1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $ 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or (at your option) any later version. 14 */ 15 16 /* 17 * Changes: 18 * Yuji SEKIYA @USAGI: Support default route on router node; 19 * remove ip6_null_entry from the top of 20 * routing table. 21 * Ville Nuorvala: Fixed routing subtrees. 22 */ 23 #include <linux/errno.h> 24 #include <linux/types.h> 25 #include <linux/net.h> 26 #include <linux/route.h> 27 #include <linux/netdevice.h> 28 #include <linux/in6.h> 29 #include <linux/init.h> 30 #include <linux/list.h> 31 32 #ifdef CONFIG_PROC_FS 33 #include <linux/proc_fs.h> 34 #endif 35 36 #include <net/ipv6.h> 37 #include <net/ndisc.h> 38 #include <net/addrconf.h> 39 40 #include <net/ip6_fib.h> 41 #include <net/ip6_route.h> 42 43 #define RT6_DEBUG 2 44 45 #if RT6_DEBUG >= 3 46 #define RT6_TRACE(x...) printk(KERN_DEBUG x) 47 #else 48 #define RT6_TRACE(x...) do { ; } while (0) 49 #endif 50 51 struct rt6_statistics rt6_stats; 52 53 static struct kmem_cache * fib6_node_kmem __read_mostly; 54 55 enum fib_walk_state_t 56 { 57 #ifdef CONFIG_IPV6_SUBTREES 58 FWS_S, 59 #endif 60 FWS_L, 61 FWS_R, 62 FWS_C, 63 FWS_U 64 }; 65 66 struct fib6_cleaner_t 67 { 68 struct fib6_walker_t w; 69 int (*func)(struct rt6_info *, void *arg); 70 void *arg; 71 }; 72 73 static DEFINE_RWLOCK(fib6_walker_lock); 74 75 #ifdef CONFIG_IPV6_SUBTREES 76 #define FWS_INIT FWS_S 77 #else 78 #define FWS_INIT FWS_L 79 #endif 80 81 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt); 82 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn); 83 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn); 84 static int fib6_walk(struct fib6_walker_t *w); 85 static int fib6_walk_continue(struct fib6_walker_t *w); 86 87 /* 88 * A routing update causes an increase of the serial number on the 89 * affected subtree. This allows for cached routes to be asynchronously 90 * tested when modifications are made to the destination cache as a 91 * result of redirects, path MTU changes, etc. 92 */ 93 94 static __u32 rt_sernum; 95 96 static DEFINE_TIMER(ip6_fib_timer, fib6_run_gc, 0, 0); 97 98 static struct fib6_walker_t fib6_walker_list = { 99 .prev = &fib6_walker_list, 100 .next = &fib6_walker_list, 101 }; 102 103 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next) 104 105 static inline void fib6_walker_link(struct fib6_walker_t *w) 106 { 107 write_lock_bh(&fib6_walker_lock); 108 w->next = fib6_walker_list.next; 109 w->prev = &fib6_walker_list; 110 w->next->prev = w; 111 w->prev->next = w; 112 write_unlock_bh(&fib6_walker_lock); 113 } 114 115 static inline void fib6_walker_unlink(struct fib6_walker_t *w) 116 { 117 write_lock_bh(&fib6_walker_lock); 118 w->next->prev = w->prev; 119 w->prev->next = w->next; 120 w->prev = w->next = w; 121 write_unlock_bh(&fib6_walker_lock); 122 } 123 static __inline__ u32 fib6_new_sernum(void) 124 { 125 u32 n = ++rt_sernum; 126 if ((__s32)n <= 0) 127 rt_sernum = n = 1; 128 return n; 129 } 130 131 /* 132 * Auxiliary address test functions for the radix tree. 133 * 134 * These assume a 32bit processor (although it will work on 135 * 64bit processors) 136 */ 137 138 /* 139 * test bit 140 */ 141 142 static __inline__ __be32 addr_bit_set(void *token, int fn_bit) 143 { 144 __be32 *addr = token; 145 146 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5]; 147 } 148 149 static __inline__ struct fib6_node * node_alloc(void) 150 { 151 struct fib6_node *fn; 152 153 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 154 155 return fn; 156 } 157 158 static __inline__ void node_free(struct fib6_node * fn) 159 { 160 kmem_cache_free(fib6_node_kmem, fn); 161 } 162 163 static __inline__ void rt6_release(struct rt6_info *rt) 164 { 165 if (atomic_dec_and_test(&rt->rt6i_ref)) 166 dst_free(&rt->u.dst); 167 } 168 169 static struct fib6_table fib6_main_tbl = { 170 .tb6_id = RT6_TABLE_MAIN, 171 .tb6_root = { 172 .leaf = &ip6_null_entry, 173 .