1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Version: $Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 13 * Alan Cox, <Alan.Cox@linux.org> 14 * Hirokazu Takahashi, <taka@valinux.co.jp> 15 * 16 * Fixes: 17 * Alan Cox : verify_area() calls 18 * Alan Cox : stopped close while in use off icmp 19 * messages. Not a fix but a botch that 20 * for udp at least is 'valid'. 21 * Alan Cox : Fixed icmp handling properly 22 * Alan Cox : Correct error for oversized datagrams 23 * Alan Cox : Tidied select() semantics. 24 * Alan Cox : udp_err() fixed properly, also now 25 * select and read wake correctly on errors 26 * Alan Cox : udp_send verify_area moved to avoid mem leak 27 * Alan Cox : UDP can count its memory 28 * Alan Cox : send to an unknown connection causes 29 * an ECONNREFUSED off the icmp, but 30 * does NOT close. 31 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 32 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 33 * bug no longer crashes it. 34 * Fred Van Kempen : Net2e support for sk->broadcast. 35 * Alan Cox : Uses skb_free_datagram 36 * Alan Cox : Added get/set sockopt support. 37 * Alan Cox : Broadcasting without option set returns EACCES. 38 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 39 * Alan Cox : Use ip_tos and ip_ttl 40 * Alan Cox : SNMP Mibs 41 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 42 * Matt Dillon : UDP length checks. 43 * Alan Cox : Smarter af_inet used properly. 44 * Alan Cox : Use new kernel side addressing. 45 * Alan Cox : Incorrect return on truncated datagram receive. 46 * Arnt Gulbrandsen : New udp_send and stuff 47 * Alan Cox : Cache last socket 48 * Alan Cox : Route cache 49 * Jon Peatfield : Minor efficiency fix to sendto(). 50 * Mike Shaver : RFC1122 checks. 51 * Alan Cox : Nonblocking error fix. 52 * Willy Konynenberg : Transparent proxying support. 53 * Mike McLagan : Routing by source 54 * David S. Miller : New socket lookup architecture. 55 * Last socket cache retained as it 56 * does have a high hit rate. 57 * Olaf Kirch : Don't linearise iovec on sendmsg. 58 * Andi Kleen : Some cleanups, cache destination entry 59 * for connect. 60 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 61 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 62 * return ENOTCONN for unconnected sockets (POSIX) 63 * Janos Farkas : don't deliver multi/broadcasts to a different 64 * bound-to-device socket 65 * Hirokazu Takahashi : HW checksumming for outgoing UDP 66 * datagrams. 67 * Hirokazu Takahashi : sendfile() on UDP works now. 68 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 69 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 70 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 71 * a single port at the same time. 72 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 73 * James Chapman : Add L2TP encapsulation type. 74 * 75 * 76 * This program is free software; you can redistribute it and/or 77 * modify it under the terms of the GNU General Public License 78 * as published by the Free Software Foundation; either version 79 * 2 of the License, or (at your option) any later version. 80 */ 81 82 #include <asm/system.h> 83 #include <asm/uaccess.h> 84 #include <asm/ioctls.h> 85 #include <linux/types.h> 86 #include <linux/fcntl.h> 87 #include <linux/module.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/igmp.h> 91 #include <linux/in.h> 92 #include <linux/errno.h> 93 #include <linux/timer.h> 94 #include <linux/mm.h> 95 #include <linux/inet.h> 96 #include <linux/netdevice.h> 97 #include <net/tcp_states.h> 98 #include <linux/skbuff.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <net/net_namespace.h> 102 #include <net/icmp.h> 103 #include <net/route.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include "udp_impl.h" 107 108 /* 109 * Snmp MIB for the UDP layer 110 */ 111 112 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly; 113 114 struct hlist_head udp_hash[UDP_HTABLE_SIZE]; 115 DEFINE_RWLOCK(udp_hash_lock); 116 117 static inline int __udp_lib_lport_inuse(__u16 num, 118 const struct hlist_head udptable[]) 119 { 120 struct sock *sk; 121 struct hlist_node *node; 122 123 sk_for_each(sk, node, &udptable[num & (UDP_HTABLE_SIZE - 1)]) 124 if (sk->sk_hash == num) 125 return 1; 126 return 0; 127 } 128 129 /** 130 * __udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 131 * 132 * @sk: socket struct in question 133 * @snum: port number to look up 134 * @udptable: hash list table, must be of UDP_HTABLE_SIZE 135 * @saddr_comp: AF-dependent comparison of bound local IP addresses 136 */ 137 int __udp_lib_get_port(struct sock *sk, unsigned short snum, 138 struct hlist_head udptable[], 139 int (*saddr_comp)(const struct sock *sk1, 140 const struct sock *sk2 ) ) 141 { 142 struct hlist_node *node; 143 struct hlist_head *head; 144 struct sock *sk2; 145 int error = 1; 146 147 write_lock_bh(&udp_hash_lock); 148 149 if (!snum) { 150 int i, low, high, remaining; 151 unsigned rover, best, best_size_so_far; 152 153 inet_get_local_port_range(&low, &high); 154 remaining = (high - low) + 1; 155 156 best_size_so_far = UINT_MAX; 157 best = rover = net_random() % remaining + low; 158 159 /* 1st pass: look for empty (or shortest) hash chain */ 160 for (i = 0; i < UDP_HTABLE_SIZE; i++) { 161 int size = 0; 162 163 head = &udptable[rover & (UDP_HTABLE_SIZE - 1)]; 164 if (hlist_empty(head)) 165 goto gotit; 166 167 sk_for_each(sk2, node, head) { 168 if (++size >= best_size_so_far) 169 goto next; 170 } 171 best_size_so_far = size; 172 best = rover; 173 next: 174 /* fold back if end of range */ 175 if (++rover > high) 176 rover = low + ((rover - low) 177 & (UDP_HTABLE_SIZE - 1)); 178 179 180 } 181 182 /* 2nd pass: find hole in shortest hash chain */ 183 rover = best; 184 for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++) { 185 if (! __udp_lib_lport_inuse(rover, udptable)) 186 goto gotit; 187 rover += UDP_HTABLE_SIZE; 188 if (rover > high) 189 rover = low + ((rover - low) 190 & (UDP_HTABLE_SIZE - 1)); 191 } 192 193 194 /* All ports in use! */ 195 goto fail; 196 197 gotit: 198 snum = rover; 199 } else { 200 head = &udptable[snum & (UDP_HTABLE_SIZE - 1)]; 201 202 sk_for_each(sk2, node, head) 203 if (sk2->sk_hash == snum && 204 sk2 != sk && 205 (!sk2->sk_reuse || !sk->sk_reuse) && 206 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if 207 || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 208 (*saddr_comp)(sk, sk2) ) 209 goto fail; 210 } 211 212 inet_sk(sk)->num = snum; 213 sk->sk_hash = snum; 214 if (sk_unhashed(sk)) { 215 head = &udptable[snum & (UDP_HTABLE_SIZE - 1)]; 216 sk_add_node(sk, head); 217 sock_prot_inc_use(sk->sk_prot); 218 } 219 error = 0; 220 fail: 221 write_unlock_bh(&udp_hash_lock); 222 return error; 223 } 224 225 int udp_get_port(struct sock *sk, unsigned short snum, 226 int (*scmp)(const struct sock *, const struct sock *)) 227 { 228 return __udp_lib_get_port(sk, snum, udp_hash, scmp); 229 } 230 231 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2) 232 { 233 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); 234 235 return ( !ipv6_only_sock(sk2) && 236 (!inet1->rcv_saddr || !inet2->rcv_saddr || 237 inet1->rcv_saddr == inet2->rcv_saddr )); 238 } 239 240 static inline int udp_v4_get_port(struct sock *sk, unsigned short snum) 241 { 242 return udp_get_port(sk, snum, ipv4_rcv_saddr_equal); 243 } 244 245 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 246 * harder than this. -DaveM 247 */ 248 static struct sock *__udp4_lib_lookup(__be32 saddr, __be16 sport, 249 __be32 daddr, __be16 dport, 250 int dif, struct hlist_head udptable[]) 251 { 252 struct sock *sk, *result = NULL; 253 struct hlist_node *node; 254 unsigned short hnum = ntohs(dport); 255 int badness = -1; 256 257 read_lock(&udp_hash_lock); 258 sk_for_each(sk, node, &udptable[hnum & (UDP_HTABLE_SIZE - 1)]) { 259 struct inet_sock *inet = inet_sk(sk); 260 261 if (sk->sk_hash == hnum && !ipv6_only_sock(sk)) { 262 int score = (sk->sk_family == PF_INET ? 1 : 0); 263 if (inet->rcv_saddr) { 264 if (inet->rcv_saddr != daddr) 265 continue; 266 score+=2; 267 } 268 if (inet->daddr) { 269 if (inet->daddr != saddr) 270 continue; 271 score+=2; 272 } 273 if (inet->dport) { 274 if (inet->dport != sport) 275 continue; 276 score+=2; 277 } 278 if (sk->sk_bound_dev_if) { 279 if (sk->sk_bound_dev_if != dif) 280 continue; 281 score+=2; 282 } 283 if (score == 9) { 284 result = sk; 285 break; 286 } else if (score > badness) { 287 result = sk; 288 badness = score; 289 } 290 } 291 } 292 if (result) 293 sock_hold(result); 294 read_unlock(&udp_hash_lock); 295 return result; 296 } 297 298 static inline struct sock *udp_v4_mcast_next(struct sock *sk, 299 __be16 loc_port, __be32 loc_addr, 300 __be16 rmt_port, __be32 rmt_addr, 301 int dif) 302 { 303 struct hlist_node *node; 304 struct sock *s = sk; 305 unsigned short hnum = ntohs(loc_port); 306 307 sk_for_each_from(s, node) { 308 struct inet_sock *inet = inet_sk(s); 309 310 if (s->sk_hash != hnum || 311 (inet->daddr && inet->daddr != rmt_addr) || 312 (inet->dport != rmt_port && inet->dport) || 313 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) || 314 ipv6_only_sock(s) || 315 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)) 316 continue; 317 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif)) 318 continue; 319 goto found; 320 } 321 s = NULL; 322 found: 323 return s; 324 } 325 326 /* 327 * This routine is called by the ICMP module when it gets some 328 * sort of error condition. If err < 0 then the socket should 329 * be closed and the error returned to the user. If err > 0 330 * it's just the icmp type << 8 | icmp code. 331 * Header points to the ip header of the error packet. We move 332 * on past this. Then (as it used to claim before adjustment) 333 * header points to the first 8 bytes of the udp header. We need 334 * to find the appropriate port. 335 */ 336 337 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[]) 338 { 339 struct inet_sock *inet; 340 struct iphdr *iph = (struct iphdr*)skb->data; 341 struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2)); 342 const int type = icmp_hdr(skb)->type; 343 const int code = icmp_hdr(skb)->code; 344 struct sock *sk; 345 int harderr; 346 int err; 347 348 sk = __udp4_lib_lookup(iph->daddr, uh->dest, iph->saddr, uh->source, 349 skb->dev->ifindex, udptable ); 350 if (sk == NULL) { 351 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 352 return; /* No socket for error */ 353 } 354 355 err = 0; 356 harderr = 0; 357 inet = inet_sk(sk); 358 359 switch (type) { 360 default: 361 case ICMP_TIME_EXCEEDED: 362 err = EHOSTUNREACH; 363 break; 364 case ICMP_SOURCE_QUENCH: 365 goto out; 366 case ICMP_PARAMETERPROB: 367 err = EPROTO; 368 harderr = 1; 369 break; 370 case ICMP_DEST_UNREACH: 371 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 372 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 373 err = EMSGSIZE; 374 harderr = 1; 375 break; 376 } 377 goto out; 378 } 379 err = EHOSTUNREACH; 380 if (code <= NR_ICMP_UNREACH) { 381 harderr = icmp_err_convert[code].fatal; 382 err = icmp_err_convert[code].errno; 383 } 384 break; 385 } 386 387 /* 388 * RFC1122: OK. Passes ICMP errors back to application, as per 389 * 4.1.3.3. 