xref: /openbmc/linux/net/ipv4/udp.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Version:	$Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Hirokazu Takahashi, <taka@valinux.co.jp>
15  *
16  * Fixes:
17  *		Alan Cox	:	verify_area() calls
18  *		Alan Cox	: 	stopped close while in use off icmp
19  *					messages. Not a fix but a botch that
20  *					for udp at least is 'valid'.
21  *		Alan Cox	:	Fixed icmp handling properly
22  *		Alan Cox	: 	Correct error for oversized datagrams
23  *		Alan Cox	:	Tidied select() semantics.
24  *		Alan Cox	:	udp_err() fixed properly, also now
25  *					select and read wake correctly on errors
26  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
27  *		Alan Cox	:	UDP can count its memory
28  *		Alan Cox	:	send to an unknown connection causes
29  *					an ECONNREFUSED off the icmp, but
30  *					does NOT close.
31  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
32  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
33  *					bug no longer crashes it.
34  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
35  *		Alan Cox	:	Uses skb_free_datagram
36  *		Alan Cox	:	Added get/set sockopt support.
37  *		Alan Cox	:	Broadcasting without option set returns EACCES.
38  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
39  *		Alan Cox	:	Use ip_tos and ip_ttl
40  *		Alan Cox	:	SNMP Mibs
41  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
42  *		Matt Dillon	:	UDP length checks.
43  *		Alan Cox	:	Smarter af_inet used properly.
44  *		Alan Cox	:	Use new kernel side addressing.
45  *		Alan Cox	:	Incorrect return on truncated datagram receive.
46  *	Arnt Gulbrandsen 	:	New udp_send and stuff
47  *		Alan Cox	:	Cache last socket
48  *		Alan Cox	:	Route cache
49  *		Jon Peatfield	:	Minor efficiency fix to sendto().
50  *		Mike Shaver	:	RFC1122 checks.
51  *		Alan Cox	:	Nonblocking error fix.
52  *	Willy Konynenberg	:	Transparent proxying support.
53  *		Mike McLagan	:	Routing by source
54  *		David S. Miller	:	New socket lookup architecture.
55  *					Last socket cache retained as it
56  *					does have a high hit rate.
57  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
58  *		Andi Kleen	:	Some cleanups, cache destination entry
59  *					for connect.
60  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
61  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
62  *					return ENOTCONN for unconnected sockets (POSIX)
63  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
64  *					bound-to-device socket
65  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
66  *					datagrams.
67  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
68  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
69  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
70  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
71  *					a single port at the same time.
72  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73  *	James Chapman		:	Add L2TP encapsulation type.
74  *
75  *
76  *		This program is free software; you can redistribute it and/or
77  *		modify it under the terms of the GNU General Public License
78  *		as published by the Free Software Foundation; either version
79  *		2 of the License, or (at your option) any later version.
80  */
81 
82 #include <asm/system.h>
83 #include <asm/uaccess.h>
84 #include <asm/ioctls.h>
85 #include <linux/types.h>
86 #include <linux/fcntl.h>
87 #include <linux/module.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/igmp.h>
91 #include <linux/in.h>
92 #include <linux/errno.h>
93 #include <linux/timer.h>
94 #include <linux/mm.h>
95 #include <linux/inet.h>
96 #include <linux/netdevice.h>
97 #include <net/tcp_states.h>
98 #include <linux/skbuff.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <net/net_namespace.h>
102 #include <net/icmp.h>
103 #include <net/route.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include "udp_impl.h"
107 
108 /*
109  *	Snmp MIB for the UDP layer
110  */
111 
112 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
113 
114 struct hlist_head udp_hash[UDP_HTABLE_SIZE];
115 DEFINE_RWLOCK(udp_hash_lock);
116 
117 static inline int __udp_lib_lport_inuse(__u16 num,
118 					const struct hlist_head udptable[])
119 {
120 	struct sock *sk;
121 	struct hlist_node *node;
122 
123 	sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)])
124 		if (sk->sk_hash == num)
125 			return 1;
126 	return 0;
127 }
128 
129 /**
130  *  __udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
131  *
132  *  @sk:          socket struct in question
133  *  @snum:        port number to look up
134  *  @udptable:    hash list table, must be of UDP_HTABLE_SIZE
135  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
136  */
137 int __udp_lib_get_port(struct sock *sk, unsigned short snum,
138 		       struct hlist_head udptable[],
139 		       int (*saddr_comp)(const struct sock *sk1,
140 					 const struct sock *sk2 )    )
141 {
142 	struct hlist_node *node;
143 	struct hlist_head *head;
144 	struct sock *sk2;
145 	int    error = 1;
146 
147 	write_lock_bh(&udp_hash_lock);
148 
149 	if (!snum) {
150 		int i, low, high, remaining;
151 		unsigned rover, best, best_size_so_far;
152 
153 		inet_get_local_port_range(&low, &high);
154 		remaining = (high - low) + 1;
155 
156 		best_size_so_far = UINT_MAX;
157 		best = rover = net_random() % remaining + low;
158 
159 		/* 1st pass: look for empty (or shortest) hash chain */
160 		for (i = 0; i < UDP_HTABLE_SIZE; i++) {
161 			int size = 0;
162 
163 			head = &udptable[rover & (UDP_HTABLE_SIZE - 1)];
164 			if (hlist_empty(head))
165 				goto gotit;
166 
167 			sk_for_each(sk2, node, head) {
168 				if (++size >= best_size_so_far)
169 					goto next;
170 			}
171 			best_size_so_far = size;
172 			best = rover;
173 		next:
174 			/* fold back if end of range */
175 			if (++rover > high)
176 				rover = low + ((rover - low)
177 					       & (UDP_HTABLE_SIZE - 1));
178 
179 
180 		}
181 
182 		/* 2nd pass: find hole in shortest hash chain */
183 		rover = best;
184 		for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++) {
185 			if (! __udp_lib_lport_inuse(rover, udptable))
186 				goto gotit;
187 			rover += UDP_HTABLE_SIZE;
188 			if (rover > high)
189 				rover = low + ((rover - low)