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO, 174 }, 175 }; 176 177 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 178 #define FIB_TABLE_HASHSZ 256 179 #else 180 #define FIB_TABLE_HASHSZ 1 181 #endif 182 static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ]; 183 184 static void fib6_link_table(struct fib6_table *tb) 185 { 186 unsigned int h; 187 188 /* 189 * Initialize table lock at a single place to give lockdep a key, 190 * tables aren't visible prior to being linked to the list. 191 */ 192 rwlock_init(&tb->tb6_lock); 193 194 h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1); 195 196 /* 197 * No protection necessary, this is the only list mutatation 198 * operation, tables never disappear once they exist. 199 */ 200 hlist_add_head_rcu(&tb->tb6_hlist, &fib_table_hash[h]); 201 } 202 203 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 204 static struct fib6_table fib6_local_tbl = { 205 .tb6_id = RT6_TABLE_LOCAL, 206 .tb6_root = { 207 .leaf = &ip6_null_entry, 208 .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO, 209 }, 210 }; 211 212 static struct fib6_table *fib6_alloc_table(u32 id) 213 { 214 struct fib6_table *table; 215 216 table = kzalloc(sizeof(*table), GFP_ATOMIC); 217 if (table != NULL) { 218 table->tb6_id = id; 219 table->tb6_root.leaf = &ip6_null_entry; 220 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 221 } 222 223 return table; 224 } 225 226 struct fib6_table *fib6_new_table(u32 id) 227 { 228 struct fib6_table *tb; 229 230 if (id == 0) 231 id = RT6_TABLE_MAIN; 232 tb = fib6_get_table(id); 233 if (tb) 234 return tb; 235 236 tb = fib6_alloc_table(id); 237 if (tb != NULL) 238 fib6_link_table(tb); 239 240 return tb; 241 } 242 243 struct fib6_table *fib6_get_table(u32 id) 244 { 245 struct fib6_table *tb; 246 struct hlist_node *node; 247 unsigned int h; 248 249 if (id == 0) 250 id = RT6_TABLE_MAIN; 251 h = id & (FIB_TABLE_HASHSZ - 1); 252 rcu_read_lock(); 253 hlist_for_each_entry_rcu(tb, node, &fib_table_hash[h], tb6_hlist) { 254 if (tb->tb6_id == id) { 255 rcu_read_unlock(); 256 return tb; 257 } 258 } 259 rcu_read_unlock(); 260 261 return NULL; 262 } 263 264 static void __init fib6_tables_init(void) 265 { 266 fib6_link_table(&fib6_main_tbl); 267 fib6_link_table(&fib6_local_tbl); 268 } 269 270 #else 271 272 struct fib6_table *fib6_new_table(u32 id) 273 { 274 return fib6_get_table(id); 275 } 276 277 struct fib6_table *fib6_get_table(u32 id) 278 { 279 return &fib6_main_tbl; 280 } 281 282 struct dst_entry *fib6_rule_lookup(struct flowi *fl, int flags, 283 pol_lookup_t lookup) 284 { 285 return (struct dst_entry *) lookup(&fib6_main_tbl, fl, flags); 286 } 287 288 static void __init fib6_tables_init(void) 289 { 290 fib6_link_table(&fib6_main_tbl); 291 } 292 293 #endif 294 295 static int fib6_dump_node(struct fib6_walker_t *w) 296 { 297 int res; 298 struct rt6_info *rt; 299 300 for (rt = w->leaf; rt; rt = rt->u.next) { 301 res = rt6_dump_route(rt, w->args); 302 if (res < 0) { 303 /* Frame is full, suspend walking */ 304 w->leaf = rt; 305 return 1; 306 } 307 BUG_TRAP(res!=0); 308 } 309 w->leaf = NULL; 310 return 0; 311 } 312 313 static void fib6_dump_end(struct netlink_callback *cb) 314 { 315 struct fib6_walker_t *w = (void*)cb->args[2]; 316 317 if (w) { 318 cb->args[2] = 0; 319 kfree(w); 320 } 321 cb->done = (void*)cb->args[3]; 322 cb->args[1] = 3; 323 } 324 325 static int fib6_dump_done(struct netlink_callback *cb) 326 { 327 fib6_dump_end(cb); 328 return cb->done ? cb->done(cb) : 0; 329 } 330 331 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 332 struct netlink_callback *cb) 333 { 334 struct fib6_walker_t *w; 335 int res; 336 337 w = (void *)cb->args[2]; 338 w->root = &table->tb6_root; 339 340 if (cb->args[4] == 0) { 341 read_lock_bh(&table->tb6_lock); 342 res = fib6_walk(w); 343 read_unlock_bh(&table->tb6_lock); 344 if (res > 0) 345 cb->args[4] = 1; 346 } else { 347 read_lock_bh(&table->tb6_lock); 348 res = fib6_walk_continue(w); 349 read_unlock_bh(&table->tb6_lock); 350 if (res != 0) { 351 if (res < 0) 352 fib6_walker_unlink(w); 353 goto end; 354 } 355 fib6_walker_unlink(w); 356 cb->args[4] = 0; 357 } 358 end: 359 return res; 360 } 361 362 int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 363 { 364 unsigned int h, s_h; 365 unsigned int e = 0, s_e; 366 struct rt6_rtnl_dump_arg arg; 367 struct fib6_walker_t *w; 368 struct fib6_table *tb; 369 struct hlist_node *node; 370 int res = 0; 371 372 s_h = cb->args[0]; 373 s_e = cb->args[1]; 374 375 w = (void *)cb->args[2]; 376 if (w == NULL) { 377 /* New dump: 378 * 379 * 1. hook callback destructor. 