xref: /openbmc/linux/net/ipv4/udp.c (revision 2dbb9b9e6df67d444fbe425c7f6014858d337adf)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121 
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124 
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
127 
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
130 
131 /* IPCB reference means this can not be used from early demux */
132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
133 {
134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
135 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
136 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
137 		return true;
138 #endif
139 	return false;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_hslot *hslot, *hslot2;
244 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
245 	int    error = 1;
246 	struct net *net = sock_net(sk);
247 
248 	if (!snum) {
249 		int low, high, remaining;
250 		unsigned int rand;
251 		unsigned short first, last;
252 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
253 
254 		inet_get_local_port_range(net, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = prandom_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sk_add_node_rcu(sk, &hslot->head);
331 		hslot->count++;
332 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
333 
334 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
335 		spin_lock(&hslot2->lock);
336 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
337 		    sk->sk_family == AF_INET6)
338 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
339 					   &hslot2->head);
340 		else
341 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
342 					   &hslot2->head);
343 		hslot2->count++;
344 		spin_unlock(&hslot2->lock);
345 	}
346 	sock_set_flag(sk, SOCK_RCU_FREE);
347 	error = 0;
348 fail_unlock:
349 	spin_unlock_bh(&hslot->lock);
350 fail:
351 	return error;
352 }
353 EXPORT_SYMBOL(udp_lib_get_port);
354 
355 int udp_v4_get_port(struct sock *sk, unsigned short snum)
356 {
357 	unsigned int hash2_nulladdr =
358 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
359 	unsigned int hash2_partial =
360 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
361 
362 	/* precompute partial secondary hash */
363 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
364 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
365 }
366 
367 static int compute_score(struct sock *sk, struct net *net,
368 			 __be32 saddr, __be16 sport,
369 			 __be32 daddr, unsigned short hnum,
370 			 int dif, int sdif, bool exact_dif)
371 {
372 	int score;
373 	struct inet_sock *inet;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	score = (sk->sk_family == PF_INET) ? 2 : 1;
381 	inet = inet_sk(sk);
382 
383 	if (inet->inet_rcv_saddr) {
384 		if (inet->inet_rcv_saddr != daddr)
385 			return -1;
386 		score += 4;
387 	}
388 
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	if (sk->sk_bound_dev_if || exact_dif) {
402 		bool dev_match = (sk->sk_bound_dev_if == dif ||
403 				  sk->sk_bound_dev_if == sdif);
404 
405 		if (!dev_match)
406 			return -1;
407 		if (sk->sk_bound_dev_if)
408 			score += 4;
409 	}
410 
411 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
412 		score++;
413 	return score;
414 }
415 
416 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
417 		       const __u16 lport, const __be32 faddr,
418 		       const __be16 fport)
419 {
420 	static u32 udp_ehash_secret __read_mostly;
421 
422 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
423 
424 	return __inet_ehashfn(laddr, lport, faddr, fport,
425 			      udp_ehash_secret + net_hash_mix(net));
426 }
427 
428 /* called with rcu_read_lock() */
429 static struct sock *udp4_lib_lookup2(struct net *net,
430 				     __be32 saddr, __be16 sport,
431 				     __be32 daddr, unsigned int hnum,
432 				     int dif, int sdif, bool exact_dif,
433 				     struct udp_hslot *hslot2,
434 				     struct sk_buff *skb)
435 {
436 	struct sock *sk, *result;
437 	int score, badness;
438 	u32 hash = 0;
439 
440 	result = NULL;
441 	badness = 0;
442 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
443 		score = compute_score(sk, net, saddr, sport,
444 				      daddr, hnum, dif, sdif, exact_dif);
445 		if (score > badness) {
446 			if (sk->sk_reuseport) {
447 				hash = udp_ehashfn(net, daddr, hnum,
448 						   saddr, sport);
449 				result = reuseport_select_sock(sk, hash, skb,
450 							sizeof(struct udphdr));
451 				if (result)
452 					return result;
453 			}
454 			badness = score;
455 			result = sk;
456 		}
457 	}
458 	return result;
459 }
460 
461 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
462  * harder than this. -DaveM
463  */
464 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
465 		__be16 sport, __be32 daddr, __be16 dport, int dif,
466 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
467 {
468 	struct sock *sk, *result;
469 	unsigned short hnum = ntohs(dport);
470 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
471 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
472 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
473 	int score, badness;
474 	u32 hash = 0;
475 
476 	if (hslot->count > 10) {
477 		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
478 		slot2 = hash2 & udptable->mask;
479 		hslot2 = &udptable->hash2[slot2];
480 		if (hslot->count < hslot2->count)
481 			goto begin;
482 
483 		result = udp4_lib_lookup2(net, saddr, sport,
484 					  daddr, hnum, dif, sdif,
485 					  exact_dif, hslot2, skb);
486 		if (!result) {
487 			unsigned int old_slot2 = slot2;
488 			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
489 			slot2 = hash2 & udptable->mask;
490 			/* avoid searching the same slot again. */
491 			if (unlikely(slot2 == old_slot2))
492 				return result;
493 
494 			hslot2 = &udptable->hash2[slot2];
495 			if (hslot->count < hslot2->count)
496 				goto begin;
497 
498 			result = udp4_lib_lookup2(net, saddr, sport,
499 						  daddr, hnum, dif, sdif,
500 						  exact_dif, hslot2, skb);
501 		}
502 		return result;
503 	}
504 begin:
505 	result = NULL;
506 	badness = 0;
507 	sk_for_each_rcu(sk, &hslot->head) {
508 		score = compute_score(sk, net, saddr, sport,
509 				      daddr, hnum, dif, sdif, exact_dif);
510 		if (score > badness) {
511 			if (sk->sk_reuseport) {
512 				hash = udp_ehashfn(net, daddr, hnum,
513 						   saddr, sport);
514 				result = reuseport_select_sock(sk, hash, skb,
515 							sizeof(struct udphdr));
516 				if (result)
517 					return result;
518 			}
519 			result = sk;
520 			badness = score;
521 		}
522 	}
523 	return result;
524 }
525 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
526 
527 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
528 						 __be16 sport, __be16 dport,
529 						 struct udp_table *udptable)
530 {
531 	const struct iphdr *iph = ip_hdr(skb);
532 
533 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
534 				 iph->daddr, dport, inet_iif(skb),
535 				 inet_sdif(skb), udptable, skb);
536 }
537 
538 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
539 				 __be16 sport, __be16 dport)
540 {
541 	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
542 }
543 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
544 
545 /* Must be called under rcu_read_lock().
546  * Does increment socket refcount.
547  */
548 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
549 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
550 			     __be32 daddr, __be16 dport, int dif)
551 {
552 	struct sock *sk;
553 
554 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
555 			       dif, 0, &udp_table, NULL);
556 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
557 		sk = NULL;
558 	return sk;
559 }
560 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
561 #endif
562 
563 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
564 				       __be16 loc_port, __be32 loc_addr,
565 				       __be16 rmt_port, __be32 rmt_addr,
566 				       int dif, int sdif, unsigned short hnum)
567 {
568 	struct inet_sock *inet = inet_sk(sk);
569 
570 	if (!net_eq(sock_net(sk), net) ||
571 	    udp_sk(sk)->udp_port_hash != hnum ||
572 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
573 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
574 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
575 	    ipv6_only_sock(sk) ||
576 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
577 	     sk->sk_bound_dev_if != sdif))
578 		return false;
579 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
580 		return false;
581 	return true;
582 }
583 
584 /*
585  * This routine is called by the ICMP module when it gets some
586  * sort of error condition.  If err < 0 then the socket should
587  * be closed and the error returned to the user.  If err > 0
588  * it's just the icmp type << 8 | icmp code.
589  * Header points to the ip header of the error packet. We move
590  * on past this. Then (as it used to claim before adjustment)
591  * header points to the first 8 bytes of the udp header.  We need
592  * to find the appropriate port.
593  */
594 
595 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
596 {
597 	struct inet_sock *inet;
598 	const struct iphdr *iph = (const struct iphdr *)skb->data;
599 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
600 	const int type = icmp_hdr(skb)->type;
601 	const int code = icmp_hdr(skb)->code;
602 	struct sock *sk;
603 	int harderr;
604 	int err;
605 	struct net *net = dev_net(skb->dev);
606 
607 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
608 			       iph->saddr, uh->source, skb->dev->ifindex, 0,
609 			       udptable, NULL);
610 	if (!sk) {
611 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
612 		return;	/* No socket for error */
613 	}
614 
615 	err = 0;
616 	harderr = 0;
617 	inet = inet_sk(sk);
618 
619 	switch (type) {
620 	default:
621 	case ICMP_TIME_EXCEEDED:
622 		err = EHOSTUNREACH;
623 		break;
624 	case ICMP_SOURCE_QUENCH:
625 		goto out;
626 	case ICMP_PARAMETERPROB:
627 		err = EPROTO;
628 		harderr = 1;
629 		break;
630 	case ICMP_DEST_UNREACH:
631 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
632 			ipv4_sk_update_pmtu(skb, sk, info);
633 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
634 				err = EMSGSIZE;
635 				harderr = 1;
636 				break;
637 			}
638 			goto out;
639 		}
640 		err = EHOSTUNREACH;
641 		if (code <= NR_ICMP_UNREACH) {
642 			harderr = icmp_err_convert[code].fatal;
643 			err = icmp_err_convert[code].errno;
644 		}
645 		break;
646 	case ICMP_REDIRECT:
647 		ipv4_sk_redirect(skb, sk);
648 		goto out;
649 	}
650 
651 	/*
652 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
653 	 *	4.1.3.3.