190 					       & (UDP_HTABLE_SIZE - 1));
191 		}
192 
193 
194 		/* All ports in use! */
195 		goto fail;
196 
197 gotit:
198 		snum = rover;
199 	} else {
200 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
201 
202 		sk_for_each(sk2, node, head)
203 			if (sk2->sk_hash == snum                             &&
204 			    sk2 != sk                                        &&
205 			    (!sk2->sk_reuse        || !sk->sk_reuse)         &&
206 			    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
207 			     || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
208 			    (*saddr_comp)(sk, sk2)                             )
209 				goto fail;
210 	}
211 
212 	inet_sk(sk)->num = snum;
213 	sk->sk_hash = snum;
214 	if (sk_unhashed(sk)) {
215 		head = &udptable[snum & (UDP_HTABLE_SIZE - 1)];
216 		sk_add_node(sk, head);
217 		sock_prot_inc_use(sk->sk_prot);
218 	}
219 	error = 0;
220 fail:
221 	write_unlock_bh(&udp_hash_lock);
222 	return error;
223 }
224 
225 int udp_get_port(struct sock *sk, unsigned short snum,
226 			int (*scmp)(const struct sock *, const struct sock *))
227 {
228 	return  __udp_lib_get_port(sk, snum, udp_hash, scmp);
229 }
230 
231 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
232 {
233 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
234 
235 	return 	( !ipv6_only_sock(sk2)  &&
236 		  (!inet1->rcv_saddr || !inet2->rcv_saddr ||
237 		   inet1->rcv_saddr == inet2->rcv_saddr      ));
238 }
239 
240 static inline int udp_v4_get_port(struct sock *sk, unsigned short snum)
241 {
242 	return udp_get_port(sk, snum, ipv4_rcv_saddr_equal);
243 }
244 
245 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
246  * harder than this. -DaveM
247  */
248 static struct sock *__udp4_lib_lookup(__be32 saddr, __be16 sport,
249 				      __be32 daddr, __be16 dport,
250 				      int dif, struct hlist_head udptable[])
251 {
252 	struct sock *sk, *result = NULL;
253 	struct hlist_node *node;
254 	unsigned short hnum = ntohs(dport);
255 	int badness = -1;
256 
257 	read_lock(&udp_hash_lock);
258 	sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) {
259 		struct inet_sock *inet = inet_sk(sk);
260 
261 		if (sk->sk_hash == hnum && !ipv6_only_sock(sk)) {
262 			int score = (sk->sk_family == PF_INET ? 1 : 0);
263 			if (inet->rcv_saddr) {
264 				if (inet->rcv_saddr != daddr)
265 					continue;
266 				score+=2;
267 			}
268 			if (inet->daddr) {
269 				if (inet->daddr != saddr)
270 					continue;
271 				score+=2;
272 			}
273 			if (inet->dport) {
274 				if (inet->dport != sport)
275 					continue;
276 				score+=2;
277 			}
278 			if (sk->sk_bound_dev_if) {
279 				if (sk->sk_bound_dev_if != dif)
280 					continue;
281 				score+=2;
282 			}
283 			if (score == 9) {
284 				result = sk;
285 				break;
286 			} else if (score > badness) {
287 				result = sk;
288 				badness = score;
289 			}
290 		}
291 	}
292 	if (result)
293 		sock_hold(result);
294 	read_unlock(&udp_hash_lock);
295 	return result;
296 }
297 
298 static inline struct sock *udp_v4_mcast_next(struct sock *sk,
299 					     __be16 loc_port, __be32 loc_addr,
300 					     __be16 rmt_port, __be32 rmt_addr,
301 					     int dif)
302 {
303 	struct hlist_node *node;
304 	struct sock *s = sk;
305 	unsigned short hnum = ntohs(loc_port);
306 
307 	sk_for_each_from(s, node) {
308 		struct inet_sock *inet = inet_sk(s);
309 
310 		if (s->sk_hash != hnum					||
311 		    (inet->daddr && inet->daddr != rmt_addr)		||
312 		    (inet->dport != rmt_port && inet->dport)		||
313 		    (inet->rcv_saddr && inet->rcv_saddr != loc_addr)	||
314 		    ipv6_only_sock(s)					||
315 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
316 			continue;
317 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
318 			continue;
319 		goto found;
320 	}
321 	s = NULL;
322 found:
323 	return s;
324 }
325 
326 /*
327  * This routine is called by the ICMP module when it gets some
328  * sort of error condition.  If err < 0 then the socket should
329  * be closed and the error returned to the user.  If err > 0
330  * it's just the icmp type << 8 | icmp code.
331  * Header points to the ip header of the error packet. We move
332  * on past this. Then (as it used to claim before adjustment)
333  * header points to the first 8 bytes of the udp header.  We need
334  * to find the appropriate port.
335  */
336 
337 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
338 {
339 	struct inet_sock *inet;
340 	struct iphdr *iph = (struct iphdr*)skb->data;
341 	struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
342 	const int type = icmp_hdr(skb)->type;
343 	const int code = icmp_hdr(skb)->code;
344 	struct sock *sk;
345 	int harderr;
346 	int err;
347 
348 	sk = __udp4_lib_lookup(iph->daddr, uh->dest, iph->saddr, uh->source,
349 			       skb->dev->ifindex, udptable		    );
350 	if (sk == NULL) {
351 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
352 		return;	/* No socket for error */
353 	}
354 
355 	err = 0;
356 	harderr = 0;
357 	inet = inet_sk(sk);
358 
359 	switch (type) {
360 	default:
361 	case ICMP_TIME_EXCEEDED:
362 		err = EHOSTUNREACH;
363 		break;
364 	case ICMP_SOURCE_QUENCH:
365 		goto out;
366 	case ICMP_PARAMETERPROB:
367 		err = EPROTO;
368 		harderr = 1;
369 		break;
370 	case ICMP_DEST_UNREACH:
371 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
372 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
373 				err = EMSGSIZE;
374 				harderr = 1;
375 				break;
376 			}
377 			goto out;
378 		}
379 		err = EHOSTUNREACH;
380 		if (code <= NR_ICMP_UNREACH) {
381 			harderr = icmp_err_convert[code].fatal;
382 			err = icmp_err_convert[code].errno;
383 		}
384 		break;
385 	}
386 
387 	/*
388 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
389 	 *	4.1.3.3.
390 	 */
391 	if (!inet->recverr) {
392 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
393 			goto out;
394 	} else {
395 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
396 	}
397 	sk->sk_err = err;
398 	sk->sk_error_report(sk);
399 out:
400 	sock_put(sk);
401 }
402 
403 void udp_err(struct sk_buff *skb, u32 info)
404 {
405 	return __udp4_lib_err(skb, info, udp_hash);
406 }
407 
408 /*
409  * Throw away all pending data and cancel the corking. Socket is locked.