380 */ 381 cb->args[3] = (long)cb->done; 382 cb->done = fib6_dump_done; 383 384 /* 385 * 2. allocate and initialize walker. 386 */ 387 w = kzalloc(sizeof(*w), GFP_ATOMIC); 388 if (w == NULL) 389 return -ENOMEM; 390 w->func = fib6_dump_node; 391 cb->args[2] = (long)w; 392 } 393 394 arg.skb = skb; 395 arg.cb = cb; 396 w->args = &arg; 397 398 for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) { 399 e = 0; 400 hlist_for_each_entry(tb, node, &fib_table_hash[h], tb6_hlist) { 401 if (e < s_e) 402 goto next; 403 res = fib6_dump_table(tb, skb, cb); 404 if (res != 0) 405 goto out; 406 next: 407 e++; 408 } 409 } 410 out: 411 cb->args[1] = e; 412 cb->args[0] = h; 413 414 res = res < 0 ? res : skb->len; 415 if (res <= 0) 416 fib6_dump_end(cb); 417 return res; 418 } 419 420 /* 421 * Routing Table 422 * 423 * return the appropriate node for a routing tree "add" operation 424 * by either creating and inserting or by returning an existing 425 * node. 426 */ 427 428 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr, 429 int addrlen, int plen, 430 int offset) 431 { 432 struct fib6_node *fn, *in, *ln; 433 struct fib6_node *pn = NULL; 434 struct rt6key *key; 435 int bit; 436 __be32 dir = 0; 437 __u32 sernum = fib6_new_sernum(); 438 439 RT6_TRACE("fib6_add_1\n"); 440 441 /* insert node in tree */ 442 443 fn = root; 444 445 do { 446 key = (struct rt6key *)((u8 *)fn->leaf + offset); 447 448 /* 449 * Prefix match 450 */ 451 if (plen < fn->fn_bit || 452 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 453 goto insert_above; 454 455 /* 456 * Exact match ? 457 */ 458 459 if (plen == fn->fn_bit) { 460 /* clean up an intermediate node */ 461 if ((fn->fn_flags & RTN_RTINFO) == 0) { 462 rt6_release(fn->leaf); 463 fn->leaf = NULL; 464 } 465 466 fn->fn_sernum = sernum; 467 468 return fn; 469 } 470 471 /* 472 * We have more bits to go 473 */ 474 475 /* Try to walk down on tree. */ 476 fn->fn_sernum = sernum; 477 dir = addr_bit_set(addr, fn->fn_bit); 478 pn = fn; 479 fn = dir ? fn->right: fn->left; 480 } while (fn); 481 482 /* 483 * We walked to the bottom of tree. 484 * Create new leaf node without children. 485 */ 486 487 ln = node_alloc(); 488 489 if (ln == NULL) 490 return NULL; 491 ln->fn_bit = plen; 492 493 ln->parent = pn; 494 ln->fn_sernum = sernum; 495 496 if (dir) 497 pn->right = ln; 498 else 499 pn->left = ln; 500 501 return ln; 502 503 504 insert_above: 505 /* 506 * split since we don't have a common prefix anymore or 507 * we have a less significant route. 508 * we've to insert an intermediate node on the list 509 * this new node will point to the one we need to create 510 * and the current 511 */ 512 513 pn = fn->parent; 514 515 /* find 1st bit in difference between the 2 addrs. 516 517 See comment in __ipv6_addr_diff: bit may be an invalid value, 518 but if it is >= plen, the value is ignored in any case. 519 */ 520 521 bit = __ipv6_addr_diff(addr, &key->addr, addrlen); 522 523 /* 524 * (intermediate)[in] 525 * / \ 526 * (new leaf node)[ln] (old node)[fn] 527 */ 528 if (plen > bit) { 529 in = node_alloc(); 530 ln = node_alloc(); 531 532 if (in == NULL || ln == NULL) { 533 if (in) 534 node_free(in); 535 if (ln) 536 node_free(ln); 537 return NULL; 538 } 539 540 /* 541 * new intermediate node. 542 * RTN_RTINFO will 543 * be off since that an address that chooses one of 544 * the branches would not match less specific routes 545 * in the other branch 546 */ 547 548 in->fn_bit = bit; 549 550 in->parent = pn; 551 in->leaf = fn->leaf; 552 atomic_inc(&in->leaf->rt6i_ref); 553 554 in->fn_sernum = sernum; 555 556 /* update parent pointer */ 557 if (dir) 558 pn->right = in; 559 else 560 pn->left = in; 561 562 ln->fn_bit = plen; 563 564 ln->parent = in; 565 fn->parent = in; 566 567 ln->fn_sernum = sernum; 568 569 if (addr_bit_set(addr, bit)) { 570 in->right = ln; 571 in->left = fn; 572 } else { 573 in->left = ln; 574 in->right = fn; 575 } 576 } else { /* plen <= bit */ 577 578 /* 579 * (new leaf node)[ln] 580 * / \ 581 * (old node)[fn] NULL 