1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2, 225 inet_rcv_saddr_any(sk)); 226 } 227 } 228 229 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 230 } 231 232 /** 233 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 234 * 235 * @sk: socket struct in question 236 * @snum: port number to look up 237 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 238 * with NULL address 239 */ 240 int udp_lib_get_port(struct sock *sk, unsigned short snum, 241 unsigned int hash2_nulladdr) 242 { 243 struct udp_hslot *hslot, *hslot2; 244 struct udp_table *udptable = sk->sk_prot->h.udp_table; 245 int error = 1; 246 struct net *net = sock_net(sk); 247 248 if (!snum) { 249 int low, high, remaining; 250 unsigned int rand; 251 unsigned short first, last; 252 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 253 254 inet_get_local_port_range(net, &low, &high); 255 remaining = (high - low) + 1; 256 257 rand = prandom_u32(); 258 first = reciprocal_scale(rand, remaining) + low; 259 /* 260 * force rand to be an odd multiple of UDP_HTABLE_SIZE 261 */ 262 rand = (rand | 1) * (udptable->mask + 1); 263 last = first + udptable->mask + 1; 264 do { 265 hslot = udp_hashslot(udptable, net, first); 266 bitmap_zero(bitmap, PORTS_PER_CHAIN); 267 spin_lock_bh(&hslot->lock); 268 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 269 udptable->log); 270 271 snum = first; 272 /* 273 * Iterate on all possible values of snum for this hash. 274 * Using steps of an odd multiple of UDP_HTABLE_SIZE 275 * give us randomization and full range coverage. 276 */ 277 do { 278 if (low <= snum && snum <= high && 279 !test_bit(snum >> udptable->log, bitmap) && 280 !inet_is_local_reserved_port(net, snum)) 281 goto found; 282 snum += rand; 283 } while (snum != first); 284 spin_unlock_bh(&hslot->lock); 285 cond_resched(); 286 } while (++first != last); 287 goto fail; 288 } else { 289 hslot = udp_hashslot(udptable, net, snum); 290 spin_lock_bh(&hslot->lock); 291 if (hslot->count > 10) { 292 int exist; 293 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 294 295 slot2 &= udptable->mask; 296 hash2_nulladdr &= udptable->mask; 297 298 hslot2 = udp_hashslot2(udptable, slot2); 299 if (hslot->count < hslot2->count) 300 goto scan_primary_hash; 301 302 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 303 if (!exist && (hash2_nulladdr != slot2)) { 304 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 305 exist = udp_lib_lport_inuse2(net, snum, hslot2, 306 sk); 307 } 308 if (exist) 309 goto fail_unlock; 310 else 311 goto found; 312 } 313 scan_primary_hash: 314 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 315 goto fail_unlock; 316 } 317 found: 318 inet_sk(sk)->inet_num = snum; 319 udp_sk(sk)->udp_port_hash = snum; 320 udp_sk(sk)->udp_portaddr_hash ^= snum; 321 if (sk_unhashed(sk)) { 322 if (sk->sk_reuseport && 323 udp_reuseport_add_sock(sk, hslot)) { 324 inet_sk(sk)->inet_num = 0; 325 udp_sk(sk)->udp_port_hash = 0; 326 udp_sk(sk)->udp_portaddr_hash ^= snum; 327 goto fail_unlock; 328 } 329 330 sk_add_node_rcu(sk, &hslot->head); 331 hslot->count++; 332 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 333 334 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 335 spin_lock(&hslot2->lock); 336 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 337 sk->sk_family == AF_INET6) 338 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 339 &hslot2->head); 340 else 341 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 342 &hslot2->head); 343 hslot2->count++; 344 spin_unlock(&hslot2->lock); 345 } 346 sock_set_flag(sk, SOCK_RCU_FREE); 347 error = 0; 348 fail_unlock: 349 spin_unlock_bh(&hslot->lock); 350 fail: 351 return error; 352 } 353 EXPORT_SYMBOL(udp_lib_get_port); 354 355 int udp_v4_get_port(struct sock *sk, unsigned short snum) 356 { 357 unsigned int hash2_nulladdr = 358 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 359 unsigned int hash2_partial = 360 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 361 362 /* precompute partial secondary hash */ 363 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 364 return udp_lib_get_port(sk, snum, hash2_nulladdr); 365 } 366 367 static int compute_score(struct sock *sk, struct net *net, 368 __be32 saddr, __be16 sport, 369 __be32 daddr, unsigned short hnum, 370 int dif, int sdif, bool exact_dif) 371 { 372 int score; 373 struct inet_sock *inet; 374 375 if (!net_eq(sock_net(sk), net) || 376 udp_sk(sk)->udp_port_hash != hnum || 377 ipv6_only_sock(sk)) 378 return -1; 379 380 score = (sk->sk_family == PF_INET) ? 2 : 1; 381 inet = inet_sk(sk); 382 383 if (inet->inet_rcv_saddr) { 384 if (inet->inet_rcv_saddr != daddr) 385 return -1; 386 score += 4; 387 } 388 389 if (inet->inet_daddr) { 390 if (inet->inet_daddr != saddr) 391 return -1; 392 score += 4; 393 } 394 395 if (inet->inet_dport) { 396 if (inet->inet_dport != sport) 397 return -1; 398 score += 4; 399 } 400 401 if (sk->sk_bound_dev_if || exact_dif) { 402 bool dev_match = (sk->sk_bound_dev_if == dif || 403 sk->sk_bound_dev_if == sdif); 404 405 if (!dev_match) 406 return -1; 407 if (sk->sk_bound_dev_if) 408 score += 4; 409 } 410 411 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 412 score++; 413 return score; 414 } 415 416 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 417 const __u16 lport, const __be32 faddr, 418 const __be16 fport) 419 { 420 static u32 udp_ehash_secret __read_mostly; 421 422 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 423 424 return __inet_ehashfn(laddr, lport, faddr, fport, 425 udp_ehash_secret + net_hash_mix(net)); 426 } 427 428 /* called with rcu_read_lock() */ 429 static struct sock *udp4_lib_lookup2(struct net *net, 430 __be32 saddr, __be16 sport, 431 __be32 daddr, unsigned int hnum, 432 int dif, int sdif, bool exact_dif, 433 struct udp_hslot *hslot2, 434 struct sk_buff *skb) 435 { 436 struct sock *sk, *result; 437 int score, badness; 438 u32 hash = 0; 439 440 result = NULL; 441 badness = 0; 442 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 443 score = compute_score(sk, net, saddr, sport, 444 daddr, hnum, dif, sdif, exact_dif); 445 if (score > badness) { 446 if (sk->sk_reuseport) { 447 hash = udp_ehashfn(net, daddr, hnum, 448 saddr, sport); 449 result = reuseport_select_sock(sk, hash, skb, 450 sizeof(struct udphdr)); 451 if (result) 452 return result; 453 } 454 badness = score; 455 result = sk; 456 } 457 } 458 return result; 459 } 460 461 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 462 * harder than this. -DaveM 463 */ 464 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 465 __be16 sport, __be32 daddr, __be16 dport, int dif, 466 int sdif, struct udp_table *udptable, struct sk_buff *skb) 467 { 468 struct sock *sk, *result; 469 unsigned short hnum = ntohs(dport); 470 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 471 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 472 bool exact_dif = udp_lib_exact_dif_match(net, skb); 473 int score, badness; 474 u32 hash = 0; 475 476 if (hslot->count > 10) { 477 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 478 slot2 = hash2 & udptable->mask; 479 hslot2 = &udptable->hash2[slot2]; 480 if (hslot->count < hslot2->count) 481 goto begin; 482 483 result = udp4_lib_lookup2(net, saddr, sport, 484 daddr, hnum, dif, sdif, 485 exact_dif, hslot2, skb); 486 if (!result) { 487 unsigned int old_slot2 = slot2; 488 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 489 slot2 = hash2 & udptable->mask; 490 /* avoid searching the same slot again. */ 491 if (unlikely(slot2 == old_slot2)) 492 return result; 493 494 hslot2 = &udptable->hash2[slot2]; 495 if (hslot->count < hslot2->count) 496 goto begin; 497 498 result = udp4_lib_lookup2(net, saddr, sport, 499 daddr, hnum, dif, sdif, 500 exact_dif, hslot2, skb); 501 } 502 return result; 503 } 504 begin: 505 result = NULL; 506 badness = 0; 507 sk_for_each_rcu(sk, &hslot->head) { 508 score = compute_score(sk, net, saddr, sport, 509 daddr, hnum, dif, sdif, exact_dif); 510 if (score > badness) { 511 if (sk->sk_reuseport) { 512 hash = udp_ehashfn(net, daddr, hnum, 513 saddr, sport); 514 result = reuseport_select_sock(sk, hash, skb, 515 sizeof(struct udphdr)); 516 if (result) 517 return result; 518 } 519 result = sk; 520 badness = score; 521 } 522 } 523 return result; 524 } 525 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 526 527 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 528 __be16 sport, __be16 dport, 529 struct udp_table *udptable) 530 { 531 const struct iphdr *iph = ip_hdr(skb); 532 533 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 534 iph->daddr, dport, inet_iif(skb), 535 inet_sdif(skb), udptable, skb); 536 } 537 538 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 539 __be16 sport, __be16 dport) 540 { 541 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 542 } 543 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 544 545 /* Must be called under rcu_read_lock(). 546 * Does increment socket refcount. 