410  */
411 static void udp_flush_pending_frames(struct sock *sk)
412 {
413 	struct udp_sock *up = udp_sk(sk);
414 
415 	if (up->pending) {
416 		up->len = 0;
417 		up->pending = 0;
418 		ip_flush_pending_frames(sk);
419 	}
420 }
421 
422 /**
423  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
424  * 	@sk: 	socket we are sending on
425  * 	@skb: 	sk_buff containing the filled-in UDP header
426  * 	        (checksum field must be zeroed out)
427  */
428 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
429 				 __be32 src, __be32 dst, int len      )
430 {
431 	unsigned int offset;
432 	struct udphdr *uh = udp_hdr(skb);
433 	__wsum csum = 0;
434 
435 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
436 		/*
437 		 * Only one fragment on the socket.
438 		 */
439 		skb->csum_start = skb_transport_header(skb) - skb->head;
440 		skb->csum_offset = offsetof(struct udphdr, check);
441 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
442 	} else {
443 		/*
444 		 * HW-checksum won't work as there are two or more
445 		 * fragments on the socket so that all csums of sk_buffs
446 		 * should be together
447 		 */
448 		offset = skb_transport_offset(skb);
449 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
450 
451 		skb->ip_summed = CHECKSUM_NONE;
452 
453 		skb_queue_walk(&sk->sk_write_queue, skb) {
454 			csum = csum_add(csum, skb->csum);
455 		}
456 
457 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
458 		if (uh->check == 0)
459 			uh->check = CSUM_MANGLED_0;
460 	}
461 }
462 
463 /*
464  * Push out all pending data as one UDP datagram. Socket is locked.
465  */
466 static int udp_push_pending_frames(struct sock *sk)
467 {
468 	struct udp_sock  *up = udp_sk(sk);
469 	struct inet_sock *inet = inet_sk(sk);
470 	struct flowi *fl = &inet->cork.fl;
471 	struct sk_buff *skb;
472 	struct udphdr *uh;
473 	int err = 0;
474 	__wsum csum = 0;
475 
476 	/* Grab the skbuff where UDP header space exists. */
477 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
478 		goto out;
479 
480 	/*
481 	 * Create a UDP header
482 	 */
483 	uh = udp_hdr(skb);
484 	uh->source = fl->fl_ip_sport;
485 	uh->dest = fl->fl_ip_dport;
486 	uh->len = htons(up->len);
487 	uh->check = 0;
488 
489 	if (up->pcflag)  				 /*     UDP-Lite      */
490 		csum  = udplite_csum_outgoing(sk, skb);
491 
492 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
493 
494 		skb->ip_summed = CHECKSUM_NONE;
495 		goto send;
496 
497 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
498 
499 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
500 		goto send;
501 
502 	} else						 /*   `normal' UDP    */
503 		csum = udp_csum_outgoing(sk, skb);
504 
505 	/* add protocol-dependent pseudo-header */
506 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
507 				      sk->sk_protocol, csum             );
508 	if (uh->check == 0)
509 		uh->check = CSUM_MANGLED_0;
510 
511 send:
512 	err = ip_push_pending_frames(sk);
513 out:
514 	up->len = 0;
515 	up->pending = 0;
516 	if (!err)
517 		UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, up->pcflag);
518 	return err;
519 }
520 
521 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
522 		size_t len)
523 {
524 	struct inet_sock *inet = inet_sk(sk);
525 	struct udp_sock *up = udp_sk(sk);
526 	int ulen = len;
527 	struct ipcm_cookie ipc;
528 	struct rtable *rt = NULL;
529 	int free = 0;
530 	int connected = 0;
531 	__be32 daddr, faddr, saddr;
532 	__be16 dport;
533 	u8  tos;
534 	int err, is_udplite = up->pcflag;
535 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
536 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
537 
538 	if (len > 0xFFFF)
539 		return -EMSGSIZE;
540 
541 	/*
542 	 *	Check the flags.
543 	 */
544 
545 	if (msg->msg_flags&MSG_OOB)	/* Mirror BSD error message compatibility */
546 		return -EOPNOTSUPP;
547 
548 	ipc.opt = NULL;
549 
550 	if (up->pending) {
551 		/*
552 		 * There are pending frames.
553 		 * The socket lock must be held while it's corked.
554 		 */
555 		lock_sock(sk);
556 		if (likely(up->pending)) {
557 			if (unlikely(up->pending != AF_INET)) {
558 				release_sock(sk);
559 				return -EINVAL;
560 			}
561 			goto do_append_data;
562 		}
563 		release_sock(sk);
564 	}
565 	ulen += sizeof(struct udphdr);
566 
567 	/*
568 	 *	Get and verify the address.
569 	 */
570 	if (msg->msg_name) {
571 		struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
572 		if (msg->msg_namelen < sizeof(*usin))
573 			return -EINVAL;
574 		if (usin->sin_family != AF_INET) {
575 			if (usin->sin_family != AF_UNSPEC)
576 				return -EAFNOSUPPORT;
577 		}
578 
579 		daddr = usin->sin_addr.s_addr;
580 		dport = usin->sin_port;
581 		if (dport == 0)
582 			return -EINVAL;
583 	} else {
584 		if (sk->sk_state != TCP_ESTABLISHED)
585 			return -EDESTADDRREQ;
586 		daddr = inet->daddr;
587 		dport = inet->dport;
588 		/* Open fast path for connected socket.