654 	 */
655 	if (!inet->recverr) {
656 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
657 			goto out;
658 	} else
659 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
660 
661 	sk->sk_err = err;
662 	sk->sk_error_report(sk);
663 out:
664 	return;
665 }
666 
667 void udp_err(struct sk_buff *skb, u32 info)
668 {
669 	__udp4_lib_err(skb, info, &udp_table);
670 }
671 
672 /*
673  * Throw away all pending data and cancel the corking. Socket is locked.
674  */
675 void udp_flush_pending_frames(struct sock *sk)
676 {
677 	struct udp_sock *up = udp_sk(sk);
678 
679 	if (up->pending) {
680 		up->len = 0;
681 		up->pending = 0;
682 		ip_flush_pending_frames(sk);
683 	}
684 }
685 EXPORT_SYMBOL(udp_flush_pending_frames);
686 
687 /**
688  * 	udp4_hwcsum  -  handle outgoing HW checksumming
689  * 	@skb: 	sk_buff containing the filled-in UDP header
690  * 	        (checksum field must be zeroed out)
691  *	@src:	source IP address
692  *	@dst:	destination IP address
693  */
694 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
695 {
696 	struct udphdr *uh = udp_hdr(skb);
697 	int offset = skb_transport_offset(skb);
698 	int len = skb->len - offset;
699 	int hlen = len;
700 	__wsum csum = 0;
701 
702 	if (!skb_has_frag_list(skb)) {
703 		/*
704 		 * Only one fragment on the socket.
705 		 */
706 		skb->csum_start = skb_transport_header(skb) - skb->head;
707 		skb->csum_offset = offsetof(struct udphdr, check);
708 		uh->check = ~csum_tcpudp_magic(src, dst, len,
709 					       IPPROTO_UDP, 0);
710 	} else {
711 		struct sk_buff *frags;
712 
713 		/*
714 		 * HW-checksum won't work as there are two or more
715 		 * fragments on the socket so that all csums of sk_buffs
716 		 * should be together
717 		 */
718 		skb_walk_frags(skb, frags) {
719 			csum = csum_add(csum, frags->csum);
720 			hlen -= frags->len;
721 		}
722 
723 		csum = skb_checksum(skb, offset, hlen, csum);
724 		skb->ip_summed = CHECKSUM_NONE;
725 
726 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
727 		if (uh->check == 0)
728 			uh->check = CSUM_MANGLED_0;
729 	}
730 }
731 EXPORT_SYMBOL_GPL(udp4_hwcsum);
732 
733 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
734  * for the simple case like when setting the checksum for a UDP tunnel.
735  */
736 void udp_set_csum(bool nocheck, struct sk_buff *skb,
737 		  __be32 saddr, __be32 daddr, int len)
738 {
739 	struct udphdr *uh = udp_hdr(skb);
740 
741 	if (nocheck) {
742 		uh->check = 0;
743 	} else if (skb_is_gso(skb)) {
744 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
745 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
746 		uh->check = 0;
747 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
748 		if (uh->check == 0)
749 			uh->check = CSUM_MANGLED_0;
750 	} else {
751 		skb->ip_summed = CHECKSUM_PARTIAL;
752 		skb->csum_start = skb_transport_header(skb) - skb->head;
753 		skb->csum_offset = offsetof(struct udphdr, check);
754 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
755 	}
756 }
757 EXPORT_SYMBOL(udp_set_csum);
758 
759 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
760 			struct inet_cork *cork)
761 {
762 	struct sock *sk = skb->sk;
763 	struct inet_sock *inet = inet_sk(sk);
764 	struct udphdr *uh;
765 	int err = 0;
766 	int is_udplite = IS_UDPLITE(sk);
767 	int offset = skb_transport_offset(skb);
768 	int len = skb->len - offset;
769 	__wsum csum = 0;
770 
771 	/*
772 	 * Create a UDP header
773 	 */
774 	uh = udp_hdr(skb);
775 	uh->source = inet->inet_sport;
776 	uh->dest = fl4->fl4_dport;
777 	uh->len = htons(len);
778 	uh->check = 0;
779 
780 	if (cork->gso_size) {
781 		const int hlen = skb_network_header_len(skb) +
782 				 sizeof(struct udphdr);
783 
784 		if (hlen + cork->gso_size > cork->fragsize)
785 			return -EINVAL;
786 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS)
787 			return -EINVAL;
788 		if (sk->sk_no_check_tx)
789 			return -EINVAL;
790 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
791 		    dst_xfrm(skb_dst(skb)))
792 			return -EIO;
793 
794 		skb_shinfo(skb)->gso_size = cork->gso_size;
795 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
796 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
797 							 cork->gso_size);
798 		goto csum_partial;
799 	}
800 
801 	if (is_udplite)  				 /*     UDP-Lite      */
802 		csum = udplite_csum(skb);
803 
804 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
805 
806 		skb->ip_summed = CHECKSUM_NONE;
807 		goto send;
808 
809 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
810 csum_partial:
811 
812 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
813 		goto send;
814 
815 	} else
816 		csum = udp_csum(skb);
817 
818 	/* add protocol-dependent pseudo-header */
819 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
820 				      sk->sk_protocol, csum);
821 	if (uh->check == 0)
822 		uh->check = CSUM_MANGLED_0;
823 
824 send:
825 	err = ip_send_skb(sock_net(sk), skb);
826 	if (err) {
827 		if (err == -ENOBUFS && !inet->recverr) {
828 			UDP_INC_STATS(sock_net(sk),
829 				      UDP_MIB_SNDBUFERRORS, is_udplite);
830 			err = 0;
831 		}
832 	} else
833 		UDP_INC_STATS(sock_net(sk),
834 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
835 	return err;
836 }
837 
838 /*
839  * Push out all pending data as one UDP datagram. Socket is locked.
840  */
841 int udp_push_pending_frames(struct sock *sk)
842 {
843 	struct udp_sock  *up = udp_sk(sk);
844 	struct inet_sock *inet = inet_sk(sk);
845 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
846 	struct sk_buff *skb;
847 	int err = 0;
848 
849 	skb = ip_finish_skb(sk, fl4);
850 	if (!skb)
851 		goto out;
852 
853 	err = udp_send_skb(skb, fl4, &inet->cork.base);
854 
855 out:
856 	up->len = 0;
857 	up->pending = 0;
858 	return err;
859 }
860 EXPORT_SYMBOL(udp_push_pending_frames);
861 
862 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
863 {
864 	switch (cmsg->cmsg_type) {
865 	case UDP_SEGMENT:
866 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
867 			return -EINVAL;
868 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
869 		return 0;
870 	default:
871 		return -EINVAL;
872 	}
873 }
874 
875 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
876 {
877 	struct cmsghdr *cmsg;
878 	bool need_ip = false;
879 	int err;
880 
881 	for_each_cmsghdr(cmsg, msg) {
882 		if (!CMSG_OK(msg, cmsg))
883 			return -EINVAL;
884 
885 		if (cmsg->cmsg_level != SOL_UDP) {
886 			need_ip = true;
887 			continue;
888 		}
889 
890 		err = __udp_cmsg_send(cmsg, gso_size);
891 		if (err)
892 			return err;
893 	}
894 
895 	return need_ip;
896 }
897 EXPORT_SYMBOL_GPL(udp_cmsg_send);
898 
899 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
900 {
901 	struct inet_sock *inet = inet_sk(sk);
902 	struct udp_sock *up = udp_sk(sk);
903 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
904 	struct flowi4 fl4_stack;
905 	struct flowi4 *fl4;
906 	int ulen = len;
907 	struct ipcm_cookie ipc;
908 	struct rtable *rt = NULL;
909 	int free = 0;
910 	int connected = 0;
911 	__be32 daddr, faddr, saddr;
912 	__be16 dport;
913 	u8  tos;
914 	int err, is_udplite = IS_UDPLITE(sk);
915 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
916 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
917 	struct sk_buff *skb;
918 	struct ip_options_data opt_copy;
919 
920 	if (len > 0xFFFF)
921 		return -EMSGSIZE;
922 
923 	/*
924 	 *	Check the flags.
925 	 */
926 
927 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
928 		return -EOPNOTSUPP;
929 
930 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
931 
932 	fl4 = &inet->cork.fl.u.ip4;
933 	if (up->pending) {
934 		/*
935 		 * There are pending frames.
936 		 * The socket lock must be held while it's corked.
937 		 */
938 		lock_sock(sk);
939 		if (likely(up->pending)) {
940 			if (unlikely(up->pending != AF_INET)) {
941 				release_sock(sk);
942 				return -EINVAL;
943 			}
944 			goto do_append_data;
945 		}
946 		release_sock(sk);
947 	}
948 	ulen += sizeof(struct udphdr);
949 
950 	/*
951 	 *	Get and verify the address.
952 	 */
953 	if (usin) {
954 		if (msg->msg_namelen < sizeof(*usin))
955 			return -EINVAL;
956 		if (usin->sin_family != AF_INET) {
957 			if (usin->sin_family != AF_UNSPEC)
958 				return -EAFNOSUPPORT;
959 		}
960 
961 		daddr = usin->sin_addr.s_addr;
962 		dport = usin->sin_port;
963 		if (dport == 0)
964 			return -EINVAL;
965 	} else {
966 		if (sk->sk_state != TCP_ESTABLISHED)
967 			return -EDESTADDRREQ;
968 		daddr = inet->inet_daddr;
969 		dport = inet->inet_dport;
970 		/* Open fast path for connected socket.