547 */ 548 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 549 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 550 __be32 daddr, __be16 dport, int dif) 551 { 552 struct sock *sk; 553 554 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 555 dif, 0, &udp_table, NULL); 556 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 557 sk = NULL; 558 return sk; 559 } 560 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 561 #endif 562 563 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 564 __be16 loc_port, __be32 loc_addr, 565 __be16 rmt_port, __be32 rmt_addr, 566 int dif, int sdif, unsigned short hnum) 567 { 568 struct inet_sock *inet = inet_sk(sk); 569 570 if (!net_eq(sock_net(sk), net) || 571 udp_sk(sk)->udp_port_hash != hnum || 572 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 573 (inet->inet_dport != rmt_port && inet->inet_dport) || 574 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 575 ipv6_only_sock(sk) || 576 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 577 sk->sk_bound_dev_if != sdif)) 578 return false; 579 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 580 return false; 581 return true; 582 } 583 584 /* 585 * This routine is called by the ICMP module when it gets some 586 * sort of error condition. If err < 0 then the socket should 587 * be closed and the error returned to the user. If err > 0 588 * it's just the icmp type << 8 | icmp code. 589 * Header points to the ip header of the error packet. We move 590 * on past this. Then (as it used to claim before adjustment) 591 * header points to the first 8 bytes of the udp header. We need 592 * to find the appropriate port. 593 */ 594 595 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 596 { 597 struct inet_sock *inet; 598 const struct iphdr *iph = (const struct iphdr *)skb->data; 599 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 600 const int type = icmp_hdr(skb)->type; 601 const int code = icmp_hdr(skb)->code; 602 struct sock *sk; 603 int harderr; 604 int err; 605 struct net *net = dev_net(skb->dev); 606 607 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 608 iph->saddr, uh->source, skb->dev->ifindex, 0, 609 udptable, NULL); 610 if (!sk) { 611 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 612 return; /* No socket for error */ 613 } 614 615 err = 0; 616 harderr = 0; 617 inet = inet_sk(sk); 618 619 switch (type) { 620 default: 621 case ICMP_TIME_EXCEEDED: 622 err = EHOSTUNREACH; 623 break; 624 case ICMP_SOURCE_QUENCH: 625 goto out; 626 case ICMP_PARAMETERPROB: 627 err = EPROTO; 628 harderr = 1; 629 break; 630 case ICMP_DEST_UNREACH: 631 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 632 ipv4_sk_update_pmtu(skb, sk, info); 633 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 634 err = EMSGSIZE; 635 harderr = 1; 636 break; 637 } 638 goto out; 639 } 640 err = EHOSTUNREACH; 641 if (code <= NR_ICMP_UNREACH) { 642 harderr = icmp_err_convert[code].fatal; 643 err = icmp_err_convert[code].errno; 644 } 645 break; 646 case ICMP_REDIRECT: 647 ipv4_sk_redirect(skb, sk); 648 goto out; 649 } 650 651 /* 652 * RFC1122: OK. Passes ICMP errors back to application, as per 653 * 4.1.3.3. 654 */ 655 if (!inet->recverr) { 656 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 657 goto out; 658 } else 659 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 660 661 sk->sk_err = err; 662 sk->sk_error_report(sk); 663 out: 664 return; 665 } 666 667 void udp_err(struct sk_buff *skb, u32 info) 668 { 669 __udp4_lib_err(skb, info, &udp_table); 670 } 671 672 /* 673 * Throw away all pending data and cancel the corking. Socket is locked. 674 */ 675 void udp_flush_pending_frames(struct sock *sk) 676 { 677 struct udp_sock *up = udp_sk(sk); 678 679 if (up->pending) { 680 up->len = 0; 681 up->pending = 0; 682 ip_flush_pending_frames(sk); 683 } 684 } 685 EXPORT_SYMBOL(udp_flush_pending_frames); 686 687 /** 688 * udp4_hwcsum - handle outgoing HW checksumming 689 * @skb: sk_buff containing the filled-in UDP header 690 * (checksum field must be zeroed out) 691 * @src: source IP address 692 * @dst: destination IP address 693 */ 694 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 695 { 696 struct udphdr *uh = udp_hdr(skb); 697 int offset = skb_transport_offset(skb); 698 int len = skb->len - offset; 699 int hlen = len; 700 __wsum csum = 0; 701 702 if (!skb_has_frag_list(skb)) { 703 /* 704 * Only one fragment on the socket. 705 */ 706 skb->csum_start = skb_transport_header(skb) - skb->head; 707 skb->csum_offset = offsetof(struct udphdr, check); 708 uh->check = ~csum_tcpudp_magic(src, dst, len, 709 IPPROTO_UDP, 0); 710 } else { 711 struct sk_buff *frags; 712 713 /* 714 * HW-checksum won't work as there are two or more 715 * fragments on the socket so that all csums of sk_buffs 716 * should be together 717 */ 718 skb_walk_frags(skb, frags) { 719 csum = csum_add(csum, frags->csum); 720 hlen -= frags->len; 721 } 722 723 csum = skb_checksum(skb, offset, hlen, csum); 724 skb->ip_summed = CHECKSUM_NONE; 725 726 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 727 if (uh->check == 0) 728 uh->check = CSUM_MANGLED_0; 729 } 730 } 731 EXPORT_SYMBOL_GPL(udp4_hwcsum); 732 733 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 734 * for the simple case like when setting the checksum for a UDP tunnel. 735 */ 736 void udp_set_csum(bool nocheck, struct sk_buff *skb, 737 __be32 saddr, __be32 daddr, int len) 738 { 739 struct udphdr *uh = udp_hdr(skb); 740 741 if (nocheck) { 742 uh->check = 0; 743 } else if (skb_is_gso(skb)) { 744 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 745 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 746 uh->check = 0; 747 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 748 if (uh->check == 0) 749 uh->check = CSUM_MANGLED_0; 750 } else { 751 skb->ip_summed = CHECKSUM_PARTIAL; 752 skb->csum_start = skb_transport_header(skb) - skb->head; 753 skb->csum_offset = offsetof(struct udphdr, check); 754 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 755 } 756 } 757 EXPORT_SYMBOL(udp_set_csum); 758 759 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 760 struct inet_cork *cork) 761 { 762 struct sock *sk = skb->sk; 763 struct inet_sock *inet = inet_sk(sk); 764 struct udphdr *uh; 765 int err = 0; 766 int is_udplite = IS_UDPLITE(sk); 767 int offset = skb_transport_offset(skb); 768 int len = skb->len - offset; 769 __wsum csum = 0; 770 771 /* 772 * Create a UDP header 773 */ 774 uh = udp_hdr(skb); 775 uh->source = inet->inet_sport; 776 uh->dest = fl4->fl4_dport; 777 uh->len = htons(len); 778 uh->check = 0; 779 780 if (cork->gso_size) { 781 const int hlen = skb_network_header_len(skb) + 782 sizeof(struct udphdr); 783 784 if (hlen + cork->gso_size > cork->fragsize) 785 return -EINVAL; 786 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 787 return -EINVAL; 788 if (sk->sk_no_check_tx) 789 return -EINVAL; 790 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 791 dst_xfrm(skb_dst(skb))) 792 return -EIO; 793 794 skb_shinfo(skb)->gso_size = cork->gso_size; 795 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 796 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 797 cork->gso_size); 798 goto csum_partial; 799 } 800 801 if (is_udplite) /* UDP-Lite */ 802 csum = udplite_csum(skb); 803 804 else if (sk->sk_no_check_tx) { /* UDP csum off */ 805 806 skb->ip_summed = CHECKSUM_NONE; 807 goto send; 808 809 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 810 csum_partial: 811 812 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 813 goto send; 814 815 } else 816 csum = udp_csum(skb); 817 818 /* add protocol-dependent pseudo-header */ 819 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 820 sk->sk_protocol, csum); 821 if (uh->check == 0) 822 uh->check = CSUM_MANGLED_0; 823 824 send: 825 err = ip_send_skb(sock_net(sk), skb); 826 if (err) { 827 if (err == -ENOBUFS && !inet->recverr) { 828 UDP_INC_STATS(sock_net(sk), 829 UDP_MIB_SNDBUFERRORS, is_udplite); 830 err = 0; 831 } 832 } else 833 UDP_INC_STATS(sock_net(sk), 834 UDP_MIB_OUTDATAGRAMS, is_udplite); 835 return err; 836 } 837 838 /* 839 * Push out all pending data as one UDP datagram. Socket is locked. 840 */ 841 int udp_push_pending_frames(struct sock *sk) 842 { 843 struct udp_sock *up = udp_sk(sk); 844 struct inet_sock *inet = inet_sk(sk); 845 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 846 struct sk_buff *skb; 847 int err = 0; 848 849 skb = ip_finish_skb(sk, fl4); 850 if (!skb) 851 goto out; 852 853 err = udp_send_skb(skb, fl4, &inet->cork.base); 854 855 out: 856 up->len = 0; 857 up->pending = 0; 858 return err; 859 } 860 EXPORT_SYMBOL(udp_push_pending_frames); 861 862 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 863 { 864 switch (cmsg->cmsg_type) { 865 case UDP_SEGMENT: 866 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 867 return -EINVAL; 868 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 869 return 0; 870 default: 871 return -EINVAL; 872 } 873 } 874 875 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 876 { 877 struct cmsghdr *cmsg; 878 bool need_ip = false; 879 int err; 880 881 for_each_cmsghdr(cmsg, msg) { 882 if (!CMSG_OK(msg, cmsg)) 883 return -EINVAL; 884 885 if (cmsg->cmsg_level != SOL_UDP) { 886 need_ip = true; 887 continue; 888 } 889 890 err = __udp_cmsg_send(cmsg, gso_size); 891 if (err) 892 return err; 893 } 894 895 return need_ip; 896 } 897 EXPORT_SYMBOL_GPL(udp_cmsg_send); 898 899 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 900 { 901 struct inet_sock *inet = inet_sk(sk); 902 struct udp_sock *up = udp_sk(sk); 903 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 904 struct flowi4 fl4_stack; 905 struct flowi4 *fl4; 906 int ulen = len; 907 struct ipcm_cookie ipc; 908 struct rtable *rt = NULL; 909 int free = 0; 910 int connected = 0; 911 __be32 daddr, faddr, saddr; 912 __be16 dport; 913 u8 tos; 914 int err, is_udplite = IS_UDPLITE(sk); 915 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 916 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 917 struct sk_buff *skb; 918 struct ip_options_data opt_copy; 919 920 if (len > 0xFFFF) 921 return -EMSGSIZE; 922 923 /* 924 * Check the flags. 