582 */ 583 584 ln = node_alloc(); 585 586 if (ln == NULL) 587 return NULL; 588 589 ln->fn_bit = plen; 590 591 ln->parent = pn; 592 593 ln->fn_sernum = sernum; 594 595 if (dir) 596 pn->right = ln; 597 else 598 pn->left = ln; 599 600 if (addr_bit_set(&key->addr, plen)) 601 ln->right = fn; 602 else 603 ln->left = fn; 604 605 fn->parent = ln; 606 } 607 return ln; 608 } 609 610 /* 611 * Insert routing information in a node. 612 */ 613 614 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 615 struct nl_info *info) 616 { 617 struct rt6_info *iter = NULL; 618 struct rt6_info **ins; 619 620 ins = &fn->leaf; 621 622 if (fn->fn_flags&RTN_TL_ROOT && 623 fn->leaf == &ip6_null_entry && 624 !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) ){ 625 fn->leaf = rt; 626 rt->u.next = NULL; 627 goto out; 628 } 629 630 for (iter = fn->leaf; iter; iter=iter->u.next) { 631 /* 632 * Search for duplicates 633 */ 634 635 if (iter->rt6i_metric == rt->rt6i_metric) { 636 /* 637 * Same priority level 638 */ 639 640 if (iter->rt6i_dev == rt->rt6i_dev && 641 iter->rt6i_idev == rt->rt6i_idev && 642 ipv6_addr_equal(&iter->rt6i_gateway, 643 &rt->rt6i_gateway)) { 644 if (!(iter->rt6i_flags&RTF_EXPIRES)) 645 return -EEXIST; 646 iter->rt6i_expires = rt->rt6i_expires; 647 if (!(rt->rt6i_flags&RTF_EXPIRES)) { 648 iter->rt6i_flags &= ~RTF_EXPIRES; 649 iter->rt6i_expires = 0; 650 } 651 return -EEXIST; 652 } 653 } 654 655 if (iter->rt6i_metric > rt->rt6i_metric) 656 break; 657 658 ins = &iter->u.next; 659 } 660 661 /* 662 * insert node 663 */ 664 665 out: 666 rt->u.next = iter; 667 *ins = rt; 668 rt->rt6i_node = fn; 669 atomic_inc(&rt->rt6i_ref); 670 inet6_rt_notify(RTM_NEWROUTE, rt, info); 671 rt6_stats.fib_rt_entries++; 672 673 if ((fn->fn_flags & RTN_RTINFO) == 0) { 674 rt6_stats.fib_route_nodes++; 675 fn->fn_flags |= RTN_RTINFO; 676 } 677 678 return 0; 679 } 680 681 static __inline__ void fib6_start_gc(struct rt6_info *rt) 682 { 683 if (ip6_fib_timer.expires == 0 && 684 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE))) 685 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval); 686 } 687 688 void fib6_force_start_gc(void) 689 { 690 if (ip6_fib_timer.expires == 0) 691 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval); 692 } 693 694 /* 695 * Add routing information to the routing tree. 696 * <destination addr>/<source addr> 697 * with source addr info in sub-trees 698 */ 699 700 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info) 701 { 702 struct fib6_node *fn, *pn = NULL; 703 int err = -ENOMEM; 704 705 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr), 706 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst)); 707 708 if (fn == NULL) 709 goto out; 710 711 pn = fn; 712 713 #ifdef CONFIG_IPV6_SUBTREES 714 if (rt->rt6i_src.plen) { 715 struct fib6_node *sn; 716 717 if (fn->subtree == NULL) { 718 struct fib6_node *sfn; 719 720 /* 721 * Create subtree. 722 * 723 * fn[main tree] 724 * | 725 * sfn[subtree root] 726 * \ 727 * sn[new leaf node] 728 */ 729 730 /* Create subtree root node */ 731 sfn = node_alloc(); 732 if (sfn == NULL) 733 goto st_failure; 734 735 sfn->leaf = &ip6_null_entry; 736 atomic_inc(&ip6_null_entry.rt6i_ref); 737 sfn->fn_flags = RTN_ROOT; 738 sfn->fn_sernum = fib6_new_sernum(); 739 740 /* Now add the first leaf node to new subtree */ 741 742 sn = fib6_add_1(sfn, &rt->rt6i_src.addr, 743 sizeof(struct in6_addr), rt->rt6i_src.plen, 744 offsetof(struct rt6_info, rt6i_src)); 745 746 if (sn == NULL) { 747 /* If it is failed, discard just allocated 748 root, and then (in st_failure) stale node 749 in main tree. 750 */ 751 node_free(sfn); 752 goto st_failure; 753 } 754 755 /* Now link new subtree to main tree */ 756 sfn->parent = fn; 757 fn->subtree = sfn; 758 } else { 759 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr, 760 sizeof(struct in6_addr), rt->rt6i_src.plen, 761 offsetof(struct rt6_info, rt6i_src)); 762 763 if (sn == NULL) 764 goto st_failure; 765 } 766 767 if (fn->leaf == NULL) { 768 fn->leaf = rt; 769 atomic_inc(&rt->rt6i_ref); 770 } 771 fn = sn; 772 } 773 #endif 774 775 err = fib6_add_rt2node(fn, rt, info); 776 777 if (err == 0) { 778 fib6_start_gc(rt); 779 if (!