390 */ 391 if (!inet->recverr) { 392 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 393 goto out; 394 } else { 395 ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1)); 396 } 397 sk->sk_err = err; 398 sk->sk_error_report(sk); 399 out: 400 sock_put(sk); 401 } 402 403 void udp_err(struct sk_buff *skb, u32 info) 404 { 405 return __udp4_lib_err(skb, info, udp_hash); 406 } 407 408 /* 409 * Throw away all pending data and cancel the corking. Socket is locked. 410 */ 411 static void udp_flush_pending_frames(struct sock *sk) 412 { 413 struct udp_sock *up = udp_sk(sk); 414 415 if (up->pending) { 416 up->len = 0; 417 up->pending = 0; 418 ip_flush_pending_frames(sk); 419 } 420 } 421 422 /** 423 * udp4_hwcsum_outgoing - handle outgoing HW checksumming 424 * @sk: socket we are sending on 425 * @skb: sk_buff containing the filled-in UDP header 426 * (checksum field must be zeroed out) 427 */ 428 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb, 429 __be32 src, __be32 dst, int len ) 430 { 431 unsigned int offset; 432 struct udphdr *uh = udp_hdr(skb); 433 __wsum csum = 0; 434 435 if (skb_queue_len(&sk->sk_write_queue) == 1) { 436 /* 437 * Only one fragment on the socket. 438 */ 439 skb->csum_start = skb_transport_header(skb) - skb->head; 440 skb->csum_offset = offsetof(struct udphdr, check); 441 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0); 442 } else { 443 /* 444 * HW-checksum won't work as there are two or more 445 * fragments on the socket so that all csums of sk_buffs 446 * should be together 447 */ 448 offset = skb_transport_offset(skb); 449 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0); 450 451 skb->ip_summed = CHECKSUM_NONE; 452 453 skb_queue_walk(&sk->sk_write_queue, skb) { 454 csum = csum_add(csum, skb->csum); 455 } 456 457 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 458 if (uh->check == 0) 459 uh->check = CSUM_MANGLED_0; 460 } 461 } 462 463 /* 464 * Push out all pending data as one UDP datagram. Socket is locked. 465 */ 466 static int udp_push_pending_frames(struct sock *sk) 467 { 468 struct udp_sock *up = udp_sk(sk); 469 struct inet_sock *inet = inet_sk(sk); 470 struct flowi *fl = &inet->cork.fl; 471 struct sk_buff *skb; 472 struct udphdr *uh; 473 int err = 0; 474 __wsum csum = 0; 475 476 /* Grab the skbuff where UDP header space exists. */ 477 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL) 478 goto out; 479 480 /* 481 * Create a UDP header 482 */ 483 uh = udp_hdr(skb); 484 uh->source = fl->fl_ip_sport; 485 uh->dest = fl->fl_ip_dport; 486 uh->len = htons(up->len); 487 uh->check = 0; 488 489 if (up->pcflag) /* UDP-Lite */ 490 csum = udplite_csum_outgoing(sk, skb); 491 492 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */ 493 494 skb->ip_summed = CHECKSUM_NONE; 495 goto send; 496 497 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 498 499 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len); 500 goto send; 501 502 } else /* `normal' UDP */ 503 csum = udp_csum_outgoing(sk, skb); 504 505 /* add protocol-dependent pseudo-header */ 506 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len, 507 sk->sk_protocol, csum ); 508 if (uh->check == 0) 509 uh->check = CSUM_MANGLED_0; 510 511 send: 512 err = ip_push_pending_frames(sk); 513 out: 514 up->len = 0; 515 up->pending = 0; 516 if (!err) 517 UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, up->pcflag); 518 return err; 519 } 520 521 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 522 size_t len) 523 { 524 struct inet_sock *inet = inet_sk(sk); 525 struct udp_sock *up = udp_sk(sk); 526 int ulen = len; 527 struct ipcm_cookie ipc; 528 struct rtable *rt = NULL; 529 int free = 0; 530 int connected = 0; 531 __be32 daddr, faddr, saddr; 532 __be16 dport; 533 u8 tos; 534 int err, is_udplite = up->pcflag; 535 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 536 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 537 538 if (len > 0xFFFF) 539 return -EMSGSIZE; 540 541 /* 542 * Check the flags. 543 */ 544 545 if (msg->msg_flags&MSG_OOB) /* Mirror BSD error message compatibility */ 546 return -EOPNOTSUPP; 547 548 ipc.opt = NULL; 549 550 if (up->pending) { 551 /* 552 * There are pending frames. 553 * The socket lock must be held while it's corked. 554 */ 555 lock_sock(sk); 556 if (likely(up->pending)) { 557 if (unlikely(up->pending != AF_INET)) { 558 release_sock(sk); 559 return -EINVAL; 560 } 561 goto do_append_data; 562 } 563 release_sock(sk); 564 } 565 ulen += sizeof(struct udphdr); 566 567 /* 568 * Get and verify the address. 569 */ 570 if (msg->msg_name) { 571 struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name; 572 if (msg->msg_namelen < sizeof(*usin)) 573 return -EINVAL; 574 if (usin->sin_family != AF_INET) { 575 if (usin->sin_family != AF_UNSPEC) 576 return -EAFNOSUPPORT; 577 } 578 579 daddr = usin->sin_addr.s_addr; 580 dport = usin->sin_port; 581 if (dport == 0) 582 return -EINVAL; 583 } else { 584 if (sk->sk_state != TCP_ESTABLISHED) 585 return -EDESTADDRREQ; 586 daddr = inet->daddr; 587 dport = inet->dport; 588 /* Open fast path for connected socket. 