925 */ 926 927 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 928 return -EOPNOTSUPP; 929 930 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 931 932 fl4 = &inet->cork.fl.u.ip4; 933 if (up->pending) { 934 /* 935 * There are pending frames. 936 * The socket lock must be held while it's corked. 937 */ 938 lock_sock(sk); 939 if (likely(up->pending)) { 940 if (unlikely(up->pending != AF_INET)) { 941 release_sock(sk); 942 return -EINVAL; 943 } 944 goto do_append_data; 945 } 946 release_sock(sk); 947 } 948 ulen += sizeof(struct udphdr); 949 950 /* 951 * Get and verify the address. 952 */ 953 if (usin) { 954 if (msg->msg_namelen < sizeof(*usin)) 955 return -EINVAL; 956 if (usin->sin_family != AF_INET) { 957 if (usin->sin_family != AF_UNSPEC) 958 return -EAFNOSUPPORT; 959 } 960 961 daddr = usin->sin_addr.s_addr; 962 dport = usin->sin_port; 963 if (dport == 0) 964 return -EINVAL; 965 } else { 966 if (sk->sk_state != TCP_ESTABLISHED) 967 return -EDESTADDRREQ; 968 daddr = inet->inet_daddr; 969 dport = inet->inet_dport; 970 /* Open fast path for connected socket. 971 Route will not be used, if at least one option is set. 972 */ 973 connected = 1; 974 } 975 976 ipcm_init_sk(&ipc, inet); 977 ipc.gso_size = up->gso_size; 978 979 if (msg->msg_controllen) { 980 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 981 if (err > 0) 982 err = ip_cmsg_send(sk, msg, &ipc, 983 sk->sk_family == AF_INET6); 984 if (unlikely(err < 0)) { 985 kfree(ipc.opt); 986 return err; 987 } 988 if (ipc.opt) 989 free = 1; 990 connected = 0; 991 } 992 if (!ipc.opt) { 993 struct ip_options_rcu *inet_opt; 994 995 rcu_read_lock(); 996 inet_opt = rcu_dereference(inet->inet_opt); 997 if (inet_opt) { 998 memcpy(&opt_copy, inet_opt, 999 sizeof(*inet_opt) + inet_opt->opt.optlen); 1000 ipc.opt = &opt_copy.opt; 1001 } 1002 rcu_read_unlock(); 1003 } 1004 1005 if (cgroup_bpf_enabled && !connected) { 1006 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1007 (struct sockaddr *)usin, &ipc.addr); 1008 if (err) 1009 goto out_free; 1010 if (usin) { 1011 if (usin->sin_port == 0) { 1012 /* BPF program set invalid port. Reject it. */ 1013 err = -EINVAL; 1014 goto out_free; 1015 } 1016 daddr = usin->sin_addr.s_addr; 1017 dport = usin->sin_port; 1018 } 1019 } 1020 1021 saddr = ipc.addr; 1022 ipc.addr = faddr = daddr; 1023 1024 if (ipc.opt && ipc.opt->opt.srr) { 1025 if (!daddr) { 1026 err = -EINVAL; 1027 goto out_free; 1028 } 1029 faddr = ipc.opt->opt.faddr; 1030 connected = 0; 1031 } 1032 tos = get_rttos(&ipc, inet); 1033 if (sock_flag(sk, SOCK_LOCALROUTE) || 1034 (msg->msg_flags & MSG_DONTROUTE) || 1035 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1036 tos |= RTO_ONLINK; 1037 connected = 0; 1038 } 1039 1040 if (ipv4_is_multicast(daddr)) { 1041 if (!ipc.oif) 1042 ipc.oif = inet->mc_index; 1043 if (!saddr) 1044 saddr = inet->mc_addr; 1045 connected = 0; 1046 } else if (!ipc.oif) { 1047 ipc.oif = inet->uc_index; 1048 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1049 /* oif is set, packet is to local broadcast and 1050 * and uc_index is set. oif is most likely set 1051 * by sk_bound_dev_if. If uc_index != oif check if the 1052 * oif is an L3 master and uc_index is an L3 slave. 1053 * If so, we want to allow the send using the uc_index. 1054 */ 1055 if (ipc.oif != inet->uc_index && 1056 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1057 inet->uc_index)) { 1058 ipc.oif = inet->uc_index; 1059 } 1060 } 1061 1062 if (connected) 1063 rt = (struct rtable *)sk_dst_check(sk, 0); 1064 1065 if (!rt) { 1066 struct net *net = sock_net(sk); 1067 __u8 flow_flags = inet_sk_flowi_flags(sk); 1068 1069 fl4 = &fl4_stack; 1070 1071 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1072 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1073 flow_flags, 1074 faddr, saddr, dport, inet->inet_sport, 1075 sk->sk_uid); 1076 1077 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1078 rt = ip_route_output_flow(net, fl4, sk); 1079 if (IS_ERR(rt)) { 1080 err = PTR_ERR(rt); 1081 rt = NULL; 1082 if (err == -ENETUNREACH) 1083 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1084 goto out; 1085 } 1086 1087 err = -EACCES; 1088 if ((rt->rt_flags & RTCF_BROADCAST) && 1089 !sock_flag(sk, SOCK_BROADCAST)) 1090 goto out; 1091 if (connected) 1092 sk_dst_set(sk, dst_clone(&rt->dst)); 1093 } 1094 1095 if (msg->msg_flags&MSG_CONFIRM) 1096 goto do_confirm; 1097 back_from_confirm: 1098 1099 saddr = fl4->saddr; 1100 if (!ipc.addr) 1101 daddr = ipc.addr = fl4->daddr; 1102 1103 /* Lockless fast path for the non-corking case. */ 1104 if (!corkreq) { 1105 struct inet_cork cork; 1106 1107 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1108 sizeof(struct udphdr), &ipc, &rt, 1109 &cork, msg->msg_flags); 1110 err = PTR_ERR(skb); 1111 if (!IS_ERR_OR_NULL(skb)) 1112 err = udp_send_skb(skb, fl4, &cork); 1113 goto out; 1114 } 1115 1116 lock_sock(sk); 1117 if (unlikely(up->pending)) { 1118 /* The socket is already corked while preparing it. */ 1119 /* ... which is an evident application bug. --ANK */ 1120 release_sock(sk); 1121 1122 net_dbg_ratelimited("socket already corked\n"); 1123 err = -EINVAL; 1124 goto out; 1125 } 1126 /* 1127 * Now cork the socket to pend data. 1128 */ 1129 fl4 = &inet->cork.fl.u.ip4; 1130 fl4->daddr = daddr; 1131 fl4->saddr = saddr; 1132 fl4->fl4_dport = dport; 1133 fl4->fl4_sport = inet->inet_sport; 1134 up->pending = AF_INET; 1135 1136 do_append_data: 1137 up->len += ulen; 1138 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1139 sizeof(struct udphdr), &ipc, &rt, 1140 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1141 if (err) 1142 udp_flush_pending_frames(sk); 1143 else if (!corkreq) 1144 err = udp_push_pending_frames(sk); 1145 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1146 up->pending = 0; 1147 release_sock(sk); 1148 1149 out: 1150 ip_rt_put(rt); 1151 out_free: 1152 if (free) 1153 kfree(ipc.opt); 1154 if (!err) 1155 return len; 1156 /* 1157 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1158 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1159 * we don't have a good statistic (IpOutDiscards but it can be too many 1160 * things). We could add another new stat but at least for now that 1161 * seems like overkill. 1162 */ 1163 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1164 UDP_INC_STATS(sock_net(sk), 1165 UDP_MIB_SNDBUFERRORS, is_udplite); 1166 } 1167 return err; 1168 1169 do_confirm: 1170 if (msg->msg_flags & MSG_PROBE) 1171 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1172 if (!(msg->msg_flags&MSG_PROBE) || len) 1173 goto back_from_confirm; 1174 err = 0; 1175 goto out; 1176 } 1177 EXPORT_SYMBOL(udp_sendmsg); 1178 1179 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1180 size_t size, int flags) 1181 { 1182 struct inet_sock *inet = inet_sk(sk); 1183 struct udp_sock *up = udp_sk(sk); 1184 int ret; 1185 1186 if (flags & MSG_SENDPAGE_NOTLAST) 1187 flags |= MSG_MORE; 1188 1189 if (!up->pending) { 1190 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1191 1192 /* Call udp_sendmsg to specify destination address which 1193 * sendpage interface can't pass. 1194 * This will succeed only when the socket is connected. 1195 */ 1196 ret = udp_sendmsg(sk, &msg, 0); 1197 if (ret < 0) 1198 return ret; 1199 } 1200 1201 lock_sock(sk); 1202 1203 if (unlikely(!up->pending)) { 1204 release_sock(sk); 1205 1206 net_dbg_ratelimited("cork failed\n"); 1207 return -EINVAL; 1208 } 1209 1210 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1211 page, offset, size, flags); 1212 if (ret == -EOPNOTSUPP) { 1213 release_sock(sk); 1214 return sock_no_sendpage(sk->sk_socket, page, offset, 1215 size, flags); 1216 } 1217 if (ret < 0) { 1218 udp_flush_pending_frames(sk); 1219 goto out; 1220 } 1221 1222 up->len += size; 1223 if (!