xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 5b7c931dff03621ae7ac524c4fa280d4e5f187a4)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	$Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
9  *
10  *	This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15 
16 /*
17  * 	Changes:
18  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
19  * 				remove ip6_null_entry from the top of
20  * 				routing table.
21  * 	Ville Nuorvala:		Fixed routing subtrees.
22  */
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31 
32 #ifdef 	CONFIG_PROC_FS
33 #include <linux/proc_fs.h>
34 #endif
35 
36 #include <net/ipv6.h>
37 #include <net/ndisc.h>
38 #include <net/addrconf.h>
39 
40 #include <net/ip6_fib.h>
41 #include <net/ip6_route.h>
42 
43 #define RT6_DEBUG 2
44 
45 #if RT6_DEBUG >= 3
46 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
47 #else
48 #define RT6_TRACE(x...) do { ; } while (0)
49 #endif
50 
51 struct rt6_statistics	rt6_stats;
52 
53 static struct kmem_cache * fib6_node_kmem __read_mostly;
54 
55 enum fib_walk_state_t
56 {
57 #ifdef CONFIG_IPV6_SUBTREES
58 	FWS_S,
59 #endif
60 	FWS_L,
61 	FWS_R,
62 	FWS_C,
63 	FWS_U
64 };
65 
66 struct fib6_cleaner_t
67 {
68 	struct fib6_walker_t w;
69 	int (*func)(struct rt6_info *, void *arg);
70 	void *arg;
71 };
72 
73 static DEFINE_RWLOCK(fib6_walker_lock);
74 
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
77 #else
78 #define FWS_INIT FWS_L
79 #endif
80 
81 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
82 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn);
83 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
84 static int fib6_walk(struct fib6_walker_t *w);
85 static int fib6_walk_continue(struct fib6_walker_t *w);
86 
87 /*
88  *	A routing update causes an increase of the serial number on the
89  *	affected subtree. This allows for cached routes to be asynchronously
90  *	tested when modifications are made to the destination cache as a
91  *	result of redirects, path MTU changes, etc.
92  */
93 
94 static __u32 rt_sernum;
95 
96 static void fib6_gc_timer_cb(unsigned long arg);
97 
98 static DEFINE_TIMER(ip6_fib_timer, fib6_gc_timer_cb, 0,
99 		    (unsigned long)&init_net);
100 
101 static struct fib6_walker_t fib6_walker_list = {
102 	.prev	= &fib6_walker_list,
103 	.next	= &fib6_walker_list,
104 };
105 
106 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
107 
108 static inline void fib6_walker_link(struct fib6_walker_t *w)
109 {
110 	write_lock_bh(&fib6_walker_lock);
111 	w->next = fib6_walker_list.next;
112 	w->prev = &fib6_walker_list;
113 	w->next->prev = w;
114 	w->prev->next = w;
115 	write_unlock_bh(&fib6_walker_lock);
116 }
117 
118 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
119 {
120 	write_lock_bh(&fib6_walker_lock);
121 	w->next->prev = w->prev;
122 	w->prev->next = w->next;
123 	w->prev = w->next = w;
124 	write_unlock_bh(&fib6_walker_lock);
125 }
126 static __inline__ u32 fib6_new_sernum(void)
127 {
128 	u32 n = ++rt_sernum;
129 	if ((__s32)n <= 0)
130 		rt_sernum = n = 1;
131 	return n;
132 }
133 
134 /*
135  *	Auxiliary address test functions for the radix tree.
136  *
137  *	These assume a 32bit processor (although it will work on
138  *	64bit processors)
139  */
140 
141 /*
142  *	test bit
143  */
144 
145 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
146 {
147 	__be32 *addr = token;
148 
149 	return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
150 }
151 
152 static __inline__ struct fib6_node * node_alloc(void)
153 {
154 	struct fib6_node *fn;
155 
156 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
157 
158 	return fn;
159 }
160 
161 static __inline__ void node_free(struct fib6_node * fn)
162 {
163 	kmem_cache_free(fib6_node_kmem, fn);
164 }
165 
166 static __inline__ void rt6_release(struct rt6_info *rt)
167 {
168 	if (atomic_dec_and_test(&rt->rt6i_ref))
169 		dst_free(&rt->u.dst);
170 }
171 
172 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
173 #define FIB_TABLE_HASHSZ 256
174 #else
175 #define FIB_TABLE_HASHSZ 1
176 #endif
177 
178 static void fib6_link_table(struct net *net, struct fib6_table *tb)
179 {
180 	unsigned int h;
181 
182 	/*
183 	 * Initialize table lock at a single place to give lockdep a key,
184 	 * tables aren't visible prior to being linked to the list.
185 	 */
186 	rwlock_init(&tb->tb6_lock);
187 
188 	h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
189 
190 	/*
191 	 * No protection necessary, this is the only list mutatation
192 	 * operation, tables never disappear once they exist.