589 Route will not be used, if at least one option is set. 590 */ 591 connected = 1; 592 } 593 ipc.addr = inet->saddr; 594 595 ipc.oif = sk->sk_bound_dev_if; 596 if (msg->msg_controllen) { 597 err = ip_cmsg_send(msg, &ipc); 598 if (err) 599 return err; 600 if (ipc.opt) 601 free = 1; 602 connected = 0; 603 } 604 if (!ipc.opt) 605 ipc.opt = inet->opt; 606 607 saddr = ipc.addr; 608 ipc.addr = faddr = daddr; 609 610 if (ipc.opt && ipc.opt->srr) { 611 if (!daddr) 612 return -EINVAL; 613 faddr = ipc.opt->faddr; 614 connected = 0; 615 } 616 tos = RT_TOS(inet->tos); 617 if (sock_flag(sk, SOCK_LOCALROUTE) || 618 (msg->msg_flags & MSG_DONTROUTE) || 619 (ipc.opt && ipc.opt->is_strictroute)) { 620 tos |= RTO_ONLINK; 621 connected = 0; 622 } 623 624 if (MULTICAST(daddr)) { 625 if (!ipc.oif) 626 ipc.oif = inet->mc_index; 627 if (!saddr) 628 saddr = inet->mc_addr; 629 connected = 0; 630 } 631 632 if (connected) 633 rt = (struct rtable*)sk_dst_check(sk, 0); 634 635 if (rt == NULL) { 636 struct flowi fl = { .oif = ipc.oif, 637 .nl_u = { .ip4_u = 638 { .daddr = faddr, 639 .saddr = saddr, 640 .tos = tos } }, 641 .proto = sk->sk_protocol, 642 .uli_u = { .ports = 643 { .sport = inet->sport, 644 .dport = dport } } }; 645 security_sk_classify_flow(sk, &fl); 646 err = ip_route_output_flow(&rt, &fl, sk, 1); 647 if (err) { 648 if (err == -ENETUNREACH) 649 IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES); 650 goto out; 651 } 652 653 err = -EACCES; 654 if ((rt->rt_flags & RTCF_BROADCAST) && 655 !sock_flag(sk, SOCK_BROADCAST)) 656 goto out; 657 if (connected) 658 sk_dst_set(sk, dst_clone(&rt->u.dst)); 659 } 660 661 if (msg->msg_flags&MSG_CONFIRM) 662 goto do_confirm; 663 back_from_confirm: 664 665 saddr = rt->rt_src; 666 if (!ipc.addr) 667 daddr = ipc.addr = rt->rt_dst; 668 669 lock_sock(sk); 670 if (unlikely(up->pending)) { 671 /* The socket is already corked while preparing it. */ 672 /* ... which is an evident application bug. --ANK */ 673 release_sock(sk); 674 675 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n"); 676 err = -EINVAL; 677 goto out; 678 } 679 /* 680 * Now cork the socket to pend data. 681 */ 682 inet->cork.fl.fl4_dst = daddr; 683 inet->cork.fl.fl_ip_dport = dport; 684 inet->cork.fl.fl4_src = saddr; 685 inet->cork.fl.fl_ip_sport = inet->sport; 686 up->pending = AF_INET; 687 688 do_append_data: 689 up->len += ulen; 690 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 691 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen, 692 sizeof(struct udphdr), &ipc, rt, 693 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 694 if (err) 695 udp_flush_pending_frames(sk); 696 else if (!corkreq) 697 err = udp_push_pending_frames(sk); 698 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 699 up->pending = 0; 700 release_sock(sk); 701 702 out: 703 ip_rt_put(rt); 704 if (free) 705 kfree(ipc.opt); 706 if (!err) 707 return len; 708 /* 709 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 710 * ENOBUFS might not be good (it's not tunable per se), but otherwise 711 * we don't have a good statistic (IpOutDiscards but it can be too many 712 * things). We could add another new stat but at least for now that 713 * seems like overkill. 714 */ 715 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 716 UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite); 717 } 718 return err; 719 720 do_confirm: 721 dst_confirm(&rt->u.dst); 722 if (!(msg->msg_flags&MSG_PROBE) || len) 723 goto back_from_confirm; 724 err = 0; 725 goto out; 726 } 727 728 int udp_sendpage(struct sock *sk, struct page *page, int offset, 729 size_t size, int flags) 730 { 731 struct udp_sock *up = udp_sk(sk); 732 int ret; 733 734 if (!up->pending) { 735 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 736 737 /* Call udp_sendmsg to specify destination address which 738 * sendpage interface can't pass. 739 * This will succeed only when the socket is connected. 740 */ 741 ret = udp_sendmsg(NULL, sk, &msg, 0); 742 if (ret < 0) 743 return ret; 744 } 745 746 lock_sock(sk); 747 748 if (unlikely(!up->pending)) { 749 release_sock(sk); 750 751 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n"); 752 return -EINVAL; 753 } 754 755 ret = ip_append_page(sk, page, offset, size, flags); 756 if (ret == -EOPNOTSUPP) { 757 release_sock(sk); 758 return sock_no_sendpage(sk->sk_socket, page, offset, 759 size, flags); 760 } 761 if (ret < 0) { 762 udp_flush_pending_frames(sk); 763 goto out; 764 } 765 766 up->len += size; 767 if (!(up->corkflag || (flags&MSG_MORE))) 768 ret = udp_push_pending_frames(sk); 769 if (!ret) 770 ret = size; 771 out: 772 release_sock(sk); 773 return ret; 774 } 775 776 /* 777 * IOCTL requests applicable to the UDP protocol 778 */ 779 780 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 781 { 782 switch (cmd) { 783 case SIOCOUTQ: 784 { 785 int amount = atomic_read(&sk->sk_wmem_alloc); 786 return put_user(amount, (int __user *)arg); 787 } 788 789 case SIOCINQ: 790 { 791 struct sk_buff *skb; 792 unsigned long amount; 793 794 amount = 0; 795 spin_lock_bh(&sk->sk_receive_queue.lock); 796 skb = skb_peek(&sk->sk_receive_queue); 797 if (skb != NULL) { 798 /* 799 * We will only return the amount 800 * of this packet since that is all 801 * that will be read. 802 */ 803 amount = skb->len - sizeof(struct udphdr); 804 } 805 spin_unlock_bh(&sk->sk_receive_queue.lock); 806 return put_user(amount, (int __user *)arg); 807 } 808 809 default: 810 return -ENOIOCTLCMD; 811 } 812 813 return 0; 814 } 815 816 /* 817 * This should be easy, if there is something there we 818 * return it, otherwise we block. 