); 3153 3154 rt = ip6_dst_alloc(net, dev, 0); 3155 if (unlikely(!rt)) { 3156 in6_dev_put(idev); 3157 dst = ERR_PTR(-ENOMEM); 3158 goto out; 3159 } 3160 3161 rt->dst.input = ip6_input; 3162 rt->dst.output = ip6_output; 3163 rt->rt6i_gateway = fl6->daddr; 3164 rt->rt6i_dst.addr = fl6->daddr; 3165 rt->rt6i_dst.plen = 128; 3166 rt->rt6i_idev = idev; 3167 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 3168 3169 /* Add this dst into uncached_list so that rt6_disable_ip() can 3170 * do proper release of the net_device 3171 */ 3172 rt6_uncached_list_add(rt); 3173 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 3174 3175 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 3176 3177 out: 3178 return dst; 3179 } 3180 3181 static int ip6_dst_gc(struct dst_ops *ops) 3182 { 3183 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 3184 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 3185 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size; 3186 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 3187 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 3188 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 3189 int entries; 3190 3191 entries = dst_entries_get_fast(ops); 3192 if (entries > rt_max_size) 3193 entries = dst_entries_get_slow(ops); 3194 3195 if (time_after(rt_last_gc + rt_min_interval, jiffies) && 3196 entries <= rt_max_size) 3197 goto out; 3198 3199 net->ipv6.ip6_rt_gc_expire++; 3200 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true); 3201 entries = dst_entries_get_slow(ops); 3202 if (entries < ops->gc_thresh) 3203 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1; 3204 out: 3205 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity; 3206 return entries > rt_max_size; 3207 } 3208 3209 static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg, 3210 const struct in6_addr *gw_addr, u32 tbid, 3211 int flags, struct fib6_result *res) 3212 { 3213 struct flowi6 fl6 = { 3214 .flowi6_oif = cfg->fc_ifindex, 3215 .daddr = *gw_addr, 3216 .saddr = cfg->fc_prefsrc, 3217 }; 3218 struct fib6_table *table; 3219 int err; 3220 3221 table = fib6_get_table(net, tbid); 3222 if (!table) 3223 return -EINVAL; 3224 3225 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 3226 flags |= RT6_LOOKUP_F_HAS_SADDR; 3227 3228 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 3229 3230 err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags); 3231 if (!err && res->f6i != net->ipv6.fib6_null_entry) 3232 fib6_select_path(net, res, &fl6, cfg->fc_ifindex, 3233 cfg->fc_ifindex != 0, NULL, flags); 3234 3235 return err; 3236 } 3237 3238 static int ip6_route_check_nh_onlink(struct net *net, 3239 struct fib6_config *cfg, 3240 const struct net_device *dev, 3241 struct netlink_ext_ack *extack) 3242 { 3243 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 3244 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3245 struct fib6_result res = {}; 3246 int err; 3247 3248 err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res); 3249 if (!err && !(res.fib6_flags & RTF_REJECT) && 3250 /* ignore match if it is the default route */ 3251 !ipv6_addr_any(&res.f6i->fib6_dst.addr) && 3252 (res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) { 3253 NL_SET_ERR_MSG(extack, 3254 "Nexthop has invalid gateway or device mismatch"); 3255 err = -EINVAL; 3256 } 3257 3258 return err; 3259 } 3260 3261 static int ip6_route_check_nh(struct net *net, 3262 struct fib6_config *cfg, 3263 struct net_device **_dev, 3264 struct inet6_dev **idev) 3265 { 3266 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3267 struct net_device *dev = _dev ? *_dev : NULL; 3268 int flags = RT6_LOOKUP_F_IFACE; 3269 struct fib6_result res = {}; 3270 int err = -EHOSTUNREACH; 3271 3272 if (cfg->fc_table) { 3273 err = ip6_nh_lookup_table(net, cfg, gw_addr, 3274 cfg->fc_table, flags, &res); 3275 /* gw_addr can not require a gateway or resolve to a reject 3276 * route. If a device is given, it must match the result. 3277 */ 3278 if (err || res.fib6_flags & RTF_REJECT || 3279 res.nh->fib_nh_gw_family || 3280 (dev && dev != res.nh->fib_nh_dev)) 3281 err = -EHOSTUNREACH; 3282 } 3283 3284 if (err < 0) { 3285 struct flowi6 fl6 = { 3286 .flowi6_oif = cfg->fc_ifindex, 3287 .daddr = *gw_addr, 3288 }; 3289 3290 err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags); 3291 if (err || res.fib6_flags & RTF_REJECT || 3292 res.nh->fib_nh_gw_family) 3293 err = -EHOSTUNREACH; 3294 3295 if (err) 3296 return err; 3297 3298 fib6_select_path(net, &res, &fl6, cfg->fc_ifindex, 3299 cfg->fc_ifindex != 0, NULL, flags); 3300 } 3301 3302 err = 0; 3303 if (dev) { 3304 if (dev != res.nh->fib_nh_dev) 3305 err = -EHOSTUNREACH; 3306 } else { 3307 *_dev = dev = res.nh->fib_nh_dev; 3308 dev_hold(dev); 3309 *idev = in6_dev_get(dev); 3310 } 3311 3312 return err; 3313 } 3314 3315 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 3316 struct net_device **_dev, struct inet6_dev **idev, 3317 struct netlink_ext_ack *extack) 3318 { 3319 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3320 int gwa_type = ipv6_addr_type(gw_addr); 3321 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 3322 const struct net_device *dev = *_dev; 3323 bool need_addr_check = !dev; 3324 int err = -EINVAL; 3325 3326 /* if gw_addr is local we will fail to detect this in case 3327 * address is still TENTATIVE (DAD in progress). rt6_lookup() 3328 * will return already-added prefix route via interface that 3329 * prefix route was assigned to, which might be non-loopback. 3330 */ 3331 if (dev && 3332 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3333 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3334 goto out; 3335 } 3336 3337 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 3338 /* IPv6 strictly inhibits using not link-local 3339 * addresses as nexthop address. 3340 * Otherwise, router will not able to send redirects. 3341 * It is very good, but in some (rare!) circumstances 3342 * (SIT, PtP, NBMA NOARP links) it is handy to allow 3343 * some exceptions. --ANK 3344 * We allow IPv4-mapped nexthops to support RFC4798-type 3345 * addressing 3346 */ 3347 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 3348 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 3349 goto out; 3350 } 3351 3352 rcu_read_lock(); 3353 3354 if (cfg->fc_flags & RTNH_F_ONLINK) 3355 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 3356 else 3357 err = ip6_route_check_nh(net, cfg, _dev, idev); 3358 3359 rcu_read_unlock(); 3360 3361 if (err) 3362 goto out; 3363 } 3364 3365 /* reload in case device was changed */ 3366 dev = *_dev; 3367 3368 err = -EINVAL; 3369 if (!dev) { 3370 NL_SET_ERR_MSG(extack, "Egress device not specified"); 3371 goto out; 3372 } else if (dev->flags & IFF_LOOPBACK) { 3373 NL_SET_ERR_MSG(extack, 3374 "Egress device can not be loopback device for this route"); 3375 goto out; 3376 } 3377 3378 /* if we did not check gw_addr above, do so now that the 3379 * egress device has been resolved. 3380 */ 3381 if (need_addr_check && 3382 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3383 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3384 goto out; 3385 } 3386 3387 err = 0; 3388 out: 3389 return err; 3390 } 3391 3392 static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type) 3393 { 3394 if ((flags & RTF_REJECT) || 3395 (dev && (dev->flags & IFF_LOOPBACK) && 3396 !(addr_type & IPV6_ADDR_LOOPBACK) && 3397 !(flags & (RTF_ANYCAST | RTF_LOCAL)))) 3398 return true; 3399 3400 return false; 3401 } 3402 3403 int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, 3404 struct fib6_config *cfg, gfp_t gfp_flags, 3405 struct netlink_ext_ack *extack) 3406 { 3407 struct net_device *dev = NULL; 3408 struct inet6_dev *idev = NULL; 3409 int addr_type; 3410 int err; 3411 3412 fib6_nh->fib_nh_family = AF_INET6; 3413 #ifdef CONFIG_IPV6_ROUTER_PREF 3414 fib6_nh->last_probe = jiffies; 3415 #endif 3416 if (cfg->fc_is_fdb) { 3417 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3418 fib6_nh->fib_nh_gw_family = AF_INET6; 3419 return 0; 3420 } 3421 3422 err = -ENODEV; 3423 if (cfg->fc_ifindex) { 3424 dev = dev_get_by_index(net, cfg->fc_ifindex); 3425 if (!dev) 3426 goto out; 3427 idev = in6_dev_get(dev); 3428 if (!idev) 3429 goto out; 3430 } 3431 3432 if (cfg->fc_flags & RTNH_F_ONLINK) { 3433 if (!dev) { 3434 NL_SET_ERR_MSG(extack, 3435 "Nexthop device required for onlink"); 3436 goto out; 3437 } 3438 3439 if (!(dev->flags & IFF_UP)) { 3440 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3441 err = -ENETDOWN; 3442 goto out; 3443 } 3444 3445 fib6_nh->fib_nh_flags |= RTNH_F_ONLINK; 3446 } 3447 3448 fib6_nh->fib_nh_weight = 1; 3449 3450 /* We cannot add true routes via loopback here, 3451 * they would result in kernel looping; promote them to reject routes 3452 */ 3453 addr_type = ipv6_addr_type(&cfg->fc_dst); 3454 if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) { 3455 /* hold loopback dev/idev if we haven't done so. */ 3456 if (dev != net->loopback_dev) { 3457 if (dev) { 3458 dev_put(dev); 3459 in6_dev_put(idev); 3460 } 3461 dev = net->loopback_dev; 3462 dev_hold(dev); 3463 idev = in6_dev_get(dev); 3464 if (!idev) { 3465 err = -ENODEV; 3466 goto out; 3467 } 3468 } 3469 goto pcpu_alloc; 3470 } 3471 3472 if (cfg->fc_flags & RTF_GATEWAY) { 3473 err = ip6_validate_gw(net, cfg, &dev, &idev, extack); 3474 if (err) 3475 goto out; 3476 3477 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3478 fib6_nh->fib_nh_gw_family = AF_INET6; 3479 } 3480 3481 err = -ENODEV; 3482 if (!dev) 3483 goto out; 3484 3485 if (idev->cnf.disable_ipv6) { 3486 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3487 err = -EACCES; 3488 goto out; 3489 } 3490 3491 if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) { 3492 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3493 err = -ENETDOWN; 3494 goto out; 3495 } 3496 3497 if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3498 !netif_carrier_ok(dev)) 3499 fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 3500 3501 err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap, 3502 cfg->fc_encap_type, cfg, gfp_flags, extack); 3503 if (err) 3504 goto out; 3505 3506 pcpu_alloc: 3507 fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); 3508 if (!fib6_nh->rt6i_pcpu) { 3509 err = -ENOMEM; 3510 goto out; 3511 } 3512 3513 fib6_nh->fib_nh_dev = dev; 3514 fib6_nh->fib_nh_oif = dev->ifindex; 3515 err = 0; 3516 out: 3517 if (idev) 3518 in6_dev_put(idev); 3519 3520 if (err) { 3521 lwtstate_put(fib6_nh->fib_nh_lws); 3522 fib6_nh->fib_nh_lws = NULL; 3523 if (dev) 3524 dev_put(dev); 3525 } 3526 3527 return err; 3528 } 3529 3530 void fib6_nh_release(struct fib6_nh *fib6_nh) 3531 { 3532 struct rt6_exception_bucket *bucket; 3533 3534 rcu_read_lock(); 3535 3536 fib6_nh_flush_exceptions(fib6_nh, NULL); 3537 bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL); 3538 if (bucket) { 3539 rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL); 3540 kfree(bucket); 3541 } 3542 3543 rcu_read_unlock(); 3544 3545 if (fib6_nh->rt6i_pcpu) { 3546 int cpu; 3547 3548 for_each_possible_cpu(cpu) { 3549 struct rt6_info **ppcpu_rt; 3550 struct rt6_info *pcpu_rt; 3551 3552 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 3553 pcpu_rt = *ppcpu_rt; 3554 if (pcpu_rt) { 3555 dst_dev_put(&pcpu_rt->dst); 3556 dst_release(&pcpu_rt->dst); 3557 *ppcpu_rt = NULL; 3558 } 3559 } 3560 3561 free_percpu(fib6_nh->rt6i_pcpu); 3562 } 3563 3564 fib_nh_common_release(&fib6_nh->nh_common); 3565 } 3566 3567 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 3568 gfp_t gfp_flags, 3569 struct netlink_ext_ack *extack) 3570 { 3571 struct net *net = cfg->fc_nlinfo.nl_net; 3572 struct fib6_info *rt = NULL; 3573 struct nexthop *nh = NULL; 3574 struct fib6_table *table; 3575 struct fib6_nh *fib6_nh; 3576 int err = -EINVAL; 3577 int addr_type; 3578 3579 /* RTF_PCPU is an internal flag; can not be set by userspace */ 3580 if (cfg->fc_flags & RTF_PCPU) { 3581 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 3582 goto out; 3583 } 3584 3585 /* RTF_CACHE is an internal flag; can not be set by userspace */ 3586 if (cfg->fc_flags & RTF_CACHE) { 3587 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 3588 