589 		   Route will not be used, if at least one option is set.
590 		 */
591 		connected = 1;
592 	}
593 	ipc.addr = inet->saddr;
594 
595 	ipc.oif = sk->sk_bound_dev_if;
596 	if (msg->msg_controllen) {
597 		err = ip_cmsg_send(msg, &ipc);
598 		if (err)
599 			return err;
600 		if (ipc.opt)
601 			free = 1;
602 		connected = 0;
603 	}
604 	if (!ipc.opt)
605 		ipc.opt = inet->opt;
606 
607 	saddr = ipc.addr;
608 	ipc.addr = faddr = daddr;
609 
610 	if (ipc.opt && ipc.opt->srr) {
611 		if (!daddr)
612 			return -EINVAL;
613 		faddr = ipc.opt->faddr;
614 		connected = 0;
615 	}
616 	tos = RT_TOS(inet->tos);
617 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
618 	    (msg->msg_flags & MSG_DONTROUTE) ||
619 	    (ipc.opt && ipc.opt->is_strictroute)) {
620 		tos |= RTO_ONLINK;
621 		connected = 0;
622 	}
623 
624 	if (MULTICAST(daddr)) {
625 		if (!ipc.oif)
626 			ipc.oif = inet->mc_index;
627 		if (!saddr)
628 			saddr = inet->mc_addr;
629 		connected = 0;
630 	}
631 
632 	if (connected)
633 		rt = (struct rtable*)sk_dst_check(sk, 0);
634 
635 	if (rt == NULL) {
636 		struct flowi fl = { .oif = ipc.oif,
637 				    .nl_u = { .ip4_u =
638 					      { .daddr = faddr,
639 						.saddr = saddr,
640 						.tos = tos } },
641 				    .proto = sk->sk_protocol,
642 				    .uli_u = { .ports =
643 					       { .sport = inet->sport,
644 						 .dport = dport } } };
645 		security_sk_classify_flow(sk, &fl);
646 		err = ip_route_output_flow(&rt, &fl, sk, 1);
647 		if (err) {
648 			if (err == -ENETUNREACH)
649 				IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
650 			goto out;
651 		}
652 
653 		err = -EACCES;
654 		if ((rt->rt_flags & RTCF_BROADCAST) &&
655 		    !sock_flag(sk, SOCK_BROADCAST))
656 			goto out;
657 		if (connected)
658 			sk_dst_set(sk, dst_clone(&rt->u.dst));
659 	}
660 
661 	if (msg->msg_flags&MSG_CONFIRM)
662 		goto do_confirm;
663 back_from_confirm:
664 
665 	saddr = rt->rt_src;
666 	if (!ipc.addr)
667 		daddr = ipc.addr = rt->rt_dst;
668 
669 	lock_sock(sk);
670 	if (unlikely(up->pending)) {
671 		/* The socket is already corked while preparing it. */
672 		/* ... which is an evident application bug. --ANK */
673 		release_sock(sk);
674 
675 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
676 		err = -EINVAL;
677 		goto out;
678 	}
679 	/*
680 	 *	Now cork the socket to pend data.
681 	 */
682 	inet->cork.fl.fl4_dst = daddr;
683 	inet->cork.fl.fl_ip_dport = dport;
684 	inet->cork.fl.fl4_src = saddr;
685 	inet->cork.fl.fl_ip_sport = inet->sport;
686 	up->pending = AF_INET;
687 
688 do_append_data:
689 	up->len += ulen;
690 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
691 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
692 			sizeof(struct udphdr), &ipc, rt,
693 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
694 	if (err)
695 		udp_flush_pending_frames(sk);
696 	else if (!corkreq)
697 		err = udp_push_pending_frames(sk);
698 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
699 		up->pending = 0;
700 	release_sock(sk);
701 
702 out:
703 	ip_rt_put(rt);
704 	if (free)
705 		kfree(ipc.opt);
706 	if (!err)
707 		return len;
708 	/*
709 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
710 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
711 	 * we don't have a good statistic (IpOutDiscards but it can be too many
712 	 * things).  We could add another new stat but at least for now that
713 	 * seems like overkill.
714 	 */
715 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
716 		UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
717 	}
718 	return err;
719 
720 do_confirm:
721 	dst_confirm(&rt->u.dst);
722 	if (!(msg->msg_flags&MSG_PROBE) || len)
723 		goto back_from_confirm;
724 	err = 0;
725 	goto out;
726 }
727 
728 int udp_sendpage(struct sock *sk, struct page *page, int offset,
729 		 size_t size, int flags)
730 {
731 	struct udp_sock *up = udp_sk(sk);
732 	int ret;
733 
734 	if (!up->pending) {
735 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
736 
737 		/* Call udp_sendmsg to specify destination address which
738 		 * sendpage interface can't pass.
739 		 * This will succeed only when the socket is connected.
740 		 */
741 		ret = udp_sendmsg(NULL, sk, &msg, 0);
742 		if (ret < 0)
743 			return ret;
744 	}
745 
746 	lock_sock(sk);
747 
748 	if (unlikely(!up->pending)) {
749 		release_sock(sk);
750 
751 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
752 		return -EINVAL;
753 	}
754 
755 	ret = ip_append_page(sk, page, offset, size, flags);
756 	if (ret == -EOPNOTSUPP) {
757 		release_sock(sk);
758 		return sock_no_sendpage(sk->sk_socket, page, offset,
759 					size, flags);
760 	}
761 	if (ret < 0) {
762 		udp_flush_pending_frames(sk);
763 		goto out;
764 	}
765 
766 	up->len += size;
767 	if (!(up->corkflag || (flags&MSG_MORE)))
768 		ret = udp_push_pending_frames(sk);
769 	if (!ret)
770 		ret = size;
771 out:
772 	release_sock(sk);
773 	return ret;
774 }
775 
776 /*
777  *	IOCTL requests applicable to the UDP protocol
778  */
779 
780 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
781 {
782 	switch (cmd) {
783 	case SIOCOUTQ:
784 	{
785 		int amount = atomic_read(&sk->sk_wmem_alloc);
786 		return put_user(amount, (int __user *)arg);
787 	}
788 
789 	case SIOCINQ:
790 	{
791 		struct sk_buff *skb;
792 		unsigned long amount;
793 
794 		amount = 0;
795 		spin_lock_bh(&sk->sk_receive_queue.lock);
796 		skb = skb_peek(&sk->sk_receive_queue);
797 		if (skb != NULL) {
798 			/*
799 			 * We will only return the amount
800 			 * of this packet since that is all
801 			 * that will be read.
802 			 */
803 			amount = skb->len - sizeof(struct udphdr);
804 		}
805 		spin_unlock_bh(&sk->sk_receive_queue.lock);
806 		return put_user(amount, (int __user *)arg);
807 	}
808 
809 	default:
810 		return -ENOIOCTLCMD;
811 	}
812 
813 	return 0;
814 }
815 
816 /*
817  * 	This should be easy, if there is something there we
818  * 	return it, otherwise we block.