193 	 */
194 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
195 }
196 
197 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
198 
199 static struct fib6_table *fib6_alloc_table(u32 id)
200 {
201 	struct fib6_table *table;
202 
203 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
204 	if (table != NULL) {
205 		table->tb6_id = id;
206 		table->tb6_root.leaf = &ip6_null_entry;
207 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
208 	}
209 
210 	return table;
211 }
212 
213 struct fib6_table *fib6_new_table(struct net *net, u32 id)
214 {
215 	struct fib6_table *tb;
216 
217 	if (id == 0)
218 		id = RT6_TABLE_MAIN;
219 	tb = fib6_get_table(net, id);
220 	if (tb)
221 		return tb;
222 
223 	tb = fib6_alloc_table(id);
224 	if (tb != NULL)
225 		fib6_link_table(net, tb);
226 
227 	return tb;
228 }
229 
230 struct fib6_table *fib6_get_table(struct net *net, u32 id)
231 {
232 	struct fib6_table *tb;
233 	struct hlist_head *head;
234 	struct hlist_node *node;
235 	unsigned int h;
236 
237 	if (id == 0)
238 		id = RT6_TABLE_MAIN;
239 	h = id & (FIB_TABLE_HASHSZ - 1);
240 	rcu_read_lock();
241 	head = &net->ipv6.fib_table_hash[h];
242 	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
243 		if (tb->tb6_id == id) {
244 			rcu_read_unlock();
245 			return tb;
246 		}
247 	}
248 	rcu_read_unlock();
249 
250 	return NULL;
251 }
252 
253 static void fib6_tables_init(struct net *net)
254 {
255 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
256 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
257 }
258 #else
259 
260 struct fib6_table *fib6_new_table(struct net *net, u32 id)
261 {
262 	return fib6_get_table(net, id);
263 }
264 
265 struct fib6_table *fib6_get_table(struct net *net, u32 id)
266 {
267 	  return net->ipv6.fib6_main_tbl;
268 }
269 
270 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
271 				   int flags, pol_lookup_t lookup)
272 {
273 	return (struct dst_entry *) lookup(net->ipv6.fib6_main_tbl, fl, flags);
274 }
275 
276 static void fib6_tables_init(struct net *net)
277 {
278 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
279 }
280 
281 #endif
282 
283 static int fib6_dump_node(struct fib6_walker_t *w)
284 {
285 	int res;
286 	struct rt6_info *rt;
287 
288 	for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
289 		res = rt6_dump_route(rt, w->args);
290 		if (res < 0) {
291 			/* Frame is full, suspend walking */
292 			w->leaf = rt;
293 			return 1;
294 		}
295 		BUG_TRAP(res!=0);
296 	}
297 	w->leaf = NULL;
298 	return 0;
299 }
300 
301 static void fib6_dump_end(struct netlink_callback *cb)
302 {
303 	struct fib6_walker_t *w = (void*)cb->args[2];
304 
305 	if (w) {
306 		cb->args[2] = 0;
307 		kfree(w);
308 	}
309 	cb->done = (void*)cb->args[3];
310 	cb->args[1] = 3;
311 }
312 
313 static int fib6_dump_done(struct netlink_callback *cb)
314 {
315 	fib6_dump_end(cb);
316 	return cb->done ? cb->done(cb) : 0;
317 }
318 
319 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
320 			   struct netlink_callback *cb)
321 {
322 	struct fib6_walker_t *w;
323 	int res;
324 
325 	w = (void *)cb->args[2];
326 	w->root = &table->tb6_root;
327 
328 	if (cb->args[4] == 0) {
329 		read_lock_bh(&table->tb6_lock);
330 		res = fib6_walk(w);
331 		read_unlock_bh(&table->tb6_lock);
332 		if (res > 0)
333 			cb->args[4] = 1;
334 	} else {
335 		read_lock_bh(&table->tb6_lock);
336 		res = fib6_walk_continue(w);
337 		read_unlock_bh(&table->tb6_lock);
338 		if (res != 0) {
339 			if (res < 0)
340 				fib6_walker_unlink(w);
341 			goto end;
342 		}
343 		fib6_walker_unlink(w);
344 		cb->args[4] = 0;
345 	}
346 end:
347 	return res;
348 }
349 
350 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
351 {
352 	struct net *net = skb->sk->sk_net;
353 	unsigned int h, s_h;
354 	unsigned int e = 0, s_e;
355 	struct rt6_rtnl_dump_arg arg;
356 	struct fib6_walker_t *w;
357 	struct fib6_table *tb;
358 	struct hlist_node *node;
359 	struct hlist_head *head;
360 	int res = 0;
361 
362 	s_h = cb->args[0];
363 	s_e = cb->args[1];
364 
365 	w = (void *)cb->args[2];
366 	if (w == NULL) {
367 		/* New dump:
368 		 *
369 		 * 1. hook callback destructor.
370 		 */
371 		cb->args[3] = (long)cb->done;
372 		cb->done = fib6_dump_done;
373 
374 		/*
375 		 * 2. allocate and initialize walker.
376 		 */
377 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
378 		if (w == NULL)
379 			return -ENOMEM;
380 		w->func = fib6_dump_node;
381 		cb->args[2] = (long)w;
382 	}
383 
384 	arg.skb = skb;
385 	arg.cb = cb;
386 	w->args = &arg;
387 
388 	for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
389 		e = 0;
390 		head = &net->ipv6.fib_table_hash[h];
391 		hlist_for_each_entry(tb, node, head, tb6_hlist) {
392 			if (e < s_e)
393 				goto next;
394 			res = fib6_dump_table(tb, skb, cb);
395 			if (res != 0)
396 				goto out;
397 next:
398 			e++;
399 		}
400 	}
401 out:
402 	cb->args[1] = e;
403 	cb->args[0] = h;
404 
405 	res = res < 0 ? res : skb->len;
406 	if (res <= 0)
407 		fib6_dump_end(cb);
408 	return res;
409 }
410 
411 /*
412  *	Routing Table
413  *
414  *	return the appropriate node for a routing tree "add" operation
415  *	by either creating and inserting or by returning an existing
416  *	node.