971 		   Route will not be used, if at least one option is set.
972 		 */
973 		connected = 1;
974 	}
975 
976 	ipcm_init_sk(&ipc, inet);
977 	ipc.gso_size = up->gso_size;
978 
979 	if (msg->msg_controllen) {
980 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
981 		if (err > 0)
982 			err = ip_cmsg_send(sk, msg, &ipc,
983 					   sk->sk_family == AF_INET6);
984 		if (unlikely(err < 0)) {
985 			kfree(ipc.opt);
986 			return err;
987 		}
988 		if (ipc.opt)
989 			free = 1;
990 		connected = 0;
991 	}
992 	if (!ipc.opt) {
993 		struct ip_options_rcu *inet_opt;
994 
995 		rcu_read_lock();
996 		inet_opt = rcu_dereference(inet->inet_opt);
997 		if (inet_opt) {
998 			memcpy(&opt_copy, inet_opt,
999 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1000 			ipc.opt = &opt_copy.opt;
1001 		}
1002 		rcu_read_unlock();
1003 	}
1004 
1005 	if (cgroup_bpf_enabled && !connected) {
1006 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1007 					    (struct sockaddr *)usin, &ipc.addr);
1008 		if (err)
1009 			goto out_free;
1010 		if (usin) {
1011 			if (usin->sin_port == 0) {
1012 				/* BPF program set invalid port. Reject it. */
1013 				err = -EINVAL;
1014 				goto out_free;
1015 			}
1016 			daddr = usin->sin_addr.s_addr;
1017 			dport = usin->sin_port;
1018 		}
1019 	}
1020 
1021 	saddr = ipc.addr;
1022 	ipc.addr = faddr = daddr;
1023 
1024 	if (ipc.opt && ipc.opt->opt.srr) {
1025 		if (!daddr) {
1026 			err = -EINVAL;
1027 			goto out_free;
1028 		}
1029 		faddr = ipc.opt->opt.faddr;
1030 		connected = 0;
1031 	}
1032 	tos = get_rttos(&ipc, inet);
1033 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1034 	    (msg->msg_flags & MSG_DONTROUTE) ||
1035 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1036 		tos |= RTO_ONLINK;
1037 		connected = 0;
1038 	}
1039 
1040 	if (ipv4_is_multicast(daddr)) {
1041 		if (!ipc.oif)
1042 			ipc.oif = inet->mc_index;
1043 		if (!saddr)
1044 			saddr = inet->mc_addr;
1045 		connected = 0;
1046 	} else if (!ipc.oif) {
1047 		ipc.oif = inet->uc_index;
1048 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1049 		/* oif is set, packet is to local broadcast and
1050 		 * and uc_index is set. oif is most likely set
1051 		 * by sk_bound_dev_if. If uc_index != oif check if the
1052 		 * oif is an L3 master and uc_index is an L3 slave.
1053 		 * If so, we want to allow the send using the uc_index.
1054 		 */
1055 		if (ipc.oif != inet->uc_index &&
1056 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1057 							      inet->uc_index)) {
1058 			ipc.oif = inet->uc_index;
1059 		}
1060 	}
1061 
1062 	if (connected)
1063 		rt = (struct rtable *)sk_dst_check(sk, 0);
1064 
1065 	if (!rt) {
1066 		struct net *net = sock_net(sk);
1067 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1068 
1069 		fl4 = &fl4_stack;
1070 
1071 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1072 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1073 				   flow_flags,
1074 				   faddr, saddr, dport, inet->inet_sport,
1075 				   sk->sk_uid);
1076 
1077 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1078 		rt = ip_route_output_flow(net, fl4, sk);
1079 		if (IS_ERR(rt)) {
1080 			err = PTR_ERR(rt);
1081 			rt = NULL;
1082 			if (err == -ENETUNREACH)
1083 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1084 			goto out;
1085 		}
1086 
1087 		err = -EACCES;
1088 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1089 		    !sock_flag(sk, SOCK_BROADCAST))
1090 			goto out;
1091 		if (connected)
1092 			sk_dst_set(sk, dst_clone(&rt->dst));
1093 	}
1094 
1095 	if (msg->msg_flags&MSG_CONFIRM)
1096 		goto do_confirm;
1097 back_from_confirm:
1098 
1099 	saddr = fl4->saddr;
1100 	if (!ipc.addr)
1101 		daddr = ipc.addr = fl4->daddr;
1102 
1103 	/* Lockless fast path for the non-corking case. */
1104 	if (!corkreq) {
1105 		struct inet_cork cork;
1106 
1107 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1108 				  sizeof(struct udphdr), &ipc, &rt,
1109 				  &cork, msg->msg_flags);
1110 		err = PTR_ERR(skb);
1111 		if (!IS_ERR_OR_NULL(skb))
1112 			err = udp_send_skb(skb, fl4, &cork);
1113 		goto out;
1114 	}
1115 
1116 	lock_sock(sk);
1117 	if (unlikely(up->pending)) {
1118 		/* The socket is already corked while preparing it. */
1119 		/* ... which is an evident application bug. --ANK */
1120 		release_sock(sk);
1121 
1122 		net_dbg_ratelimited("socket already corked\n");
1123 		err = -EINVAL;
1124 		goto out;
1125 	}
1126 	/*
1127 	 *	Now cork the socket to pend data.
1128 	 */
1129 	fl4 = &inet->cork.fl.u.ip4;
1130 	fl4->daddr = daddr;
1131 	fl4->saddr = saddr;
1132 	fl4->fl4_dport = dport;
1133 	fl4->fl4_sport = inet->inet_sport;
1134 	up->pending = AF_INET;
1135 
1136 do_append_data:
1137 	up->len += ulen;
1138 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1139 			     sizeof(struct udphdr), &ipc, &rt,
1140 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1141 	if (err)
1142 		udp_flush_pending_frames(sk);
1143 	else if (!corkreq)
1144 		err = udp_push_pending_frames(sk);
1145 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1146 		up->pending = 0;
1147 	release_sock(sk);
1148 
1149 out:
1150 	ip_rt_put(rt);
1151 out_free:
1152 	if (free)
1153 		kfree(ipc.opt);
1154 	if (!err)
1155 		return len;
1156 	/*
1157 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1158 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1159 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1160 	 * things).  We could add another new stat but at least for now that
1161 	 * seems like overkill.
1162 	 */
1163 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1164 		UDP_INC_STATS(sock_net(sk),
1165 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1166 	}
1167 	return err;
1168 
1169 do_confirm:
1170 	if (msg->msg_flags & MSG_PROBE)
1171 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1172 	if (!(msg->msg_flags&MSG_PROBE) || len)
1173 		goto back_from_confirm;
1174 	err = 0;
1175 	goto out;
1176 }
1177 EXPORT_SYMBOL(udp_sendmsg);
1178 
1179 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1180 		 size_t size, int flags)
1181 {
1182 	struct inet_sock *inet = inet_sk(sk);
1183 	struct udp_sock *up = udp_sk(sk);
1184 	int ret;
1185 
1186 	if (flags & MSG_SENDPAGE_NOTLAST)
1187 		flags |= MSG_MORE;
1188 
1189 	if (!up->pending) {
1190 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1191 
1192 		/* Call udp_sendmsg to specify destination address which
1193 		 * sendpage interface can't pass.
1194 		 * This will succeed only when the socket is connected.
1195 		 */
1196 		ret = udp_sendmsg(sk, &msg, 0);
1197 		if (ret < 0)
1198 			return ret;
1199 	}
1200 
1201 	lock_sock(sk);
1202 
1203 	if (unlikely(!up->pending)) {
1204 		release_sock(sk);
1205 
1206 		net_dbg_ratelimited("cork failed\n");
1207 		return -EINVAL;
1208 	}
1209 
1210 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1211 			     page, offset, size, flags);
1212 	if (ret == -EOPNOTSUPP) {
1213 		release_sock(sk);
1214 		return sock_no_sendpage(sk->sk_socket, page, offset,
1215 					size, flags);
1216 	}
1217 	if (ret < 0) {
1218 		udp_flush_pending_frames(sk);
1219 		goto out;
1220 	}
1221 
1222 	up->len += size;
1223 	if (!(up->corkflag || (flags&MSG_MORE)))
1224 		ret = udp_push_pending_frames(sk);
1225 	if (!ret)
1226 		ret = size;
1227 out:
1228 	release_sock(sk);
1229 	return ret;
1230 }
1231 
1232 #define UDP_SKB_IS_STATELESS 0x80000000
1233 
1234 static void udp_set_dev_scratch(struct sk_buff *skb)
1235 {
1236 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1237 
1238 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1239 	scratch->_tsize_state = skb->truesize;
1240 #if BITS_PER_LONG == 64
1241 	scratch->len = skb->len;
1242 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1243 	scratch->is_linear = !skb_is_nonlinear(skb);
1244 #endif
1245 	/* all head states execept sp (dst, sk, nf) are always cleared by
1246 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1247 	 * process IP_CMSG_PASSSEC at recvmsg() time
1248 	 */
1249 	if (likely(!skb_sec_path(skb)))
1250 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1251 }
1252 
1253 static int udp_skb_truesize(struct sk_buff *skb)
1254 {
1255 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1256 }
1257 
1258 static bool udp_skb_has_head_state(struct sk_buff *skb)
1259 {
1260 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1261 }
1262 
1263 /* fully reclaim rmem/fwd memory allocated for skb */
1264 static void udp_rmem_release(struct sock *sk, int size, int partial,
1265 			     bool rx_queue_lock_held)
1266 {
1267 	struct udp_sock *up = udp_sk(sk);
1268 	struct sk_buff_head *sk_queue;
1269 	int amt;
1270 
1271 	if (likely(partial)) {
1272 		up->forward_deficit += size;
1273 		size = up->forward_deficit;
1274 		if (size < (sk->sk_rcvbuf >> 2))
1275 			return;
1276 	} else {
1277 		size += up->forward_deficit;
1278 	}
1279 	up->forward_deficit = 0;
1280 
1281 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1282 	 * if the called don't held it already
1283 	 */
1284 	sk_queue = &sk->sk_receive_queue;
1285 	if (!rx_queue_lock_held)
1286 		spin_lock(&sk_queue->lock);
1287 
1288 
1289 	sk->sk_forward_alloc += size;
1290 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1291 	sk->sk_forward_alloc -= amt;
1292 
1293 	if (amt)
1294 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1295 
1296 	atomic_sub(size, &sk->sk_rmem_alloc);
1297 
1298 	/* this can save us from acquiring the rx queue lock on next receive */
1299 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1300 
1301 	if (!rx_queue_lock_held)
1302 		spin_unlock(&sk_queue->lock);
1303 }
1304 
1305 /* Note: called with reader_queue.lock held.