819  */
820 
821 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
822 		size_t len, int noblock, int flags, int *addr_len)
823 {
824 	struct inet_sock *inet = inet_sk(sk);
825 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
826 	struct sk_buff *skb;
827 	unsigned int ulen, copied;
828 	int err;
829 	int is_udplite = IS_UDPLITE(sk);
830 
831 	/*
832 	 *	Check any passed addresses
833 	 */
834 	if (addr_len)
835 		*addr_len=sizeof(*sin);
836 
837 	if (flags & MSG_ERRQUEUE)
838 		return ip_recv_error(sk, msg, len);
839 
840 try_again:
841 	skb = skb_recv_datagram(sk, flags, noblock, &err);
842 	if (!skb)
843 		goto out;
844 
845 	ulen = skb->len - sizeof(struct udphdr);
846 	copied = len;
847 	if (copied > ulen)
848 		copied = ulen;
849 	else if (copied < ulen)
850 		msg->msg_flags |= MSG_TRUNC;
851 
852 	/*
853 	 * If checksum is needed at all, try to do it while copying the
854 	 * data.  If the data is truncated, or if we only want a partial
855 	 * coverage checksum (UDP-Lite), do it before the copy.
856 	 */
857 
858 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
859 		if (udp_lib_checksum_complete(skb))
860 			goto csum_copy_err;
861 	}
862 
863 	if (skb_csum_unnecessary(skb))
864 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
865 					      msg->msg_iov, copied       );
866 	else {
867 		err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
868 
869 		if (err == -EINVAL)
870 			goto csum_copy_err;
871 	}
872 
873 	if (err)
874 		goto out_free;
875 
876 	sock_recv_timestamp(msg, sk, skb);
877 
878 	/* Copy the address. */
879 	if (sin)
880 	{
881 		sin->sin_family = AF_INET;
882 		sin->sin_port = udp_hdr(skb)->source;
883 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
884 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
885 	}
886 	if (inet->cmsg_flags)
887 		ip_cmsg_recv(msg, skb);
888 
889 	err = copied;
890 	if (flags & MSG_TRUNC)
891 		err = ulen;
892 
893 out_free:
894 	skb_free_datagram(sk, skb);
895 out:
896 	return err;
897 
898 csum_copy_err:
899 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
900 
901 	skb_kill_datagram(sk, skb, flags);
902 
903 	if (noblock)
904 		return -EAGAIN;
905 	goto try_again;
906 }
907 
908 
909 int udp_disconnect(struct sock *sk, int flags)
910 {
911 	struct inet_sock *inet = inet_sk(sk);
912 	/*
913 	 *	1003.1g - break association.
914 	 */
915 
916 	sk->sk_state = TCP_CLOSE;
917 	inet->daddr = 0;
918 	inet->dport = 0;
919 	sk->sk_bound_dev_if = 0;
920 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
921 		inet_reset_saddr(sk);
922 
923 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
924 		sk->sk_prot->unhash(sk);
925 		inet->sport = 0;
926 	}
927 	sk_dst_reset(sk);
928 	return 0;
929 }
930 
931 /* returns:
932  *  -1: error
933  *   0: success
934  *  >0: "udp encap" protocol resubmission
935  *
936  * Note that in the success and error cases, the skb is assumed to
937  * have either been requeued or freed.
938  */
939 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
940 {
941 	struct udp_sock *up = udp_sk(sk);
942 	int rc;
943 
944 	/*
945 	 *	Charge it to the socket, dropping if the queue is full.
946 	 */
947 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
948 		goto drop;
949 	nf_reset(skb);
950 
951 	if (up->encap_type) {
952 		/*
953 		 * This is an encapsulation socket so pass the skb to
954 		 * the socket's udp_encap_rcv() hook. Otherwise, just
955 		 * fall through and pass this up the UDP socket.
956 		 * up->encap_rcv() returns the following value:
957 		 * =0 if skb was successfully passed to the encap
958 		 *    handler or was discarded by it.
959 		 * >0 if skb should be passed on to UDP.
960 		 * <0 if skb should be resubmitted as proto -N
961 		 */
962 
963 		/* if we're overly short, let UDP handle it */
964 		if (skb->len > sizeof(struct udphdr) &&
965 		    up->encap_rcv != NULL) {
966 			int ret;
967 
968 			ret = (*up->encap_rcv)(sk, skb);
969 			if (ret <= 0) {
970 				UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
971 				return -ret;
972 			}
973 		}
974 
975 		/* FALLTHROUGH -- it's a UDP Packet */
976 	}
977 
978 	/*
979 	 * 	UDP-Lite specific tests, ignored on UDP sockets
980 	 */
981 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
982 
983 		/*
984 		 * MIB statistics other than incrementing the error count are
985 		 * disabled for the following two types of errors: these depend
986 		 * on the application settings, not on the functioning of the
987 		 * protocol stack as such.
988 		 *
989 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
990 		 * way ... to ... at least let the receiving application block
991 		 * delivery of packets with coverage values less than a value
992 		 * provided by the application."
993 		 */
994 		if (up->pcrlen == 0) {          /* full coverage was set  */
995 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
996 				"%d while full coverage %d requested\n",
997 				UDP_SKB_CB(skb)->cscov, skb->len);
998 			goto drop;
999 		}
1000 		/* The next case involves violating the min. coverage requested
1001 		 * by the receiver. This is subtle: if receiver wants x and x is
1002 		 * greater than the buffersize/MTU then receiver will complain
1003 		 * that it wants x while sender emits packets of smaller size y.
1004 		 * Therefore the above ...()->partial_cov statement is essential.
1005 		 */
1006 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1007 			LIMIT_NETDEBUG(KERN_WARNING
1008 				"UDPLITE: coverage %d too small, need min %d\n",
1009 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1010 			goto drop;
1011 		}
1012 	}
1013 
1014 	if (sk->sk_filter) {
1015 		if (udp_lib_checksum_complete(skb))
1016 			goto drop;
1017 	}
1018 
1019 	if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1020 		/* Note that an ENOMEM error is charged twice */
1021 		if (rc == -ENOMEM)
1022 			UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag);
1023 		goto drop;
1024 	}
1025 
1026 	UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag);
1027 	return 0;
1028 
1029 drop:
1030 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag);
1031 	kfree_skb(skb);
1032 	return -1;
1033 }
1034 
1035 /*
1036  *	Multicasts and broadcasts go to each listener.
1037  *
1038  *	Note: called only from the BH handler context,
1039  *	so we don't need to lock the hashes.