417  */
418 
419 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
420 				     int addrlen, int plen,
421 				     int offset)
422 {
423 	struct fib6_node *fn, *in, *ln;
424 	struct fib6_node *pn = NULL;
425 	struct rt6key *key;
426 	int	bit;
427 	__be32	dir = 0;
428 	__u32	sernum = fib6_new_sernum();
429 
430 	RT6_TRACE("fib6_add_1\n");
431 
432 	/* insert node in tree */
433 
434 	fn = root;
435 
436 	do {
437 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
438 
439 		/*
440 		 *	Prefix match
441 		 */
442 		if (plen < fn->fn_bit ||
443 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
444 			goto insert_above;
445 
446 		/*
447 		 *	Exact match ?
448 		 */
449 
450 		if (plen == fn->fn_bit) {
451 			/* clean up an intermediate node */
452 			if ((fn->fn_flags & RTN_RTINFO) == 0) {
453 				rt6_release(fn->leaf);
454 				fn->leaf = NULL;
455 			}
456 
457 			fn->fn_sernum = sernum;
458 
459 			return fn;
460 		}
461 
462 		/*
463 		 *	We have more bits to go
464 		 */
465 
466 		/* Try to walk down on tree. */
467 		fn->fn_sernum = sernum;
468 		dir = addr_bit_set(addr, fn->fn_bit);
469 		pn = fn;
470 		fn = dir ? fn->right: fn->left;
471 	} while (fn);
472 
473 	/*
474 	 *	We walked to the bottom of tree.
475 	 *	Create new leaf node without children.
476 	 */
477 
478 	ln = node_alloc();
479 
480 	if (ln == NULL)
481 		return NULL;
482 	ln->fn_bit = plen;
483 
484 	ln->parent = pn;
485 	ln->fn_sernum = sernum;
486 
487 	if (dir)
488 		pn->right = ln;
489 	else
490 		pn->left  = ln;
491 
492 	return ln;
493 
494 
495 insert_above:
496 	/*
497 	 * split since we don't have a common prefix anymore or
498 	 * we have a less significant route.
499 	 * we've to insert an intermediate node on the list
500 	 * this new node will point to the one we need to create
501 	 * and the current
502 	 */
503 
504 	pn = fn->parent;
505 
506 	/* find 1st bit in difference between the 2 addrs.
507 
508 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
509 	   but if it is >= plen, the value is ignored in any case.
510 	 */
511 
512 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
513 
514 	/*
515 	 *		(intermediate)[in]
516 	 *	          /	   \
517 	 *	(new leaf node)[ln] (old node)[fn]
518 	 */
519 	if (plen > bit) {
520 		in = node_alloc();
521 		ln = node_alloc();
522 
523 		if (in == NULL || ln == NULL) {
524 			if (in)
525 				node_free(in);
526 			if (ln)
527 				node_free(ln);
528 			return NULL;
529 		}
530 
531 		/*
532 		 * new intermediate node.
533 		 * RTN_RTINFO will
534 		 * be off since that an address that chooses one of
535 		 * the branches would not match less specific routes
536 		 * in the other branch
537 		 */
538 
539 		in->fn_bit = bit;
540 
541 		in->parent = pn;
542 		in->leaf = fn->leaf;
543 		atomic_inc(&in->leaf->rt6i_ref);
544 
545 		in->fn_sernum = sernum;
546 
547 		/* update parent pointer */
548 		if (dir)
549 			pn->right = in;
550 		else
551 			pn->left  = in;
552 
553 		ln->fn_bit = plen;
554 
555 		ln->parent = in;
556 		fn->parent = in;
557 
558 		ln->fn_sernum = sernum;
559 
560 		if (addr_bit_set(addr, bit)) {
561 			in->right = ln;
562 			in->left  = fn;
563 		} else {
564 			in->left  = ln;
565 			in->right = fn;
566 		}
567 	} else { /* plen <= bit */
568 
569 		/*
570 		 *		(new leaf node)[ln]
571 		 *	          /	   \
572 		 *	     (old node)[fn] NULL
573 		 */
574 
575 		ln = node_alloc();
576 
577 		if (ln == NULL)
578 			return NULL;
579 
580 		ln->fn_bit = plen;
581 
582 		ln->parent = pn;
583 
584 		ln->fn_sernum = sernum;
585 
586 		if (dir)
587 			pn->right = ln;
588 		else
589 			pn->left  = ln;
590 
591 		if (addr_bit_set(&key->addr, plen))
592 			ln->right = fn;
593 		else
594 			ln->left  = fn;
595 
596 		fn->parent = ln;
597 	}
598 	return ln;
599 }
600 
601 /*
602  *	Insert routing information in a node.