(rt->rt6i_flags&RTF_CACHE)) 780 fib6_prune_clones(pn, rt); 781 } 782 783 out: 784 if (err) { 785 #ifdef CONFIG_IPV6_SUBTREES 786 /* 787 * If fib6_add_1 has cleared the old leaf pointer in the 788 * super-tree leaf node we have to find a new one for it. 789 */ 790 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) { 791 pn->leaf = fib6_find_prefix(pn); 792 #if RT6_DEBUG >= 2 793 if (!pn->leaf) { 794 BUG_TRAP(pn->leaf != NULL); 795 pn->leaf = &ip6_null_entry; 796 } 797 #endif 798 atomic_inc(&pn->leaf->rt6i_ref); 799 } 800 #endif 801 dst_free(&rt->u.dst); 802 } 803 return err; 804 805 #ifdef CONFIG_IPV6_SUBTREES 806 /* Subtree creation failed, probably main tree node 807 is orphan. If it is, shoot it. 808 */ 809 st_failure: 810 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 811 fib6_repair_tree(fn); 812 dst_free(&rt->u.dst); 813 return err; 814 #endif 815 } 816 817 /* 818 * Routing tree lookup 819 * 820 */ 821 822 struct lookup_args { 823 int offset; /* key offset on rt6_info */ 824 struct in6_addr *addr; /* search key */ 825 }; 826 827 static struct fib6_node * fib6_lookup_1(struct fib6_node *root, 828 struct lookup_args *args) 829 { 830 struct fib6_node *fn; 831 __be32 dir; 832 833 if (unlikely(args->offset == 0)) 834 return NULL; 835 836 /* 837 * Descend on a tree 838 */ 839 840 fn = root; 841 842 for (;;) { 843 struct fib6_node *next; 844 845 dir = addr_bit_set(args->addr, fn->fn_bit); 846 847 next = dir ? fn->right : fn->left; 848 849 if (next) { 850 fn = next; 851 continue; 852 } 853 854 break; 855 } 856 857 while(fn) { 858 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) { 859 struct rt6key *key; 860 861 key = (struct rt6key *) ((u8 *) fn->leaf + 862 args->offset); 863 864 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 865 #ifdef CONFIG_IPV6_SUBTREES 866 if (fn->subtree) 867 fn = fib6_lookup_1(fn->subtree, args + 1); 868 #endif 869 if (!fn || fn->fn_flags & RTN_RTINFO) 870 return fn; 871 } 872 } 873 874 if (fn->fn_flags & RTN_ROOT) 875 break; 876 877 fn = fn->parent; 878 } 879 880 return NULL; 881 } 882 883 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr, 884 struct in6_addr *saddr) 885 { 886 struct fib6_node *fn; 887 struct lookup_args args[] = { 888 { 889 .offset = offsetof(struct rt6_info, rt6i_dst), 890 .addr = daddr, 891 }, 892 #ifdef CONFIG_IPV6_SUBTREES 893 { 894 .offset = offsetof(struct rt6_info, rt6i_src), 895 .addr = saddr, 896 }, 897 #endif 898 { 899 .offset = 0, /* sentinel */ 900 } 901 }; 902 903 fn = fib6_lookup_1(root, daddr ? args : args + 1); 904 905 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT) 906 fn = root; 907 908 return fn; 909 } 910 911 /* 912 * Get node with specified destination prefix (and source prefix, 913 * if subtrees are used) 914 */ 915 916 917 static struct fib6_node * fib6_locate_1(struct fib6_node *root, 918 struct in6_addr *addr, 919 int plen, int offset) 920 { 921 struct fib6_node *fn; 922 923 for (fn = root; fn ; ) { 924 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset); 925 926 /* 927 * Prefix match 928 */ 929 if (plen < fn->fn_bit || 930 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 931 return NULL; 932 933 if (plen == fn->fn_bit) 934 return fn; 935 936 /* 937 * We have more bits to go 938 */ 939 if (addr_bit_set(addr, fn->fn_bit)) 940 fn = fn->right; 941 else 942 fn = fn->left; 943 } 944 return NULL; 945 } 946 947 struct fib6_node * fib6_locate(struct fib6_node *root, 948 struct in6_addr *daddr, int dst_len, 949 struct in6_addr *saddr, int src_len) 950 { 951 struct fib6_node *fn; 952 953 fn = fib6_locate_1(root, daddr, dst_len, 954 offsetof(struct rt6_info, rt6i_dst)); 955 956 #ifdef CONFIG_IPV6_SUBTREES 957 if (src_len) { 958 BUG_TRAP(saddr!=NULL); 959 if (fn && fn->subtree) 960 fn = fib6_locate_1(fn->subtree, saddr, src_len, 961 offsetof(struct rt6_info, rt6i_src)); 962 } 963 #endif 964 965 if (fn && fn->fn_flags&RTN_RTINFO) 966 return fn; 967 968 return NULL; 969 } 970 971 972 /* 973 * Deletion 974 * 975 */ 976 977 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn) 978 { 979 if (fn->fn_flags&RTN_ROOT) 980 return &ip6_null_entry; 981 982 while(fn) { 983 if(fn->left) 984 return fn->left->leaf; 985 986 if(fn->right) 987 return fn->right->leaf; 988 989 fn = FIB6_SUBTREE(fn); 990 } 991 return NULL; 992 } 993 994 /* 995 * Called to trim the tree of intermediate nodes when possible. "fn" 996 * is the node we want to try and remove. 