1306  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1307  * This avoids a cache line miss while receive_queue lock is held.
1308  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1309  */
1310 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1311 {
1312 	prefetch(&skb->data);
1313 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1314 }
1315 EXPORT_SYMBOL(udp_skb_destructor);
1316 
1317 /* as above, but the caller held the rx queue lock, too */
1318 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1319 {
1320 	prefetch(&skb->data);
1321 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1322 }
1323 
1324 /* Idea of busylocks is to let producers grab an extra spinlock
1325  * to relieve pressure on the receive_queue spinlock shared by consumer.
1326  * Under flood, this means that only one producer can be in line
1327  * trying to acquire the receive_queue spinlock.
1328  * These busylock can be allocated on a per cpu manner, instead of a
1329  * per socket one (that would consume a cache line per socket)
1330  */
1331 static int udp_busylocks_log __read_mostly;
1332 static spinlock_t *udp_busylocks __read_mostly;
1333 
1334 static spinlock_t *busylock_acquire(void *ptr)
1335 {
1336 	spinlock_t *busy;
1337 
1338 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1339 	spin_lock(busy);
1340 	return busy;
1341 }
1342 
1343 static void busylock_release(spinlock_t *busy)
1344 {
1345 	if (busy)
1346 		spin_unlock(busy);
1347 }
1348 
1349 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1350 {
1351 	struct sk_buff_head *list = &sk->sk_receive_queue;
1352 	int rmem, delta, amt, err = -ENOMEM;
1353 	spinlock_t *busy = NULL;
1354 	int size;
1355 
1356 	/* try to avoid the costly atomic add/sub pair when the receive
1357 	 * queue is full; always allow at least a packet
1358 	 */
1359 	rmem = atomic_read(&sk->sk_rmem_alloc);
1360 	if (rmem > sk->sk_rcvbuf)
1361 		goto drop;
1362 
1363 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1364 	 * having linear skbs :
1365 	 * - Reduce memory overhead and thus increase receive queue capacity
1366 	 * - Less cache line misses at copyout() time
1367 	 * - Less work at consume_skb() (less alien page frag freeing)
1368 	 */
1369 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1370 		skb_condense(skb);
1371 
1372 		busy = busylock_acquire(sk);
1373 	}
1374 	size = skb->truesize;
1375 	udp_set_dev_scratch(skb);
1376 
1377 	/* we drop only if the receive buf is full and the receive
1378 	 * queue contains some other skb
1379 	 */
1380 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1381 	if (rmem > (size + sk->sk_rcvbuf))
1382 		goto uncharge_drop;
1383 
1384 	spin_lock(&list->lock);
1385 	if (size >= sk->sk_forward_alloc) {
1386 		amt = sk_mem_pages(size);
1387 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1388 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1389 			err = -ENOBUFS;
1390 			spin_unlock(&list->lock);
1391 			goto uncharge_drop;
1392 		}
1393 
1394 		sk->sk_forward_alloc += delta;
1395 	}
1396 
1397 	sk->sk_forward_alloc -= size;
1398 
1399 	/* no need to setup a destructor, we will explicitly release the
1400 	 * forward allocated memory on dequeue
1401 	 */
1402 	sock_skb_set_dropcount(sk, skb);
1403 
1404 	__skb_queue_tail(list, skb);
1405 	spin_unlock(&list->lock);
1406 
1407 	if (!sock_flag(sk, SOCK_DEAD))
1408 		sk->sk_data_ready(sk);
1409 
1410 	busylock_release(busy);
1411 	return 0;
1412 
1413 uncharge_drop:
1414 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1415 
1416 drop:
1417 	atomic_inc(&sk->sk_drops);
1418 	busylock_release(busy);
1419 	return err;
1420 }
1421 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1422 
1423 void udp_destruct_sock(struct sock *sk)
1424 {
1425 	/* reclaim completely the forward allocated memory */
1426 	struct udp_sock *up = udp_sk(sk);
1427 	unsigned int total = 0;
1428 	struct sk_buff *skb;
1429 
1430 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1431 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1432 		total += skb->truesize;
1433 		kfree_skb(skb);
1434 	}
1435 	udp_rmem_release(sk, total, 0, true);
1436 
1437 	inet_sock_destruct(sk);
1438 }
1439 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1440 
1441 int udp_init_sock(struct sock *sk)
1442 {
1443 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1444 	sk->sk_destruct = udp_destruct_sock;
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(udp_init_sock);
1448 
1449 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1450 {
1451 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1452 		bool slow = lock_sock_fast(sk);
1453 
1454 		sk_peek_offset_bwd(sk, len);
1455 		unlock_sock_fast(sk, slow);
1456 	}
1457 
1458 	if (!skb_unref(skb))
1459 		return;
1460 
1461 	/* In the more common cases we cleared the head states previously,
1462 	 * see __udp_queue_rcv_skb().
1463 	 */
1464 	if (unlikely(udp_skb_has_head_state(skb)))
1465 		skb_release_head_state(skb);
1466 	__consume_stateless_skb(skb);
1467 }
1468 EXPORT_SYMBOL_GPL(skb_consume_udp);
1469 
1470 static struct sk_buff *__first_packet_length(struct sock *sk,
1471 					     struct sk_buff_head *rcvq,
1472 					     int *total)
1473 {
1474 	struct sk_buff *skb;
1475 
1476 	while ((skb = skb_peek(rcvq)) != NULL) {
1477 		if (udp_lib_checksum_complete(skb)) {
1478 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1479 					IS_UDPLITE(sk));
1480 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1481 					IS_UDPLITE(sk));
1482 			atomic_inc(&sk->sk_drops);
1483 			__skb_unlink(skb, rcvq);
1484 			*total += skb->truesize;
1485 			kfree_skb(skb);
1486 		} else {
1487 			/* the csum related bits could be changed, refresh
1488 			 * the scratch area
1489 			 */
1490 			udp_set_dev_scratch(skb);
1491 			break;
1492 		}
1493 	}
1494 	return skb;
1495 }
1496 
1497 /**
1498  *	first_packet_length	- return length of first packet in receive queue
1499  *	@sk: socket
1500  *
1501  *	Drops all bad checksum frames, until a valid one is found.
1502  *	Returns the length of found skb, or -1 if none is found.
1503  */
1504 static int first_packet_length(struct sock *sk)
1505 {
1506 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1507 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1508 	struct sk_buff *skb;
1509 	int total = 0;
1510 	int res;
1511 
1512 	spin_lock_bh(&rcvq->lock);
1513 	skb = __first_packet_length(sk, rcvq, &total);
1514 	if (!skb && !skb_queue_empty(sk_queue)) {
1515 		spin_lock(&sk_queue->lock);
1516 		skb_queue_splice_tail_init(sk_queue, rcvq);
1517 		spin_unlock(&sk_queue->lock);
1518 
1519 		skb = __first_packet_length(sk, rcvq, &total);
1520 	}
1521 	res = skb ? skb->len : -1;
1522 	if (total)
1523 		udp_rmem_release(sk, total, 1, false);
1524 	spin_unlock_bh(&rcvq->lock);
1525 	return res;
1526 }
1527 
1528 /*
1529  *	IOCTL requests applicable to the UDP protocol
1530  */
1531 
1532 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1533 {
1534 	switch (cmd) {
1535 	case SIOCOUTQ:
1536 	{
1537 		int amount = sk_wmem_alloc_get(sk);
1538 
1539 		return put_user(amount, (int __user *)arg);
1540 	}
1541 
1542 	case SIOCINQ:
1543 	{
1544 		int amount = max_t(int, 0, first_packet_length(sk));
1545 
1546 		return put_user(amount, (int __user *)arg);
1547 	}
1548 
1549 	default:
1550 		return -ENOIOCTLCMD;
1551 	}
1552 
1553 	return 0;
1554 }
1555 EXPORT_SYMBOL(udp_ioctl);
1556 
1557 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1558 			       int noblock, int *peeked, int *off, int *err)
1559 {
1560 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1561 	struct sk_buff_head *queue;
1562 	struct sk_buff *last;
1563 	long timeo;
1564 	int error;
1565 
1566 	queue = &udp_sk(sk)->reader_queue;
1567 	flags |= noblock ? MSG_DONTWAIT : 0;
1568 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1569 	do {
1570 		struct sk_buff *skb;
1571 
1572 		error = sock_error(sk);
1573 		if (error)
1574 			break;
1575 
1576 		error = -EAGAIN;
1577 		*peeked = 0;
1578 		do {
1579 			spin_lock_bh(&queue->lock);
1580 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1581 							udp_skb_destructor,
1582 							peeked, off, err,
1583 							&last);
1584 			if (skb) {
1585 				spin_unlock_bh(&queue->lock);
1586 				return skb;
1587 			}
1588 
1589 			if (skb_queue_empty(sk_queue)) {
1590 				spin_unlock_bh(&queue->lock);
1591 				goto busy_check;
1592 			}
1593 
1594 			/* refill the reader queue and walk it again
1595 			 * keep both queues locked to avoid re-acquiring
1596 			 * the sk_receive_queue lock if fwd memory scheduling
1597 			 * is needed.