603  */
604 
605 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
606 			    struct nl_info *info)
607 {
608 	struct rt6_info *iter = NULL;
609 	struct rt6_info **ins;
610 
611 	ins = &fn->leaf;
612 
613 	for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
614 		/*
615 		 *	Search for duplicates
616 		 */
617 
618 		if (iter->rt6i_metric == rt->rt6i_metric) {
619 			/*
620 			 *	Same priority level
621 			 */
622 
623 			if (iter->rt6i_dev == rt->rt6i_dev &&
624 			    iter->rt6i_idev == rt->rt6i_idev &&
625 			    ipv6_addr_equal(&iter->rt6i_gateway,
626 					    &rt->rt6i_gateway)) {
627 				if (!(iter->rt6i_flags&RTF_EXPIRES))
628 					return -EEXIST;
629 				iter->rt6i_expires = rt->rt6i_expires;
630 				if (!(rt->rt6i_flags&RTF_EXPIRES)) {
631 					iter->rt6i_flags &= ~RTF_EXPIRES;
632 					iter->rt6i_expires = 0;
633 				}
634 				return -EEXIST;
635 			}
636 		}
637 
638 		if (iter->rt6i_metric > rt->rt6i_metric)
639 			break;
640 
641 		ins = &iter->u.dst.rt6_next;
642 	}
643 
644 	/* Reset round-robin state, if necessary */
645 	if (ins == &fn->leaf)
646 		fn->rr_ptr = NULL;
647 
648 	/*
649 	 *	insert node
650 	 */
651 
652 	rt->u.dst.rt6_next = iter;
653 	*ins = rt;
654 	rt->rt6i_node = fn;
655 	atomic_inc(&rt->rt6i_ref);
656 	inet6_rt_notify(RTM_NEWROUTE, rt, info);
657 	rt6_stats.fib_rt_entries++;
658 
659 	if ((fn->fn_flags & RTN_RTINFO) == 0) {
660 		rt6_stats.fib_route_nodes++;
661 		fn->fn_flags |= RTN_RTINFO;
662 	}
663 
664 	return 0;
665 }
666 
667 static __inline__ void fib6_start_gc(struct rt6_info *rt)
668 {
669 	if (ip6_fib_timer.expires == 0 &&
670 	    (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
671 		mod_timer(&ip6_fib_timer, jiffies +
672 			  init_net.ipv6.sysctl.ip6_rt_gc_interval);
673 }
674 
675 void fib6_force_start_gc(void)
676 {
677 	if (ip6_fib_timer.expires == 0)
678 		mod_timer(&ip6_fib_timer, jiffies +
679 			  init_net.ipv6.sysctl.ip6_rt_gc_interval);
680 }
681 
682 /*
683  *	Add routing information to the routing tree.
684  *	<destination addr>/<source addr>
685  *	with source addr info in sub-trees
686  */
687 
688 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
689 {
690 	struct fib6_node *fn, *pn = NULL;
691 	int err = -ENOMEM;
692 
693 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
694 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
695 
696 	if (fn == NULL)
697 		goto out;
698 
699 	pn = fn;
700 
701 #ifdef CONFIG_IPV6_SUBTREES
702 	if (rt->rt6i_src.plen) {
703 		struct fib6_node *sn;
704 
705 		if (fn->subtree == NULL) {
706 			struct fib6_node *sfn;
707 
708 			/*
709 			 * Create subtree.
710 			 *
711 			 *		fn[main tree]
712 			 *		|
713 			 *		sfn[subtree root]
714 			 *		   \
715 			 *		    sn[new leaf node]
716 			 */
717 
718 			/* Create subtree root node */
719 			sfn = node_alloc();
720 			if (sfn == NULL)
721 				goto st_failure;
722 
723 			sfn->leaf = &ip6_null_entry;
724 			atomic_inc(&ip6_null_entry.rt6i_ref);
725 			sfn->fn_flags = RTN_ROOT;
726 			sfn->fn_sernum = fib6_new_sernum();
727 
728 			/* Now add the first leaf node to new subtree */
729 
730 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
731 					sizeof(struct in6_addr), rt->rt6i_src.plen,
732 					offsetof(struct rt6_info, rt6i_src));
733 
734 			if (sn == NULL) {
735 				/* If it is failed, discard just allocated
736 				   root, and then (in st_failure) stale node
737 				   in main tree.
738 				 */
739 				node_free(sfn);
740 				goto st_failure;
741 			}
742 
743 			/* Now link new subtree to main tree */
744 			sfn->parent = fn;
745 			fn->subtree = sfn;
746 		} else {
747 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
748 					sizeof(struct in6_addr), rt->rt6i_src.plen,
749 					offsetof(struct rt6_info, rt6i_src));
750 
751 			if (sn == NULL)
752 				goto st_failure;
753 		}
754 
755 		if (fn->leaf == NULL) {
756 			fn->leaf = rt;
757 			atomic_inc(&rt->rt6i_ref);
758 		}
759 		fn = sn;
760 	}
761 #endif
762 
763 	err = fib6_add_rt2node(fn, rt, info);
764 
765 	if (err == 0) {
766 		fib6_start_gc(rt);
767 		if (!(rt->rt6i_flags&RTF_CACHE))
768 			fib6_prune_clones(pn, rt);
769 	}
770 
771 out:
772 	if (err) {
773 #ifdef CONFIG_IPV6_SUBTREES
774 		/*
775 		 * If fib6_add_1 has cleared the old leaf pointer in the
776 		 * super-tree leaf node we have to find a new one for it.
777 		 */
778 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
779 			pn->leaf = fib6_find_prefix(pn);
780 #if RT6_DEBUG >= 2
781 			if (!pn->leaf) {
782 				BUG_TRAP(pn->leaf != NULL);
783 				pn->leaf = &ip6_null_entry;
784 			}
785 #endif
786 			atomic_inc(&pn->leaf->rt6i_ref);
787 		}
788 #endif
789 		dst_free(&rt->u.dst);
790 	}
791 	return err;
792 
793 #ifdef CONFIG_IPV6_SUBTREES
794 	/* Subtree creation failed, probably main tree node
795 	   is orphan. If it is, shoot it.