819 */ 820 821 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 822 size_t len, int noblock, int flags, int *addr_len) 823 { 824 struct inet_sock *inet = inet_sk(sk); 825 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name; 826 struct sk_buff *skb; 827 unsigned int ulen, copied; 828 int err; 829 int is_udplite = IS_UDPLITE(sk); 830 831 /* 832 * Check any passed addresses 833 */ 834 if (addr_len) 835 *addr_len=sizeof(*sin); 836 837 if (flags & MSG_ERRQUEUE) 838 return ip_recv_error(sk, msg, len); 839 840 try_again: 841 skb = skb_recv_datagram(sk, flags, noblock, &err); 842 if (!skb) 843 goto out; 844 845 ulen = skb->len - sizeof(struct udphdr); 846 copied = len; 847 if (copied > ulen) 848 copied = ulen; 849 else if (copied < ulen) 850 msg->msg_flags |= MSG_TRUNC; 851 852 /* 853 * If checksum is needed at all, try to do it while copying the 854 * data. If the data is truncated, or if we only want a partial 855 * coverage checksum (UDP-Lite), do it before the copy. 856 */ 857 858 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) { 859 if (udp_lib_checksum_complete(skb)) 860 goto csum_copy_err; 861 } 862 863 if (skb_csum_unnecessary(skb)) 864 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), 865 msg->msg_iov, copied ); 866 else { 867 err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov); 868 869 if (err == -EINVAL) 870 goto csum_copy_err; 871 } 872 873 if (err) 874 goto out_free; 875 876 sock_recv_timestamp(msg, sk, skb); 877 878 /* Copy the address. */ 879 if (sin) 880 { 881 sin->sin_family = AF_INET; 882 sin->sin_port = udp_hdr(skb)->source; 883 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 884 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 885 } 886 if (inet->cmsg_flags) 887 ip_cmsg_recv(msg, skb); 888 889 err = copied; 890 if (flags & MSG_TRUNC) 891 err = ulen; 892 893 out_free: 894 skb_free_datagram(sk, skb); 895 out: 896 return err; 897 898 csum_copy_err: 899 UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite); 900 901 skb_kill_datagram(sk, skb, flags); 902 903 if (noblock) 904 return -EAGAIN; 905 goto try_again; 906 } 907 908 909 int udp_disconnect(struct sock *sk, int flags) 910 { 911 struct inet_sock *inet = inet_sk(sk); 912 /* 913 * 1003.1g - break association. 914 */ 915 916 sk->sk_state = TCP_CLOSE; 917 inet->daddr = 0; 918 inet->dport = 0; 919 sk->sk_bound_dev_if = 0; 920 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 921 inet_reset_saddr(sk); 922 923 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 924 sk->sk_prot->unhash(sk); 925 inet->sport = 0; 926 } 927 sk_dst_reset(sk); 928 return 0; 929 } 930 931 /* returns: 932 * -1: error 933 * 0: success 934 * >0: "udp encap" protocol resubmission 935 * 936 * Note that in the success and error cases, the skb is assumed to 937 * have either been requeued or freed. 938 */ 939 int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb) 940 { 941 struct udp_sock *up = udp_sk(sk); 942 int rc; 943 944 /* 945 * Charge it to the socket, dropping if the queue is full. 946 */ 947 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 948 goto drop; 949 nf_reset(skb); 950 951 if (up->encap_type) { 952 /* 953 * This is an encapsulation socket so pass the skb to 954 * the socket's udp_encap_rcv() hook. Otherwise, just 955 * fall through and pass this up the UDP socket. 956 * up->encap_rcv() returns the following value: 957 * =0 if skb was successfully passed to the encap 958 * handler or was discarded by it. 959 * >0 if skb should be passed on to UDP. 960 * <0 if skb should be resubmitted as proto -N 961 */ 962 963 /* if we're overly short, let UDP handle it */ 964 if (skb->len > sizeof(struct udphdr) && 965 up->encap_rcv != NULL) { 966 int ret; 967 968 ret = (*up->encap_rcv)(sk, skb); 969 if (ret <= 0) { 970 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag); 971 return -ret; 972 } 973 } 974 975 /* FALLTHROUGH -- it's a UDP Packet */ 976 } 977 978 /* 979 * UDP-Lite specific tests, ignored on UDP sockets 980 */ 981 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 982 983 /* 984 * MIB statistics other than incrementing the error count are 985 * disabled for the following two types of errors: these depend 986 * on the application settings, not on the functioning of the 987 * protocol stack as such. 988 * 989 * RFC 3828 here recommends (sec 3.3): "There should also be a 990 * way ... to ... at least let the receiving application block 991 * delivery of packets with coverage values less than a value 992 * provided by the application." 993 */ 994 if (up->pcrlen == 0) { /* full coverage was set */ 995 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage " 996 "%d while full coverage %d requested\n", 997 UDP_SKB_CB(skb)->cscov, skb->len); 998 goto drop; 999 } 1000 /* The next case involves violating the min. coverage requested 1001 * by the receiver. This is subtle: if receiver wants x and x is 1002 * greater than the buffersize/MTU then receiver will complain 1003 * that it wants x while sender emits packets of smaller size y. 1004 * Therefore the above ...()->partial_cov statement is essential. 1005 */ 1006 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1007 LIMIT_NETDEBUG(KERN_WARNING 1008 "UDPLITE: coverage %d too small, need min %d\n", 1009 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1010 goto drop; 1011 } 1012 } 1013 1014 if (sk->sk_filter) { 1015 if (udp_lib_checksum_complete(skb)) 1016 goto drop; 1017 } 1018 1019 if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) { 1020 /* Note that an ENOMEM error is charged twice */ 1021 if (rc == -ENOMEM) 1022 UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, up->pcflag); 1023 goto drop; 1024 } 1025 1026 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS, up->pcflag); 1027 return 0; 1028 1029 drop: 1030 UDP_INC_STATS_BH(UDP_MIB_INERRORS, up->pcflag); 1031 kfree_skb(skb); 1032 return -1; 1033 } 1034 1035 /* 1036 * Multicasts and broadcasts go to each listener. 1037 * 1038 * Note: called only from the BH handler context, 1039 * so we don't need to lock the hashes. 