997 */ 998 999 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn) 1000 { 1001 int children; 1002 int nstate; 1003 struct fib6_node *child, *pn; 1004 struct fib6_walker_t *w; 1005 int iter = 0; 1006 1007 for (;;) { 1008 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1009 iter++; 1010 1011 BUG_TRAP(!(fn->fn_flags&RTN_RTINFO)); 1012 BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT)); 1013 BUG_TRAP(fn->leaf==NULL); 1014 1015 children = 0; 1016 child = NULL; 1017 if (fn->right) child = fn->right, children |= 1; 1018 if (fn->left) child = fn->left, children |= 2; 1019 1020 if (children == 3 || FIB6_SUBTREE(fn) 1021 #ifdef CONFIG_IPV6_SUBTREES 1022 /* Subtree root (i.e. fn) may have one child */ 1023 || (children && fn->fn_flags&RTN_ROOT) 1024 #endif 1025 ) { 1026 fn->leaf = fib6_find_prefix(fn); 1027 #if RT6_DEBUG >= 2 1028 if (fn->leaf==NULL) { 1029 BUG_TRAP(fn->leaf); 1030 fn->leaf = &ip6_null_entry; 1031 } 1032 #endif 1033 atomic_inc(&fn->leaf->rt6i_ref); 1034 return fn->parent; 1035 } 1036 1037 pn = fn->parent; 1038 #ifdef CONFIG_IPV6_SUBTREES 1039 if (FIB6_SUBTREE(pn) == fn) { 1040 BUG_TRAP(fn->fn_flags&RTN_ROOT); 1041 FIB6_SUBTREE(pn) = NULL; 1042 nstate = FWS_L; 1043 } else { 1044 BUG_TRAP(!(fn->fn_flags&RTN_ROOT)); 1045 #endif 1046 if (pn->right == fn) pn->right = child; 1047 else if (pn->left == fn) pn->left = child; 1048 #if RT6_DEBUG >= 2 1049 else BUG_TRAP(0); 1050 #endif 1051 if (child) 1052 child->parent = pn; 1053 nstate = FWS_R; 1054 #ifdef CONFIG_IPV6_SUBTREES 1055 } 1056 #endif 1057 1058 read_lock(&fib6_walker_lock); 1059 FOR_WALKERS(w) { 1060 if (child == NULL) { 1061 if (w->root == fn) { 1062 w->root = w->node = NULL; 1063 RT6_TRACE("W %p adjusted by delroot 1\n", w); 1064 } else if (w->node == fn) { 1065 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1066 w->node = pn; 1067 w->state = nstate; 1068 } 1069 } else { 1070 if (w->root == fn) { 1071 w->root = child; 1072 RT6_TRACE("W %p adjusted by delroot 2\n", w); 1073 } 1074 if (w->node == fn) { 1075 w->node = child; 1076 if (children&2) { 1077 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1078 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT; 1079 } else { 1080 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1081 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT; 1082 } 1083 } 1084 } 1085 } 1086 read_unlock(&fib6_walker_lock); 1087 1088 node_free(fn); 1089 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn)) 1090 return pn; 1091 1092 rt6_release(pn->leaf); 1093 pn->leaf = NULL; 1094 fn = pn; 1095 } 1096 } 1097 1098 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp, 1099 struct nl_info *info) 1100 { 1101 struct fib6_walker_t *w; 1102 struct rt6_info *rt = *rtp; 1103 1104 RT6_TRACE("fib6_del_route\n"); 1105 1106 /* Unlink it */ 1107 *rtp = rt->u.next; 1108 rt->rt6i_node = NULL; 1109 rt6_stats.fib_rt_entries--; 1110 rt6_stats.fib_discarded_routes++; 1111 1112 /* Adjust walkers */ 1113 read_lock(&fib6_walker_lock); 1114 FOR_WALKERS(w) { 1115 if (w->state == FWS_C && w->leaf == rt) { 1116 RT6_TRACE("walker %p adjusted by delroute\n", w); 1117 w->leaf = rt->u.next; 1118 if (w->leaf == NULL) 1119 w->state = FWS_U; 1120 } 1121 } 1122 read_unlock(&fib6_walker_lock); 1123 1124 rt->u.next = NULL; 1125 1126 if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT) 1127 fn->leaf = &ip6_null_entry; 1128 1129 /* If it was last route, expunge its radix tree node */ 1130 if (fn->leaf == NULL) { 1131 fn->fn_flags &= ~RTN_RTINFO; 1132 rt6_stats.fib_route_nodes--; 1133 fn = fib6_repair_tree(fn); 1134 } 1135 1136 if (atomic_read(&rt->rt6i_ref) != 1) { 1137 /* This route is used as dummy address holder in some split 1138 * nodes. It is not leaked, but it still holds other resources, 1139 * which must be released in time. So, scan ascendant nodes 1140 * and replace dummy references to this route with references 1141 * to still alive ones. 1142 */ 1143 while (fn) { 1144 