796 	 */
797 st_failure:
798 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
799 		fib6_repair_tree(fn);
800 	dst_free(&rt->u.dst);
801 	return err;
802 #endif
803 }
804 
805 /*
806  *	Routing tree lookup
807  *
808  */
809 
810 struct lookup_args {
811 	int		offset;		/* key offset on rt6_info	*/
812 	struct in6_addr	*addr;		/* search key			*/
813 };
814 
815 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
816 					struct lookup_args *args)
817 {
818 	struct fib6_node *fn;
819 	__be32 dir;
820 
821 	if (unlikely(args->offset == 0))
822 		return NULL;
823 
824 	/*
825 	 *	Descend on a tree
826 	 */
827 
828 	fn = root;
829 
830 	for (;;) {
831 		struct fib6_node *next;
832 
833 		dir = addr_bit_set(args->addr, fn->fn_bit);
834 
835 		next = dir ? fn->right : fn->left;
836 
837 		if (next) {
838 			fn = next;
839 			continue;
840 		}
841 
842 		break;
843 	}
844 
845 	while(fn) {
846 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
847 			struct rt6key *key;
848 
849 			key = (struct rt6key *) ((u8 *) fn->leaf +
850 						 args->offset);
851 
852 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
853 #ifdef CONFIG_IPV6_SUBTREES
854 				if (fn->subtree)
855 					fn = fib6_lookup_1(fn->subtree, args + 1);
856 #endif
857 				if (!fn || fn->fn_flags & RTN_RTINFO)
858 					return fn;
859 			}
860 		}
861 
862 		if (fn->fn_flags & RTN_ROOT)
863 			break;
864 
865 		fn = fn->parent;
866 	}
867 
868 	return NULL;
869 }
870 
871 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
872 			       struct in6_addr *saddr)
873 {
874 	struct fib6_node *fn;
875 	struct lookup_args args[] = {
876 		{
877 			.offset = offsetof(struct rt6_info, rt6i_dst),
878 			.addr = daddr,
879 		},
880 #ifdef CONFIG_IPV6_SUBTREES
881 		{
882 			.offset = offsetof(struct rt6_info, rt6i_src),
883 			.addr = saddr,
884 		},
885 #endif
886 		{
887 			.offset = 0,	/* sentinel */
888 		}
889 	};
890 
891 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
892 
893 	if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
894 		fn = root;
895 
896 	return fn;
897 }
898 
899 /*
900  *	Get node with specified destination prefix (and source prefix,
901  *	if subtrees are used)
902  */
903 
904 
905 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
906 					struct in6_addr *addr,
907 					int plen, int offset)
908 {
909 	struct fib6_node *fn;
910 
911 	for (fn = root; fn ; ) {
912 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
913 
914 		/*
915 		 *	Prefix match
916 		 */
917 		if (plen < fn->fn_bit ||
918 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
919 			return NULL;
920 
921 		if (plen == fn->fn_bit)
922 			return fn;
923 
924 		/*
925 		 *	We have more bits to go
926 		 */
927 		if (addr_bit_set(addr, fn->fn_bit))
928 			fn = fn->right;
929 		else
930 			fn = fn->left;
931 	}
932 	return NULL;
933 }
934 
935 struct fib6_node * fib6_locate(struct fib6_node *root,
936 			       struct in6_addr *daddr, int dst_len,
937 			       struct in6_addr *saddr, int src_len)
938 {
939 	struct fib6_node *fn;
940 
941 	fn = fib6_locate_1(root, daddr, dst_len,
942 			   offsetof(struct rt6_info, rt6i_dst));
943 
944 #ifdef CONFIG_IPV6_SUBTREES
945 	if (src_len) {
946 		BUG_TRAP(saddr!=NULL);
947 		if (fn && fn->subtree)
948 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
949 					   offsetof(struct rt6_info, rt6i_src));
950 	}
951 #endif
952 
953 	if (fn && fn->fn_flags&RTN_RTINFO)
954 		return fn;
955 
956 	return NULL;
957 }
958 
959 
960 /*
961  *	Deletion
962  *
963  */
964 
965 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
966 {
967 	if (fn->fn_flags&RTN_ROOT)
968 		return &ip6_null_entry;
969 
970 	while(fn) {
971 		if(fn->left)
972 			return fn->left->leaf;
973 
974 		if(fn->right)
975 			return fn->right->leaf;
976 
977 		fn = FIB6_SUBTREE(fn);
978 	}
979 	return NULL;
980 }
981 
982 /*
983  *	Called to trim the tree of intermediate nodes when possible. "fn"
984  *	is the node we want to try and remove.