1598 			 */
1599 			spin_lock(&sk_queue->lock);
1600 			skb_queue_splice_tail_init(sk_queue, queue);
1601 
1602 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1603 							udp_skb_dtor_locked,
1604 							peeked, off, err,
1605 							&last);
1606 			spin_unlock(&sk_queue->lock);
1607 			spin_unlock_bh(&queue->lock);
1608 			if (skb)
1609 				return skb;
1610 
1611 busy_check:
1612 			if (!sk_can_busy_loop(sk))
1613 				break;
1614 
1615 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1616 		} while (!skb_queue_empty(sk_queue));
1617 
1618 		/* sk_queue is empty, reader_queue may contain peeked packets */
1619 	} while (timeo &&
1620 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1621 					      (struct sk_buff *)sk_queue));
1622 
1623 	*err = error;
1624 	return NULL;
1625 }
1626 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1627 
1628 /*
1629  * 	This should be easy, if there is something there we
1630  * 	return it, otherwise we block.
1631  */
1632 
1633 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1634 		int flags, int *addr_len)
1635 {
1636 	struct inet_sock *inet = inet_sk(sk);
1637 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1638 	struct sk_buff *skb;
1639 	unsigned int ulen, copied;
1640 	int peeked, peeking, off;
1641 	int err;
1642 	int is_udplite = IS_UDPLITE(sk);
1643 	bool checksum_valid = false;
1644 
1645 	if (flags & MSG_ERRQUEUE)
1646 		return ip_recv_error(sk, msg, len, addr_len);
1647 
1648 try_again:
1649 	peeking = flags & MSG_PEEK;
1650 	off = sk_peek_offset(sk, flags);
1651 	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1652 	if (!skb)
1653 		return err;
1654 
1655 	ulen = udp_skb_len(skb);
1656 	copied = len;
1657 	if (copied > ulen - off)
1658 		copied = ulen - off;
1659 	else if (copied < ulen)
1660 		msg->msg_flags |= MSG_TRUNC;
1661 
1662 	/*
1663 	 * If checksum is needed at all, try to do it while copying the
1664 	 * data.  If the data is truncated, or if we only want a partial
1665 	 * coverage checksum (UDP-Lite), do it before the copy.
1666 	 */
1667 
1668 	if (copied < ulen || peeking ||
1669 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1670 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1671 				!__udp_lib_checksum_complete(skb);
1672 		if (!checksum_valid)
1673 			goto csum_copy_err;
1674 	}
1675 
1676 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1677 		if (udp_skb_is_linear(skb))
1678 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1679 		else
1680 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1681 	} else {
1682 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1683 
1684 		if (err == -EINVAL)
1685 			goto csum_copy_err;
1686 	}
1687 
1688 	if (unlikely(err)) {
1689 		if (!peeked) {
1690 			atomic_inc(&sk->sk_drops);
1691 			UDP_INC_STATS(sock_net(sk),
1692 				      UDP_MIB_INERRORS, is_udplite);
1693 		}
1694 		kfree_skb(skb);
1695 		return err;
1696 	}
1697 
1698 	if (!peeked)
1699 		UDP_INC_STATS(sock_net(sk),
1700 			      UDP_MIB_INDATAGRAMS, is_udplite);
1701 
1702 	sock_recv_ts_and_drops(msg, sk, skb);
1703 
1704 	/* Copy the address. */
1705 	if (sin) {
1706 		sin->sin_family = AF_INET;
1707 		sin->sin_port = udp_hdr(skb)->source;
1708 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1709 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1710 		*addr_len = sizeof(*sin);
1711 	}
1712 	if (inet->cmsg_flags)
1713 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1714 
1715 	err = copied;
1716 	if (flags & MSG_TRUNC)
1717 		err = ulen;
1718 
1719 	skb_consume_udp(sk, skb, peeking ? -err : err);
1720 	return err;
1721 
1722 csum_copy_err:
1723 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1724 				 udp_skb_destructor)) {
1725 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1726 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1727 	}
1728 	kfree_skb(skb);
1729 
1730 	/* starting over for a new packet, but check if we need to yield */
1731 	cond_resched();
1732 	msg->msg_flags &= ~MSG_TRUNC;
1733 	goto try_again;
1734 }
1735 
1736 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1737 {
1738 	/* This check is replicated from __ip4_datagram_connect() and
1739 	 * intended to prevent BPF program called below from accessing bytes
1740 	 * that are out of the bound specified by user in addr_len.
1741 	 */
1742 	if (addr_len < sizeof(struct sockaddr_in))
1743 		return -EINVAL;
1744 
1745 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1746 }
1747 EXPORT_SYMBOL(udp_pre_connect);
1748 
1749 int __udp_disconnect(struct sock *sk, int flags)
1750 {
1751 	struct inet_sock *inet = inet_sk(sk);
1752 	/*
1753 	 *	1003.1g - break association.
1754 	 */
1755 
1756 	sk->sk_state = TCP_CLOSE;
1757 	inet->inet_daddr = 0;
1758 	inet->inet_dport = 0;
1759 	sock_rps_reset_rxhash(sk);
1760 	sk->sk_bound_dev_if = 0;
1761 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1762 		inet_reset_saddr(sk);
1763 
1764 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1765 		sk->sk_prot->unhash(sk);
1766 		inet->inet_sport = 0;
1767 	}
1768 	sk_dst_reset(sk);
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL(__udp_disconnect);
1772 
1773 int udp_disconnect(struct sock *sk, int flags)
1774 {
1775 	lock_sock(sk);
1776 	__udp_disconnect(sk, flags);
1777 	release_sock(sk);
1778 	return 0;
1779 }
1780 EXPORT_SYMBOL(udp_disconnect);
1781 
1782 void udp_lib_unhash(struct sock *sk)
1783 {
1784 	if (sk_hashed(sk)) {
1785 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1786 		struct udp_hslot *hslot, *hslot2;
1787 
1788 		hslot  = udp_hashslot(udptable, sock_net(sk),
1789 				      udp_sk(sk)->udp_port_hash);
1790 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1791 
1792 		spin_lock_bh(&hslot->lock);
1793 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1794 			reuseport_detach_sock(sk);
1795 		if (sk_del_node_init_rcu(sk)) {
1796 			hslot->count--;
1797 			inet_sk(sk)->inet_num = 0;
1798 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1799 
1800 			spin_lock(&hslot2->lock);
1801 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1802 			hslot2->count--;
1803 			spin_unlock(&hslot2->lock);
1804 		}
1805 		spin_unlock_bh(&hslot->lock);
1806 	}
1807 }
1808 EXPORT_SYMBOL(udp_lib_unhash);
1809 
1810 /*
1811  * inet_rcv_saddr was changed, we must rehash secondary hash
1812  */
1813 void udp_lib_rehash(struct sock *sk, u16 newhash)
1814 {
1815 	if (sk_hashed(sk)) {
1816 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1817 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1818 
1819 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1820 		nhslot2 = udp_hashslot2(udptable, newhash);
1821 		udp_sk(sk)->udp_portaddr_hash = newhash;
1822 
1823 		if (hslot2 != nhslot2 ||
1824 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1825 			hslot = udp_hashslot(udptable, sock_net(sk),
1826 					     udp_sk(sk)->udp_port_hash);
1827 			/* we must lock primary chain too */
1828 			spin_lock_bh(&hslot->lock);
1829 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1830 				reuseport_detach_sock(sk);
1831 
1832 			if (hslot2 != nhslot2) {
1833 				spin_lock(&hslot2->lock);
1834 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1835 				hslot2->count--;
1836 				spin_unlock(&hslot2->lock);
1837 
1838 				spin_lock(&nhslot2->lock);
1839 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1840 							 &nhslot2->head);
1841 				nhslot2->count++;
1842 				spin_unlock(&nhslot2->lock);
1843 			}
1844 
1845 			spin_unlock_bh(&hslot->lock);
1846 		}
1847 	}
1848 }
1849 EXPORT_SYMBOL(udp_lib_rehash);
1850 
1851 static void udp_v4_rehash(struct sock *sk)
1852 {
1853 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1854 					  inet_sk(sk)->inet_rcv_saddr,
1855 					  inet_sk(sk)->inet_num);
1856 	udp_lib_rehash(sk, new_hash);
1857 }
1858 
1859 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1860 {
1861 	int rc;
1862 
1863 	if (inet_sk(sk)->inet_daddr) {
1864 		sock_rps_save_rxhash(sk, skb);
1865 		sk_mark_napi_id(sk, skb);
1866 		sk_incoming_cpu_update(sk);
1867 	} else {
1868 		sk_mark_napi_id_once(sk, skb);
1869 	}
1870 
1871 	rc = __udp_enqueue_schedule_skb(sk, skb);
1872 	if (rc < 0) {
1873 		int is_udplite = IS_UDPLITE(sk);
1874 
1875 		/* Note that an ENOMEM error is charged twice */
1876 		if (rc == -ENOMEM)
1877 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1878 					is_udplite);
1879 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1880 		kfree_skb(skb);
1881 		trace_udp_fail_queue_rcv_skb(rc, sk);
1882 		return -1;
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
1889 void udp_encap_enable(void)
1890 {
1891 	static_branch_enable(&udp_encap_needed_key);
1892 }
1893 EXPORT_SYMBOL(udp_encap_enable);
1894 
1895 /* returns:
1896  *  -1: error
1897  *   0: success
1898  *  >0: "udp encap" protocol resubmission
1899  *
1900  * Note that in the success and error cases, the skb is assumed to
1901  * have either been requeued or freed.
1902  */
1903 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1904 {
1905 	struct udp_sock *up = udp_sk(sk);
1906 	int is_udplite = IS_UDPLITE(sk);
1907 
1908 	/*
1909 	 *	Charge it to the socket, dropping if the queue is full.
1910 	 */
1911 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1912 		goto drop;
1913 	nf_reset(skb);
1914 
1915 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1916 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1917 
1918 		/*
1919 		 * This is an encapsulation socket so pass the skb to
1920 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1921 		 * fall through and pass this up the UDP socket.
1922 		 * up->encap_rcv() returns the following value:
1923 		 * =0 if skb was successfully passed to the encap
1924 		 *    handler or was discarded by it.