(up->corkflag || (flags&MSG_MORE))) 1224 ret = udp_push_pending_frames(sk); 1225 if (!ret) 1226 ret = size; 1227 out: 1228 release_sock(sk); 1229 return ret; 1230 } 1231 1232 #define UDP_SKB_IS_STATELESS 0x80000000 1233 1234 static void udp_set_dev_scratch(struct sk_buff *skb) 1235 { 1236 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1237 1238 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1239 scratch->_tsize_state = skb->truesize; 1240 #if BITS_PER_LONG == 64 1241 scratch->len = skb->len; 1242 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1243 scratch->is_linear = !skb_is_nonlinear(skb); 1244 #endif 1245 /* all head states execept sp (dst, sk, nf) are always cleared by 1246 * udp_rcv() and we need to preserve secpath, if present, to eventually 1247 * process IP_CMSG_PASSSEC at recvmsg() time 1248 */ 1249 if (likely(!skb_sec_path(skb))) 1250 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1251 } 1252 1253 static int udp_skb_truesize(struct sk_buff *skb) 1254 { 1255 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1256 } 1257 1258 static bool udp_skb_has_head_state(struct sk_buff *skb) 1259 { 1260 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1261 } 1262 1263 /* fully reclaim rmem/fwd memory allocated for skb */ 1264 static void udp_rmem_release(struct sock *sk, int size, int partial, 1265 bool rx_queue_lock_held) 1266 { 1267 struct udp_sock *up = udp_sk(sk); 1268 struct sk_buff_head *sk_queue; 1269 int amt; 1270 1271 if (likely(partial)) { 1272 up->forward_deficit += size; 1273 size = up->forward_deficit; 1274 if (size < (sk->sk_rcvbuf >> 2)) 1275 return; 1276 } else { 1277 size += up->forward_deficit; 1278 } 1279 up->forward_deficit = 0; 1280 1281 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1282 * if the called don't held it already 1283 */ 1284 sk_queue = &sk->sk_receive_queue; 1285 if (!rx_queue_lock_held) 1286 spin_lock(&sk_queue->lock); 1287 1288 1289 sk->sk_forward_alloc += size; 1290 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1291 sk->sk_forward_alloc -= amt; 1292 1293 if (amt) 1294 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1295 1296 atomic_sub(size, &sk->sk_rmem_alloc); 1297 1298 /* this can save us from acquiring the rx queue lock on next receive */ 1299 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1300 1301 if (!rx_queue_lock_held) 1302 spin_unlock(&sk_queue->lock); 1303 } 1304 1305 /* Note: called with reader_queue.lock held. 1306 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1307 * This avoids a cache line miss while receive_queue lock is held. 1308 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1309 */ 1310 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1311 { 1312 prefetch(&skb->data); 1313 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1314 } 1315 EXPORT_SYMBOL(udp_skb_destructor); 1316 1317 /* as above, but the caller held the rx queue lock, too */ 1318 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1319 { 1320 prefetch(&skb->data); 1321 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1322 } 1323 1324 /* Idea of busylocks is to let producers grab an extra spinlock 1325 * to relieve pressure on the receive_queue spinlock shared by consumer. 1326 * Under flood, this means that only one producer can be in line 1327 * trying to acquire the receive_queue spinlock. 1328 * These busylock can be allocated on a per cpu manner, instead of a 1329 * per socket one (that would consume a cache line per socket) 1330 */ 1331 static int udp_busylocks_log __read_mostly; 1332 static spinlock_t *udp_busylocks __read_mostly; 1333 1334 static spinlock_t *busylock_acquire(void *ptr) 1335 { 1336 spinlock_t *busy; 1337 1338 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1339 spin_lock(busy); 1340 return busy; 1341 } 1342 1343 static void busylock_release(spinlock_t *busy) 1344 { 1345 if (busy) 1346 spin_unlock(busy); 1347 } 1348 1349 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1350 { 1351 struct sk_buff_head *list = &sk->sk_receive_queue; 1352 int rmem, delta, amt, err = -ENOMEM; 1353 spinlock_t *busy = NULL; 1354 int size; 1355 1356 /* try to avoid the costly atomic add/sub pair when the receive 1357 * queue is full; always allow at least a packet 1358 */ 1359 rmem = atomic_read(&sk->sk_rmem_alloc); 1360 if (rmem > sk->sk_rcvbuf) 1361 goto drop; 1362 1363 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1364 * having linear skbs : 1365 * - Reduce memory overhead and thus increase receive queue capacity 1366 * - Less cache line misses at copyout() time 1367 * - Less work at consume_skb() (less alien page frag freeing) 1368 */ 1369 if (rmem > (sk->sk_rcvbuf >> 1)) { 1370 skb_condense(skb); 1371 1372 busy = busylock_acquire(sk); 1373 } 1374 size = skb->truesize; 1375 udp_set_dev_scratch(skb); 1376 1377 /* we drop only if the receive buf is full and the receive 1378 * queue contains some other skb 1379 */ 1380 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1381 if (rmem > (size + sk->sk_rcvbuf)) 1382 goto uncharge_drop; 1383 1384 spin_lock(&list->lock); 1385 if (size >= sk->sk_forward_alloc) { 1386 amt = sk_mem_pages(size); 1387 delta = amt << SK_MEM_QUANTUM_SHIFT; 1388 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1389 err = -ENOBUFS; 1390 spin_unlock(&list->lock); 1391 goto uncharge_drop; 1392 } 1393 1394 sk->sk_forward_alloc += delta; 1395 } 1396 1397 sk->sk_forward_alloc -= size; 1398 1399 /* no need to setup a destructor, we will explicitly release the 1400 * forward allocated memory on dequeue 1401 */ 1402 sock_skb_set_dropcount(sk, skb); 1403 1404 __skb_queue_tail(list, skb); 1405 spin_unlock(&list->lock); 1406 1407 if (!sock_flag(sk, SOCK_DEAD)) 1408 sk->sk_data_ready(sk); 1409 1410 busylock_release(busy); 1411 return 0; 1412 1413 uncharge_drop: 1414 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1415 1416 drop: 1417 atomic_inc(&sk->sk_drops); 1418 busylock_release(busy); 1419 return err; 1420 } 1421 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1422 1423 void udp_destruct_sock(struct sock *sk) 1424 { 1425 /* reclaim completely the forward allocated memory */ 1426 struct udp_sock *up = udp_sk(sk); 1427 unsigned int total = 0; 1428 struct sk_buff *skb; 1429 1430 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1431 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1432 total += skb->truesize; 1433 kfree_skb(skb); 1434 } 1435 udp_rmem_release(sk, total, 0, true); 1436 1437 inet_sock_destruct(sk); 1438 } 1439 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1440 1441 int udp_init_sock(struct sock *sk) 1442 { 1443 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1444 sk->sk_destruct = udp_destruct_sock; 1445 return 0; 1446 } 1447 EXPORT_SYMBOL_GPL(udp_init_sock); 1448 1449 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1450 { 1451 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1452 bool slow = lock_sock_fast(sk); 1453 1454 sk_peek_offset_bwd(sk, len); 1455 unlock_sock_fast(sk, slow); 1456 } 1457 1458 if (!skb_unref(skb)) 1459 return; 1460 1461 /* In the more common cases we cleared the head states previously, 1462 * see __udp_queue_rcv_skb(). 1463 */ 1464 if (unlikely(udp_skb_has_head_state(skb))) 1465 skb_release_head_state(skb); 1466 __consume_stateless_skb(skb); 1467 } 1468 EXPORT_SYMBOL_GPL(skb_consume_udp); 1469 1470 static struct sk_buff *__first_packet_length(struct sock *sk, 1471 struct sk_buff_head *rcvq, 1472 int *total) 1473 { 1474 struct sk_buff *skb; 1475 1476 while ((skb = skb_peek(rcvq)) != NULL) { 1477 if (udp_lib_checksum_complete(skb)) { 1478 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1479 IS_UDPLITE(sk)); 1480 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1481 IS_UDPLITE(sk)); 1482 atomic_inc(&sk->sk_drops); 1483 __skb_unlink(skb, rcvq); 1484 *total += skb->truesize; 1485 kfree_skb(skb); 1486 } else { 1487 /* the csum related bits could be changed, refresh 1488 * the scratch area 1489 */ 1490 udp_set_dev_scratch(skb); 1491 break; 1492 } 1493 } 1494 return skb; 1495 } 1496 1497 /** 1498 * first_packet_length - return length of first packet in receive queue 1499 * @sk: socket 1500 * 1501 * Drops all bad checksum frames, until a valid one is found. 1502 * Returns the length of found skb, or -1 if none is found. 1503 */ 1504 static int first_packet_length(struct sock *sk) 1505 { 1506 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1507 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1508 struct sk_buff *skb; 1509 int total = 0; 1510 int res; 1511 1512 spin_lock_bh(&rcvq->lock); 1513 skb = __first_packet_length(sk, rcvq, &total); 1514 if (!skb && !skb_queue_empty(sk_queue)) { 1515 spin_lock(&sk_queue->lock); 1516 skb_queue_splice_tail_init(sk_queue, rcvq); 1517 spin_unlock(&sk_queue->lock); 1518 1519 skb = __first_packet_length(sk, rcvq, &total); 1520 } 1521 res = skb ? skb->len : -1; 1522 if (total) 1523 udp_rmem_release(sk, total, 1, false); 1524 spin_unlock_bh(&rcvq->lock); 1525 return res; 1526 } 1527 1528 /* 1529 * IOCTL requests applicable to the UDP protocol 1530 */ 1531 1532 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1533 { 1534 switch (cmd) { 1535 case SIOCOUTQ: 1536 { 1537 int amount = sk_wmem_alloc_get(sk); 1538 1539 return put_user(amount, (int __user *)arg); 1540 } 1541 1542 case SIOCINQ: 1543 { 1544 int amount = max_t(int, 0, first_packet_length(sk)); 1545 1546 return put_user(amount, (int __user *)arg); 1547 } 1548 1549 default: 1550 return -ENOIOCTLCMD; 1551 } 1552 1553 return 0; 1554 } 1555 EXPORT_SYMBOL(udp_ioctl); 1556 1557 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1558 int noblock, int *peeked, int *off, int *err) 1559 { 1560 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1561 struct sk_buff_head *queue; 1562 struct sk_buff *last; 1563 long timeo; 1564 int error; 1565 1566 queue = &udp_sk(sk)->reader_queue; 1567 flags |= noblock ? MSG_DONTWAIT : 0; 1568 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1569 do { 1570 struct sk_buff *skb; 1571 1572 error = sock_error(sk); 1573 if (error) 1574 break; 1575 1576 error = -EAGAIN; 1577 *peeked = 0; 1578 do { 1579 spin_lock_bh(&queue->lock); 1580 skb = __skb_try_recv_from_queue(sk, queue, flags, 1581 udp_skb_destructor, 1582 peeked, off, err, 1583 &last); 1584 if (skb) { 1585 spin_unlock_bh(&queue->lock); 1586 return skb; 1587 } 1588 1589 if (skb_queue_empty(sk_queue)) { 1590 spin_unlock_bh(&queue->lock); 1591 goto busy_check; 1592 } 1593 1594 /* refill the reader queue and walk it again 1595 * keep both queues locked to avoid re-acquiring 1596 * the sk_receive_queue lock if fwd memory scheduling 1597 * is needed. 