goto out; 3589 } 3590 3591 if (cfg->fc_type > RTN_MAX) { 3592 NL_SET_ERR_MSG(extack, "Invalid route type"); 3593 goto out; 3594 } 3595 3596 if (cfg->fc_dst_len > 128) { 3597 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 3598 goto out; 3599 } 3600 if (cfg->fc_src_len > 128) { 3601 NL_SET_ERR_MSG(extack, "Invalid source address length"); 3602 goto out; 3603 } 3604 #ifndef CONFIG_IPV6_SUBTREES 3605 if (cfg->fc_src_len) { 3606 NL_SET_ERR_MSG(extack, 3607 "Specifying source address requires IPV6_SUBTREES to be enabled"); 3608 goto out; 3609 } 3610 #endif 3611 if (cfg->fc_nh_id) { 3612 nh = nexthop_find_by_id(net, cfg->fc_nh_id); 3613 if (!nh) { 3614 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 3615 goto out; 3616 } 3617 err = fib6_check_nexthop(nh, cfg, extack); 3618 if (err) 3619 goto out; 3620 } 3621 3622 err = -ENOBUFS; 3623 if (cfg->fc_nlinfo.nlh && 3624 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 3625 table = fib6_get_table(net, cfg->fc_table); 3626 if (!table) { 3627 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 3628 table = fib6_new_table(net, cfg->fc_table); 3629 } 3630 } else { 3631 table = fib6_new_table(net, cfg->fc_table); 3632 } 3633 3634 if (!table) 3635 goto out; 3636 3637 err = -ENOMEM; 3638 rt = fib6_info_alloc(gfp_flags, !nh); 3639 if (!rt) 3640 goto out; 3641 3642 rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len, 3643 extack); 3644 if (IS_ERR(rt->fib6_metrics)) { 3645 err = PTR_ERR(rt->fib6_metrics); 3646 /* Do not leave garbage there. */ 3647 rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; 3648 goto out; 3649 } 3650 3651 if (cfg->fc_flags & RTF_ADDRCONF) 3652 rt->dst_nocount = true; 3653 3654 if (cfg->fc_flags & RTF_EXPIRES) 3655 fib6_set_expires(rt, jiffies + 3656 clock_t_to_jiffies(cfg->fc_expires)); 3657 else 3658 fib6_clean_expires(rt); 3659 3660 if (cfg->fc_protocol == RTPROT_UNSPEC) 3661 cfg->fc_protocol = RTPROT_BOOT; 3662 rt->fib6_protocol = cfg->fc_protocol; 3663 3664 rt->fib6_table = table; 3665 rt->fib6_metric = cfg->fc_metric; 3666 rt->fib6_type = cfg->fc_type ? : RTN_UNICAST; 3667 rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY; 3668 3669 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 3670 rt->fib6_dst.plen = cfg->fc_dst_len; 3671 3672 #ifdef CONFIG_IPV6_SUBTREES 3673 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3674 rt->fib6_src.plen = cfg->fc_src_len; 3675 #endif 3676 if (nh) { 3677 if (rt->fib6_src.plen) { 3678 NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing"); 3679 goto out; 3680 } 3681 if (!nexthop_get(nh)) { 3682 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 3683 goto out; 3684 } 3685 rt->nh = nh; 3686 fib6_nh = nexthop_fib6_nh(rt->nh); 3687 } else { 3688 err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack); 3689 if (err) 3690 goto out; 3691 3692 fib6_nh = rt->fib6_nh; 3693 3694 /* We cannot add true routes via loopback here, they would 3695 * result in kernel looping; promote them to reject routes 3696 */ 3697 addr_type = ipv6_addr_type(&cfg->fc_dst); 3698 if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev, 3699 addr_type)) 3700 rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP; 3701 } 3702 3703 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3704 struct net_device *dev = fib6_nh->fib_nh_dev; 3705 3706 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3707 NL_SET_ERR_MSG(extack, "Invalid source address"); 3708 err = -EINVAL; 3709 goto out; 3710 } 3711 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3712 rt->fib6_prefsrc.plen = 128; 3713 } else 3714 rt->fib6_prefsrc.plen = 0; 3715 3716 return rt; 3717 out: 3718 fib6_info_release(rt); 3719 return ERR_PTR(err); 3720 } 3721 3722 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3723 struct netlink_ext_ack *extack) 3724 { 3725 struct fib6_info *rt; 3726 int err; 3727 3728 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3729 if (IS_ERR(rt)) 3730 return PTR_ERR(rt); 3731 3732 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3733 fib6_info_release(rt); 3734 3735 return err; 3736 } 3737 3738 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3739 { 3740 struct net *net = info->nl_net; 3741 struct fib6_table *table; 3742 int err; 3743 3744 if (rt == net->ipv6.fib6_null_entry) { 3745 err = -ENOENT; 3746 goto out; 3747 } 3748 3749 table = rt->fib6_table; 3750 spin_lock_bh(&table->tb6_lock); 3751 err = fib6_del(rt, info); 3752 spin_unlock_bh(&table->tb6_lock); 3753 3754 out: 3755 fib6_info_release(rt); 3756 return err; 3757 } 3758 3759 int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) 3760 { 3761 struct nl_info info = { 3762 .nl_net = net, 3763 .skip_notify = skip_notify 3764 }; 3765 3766 return __ip6_del_rt(rt, &info); 3767 } 3768 3769 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3770 { 3771 struct nl_info *info = &cfg->fc_nlinfo; 3772 struct net *net = info->nl_net; 3773 struct sk_buff *skb = NULL; 3774 struct fib6_table *table; 3775 int err = -ENOENT; 3776 3777 if (rt == net->ipv6.fib6_null_entry) 3778 goto out_put; 3779 table = rt->fib6_table; 3780 spin_lock_bh(&table->tb6_lock); 3781 3782 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 3783 struct fib6_info *sibling, *next_sibling; 3784 struct fib6_node *fn; 3785 3786 /* prefer to send a single notification with all hops */ 3787 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 3788 if (skb) { 3789 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 3790 3791 if (rt6_fill_node(net, skb, rt, NULL, 3792 NULL, NULL, 0, RTM_DELROUTE, 3793 info->portid, seq, 0) < 0) { 3794 kfree_skb(skb); 3795 skb = NULL; 3796 } else 3797 info->skip_notify = 1; 3798 } 3799 3800 /* 'rt' points to the first sibling route. If it is not the 3801 * leaf, then we do not need to send a notification. Otherwise, 3802 * we need to check if the last sibling has a next route or not 3803 * and emit a replace or delete notification, respectively. 3804 */ 3805 info->skip_notify_kernel = 1; 3806 fn = rcu_dereference_protected(rt->fib6_node, 3807 lockdep_is_held(&table->tb6_lock)); 3808 if (rcu_access_pointer(fn->leaf) == rt) { 3809 struct fib6_info *last_sibling, *replace_rt; 3810 3811 last_sibling = list_last_entry(&rt->fib6_siblings, 3812 struct fib6_info, 3813 fib6_siblings); 3814 replace_rt = rcu_dereference_protected( 3815 last_sibling->fib6_next, 3816 lockdep_is_held(&table->tb6_lock)); 3817 if (replace_rt) 3818 call_fib6_entry_notifiers_replace(net, 3819 replace_rt); 3820 else 3821 call_fib6_multipath_entry_notifiers(net, 3822 FIB_EVENT_ENTRY_DEL, 3823 rt, rt->fib6_nsiblings, 3824 NULL); 3825 } 3826 list_for_each_entry_safe(sibling, next_sibling, 3827 &rt->fib6_siblings, 3828 fib6_siblings) { 3829 err = fib6_del(sibling, info); 3830 if (err) 3831 goto out_unlock; 3832 } 3833 } 3834 3835 err = fib6_del(rt, info); 3836 out_unlock: 3837 spin_unlock_bh(&table->tb6_lock); 3838 out_put: 3839 fib6_info_release(rt); 3840 3841 if (skb) { 3842 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 3843 info->nlh, gfp_any()); 3844 } 3845 return err; 3846 } 3847 3848 static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 3849 { 3850 int rc = -ESRCH; 3851 3852 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 3853 goto out; 3854 3855 if (cfg->fc_flags & RTF_GATEWAY && 3856 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 3857 goto out; 3858 3859 rc = rt6_remove_exception_rt(rt); 3860 out: 3861 return rc; 3862 } 3863 3864 static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt, 3865 struct fib6_nh *nh) 3866 { 3867 struct fib6_result res = { 3868 .f6i = rt, 3869 .nh = nh, 3870 }; 3871 struct rt6_info *rt_cache; 3872 3873 rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src); 3874 if (rt_cache) 3875 return __ip6_del_cached_rt(rt_cache, cfg); 3876 3877 return 0; 3878 } 3879 3880 struct fib6_nh_del_cached_rt_arg { 3881 struct fib6_config *cfg; 3882 struct fib6_info *f6i; 3883 }; 3884 3885 static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg) 3886 { 3887 struct fib6_nh_del_cached_rt_arg *arg = _arg; 3888 int rc; 3889 3890 rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh); 3891 return rc != -ESRCH ? rc : 0; 3892 } 3893 3894 static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i) 3895 { 3896 struct fib6_nh_del_cached_rt_arg arg = { 3897 .cfg = cfg, 3898 .f6i = f6i 3899 }; 3900 3901 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg); 3902 } 3903 3904 static int ip6_route_del(struct fib6_config *cfg, 3905 struct netlink_ext_ack *extack) 3906 { 3907 struct fib6_table *table; 3908 struct fib6_info *rt; 3909 struct fib6_node *fn; 3910 int err = -ESRCH; 3911 3912 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 3913 if (!table) { 3914 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 3915 return err; 3916 } 3917 3918 rcu_read_lock(); 3919 3920 fn = fib6_locate(&table->tb6_root, 3921 &cfg->fc_dst, cfg->fc_dst_len, 3922 &cfg->fc_src, cfg->fc_src_len, 3923 !(cfg->fc_flags & RTF_CACHE)); 3924 3925 if (fn) { 3926 for_each_fib6_node_rt_rcu(fn) { 3927 struct fib6_nh *nh; 3928 3929 if (rt->nh && cfg->fc_nh_id && 3930 rt->nh->id != cfg->fc_nh_id) 3931 continue; 3932 3933 if (cfg->fc_flags & RTF_CACHE) { 3934 int rc = 0; 3935 3936 if (rt->nh) { 3937 rc = ip6_del_cached_rt_nh(cfg, rt); 3938 } else if (cfg->fc_nh_id) { 3939 continue; 3940 } else { 3941 nh = rt->fib6_nh; 3942 rc = ip6_del_cached_rt(cfg, rt, nh); 3943 } 3944 if (rc != -ESRCH) { 3945 rcu_read_unlock(); 3946 return rc; 3947 } 3948 continue; 3949 } 3950 3951 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 3952 continue; 3953 if (cfg->fc_protocol && 3954 cfg->fc_protocol != rt->fib6_protocol) 3955 continue; 3956 3957 if (rt->nh) { 3958 if (!fib6_info_hold_safe(rt)) 3959 continue; 3960 rcu_read_unlock(); 3961 3962 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 3963 } 3964 if (cfg->fc_nh_id) 3965 continue; 3966 3967 nh = rt->fib6_nh; 3968 if (cfg->fc_ifindex && 3969 (!nh->fib_nh_dev || 3970 nh->fib_nh_dev->ifindex != cfg->fc_ifindex)) 3971 continue; 3972 if (cfg->fc_flags & RTF_GATEWAY && 3973 !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6)) 3974 continue; 3975 if (!fib6_info_hold_safe(rt)) 3976 continue; 3977 rcu_read_unlock(); 3978 3979 /* if gateway was specified only delete the one hop */ 3980 if (cfg->fc_flags & RTF_GATEWAY) 3981 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 3982 3983 return __ip6_del_rt_siblings(rt, cfg); 3984 } 3985 } 3986 rcu_read_unlock(); 3987 3988 return err; 3989 } 3990 3991 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 3992 { 3993 struct netevent_redirect netevent; 3994 struct rt6_info *rt, *nrt = NULL; 3995 struct fib6_result res = {}; 3996 struct ndisc_options ndopts; 3997 struct inet6_dev *in6_dev; 3998 struct neighbour *neigh; 3999 struct rd_msg *msg; 4000 int optlen, on_link; 4001 u8 *lladdr; 4002 4003 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 4004 optlen -= sizeof(*msg); 4005 4006 if (optlen < 0) { 4007 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 4008 return; 4009 } 4010 4011 msg = (struct rd_msg *)icmp6_hdr(skb); 4012 4013 if (ipv6_addr_is_multicast(&msg->dest)) { 4014 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 4015 return; 4016 } 4017 4018 on_link = 0; 4019 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 4020 on_link = 1; 4021 } else if (ipv6_addr_type(&msg->target) != 4022 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 4023 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 4024 return; 4025 } 4026 4027 in6_dev = __in6_dev_get(skb->dev); 4028 if (!in6_dev) 4029 return; 4030 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects) 4031 return; 4032 4033 /* RFC2461 8.1: 4034 * The IP source address of the Redirect MUST be the same as the current 4035 * first-hop router for the specified ICMP Destination Address. 4036 */ 4037 4038 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 4039 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 4040 return; 4041 } 4042 4043 lladdr = NULL; 4044 if (ndopts.nd_opts_tgt_lladdr) { 4045 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 4046 skb->dev); 4047 if (!lladdr) { 4048 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 4049 return; 4050 } 4051 } 4052 4053 rt = (struct rt6_info *) dst; 4054 if (rt->rt6i_flags & RTF_REJECT) { 4055 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 4056 return; 4057 } 4058 4059 /* Redirect received -> path was valid. 