1040  */
1041 static int __udp4_lib_mcast_deliver(struct sk_buff *skb,
1042 				    struct udphdr  *uh,
1043 				    __be32 saddr, __be32 daddr,
1044 				    struct hlist_head udptable[])
1045 {
1046 	struct sock *sk;
1047 	int dif;
1048 
1049 	read_lock(&udp_hash_lock);
1050 	sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1051 	dif = skb->dev->ifindex;
1052 	sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1053 	if (sk) {
1054 		struct sock *sknext = NULL;
1055 
1056 		do {
1057 			struct sk_buff *skb1 = skb;
1058 
1059 			sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1060 						   uh->source, saddr, dif);
1061 			if (sknext)
1062 				skb1 = skb_clone(skb, GFP_ATOMIC);
1063 
1064 			if (skb1) {
1065 				int ret = udp_queue_rcv_skb(sk, skb1);
1066 				if (ret > 0)
1067 					/* we should probably re-process instead
1068 					 * of dropping packets here. */
1069 					kfree_skb(skb1);
1070 			}
1071 			sk = sknext;
1072 		} while (sknext);
1073 	} else
1074 		kfree_skb(skb);
1075 	read_unlock(&udp_hash_lock);
1076 	return 0;
1077 }
1078 
1079 /* Initialize UDP checksum. If exited with zero value (success),
1080  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1081  * Otherwise, csum completion requires chacksumming packet body,
1082  * including udp header and folding it to skb->csum.
1083  */
1084 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1085 				 int proto)
1086 {
1087 	const struct iphdr *iph;
1088 	int err;
1089 
1090 	UDP_SKB_CB(skb)->partial_cov = 0;
1091 	UDP_SKB_CB(skb)->cscov = skb->len;
1092 
1093 	if (proto == IPPROTO_UDPLITE) {
1094 		err = udplite_checksum_init(skb, uh);
1095 		if (err)
1096 			return err;
1097 	}
1098 
1099 	iph = ip_hdr(skb);
1100 	if (uh->check == 0) {
1101 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1102 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1103 	       if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1104 				      proto, skb->csum))
1105 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1106 	}
1107 	if (!skb_csum_unnecessary(skb))
1108 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1109 					       skb->len, proto, 0);
1110 	/* Probably, we should checksum udp header (it should be in cache
1111 	 * in any case) and data in tiny packets (< rx copybreak).
1112 	 */
1113 
1114 	return 0;
1115 }
1116 
1117 /*
1118  *	All we need to do is get the socket, and then do a checksum.
1119  */
1120 
1121 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1122 		   int proto)
1123 {
1124 	struct sock *sk;
1125 	struct udphdr *uh = udp_hdr(skb);
1126 	unsigned short ulen;
1127 	struct rtable *rt = (struct rtable*)skb->dst;
1128 	__be32 saddr = ip_hdr(skb)->saddr;
1129 	__be32 daddr = ip_hdr(skb)->daddr;
1130 
1131 	/*
1132 	 *  Validate the packet.
1133 	 */
1134 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1135 		goto drop;		/* No space for header. */
1136 
1137 	ulen = ntohs(uh->len);
1138 	if (ulen > skb->len)
1139 		goto short_packet;
1140 
1141 	if (proto == IPPROTO_UDP) {
1142 		/* UDP validates ulen. */
1143 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1144 			goto short_packet;
1145 		uh = udp_hdr(skb);
1146 	}
1147 
1148 	if (udp4_csum_init(skb, uh, proto))
1149 		goto csum_error;
1150 
1151 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1152 		return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable);
1153 
1154 	sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest,
1155 			       skb->dev->ifindex, udptable        );
1156 
1157 	if (sk != NULL) {
1158 		int ret = udp_queue_rcv_skb(sk, skb);
1159 		sock_put(sk);
1160 
1161 		/* a return value > 0 means to resubmit the input, but
1162 		 * it wants the return to be -protocol, or 0
1163 		 */
1164 		if (ret > 0)
1165 			return -ret;
1166 		return 0;
1167 	}
1168 
1169 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1170 		goto drop;
1171 	nf_reset(skb);
1172 
1173 	/* No socket. Drop packet silently, if checksum is wrong */
1174 	if (udp_lib_checksum_complete(skb))
1175 		goto csum_error;
1176 
1177 	UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1178 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1179 
1180 	/*
1181 	 * Hmm.  We got an UDP packet to a port to which we
1182 	 * don't wanna listen.  Ignore it.
1183 	 */
1184 	kfree_skb(skb);
1185 	return 0;
1186 
1187 short_packet:
1188 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1189 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1190 		       NIPQUAD(saddr),
1191 		       ntohs(uh->source),
1192 		       ulen,
1193 		       skb->len,
1194 		       NIPQUAD(daddr),
1195 		       ntohs(uh->dest));
1196 	goto drop;
1197 
1198 csum_error:
1199 	/*
1200 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1201 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1202 	 */
1203 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1204 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1205 		       NIPQUAD(saddr),
1206 		       ntohs(uh->source),
1207 		       NIPQUAD(daddr),
1208 		       ntohs(uh->dest),
1209 		       ulen);
1210 drop:
1211 	UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1212 	kfree_skb(skb);
1213 	return 0;
1214 }
1215 
1216 int udp_rcv(struct sk_buff *skb)
1217 {
1218 	return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1219 }
1220 
1221 int udp_destroy_sock(struct sock *sk)
1222 {
1223 	lock_sock(sk);
1224 	udp_flush_pending_frames(sk);
1225 	release_sock(sk);
1226 	return 0;
1227 }
1228 
1229 /*
1230  *	Socket option code for UDP
1231  */
1232 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1233 		       char __user *optval, int optlen,
1234 		       int (*push_pending_frames)(struct sock *))
1235 {
1236 	struct udp_sock *up = udp_sk(sk);
1237 	int val;
1238 	int err = 0;
1239 
1240 	if (optlen<sizeof(int))
1241 		return -EINVAL;
1242 
1243 	if (get_user(val, (int __user *)optval))
1244 		return -EFAULT;
1245 
1246 	switch (optname) {
1247 	case UDP_CORK:
1248 		if (val != 0) {
1249 			up->corkflag = 1;
1250 		} else {
1251 			up->corkflag = 0;
1252 			lock_sock(sk);
1253 			(*push_pending_frames)(sk);
1254 			release_sock(sk);
1255 		}
1256 		break;
1257 
1258 	case UDP_ENCAP:
1259 		switch (val) {
1260 		case 0:
1261 		case UDP_ENCAP_ESPINUDP:
1262 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1263 			up->encap_rcv = xfrm4_udp_encap_rcv;
1264 			/* FALLTHROUGH */
1265 		case UDP_ENCAP_L2TPINUDP:
1266 			up->encap_type = val;
1267 			break;
1268 		default:
1269 			err = -ENOPROTOOPT;
1270 			break;
1271 		}
1272 		break;
1273 
1274 	/*
1275 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1276 	 */
1277 	/* The sender sets actual checksum coverage length via this option.