1598 */ 1599 spin_lock(&sk_queue->lock); 1600 skb_queue_splice_tail_init(sk_queue, queue); 1601 1602 skb = __skb_try_recv_from_queue(sk, queue, flags, 1603 udp_skb_dtor_locked, 1604 peeked, off, err, 1605 &last); 1606 spin_unlock(&sk_queue->lock); 1607 spin_unlock_bh(&queue->lock); 1608 if (skb) 1609 return skb; 1610 1611 busy_check: 1612 if (!sk_can_busy_loop(sk)) 1613 break; 1614 1615 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1616 } while (!skb_queue_empty(sk_queue)); 1617 1618 /* sk_queue is empty, reader_queue may contain peeked packets */ 1619 } while (timeo && 1620 !__skb_wait_for_more_packets(sk, &error, &timeo, 1621 (struct sk_buff *)sk_queue)); 1622 1623 *err = error; 1624 return NULL; 1625 } 1626 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1627 1628 /* 1629 * This should be easy, if there is something there we 1630 * return it, otherwise we block. 1631 */ 1632 1633 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1634 int flags, int *addr_len) 1635 { 1636 struct inet_sock *inet = inet_sk(sk); 1637 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1638 struct sk_buff *skb; 1639 unsigned int ulen, copied; 1640 int peeked, peeking, off; 1641 int err; 1642 int is_udplite = IS_UDPLITE(sk); 1643 bool checksum_valid = false; 1644 1645 if (flags & MSG_ERRQUEUE) 1646 return ip_recv_error(sk, msg, len, addr_len); 1647 1648 try_again: 1649 peeking = flags & MSG_PEEK; 1650 off = sk_peek_offset(sk, flags); 1651 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1652 if (!skb) 1653 return err; 1654 1655 ulen = udp_skb_len(skb); 1656 copied = len; 1657 if (copied > ulen - off) 1658 copied = ulen - off; 1659 else if (copied < ulen) 1660 msg->msg_flags |= MSG_TRUNC; 1661 1662 /* 1663 * If checksum is needed at all, try to do it while copying the 1664 * data. If the data is truncated, or if we only want a partial 1665 * coverage checksum (UDP-Lite), do it before the copy. 1666 */ 1667 1668 if (copied < ulen || peeking || 1669 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1670 checksum_valid = udp_skb_csum_unnecessary(skb) || 1671 !__udp_lib_checksum_complete(skb); 1672 if (!checksum_valid) 1673 goto csum_copy_err; 1674 } 1675 1676 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1677 if (udp_skb_is_linear(skb)) 1678 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1679 else 1680 err = skb_copy_datagram_msg(skb, off, msg, copied); 1681 } else { 1682 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1683 1684 if (err == -EINVAL) 1685 goto csum_copy_err; 1686 } 1687 1688 if (unlikely(err)) { 1689 if (!peeked) { 1690 atomic_inc(&sk->sk_drops); 1691 UDP_INC_STATS(sock_net(sk), 1692 UDP_MIB_INERRORS, is_udplite); 1693 } 1694 kfree_skb(skb); 1695 return err; 1696 } 1697 1698 if (!peeked) 1699 UDP_INC_STATS(sock_net(sk), 1700 UDP_MIB_INDATAGRAMS, is_udplite); 1701 1702 sock_recv_ts_and_drops(msg, sk, skb); 1703 1704 /* Copy the address. */ 1705 if (sin) { 1706 sin->sin_family = AF_INET; 1707 sin->sin_port = udp_hdr(skb)->source; 1708 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1709 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1710 *addr_len = sizeof(*sin); 1711 } 1712 if (inet->cmsg_flags) 1713 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1714 1715 err = copied; 1716 if (flags & MSG_TRUNC) 1717 err = ulen; 1718 1719 skb_consume_udp(sk, skb, peeking ? -err : err); 1720 return err; 1721 1722 csum_copy_err: 1723 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1724 udp_skb_destructor)) { 1725 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1726 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1727 } 1728 kfree_skb(skb); 1729 1730 /* starting over for a new packet, but check if we need to yield */ 1731 cond_resched(); 1732 msg->msg_flags &= ~MSG_TRUNC; 1733 goto try_again; 1734 } 1735 1736 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1737 { 1738 /* This check is replicated from __ip4_datagram_connect() and 1739 * intended to prevent BPF program called below from accessing bytes 1740 * that are out of the bound specified by user in addr_len. 1741 */ 1742 if (addr_len < sizeof(struct sockaddr_in)) 1743 return -EINVAL; 1744 1745 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1746 } 1747 EXPORT_SYMBOL(udp_pre_connect); 1748 1749 int __udp_disconnect(struct sock *sk, int flags) 1750 { 1751 struct inet_sock *inet = inet_sk(sk); 1752 /* 1753 * 1003.1g - break association. 1754 */ 1755 1756 sk->sk_state = TCP_CLOSE; 1757 inet->inet_daddr = 0; 1758 inet->inet_dport = 0; 1759 sock_rps_reset_rxhash(sk); 1760 sk->sk_bound_dev_if = 0; 1761 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1762 inet_reset_saddr(sk); 1763 1764 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1765 sk->sk_prot->unhash(sk); 1766 inet->inet_sport = 0; 1767 } 1768 sk_dst_reset(sk); 1769 return 0; 1770 } 1771 EXPORT_SYMBOL(__udp_disconnect); 1772 1773 int udp_disconnect(struct sock *sk, int flags) 1774 { 1775 lock_sock(sk); 1776 __udp_disconnect(sk, flags); 1777 release_sock(sk); 1778 return 0; 1779 } 1780 EXPORT_SYMBOL(udp_disconnect); 1781 1782 void udp_lib_unhash(struct sock *sk) 1783 { 1784 if (sk_hashed(sk)) { 1785 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1786 struct udp_hslot *hslot, *hslot2; 1787 1788 hslot = udp_hashslot(udptable, sock_net(sk), 1789 udp_sk(sk)->udp_port_hash); 1790 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1791 1792 spin_lock_bh(&hslot->lock); 1793 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1794 reuseport_detach_sock(sk); 1795 if (sk_del_node_init_rcu(sk)) { 1796 hslot->count--; 1797 inet_sk(sk)->inet_num = 0; 1798 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1799 1800 spin_lock(&hslot2->lock); 1801 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1802 hslot2->count--; 1803 spin_unlock(&hslot2->lock); 1804 } 1805 spin_unlock_bh(&hslot->lock); 1806 } 1807 } 1808 EXPORT_SYMBOL(udp_lib_unhash); 1809 1810 /* 1811 * inet_rcv_saddr was changed, we must rehash secondary hash 1812 */ 1813 void udp_lib_rehash(struct sock *sk, u16 newhash) 1814 { 1815 if (sk_hashed(sk)) { 1816 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1817 struct udp_hslot *hslot, *hslot2, *nhslot2; 1818 1819 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1820 nhslot2 = udp_hashslot2(udptable, newhash); 1821 udp_sk(sk)->udp_portaddr_hash = newhash; 1822 1823 if (hslot2 != nhslot2 || 1824 rcu_access_pointer(sk->sk_reuseport_cb)) { 1825 hslot = udp_hashslot(udptable, sock_net(sk), 1826 udp_sk(sk)->udp_port_hash); 1827 /* we must lock primary chain too */ 1828 spin_lock_bh(&hslot->lock); 1829 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1830 reuseport_detach_sock(sk); 1831 1832 if (hslot2 != nhslot2) { 1833 spin_lock(&hslot2->lock); 1834 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1835 hslot2->count--; 1836 spin_unlock(&hslot2->lock); 1837 1838 spin_lock(&nhslot2->lock); 1839 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1840 &nhslot2->head); 1841 nhslot2->count++; 1842 spin_unlock(&nhslot2->lock); 1843 } 1844 1845 spin_unlock_bh(&hslot->lock); 1846 } 1847 } 1848 } 1849 EXPORT_SYMBOL(udp_lib_rehash); 1850 1851 static void udp_v4_rehash(struct sock *sk) 1852 { 1853 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1854 inet_sk(sk)->inet_rcv_saddr, 1855 inet_sk(sk)->inet_num); 1856 udp_lib_rehash(sk, new_hash); 1857 } 1858 1859 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1860 { 1861 int rc; 1862 1863 if (inet_sk(sk)->inet_daddr) { 1864 sock_rps_save_rxhash(sk, skb); 1865 sk_mark_napi_id(sk, skb); 1866 sk_incoming_cpu_update(sk); 1867 } else { 1868 sk_mark_napi_id_once(sk, skb); 1869 } 1870 1871 rc = __udp_enqueue_schedule_skb(sk, skb); 1872 if (rc < 0) { 1873 int is_udplite = IS_UDPLITE(sk); 1874 1875 /* Note that an ENOMEM error is charged twice */ 1876 if (rc == -ENOMEM) 1877 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1878 is_udplite); 1879 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1880 kfree_skb(skb); 1881 trace_udp_fail_queue_rcv_skb(rc, sk); 1882 return -1; 1883 } 1884 1885 return 0; 1886 } 1887 1888 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 1889 void udp_encap_enable(void) 1890 { 1891 static_branch_enable(&udp_encap_needed_key); 1892 } 1893 EXPORT_SYMBOL(udp_encap_enable); 1894 1895 /* returns: 1896 * -1: error 1897 * 0: success 1898 * >0: "udp encap" protocol resubmission 1899 * 1900 * Note that in the success and error cases, the skb is assumed to 1901 * have either been requeued or freed. 1902 */ 1903 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1904 { 1905 struct udp_sock *up = udp_sk(sk); 1906 int is_udplite = IS_UDPLITE(sk); 1907 1908 /* 1909 * Charge it to the socket, dropping if the queue is full. 1910 */ 1911 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1912 goto drop; 1913 nf_reset(skb); 1914 1915 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1916 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1917 1918 /* 1919 * This is an encapsulation socket so pass the skb to 1920 * the socket's udp_encap_rcv() hook. Otherwise, just 1921 * fall through and pass this up the UDP socket. 