4060 * Look, redirects are sent only in response to data packets, 4061 * so that this nexthop apparently is reachable. --ANK 4062 */ 4063 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 4064 4065 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 4066 if (!neigh) 4067 return; 4068 4069 /* 4070 * We have finally decided to accept it. 4071 */ 4072 4073 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 4074 NEIGH_UPDATE_F_WEAK_OVERRIDE| 4075 NEIGH_UPDATE_F_OVERRIDE| 4076 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 4077 NEIGH_UPDATE_F_ISROUTER)), 4078 NDISC_REDIRECT, &ndopts); 4079 4080 rcu_read_lock(); 4081 res.f6i = rcu_dereference(rt->from); 4082 if (!res.f6i) 4083 goto out; 4084 4085 if (res.f6i->nh) { 4086 struct fib6_nh_match_arg arg = { 4087 .dev = dst->dev, 4088 .gw = &rt->rt6i_gateway, 4089 }; 4090 4091 nexthop_for_each_fib6_nh(res.f6i->nh, 4092 fib6_nh_find_match, &arg); 4093 4094 /* fib6_info uses a nexthop that does not have fib6_nh 4095 * using the dst->dev. Should be impossible 4096 */ 4097 if (!arg.match) 4098 goto out; 4099 res.nh = arg.match; 4100 } else { 4101 res.nh = res.f6i->fib6_nh; 4102 } 4103 4104 res.fib6_flags = res.f6i->fib6_flags; 4105 res.fib6_type = res.f6i->fib6_type; 4106 nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL); 4107 if (!nrt) 4108 goto out; 4109 4110 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 4111 if (on_link) 4112 nrt->rt6i_flags &= ~RTF_GATEWAY; 4113 4114 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 4115 4116 /* rt6_insert_exception() will take care of duplicated exceptions */ 4117 if (rt6_insert_exception(nrt, &res)) { 4118 dst_release_immediate(&nrt->dst); 4119 goto out; 4120 } 4121 4122 netevent.old = &rt->dst; 4123 netevent.new = &nrt->dst; 4124 netevent.daddr = &msg->dest; 4125 netevent.neigh = neigh; 4126 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 4127 4128 out: 4129 rcu_read_unlock(); 4130 neigh_release(neigh); 4131 } 4132 4133 #ifdef CONFIG_IPV6_ROUTE_INFO 4134 static struct fib6_info *rt6_get_route_info(struct net *net, 4135 const struct in6_addr *prefix, int prefixlen, 4136 const struct in6_addr *gwaddr, 4137 struct net_device *dev) 4138 { 4139 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4140 int ifindex = dev->ifindex; 4141 struct fib6_node *fn; 4142 struct fib6_info *rt = NULL; 4143 struct fib6_table *table; 4144 4145 table = fib6_get_table(net, tb_id); 4146 if (!table) 4147 return NULL; 4148 4149 rcu_read_lock(); 4150 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 4151 if (!fn) 4152 goto out; 4153 4154 for_each_fib6_node_rt_rcu(fn) { 4155 /* these routes do not use nexthops */ 4156 if (rt->nh) 4157 continue; 4158 if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex) 4159 continue; 4160 if (!(rt->fib6_flags & RTF_ROUTEINFO) || 4161 !rt->fib6_nh->fib_nh_gw_family) 4162 continue; 4163 if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr)) 4164 continue; 4165 if (!fib6_info_hold_safe(rt)) 4166 continue; 4167 break; 4168 } 4169 out: 4170 rcu_read_unlock(); 4171 return rt; 4172 } 4173 4174 static struct fib6_info *rt6_add_route_info(struct net *net, 4175 const struct in6_addr *prefix, int prefixlen, 4176 const struct in6_addr *gwaddr, 4177 struct net_device *dev, 4178 unsigned int pref) 4179 { 4180 struct fib6_config cfg = { 4181 .fc_metric = IP6_RT_PRIO_USER, 4182 .fc_ifindex = dev->ifindex, 4183 .fc_dst_len = prefixlen, 4184 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 4185 RTF_UP | RTF_PREF(pref), 4186 .fc_protocol = RTPROT_RA, 4187 .fc_type = RTN_UNICAST, 4188 .fc_nlinfo.portid = 0, 4189 .fc_nlinfo.nlh = NULL, 4190 .fc_nlinfo.nl_net = net, 4191 }; 4192 4193 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4194 cfg.fc_dst = *prefix; 4195 cfg.fc_gateway = *gwaddr; 4196 4197 /* We should treat it as a default route if prefix length is 0. */ 4198 if (!prefixlen) 4199 cfg.fc_flags |= RTF_DEFAULT; 4200 4201 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 4202 4203 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 4204 } 4205 #endif 4206 4207 struct fib6_info *rt6_get_dflt_router(struct net *net, 4208 const struct in6_addr *addr, 4209 struct net_device *dev) 4210 { 4211 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 4212 struct fib6_info *rt; 4213 struct fib6_table *table; 4214 4215 table = fib6_get_table(net, tb_id); 4216 if (!table) 4217 return NULL; 4218 4219 rcu_read_lock(); 4220 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4221 struct fib6_nh *nh; 4222 4223 /* RA routes do not use nexthops */ 4224 if (rt->nh) 4225 continue; 4226 4227 nh = rt->fib6_nh; 4228 if (dev == nh->fib_nh_dev && 4229 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 4230 ipv6_addr_equal(&nh->fib_nh_gw6, addr)) 4231 break; 4232 } 4233 if (rt && !fib6_info_hold_safe(rt)) 4234 rt = NULL; 4235 rcu_read_unlock(); 4236 return rt; 4237 } 4238 4239 struct fib6_info *rt6_add_dflt_router(struct net *net, 4240 const struct in6_addr *gwaddr, 4241 struct net_device *dev, 4242 unsigned int pref, 4243 u32 defrtr_usr_metric) 4244 { 4245 struct fib6_config cfg = { 4246 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 4247 .fc_metric = defrtr_usr_metric, 4248 .fc_ifindex = dev->ifindex, 4249 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 4250 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 4251 .fc_protocol = RTPROT_RA, 4252 .fc_type = RTN_UNICAST, 4253 .fc_nlinfo.portid = 0, 4254 .fc_nlinfo.nlh = NULL, 4255 .fc_nlinfo.nl_net = net, 4256 }; 4257 4258 cfg.fc_gateway = *gwaddr; 4259 4260 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 4261 struct fib6_table *table; 4262 4263 table = fib6_get_table(dev_net(dev), cfg.fc_table); 4264 if (table) 4265 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 4266 } 4267 4268 return rt6_get_dflt_router(net, gwaddr, dev); 4269 } 4270 4271 static void __rt6_purge_dflt_routers(struct net *net, 4272 struct fib6_table *table) 4273 { 4274 struct fib6_info *rt; 4275 4276 restart: 4277 rcu_read_lock(); 4278 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4279 struct net_device *dev = fib6_info_nh_dev(rt); 4280 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 4281 4282 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 4283 (!idev || idev->cnf.accept_ra != 2) && 4284 fib6_info_hold_safe(rt)) { 4285 rcu_read_unlock(); 4286 ip6_del_rt(net, rt, false); 4287 goto restart; 4288 } 4289 } 4290 rcu_read_unlock(); 4291 4292 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 4293 } 4294 4295 void rt6_purge_dflt_routers(struct net *net) 4296 { 4297 struct fib6_table *table; 4298 struct hlist_head *head; 4299 unsigned int h; 4300 4301 rcu_read_lock(); 4302 4303 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 4304 head = &net->ipv6.fib_table_hash[h]; 4305 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 4306 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 4307 __rt6_purge_dflt_routers(net, table); 4308 } 4309 } 4310 4311 rcu_read_unlock(); 4312 } 4313 4314 static void rtmsg_to_fib6_config(struct net *net, 4315 struct in6_rtmsg *rtmsg, 4316 struct fib6_config *cfg) 4317 { 4318 *cfg = (struct fib6_config){ 4319 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 4320 : RT6_TABLE_MAIN, 4321 .fc_ifindex = rtmsg->rtmsg_ifindex, 4322 .fc_metric = rtmsg->rtmsg_metric ? : IP6_RT_PRIO_USER, 4323 .fc_expires = rtmsg->rtmsg_info, 4324 .fc_dst_len = rtmsg->rtmsg_dst_len, 4325 .fc_src_len = rtmsg->rtmsg_src_len, 4326 .fc_flags = rtmsg->rtmsg_flags, 4327 .fc_type = rtmsg->rtmsg_type, 4328 4329 .fc_nlinfo.nl_net = net, 4330 4331 .fc_dst = rtmsg->rtmsg_dst, 4332 .fc_src = rtmsg->rtmsg_src, 4333 .fc_gateway = rtmsg->rtmsg_gateway, 4334 }; 4335 } 4336 4337 int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg) 4338 { 4339 struct fib6_config cfg; 4340 int err; 4341 4342 if (cmd != SIOCADDRT && cmd != SIOCDELRT) 4343 return -EINVAL; 4344 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 4345 return -EPERM; 4346 4347 rtmsg_to_fib6_config(net, rtmsg, &cfg); 4348 4349 rtnl_lock(); 4350 switch (cmd) { 4351 case SIOCADDRT: 4352 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 4353 break; 4354 case SIOCDELRT: 4355 err = ip6_route_del(&cfg, NULL); 4356 break; 4357 } 4358 rtnl_unlock(); 4359 return err; 4360 } 4361 4362 /* 4363 * Drop the packet on the floor 4364 */ 4365 4366 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 4367 { 4368 struct dst_entry *dst = skb_dst(skb); 4369 struct net *net = dev_net(dst->dev); 4370 struct inet6_dev *idev; 4371 int type; 4372 4373 if (netif_is_l3_master(skb->dev) && 4374 dst->dev == net->loopback_dev) 4375 idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); 4376 else 4377 idev = ip6_dst_idev(dst); 4378 4379 switch (ipstats_mib_noroutes) { 4380 case IPSTATS_MIB_INNOROUTES: 4381 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 4382 if (type == IPV6_ADDR_ANY) { 4383 IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); 4384 break; 4385 } 4386 fallthrough; 4387 case IPSTATS_MIB_OUTNOROUTES: 4388 IP6_INC_STATS(net, idev, ipstats_mib_noroutes); 4389 break; 4390 } 4391 4392 /* Start over by dropping the dst for l3mdev case */ 4393 if (netif_is_l3_master(skb->dev)) 4394 skb_dst_drop(skb); 4395 4396 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 4397 kfree_skb(skb); 4398 return 0; 4399 } 4400 4401 static int ip6_pkt_discard(struct sk_buff *skb) 4402 { 4403 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 4404 } 4405 4406 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4407 { 4408 skb->dev = skb_dst(skb)->dev; 4409 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 4410 } 4411 4412 static int ip6_pkt_prohibit(struct sk_buff *skb) 4413 { 4414 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 4415 } 4416 4417 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4418 { 4419 skb->dev = skb_dst(skb)->dev; 4420 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 4421 } 4422 4423 /* 4424 * Allocate a dst for local (unicast / anycast) address. 4425 */ 4426 4427 struct fib6_info *addrconf_f6i_alloc(struct net *net, 4428 struct inet6_dev *idev, 4429 const struct in6_addr *addr, 4430 bool anycast, gfp_t gfp_flags) 4431 { 4432 struct fib6_config cfg = { 4433 .fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL, 4434 .fc_ifindex = idev->dev->ifindex, 4435 .fc_flags = RTF_UP | RTF_NONEXTHOP, 4436 .fc_dst = *addr, 4437 .fc_dst_len = 128, 4438 .fc_protocol = RTPROT_KERNEL, 4439 .fc_nlinfo.nl_net = net, 4440 .fc_ignore_dev_down = true, 4441 }; 4442 struct fib6_info *f6i; 4443 4444 if (anycast) { 4445 cfg.fc_type = RTN_ANYCAST; 4446 cfg.fc_flags |= RTF_ANYCAST; 4447 } else { 4448 cfg.fc_type = RTN_LOCAL; 4449 cfg.fc_flags |= RTF_LOCAL; 4450 } 4451 4452 f6i = ip6_route_info_create(&cfg, gfp_flags, NULL); 4453 if (!IS_ERR(f6i)) 4454 f6i->dst_nocount = true; 4455 return f6i; 4456 } 4457 4458 /* remove deleted ip from prefsrc entries */ 4459 struct arg_dev_net_ip { 4460 struct net_device *dev; 4461 struct net *net; 4462 struct in6_addr *addr; 4463 }; 4464 4465 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 4466 { 4467 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev; 4468 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 4469 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 4470 4471 if (!rt->nh && 4472 ((void *)rt->fib6_nh->fib_nh_dev == dev || !dev) && 4473 rt != net->ipv6.fib6_null_entry && 4474 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) { 4475 spin_lock_bh(&rt6_exception_lock); 4476 /* remove prefsrc entry */ 4477 rt->fib6_prefsrc.plen = 0; 4478 spin_unlock_bh(&rt6_exception_lock); 4479 } 4480 return 0; 4481 } 4482 4483 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 4484 { 4485 struct net *net = dev_net(ifp->idev->dev); 4486 struct arg_dev_net_ip adni = { 4487 .dev = ifp->idev->dev, 4488 .net = net, 4489 .addr = &ifp->addr, 4490 }; 4491 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 4492 } 4493 4494 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT) 4495 4496 /* Remove routers and update dst entries when gateway turn into host. */ 4497 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 4498 { 4499 struct in6_addr *gateway = (struct in6_addr *)arg; 4500 struct fib6_nh *nh; 4501 4502 /* RA routes do not use nexthops */ 4503 if (rt->nh) 4504 return 0; 4505 4506 nh = rt->fib6_nh; 4507 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 4508 nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6)) 4509 return -1; 4510 4511 /* Further clean up cached routes in exception table. 