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) { 1145 fn->leaf = fib6_find_prefix(fn); 1146 atomic_inc(&fn->leaf->rt6i_ref); 1147 rt6_release(rt); 1148 } 1149 fn = fn->parent; 1150 } 1151 /* No more references are possible at this point. */ 1152 if (atomic_read(&rt->rt6i_ref) != 1) BUG(); 1153 } 1154 1155 inet6_rt_notify(RTM_DELROUTE, rt, info); 1156 rt6_release(rt); 1157 } 1158 1159 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1160 { 1161 struct fib6_node *fn = rt->rt6i_node; 1162 struct rt6_info **rtp; 1163 1164 #if RT6_DEBUG >= 2 1165 if (rt->u.dst.obsolete>0) { 1166 BUG_TRAP(fn==NULL); 1167 return -ENOENT; 1168 } 1169 #endif 1170 if (fn == NULL || rt == &ip6_null_entry) 1171 return -ENOENT; 1172 1173 BUG_TRAP(fn->fn_flags&RTN_RTINFO); 1174 1175 if (!(rt->rt6i_flags&RTF_CACHE)) { 1176 struct fib6_node *pn = fn; 1177 #ifdef CONFIG_IPV6_SUBTREES 1178 /* clones of this route might be in another subtree */ 1179 if (rt->rt6i_src.plen) { 1180 while (!(pn->fn_flags&RTN_ROOT)) 1181 pn = pn->parent; 1182 pn = pn->parent; 1183 } 1184 #endif 1185 fib6_prune_clones(pn, rt); 1186 } 1187 1188 /* 1189 * Walk the leaf entries looking for ourself 1190 */ 1191 1192 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) { 1193 if (*rtp == rt) { 1194 fib6_del_route(fn, rtp, info); 1195 return 0; 1196 } 1197 } 1198 return -ENOENT; 1199 } 1200 1201 /* 1202 * Tree traversal function. 1203 * 1204 * Certainly, it is not interrupt safe. 1205 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1206 * It means, that we can modify tree during walking 1207 * and use this function for garbage collection, clone pruning, 1208 * cleaning tree when a device goes down etc. etc. 1209 * 1210 * It guarantees that every node will be traversed, 1211 * and that it will be traversed only once. 1212 * 1213 * Callback function w->func may return: 1214 * 0 -> continue walking. 1215 * positive value -> walking is suspended (used by tree dumps, 1216 * and probably by gc, if it will be split to several slices) 1217 * negative value -> terminate walking. 1218 * 1219 * The function itself returns: 1220 * 0 -> walk is complete. 1221 * >0 -> walk is incomplete (i.e. suspended) 1222 * <0 -> walk is terminated by an error. 1223 */ 1224 1225 static int fib6_walk_continue(struct fib6_walker_t *w) 1226 { 1227 struct fib6_node *fn, *pn; 1228 1229 for (;;) { 1230 fn = w->node; 1231 if (fn == NULL) 1232 return 0; 1233 1234 if (w->prune && fn != w->root && 1235 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) { 1236 w->state = FWS_C; 1237 w->leaf = fn->leaf; 1238 } 1239 switch (w->state) { 1240 #ifdef CONFIG_IPV6_SUBTREES 1241 case FWS_S: 1242 if (FIB6_SUBTREE(fn)) { 1243 w->node = FIB6_SUBTREE(fn); 1244 continue; 1245 } 1246 w->state = FWS_L; 1247 #endif 1248 case FWS_L: 1249 if (fn->left) { 1250 w->node = fn->left; 1251 w->state = FWS_INIT; 1252 continue; 1253 } 1254 w->state = FWS_R; 1255 case FWS_R: 1256 if (fn->right) { 1257 w->node = fn->right; 1258 w->state = FWS_INIT; 1259 continue; 1260 } 1261 w->state = FWS_C; 1262 w->leaf = fn->leaf; 1263 case FWS_C: 1264 if (w->leaf && fn->fn_flags&RTN_RTINFO) { 1265 int err = w->func(w); 1266 if (err) 1267 return err; 1268 continue; 1269 } 1270 w->state = FWS_U; 1271 case FWS_U: 1272 if (fn == w->root) 1273 return 0; 1274 pn = fn->parent; 1275 w->node = pn; 1276 #ifdef CONFIG_IPV6_SUBTREES 1277 if (FIB6_SUBTREE(pn) == fn) { 1278 BUG_TRAP(fn->fn_flags&RTN_ROOT); 1279 w->state = FWS_L; 1280 continue; 1281 } 1282 #endif 1283 if (pn->left == fn) { 1284 w->state = FWS_R; 1285 continue; 1286 } 1287 if (pn->right == fn) { 1288 w->state = FWS_C; 1289 w->leaf = w->node->leaf; 1290 continue; 1291 } 1292 #if RT6_DEBUG >= 2 1293 BUG_TRAP(0); 1294 #endif 1295 } 1296 } 1297 } 1298 1299 static int fib6_walk(struct fib6_walker_t *w) 1300 { 1301 int res; 1302 1303 w->state = FWS_INIT; 1304 w->node = w->root; 1305 1306 fib6_walker_link(w); 1307 res = fib6_walk_continue(w); 1308 if (res <= 0) 1309 fib6_walker_unlink(w); 1310 return res; 1311 } 1312 1313 static int fib6_clean_node(struct fib6_walker_t *w) 1314 { 1315 int res; 1316 struct rt6_info *rt; 1317 struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w; 1318 1319 for (rt = w->leaf; rt; rt = rt->u.next) { 1320 res = c->func(rt, c->arg); 1321 if (res < 0) { 1322 w->leaf = rt; 1323 res = fib6_del(rt, NULL); 1324 if (res) { 1325 #if RT6_DEBUG >= 2 1326 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res); 1327 #endif 1328 continue; 1329 } 1330 return 0; 1331 } 1332 BUG_TRAP(res==0); 1333 } 1334 w->leaf = rt; 1335 return 0; 1336 } 1337 1338 /* 1339 * Convenient frontend to tree walker. 