1278 	 * The case coverage > packet length is handled by send module. */
1279 	case UDPLITE_SEND_CSCOV:
1280 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1281 			return -ENOPROTOOPT;
1282 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1283 			val = 8;
1284 		up->pcslen = val;
1285 		up->pcflag |= UDPLITE_SEND_CC;
1286 		break;
1287 
1288 	/* The receiver specifies a minimum checksum coverage value. To make
1289 	 * sense, this should be set to at least 8 (as done below). If zero is
1290 	 * used, this again means full checksum coverage.                     */
1291 	case UDPLITE_RECV_CSCOV:
1292 		if (!up->pcflag)         /* Disable the option on UDP sockets */
1293 			return -ENOPROTOOPT;
1294 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1295 			val = 8;
1296 		up->pcrlen = val;
1297 		up->pcflag |= UDPLITE_RECV_CC;
1298 		break;
1299 
1300 	default:
1301 		err = -ENOPROTOOPT;
1302 		break;
1303 	}
1304 
1305 	return err;
1306 }
1307 
1308 int udp_setsockopt(struct sock *sk, int level, int optname,
1309 		   char __user *optval, int optlen)
1310 {
1311 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1312 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1313 					  udp_push_pending_frames);
1314 	return ip_setsockopt(sk, level, optname, optval, optlen);
1315 }
1316 
1317 #ifdef CONFIG_COMPAT
1318 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1319 			  char __user *optval, int optlen)
1320 {
1321 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1322 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1323 					  udp_push_pending_frames);
1324 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1325 }
1326 #endif
1327 
1328 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1329 		       char __user *optval, int __user *optlen)
1330 {
1331 	struct udp_sock *up = udp_sk(sk);
1332 	int val, len;
1333 
1334 	if (get_user(len,optlen))
1335 		return -EFAULT;
1336 
1337 	len = min_t(unsigned int, len, sizeof(int));
1338 
1339 	if (len < 0)
1340 		return -EINVAL;
1341 
1342 	switch (optname) {
1343 	case UDP_CORK:
1344 		val = up->corkflag;
1345 		break;
1346 
1347 	case UDP_ENCAP:
1348 		val = up->encap_type;
1349 		break;
1350 
1351 	/* The following two cannot be changed on UDP sockets, the return is
1352 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1353 	case UDPLITE_SEND_CSCOV:
1354 		val = up->pcslen;
1355 		break;
1356 
1357 	case UDPLITE_RECV_CSCOV:
1358 		val = up->pcrlen;
1359 		break;
1360 
1361 	default:
1362 		return -ENOPROTOOPT;
1363 	}
1364 
1365 	if (put_user(len, optlen))
1366 		return -EFAULT;
1367 	if (copy_to_user(optval, &val,len))
1368 		return -EFAULT;
1369 	return 0;
1370 }
1371 
1372 int udp_getsockopt(struct sock *sk, int level, int optname,
1373 		   char __user *optval, int __user *optlen)
1374 {
1375 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1376 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1377 	return ip_getsockopt(sk, level, optname, optval, optlen);
1378 }
1379 
1380 #ifdef CONFIG_COMPAT
1381 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1382 				 char __user *optval, int __user *optlen)
1383 {
1384 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1385 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1386 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1387 }
1388 #endif
1389 /**
1390  * 	udp_poll - wait for a UDP event.
1391  *	@file - file struct
1392  *	@sock - socket
1393  *	@wait - poll table
1394  *
1395  *	This is same as datagram poll, except for the special case of
1396  *	blocking sockets. If application is using a blocking fd
1397  *	and a packet with checksum error is in the queue;
1398  *	then it could get return from select indicating data available
1399  *	but then block when reading it. Add special case code
1400  *	to work around these arguably broken applications.
1401  */
1402 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1403 {
1404 	unsigned int mask = datagram_poll(file, sock, wait);
1405 	struct sock *sk = sock->sk;
1406 	int 	is_lite = IS_UDPLITE(sk);
1407 
1408 	/* Check for false positives due to checksum errors */
1409 	if ( (mask & POLLRDNORM) &&
1410 	     !(file->f_flags & O_NONBLOCK) &&
1411 	     !(sk->sk_shutdown & RCV_SHUTDOWN)){
1412 		struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1413 		struct sk_buff *skb;
1414 
1415 		spin_lock_bh(&rcvq->lock);
1416 		while ((skb = skb_peek(rcvq)) != NULL &&
1417 		       udp_lib_checksum_complete(skb)) {
1418 			UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1419 			__skb_unlink(skb, rcvq);
1420 			kfree_skb(skb);
1421 		}
1422 		spin_unlock_bh(&rcvq->lock);
1423 
1424 		/* nothing to see, move along */
1425 		if (skb == NULL)
1426 			mask &= ~(POLLIN | POLLRDNORM);
1427 	}
1428 
1429 	return mask;
1430 
1431 }
1432 
1433 struct proto udp_prot = {
1434 	.name		   = "UDP",
1435 	.owner		   = THIS_MODULE,
1436 	.close		   = udp_lib_close,
1437 	.connect	   = ip4_datagram_connect,
1438 	.disconnect	   = udp_disconnect,
1439 	.ioctl		   = udp_ioctl,
1440 	.destroy	   = udp_destroy_sock,
1441 	.setsockopt	   = udp_setsockopt,
1442 	.getsockopt	   = udp_getsockopt,
1443 	.sendmsg	   = udp_sendmsg,
1444 	.recvmsg	   = udp_recvmsg,
1445 	.sendpage	   = udp_sendpage,
1446 	.backlog_rcv	   = udp_queue_rcv_skb,
1447 	.hash		   = udp_lib_hash,
1448 	.unhash		   = udp_lib_unhash,
1449 	.get_port	   = udp_v4_get_port,
1450 	.obj_size	   = sizeof(struct udp_sock),
1451 #ifdef CONFIG_COMPAT
1452 	.compat_setsockopt = compat_udp_setsockopt,
1453 	.compat_getsockopt = compat_udp_getsockopt,
1454 #endif
1455 };
1456 
1457 /* ------------------------------------------------------------------------ */