4512 * This is needed because cached route may have a different 4513 * gateway than its 'parent' in the case of an ip redirect. 4514 */ 4515 fib6_nh_exceptions_clean_tohost(nh, gateway); 4516 4517 return 0; 4518 } 4519 4520 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 4521 { 4522 fib6_clean_all(net, fib6_clean_tohost, gateway); 4523 } 4524 4525 struct arg_netdev_event { 4526 const struct net_device *dev; 4527 union { 4528 unsigned char nh_flags; 4529 unsigned long event; 4530 }; 4531 }; 4532 4533 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 4534 { 4535 struct fib6_info *iter; 4536 struct fib6_node *fn; 4537 4538 fn = rcu_dereference_protected(rt->fib6_node, 4539 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4540 iter = rcu_dereference_protected(fn->leaf, 4541 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4542 while (iter) { 4543 if (iter->fib6_metric == rt->fib6_metric && 4544 rt6_qualify_for_ecmp(iter)) 4545 return iter; 4546 iter = rcu_dereference_protected(iter->fib6_next, 4547 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4548 } 4549 4550 return NULL; 4551 } 4552 4553 /* only called for fib entries with builtin fib6_nh */ 4554 static bool rt6_is_dead(const struct fib6_info *rt) 4555 { 4556 if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD || 4557 (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN && 4558 ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev))) 4559 return true; 4560 4561 return false; 4562 } 4563 4564 static int rt6_multipath_total_weight(const struct fib6_info *rt) 4565 { 4566 struct fib6_info *iter; 4567 int total = 0; 4568 4569 if (!rt6_is_dead(rt)) 4570 total += rt->fib6_nh->fib_nh_weight; 4571 4572 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 4573 if (!rt6_is_dead(iter)) 4574 total += iter->fib6_nh->fib_nh_weight; 4575 } 4576 4577 return total; 4578 } 4579 4580 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 4581 { 4582 int upper_bound = -1; 4583 4584 if (!rt6_is_dead(rt)) { 4585 *weight += rt->fib6_nh->fib_nh_weight; 4586 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 4587 total) - 1; 4588 } 4589 atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound); 4590 } 4591 4592 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 4593 { 4594 struct fib6_info *iter; 4595 int weight = 0; 4596 4597 rt6_upper_bound_set(rt, &weight, total); 4598 4599 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4600 rt6_upper_bound_set(iter, &weight, total); 4601 } 4602 4603 void rt6_multipath_rebalance(struct fib6_info *rt) 4604 { 4605 struct fib6_info *first; 4606 int total; 4607 4608 /* In case the entire multipath route was marked for flushing, 4609 * then there is no need to rebalance upon the removal of every 4610 * sibling route. 4611 */ 4612 if (!rt->fib6_nsiblings || rt->should_flush) 4613 return; 4614 4615 /* During lookup routes are evaluated in order, so we need to 4616 * make sure upper bounds are assigned from the first sibling 4617 * onwards. 4618 */ 4619 first = rt6_multipath_first_sibling(rt); 4620 if (WARN_ON_ONCE(!first)) 4621 return; 4622 4623 total = rt6_multipath_total_weight(first); 4624 rt6_multipath_upper_bound_set(first, total); 4625 } 4626 4627 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 4628 { 4629 const struct arg_netdev_event *arg = p_arg; 4630 struct net *net = dev_net(arg->dev); 4631 4632 if (rt != net->ipv6.fib6_null_entry && !rt->nh && 4633 rt->fib6_nh->fib_nh_dev == arg->dev) { 4634 rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags; 4635 fib6_update_sernum_upto_root(net, rt); 4636 rt6_multipath_rebalance(rt); 4637 } 4638 4639 return 0; 4640 } 4641 4642 void rt6_sync_up(struct net_device *dev, unsigned char nh_flags) 4643 { 4644 struct arg_netdev_event arg = { 4645 .dev = dev, 4646 { 4647 .nh_flags = nh_flags, 4648 }, 4649 }; 4650 4651 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 4652 arg.nh_flags |= RTNH_F_LINKDOWN; 4653 4654 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 4655 } 4656 4657 /* only called for fib entries with inline fib6_nh */ 4658 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 4659 const struct net_device *dev) 4660 { 4661 struct fib6_info *iter; 4662 4663 if (rt->fib6_nh->fib_nh_dev == dev) 4664 return true; 4665 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4666 if (iter->fib6_nh->fib_nh_dev == dev) 4667 return true; 4668 4669 return false; 4670 } 4671 4672 static void rt6_multipath_flush(struct fib6_info *rt) 4673 { 4674 struct fib6_info *iter; 4675 4676 rt->should_flush = 1; 4677 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4678 iter->should_flush = 1; 4679 } 4680 4681 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 4682 const struct net_device *down_dev) 4683 { 4684 struct fib6_info *iter; 4685 unsigned int dead = 0; 4686 4687 if (rt->fib6_nh->fib_nh_dev == down_dev || 4688 rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4689 dead++; 4690 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4691 if (iter->fib6_nh->fib_nh_dev == down_dev || 4692 iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4693 dead++; 4694 4695 return dead; 4696 } 4697 4698 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 4699 const struct net_device *dev, 4700 unsigned char nh_flags) 4701 { 4702 struct fib6_info *iter; 4703 4704 if (rt->fib6_nh->fib_nh_dev == dev) 4705 rt->fib6_nh->fib_nh_flags |= nh_flags; 4706 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4707 if (iter->fib6_nh->fib_nh_dev == dev) 4708 iter->fib6_nh->fib_nh_flags |= nh_flags; 4709 } 4710 4711 /* called with write lock held for table with rt */ 4712 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 4713 { 4714 const struct arg_netdev_event *arg = p_arg; 4715 const struct net_device *dev = arg->dev; 4716 struct net *net = dev_net(dev); 4717 4718 if (rt == net->ipv6.fib6_null_entry || rt->nh) 4719 return 0; 4720 4721 switch (arg->event) { 4722 case NETDEV_UNREGISTER: 4723 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4724 case NETDEV_DOWN: 4725 if (rt->should_flush) 4726 return -1; 4727 if (!rt->fib6_nsiblings) 4728 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4729 if (rt6_multipath_uses_dev(rt, dev)) { 4730 unsigned int count; 4731 4732 count = rt6_multipath_dead_count(rt, dev); 4733 if (rt->fib6_nsiblings + 1 == count) { 4734 rt6_multipath_flush(rt); 4735 return -1; 4736 } 4737 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 4738 RTNH_F_LINKDOWN); 4739 fib6_update_sernum(net, rt); 4740 rt6_multipath_rebalance(rt); 4741 } 4742 return -2; 4743 case NETDEV_CHANGE: 4744 if (rt->fib6_nh->fib_nh_dev != dev || 4745 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 4746 break; 4747 rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 4748 rt6_multipath_rebalance(rt); 4749 break; 4750 } 4751 4752 return 0; 4753 } 4754 4755 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 4756 { 4757 struct arg_netdev_event arg = { 4758 .dev = dev, 4759 { 4760 .event = event, 4761 }, 4762 }; 4763 struct net *net = dev_net(dev); 4764 4765 if (net->ipv6.sysctl.skip_notify_on_dev_down) 4766 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); 4767 else 4768 fib6_clean_all(net, fib6_ifdown, &arg); 4769 } 4770 4771 void rt6_disable_ip(struct net_device *dev, unsigned long event) 4772 { 4773 rt6_sync_down_dev(dev, event); 4774 rt6_uncached_list_flush_dev(dev_net(dev), dev); 4775 neigh_ifdown(&nd_tbl, dev); 4776 } 4777 4778 struct rt6_mtu_change_arg { 4779 struct net_device *dev; 4780 unsigned int mtu; 4781 struct fib6_info *f6i; 4782 }; 4783 4784 static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg) 4785 { 4786 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg; 4787 struct fib6_info *f6i = arg->f6i; 4788 4789 /* For administrative MTU increase, there is no way to discover 4790 * IPv6 PMTU increase, so PMTU increase should be updated here. 4791 * Since RFC 1981 doesn't include administrative MTU increase 4792 * update PMTU increase is a MUST. (i.e. jumbo frame) 4793 */ 4794 if (nh->fib_nh_dev == arg->dev) { 4795 struct inet6_dev *idev = __in6_dev_get(arg->dev); 4796 u32 mtu = f6i->fib6_pmtu; 4797 4798 if (mtu >= arg->mtu || 4799 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 4800 fib6_metric_set(f6i, RTAX_MTU, arg->mtu); 4801 4802 spin_lock_bh(&rt6_exception_lock); 4803 rt6_exceptions_update_pmtu(idev, nh, arg->mtu); 4804 spin_unlock_bh(&rt6_exception_lock); 4805 } 4806 4807 return 0; 4808 } 4809 4810 static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg) 4811 { 4812 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 4813 struct inet6_dev *idev; 4814 4815 /* In IPv6 pmtu discovery is not optional, 4816 so that RTAX_MTU lock cannot disable it. 4817 We still use this lock to block changes 4818 caused by addrconf/ndisc. 4819 */ 4820 4821 idev = __in6_dev_get(arg->dev); 4822 if (!idev) 4823 return 0; 4824 4825 if (fib6_metric_locked(f6i, RTAX_MTU)) 4826 return 0; 4827 4828 arg->f6i = f6i; 4829 if (f6i->nh) { 4830 /* fib6_nh_mtu_change only returns 0, so this is safe */ 4831 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change, 4832 arg); 4833 } 4834 4835 return fib6_nh_mtu_change(f6i->fib6_nh, arg); 4836 } 4837 4838 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 4839 { 4840 struct rt6_mtu_change_arg arg = { 4841 .dev = dev, 4842 .mtu = mtu, 4843 }; 4844 4845 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 4846 } 4847 4848 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 4849 [RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 }, 4850 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 4851 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 4852 [RTA_OIF] = { .type = NLA_U32 }, 4853 [RTA_IIF] = { .type = NLA_U32 }, 4854 [RTA_PRIORITY] = { .type = NLA_U32 }, 4855 [RTA_METRICS] = { .type = NLA_NESTED }, 4856 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 4857 [RTA_PREF] = { .type = NLA_U8 }, 4858 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 4859 [RTA_ENCAP] = { .type = NLA_NESTED }, 4860 [RTA_EXPIRES] = { .type = NLA_U32 }, 4861 [RTA_UID] = { .type = NLA_U32 }, 4862 [RTA_MARK] = { .type = NLA_U32 }, 4863 [RTA_TABLE] = { .type = NLA_U32 }, 4864 [RTA_IP_PROTO] = { .type = NLA_U8 }, 4865 [RTA_SPORT] = { .type = NLA_U16 }, 4866 [RTA_DPORT] = { .type = NLA_U16 }, 4867 [RTA_NH_ID] = { .type = NLA_U32 }, 4868 }; 4869 4870 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 4871 struct fib6_config *cfg, 4872 struct netlink_ext_ack *extack) 4873 { 4874 struct rtmsg *rtm; 4875 struct nlattr *tb[RTA_MAX+1]; 4876 unsigned int pref; 4877 int err; 4878 4879 err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 4880 rtm_ipv6_policy, extack); 4881 if (err < 0) 4882 goto errout; 4883 4884 err = -EINVAL; 4885 rtm = nlmsg_data(nlh); 4886 4887 *cfg = (struct fib6_config){ 4888 .fc_table = rtm->rtm_table, 4889 .fc_dst_len = rtm->rtm_dst_len, 4890 .fc_src_len = rtm->rtm_src_len, 4891 .fc_flags = RTF_UP, 4892 .fc_protocol = rtm->rtm_protocol, 4893 .fc_type = rtm->rtm_type, 4894 4895 .fc_nlinfo.portid = NETLINK_CB(skb).portid, 4896 .fc_nlinfo.nlh = nlh, 4897 .fc_nlinfo.nl_net = sock_net(skb->sk), 4898 }; 4899 4900 if (rtm->rtm_type == RTN_UNREACHABLE || 4901 rtm->rtm_type == RTN_BLACKHOLE || 4902 rtm->rtm_type == RTN_PROHIBIT || 4903 rtm->rtm_type == RTN_THROW) 4904 cfg->fc_flags |= RTF_REJECT; 4905 4906 if (rtm->rtm_type == RTN_LOCAL) 4907 cfg->fc_flags |= RTF_LOCAL; 4908 4909 if (rtm->rtm_flags & RTM_F_CLONED) 4910 cfg->fc_flags |= RTF_CACHE; 4911 4912 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 4913 4914 if (tb[RTA_NH_ID]) { 