1925 		 * >0 if skb should be passed on to UDP.
1926 		 * <0 if skb should be resubmitted as proto -N
1927 		 */
1928 
1929 		/* if we're overly short, let UDP handle it */
1930 		encap_rcv = READ_ONCE(up->encap_rcv);
1931 		if (encap_rcv) {
1932 			int ret;
1933 
1934 			/* Verify checksum before giving to encap */
1935 			if (udp_lib_checksum_complete(skb))
1936 				goto csum_error;
1937 
1938 			ret = encap_rcv(sk, skb);
1939 			if (ret <= 0) {
1940 				__UDP_INC_STATS(sock_net(sk),
1941 						UDP_MIB_INDATAGRAMS,
1942 						is_udplite);
1943 				return -ret;
1944 			}
1945 		}
1946 
1947 		/* FALLTHROUGH -- it's a UDP Packet */
1948 	}
1949 
1950 	/*
1951 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1952 	 */
1953 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1954 
1955 		/*
1956 		 * MIB statistics other than incrementing the error count are
1957 		 * disabled for the following two types of errors: these depend
1958 		 * on the application settings, not on the functioning of the
1959 		 * protocol stack as such.
1960 		 *
1961 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1962 		 * way ... to ... at least let the receiving application block
1963 		 * delivery of packets with coverage values less than a value
1964 		 * provided by the application."
1965 		 */
1966 		if (up->pcrlen == 0) {          /* full coverage was set  */
1967 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1968 					    UDP_SKB_CB(skb)->cscov, skb->len);
1969 			goto drop;
1970 		}
1971 		/* The next case involves violating the min. coverage requested
1972 		 * by the receiver. This is subtle: if receiver wants x and x is
1973 		 * greater than the buffersize/MTU then receiver will complain
1974 		 * that it wants x while sender emits packets of smaller size y.
1975 		 * Therefore the above ...()->partial_cov statement is essential.
1976 		 */
1977 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1978 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1979 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1980 			goto drop;
1981 		}
1982 	}
1983 
1984 	prefetch(&sk->sk_rmem_alloc);
1985 	if (rcu_access_pointer(sk->sk_filter) &&
1986 	    udp_lib_checksum_complete(skb))
1987 			goto csum_error;
1988 
1989 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1990 		goto drop;
1991 
1992 	udp_csum_pull_header(skb);
1993 
1994 	ipv4_pktinfo_prepare(sk, skb);
1995 	return __udp_queue_rcv_skb(sk, skb);
1996 
1997 csum_error:
1998 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1999 drop:
2000 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2001 	atomic_inc(&sk->sk_drops);
2002 	kfree_skb(skb);
2003 	return -1;
2004 }
2005 
2006 /* For TCP sockets, sk_rx_dst is protected by socket lock
2007  * For UDP, we use xchg() to guard against concurrent changes.
2008  */
2009 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2010 {
2011 	struct dst_entry *old;
2012 
2013 	if (dst_hold_safe(dst)) {
2014 		old = xchg(&sk->sk_rx_dst, dst);
2015 		dst_release(old);
2016 		return old != dst;
2017 	}
2018 	return false;
2019 }
2020 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2021 
2022 /*
2023  *	Multicasts and broadcasts go to each listener.
2024  *
2025  *	Note: called only from the BH handler context.
2026  */
2027 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2028 				    struct udphdr  *uh,
2029 				    __be32 saddr, __be32 daddr,
2030 				    struct udp_table *udptable,
2031 				    int proto)
2032 {
2033 	struct sock *sk, *first = NULL;
2034 	unsigned short hnum = ntohs(uh->dest);
2035 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2036 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2037 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2038 	int dif = skb->dev->ifindex;
2039 	int sdif = inet_sdif(skb);
2040 	struct hlist_node *node;
2041 	struct sk_buff *nskb;
2042 
2043 	if (use_hash2) {
2044 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2045 			    udptable->mask;
2046 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2047 start_lookup:
2048 		hslot = &udptable->hash2[hash2];
2049 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2050 	}
2051 
2052 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2053 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2054 					 uh->source, saddr, dif, sdif, hnum))
2055 			continue;
2056 
2057 		if (!first) {
2058 			first = sk;
2059 			continue;
2060 		}
2061 		nskb = skb_clone(skb, GFP_ATOMIC);
2062 
2063 		if (unlikely(!nskb)) {
2064 			atomic_inc(&sk->sk_drops);
2065 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2066 					IS_UDPLITE(sk));
2067 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2068 					IS_UDPLITE(sk));
2069 			continue;
2070 		}
2071 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2072 			consume_skb(nskb);
2073 	}
2074 
2075 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2076 	if (use_hash2 && hash2 != hash2_any) {
2077 		hash2 = hash2_any;
2078 		goto start_lookup;
2079 	}
2080 
2081 	if (first) {
2082 		if (udp_queue_rcv_skb(first, skb) > 0)
2083 			consume_skb(skb);
2084 	} else {
2085 		kfree_skb(skb);
2086 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2087 				proto == IPPROTO_UDPLITE);
2088 	}
2089 	return 0;
2090 }
2091 
2092 /* Initialize UDP checksum. If exited with zero value (success),
2093  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2094  * Otherwise, csum completion requires chacksumming packet body,
2095  * including udp header and folding it to skb->csum.
2096  */
2097 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2098 				 int proto)
2099 {
2100 	int err;
2101 
2102 	UDP_SKB_CB(skb)->partial_cov = 0;
2103 	UDP_SKB_CB(skb)->cscov = skb->len;
2104 
2105 	if (proto == IPPROTO_UDPLITE) {
2106 		err = udplite_checksum_init(skb, uh);
2107 		if (err)
2108 			return err;
2109 
2110 		if (UDP_SKB_CB(skb)->partial_cov) {
2111 			skb->csum = inet_compute_pseudo(skb, proto);
2112 			return 0;
2113 		}
2114 	}
2115 
2116 	/* Note, we are only interested in != 0 or == 0, thus the
2117 	 * force to int.
2118 	 */
2119 	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2120 							 inet_compute_pseudo);
2121 }
2122 
2123 /*
2124  *	All we need to do is get the socket, and then do a checksum.
2125  */
2126 
2127 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2128 		   int proto)
2129 {
2130 	struct sock *sk;
2131 	struct udphdr *uh;
2132 	unsigned short ulen;
2133 	struct rtable *rt = skb_rtable(skb);
2134 	__be32 saddr, daddr;
2135 	struct net *net = dev_net(skb->dev);
2136 
2137 	/*
2138 	 *  Validate the packet.
2139 	 */
2140 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2141 		goto drop;		/* No space for header. */
2142 
2143 	uh   = udp_hdr(skb);
2144 	ulen = ntohs(uh->len);
2145 	saddr = ip_hdr(skb)->saddr;
2146 	daddr = ip_hdr(skb)->daddr;
2147 
2148 	if (ulen > skb->len)
2149 		goto short_packet;
2150 
2151 	if (proto == IPPROTO_UDP) {
2152 		/* UDP validates ulen. */
2153 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2154 			goto short_packet;
2155 		uh = udp_hdr(skb);
2156 	}
2157 
2158 	if (udp4_csum_init(skb, uh, proto))
2159 		goto csum_error;
2160 
2161 	sk = skb_steal_sock(skb);
2162 	if (sk) {
2163 		struct dst_entry *dst = skb_dst(skb);
2164 		int ret;
2165 
2166 		if (unlikely(sk->sk_rx_dst != dst))
2167 			udp_sk_rx_dst_set(sk, dst);
2168 
2169 		ret = udp_queue_rcv_skb(sk, skb);
2170 		sock_put(sk);
2171 		/* a return value > 0 means to resubmit the input, but
2172 		 * it wants the return to be -protocol, or 0
2173 		 */
2174 		if (ret > 0)
2175 			return -ret;
2176 		return 0;
2177 	}
2178 
2179 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2180 		return __udp4_lib_mcast_deliver(net, skb, uh,
2181 						saddr, daddr, udptable, proto);
2182 
2183 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2184 	if (sk) {
2185 		int ret;
2186 
2187 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2188 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2189 						 inet_compute_pseudo);
2190 
2191 		ret = udp_queue_rcv_skb(sk, skb);
2192 
2193 		/* a return value > 0 means to resubmit the input, but
2194 		 * it wants the return to be -protocol, or 0
2195 		 */
2196 		if (ret > 0)
2197 			return -ret;
2198 		return 0;
2199 	}
2200 
2201 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2202 		goto drop;
2203 	nf_reset(skb);
2204 
2205 	/* No socket. Drop packet silently, if checksum is wrong */
2206 	if (udp_lib_checksum_complete(skb))
2207 		goto csum_error;
2208 
2209 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2210 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2211 
2212 	/*
2213 	 * Hmm.  We got an UDP packet to a port to which we
2214 	 * don't wanna listen.  Ignore it.
2215 	 */
2216 	kfree_skb(skb);
2217 	return 0;
2218 
2219 short_packet:
2220 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2221 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2222 			    &saddr, ntohs(uh->source),
2223 			    ulen, skb->len,
2224 			    &daddr, ntohs(uh->dest));
2225 	goto drop;
2226 
2227 csum_error:
2228 	/*
2229 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2230 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2231 	 */
2232 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2233 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2234 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2235 			    ulen);
2236 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2237 drop:
2238 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2239 	kfree_skb(skb);
2240 	return 0;
2241 }
2242 
2243 /* We can only early demux multicast if there is a single matching socket.