1040 */ 1041 static int __udp4_lib_mcast_deliver(struct sk_buff *skb, 1042 struct udphdr *uh, 1043 __be32 saddr, __be32 daddr, 1044 struct hlist_head udptable[]) 1045 { 1046 struct sock *sk; 1047 int dif; 1048 1049 read_lock(&udp_hash_lock); 1050 sk = sk_head(&udptable[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]); 1051 dif = skb->dev->ifindex; 1052 sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif); 1053 if (sk) { 1054 struct sock *sknext = NULL; 1055 1056 do { 1057 struct sk_buff *skb1 = skb; 1058 1059 sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr, 1060 uh->source, saddr, dif); 1061 if (sknext) 1062 skb1 = skb_clone(skb, GFP_ATOMIC); 1063 1064 if (skb1) { 1065 int ret = udp_queue_rcv_skb(sk, skb1); 1066 if (ret > 0) 1067 /* we should probably re-process instead 1068 * of dropping packets here. */ 1069 kfree_skb(skb1); 1070 } 1071 sk = sknext; 1072 } while (sknext); 1073 } else 1074 kfree_skb(skb); 1075 read_unlock(&udp_hash_lock); 1076 return 0; 1077 } 1078 1079 /* Initialize UDP checksum. If exited with zero value (success), 1080 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1081 * Otherwise, csum completion requires chacksumming packet body, 1082 * including udp header and folding it to skb->csum. 1083 */ 1084 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 1085 int proto) 1086 { 1087 const struct iphdr *iph; 1088 int err; 1089 1090 UDP_SKB_CB(skb)->partial_cov = 0; 1091 UDP_SKB_CB(skb)->cscov = skb->len; 1092 1093 if (proto == IPPROTO_UDPLITE) { 1094 err = udplite_checksum_init(skb, uh); 1095 if (err) 1096 return err; 1097 } 1098 1099 iph = ip_hdr(skb); 1100 if (uh->check == 0) { 1101 skb->ip_summed = CHECKSUM_UNNECESSARY; 1102 } else if (skb->ip_summed == CHECKSUM_COMPLETE) { 1103 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len, 1104 proto, skb->csum)) 1105 skb->ip_summed = CHECKSUM_UNNECESSARY; 1106 } 1107 if (!skb_csum_unnecessary(skb)) 1108 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1109 skb->len, proto, 0); 1110 /* Probably, we should checksum udp header (it should be in cache 1111 * in any case) and data in tiny packets (< rx copybreak). 1112 */ 1113 1114 return 0; 1115 } 1116 1117 /* 1118 * All we need to do is get the socket, and then do a checksum. 1119 */ 1120 1121 int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[], 1122 int proto) 1123 { 1124 struct sock *sk; 1125 struct udphdr *uh = udp_hdr(skb); 1126 unsigned short ulen; 1127 struct rtable *rt = (struct rtable*)skb->dst; 1128 __be32 saddr = ip_hdr(skb)->saddr; 1129 __be32 daddr = ip_hdr(skb)->daddr; 1130 1131 /* 1132 * Validate the packet. 1133 */ 1134 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1135 goto drop; /* No space for header. */ 1136 1137 ulen = ntohs(uh->len); 1138 if (ulen > skb->len) 1139 goto short_packet; 1140 1141 if (proto == IPPROTO_UDP) { 1142 /* UDP validates ulen. */ 1143 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 1144 goto short_packet; 1145 uh = udp_hdr(skb); 1146 } 1147 1148 if (udp4_csum_init(skb, uh, proto)) 1149 goto csum_error; 1150 1151 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1152 return __udp4_lib_mcast_deliver(skb, uh, saddr, daddr, udptable); 1153 1154 sk = __udp4_lib_lookup(saddr, uh->source, daddr, uh->dest, 1155 skb->dev->ifindex, udptable ); 1156 1157 if (sk != NULL) { 1158 int ret = udp_queue_rcv_skb(sk, skb); 1159 sock_put(sk); 1160 1161 /* a return value > 0 means to resubmit the input, but 1162 * it wants the return to be -protocol, or 0 1163 */ 1164 if (ret > 0) 1165 return -ret; 1166 return 0; 1167 } 1168 1169 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1170 goto drop; 1171 nf_reset(skb); 1172 1173 /* No socket. Drop packet silently, if checksum is wrong */ 1174 if (udp_lib_checksum_complete(skb)) 1175 goto csum_error; 1176 1177 UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 1178 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1179 1180 /* 1181 * Hmm. We got an UDP packet to a port to which we 1182 * don't wanna listen. Ignore it. 1183 */ 1184 kfree_skb(skb); 1185 return 0; 1186 1187 short_packet: 1188 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n", 1189 proto == IPPROTO_UDPLITE ? "-Lite" : "", 1190 NIPQUAD(saddr), 1191 ntohs(uh->source), 1192 ulen, 1193 skb->len, 1194 NIPQUAD(daddr), 1195 ntohs(uh->dest)); 1196 goto drop; 1197 1198 csum_error: 1199 /* 1200 * RFC1122: OK. Discards the bad packet silently (as far as 1201 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1202 */ 1203 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n", 1204 proto == IPPROTO_UDPLITE ? "-Lite" : "", 1205 NIPQUAD(saddr), 1206 ntohs(uh->source), 1207 NIPQUAD(daddr), 1208 ntohs(uh->dest), 1209 ulen); 1210 drop: 1211 UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 1212 kfree_skb(skb); 1213 return 0; 1214 } 1215 1216 int udp_rcv(struct sk_buff *skb) 1217 { 1218 return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP); 1219 } 1220 1221 int udp_destroy_sock(struct sock *sk) 1222 { 1223 lock_sock(sk); 1224 udp_flush_pending_frames(sk); 1225 release_sock(sk); 1226 return 0; 1227 } 1228 1229 /* 1230 * Socket option code for UDP 1231 */ 1232 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 1233 char __user *optval, int optlen, 1234 int (*push_pending_frames)(struct sock *)) 1235 { 1236 struct udp_sock *up = udp_sk(sk); 1237 int val; 1238 int err = 0; 1239 1240 if (optlen<sizeof(int)) 1241 return -EINVAL; 1242 1243 if (get_user(val, (int __user *)optval)) 1244 return -EFAULT; 1245 1246 switch (optname) { 1247 case UDP_CORK: 1248 if (val != 0) { 1249 up->corkflag = 1; 1250 } else { 1251 up->corkflag = 0; 1252 lock_sock(sk); 1253 (*push_pending_frames)(sk); 1254 release_sock(sk); 1255 } 1256 break; 1257 1258 case UDP_ENCAP: 1259 switch (val) { 1260 case 0: 1261 case UDP_ENCAP_ESPINUDP: 1262 case UDP_ENCAP_ESPINUDP_NON_IKE: 1263 up->encap_rcv = xfrm4_udp_encap_rcv; 1264 /* FALLTHROUGH */ 1265 case UDP_ENCAP_L2TPINUDP: 1266 up->encap_type = val; 1267 break; 1268 default: 1269 err = -ENOPROTOOPT; 1270 break; 1271 } 1272 break; 1273 1274 /* 1275 * UDP-Lite's partial checksum coverage (RFC 3828). 