1922 * up->encap_rcv() returns the following value: 1923 * =0 if skb was successfully passed to the encap 1924 * handler or was discarded by it. 1925 * >0 if skb should be passed on to UDP. 1926 * <0 if skb should be resubmitted as proto -N 1927 */ 1928 1929 /* if we're overly short, let UDP handle it */ 1930 encap_rcv = READ_ONCE(up->encap_rcv); 1931 if (encap_rcv) { 1932 int ret; 1933 1934 /* Verify checksum before giving to encap */ 1935 if (udp_lib_checksum_complete(skb)) 1936 goto csum_error; 1937 1938 ret = encap_rcv(sk, skb); 1939 if (ret <= 0) { 1940 __UDP_INC_STATS(sock_net(sk), 1941 UDP_MIB_INDATAGRAMS, 1942 is_udplite); 1943 return -ret; 1944 } 1945 } 1946 1947 /* FALLTHROUGH -- it's a UDP Packet */ 1948 } 1949 1950 /* 1951 * UDP-Lite specific tests, ignored on UDP sockets 1952 */ 1953 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1954 1955 /* 1956 * MIB statistics other than incrementing the error count are 1957 * disabled for the following two types of errors: these depend 1958 * on the application settings, not on the functioning of the 1959 * protocol stack as such. 1960 * 1961 * RFC 3828 here recommends (sec 3.3): "There should also be a 1962 * way ... to ... at least let the receiving application block 1963 * delivery of packets with coverage values less than a value 1964 * provided by the application." 1965 */ 1966 if (up->pcrlen == 0) { /* full coverage was set */ 1967 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1968 UDP_SKB_CB(skb)->cscov, skb->len); 1969 goto drop; 1970 } 1971 /* The next case involves violating the min. coverage requested 1972 * by the receiver. This is subtle: if receiver wants x and x is 1973 * greater than the buffersize/MTU then receiver will complain 1974 * that it wants x while sender emits packets of smaller size y. 1975 * Therefore the above ...()->partial_cov statement is essential. 1976 */ 1977 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1978 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1979 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1980 goto drop; 1981 } 1982 } 1983 1984 prefetch(&sk->sk_rmem_alloc); 1985 if (rcu_access_pointer(sk->sk_filter) && 1986 udp_lib_checksum_complete(skb)) 1987 goto csum_error; 1988 1989 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1990 goto drop; 1991 1992 udp_csum_pull_header(skb); 1993 1994 ipv4_pktinfo_prepare(sk, skb); 1995 return __udp_queue_rcv_skb(sk, skb); 1996 1997 csum_error: 1998 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1999 drop: 2000 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2001 atomic_inc(&sk->sk_drops); 2002 kfree_skb(skb); 2003 return -1; 2004 } 2005 2006 /* For TCP sockets, sk_rx_dst is protected by socket lock 2007 * For UDP, we use xchg() to guard against concurrent changes. 2008 */ 2009 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2010 { 2011 struct dst_entry *old; 2012 2013 if (dst_hold_safe(dst)) { 2014 old = xchg(&sk->sk_rx_dst, dst); 2015 dst_release(old); 2016 return old != dst; 2017 } 2018 return false; 2019 } 2020 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2021 2022 /* 2023 * Multicasts and broadcasts go to each listener. 2024 * 2025 * Note: called only from the BH handler context. 2026 */ 2027 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2028 struct udphdr *uh, 2029 __be32 saddr, __be32 daddr, 2030 struct udp_table *udptable, 2031 int proto) 2032 { 2033 struct sock *sk, *first = NULL; 2034 unsigned short hnum = ntohs(uh->dest); 2035 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2036 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2037 unsigned int offset = offsetof(typeof(*sk), sk_node); 2038 int dif = skb->dev->ifindex; 2039 int sdif = inet_sdif(skb); 2040 struct hlist_node *node; 2041 struct sk_buff *nskb; 2042 2043 if (use_hash2) { 2044 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2045 udptable->mask; 2046 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2047 start_lookup: 2048 hslot = &udptable->hash2[hash2]; 2049 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2050 } 2051 2052 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2053 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2054 uh->source, saddr, dif, sdif, hnum)) 2055 continue; 2056 2057 if (!first) { 2058 first = sk; 2059 continue; 2060 } 2061 nskb = skb_clone(skb, GFP_ATOMIC); 2062 2063 if (unlikely(!nskb)) { 2064 atomic_inc(&sk->sk_drops); 2065 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2066 IS_UDPLITE(sk)); 2067 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2068 IS_UDPLITE(sk)); 2069 continue; 2070 } 2071 if (udp_queue_rcv_skb(sk, nskb) > 0) 2072 consume_skb(nskb); 2073 } 2074 2075 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2076 if (use_hash2 && hash2 != hash2_any) { 2077 hash2 = hash2_any; 2078 goto start_lookup; 2079 } 2080 2081 if (first) { 2082 if (udp_queue_rcv_skb(first, skb) > 0) 2083 consume_skb(skb); 2084 } else { 2085 kfree_skb(skb); 2086 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2087 proto == IPPROTO_UDPLITE); 2088 } 2089 return 0; 2090 } 2091 2092 /* Initialize UDP checksum. If exited with zero value (success), 2093 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2094 * Otherwise, csum completion requires chacksumming packet body, 2095 * including udp header and folding it to skb->csum. 2096 */ 2097 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2098 int proto) 2099 { 2100 int err; 2101 2102 UDP_SKB_CB(skb)->partial_cov = 0; 2103 UDP_SKB_CB(skb)->cscov = skb->len; 2104 2105 if (proto == IPPROTO_UDPLITE) { 2106 err = udplite_checksum_init(skb, uh); 2107 if (err) 2108 return err; 2109 2110 if (UDP_SKB_CB(skb)->partial_cov) { 2111 skb->csum = inet_compute_pseudo(skb, proto); 2112 return 0; 2113 } 2114 } 2115 2116 /* Note, we are only interested in != 0 or == 0, thus the 2117 * force to int. 2118 */ 2119 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2120 inet_compute_pseudo); 2121 } 2122 2123 /* 2124 * All we need to do is get the socket, and then do a checksum. 2125 */ 2126 2127 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2128 int proto) 2129 { 2130 struct sock *sk; 2131 struct udphdr *uh; 2132 unsigned short ulen; 2133 struct rtable *rt = skb_rtable(skb); 2134 __be32 saddr, daddr; 2135 struct net *net = dev_net(skb->dev); 2136 2137 /* 2138 * Validate the packet. 2139 */ 2140 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2141 goto drop; /* No space for header. */ 2142 2143 uh = udp_hdr(skb); 2144 ulen = ntohs(uh->len); 2145 saddr = ip_hdr(skb)->saddr; 2146 daddr = ip_hdr(skb)->daddr; 2147 2148 if (ulen > skb->len) 2149 goto short_packet; 2150 2151 if (proto == IPPROTO_UDP) { 2152 /* UDP validates ulen. */ 2153 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2154 goto short_packet; 2155 uh = udp_hdr(skb); 2156 } 2157 2158 if (udp4_csum_init(skb, uh, proto)) 2159 goto csum_error; 2160 2161 sk = skb_steal_sock(skb); 2162 if (sk) { 2163 struct dst_entry *dst = skb_dst(skb); 2164 int ret; 2165 2166 if (unlikely(sk->sk_rx_dst != dst)) 2167 udp_sk_rx_dst_set(sk, dst); 2168 2169 ret = udp_queue_rcv_skb(sk, skb); 2170 sock_put(sk); 2171 /* a return value > 0 means to resubmit the input, but 2172 * it wants the return to be -protocol, or 0 2173 */ 2174 if (ret > 0) 2175 return -ret; 2176 return 0; 2177 } 2178 2179 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2180 return __udp4_lib_mcast_deliver(net, skb, uh, 2181 saddr, daddr, udptable, proto); 2182 2183 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2184 if (sk) { 2185 int ret; 2186 2187 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2188 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2189 inet_compute_pseudo); 2190 2191 ret = udp_queue_rcv_skb(sk, skb); 2192 2193 /* a return value > 0 means to resubmit the input, but 2194 * it wants the return to be -protocol, or 0 2195 */ 2196 if (ret > 0) 2197 return -ret; 2198 return 0; 2199 } 2200 2201 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2202 goto drop; 2203 nf_reset(skb); 2204 2205 /* No socket. Drop packet silently, if checksum is wrong */ 2206 if (udp_lib_checksum_complete(skb)) 2207 goto csum_error; 2208 2209 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2210 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2211 2212 /* 2213 * Hmm. We got an UDP packet to a port to which we 2214 * don't wanna listen. Ignore it. 2215 */ 2216 kfree_skb(skb); 2217 return 0; 2218 2219 short_packet: 2220 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2221 proto == IPPROTO_UDPLITE ? "Lite" : "", 2222 &saddr, ntohs(uh->source), 2223 ulen, skb->len, 2224 &daddr, ntohs(uh->dest)); 2225 goto drop; 2226 2227 csum_error: 2228 /* 2229 * RFC1122: OK. Discards the bad packet silently (as far as 2230 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2231 */ 2232 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2233 proto == IPPROTO_UDPLITE ? "Lite" : "", 2234 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2235 ulen); 2236 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2237 drop: 2238 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2239 kfree_skb(skb); 2240 return 0; 2241 } 2242 2243 /* We can only early demux multicast if there is a single matching socket. 