2244  * If more than one socket found returns NULL
2245  */
2246 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2247 						  __be16 loc_port, __be32 loc_addr,
2248 						  __be16 rmt_port, __be32 rmt_addr,
2249 						  int dif, int sdif)
2250 {
2251 	struct sock *sk, *result;
2252 	unsigned short hnum = ntohs(loc_port);
2253 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2254 	struct udp_hslot *hslot = &udp_table.hash[slot];
2255 
2256 	/* Do not bother scanning a too big list */
2257 	if (hslot->count > 10)
2258 		return NULL;
2259 
2260 	result = NULL;
2261 	sk_for_each_rcu(sk, &hslot->head) {
2262 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2263 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2264 			if (result)
2265 				return NULL;
2266 			result = sk;
2267 		}
2268 	}
2269 
2270 	return result;
2271 }
2272 
2273 /* For unicast we should only early demux connected sockets or we can
2274  * break forwarding setups.  The chains here can be long so only check
2275  * if the first socket is an exact match and if not move on.
2276  */
2277 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2278 					    __be16 loc_port, __be32 loc_addr,
2279 					    __be16 rmt_port, __be32 rmt_addr,
2280 					    int dif, int sdif)
2281 {
2282 	unsigned short hnum = ntohs(loc_port);
2283 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2284 	unsigned int slot2 = hash2 & udp_table.mask;
2285 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2286 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2287 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2288 	struct sock *sk;
2289 
2290 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2291 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2292 			       loc_addr, ports, dif, sdif))
2293 			return sk;
2294 		/* Only check first socket in chain */
2295 		break;
2296 	}
2297 	return NULL;
2298 }
2299 
2300 int udp_v4_early_demux(struct sk_buff *skb)
2301 {
2302 	struct net *net = dev_net(skb->dev);
2303 	struct in_device *in_dev = NULL;
2304 	const struct iphdr *iph;
2305 	const struct udphdr *uh;
2306 	struct sock *sk = NULL;
2307 	struct dst_entry *dst;
2308 	int dif = skb->dev->ifindex;
2309 	int sdif = inet_sdif(skb);
2310 	int ours;
2311 
2312 	/* validate the packet */
2313 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2314 		return 0;
2315 
2316 	iph = ip_hdr(skb);
2317 	uh = udp_hdr(skb);
2318 
2319 	if (skb->pkt_type == PACKET_MULTICAST) {
2320 		in_dev = __in_dev_get_rcu(skb->dev);
2321 
2322 		if (!in_dev)
2323 			return 0;
2324 
2325 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2326 				       iph->protocol);
2327 		if (!ours)
2328 			return 0;
2329 
2330 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2331 						   uh->source, iph->saddr,
2332 						   dif, sdif);
2333 	} else if (skb->pkt_type == PACKET_HOST) {
2334 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2335 					     uh->source, iph->saddr, dif, sdif);
2336 	}
2337 
2338 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2339 		return 0;
2340 
2341 	skb->sk = sk;
2342 	skb->destructor = sock_efree;
2343 	dst = READ_ONCE(sk->sk_rx_dst);
2344 
2345 	if (dst)
2346 		dst = dst_check(dst, 0);
2347 	if (dst) {
2348 		u32 itag = 0;
2349 
2350 		/* set noref for now.
2351 		 * any place which wants to hold dst has to call
2352 		 * dst_hold_safe()
2353 		 */
2354 		skb_dst_set_noref(skb, dst);
2355 
2356 		/* for unconnected multicast sockets we need to validate
2357 		 * the source on each packet
2358 		 */
2359 		if (!inet_sk(sk)->inet_daddr && in_dev)
2360 			return ip_mc_validate_source(skb, iph->daddr,
2361 						     iph->saddr, iph->tos,
2362 						     skb->dev, in_dev, &itag);
2363 	}
2364 	return 0;
2365 }
2366 
2367 int udp_rcv(struct sk_buff *skb)
2368 {
2369 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2370 }
2371 
2372 void udp_destroy_sock(struct sock *sk)
2373 {
2374 	struct udp_sock *up = udp_sk(sk);
2375 	bool slow = lock_sock_fast(sk);
2376 	udp_flush_pending_frames(sk);
2377 	unlock_sock_fast(sk, slow);
2378 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2379 		void (*encap_destroy)(struct sock *sk);
2380 		encap_destroy = READ_ONCE(up->encap_destroy);
2381 		if (encap_destroy)
2382 			encap_destroy(sk);
2383 	}
2384 }
2385 
2386 /*
2387  *	Socket option code for UDP
2388  */
2389 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2390 		       char __user *optval, unsigned int optlen,
2391 		       int (*push_pending_frames)(struct sock *))
2392 {
2393 	struct udp_sock *up = udp_sk(sk);
2394 	int val, valbool;
2395 	int err = 0;
2396 	int is_udplite = IS_UDPLITE(sk);
2397 
2398 	if (optlen < sizeof(int))
2399 		return -EINVAL;
2400 
2401 	if (get_user(val, (int __user *)optval))
2402 		return -EFAULT;
2403 
2404 	valbool = val ? 1 : 0;
2405 
2406 	switch (optname) {
2407 	case UDP_CORK:
2408 		if (val != 0) {
2409 			up->corkflag = 1;
2410 		} else {
2411 			up->corkflag = 0;
2412 			lock_sock(sk);
2413 			push_pending_frames(sk);
2414 			release_sock(sk);
2415 		}
2416 		break;
2417 
2418 	case UDP_ENCAP:
2419 		switch (val) {
2420 		case 0:
2421 		case UDP_ENCAP_ESPINUDP:
2422 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2423 			up->encap_rcv = xfrm4_udp_encap_rcv;
2424 			/* FALLTHROUGH */
2425 		case UDP_ENCAP_L2TPINUDP:
2426 			up->encap_type = val;
2427 			udp_encap_enable();
2428 			break;
2429 		default:
2430 			err = -ENOPROTOOPT;
2431 			break;
2432 		}
2433 		break;
2434 
2435 	case UDP_NO_CHECK6_TX:
2436 		up->no_check6_tx = valbool;
2437 		break;
2438 
2439 	case UDP_NO_CHECK6_RX:
2440 		up->no_check6_rx = valbool;
2441 		break;
2442 
2443 	case UDP_SEGMENT:
2444 		if (val < 0 || val > USHRT_MAX)
2445 			return -EINVAL;
2446 		up->gso_size = val;
2447 		break;
2448 
2449 	/*
2450 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2451 	 */
2452 	/* The sender sets actual checksum coverage length via this option.
2453 	 * The case coverage > packet length is handled by send module. */
2454 	case UDPLITE_SEND_CSCOV:
2455 		if (!is_udplite)         /* Disable the option on UDP sockets */
2456 			return -ENOPROTOOPT;
2457 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2458 			val = 8;
2459 		else if (val > USHRT_MAX)
2460 			val = USHRT_MAX;
2461 		up->pcslen = val;
2462 		up->pcflag |= UDPLITE_SEND_CC;
2463 		break;
2464 
2465 	/* The receiver specifies a minimum checksum coverage value. To make
2466 	 * sense, this should be set to at least 8 (as done below). If zero is
2467 	 * used, this again means full checksum coverage.                     */
2468 	case UDPLITE_RECV_CSCOV:
2469 		if (!is_udplite)         /* Disable the option on UDP sockets */
2470 			return -ENOPROTOOPT;
2471 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2472 			val = 8;
2473 		else if (val > USHRT_MAX)
2474 			val = USHRT_MAX;
2475 		up->pcrlen = val;
2476 		up->pcflag |= UDPLITE_RECV_CC;
2477 		break;
2478 
2479 	default:
2480 		err = -ENOPROTOOPT;
2481 		break;
2482 	}
2483 
2484 	return err;
2485 }
2486 EXPORT_SYMBOL(udp_lib_setsockopt);
2487 
2488 int udp_setsockopt(struct sock *sk, int level, int optname,
2489 		   char __user *optval, unsigned int optlen)
2490 {
2491 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2492 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2493 					  udp_push_pending_frames);
2494 	return ip_setsockopt(sk, level, optname, optval, optlen);
2495 }
2496 
2497 #ifdef CONFIG_COMPAT
2498 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2499 			  char __user *optval, unsigned int optlen)
2500 {
2501 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2502 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2503 					  udp_push_pending_frames);
2504 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2505 }
2506 #endif
2507 
2508 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2509 		       char __user *optval, int __user *optlen)
2510 {
2511 	struct udp_sock *up = udp_sk(sk);
2512 	int val, len;
2513 
2514 	if (get_user(len, optlen))
2515 		return -EFAULT;
2516 
2517 	len = min_t(unsigned int, len, sizeof(int));
2518 
2519 	if (len < 0)
2520 		return -EINVAL;
2521 
2522 	switch (optname) {
2523 	case UDP_CORK:
2524 		val = up->corkflag;
2525 		break;
2526 
2527 	case UDP_ENCAP:
2528 		val = up->encap_type;
2529 		break;
2530 
2531 	case UDP_NO_CHECK6_TX:
2532 		val = up->no_check6_tx;
2533 		break;
2534 
2535 	case UDP_NO_CHECK6_RX:
2536 		val = up->no_check6_rx;
2537 		break;
2538 
2539 	case UDP_SEGMENT:
2540 		val = up->gso_size;
2541 		break;
2542 
2543 	/* The following two cannot be changed on UDP sockets, the return is
2544 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2545 	case UDPLITE_SEND_CSCOV:
2546 		val = up->pcslen;
2547 		break;
2548 
2549 	case UDPLITE_RECV_CSCOV:
2550 		val = up->pcrlen;
2551 		break;
2552 
2553 	default:
2554 		return -ENOPROTOOPT;
2555 	}
2556 
2557 	if (put_user(len, optlen))
2558 		return -EFAULT;
2559 	if (copy_to_user(optval, &val, len))
2560 		return -EFAULT;
2561 	return 0;
2562 }
2563 EXPORT_SYMBOL(udp_lib_getsockopt);
2564 
2565 int udp_getsockopt(struct sock *sk, int level, int optname,
2566 		   char __user *optval, int __user *optlen)
2567 {
2568 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2569 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2570 	return ip_getsockopt(sk, level, optname, optval, optlen);
2571 }
2572 
2573 #ifdef CONFIG_COMPAT
2574 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2575 				 char __user *optval, int __user *optlen)
2576 {
2577 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2578 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2579 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2580 }
2581 #endif
2582 /**
2583  * 	udp_poll - wait for a UDP event.