985  */
986 
987 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
988 {
989 	int children;
990 	int nstate;
991 	struct fib6_node *child, *pn;
992 	struct fib6_walker_t *w;
993 	int iter = 0;
994 
995 	for (;;) {
996 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
997 		iter++;
998 
999 		BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
1000 		BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
1001 		BUG_TRAP(fn->leaf==NULL);
1002 
1003 		children = 0;
1004 		child = NULL;
1005 		if (fn->right) child = fn->right, children |= 1;
1006 		if (fn->left) child = fn->left, children |= 2;
1007 
1008 		if (children == 3 || FIB6_SUBTREE(fn)
1009 #ifdef CONFIG_IPV6_SUBTREES
1010 		    /* Subtree root (i.e. fn) may have one child */
1011 		    || (children && fn->fn_flags&RTN_ROOT)
1012 #endif
1013 		    ) {
1014 			fn->leaf = fib6_find_prefix(fn);
1015 #if RT6_DEBUG >= 2
1016 			if (fn->leaf==NULL) {
1017 				BUG_TRAP(fn->leaf);
1018 				fn->leaf = &ip6_null_entry;
1019 			}
1020 #endif
1021 			atomic_inc(&fn->leaf->rt6i_ref);
1022 			return fn->parent;
1023 		}
1024 
1025 		pn = fn->parent;
1026 #ifdef CONFIG_IPV6_SUBTREES
1027 		if (FIB6_SUBTREE(pn) == fn) {
1028 			BUG_TRAP(fn->fn_flags&RTN_ROOT);
1029 			FIB6_SUBTREE(pn) = NULL;
1030 			nstate = FWS_L;
1031 		} else {
1032 			BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
1033 #endif
1034 			if (pn->right == fn) pn->right = child;
1035 			else if (pn->left == fn) pn->left = child;
1036 #if RT6_DEBUG >= 2
1037 			else BUG_TRAP(0);
1038 #endif
1039 			if (child)
1040 				child->parent = pn;
1041 			nstate = FWS_R;
1042 #ifdef CONFIG_IPV6_SUBTREES
1043 		}
1044 #endif
1045 
1046 		read_lock(&fib6_walker_lock);
1047 		FOR_WALKERS(w) {
1048 			if (child == NULL) {
1049 				if (w->root == fn) {
1050 					w->root = w->node = NULL;
1051 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1052 				} else if (w->node == fn) {
1053 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1054 					w->node = pn;
1055 					w->state = nstate;
1056 				}
1057 			} else {
1058 				if (w->root == fn) {
1059 					w->root = child;
1060 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1061 				}
1062 				if (w->node == fn) {
1063 					w->node = child;
1064 					if (children&2) {
1065 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1066 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1067 					} else {
1068 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1069 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1070 					}
1071 				}
1072 			}
1073 		}
1074 		read_unlock(&fib6_walker_lock);
1075 
1076 		node_free(fn);
1077 		if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1078 			return pn;
1079 
1080 		rt6_release(pn->leaf);
1081 		pn->leaf = NULL;
1082 		fn = pn;
1083 	}
1084 }
1085 
1086 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1087 			   struct nl_info *info)
1088 {
1089 	struct fib6_walker_t *w;
1090 	struct rt6_info *rt = *rtp;
1091 
1092 	RT6_TRACE("fib6_del_route\n");
1093 
1094 	/* Unlink it */
1095 	*rtp = rt->u.dst.rt6_next;
1096 	rt->rt6i_node = NULL;
1097 	rt6_stats.fib_rt_entries--;
1098 	rt6_stats.fib_discarded_routes++;
1099 
1100 	/* Reset round-robin state, if necessary */
1101 	if (fn->rr_ptr == rt)
1102 		fn->rr_ptr = NULL;
1103 
1104 	/* Adjust walkers */
1105 	read_lock(&fib6_walker_lock);
1106 	FOR_WALKERS(w) {
1107 		if (w->state == FWS_C && w->leaf == rt) {
1108 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1109 			w->leaf = rt->u.dst.rt6_next;
1110 			if (w->leaf == NULL)
1111 				w->state = FWS_U;
1112 		}
1113 	}
1114 	read_unlock(&fib6_walker_lock);
1115 
1116 	rt->u.dst.rt6_next = NULL;
1117 
1118 	/* If it was last route, expunge its radix tree node */
1119 	if (fn->leaf == NULL) {
1120 		fn->fn_flags &= ~RTN_RTINFO;
1121 		rt6_stats.fib_route_nodes--;
1122 		fn = fib6_repair_tree(fn);
1123 	}
1124 
1125 	if (atomic_read(&rt->rt6i_ref) != 1) {
1126 		/* This route is used as dummy address holder in some split
1127 		 * nodes. It is not leaked, but it still holds other resources,
1128 		 * which must be released in time. So, scan ascendant nodes
1129 		 * and replace dummy references to this route with references
1130 		 * to still alive ones.
1131 		 */
1132 		while (fn) {
1133 			if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1134 				fn->leaf = fib6_find_prefix(fn);
1135 				atomic_inc(&fn->leaf->rt6i_ref);
1136 				rt6_release(rt);
1137 			}
1138 			fn = fn->parent;
1139 		}
1140 		/* No more references are possible at this point. */
1141 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1142 	}
1143 
1144 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1145 	rt6_release(rt);
1146 }
1147 
1148 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1149 {
1150 	struct fib6_node *fn = rt->rt6i_node;
1151 	struct rt6_info **rtp;
1152 
1153 #if RT6_DEBUG >= 2
1154 	if (rt->u.dst.obsolete>0) {
1155 		BUG_TRAP(fn==NULL);
1156 		return -ENOENT;
1157 	}
1158 #endif
1159 	if (fn == NULL || rt == &ip6_null_entry)
1160 		return -ENOENT;
1161 
1162 	BUG_TRAP(fn->fn_flags&RTN_RTINFO);
1163 
1164 	if (!(rt->rt6i_flags&RTF_CACHE)) {
1165 		struct fib6_node *pn = fn;
1166 #ifdef CONFIG_IPV6_SUBTREES
1167 		/* clones of this route might be in another subtree */
1168 		if (rt->rt6i_src.plen) {
1169 			while (!(pn->fn_flags&RTN_ROOT))
1170 				pn = pn->parent;
1171 			pn = pn->parent;
1172 		}
1173 #endif
1174 		fib6_prune_clones(pn, rt);
1175 	}
1176 
1177 	/*
1178 	 *	Walk the leaf entries looking for ourself
1179 	 */
1180 
1181 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1182 		if (*rtp == rt) {
1183 			fib6_del_route(fn, rtp, info);
1184 			return 0;
1185 		}
1186 	}
1187 	return -ENOENT;
1188 }
1189 
1190 /*
1191  *	Tree traversal function.
1192  *
1193  *	Certainly, it is not interrupt safe.
1194  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1195  *	It means, that we can modify tree during walking
1196  *	and use this function for garbage collection, clone pruning,
1197  *	cleaning tree when a device goes down etc. etc.
1198  *
1199  *	It guarantees that every node will be traversed,
1200  *	and that it will be traversed only once.
1201  *
1202  *	Callback function w->func may return:
1203  *	0 -> continue walking.