2244 * If more than one socket found returns NULL 2245 */ 2246 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2247 __be16 loc_port, __be32 loc_addr, 2248 __be16 rmt_port, __be32 rmt_addr, 2249 int dif, int sdif) 2250 { 2251 struct sock *sk, *result; 2252 unsigned short hnum = ntohs(loc_port); 2253 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2254 struct udp_hslot *hslot = &udp_table.hash[slot]; 2255 2256 /* Do not bother scanning a too big list */ 2257 if (hslot->count > 10) 2258 return NULL; 2259 2260 result = NULL; 2261 sk_for_each_rcu(sk, &hslot->head) { 2262 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2263 rmt_port, rmt_addr, dif, sdif, hnum)) { 2264 if (result) 2265 return NULL; 2266 result = sk; 2267 } 2268 } 2269 2270 return result; 2271 } 2272 2273 /* For unicast we should only early demux connected sockets or we can 2274 * break forwarding setups. The chains here can be long so only check 2275 * if the first socket is an exact match and if not move on. 2276 */ 2277 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2278 __be16 loc_port, __be32 loc_addr, 2279 __be16 rmt_port, __be32 rmt_addr, 2280 int dif, int sdif) 2281 { 2282 unsigned short hnum = ntohs(loc_port); 2283 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2284 unsigned int slot2 = hash2 & udp_table.mask; 2285 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2286 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2287 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2288 struct sock *sk; 2289 2290 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2291 if (INET_MATCH(sk, net, acookie, rmt_addr, 2292 loc_addr, ports, dif, sdif)) 2293 return sk; 2294 /* Only check first socket in chain */ 2295 break; 2296 } 2297 return NULL; 2298 } 2299 2300 int udp_v4_early_demux(struct sk_buff *skb) 2301 { 2302 struct net *net = dev_net(skb->dev); 2303 struct in_device *in_dev = NULL; 2304 const struct iphdr *iph; 2305 const struct udphdr *uh; 2306 struct sock *sk = NULL; 2307 struct dst_entry *dst; 2308 int dif = skb->dev->ifindex; 2309 int sdif = inet_sdif(skb); 2310 int ours; 2311 2312 /* validate the packet */ 2313 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2314 return 0; 2315 2316 iph = ip_hdr(skb); 2317 uh = udp_hdr(skb); 2318 2319 if (skb->pkt_type == PACKET_MULTICAST) { 2320 in_dev = __in_dev_get_rcu(skb->dev); 2321 2322 if (!in_dev) 2323 return 0; 2324 2325 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2326 iph->protocol); 2327 if (!ours) 2328 return 0; 2329 2330 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2331 uh->source, iph->saddr, 2332 dif, sdif); 2333 } else if (skb->pkt_type == PACKET_HOST) { 2334 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2335 uh->source, iph->saddr, dif, sdif); 2336 } 2337 2338 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2339 return 0; 2340 2341 skb->sk = sk; 2342 skb->destructor = sock_efree; 2343 dst = READ_ONCE(sk->sk_rx_dst); 2344 2345 if (dst) 2346 dst = dst_check(dst, 0); 2347 if (dst) { 2348 u32 itag = 0; 2349 2350 /* set noref for now. 2351 * any place which wants to hold dst has to call 2352 * dst_hold_safe() 2353 */ 2354 skb_dst_set_noref(skb, dst); 2355 2356 /* for unconnected multicast sockets we need to validate 2357 * the source on each packet 2358 */ 2359 if (!inet_sk(sk)->inet_daddr && in_dev) 2360 return ip_mc_validate_source(skb, iph->daddr, 2361 iph->saddr, iph->tos, 2362 skb->dev, in_dev, &itag); 2363 } 2364 return 0; 2365 } 2366 2367 int udp_rcv(struct sk_buff *skb) 2368 { 2369 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2370 } 2371 2372 void udp_destroy_sock(struct sock *sk) 2373 { 2374 struct udp_sock *up = udp_sk(sk); 2375 bool slow = lock_sock_fast(sk); 2376 udp_flush_pending_frames(sk); 2377 unlock_sock_fast(sk, slow); 2378 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2379 void (*encap_destroy)(struct sock *sk); 2380 encap_destroy = READ_ONCE(up->encap_destroy); 2381 if (encap_destroy) 2382 encap_destroy(sk); 2383 } 2384 } 2385 2386 /* 2387 * Socket option code for UDP 2388 */ 2389 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2390 char __user *optval, unsigned int optlen, 2391 int (*push_pending_frames)(struct sock *)) 2392 { 2393 struct udp_sock *up = udp_sk(sk); 2394 int val, valbool; 2395 int err = 0; 2396 int is_udplite = IS_UDPLITE(sk); 2397 2398 if (optlen < sizeof(int)) 2399 return -EINVAL; 2400 2401 if (get_user(val, (int __user *)optval)) 2402 return -EFAULT; 2403 2404 valbool = val ? 1 : 0; 2405 2406 switch (optname) { 2407 case UDP_CORK: 2408 if (val != 0) { 2409 up->corkflag = 1; 2410 } else { 2411 up->corkflag = 0; 2412 lock_sock(sk); 2413 push_pending_frames(sk); 2414 release_sock(sk); 2415 } 2416 break; 2417 2418 case UDP_ENCAP: 2419 switch (val) { 2420 case 0: 2421 case UDP_ENCAP_ESPINUDP: 2422 case UDP_ENCAP_ESPINUDP_NON_IKE: 2423 up->encap_rcv = xfrm4_udp_encap_rcv; 2424 /* FALLTHROUGH */ 2425 case UDP_ENCAP_L2TPINUDP: 2426 up->encap_type = val; 2427 udp_encap_enable(); 2428 break; 2429 default: 2430 err = -ENOPROTOOPT; 2431 break; 2432 } 2433 break; 2434 2435 case UDP_NO_CHECK6_TX: 2436 up->no_check6_tx = valbool; 2437 break; 2438 2439 case UDP_NO_CHECK6_RX: 2440 up->no_check6_rx = valbool; 2441 break; 2442 2443 case UDP_SEGMENT: 2444 if (val < 0 || val > USHRT_MAX) 2445 return -EINVAL; 2446 up->gso_size = val; 2447 break; 2448 2449 /* 2450 * UDP-Lite's partial checksum coverage (RFC 3828). 2451 */ 2452 /* The sender sets actual checksum coverage length via this option. 2453 * The case coverage > packet length is handled by send module. */ 2454 case UDPLITE_SEND_CSCOV: 2455 if (!is_udplite) /* Disable the option on UDP sockets */ 2456 return -ENOPROTOOPT; 2457 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2458 val = 8; 2459 else if (val > USHRT_MAX) 2460 val = USHRT_MAX; 2461 up->pcslen = val; 2462 up->pcflag |= UDPLITE_SEND_CC; 2463 break; 2464 2465 /* The receiver specifies a minimum checksum coverage value. To make 2466 * sense, this should be set to at least 8 (as done below). If zero is 2467 * used, this again means full checksum coverage. */ 2468 case UDPLITE_RECV_CSCOV: 2469 if (!is_udplite) /* Disable the option on UDP sockets */ 2470 return -ENOPROTOOPT; 2471 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2472 val = 8; 2473 else if (val > USHRT_MAX) 2474 val = USHRT_MAX; 2475 up->pcrlen = val; 2476 up->pcflag |= UDPLITE_RECV_CC; 2477 break; 2478 2479 default: 2480 err = -ENOPROTOOPT; 2481 break; 2482 } 2483 2484 return err; 2485 } 2486 EXPORT_SYMBOL(udp_lib_setsockopt); 2487 2488 int udp_setsockopt(struct sock *sk, int level, int optname, 2489 char __user *optval, unsigned int optlen) 2490 { 2491 if (level == SOL_UDP || level == SOL_UDPLITE) 2492 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2493 udp_push_pending_frames); 2494 return ip_setsockopt(sk, level, optname, optval, optlen); 2495 } 2496 2497 #ifdef CONFIG_COMPAT 2498 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2499 char __user *optval, unsigned int optlen) 2500 { 2501 if (level == SOL_UDP || level == SOL_UDPLITE) 2502 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2503 udp_push_pending_frames); 2504 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2505 } 2506 #endif 2507 2508 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2509 char __user *optval, int __user *optlen) 2510 { 2511 struct udp_sock *up = udp_sk(sk); 2512 int val, len; 2513 2514 if (get_user(len, optlen)) 2515 return -EFAULT; 2516 2517 len = min_t(unsigned int, len, sizeof(int)); 2518 2519 if (len < 0) 2520 return -EINVAL; 2521 2522 switch (optname) { 2523 case UDP_CORK: 2524 val = up->corkflag; 2525 break; 2526 2527 case UDP_ENCAP: 2528 val = up->encap_type; 2529 break; 2530 2531 case UDP_NO_CHECK6_TX: 2532 val = up->no_check6_tx; 2533 break; 2534 2535 case UDP_NO_CHECK6_RX: 2536 val = up->no_check6_rx; 2537 break; 2538 2539 case UDP_SEGMENT: 2540 val = up->gso_size; 2541 break; 2542 2543 /* The following two cannot be changed on UDP sockets, the return is 2544 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2545 case UDPLITE_SEND_CSCOV: 2546 val = up->pcslen; 2547 break; 2548 2549 case UDPLITE_RECV_CSCOV: 2550 val = up->pcrlen; 2551 break; 2552 2553 default: 2554 return -ENOPROTOOPT; 2555 } 2556 2557 if (put_user(len, optlen)) 2558 return -EFAULT; 2559 if (copy_to_user(optval, &val, len)) 2560 return -EFAULT; 2561 return 0; 2562 } 2563 EXPORT_SYMBOL(udp_lib_getsockopt); 2564 2565 int udp_getsockopt(struct sock *sk, int level, int optname, 2566 char __user *optval, int __user *optlen) 2567 { 2568 if (level == SOL_UDP || level == SOL_UDPLITE) 2569 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2570 return ip_getsockopt(sk, level, optname, optval, optlen); 2571 } 2572 2573 #ifdef CONFIG_COMPAT 2574 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2575 char __user *optval, int __user *optlen) 2576 { 2577 if (level == SOL_UDP || level == SOL_UDPLITE) 2578 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2579 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2580 } 2581 #endif 2582 /** 2583 * udp_poll - wait for a UDP event. 2584 * @file - file struct 2585 * @sock - socket 2586 * @wait - poll table 2587 * 2588 * This is same as datagram poll, except for the special case of 2589 * blocking sockets. If application is using a blocking fd 2590 * and a packet with checksum error is in the queue; 2591 * then it could get return from select indicating data available 2592 * but then block when reading it. Add special case code 2593 * to work around these arguably broken applications. 