4915 if (tb[RTA_GATEWAY] || tb[RTA_OIF] || 4916 tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) { 4917 NL_SET_ERR_MSG(extack, 4918 "Nexthop specification and nexthop id are mutually exclusive"); 4919 goto errout; 4920 } 4921 cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]); 4922 } 4923 4924 if (tb[RTA_GATEWAY]) { 4925 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 4926 cfg->fc_flags |= RTF_GATEWAY; 4927 } 4928 if (tb[RTA_VIA]) { 4929 NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute"); 4930 goto errout; 4931 } 4932 4933 if (tb[RTA_DST]) { 4934 int plen = (rtm->rtm_dst_len + 7) >> 3; 4935 4936 if (nla_len(tb[RTA_DST]) < plen) 4937 goto errout; 4938 4939 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 4940 } 4941 4942 if (tb[RTA_SRC]) { 4943 int plen = (rtm->rtm_src_len + 7) >> 3; 4944 4945 if (nla_len(tb[RTA_SRC]) < plen) 4946 goto errout; 4947 4948 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 4949 } 4950 4951 if (tb[RTA_PREFSRC]) 4952 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 4953 4954 if (tb[RTA_OIF]) 4955 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 4956 4957 if (tb[RTA_PRIORITY]) 4958 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 4959 4960 if (tb[RTA_METRICS]) { 4961 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 4962 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 4963 } 4964 4965 if (tb[RTA_TABLE]) 4966 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 4967 4968 if (tb[RTA_MULTIPATH]) { 4969 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 4970 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 4971 4972 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, 4973 cfg->fc_mp_len, extack); 4974 if (err < 0) 4975 goto errout; 4976 } 4977 4978 if (tb[RTA_PREF]) { 4979 pref = nla_get_u8(tb[RTA_PREF]); 4980 if (pref != ICMPV6_ROUTER_PREF_LOW && 4981 pref != ICMPV6_ROUTER_PREF_HIGH) 4982 pref = ICMPV6_ROUTER_PREF_MEDIUM; 4983 cfg->fc_flags |= RTF_PREF(pref); 4984 } 4985 4986 if (tb[RTA_ENCAP]) 4987 cfg->fc_encap = tb[RTA_ENCAP]; 4988 4989 if (tb[RTA_ENCAP_TYPE]) { 4990 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 4991 4992 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 4993 if (err < 0) 4994 goto errout; 4995 } 4996 4997 if (tb[RTA_EXPIRES]) { 4998 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 4999 5000 if (addrconf_finite_timeout(timeout)) { 5001 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 5002 cfg->fc_flags |= RTF_EXPIRES; 5003 } 5004 } 5005 5006 err = 0; 5007 errout: 5008 return err; 5009 } 5010 5011 struct rt6_nh { 5012 struct fib6_info *fib6_info; 5013 struct fib6_config r_cfg; 5014 struct list_head next; 5015 }; 5016 5017 static int ip6_route_info_append(struct net *net, 5018 struct list_head *rt6_nh_list, 5019 struct fib6_info *rt, 5020 struct fib6_config *r_cfg) 5021 { 5022 struct rt6_nh *nh; 5023 int err = -EEXIST; 5024 5025 list_for_each_entry(nh, rt6_nh_list, next) { 5026 /* check if fib6_info already exists */ 5027 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 5028 return err; 5029 } 5030 5031 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 5032 if (!nh) 5033 return -ENOMEM; 5034 nh->fib6_info = rt; 5035 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 5036 list_add_tail(&nh->next, rt6_nh_list); 5037 5038 return 0; 5039 } 5040 5041 static void ip6_route_mpath_notify(struct fib6_info *rt, 5042 struct fib6_info *rt_last, 5043 struct nl_info *info, 5044 __u16 nlflags) 5045 { 5046 /* if this is an APPEND route, then rt points to the first route 5047 * inserted and rt_last points to last route inserted. Userspace 5048 * wants a consistent dump of the route which starts at the first 5049 * nexthop. Since sibling routes are always added at the end of 5050 * the list, find the first sibling of the last route appended 5051 */ 5052 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { 5053 rt = list_first_entry(&rt_last->fib6_siblings, 5054 struct fib6_info, 5055 fib6_siblings); 5056 } 5057 5058 if (rt) 5059 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 5060 } 5061 5062 static bool ip6_route_mpath_should_notify(const struct fib6_info *rt) 5063 { 5064 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 5065 bool should_notify = false; 5066 struct fib6_info *leaf; 5067 struct fib6_node *fn; 5068 5069 rcu_read_lock(); 5070 fn = rcu_dereference(rt->fib6_node); 5071 if (!fn) 5072 goto out; 5073 5074 leaf = rcu_dereference(fn->leaf); 5075 if (!leaf) 5076 goto out; 5077 5078 if (rt == leaf || 5079 (rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric && 5080 rt6_qualify_for_ecmp(leaf))) 5081 should_notify = true; 5082 out: 5083 rcu_read_unlock(); 5084 5085 return should_notify; 5086 } 5087 5088 static int ip6_route_multipath_add(struct fib6_config *cfg, 5089 struct netlink_ext_ack *extack) 5090 { 5091 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 5092 struct nl_info *info = &cfg->fc_nlinfo; 5093 struct fib6_config r_cfg; 5094 struct rtnexthop *rtnh; 5095 struct fib6_info *rt; 5096 struct rt6_nh *err_nh; 5097 struct rt6_nh *nh, *nh_safe; 5098 __u16 nlflags; 5099 int remaining; 5100 int attrlen; 5101 int err = 1; 5102 int nhn = 0; 5103 int replace = (cfg->fc_nlinfo.nlh && 5104 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 5105 LIST_HEAD(rt6_nh_list); 5106 5107 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 5108 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 5109 nlflags |= NLM_F_APPEND; 5110 5111 remaining = cfg->fc_mp_len; 5112 rtnh = (struct rtnexthop *)cfg->fc_mp; 5113 5114 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 5115 * fib6_info structs per nexthop 5116 */ 5117 while (rtnh_ok(rtnh, remaining)) { 5118 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5119 if (rtnh->rtnh_ifindex) 5120 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5121 5122 attrlen = rtnh_attrlen(rtnh); 5123 if (attrlen > 0) { 5124 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5125 5126 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5127 if (nla) { 5128 r_cfg.fc_gateway = nla_get_in6_addr(nla); 5129 r_cfg.fc_flags |= RTF_GATEWAY; 5130 } 5131 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 5132 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 5133 if (nla) 5134 r_cfg.fc_encap_type = nla_get_u16(nla); 5135 } 5136 5137 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 5138 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 5139 if (IS_ERR(rt)) { 5140 err = PTR_ERR(rt); 5141 rt = NULL; 5142 goto cleanup; 5143 } 5144 if (!rt6_qualify_for_ecmp(rt)) { 5145 err = -EINVAL; 5146 NL_SET_ERR_MSG(extack, 5147 "Device only routes can not be added for IPv6 using the multipath API."); 5148 fib6_info_release(rt); 5149 goto cleanup; 5150 } 5151 5152 rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1; 5153 5154 err = ip6_route_info_append(info->nl_net, &rt6_nh_list, 5155 rt, &r_cfg); 5156 if (err) { 5157 fib6_info_release(rt); 5158 goto cleanup; 5159 } 5160 5161 rtnh = rtnh_next(rtnh, &remaining); 5162 } 5163 5164 if (list_empty(&rt6_nh_list)) { 5165 NL_SET_ERR_MSG(extack, 5166 "Invalid nexthop configuration - no valid nexthops"); 5167 return -EINVAL; 5168 } 5169 5170 /* for add and replace send one notification with all nexthops. 5171 * Skip the notification in fib6_add_rt2node and send one with 5172 * the full route when done 5173 */ 5174 info->skip_notify = 1; 5175 5176 /* For add and replace, send one notification with all nexthops. For 5177 * append, send one notification with all appended nexthops. 5178 */ 5179 info->skip_notify_kernel = 1; 5180 5181 err_nh = NULL; 5182 list_for_each_entry(nh, &rt6_nh_list, next) { 5183 err = __ip6_ins_rt(nh->fib6_info, info, extack); 5184 fib6_info_release(nh->fib6_info); 5185 5186 if (!err) { 5187 /* save reference to last route successfully inserted */ 5188 rt_last = nh->fib6_info; 5189 5190 /* save reference to first route for notification */ 5191 if (!rt_notif) 5192 rt_notif = nh->fib6_info; 5193 } 5194 5195 /* nh->fib6_info is used or freed at this point, reset to NULL*/ 5196 nh->fib6_info = NULL; 5197 if (err) { 5198 if (replace && nhn) 5199 NL_SET_ERR_MSG_MOD(extack, 5200 "multipath route replace failed (check consistency of installed routes)"); 5201 err_nh = nh; 5202 goto add_errout; 5203 } 5204 5205 /* Because each route is added like a single route we remove 5206 * these flags after the first nexthop: if there is a collision, 5207 * we have already failed to add the first nexthop: 5208 * fib6_add_rt2node() has rejected it; when replacing, old 5209 * nexthops have been replaced by first new, the rest should 5210 * be added to it. 5211 */ 5212 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 5213 NLM_F_REPLACE); 5214 cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE; 5215 nhn++; 5216 } 5217 5218 /* An in-kernel notification should only be sent in case the new 5219 * multipath route is added as the first route in the node, or if 5220 * it was appended to it. We pass 'rt_notif' since it is the first 5221 * sibling and might allow us to skip some checks in the replace case. 5222 */ 5223 if (ip6_route_mpath_should_notify(rt_notif)) { 5224 enum fib_event_type fib_event; 5225 5226 if (rt_notif->fib6_nsiblings != nhn - 1) 5227 fib_event = FIB_EVENT_ENTRY_APPEND; 5228 else 5229 fib_event = FIB_EVENT_ENTRY_REPLACE; 5230 5231 err = call_fib6_multipath_entry_notifiers(info->nl_net, 5232 fib_event, rt_notif, 5233 nhn - 1, extack); 5234 if (err) { 5235 /* Delete all the siblings that were just added */ 5236 err_nh = NULL; 5237 goto add_errout; 5238 } 5239 } 5240 5241 /* success ... tell user about new route */ 5242 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5243 goto cleanup; 5244 5245 add_errout: 5246 /* send notification for routes that were added so that 5247 * the delete notifications sent by ip6_route_del are 5248 * coherent 5249 */ 5250 if (rt_notif) 5251 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5252 5253 /* Delete routes that were already added */ 5254 list_for_each_entry(nh, &rt6_nh_list, next) { 5255 if (err_nh == nh) 5256 break; 5257 ip6_route_del(&nh->r_cfg, extack); 5258 } 5259 5260 cleanup: 5261 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { 5262 if (nh->fib6_info) 5263 fib6_info_release(nh->fib6_info); 5264 list_del(&nh->next); 5265 kfree(nh); 5266 } 5267 5268 return err; 5269 } 5270 5271 static int ip6_route_multipath_del(struct fib6_config *cfg, 5272 struct netlink_ext_ack *extack) 5273 { 5274 struct fib6_config r_cfg; 5275 struct rtnexthop *rtnh; 5276 int last_err = 0; 5277 int remaining; 5278 int attrlen; 5279 int err; 5280 5281 remaining = cfg->fc_mp_len; 5282 rtnh = (struct rtnexthop *)cfg->fc_mp; 5283 5284 /* Parse a Multipath Entry */ 5285 while (rtnh_ok(rtnh, remaining)) { 5286 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5287 if (rtnh->rtnh_ifindex) 5288 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5289 5290 attrlen = rtnh_attrlen(rtnh); 5291 if (attrlen > 0) { 5292 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5293 5294 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5295 if (nla) { 5296 nla_memcpy(&r_cfg.fc_gateway, nla, 16); 5297 r_cfg.fc_flags |= RTF_GATEWAY; 5298 } 5299 } 5300 err = ip6_route_del(&r_cfg, extack); 5301 if (err) 5302 last_err = err; 5303 5304 rtnh = rtnh_next(rtnh, &remaining); 5305 } 5306 5307 return last_err; 5308 } 5309 5310 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5311 struct netlink_ext_ack *extack) 5312 { 5313 struct fib6_config cfg; 5314 int err; 5315 5316 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5317 if (err < 0) 5318 return err; 5319 5320 if (cfg.fc_nh_id && 5321 !