1276 */ 1277 /* The sender sets actual checksum coverage length via this option. 1278 * The case coverage > packet length is handled by send module. */ 1279 case UDPLITE_SEND_CSCOV: 1280 if (!up->pcflag) /* Disable the option on UDP sockets */ 1281 return -ENOPROTOOPT; 1282 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 1283 val = 8; 1284 up->pcslen = val; 1285 up->pcflag |= UDPLITE_SEND_CC; 1286 break; 1287 1288 /* The receiver specifies a minimum checksum coverage value. To make 1289 * sense, this should be set to at least 8 (as done below). If zero is 1290 * used, this again means full checksum coverage. */ 1291 case UDPLITE_RECV_CSCOV: 1292 if (!up->pcflag) /* Disable the option on UDP sockets */ 1293 return -ENOPROTOOPT; 1294 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 1295 val = 8; 1296 up->pcrlen = val; 1297 up->pcflag |= UDPLITE_RECV_CC; 1298 break; 1299 1300 default: 1301 err = -ENOPROTOOPT; 1302 break; 1303 } 1304 1305 return err; 1306 } 1307 1308 int udp_setsockopt(struct sock *sk, int level, int optname, 1309 char __user *optval, int optlen) 1310 { 1311 if (level == SOL_UDP || level == SOL_UDPLITE) 1312 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 1313 udp_push_pending_frames); 1314 return ip_setsockopt(sk, level, optname, optval, optlen); 1315 } 1316 1317 #ifdef CONFIG_COMPAT 1318 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 1319 char __user *optval, int optlen) 1320 { 1321 if (level == SOL_UDP || level == SOL_UDPLITE) 1322 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 1323 udp_push_pending_frames); 1324 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 1325 } 1326 #endif 1327 1328 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 1329 char __user *optval, int __user *optlen) 1330 { 1331 struct udp_sock *up = udp_sk(sk); 1332 int val, len; 1333 1334 if (get_user(len,optlen)) 1335 return -EFAULT; 1336 1337 len = min_t(unsigned int, len, sizeof(int)); 1338 1339 if (len < 0) 1340 return -EINVAL; 1341 1342 switch (optname) { 1343 case UDP_CORK: 1344 val = up->corkflag; 1345 break; 1346 1347 case UDP_ENCAP: 1348 val = up->encap_type; 1349 break; 1350 1351 /* The following two cannot be changed on UDP sockets, the return is 1352 * always 0 (which corresponds to the full checksum coverage of UDP). */ 1353 case UDPLITE_SEND_CSCOV: 1354 val = up->pcslen; 1355 break; 1356 1357 case UDPLITE_RECV_CSCOV: 1358 val = up->pcrlen; 1359 break; 1360 1361 default: 1362 return -ENOPROTOOPT; 1363 } 1364 1365 if (put_user(len, optlen)) 1366 return -EFAULT; 1367 if (copy_to_user(optval, &val,len)) 1368 return -EFAULT; 1369 return 0; 1370 } 1371 1372 int udp_getsockopt(struct sock *sk, int level, int optname, 1373 char __user *optval, int __user *optlen) 1374 { 1375 if (level == SOL_UDP || level == SOL_UDPLITE) 1376 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 1377 return ip_getsockopt(sk, level, optname, optval, optlen); 1378 } 1379 1380 #ifdef CONFIG_COMPAT 1381 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 1382 char __user *optval, int __user *optlen) 1383 { 1384 if (level == SOL_UDP || level == SOL_UDPLITE) 1385 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 1386 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 1387 } 1388 #endif 1389 /** 1390 * udp_poll - wait for a UDP event. 1391 * @file - file struct 1392 * @sock - socket 1393 * @wait - poll table 1394 * 1395 * This is same as datagram poll, except for the special case of 1396 * blocking sockets. If application is using a blocking fd 1397 * and a packet with checksum error is in the queue; 1398 * then it could get return from select indicating data available 1399 * but then block when reading it. Add special case code 1400 * to work around these arguably broken applications. 1401 */ 1402 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 1403 { 1404 unsigned int mask = datagram_poll(file, sock, wait); 1405 struct sock *sk = sock->sk; 1406 int is_lite = IS_UDPLITE(sk); 1407 1408 /* Check for false positives due to checksum errors */ 1409 if ( (mask & POLLRDNORM) && 1410 !(file->f_flags & O_NONBLOCK) && 1411 !(sk->sk_shutdown & RCV_SHUTDOWN)){ 1412 struct sk_buff_head *rcvq = &sk->sk_receive_queue; 1413 struct sk_buff *skb; 1414 1415 spin_lock_bh(&rcvq->lock); 1416 while ((skb = skb_peek(rcvq)) != NULL && 1417 udp_lib_checksum_complete(skb)) { 1418 UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite); 1419 __skb_unlink(skb, rcvq); 1420 kfree_skb(skb); 1421 } 1422 spin_unlock_bh(&rcvq->lock); 1423 1424 /* nothing to see, move along */ 1425 if (skb == NULL) 1426 mask &= ~(POLLIN | POLLRDNORM); 1427 } 1428 1429 return mask; 1430 1431 } 1432 1433 struct proto udp_prot = { 1434 .name = "UDP", 1435 .owner = THIS_MODULE, 1436 .close = udp_lib_close, 1437 .connect = ip4_datagram_connect, 1438 .disconnect = udp_disconnect, 1439 .ioctl = udp_ioctl, 1440 .destroy = udp_destroy_sock, 1441 .setsockopt = udp_setsockopt, 1442 .getsockopt = udp_getsockopt, 1443 .sendmsg = udp_sendmsg, 1444 .recvmsg = udp_recvmsg, 1445 .sendpage = udp_sendpage, 1446 .backlog_rcv = udp_queue_rcv_skb, 1447 .hash = udp_lib_hash, 1448 .unhash = udp_lib_unhash, 1449 .get_port = udp_v4_get_port, 1450 .obj_size = sizeof(struct udp_sock), 1451 #ifdef CONFIG_COMPAT 1452 .compat_setsockopt = compat_udp_setsockopt, 1453 .compat_getsockopt = compat_udp_getsockopt, 1454 #endif 1455 }; 1456 1457 /* ------------------------------------------------------------------------ */ 1458 #ifdef CONFIG_PROC_FS 1459 1460 static struct sock *udp_get_first(struct seq_file *seq) 1461 { 1462 struct sock *sk; 1463 struct udp_iter_state *state = seq->private; 1464 1465 for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) { 1466 struct hlist_node *node; 1467 sk_for_each(sk, node, state->hashtable + state->bucket) { 1468 if (sk->sk_family == state->family) 1469 goto found; 1470 } 1471 } 1472 sk = NULL; 1473 found: 1474 return sk; 1475 } 1476 1477 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 1478 { 1479 struct udp_iter_state *state = seq->private; 1480 1481 do { 1482 sk = sk_next(sk); 1483 try_again: 1484 ; 1485 } while (sk && sk->sk_family != state->family); 1486 1487 if (!sk && ++state->bucket < UDP_HTABLE_SIZE) { 1488 sk = sk_head(state->hashtable + state->bucket); 1489 goto try_again; 1490 } 1491 return sk; 1492 } 1493 1494 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 1495 { 1496 struct sock *sk = udp_get_first(seq); 1497 1498 if (sk) 1499 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 1500 --pos; 1501 return pos ? NULL : sk; 1502 } 1503 1504 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 1505 { 1506 read_lock(&udp_hash_lock); 1507 return *pos ? udp_get_idx(seq, *pos-1) : (void *)1; 1508 } 1509 1510 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1511 { 1512 struct sock *sk; 1513 1514 if (v == (void *)1) 1515 sk = udp_get_idx(seq, 0); 1516 else 1517 sk = udp_get_next(seq, v); 1518 1519 ++*pos; 1520 return sk; 1521 } 1522 1523 static void udp_seq_stop(struct seq_file *seq, void *v) 1524 { 1525 read_unlock(&udp_hash_lock); 1526 } 1527 1528 static int udp_seq_open(struct inode *inode, struct file *file) 1529 { 1530 struct udp_seq_afinfo *afinfo = PDE(inode)->data; 1531 struct seq_file *seq; 1532 int rc = -ENOMEM; 1533 struct udp_iter_state *s = kzalloc(sizeof(*s), GFP_KERNEL); 1534 1535 if (!s) 1536 goto out; 1537 s->family = afinfo->family; 1538 s->hashtable = afinfo->hashtable; 1539 s->seq_ops.start = udp_seq_start; 1540 s->seq_ops.next = udp_seq_next; 1541 s->seq_ops.show = afinfo->seq_show; 1542 s->seq_ops.stop = udp_seq_stop; 1543 1544 rc = seq_open(file, &s->seq_ops); 1545 if (rc) 1546 goto out_kfree; 1547 1548 seq = file->private_data; 1549 seq->private = s; 1550 out: 1551 return rc; 1552 out_kfree: 1553 kfree(s); 1554 goto out; 1555 } 1556 1557 /* ------------------------------------------------------------------------ */ 1558 int udp_proc_register(struct udp_seq_afinfo *afinfo) 1559 { 1560 struct proc_dir_entry *p; 1561 int rc = 0; 1562 1563 if (!afinfo) 1564 return -EINVAL; 1565 afinfo->seq_fops->owner = afinfo->owner; 1566 afinfo->seq_fops->open = udp_seq_open; 1567 afinfo->seq_fops->read = seq_read; 1568 afinfo->seq_fops->llseek = seq_lseek; 1569 afinfo->seq_fops->release = seq_release_private; 1570 1571 p = proc_net_fops_create(&init_net, afinfo->name, S_IRUGO, afinfo->seq_fops); 1572 if (p) 1573 p->data = afinfo; 1574 else 1575 rc = -ENOMEM; 1576 return rc; 1577 } 1578 1579 void udp_proc_unregister(struct udp_seq_afinfo *afinfo) 1580 { 1581 if (!afinfo) 1582 return; 1583 proc_net_remove(&init_net, afinfo->name); 1584 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops)); 1585 } 1586 1587 /* ------------------------------------------------------------------------ */ 1588 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket) 1589 { 1590 struct inet_sock *inet = inet_sk(sp); 1591 __be32 dest = inet->daddr; 1592 __be32 src = inet->rcv_saddr; 1593 __u16 destp = ntohs(inet->dport); 1594 __u16 srcp = ntohs(inet->sport); 1595 1596 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X" 1597 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p", 1598 bucket, src, srcp, dest, destp, sp->sk_state, 1599 atomic_read(&sp->sk_wmem_alloc), 1600 atomic_read(&sp->sk_rmem_alloc), 1601 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp), 1602 atomic_read(&sp->sk_refcnt), sp); 1603 } 1604 1605 int udp4_seq_show(struct seq_file *seq, void *v) 1606 { 1607 if (v == SEQ_START_TOKEN) 1608 seq_printf(seq, "%-127s\n", 1609 " sl local_address rem_address st tx_queue " 1610 "rx_queue tr tm->when retrnsmt uid timeout " 1611 "inode"); 1612 else { 1613 char tmpbuf[129]; 1614 struct udp_iter_state *state = seq->private; 1615 1616 udp4_format_sock(v, tmpbuf, state->bucket); 1617 seq_printf(seq, "%-127s\n", tmpbuf); 1618 } 1619 return 0; 1620 } 1621 1622 /* ------------------------------------------------------------------------ */ 1623 static struct file_operations udp4_seq_fops; 1624 static struct udp_seq_afinfo udp4_seq_afinfo = { 1625 .owner = THIS_MODULE, 1626 .name = "udp", 1627 .family = AF_INET, 1628 .hashtable = udp_hash, 1629 .seq_show = udp4_seq_show, 1630 .seq_fops = &udp4_seq_fops, 1631 }; 1632 1633 int __init udp4_proc_init(void) 1634 { 1635 return udp_proc_register(&udp4_seq_afinfo); 1636 } 1637 1638 void udp4_proc_exit(void) 1639 { 1640 udp_proc_unregister(&udp4_seq_afinfo); 1641 } 1642 #endif /* CONFIG_PROC_FS */ 1643 1644 EXPORT_SYMBOL(udp_disconnect); 1645 EXPORT_SYMBOL(udp_hash); 1646 EXPORT_SYMBOL(udp_hash_lock); 1647 EXPORT_SYMBOL(udp_ioctl); 1648 EXPORT_SYMBOL(udp_get_port); 1649 EXPORT_SYMBOL(udp_prot); 1650 EXPORT_SYMBOL(udp_sendmsg); 1651 EXPORT_SYMBOL(udp_lib_getsockopt); 1652 EXPORT_SYMBOL(udp_lib_setsockopt); 1653 EXPORT_SYMBOL(udp_poll); 1654 1655 #ifdef CONFIG_PROC_FS 1656 EXPORT_SYMBOL(udp_proc_register); 1657 EXPORT_SYMBOL(udp_proc_unregister); 1658 #endif 1659