2594 */ 2595 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2596 { 2597 __poll_t mask = datagram_poll(file, sock, wait); 2598 struct sock *sk = sock->sk; 2599 2600 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2601 mask |= EPOLLIN | EPOLLRDNORM; 2602 2603 /* Check for false positives due to checksum errors */ 2604 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2605 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2606 mask &= ~(EPOLLIN | EPOLLRDNORM); 2607 2608 return mask; 2609 2610 } 2611 EXPORT_SYMBOL(udp_poll); 2612 2613 int udp_abort(struct sock *sk, int err) 2614 { 2615 lock_sock(sk); 2616 2617 sk->sk_err = err; 2618 sk->sk_error_report(sk); 2619 __udp_disconnect(sk, 0); 2620 2621 release_sock(sk); 2622 2623 return 0; 2624 } 2625 EXPORT_SYMBOL_GPL(udp_abort); 2626 2627 struct proto udp_prot = { 2628 .name = "UDP", 2629 .owner = THIS_MODULE, 2630 .close = udp_lib_close, 2631 .pre_connect = udp_pre_connect, 2632 .connect = ip4_datagram_connect, 2633 .disconnect = udp_disconnect, 2634 .ioctl = udp_ioctl, 2635 .init = udp_init_sock, 2636 .destroy = udp_destroy_sock, 2637 .setsockopt = udp_setsockopt, 2638 .getsockopt = udp_getsockopt, 2639 .sendmsg = udp_sendmsg, 2640 .recvmsg = udp_recvmsg, 2641 .sendpage = udp_sendpage, 2642 .release_cb = ip4_datagram_release_cb, 2643 .hash = udp_lib_hash, 2644 .unhash = udp_lib_unhash, 2645 .rehash = udp_v4_rehash, 2646 .get_port = udp_v4_get_port, 2647 .memory_allocated = &udp_memory_allocated, 2648 .sysctl_mem = sysctl_udp_mem, 2649 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2650 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2651 .obj_size = sizeof(struct udp_sock), 2652 .h.udp_table = &udp_table, 2653 #ifdef CONFIG_COMPAT 2654 .compat_setsockopt = compat_udp_setsockopt, 2655 .compat_getsockopt = compat_udp_getsockopt, 2656 #endif 2657 .diag_destroy = udp_abort, 2658 }; 2659 EXPORT_SYMBOL(udp_prot); 2660 2661 /* ------------------------------------------------------------------------ */ 2662 #ifdef CONFIG_PROC_FS 2663 2664 static struct sock *udp_get_first(struct seq_file *seq, int start) 2665 { 2666 struct sock *sk; 2667 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2668 struct udp_iter_state *state = seq->private; 2669 struct net *net = seq_file_net(seq); 2670 2671 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2672 ++state->bucket) { 2673 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2674 2675 if (hlist_empty(&hslot->head)) 2676 continue; 2677 2678 spin_lock_bh(&hslot->lock); 2679 sk_for_each(sk, &hslot->head) { 2680 if (!net_eq(sock_net(sk), net)) 2681 continue; 2682 if (sk->sk_family == afinfo->family) 2683 goto found; 2684 } 2685 spin_unlock_bh(&hslot->lock); 2686 } 2687 sk = NULL; 2688 found: 2689 return sk; 2690 } 2691 2692 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2693 { 2694 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2695 struct udp_iter_state *state = seq->private; 2696 struct net *net = seq_file_net(seq); 2697 2698 do { 2699 sk = sk_next(sk); 2700 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2701 2702 if (!sk) { 2703 if (state->bucket <= afinfo->udp_table->mask) 2704 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2705 return udp_get_first(seq, state->bucket + 1); 2706 } 2707 return sk; 2708 } 2709 2710 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2711 { 2712 struct sock *sk = udp_get_first(seq, 0); 2713 2714 if (sk) 2715 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2716 --pos; 2717 return pos ? NULL : sk; 2718 } 2719 2720 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2721 { 2722 struct udp_iter_state *state = seq->private; 2723 state->bucket = MAX_UDP_PORTS; 2724 2725 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2726 } 2727 EXPORT_SYMBOL(udp_seq_start); 2728 2729 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2730 { 2731 struct sock *sk; 2732 2733 if (v == SEQ_START_TOKEN) 2734 sk = udp_get_idx(seq, 0); 2735 else 2736 sk = udp_get_next(seq, v); 2737 2738 ++*pos; 2739 return sk; 2740 } 2741 EXPORT_SYMBOL(udp_seq_next); 2742 2743 void udp_seq_stop(struct seq_file *seq, void *v) 2744 { 2745 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2746 struct udp_iter_state *state = seq->private; 2747 2748 if (state->bucket <= afinfo->udp_table->mask) 2749 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2750 } 2751 EXPORT_SYMBOL(udp_seq_stop); 2752 2753 /* ------------------------------------------------------------------------ */ 2754 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2755 int bucket) 2756 { 2757 struct inet_sock *inet = inet_sk(sp); 2758 __be32 dest = inet->inet_daddr; 2759 __be32 src = inet->inet_rcv_saddr; 2760 __u16 destp = ntohs(inet->inet_dport); 2761 __u16 srcp = ntohs(inet->inet_sport); 2762 2763 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2764 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2765 bucket, src, srcp, dest, destp, sp->sk_state, 2766 sk_wmem_alloc_get(sp), 2767 udp_rqueue_get(sp), 2768 0, 0L, 0, 2769 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2770 0, sock_i_ino(sp), 2771 refcount_read(&sp->sk_refcnt), sp, 2772 atomic_read(&sp->sk_drops)); 2773 } 2774 2775 int udp4_seq_show(struct seq_file *seq, void *v) 2776 { 2777 seq_setwidth(seq, 127); 2778 if (v == SEQ_START_TOKEN) 2779 seq_puts(seq, " sl local_address rem_address st tx_queue " 2780 "rx_queue tr tm->when retrnsmt uid timeout " 2781 "inode ref pointer drops"); 2782 else { 2783 struct udp_iter_state *state = seq->private; 2784 2785 udp4_format_sock(v, seq, state->bucket); 2786 } 2787 seq_pad(seq, '\n'); 2788 return 0; 2789 } 2790 2791 const struct seq_operations udp_seq_ops = { 2792 .start = udp_seq_start, 2793 .next = udp_seq_next, 2794 .stop = udp_seq_stop, 2795 .show = udp4_seq_show, 2796 }; 2797 EXPORT_SYMBOL(udp_seq_ops); 2798 2799 static struct udp_seq_afinfo udp4_seq_afinfo = { 2800 .family = AF_INET, 2801 .udp_table = &udp_table, 2802 }; 2803 2804 static int __net_init udp4_proc_init_net(struct net *net) 2805 { 2806 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2807 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2808 return -ENOMEM; 2809 return 0; 2810 } 2811 2812 static void __net_exit udp4_proc_exit_net(struct net *net) 2813 { 2814 remove_proc_entry("udp", net->proc_net); 2815 } 2816 2817 static struct pernet_operations udp4_net_ops = { 2818 .init = udp4_proc_init_net, 2819 .exit = udp4_proc_exit_net, 2820 }; 2821 2822 int __init udp4_proc_init(void) 2823 { 2824 return register_pernet_subsys(&udp4_net_ops); 2825 } 2826 2827 void udp4_proc_exit(void) 2828 { 2829 unregister_pernet_subsys(&udp4_net_ops); 2830 } 2831 #endif /* CONFIG_PROC_FS */ 2832 2833 static __initdata unsigned long uhash_entries; 2834 static int __init set_uhash_entries(char *str) 2835 { 2836 ssize_t ret; 2837 2838 if (!str) 2839 return 0; 2840 2841 ret = kstrtoul(str, 0, &uhash_entries); 2842 if (ret) 2843 return 0; 2844 2845 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2846 uhash_entries = UDP_HTABLE_SIZE_MIN; 2847 return 1; 2848 } 2849 __setup("uhash_entries=", set_uhash_entries); 2850 2851 void __init udp_table_init(struct udp_table *table, const char *name) 2852 { 2853 unsigned int i; 2854 2855 table->hash = alloc_large_system_hash(name, 2856 2 * sizeof(struct udp_hslot), 2857 uhash_entries, 2858 21, /* one slot per 2 MB */ 2859 0, 2860 &table->log, 2861 &table->mask, 2862 UDP_HTABLE_SIZE_MIN, 2863 64 * 1024); 2864 2865 table->hash2 = table->hash + (table->mask + 1); 2866 for (i = 0; i <= table->mask; i++) { 2867 INIT_HLIST_HEAD(&table->hash[i].head); 2868 table->hash[i].count = 0; 2869 spin_lock_init(&table->hash[i].lock); 2870 } 2871 for (i = 0; i <= table->mask; i++) { 2872 INIT_HLIST_HEAD(&table->hash2[i].head); 2873 table->hash2[i].count = 0; 2874 spin_lock_init(&table->hash2[i].lock); 2875 } 2876 } 2877 2878 u32 udp_flow_hashrnd(void) 2879 { 2880 static u32 hashrnd __read_mostly; 2881 2882 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2883 2884 return hashrnd; 2885 } 2886 EXPORT_SYMBOL(udp_flow_hashrnd); 2887 2888 static void __udp_sysctl_init(struct net *net) 2889 { 2890 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2891 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2892 2893 #ifdef CONFIG_NET_L3_MASTER_DEV 2894 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2895 #endif 2896 } 2897 2898 static int __net_init udp_sysctl_init(struct net *net) 2899 { 2900 __udp_sysctl_init(net); 2901 return 0; 2902 } 2903 2904 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2905 .init = udp_sysctl_init, 2906 }; 2907 2908 void __init udp_init(void) 2909 { 2910 unsigned long limit; 2911 unsigned int i; 2912 2913 udp_table_init(&udp_table, "UDP"); 2914 limit = nr_free_buffer_pages() / 8; 2915 limit = max(limit, 128UL); 2916 sysctl_udp_mem[0] = limit / 4 * 3; 2917 sysctl_udp_mem[1] = limit; 2918 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2919 2920 __udp_sysctl_init(&init_net); 2921 2922 /* 16 spinlocks per cpu */ 2923 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2924 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2925 GFP_KERNEL); 2926 if (!udp_busylocks) 2927 panic("UDP: failed to alloc udp_busylocks\n"); 2928 for (i = 0; i < (1U << udp_busylocks_log); i++) 2929 spin_lock_init(udp_busylocks + i); 2930 2931 if (register_pernet_subsys(&udp_sysctl_ops)) 2932 panic("UDP: failed to init sysctl parameters.\n"); 2933 } 2934