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id)) { 5322 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 5323 return -EINVAL; 5324 } 5325 5326 if (cfg.fc_mp) 5327 return ip6_route_multipath_del(&cfg, extack); 5328 else { 5329 cfg.fc_delete_all_nh = 1; 5330 return ip6_route_del(&cfg, extack); 5331 } 5332 } 5333 5334 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5335 struct netlink_ext_ack *extack) 5336 { 5337 struct fib6_config cfg; 5338 int err; 5339 5340 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5341 if (err < 0) 5342 return err; 5343 5344 if (cfg.fc_metric == 0) 5345 cfg.fc_metric = IP6_RT_PRIO_USER; 5346 5347 if (cfg.fc_mp) 5348 return ip6_route_multipath_add(&cfg, extack); 5349 else 5350 return ip6_route_add(&cfg, GFP_KERNEL, extack); 5351 } 5352 5353 /* add the overhead of this fib6_nh to nexthop_len */ 5354 static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg) 5355 { 5356 int *nexthop_len = arg; 5357 5358 *nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */ 5359 + NLA_ALIGN(sizeof(struct rtnexthop)) 5360 + nla_total_size(16); /* RTA_GATEWAY */ 5361 5362 if (nh->fib_nh_lws) { 5363 /* RTA_ENCAP_TYPE */ 5364 *nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5365 /* RTA_ENCAP */ 5366 *nexthop_len += nla_total_size(2); 5367 } 5368 5369 return 0; 5370 } 5371 5372 static size_t rt6_nlmsg_size(struct fib6_info *f6i) 5373 { 5374 int nexthop_len; 5375 5376 if (f6i->nh) { 5377 nexthop_len = nla_total_size(4); /* RTA_NH_ID */ 5378 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size, 5379 &nexthop_len); 5380 } else { 5381 struct fib6_nh *nh = f6i->fib6_nh; 5382 5383 nexthop_len = 0; 5384 if (f6i->fib6_nsiblings) { 5385 nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */ 5386 + NLA_ALIGN(sizeof(struct rtnexthop)) 5387 + nla_total_size(16) /* RTA_GATEWAY */ 5388 + lwtunnel_get_encap_size(nh->fib_nh_lws); 5389 5390 nexthop_len *= f6i->fib6_nsiblings; 5391 } 5392 nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5393 } 5394 5395 return NLMSG_ALIGN(sizeof(struct rtmsg)) 5396 + nla_total_size(16) /* RTA_SRC */ 5397 + nla_total_size(16) /* RTA_DST */ 5398 + nla_total_size(16) /* RTA_GATEWAY */ 5399 + nla_total_size(16) /* RTA_PREFSRC */ 5400 + nla_total_size(4) /* RTA_TABLE */ 5401 + nla_total_size(4) /* RTA_IIF */ 5402 + nla_total_size(4) /* RTA_OIF */ 5403 + nla_total_size(4) /* RTA_PRIORITY */ 5404 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 5405 + nla_total_size(sizeof(struct rta_cacheinfo)) 5406 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 5407 + nla_total_size(1) /* RTA_PREF */ 5408 + nexthop_len; 5409 } 5410 5411 static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh, 5412 unsigned char *flags) 5413 { 5414 if (nexthop_is_multipath(nh)) { 5415 struct nlattr *mp; 5416 5417 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5418 if (!mp) 5419 goto nla_put_failure; 5420 5421 if (nexthop_mpath_fill_node(skb, nh, AF_INET6)) 5422 goto nla_put_failure; 5423 5424 nla_nest_end(skb, mp); 5425 } else { 5426 struct fib6_nh *fib6_nh; 5427 5428 fib6_nh = nexthop_fib6_nh(nh); 5429 if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6, 5430 flags, false) < 0) 5431 goto nla_put_failure; 5432 } 5433 5434 return 0; 5435 5436 nla_put_failure: 5437 return -EMSGSIZE; 5438 } 5439 5440 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 5441 struct fib6_info *rt, struct dst_entry *dst, 5442 struct in6_addr *dest, struct in6_addr *src, 5443 int iif, int type, u32 portid, u32 seq, 5444 unsigned int flags) 5445 { 5446 struct rt6_info *rt6 = (struct rt6_info *)dst; 5447 struct rt6key *rt6_dst, *rt6_src; 5448 u32 *pmetrics, table, rt6_flags; 5449 unsigned char nh_flags = 0; 5450 struct nlmsghdr *nlh; 5451 struct rtmsg *rtm; 5452 long expires = 0; 5453 5454 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 5455 if (!nlh) 5456 return -EMSGSIZE; 5457 5458 if (rt6) { 5459 rt6_dst = &rt6->rt6i_dst; 5460 rt6_src = &rt6->rt6i_src; 5461 rt6_flags = rt6->rt6i_flags; 5462 } else { 5463 rt6_dst = &rt->fib6_dst; 5464 rt6_src = &rt->fib6_src; 5465 rt6_flags = rt->fib6_flags; 5466 } 5467 5468 rtm = nlmsg_data(nlh); 5469 rtm->rtm_family = AF_INET6; 5470 rtm->rtm_dst_len = rt6_dst->plen; 5471 rtm->rtm_src_len = rt6_src->plen; 5472 rtm->rtm_tos = 0; 5473 if (rt->fib6_table) 5474 table = rt->fib6_table->tb6_id; 5475 else 5476 table = RT6_TABLE_UNSPEC; 5477 rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT; 5478 if (nla_put_u32(skb, RTA_TABLE, table)) 5479 goto nla_put_failure; 5480 5481 rtm->rtm_type = rt->fib6_type; 5482 rtm->rtm_flags = 0; 5483 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 5484 rtm->rtm_protocol = rt->fib6_protocol; 5485 5486 if (rt6_flags & RTF_CACHE) 5487 rtm->rtm_flags |= RTM_F_CLONED; 5488 5489 if (dest) { 5490 if (nla_put_in6_addr(skb, RTA_DST, dest)) 5491 goto nla_put_failure; 5492 rtm->rtm_dst_len = 128; 5493 } else if (rtm->rtm_dst_len) 5494 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) 5495 goto nla_put_failure; 5496 #ifdef CONFIG_IPV6_SUBTREES 5497 if (src) { 5498 if (nla_put_in6_addr(skb, RTA_SRC, src)) 5499 goto nla_put_failure; 5500 rtm->rtm_src_len = 128; 5501 } else if (rtm->rtm_src_len && 5502 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) 5503 goto nla_put_failure; 5504 #endif 5505 if (iif) { 5506 #ifdef CONFIG_IPV6_MROUTE 5507 if (ipv6_addr_is_multicast(&rt6_dst->addr)) { 5508 int err = ip6mr_get_route(net, skb, rtm, portid); 5509 5510 if (err == 0) 5511 return 0; 5512 if (err < 0) 5513 goto nla_put_failure; 5514 } else 5515 #endif 5516 if (nla_put_u32(skb, RTA_IIF, iif)) 5517 goto nla_put_failure; 5518 } else if (dest) { 5519 struct in6_addr saddr_buf; 5520 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && 5521 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5522 goto nla_put_failure; 5523 } 5524 5525 if (rt->fib6_prefsrc.plen) { 5526 struct in6_addr saddr_buf; 5527 saddr_buf = rt->fib6_prefsrc.addr; 5528 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5529 goto nla_put_failure; 5530 } 5531 5532 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 5533 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 5534 goto nla_put_failure; 5535 5536 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 5537 goto nla_put_failure; 5538 5539 /* For multipath routes, walk the siblings list and add 5540 * each as a nexthop within RTA_MULTIPATH. 5541 */ 5542 if (rt6) { 5543 if (rt6_flags & RTF_GATEWAY && 5544 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) 5545 goto nla_put_failure; 5546 5547 if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex)) 5548 goto nla_put_failure; 5549 5550 if (dst->lwtstate && 5551 lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0) 5552 goto nla_put_failure; 5553 } else if (rt->fib6_nsiblings) { 5554 struct fib6_info *sibling, *next_sibling; 5555 struct nlattr *mp; 5556 5557 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5558 if (!mp) 5559 goto nla_put_failure; 5560 5561 if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common, 5562 rt->fib6_nh->fib_nh_weight, AF_INET6) < 0) 5563 goto nla_put_failure; 5564 5565 list_for_each_entry_safe(sibling, next_sibling, 5566 &rt->fib6_siblings, fib6_siblings) { 5567 if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common, 5568 sibling->fib6_nh->fib_nh_weight, 5569 AF_INET6) < 0) 5570 goto nla_put_failure; 5571 } 5572 5573 nla_nest_end(skb, mp); 5574 } else if (rt->nh) { 5575 if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id)) 5576 goto nla_put_failure; 5577 5578 if (nexthop_is_blackhole(rt->nh)) 5579 rtm->rtm_type = RTN_BLACKHOLE; 5580 5581 if (net->ipv4.sysctl_nexthop_compat_mode && 5582 rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0) 5583 goto nla_put_failure; 5584 5585 rtm->rtm_flags |= nh_flags; 5586 } else { 5587 if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6, 5588 &nh_flags, false) < 0) 5589 goto nla_put_failure; 5590 5591 rtm->rtm_flags |= nh_flags; 5592 } 5593 5594 if (rt6_flags & RTF_EXPIRES) { 5595 expires = dst ? dst->expires : rt->expires; 5596 expires -= jiffies; 5597 } 5598 5599 if (!dst) { 5600 if (rt->offload) 5601 rtm->rtm_flags |= RTM_F_OFFLOAD; 5602 if (rt->trap) 5603 rtm->rtm_flags |= RTM_F_TRAP; 5604 if (rt->offload_failed) 5605 rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED; 5606 } 5607 5608 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 5609 goto nla_put_failure; 5610 5611 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) 5612 goto nla_put_failure; 5613 5614 5615 nlmsg_end(skb, nlh); 5616 return 0; 5617 5618 nla_put_failure: 5619 nlmsg_cancel(skb, nlh); 5620 return -EMSGSIZE; 5621 } 5622 5623 static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg) 5624 { 5625 const struct net_device *dev = arg; 5626 5627 if (nh->fib_nh_dev == dev) 5628 return 1; 5629 5630 return 0; 5631 } 5632 5633 static bool fib6_info_uses_dev(const struct fib6_info *f6i, 5634 const struct net_device *dev) 5635 { 5636 if (f6i->nh) { 5637 struct net_device *_dev = (struct net_device *)dev; 5638 5639 return !!nexthop_for_each_fib6_nh(f6i->nh, 5640 fib6_info_nh_uses_dev, 5641 _dev); 5642 } 5643 5644 if (f6i->fib6_nh->fib_nh_dev == dev) 5645 return true; 5646 5647 if (f6i->fib6_nsiblings) { 5648 struct fib6_info *sibling, *next_sibling; 5649 5650 list_for_each_entry_safe(sibling, next_sibling, 5651 &f6i->fib6_siblings, fib6_siblings) { 5652 if (sibling->fib6_nh->fib_nh_dev == dev) 5653 return true; 5654 } 5655 } 5656 5657 return false; 5658 } 5659 5660 struct fib6_nh_exception_dump_walker { 5661 struct rt6_rtnl_dump_arg *dump; 5662 struct fib6_info *rt; 5663 unsigned int flags; 5664 unsigned int skip; 5665 unsigned int count; 5666 }; 5667 5668 static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg) 5669 { 5670 struct fib6_nh_exception_dump_walker *w = arg; 5671 struct rt6_rtnl_dump_arg *dump = w->dump; 5672 struct rt6_exception_bucket *bucket; 5673 struct rt6_exception *rt6_ex; 5674 int i, err; 5675 5676 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 5677 if (!bucket) 5678 return 0; 5679 5680 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 5681 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 5682 if (w->skip) { 5683 w->skip--; 5684 continue; 5685 } 5686 5687 /* Expiration of entries doesn't bump sernum, insertion 5688 * does. Removal is triggered by insertion, so we can 5689 * rely on the fact that if entries change between two 5690 * partial dumps, this node is scanned again completely, 5691 * see rt6_insert_exception() and fib6_dump_table(). 5692 * 5693 * Count expired entries we go through as handled 5694 * entries that we'll skip next time, in case of partial 5695 * node dump. Otherwise, if entries expire meanwhile, 5696 * we'll skip the wrong amount. 5697 */ 5698 if (rt6_check_expired(rt6_ex->rt6i)) { 5699 w->count++; 5700 continue; 5701 } 5702 5703 err = rt6_fill_node(dump->net, dump->skb, w->rt, 5704 &rt6_ex->rt6i->dst, NULL, NULL, 0, 5705 RTM_NEWROUTE, 5706 NETLINK_CB(dump->cb->skb).portid, 5707 dump->cb->nlh->nlmsg_seq, w->flags); 5708 if (err) 5709 return err; 5710 5711 w->count++; 5712 } 5713 bucket++; 5714 } 5715 5716 return 0; 5717 } 5718 5719 /* Return -1 if done with node, number of handled routes on partial dump */ 5720 int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip) 5721 { 5722 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 5723 struct fib_dump_filter *filter = &arg->filter; 5724 unsigned int flags = NLM_F_MULTI; 5725 struct net *net = arg->net; 5726 int count = 0; 5727 5728 if (rt == net->ipv6.fib6_null_entry) 5729 return -1; 5730 5731 if ((filter->flags & RTM_F_PREFIX) && 5732 !