1458 #ifdef CONFIG_PROC_FS
1459 
1460 static struct sock *udp_get_first(struct seq_file *seq)
1461 {
1462 	struct sock *sk;
1463 	struct udp_iter_state *state = seq->private;
1464 
1465 	for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1466 		struct hlist_node *node;
1467 		sk_for_each(sk, node, state->hashtable + state->bucket) {
1468 			if (sk->sk_family == state->family)
1469 				goto found;
1470 		}
1471 	}
1472 	sk = NULL;
1473 found:
1474 	return sk;
1475 }
1476 
1477 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1478 {
1479 	struct udp_iter_state *state = seq->private;
1480 
1481 	do {
1482 		sk = sk_next(sk);
1483 try_again:
1484 		;
1485 	} while (sk && sk->sk_family != state->family);
1486 
1487 	if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1488 		sk = sk_head(state->hashtable + state->bucket);
1489 		goto try_again;
1490 	}
1491 	return sk;
1492 }
1493 
1494 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1495 {
1496 	struct sock *sk = udp_get_first(seq);
1497 
1498 	if (sk)
1499 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1500 			--pos;
1501 	return pos ? NULL : sk;
1502 }
1503 
1504 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1505 {
1506 	read_lock(&udp_hash_lock);
1507 	return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1508 }
1509 
1510 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1511 {
1512 	struct sock *sk;
1513 
1514 	if (v == (void *)1)
1515 		sk = udp_get_idx(seq, 0);
1516 	else
1517 		sk = udp_get_next(seq, v);
1518 
1519 	++*pos;
1520 	return sk;
1521 }
1522 
1523 static void udp_seq_stop(struct seq_file *seq, void *v)
1524 {
1525 	read_unlock(&udp_hash_lock);
1526 }
1527 
1528 static int udp_seq_open(struct inode *inode, struct file *file)
1529 {
1530 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1531 	struct seq_file *seq;
1532 	int rc = -ENOMEM;
1533 	struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1534 
1535 	if (!s)
1536 		goto out;
1537 	s->family		= afinfo->family;
1538 	s->hashtable		= afinfo->hashtable;
1539 	s->seq_ops.start	= udp_seq_start;
1540 	s->seq_ops.next		= udp_seq_next;
1541 	s->seq_ops.show		= afinfo->seq_show;
1542 	s->seq_ops.stop		= udp_seq_stop;
1543 
1544 	rc = seq_open(file, &s->seq_ops);
1545 	if (rc)
1546 		goto out_kfree;
1547 
1548 	seq	     = file->private_data;
1549 	seq->private = s;
1550 out:
1551 	return rc;
1552 out_kfree:
1553 	kfree(s);
1554 	goto out;
1555 }
1556 
1557 /* ------------------------------------------------------------------------ */
1558 int udp_proc_register(struct udp_seq_afinfo *afinfo)
1559 {
1560 	struct proc_dir_entry *p;
1561 	int rc = 0;
1562 
1563 	if (!afinfo)
1564 		return -EINVAL;
1565 	afinfo->seq_fops->owner		= afinfo->owner;
1566 	afinfo->seq_fops->open		= udp_seq_open;
1567 	afinfo->seq_fops->read		= seq_read;
1568 	afinfo->seq_fops->llseek	= seq_lseek;
1569 	afinfo->seq_fops->release	= seq_release_private;
1570 
1571 	p = proc_net_fops_create(&init_net, afinfo->name, S_IRUGO, afinfo->seq_fops);
1572 	if (p)
1573 		p->data = afinfo;
1574 	else
1575 		rc = -ENOMEM;
1576 	return rc;
1577 }
1578 
1579 void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1580 {
1581 	if (!afinfo)
1582 		return;
1583 	proc_net_remove(&init_net, afinfo->name);
1584 	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1585 }
1586 
1587 /* ------------------------------------------------------------------------ */
1588 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1589 {
1590 	struct inet_sock *inet = inet_sk(sp);
1591 	__be32 dest = inet->daddr;
1592 	__be32 src  = inet->rcv_saddr;
1593 	__u16 destp	  = ntohs(inet->dport);
1594 	__u16 srcp	  = ntohs(inet->sport);
1595 
1596 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1597 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1598 		bucket, src, srcp, dest, destp, sp->sk_state,
1599 		atomic_read(&sp->sk_wmem_alloc),
1600 		atomic_read(&sp->sk_rmem_alloc),
1601 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1602 		atomic_read(&sp->sk_refcnt), sp);
1603 }
1604 
1605 int udp4_seq_show(struct seq_file *seq, void *v)
1606 {
1607 	if (v == SEQ_START_TOKEN)
1608 		seq_printf(seq, "%-127s\n",
1609 			   "  sl  local_address rem_address   st tx_queue "
1610 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1611 			   "inode");
1612 	else {
1613 		char tmpbuf[129];
1614 		struct udp_iter_state *state = seq->private;
1615 
1616 		udp4_format_sock(v, tmpbuf, state->bucket);
1617 		seq_printf(seq, "%-127s\n", tmpbuf);
1618 	}
1619 	return 0;
1620 }
1621 
1622 /* ------------------------------------------------------------------------ */
1623 static struct file_operations udp4_seq_fops;
1624 static struct udp_seq_afinfo udp4_seq_afinfo = {
1625 	.owner		= THIS_MODULE,
1626 	.name		= "udp",
1627 	.family		= AF_INET,
1628 	.hashtable	= udp_hash,
1629 	.seq_show	= udp4_seq_show,
1630 	.seq_fops	= &udp4_seq_fops,
1631 };
1632 
1633 int __init udp4_proc_init(void)
1634 {
1635 	return udp_proc_register(&udp4_seq_afinfo);
1636 }
1637 
1638 void udp4_proc_exit(void)
1639 {
1640 	udp_proc_unregister(&udp4_seq_afinfo);
1641 }
1642 #endif /* CONFIG_PROC_FS */
1643 
1644 EXPORT_SYMBOL(udp_disconnect);
1645 EXPORT_SYMBOL(udp_hash);
1646 EXPORT_SYMBOL(udp_hash_lock);
1647 EXPORT_SYMBOL(udp_ioctl);
1648 EXPORT_SYMBOL(udp_get_port);
1649 EXPORT_SYMBOL(udp_prot);
1650 EXPORT_SYMBOL(udp_sendmsg);
1651 EXPORT_SYMBOL(udp_lib_getsockopt);
1652 EXPORT_SYMBOL(udp_lib_setsockopt);
1653 EXPORT_SYMBOL(udp_poll);
1654 
1655 #ifdef CONFIG_PROC_FS
1656 EXPORT_SYMBOL(udp_proc_register);
1657 EXPORT_SYMBOL(udp_proc_unregister);
1658 #endif
1659