1340 * 1341 * func is called on each route. 1342 * It may return -1 -> delete this route. 1343 * 0 -> continue walking 1344 * 1345 * prune==1 -> only immediate children of node (certainly, 1346 * ignoring pure split nodes) will be scanned. 1347 */ 1348 1349 static void fib6_clean_tree(struct fib6_node *root, 1350 int (*func)(struct rt6_info *, void *arg), 1351 int prune, void *arg) 1352 { 1353 struct fib6_cleaner_t c; 1354 1355 c.w.root = root; 1356 c.w.func = fib6_clean_node; 1357 c.w.prune = prune; 1358 c.func = func; 1359 c.arg = arg; 1360 1361 fib6_walk(&c.w); 1362 } 1363 1364 void fib6_clean_all(int (*func)(struct rt6_info *, void *arg), 1365 int prune, void *arg) 1366 { 1367 struct fib6_table *table; 1368 struct hlist_node *node; 1369 unsigned int h; 1370 1371 rcu_read_lock(); 1372 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 1373 hlist_for_each_entry_rcu(table, node, &fib_table_hash[h], 1374 tb6_hlist) { 1375 write_lock_bh(&table->tb6_lock); 1376 fib6_clean_tree(&table->tb6_root, func, prune, arg); 1377 write_unlock_bh(&table->tb6_lock); 1378 } 1379 } 1380 rcu_read_unlock(); 1381 } 1382 1383 static int fib6_prune_clone(struct rt6_info *rt, void *arg) 1384 { 1385 if (rt->rt6i_flags & RTF_CACHE) { 1386 RT6_TRACE("pruning clone %p\n", rt); 1387 return -1; 1388 } 1389 1390 return 0; 1391 } 1392 1393 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt) 1394 { 1395 fib6_clean_tree(fn, fib6_prune_clone, 1, rt); 1396 } 1397 1398 /* 1399 * Garbage collection 1400 */ 1401 1402 static struct fib6_gc_args 1403 { 1404 int timeout; 1405 int more; 1406 } gc_args; 1407 1408 static int fib6_age(struct rt6_info *rt, void *arg) 1409 { 1410 unsigned long now = jiffies; 1411 1412 /* 1413 * check addrconf expiration here. 1414 * Routes are expired even if they are in use. 1415 * 1416 * Also age clones. Note, that clones are aged out 1417 * only if they are not in use now. 1418 */ 1419 1420 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) { 1421 if (time_after(now, rt->rt6i_expires)) { 1422 RT6_TRACE("expiring %p\n", rt); 1423 return -1; 1424 } 1425 gc_args.more++; 1426 } else if (rt->rt6i_flags & RTF_CACHE) { 1427 if (atomic_read(&rt->u.dst.__refcnt) == 0 && 1428 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) { 1429 RT6_TRACE("aging clone %p\n", rt); 1430 return -1; 1431 } else if ((rt->rt6i_flags & RTF_GATEWAY) && 1432 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) { 1433 RT6_TRACE("purging route %p via non-router but gateway\n", 1434 rt); 1435 return -1; 1436 } 1437 gc_args.more++; 1438 } 1439 1440 return 0; 1441 } 1442 1443 static DEFINE_SPINLOCK(fib6_gc_lock); 1444 1445 void fib6_run_gc(unsigned long dummy) 1446 { 1447 if (dummy != ~0UL) { 1448 spin_lock_bh(&fib6_gc_lock); 1449 gc_args.timeout = dummy ? (int)dummy : ip6_rt_gc_interval; 1450 } else { 1451 local_bh_disable(); 1452 if (!spin_trylock(&fib6_gc_lock)) { 1453 mod_timer(&ip6_fib_timer, jiffies + HZ); 1454 local_bh_enable(); 1455 return; 1456 } 1457 gc_args.timeout = ip6_rt_gc_interval; 1458 } 1459 gc_args.more = 0; 1460 1461 ndisc_dst_gc(&gc_args.more); 1462 fib6_clean_all(fib6_age, 0, NULL); 1463 1464 if (gc_args.more) 1465 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval); 1466 else { 1467 del_timer(&ip6_fib_timer); 1468 ip6_fib_timer.expires = 0; 1469 } 1470 spin_unlock_bh(&fib6_gc_lock); 1471 } 1472 1473 void __init fib6_init(void) 1474 { 1475 fib6_node_kmem = kmem_cache_create("fib6_nodes", 1476 sizeof(struct fib6_node), 1477 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1478 NULL, NULL); 1479 1480 fib6_tables_init(); 1481 } 1482 1483 void fib6_gc_cleanup(void) 1484 { 1485 del_timer(&ip6_fib_timer); 1486 kmem_cache_destroy(fib6_node_kmem); 1487 } 1488