(rt->fib6_flags & RTF_PREFIX_RT)) { 5733 /* success since this is not a prefix route */ 5734 return -1; 5735 } 5736 if (filter->filter_set && 5737 ((filter->rt_type && rt->fib6_type != filter->rt_type) || 5738 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || 5739 (filter->protocol && rt->fib6_protocol != filter->protocol))) { 5740 return -1; 5741 } 5742 5743 if (filter->filter_set || 5744 !filter->dump_routes || !filter->dump_exceptions) { 5745 flags |= NLM_F_DUMP_FILTERED; 5746 } 5747 5748 if (filter->dump_routes) { 5749 if (skip) { 5750 skip--; 5751 } else { 5752 if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 5753 0, RTM_NEWROUTE, 5754 NETLINK_CB(arg->cb->skb).portid, 5755 arg->cb->nlh->nlmsg_seq, flags)) { 5756 return 0; 5757 } 5758 count++; 5759 } 5760 } 5761 5762 if (filter->dump_exceptions) { 5763 struct fib6_nh_exception_dump_walker w = { .dump = arg, 5764 .rt = rt, 5765 .flags = flags, 5766 .skip = skip, 5767 .count = 0 }; 5768 int err; 5769 5770 rcu_read_lock(); 5771 if (rt->nh) { 5772 err = nexthop_for_each_fib6_nh(rt->nh, 5773 rt6_nh_dump_exceptions, 5774 &w); 5775 } else { 5776 err = rt6_nh_dump_exceptions(rt->fib6_nh, &w); 5777 } 5778 rcu_read_unlock(); 5779 5780 if (err) 5781 return count += w.count; 5782 } 5783 5784 return -1; 5785 } 5786 5787 static int inet6_rtm_valid_getroute_req(struct sk_buff *skb, 5788 const struct nlmsghdr *nlh, 5789 struct nlattr **tb, 5790 struct netlink_ext_ack *extack) 5791 { 5792 struct rtmsg *rtm; 5793 int i, err; 5794 5795 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 5796 NL_SET_ERR_MSG_MOD(extack, 5797 "Invalid header for get route request"); 5798 return -EINVAL; 5799 } 5800 5801 if (!netlink_strict_get_check(skb)) 5802 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 5803 rtm_ipv6_policy, extack); 5804 5805 rtm = nlmsg_data(nlh); 5806 if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || 5807 (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || 5808 rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || 5809 rtm->rtm_type) { 5810 NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request"); 5811 return -EINVAL; 5812 } 5813 if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) { 5814 NL_SET_ERR_MSG_MOD(extack, 5815 "Invalid flags for get route request"); 5816 return -EINVAL; 5817 } 5818 5819 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 5820 rtm_ipv6_policy, extack); 5821 if (err) 5822 return err; 5823 5824 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 5825 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 5826 NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); 5827 return -EINVAL; 5828 } 5829 5830 for (i = 0; i <= RTA_MAX; i++) { 5831 if (!tb[i]) 5832 continue; 5833 5834 switch (i) { 5835 case RTA_SRC: 5836 case RTA_DST: 5837 case RTA_IIF: 5838 case RTA_OIF: 5839 case RTA_MARK: 5840 case RTA_UID: 5841 case RTA_SPORT: 5842 case RTA_DPORT: 5843 case RTA_IP_PROTO: 5844 break; 5845 default: 5846 NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request"); 5847 return -EINVAL; 5848 } 5849 } 5850 5851 return 0; 5852 } 5853 5854 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 5855 struct netlink_ext_ack *extack) 5856 { 5857 struct net *net = sock_net(in_skb->sk); 5858 struct nlattr *tb[RTA_MAX+1]; 5859 int err, iif = 0, oif = 0; 5860 struct fib6_info *from; 5861 struct dst_entry *dst; 5862 struct rt6_info *rt; 5863 struct sk_buff *skb; 5864 struct rtmsg *rtm; 5865 struct flowi6 fl6 = {}; 5866 bool fibmatch; 5867 5868 err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 5869 if (err < 0) 5870 goto errout; 5871 5872 err = -EINVAL; 5873 rtm = nlmsg_data(nlh); 5874 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); 5875 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 5876 5877 if (tb[RTA_SRC]) { 5878 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 5879 goto errout; 5880 5881 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 5882 } 5883 5884 if (tb[RTA_DST]) { 5885 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 5886 goto errout; 5887 5888 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 5889 } 5890 5891 if (tb[RTA_IIF]) 5892 iif = nla_get_u32(tb[RTA_IIF]); 5893 5894 if (tb[RTA_OIF]) 5895 oif = nla_get_u32(tb[RTA_OIF]); 5896 5897 if (tb[RTA_MARK]) 5898 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 5899 5900 if (tb[RTA_UID]) 5901 fl6.flowi6_uid = make_kuid(current_user_ns(), 5902 nla_get_u32(tb[RTA_UID])); 5903 else 5904 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 5905 5906 if (tb[RTA_SPORT]) 5907 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); 5908 5909 if (tb[RTA_DPORT]) 5910 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); 5911 5912 if (tb[RTA_IP_PROTO]) { 5913 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], 5914 &fl6.flowi6_proto, AF_INET6, 5915 extack); 5916 if (err) 5917 goto errout; 5918 } 5919 5920 if (iif) { 5921 struct net_device *dev; 5922 int flags = 0; 5923 5924 rcu_read_lock(); 5925 5926 dev = dev_get_by_index_rcu(net, iif); 5927 if (!dev) { 5928 rcu_read_unlock(); 5929 err = -ENODEV; 5930 goto errout; 5931 } 5932 5933 fl6.flowi6_iif = iif; 5934 5935 if (!ipv6_addr_any(&fl6.saddr)) 5936 flags |= RT6_LOOKUP_F_HAS_SADDR; 5937 5938 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 5939 5940 rcu_read_unlock(); 5941 } else { 5942 fl6.flowi6_oif = oif; 5943 5944 dst = ip6_route_output(net, NULL, &fl6); 5945 } 5946 5947 5948 rt = container_of(dst, struct rt6_info, dst); 5949 if (rt->dst.error) { 5950 err = rt->dst.error; 5951 ip6_rt_put(rt); 5952 goto errout; 5953 } 5954 5955 if (rt == net->ipv6.ip6_null_entry) { 5956 err = rt->dst.error; 5957 ip6_rt_put(rt); 5958 goto errout; 5959 } 5960 5961 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 5962 if (!skb) { 5963 ip6_rt_put(rt); 5964 err = -ENOBUFS; 5965 goto errout; 5966 } 5967 5968 skb_dst_set(skb, &rt->dst); 5969 5970 rcu_read_lock(); 5971 from = rcu_dereference(rt->from); 5972 if (from) { 5973 if (fibmatch) 5974 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, 5975 iif, RTM_NEWROUTE, 5976 NETLINK_CB(in_skb).portid, 5977 nlh->nlmsg_seq, 0); 5978 else 5979 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 5980 &fl6.saddr, iif, RTM_NEWROUTE, 5981 NETLINK_CB(in_skb).portid, 5982 nlh->nlmsg_seq, 0); 5983 } else { 5984 err = -ENETUNREACH; 5985 } 5986 rcu_read_unlock(); 5987 5988 if (err < 0) { 5989 kfree_skb(skb); 5990 goto errout; 5991 } 5992 5993 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 5994 errout: 5995 return err; 5996 } 5997 5998 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 5999 unsigned int nlm_flags) 6000 { 6001 struct sk_buff *skb; 6002 struct net *net = info->nl_net; 6003 u32 seq; 6004 int err; 6005 6006 err = -ENOBUFS; 6007 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6008 6009 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6010 if (!skb) 6011 goto errout; 6012 6013 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6014 event, info->portid, seq, nlm_flags); 6015 if (err < 0) { 6016 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6017 WARN_ON(err == -EMSGSIZE); 6018 kfree_skb(skb); 6019 goto errout; 6020 } 6021 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6022 info->nlh, gfp_any()); 6023 return; 6024 errout: 6025 if (err < 0) 6026 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6027 } 6028 6029 void fib6_rt_update(struct net *net, struct fib6_info *rt, 6030 struct nl_info *info) 6031 { 6032 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6033 struct sk_buff *skb; 6034 int err = -ENOBUFS; 6035 6036 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6037 if (!skb) 6038 goto errout; 6039 6040 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6041 RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE); 6042 if (err < 0) { 6043 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6044 WARN_ON(err == -EMSGSIZE); 6045 kfree_skb(skb); 6046 goto errout; 6047 } 6048 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6049 info->nlh, gfp_any()); 6050 return; 6051 errout: 6052 if (err < 0) 6053 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6054 } 6055 6056 void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i, 6057 bool offload, bool trap, bool offload_failed) 6058 { 6059 struct sk_buff *skb; 6060 int err; 6061 6062 if (f6i->offload == offload && f6i->trap == trap && 6063 f6i->offload_failed == offload_failed) 6064 return; 6065 6066 f6i->offload = offload; 6067 f6i->trap = trap; 6068 6069 /* 2 means send notifications only if offload_failed was changed. */ 6070 if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 && 6071 f6i->offload_failed == offload_failed) 6072 return; 6073 6074 f6i->offload_failed = offload_failed; 6075 6076 if (!rcu_access_pointer(f6i->fib6_node)) 6077 /* The route was removed from the tree, do not send 6078 * notfication. 6079 */ 6080 return; 6081 6082 if (!net->ipv6.sysctl.fib_notify_on_flag_change) 6083 return; 6084 6085 skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL); 6086 if (!skb) { 6087 err = -ENOBUFS; 6088 goto errout; 6089 } 6090 6091 err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0, 6092 0, 0); 6093 if (err < 0) { 6094 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6095 WARN_ON(err == -EMSGSIZE); 6096 kfree_skb(skb); 6097 goto errout; 6098 } 6099 6100 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL); 6101 return; 6102 6103 errout: 6104 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6105 } 6106 EXPORT_SYMBOL(fib6_info_hw_flags_set); 6107 6108 static int ip6_route_dev_notify(struct notifier_block *this, 6109 unsigned long event, void *ptr) 6110 { 6111 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6112 struct net *net = dev_net(dev); 6113 6114 if (!(dev->flags & IFF_LOOPBACK)) 6115 return NOTIFY_OK; 6116 6117 if (event == NETDEV_REGISTER) { 6118 net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev; 6119 net->ipv6.ip6_null_entry->dst.dev = dev; 6120 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 6121 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6122 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 6123 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 6124 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 6125 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 6126 #endif 6127 } else if (event == NETDEV_UNREGISTER && 6128 dev->reg_state != NETREG_UNREGISTERED) { 6129 /* NETDEV_UNREGISTER could be fired for multiple times by 6130 * netdev_wait_allrefs(). Make sure we only call this once. 6131 */ 6132 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 6133 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6134 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 6135 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 6136 #endif 6137 } 6138 6139 return NOTIFY_OK; 6140 } 6141 6142 /* 6143 * /proc 6144 */ 6145 6146 #ifdef CONFIG_PROC_FS 6147 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 6148 { 6149 struct net *net = (struct net *)seq->private; 6150 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 6151 net->ipv6.rt6_stats->fib_nodes, 6152 net->ipv6.rt6_stats->fib_route_nodes, 6153 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 6154 net->ipv6.rt6_stats->fib_rt_entries, 6155 net->ipv6.rt6_stats->fib_rt_cache, 6156 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 6157 net->ipv6.rt6_stats->fib_discarded_routes); 6158 6159 return 0; 6160 } 6161 #endif /* CONFIG_PROC_FS */ 6162 6163 #ifdef CONFIG_SYSCTL 6164 6165 static int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, 6166 void *buffer, size_t *lenp, loff_t *ppos) 6167 { 6168 struct net *net; 6169 int delay; 6170 int ret; 6171 if (!write) 6172 return -EINVAL; 6173 6174 net = (struct net *)ctl->extra1; 6175 delay = net->ipv6.sysctl.flush_delay; 6176 ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 6177 if (ret) 6178 return ret; 6179 6180 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 6181 return 0; 6182 } 6183 6184 static struct ctl_table ipv6_route_table_template[] = { 6185 { 6186 .procname = "flush", 6187 .data = &init_net.ipv6.sysctl.flush_delay, 6188 .maxlen = sizeof(int), 6189 .mode = 0200, 6190 .proc_handler = ipv6_sysctl_rtcache_flush 6191 }, 6192 { 6193 .procname = "gc_thresh", 6194 .data = &ip6_dst_ops_template.gc_thresh, 6195 .maxlen = sizeof(int), 6196 .mode = 0644, 6197 .proc_handler = proc_dointvec, 6198 }, 6199 { 6200 .procname = "max_size", 6201 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 6202 .maxlen = sizeof(int), 6203 .mode = 0644, 6204 .proc_handler = proc_dointvec, 6205 }, 6206 { 6207 .procname = "gc_min_interval", 6208 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6209 .maxlen = sizeof(int), 6210 .mode = 0644, 6211 .proc_handler = proc_dointvec_jiffies, 6212 }, 6213 { 6214 .procname = "gc_timeout", 6215 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 6216 .maxlen = sizeof(int), 6217 .mode = 0644, 6218 .proc_handler = proc_dointvec_jiffies, 6219 }, 6220 { 6221 .procname = "gc_interval", 6222 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 6223 .maxlen = sizeof(int), 6224 .mode = 0644, 6225 .proc_handler = proc_dointvec_jiffies, 6226 }, 6227 { 6228 .procname = "gc_elasticity", 6229 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 6230 .maxlen = sizeof(int), 6231 .mode = 0644, 6232 .proc_handler = proc_dointvec, 6233 }, 6234 { 6235 .procname = "mtu_expires", 6236 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 6237 .maxlen = sizeof(int), 6238 .mode = 0644, 6239 .proc_handler = proc_dointvec_jiffies, 6240 }, 6241 { 6242 .procname = "min_adv_mss", 6243 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 6244 .maxlen = sizeof(int), 6245 .mode = 0644, 6246 .proc_handler = proc_dointvec, 6247 }, 6248 { 6249 .procname = "gc_min_interval_ms", 6250 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6251 .maxlen = sizeof(int), 6252 .mode = 0644, 6253 .proc_handler = proc_dointvec_ms_jiffies, 6254 }, 6255 { 6256 .procname = "skip_notify_on_dev_down", 6257 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, 6258 .maxlen = sizeof(int), 6259 .mode = 0644, 6260 .proc_handler = proc_dointvec_minmax, 6261 .extra1 = SYSCTL_ZERO, 6262 .extra2 = SYSCTL_ONE, 6263 }, 6264 { } 6265 }; 6266 6267 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 6268 { 6269 struct ctl_table *table; 6270 6271 table = kmemdup(ipv6_route_table_template, 6272 sizeof(ipv6_route_table_template), 6273 GFP_KERNEL); 6274 6275 if (table) { 6276 table[0].data = &net->ipv6.sysctl.flush_delay; 6277 table[0].extra1 = net; 6278 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 6279 table[2].data = &net->ipv6.sysctl.ip6_rt_max_size; 6280 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6281 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 6282 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 6283 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 6284 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 6285 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 6286 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6287 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; 6288 6289 /* Don't export sysctls to unprivileged users */ 6290 if (net->user_ns != &init_user_ns) 6291 table[0].procname = NULL; 6292 } 6293 6294 return table; 6295 } 6296 #endif 6297 6298 static int __net_init ip6_route_net_init(struct net *net) 6299 { 6300 int ret = -ENOMEM; 6301 6302 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 6303 sizeof(net->ipv6.ip6_dst_ops)); 6304 6305 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 6306 goto out_ip6_dst_ops; 6307 6308 net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true); 6309 if (!net->ipv6.fib6_null_entry) 6310 goto out_ip6_dst_entries; 6311 memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template, 6312 sizeof(*net->ipv6.fib6_null_entry)); 6313 6314 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 6315 sizeof(*net->ipv6.ip6_null_entry), 6316 GFP_KERNEL); 6317 if (!net->ipv6.ip6_null_entry) 6318 goto out_fib6_null_entry; 6319 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6320 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 6321 ip6_template_metrics, true); 6322 INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->rt6i_uncached); 6323 6324 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6325 net->ipv6.fib6_has_custom_rules = false; 6326 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 6327 sizeof(*net->ipv6.ip6_prohibit_entry), 6328 GFP_KERNEL); 6329 if (!net->ipv6.ip6_prohibit_entry) 6330 goto out_ip6_null_entry; 6331 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6332 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 6333 ip6_template_metrics, true); 6334 INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->rt6i_uncached); 6335 6336 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 6337 sizeof(*net->ipv6.ip6_blk_hole_entry), 6338 GFP_KERNEL); 6339 if (!net->ipv6.ip6_blk_hole_entry) 6340 goto out_ip6_prohibit_entry; 6341 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6342 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 6343 ip6_template_metrics, true); 6344 INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->rt6i_uncached); 6345 #ifdef CONFIG_IPV6_SUBTREES 6346 net->ipv6.fib6_routes_require_src = 0; 6347 #endif 6348 #endif 6349 6350 net->ipv6.sysctl.flush_delay = 0; 6351 net->ipv6.sysctl.ip6_rt_max_size = 4096; 6352 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 6353 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 6354 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 6355 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 6356 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 6357 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 6358 net->ipv6.sysctl.skip_notify_on_dev_down = 0; 6359 6360 net->ipv6.ip6_rt_gc_expire = 30*HZ; 6361 6362 ret = 0; 6363 out: 6364 return ret; 6365 6366 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6367 out_ip6_prohibit_entry: 6368 kfree(net->ipv6.ip6_prohibit_entry); 6369 out_ip6_null_entry: 6370 kfree(net->ipv6.ip6_null_entry); 6371 #endif 6372 out_fib6_null_entry: 6373 kfree(net->ipv6.fib6_null_entry); 6374 out_ip6_dst_entries: 6375 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6376 out_ip6_dst_ops: 6377 goto out; 6378 } 6379 6380 static void __net_exit ip6_route_net_exit(struct net *net) 6381 { 6382 kfree(net->ipv6.fib6_null_entry); 6383 kfree(net->ipv6.ip6_null_entry); 6384 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6385 kfree(net->ipv6.ip6_prohibit_entry); 6386 kfree(net->ipv6.ip6_blk_hole_entry); 6387 #endif 6388 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6389 } 6390 6391 static int __net_init ip6_route_net_init_late(struct net *net) 6392 { 6393 #ifdef CONFIG_PROC_FS 6394 proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops, 6395 sizeof(struct ipv6_route_iter)); 6396 proc_create_net_single("rt6_stats", 0444, net->proc_net, 6397 rt6_stats_seq_show, NULL); 6398 #endif 6399 return 0; 6400 } 6401 6402 static void __net_exit ip6_route_net_exit_late(struct net *net) 6403 { 6404 #ifdef CONFIG_PROC_FS 6405 remove_proc_entry("ipv6_route", net->proc_net); 6406 remove_proc_entry("rt6_stats", net->proc_net); 6407 #endif 6408 } 6409 6410 static struct pernet_operations ip6_route_net_ops = { 6411 .init = ip6_route_net_init, 6412 .exit = ip6_route_net_exit, 6413 }; 6414 6415 static int __net_init ipv6_inetpeer_init(struct net *net) 6416 { 6417 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 6418 6419 if (!bp) 6420 return -ENOMEM; 6421 inet_peer_base_init(bp); 6422 net->ipv6.peers = bp; 6423 return 0; 6424 } 6425 6426 static void __net_exit ipv6_inetpeer_exit(struct net *net) 6427 { 6428 struct inet_peer_base *bp = net->ipv6.peers; 6429 6430 net->ipv6.peers = NULL; 6431 inetpeer_invalidate_tree(bp); 6432 kfree(bp); 6433 } 6434 6435 static struct pernet_operations ipv6_inetpeer_ops = { 6436 .init = ipv6_inetpeer_init, 6437 .exit = ipv6_inetpeer_exit, 6438 }; 6439 6440 static struct pernet_operations ip6_route_net_late_ops = { 6441 .init = ip6_route_net_init_late, 6442 .exit = ip6_route_net_exit_late, 6443 }; 6444 6445 static struct notifier_block ip6_route_dev_notifier = { 6446 .notifier_call = ip6_route_dev_notify, 6447 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 6448 }; 6449 6450 void __init ip6_route_init_special_entries(void) 6451 { 6452 /* Registering of the loopback is done before this portion of code, 6453 * the loopback reference in rt6_info will not be taken, do it 6454 * manually for init_net */ 6455 init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev; 6456 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 6457 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6458 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6459 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 6460 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6461 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 6462 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6463 #endif 6464 } 6465 6466 #if IS_BUILTIN(CONFIG_IPV6) 6467 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6468 DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt) 6469 6470 BTF_ID_LIST(btf_fib6_info_id) 6471 BTF_ID(struct, fib6_info) 6472 6473 static const struct bpf_iter_seq_info ipv6_route_seq_info = { 6474 .seq_ops = &ipv6_route_seq_ops, 6475 .init_seq_private = bpf_iter_init_seq_net, 6476 .fini_seq_private = bpf_iter_fini_seq_net, 6477 .seq_priv_size = sizeof(struct ipv6_route_iter), 6478 }; 6479 6480 static struct bpf_iter_reg ipv6_route_reg_info = { 6481 .target = "ipv6_route", 6482 .ctx_arg_info_size = 1, 6483 .ctx_arg_info = { 6484 { offsetof(struct bpf_iter__ipv6_route, rt), 6485 PTR_TO_BTF_ID_OR_NULL }, 6486 }, 6487 .seq_info = &ipv6_route_seq_info, 6488 }; 6489 6490 static int __init bpf_iter_register(void) 6491 { 6492 ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id; 6493 return bpf_iter_reg_target(&ipv6_route_reg_info); 6494 } 6495 6496 static void bpf_iter_unregister(void) 6497 { 6498 bpf_iter_unreg_target(&ipv6_route_reg_info); 6499 } 6500 #endif 6501 #endif 6502 6503 int __init ip6_route_init(void) 6504 { 6505 int ret; 6506 int cpu; 6507 6508 ret = -ENOMEM; 6509 ip6_dst_ops_template.kmem_cachep = 6510 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 6511 SLAB_HWCACHE_ALIGN, NULL); 6512 if (!ip6_dst_ops_template.kmem_cachep) 6513 goto out; 6514 6515 ret = dst_entries_init(&ip6_dst_blackhole_ops); 6516 if (ret) 6517 goto out_kmem_cache; 6518 6519 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 6520 if (ret) 6521 goto out_dst_entries; 6522 6523 ret = register_pernet_subsys(&ip6_route_net_ops); 6524 if (ret) 6525 goto out_register_inetpeer; 6526 6527 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 6528 6529 ret = fib6_init(); 6530 if (ret) 6531 goto out_register_subsys; 6532 6533 ret = xfrm6_init(); 6534 if (ret) 6535 goto out_fib6_init; 6536 6537 ret = fib6_rules_init(); 6538 if (ret) 6539 goto xfrm6_init; 6540 6541 ret = register_pernet_subsys(&ip6_route_net_late_ops); 6542 if (ret) 6543 goto fib6_rules_init; 6544 6545 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, 6546 inet6_rtm_newroute, NULL, 0); 6547 if (ret < 0) 6548 goto out_register_late_subsys; 6549 6550 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, 6551 inet6_rtm_delroute, NULL, 0); 6552 if (ret < 0) 6553 goto out_register_late_subsys; 6554 6555 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, 6556 inet6_rtm_getroute, NULL, 6557 RTNL_FLAG_DOIT_UNLOCKED); 6558 if (ret < 0) 6559 goto out_register_late_subsys; 6560 6561 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 6562 if (ret) 6563 goto out_register_late_subsys; 6564 6565 #if IS_BUILTIN(CONFIG_IPV6) 6566 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6567 ret = bpf_iter_register(); 6568 if (ret) 6569 goto out_register_late_subsys; 6570 #endif 6571 #endif 6572 6573 for_each_possible_cpu(cpu) { 6574 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 6575 6576 INIT_LIST_HEAD(&ul->head); 6577 spin_lock_init(&ul->lock); 6578 } 6579 6580 out: 6581 return ret; 6582 6583 out_register_late_subsys: 6584 rtnl_unregister_all(PF_INET6); 6585 unregister_pernet_subsys(&ip6_route_net_late_ops); 6586 fib6_rules_init: 6587 fib6_rules_cleanup(); 6588 xfrm6_init: 6589 xfrm6_fini(); 6590 out_fib6_init: 6591 fib6_gc_cleanup(); 6592 out_register_subsys: 6593 unregister_pernet_subsys(&ip6_route_net_ops); 6594 out_register_inetpeer: 6595 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6596 out_dst_entries: 6597 dst_entries_destroy(&ip6_dst_blackhole_ops); 6598 out_kmem_cache: 6599 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6600 goto out; 6601 } 6602 6603 void ip6_route_cleanup(void) 6604 { 6605 #if IS_BUILTIN(CONFIG_IPV6) 6606 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6607 bpf_iter_unregister(); 6608 #endif 6609 #endif 6610 unregister_netdevice_notifier(&ip6_route_dev_notifier); 6611 unregister_pernet_subsys(&ip6_route_net_late_ops); 6612 fib6_rules_cleanup(); 6613 xfrm6_fini(); 6614 fib6_gc_cleanup(); 6615 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6616 unregister_pernet_subsys(&ip6_route_net_ops); 6617 dst_entries_destroy(&ip6_dst_blackhole_ops); 6618 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6619 } 6620