1204  *	positive value -> walking is suspended (used by tree dumps,
1205  *	and probably by gc, if it will be split to several slices)
1206  *	negative value -> terminate walking.
1207  *
1208  *	The function itself returns:
1209  *	0   -> walk is complete.
1210  *	>0  -> walk is incomplete (i.e. suspended)
1211  *	<0  -> walk is terminated by an error.
1212  */
1213 
1214 static int fib6_walk_continue(struct fib6_walker_t *w)
1215 {
1216 	struct fib6_node *fn, *pn;
1217 
1218 	for (;;) {
1219 		fn = w->node;
1220 		if (fn == NULL)
1221 			return 0;
1222 
1223 		if (w->prune && fn != w->root &&
1224 		    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1225 			w->state = FWS_C;
1226 			w->leaf = fn->leaf;
1227 		}
1228 		switch (w->state) {
1229 #ifdef CONFIG_IPV6_SUBTREES
1230 		case FWS_S:
1231 			if (FIB6_SUBTREE(fn)) {
1232 				w->node = FIB6_SUBTREE(fn);
1233 				continue;
1234 			}
1235 			w->state = FWS_L;
1236 #endif
1237 		case FWS_L:
1238 			if (fn->left) {
1239 				w->node = fn->left;
1240 				w->state = FWS_INIT;
1241 				continue;
1242 			}
1243 			w->state = FWS_R;
1244 		case FWS_R:
1245 			if (fn->right) {
1246 				w->node = fn->right;
1247 				w->state = FWS_INIT;
1248 				continue;
1249 			}
1250 			w->state = FWS_C;
1251 			w->leaf = fn->leaf;
1252 		case FWS_C:
1253 			if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1254 				int err = w->func(w);
1255 				if (err)
1256 					return err;
1257 				continue;
1258 			}
1259 			w->state = FWS_U;
1260 		case FWS_U:
1261 			if (fn == w->root)
1262 				return 0;
1263 			pn = fn->parent;
1264 			w->node = pn;
1265 #ifdef CONFIG_IPV6_SUBTREES
1266 			if (FIB6_SUBTREE(pn) == fn) {
1267 				BUG_TRAP(fn->fn_flags&RTN_ROOT);
1268 				w->state = FWS_L;
1269 				continue;
1270 			}
1271 #endif
1272 			if (pn->left == fn) {
1273 				w->state = FWS_R;
1274 				continue;
1275 			}
1276 			if (pn->right == fn) {
1277 				w->state = FWS_C;
1278 				w->leaf = w->node->leaf;
1279 				continue;
1280 			}
1281 #if RT6_DEBUG >= 2
1282 			BUG_TRAP(0);
1283 #endif
1284 		}
1285 	}
1286 }
1287 
1288 static int fib6_walk(struct fib6_walker_t *w)
1289 {
1290 	int res;
1291 
1292 	w->state = FWS_INIT;
1293 	w->node = w->root;
1294 
1295 	fib6_walker_link(w);
1296 	res = fib6_walk_continue(w);
1297 	if (res <= 0)
1298 		fib6_walker_unlink(w);
1299 	return res;
1300 }
1301 
1302 static int fib6_clean_node(struct fib6_walker_t *w)
1303 {
1304 	struct nl_info info = {
1305 		.nl_net = &init_net,
1306 	};
1307 	int res;
1308 	struct rt6_info *rt;
1309 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1310 
1311 	for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1312 		res = c->func(rt, c->arg);
1313 		if (res < 0) {
1314 			w->leaf = rt;
1315 			res = fib6_del(rt, &info);
1316 			if (res) {
1317 #if RT6_DEBUG >= 2
1318 				printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1319 #endif
1320 				continue;
1321 			}
1322 			return 0;
1323 		}
1324 		BUG_TRAP(res==0);
1325 	}
1326 	w->leaf = rt;
1327 	return 0;
1328 }
1329 
1330 /*
1331  *	Convenient frontend to tree walker.
1332  *
1333  *	func is called on each route.
1334  *		It may return -1 -> delete this route.
1335  *		              0  -> continue walking
1336  *
1337  *	prune==1 -> only immediate children of node (certainly,
1338  *	ignoring pure split nodes) will be scanned.
1339  */
1340 
1341 static void fib6_clean_tree(struct fib6_node *root,
1342 			    int (*func)(struct rt6_info *, void *arg),
1343 			    int prune, void *arg)
1344 {
1345 	struct fib6_cleaner_t c;
1346 
1347 	c.w.root = root;
1348 	c.w.func = fib6_clean_node;
1349 	c.w.prune = prune;
1350 	c.func = func;
1351 	c.arg = arg;
1352 
1353 	fib6_walk(&c.w);
1354 }
1355 
1356 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1357 		    int prune, void *arg)
1358 {
1359 	struct fib6_table *table;
1360 	struct hlist_node *node;
1361 	struct hlist_head *head;
1362 	unsigned int h;
1363 
1364 	rcu_read_lock();
1365 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1366 		head = &net->ipv6.fib_table_hash[h];
1367 		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1368 			write_lock_bh(&table->tb6_lock);
1369 			fib6_clean_tree(&table->tb6_root, func, prune, arg);
1370 			write_unlock_bh(&table->tb6_lock);
1371 		}
1372 	}
1373 	rcu_read_unlock();
1374 }
1375 
1376 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1377 {
1378 	if (rt->rt6i_flags & RTF_CACHE) {
1379 		RT6_TRACE("pruning clone %p\n", rt);
1380 		return -1;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1387 {
1388 	fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1389 }
1390 
1391 /*
1392  *	Garbage collection
1393  */
1394 
1395 static struct fib6_gc_args
1396 {
1397 	int			timeout;
1398 	int			more;
1399 } gc_args;
1400 
1401 static int fib6_age(struct rt6_info *rt, void *arg)
1402 {
1403 	unsigned long now = jiffies;
1404 
1405 	/*
1406 	 *	check addrconf expiration here.
1407 	 *	Routes are expired even if they are in use.
1408 	 *
1409 	 *	Also age clones. Note, that clones are aged out
1410 	 *	only if they are not in use now.
1411 	 */
1412 
1413 	if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1414 		if (time_after(now, rt->rt6i_expires)) {
1415 			RT6_TRACE("expiring %p\n", rt);
1416 			return -1;
1417 		}
1418 		gc_args.more++;
1419 	} else if (rt->rt6i_flags & RTF_CACHE) {
1420 		if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1421 		    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1422 			RT6_TRACE("aging clone %p\n", rt);
1423 			return -1;
1424 		} else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1425 			   (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1426 			RT6_TRACE("purging route %p via non-router but gateway\n",
1427 				  rt);
1428 			return -1;
1429 		}
1430 		gc_args.more++;
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 static DEFINE_SPINLOCK(fib6_gc_lock);
1437 
1438 void fib6_run_gc(unsigned long expires, struct net *net)
1439 {
1440 	if (expires != ~0UL) {
1441 		spin_lock_bh(&fib6_gc_lock);
1442 		gc_args.timeout = expires ? (int)expires :
1443 			net->ipv6.sysctl.ip6_rt_gc_interval;
1444 	} else {
1445 		local_bh_disable();
1446 		if (!spin_trylock(&fib6_gc_lock)) {
1447 			mod_timer(&ip6_fib_timer, jiffies + HZ);
1448 			local_bh_enable();
1449 			return;
1450 		}
1451 		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1452 	}
1453 	gc_args.more = 0;
1454 
1455 	icmp6_dst_gc(&gc_args.more);
1456 
1457 	fib6_clean_all(net, fib6_age, 0, NULL);
1458 
1459 	if (gc_args.more)
1460 		mod_timer(&ip6_fib_timer, jiffies +
1461 			  net->ipv6.sysctl.ip6_rt_gc_interval);
1462 	else {
1463 		del_timer(&ip6_fib_timer);
1464 		ip6_fib_timer.expires = 0;
1465 	}
1466 	spin_unlock_bh(&fib6_gc_lock);
1467 }
1468 
1469 static void fib6_gc_timer_cb(unsigned long arg)
1470 {
1471 	fib6_run_gc(0, (struct net *)arg);
1472 }
1473 
1474 static int fib6_net_init(struct net *net)
1475 {
1476 	int ret;
1477 
1478 	ret = -ENOMEM;
1479 	net->ipv6.fib_table_hash =
1480 		kzalloc(sizeof(*net->ipv6.fib_table_hash)*FIB_TABLE_HASHSZ,
1481 			GFP_KERNEL);
1482 	if (!net->ipv6.fib_table_hash)
1483 		goto out;
1484 
1485 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1486 					  GFP_KERNEL);
1487 	if (!net->ipv6.fib6_main_tbl)
1488 		goto out_fib_table_hash;
1489 
1490 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1491 	net->ipv6.fib6_main_tbl->tb6_root.leaf = &ip6_null_entry;
1492 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1493 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1494 
1495 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1496 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1497 					   GFP_KERNEL);
1498 	if (!net->ipv6.fib6_local_tbl)
1499 		goto out_fib6_main_tbl;
1500 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1501 	net->ipv6.fib6_local_tbl->tb6_root.leaf = &ip6_null_entry;
1502 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1503 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1504 #endif
1505 	fib6_tables_init(net);
1506 
1507 	ret = 0;
1508 out:
1509 	return ret;
1510 
1511 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1512 out_fib6_main_tbl:
1513 	kfree(net->ipv6.fib6_main_tbl);
1514 #endif
1515 out_fib_table_hash:
1516 	kfree(net->ipv6.fib_table_hash);
1517 	goto out;
1518  }
1519 
1520 static void fib6_net_exit(struct net *net)
1521 {
1522 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1523 	kfree(net->ipv6.fib6_local_tbl);
1524 #endif
1525 	kfree(net->ipv6.fib6_main_tbl);
1526 	kfree(net->ipv6.fib_table_hash);
1527 }
1528 
1529 static struct pernet_operations fib6_net_ops = {
1530 	.init = fib6_net_init,
1531 	.exit = fib6_net_exit,
1532 };
1533 
1534 int __init fib6_init(void)
1535 {
1536 	int ret = -ENOMEM;
1537 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1538 					   sizeof(struct fib6_node),
1539 					   0, SLAB_HWCACHE_ALIGN,
1540 					   NULL);
1541 	if (!fib6_node_kmem)
1542 		goto out;
1543 
1544 	ret = register_pernet_subsys(&fib6_net_ops);
1545 	if (ret)
1546 		goto out_kmem_cache_create;
1547 
1548 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1549 	if (ret)
1550 		goto out_unregister_subsys;
1551 out:
1552 	return ret;
1553 
1554 out_unregister_subsys:
1555 	unregister_pernet_subsys(&fib6_net_ops);
1556 out_kmem_cache_create:
1557 	kmem_cache_destroy(fib6_node_kmem);
1558 	goto out;
1559 }
1560 
1561 void fib6_gc_cleanup(void)
1562 {
1563 	del_timer(&ip6_fib_timer);
1564 	unregister_pernet_subsys(&fib6_net_ops);
1565 	kmem_cache_destroy(fib6_node_kmem);
1566 }
1567