2584  *	@file - file struct
2585  *	@sock - socket
2586  *	@wait - poll table
2587  *
2588  *	This is same as datagram poll, except for the special case of
2589  *	blocking sockets. If application is using a blocking fd
2590  *	and a packet with checksum error is in the queue;
2591  *	then it could get return from select indicating data available
2592  *	but then block when reading it. Add special case code
2593  *	to work around these arguably broken applications.
2594  */
2595 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2596 {
2597 	__poll_t mask = datagram_poll(file, sock, wait);
2598 	struct sock *sk = sock->sk;
2599 
2600 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2601 		mask |= EPOLLIN | EPOLLRDNORM;
2602 
2603 	/* Check for false positives due to checksum errors */
2604 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2605 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2606 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2607 
2608 	return mask;
2609 
2610 }
2611 EXPORT_SYMBOL(udp_poll);
2612 
2613 int udp_abort(struct sock *sk, int err)
2614 {
2615 	lock_sock(sk);
2616 
2617 	sk->sk_err = err;
2618 	sk->sk_error_report(sk);
2619 	__udp_disconnect(sk, 0);
2620 
2621 	release_sock(sk);
2622 
2623 	return 0;
2624 }
2625 EXPORT_SYMBOL_GPL(udp_abort);
2626 
2627 struct proto udp_prot = {
2628 	.name			= "UDP",
2629 	.owner			= THIS_MODULE,
2630 	.close			= udp_lib_close,
2631 	.pre_connect		= udp_pre_connect,
2632 	.connect		= ip4_datagram_connect,
2633 	.disconnect		= udp_disconnect,
2634 	.ioctl			= udp_ioctl,
2635 	.init			= udp_init_sock,
2636 	.destroy		= udp_destroy_sock,
2637 	.setsockopt		= udp_setsockopt,
2638 	.getsockopt		= udp_getsockopt,
2639 	.sendmsg		= udp_sendmsg,
2640 	.recvmsg		= udp_recvmsg,
2641 	.sendpage		= udp_sendpage,
2642 	.release_cb		= ip4_datagram_release_cb,
2643 	.hash			= udp_lib_hash,
2644 	.unhash			= udp_lib_unhash,
2645 	.rehash			= udp_v4_rehash,
2646 	.get_port		= udp_v4_get_port,
2647 	.memory_allocated	= &udp_memory_allocated,
2648 	.sysctl_mem		= sysctl_udp_mem,
2649 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2650 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2651 	.obj_size		= sizeof(struct udp_sock),
2652 	.h.udp_table		= &udp_table,
2653 #ifdef CONFIG_COMPAT
2654 	.compat_setsockopt	= compat_udp_setsockopt,
2655 	.compat_getsockopt	= compat_udp_getsockopt,
2656 #endif
2657 	.diag_destroy		= udp_abort,
2658 };
2659 EXPORT_SYMBOL(udp_prot);
2660 
2661 /* ------------------------------------------------------------------------ */
2662 #ifdef CONFIG_PROC_FS
2663 
2664 static struct sock *udp_get_first(struct seq_file *seq, int start)
2665 {
2666 	struct sock *sk;
2667 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2668 	struct udp_iter_state *state = seq->private;
2669 	struct net *net = seq_file_net(seq);
2670 
2671 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2672 	     ++state->bucket) {
2673 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2674 
2675 		if (hlist_empty(&hslot->head))
2676 			continue;
2677 
2678 		spin_lock_bh(&hslot->lock);
2679 		sk_for_each(sk, &hslot->head) {
2680 			if (!net_eq(sock_net(sk), net))
2681 				continue;
2682 			if (sk->sk_family == afinfo->family)
2683 				goto found;
2684 		}
2685 		spin_unlock_bh(&hslot->lock);
2686 	}
2687 	sk = NULL;
2688 found:
2689 	return sk;
2690 }
2691 
2692 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2693 {
2694 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2695 	struct udp_iter_state *state = seq->private;
2696 	struct net *net = seq_file_net(seq);
2697 
2698 	do {
2699 		sk = sk_next(sk);
2700 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2701 
2702 	if (!sk) {
2703 		if (state->bucket <= afinfo->udp_table->mask)
2704 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2705 		return udp_get_first(seq, state->bucket + 1);
2706 	}
2707 	return sk;
2708 }
2709 
2710 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2711 {
2712 	struct sock *sk = udp_get_first(seq, 0);
2713 
2714 	if (sk)
2715 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2716 			--pos;
2717 	return pos ? NULL : sk;
2718 }
2719 
2720 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2721 {
2722 	struct udp_iter_state *state = seq->private;
2723 	state->bucket = MAX_UDP_PORTS;
2724 
2725 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2726 }
2727 EXPORT_SYMBOL(udp_seq_start);
2728 
2729 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2730 {
2731 	struct sock *sk;
2732 
2733 	if (v == SEQ_START_TOKEN)
2734 		sk = udp_get_idx(seq, 0);
2735 	else
2736 		sk = udp_get_next(seq, v);
2737 
2738 	++*pos;
2739 	return sk;
2740 }
2741 EXPORT_SYMBOL(udp_seq_next);
2742 
2743 void udp_seq_stop(struct seq_file *seq, void *v)
2744 {
2745 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2746 	struct udp_iter_state *state = seq->private;
2747 
2748 	if (state->bucket <= afinfo->udp_table->mask)
2749 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2750 }
2751 EXPORT_SYMBOL(udp_seq_stop);
2752 
2753 /* ------------------------------------------------------------------------ */
2754 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2755 		int bucket)
2756 {
2757 	struct inet_sock *inet = inet_sk(sp);
2758 	__be32 dest = inet->inet_daddr;
2759 	__be32 src  = inet->inet_rcv_saddr;
2760 	__u16 destp	  = ntohs(inet->inet_dport);
2761 	__u16 srcp	  = ntohs(inet->inet_sport);
2762 
2763 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2764 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2765 		bucket, src, srcp, dest, destp, sp->sk_state,
2766 		sk_wmem_alloc_get(sp),
2767 		udp_rqueue_get(sp),
2768 		0, 0L, 0,
2769 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2770 		0, sock_i_ino(sp),
2771 		refcount_read(&sp->sk_refcnt), sp,
2772 		atomic_read(&sp->sk_drops));
2773 }
2774 
2775 int udp4_seq_show(struct seq_file *seq, void *v)
2776 {
2777 	seq_setwidth(seq, 127);
2778 	if (v == SEQ_START_TOKEN)
2779 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2780 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2781 			   "inode ref pointer drops");
2782 	else {
2783 		struct udp_iter_state *state = seq->private;
2784 
2785 		udp4_format_sock(v, seq, state->bucket);
2786 	}
2787 	seq_pad(seq, '\n');
2788 	return 0;
2789 }
2790 
2791 const struct seq_operations udp_seq_ops = {
2792 	.start		= udp_seq_start,
2793 	.next		= udp_seq_next,
2794 	.stop		= udp_seq_stop,
2795 	.show		= udp4_seq_show,
2796 };
2797 EXPORT_SYMBOL(udp_seq_ops);
2798 
2799 static struct udp_seq_afinfo udp4_seq_afinfo = {
2800 	.family		= AF_INET,
2801 	.udp_table	= &udp_table,
2802 };
2803 
2804 static int __net_init udp4_proc_init_net(struct net *net)
2805 {
2806 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2807 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2808 		return -ENOMEM;
2809 	return 0;
2810 }
2811 
2812 static void __net_exit udp4_proc_exit_net(struct net *net)
2813 {
2814 	remove_proc_entry("udp", net->proc_net);
2815 }
2816 
2817 static struct pernet_operations udp4_net_ops = {
2818 	.init = udp4_proc_init_net,
2819 	.exit = udp4_proc_exit_net,
2820 };
2821 
2822 int __init udp4_proc_init(void)
2823 {
2824 	return register_pernet_subsys(&udp4_net_ops);
2825 }
2826 
2827 void udp4_proc_exit(void)
2828 {
2829 	unregister_pernet_subsys(&udp4_net_ops);
2830 }
2831 #endif /* CONFIG_PROC_FS */
2832 
2833 static __initdata unsigned long uhash_entries;
2834 static int __init set_uhash_entries(char *str)
2835 {
2836 	ssize_t ret;
2837 
2838 	if (!str)
2839 		return 0;
2840 
2841 	ret = kstrtoul(str, 0, &uhash_entries);
2842 	if (ret)
2843 		return 0;
2844 
2845 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2846 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2847 	return 1;
2848 }
2849 __setup("uhash_entries=", set_uhash_entries);
2850 
2851 void __init udp_table_init(struct udp_table *table, const char *name)
2852 {
2853 	unsigned int i;
2854 
2855 	table->hash = alloc_large_system_hash(name,
2856 					      2 * sizeof(struct udp_hslot),
2857 					      uhash_entries,
2858 					      21, /* one slot per 2 MB */
2859 					      0,
2860 					      &table->log,
2861 					      &table->mask,
2862 					      UDP_HTABLE_SIZE_MIN,
2863 					      64 * 1024);
2864 
2865 	table->hash2 = table->hash + (table->mask + 1);
2866 	for (i = 0; i <= table->mask; i++) {
2867 		INIT_HLIST_HEAD(&table->hash[i].head);
2868 		table->hash[i].count = 0;
2869 		spin_lock_init(&table->hash[i].lock);
2870 	}
2871 	for (i = 0; i <= table->mask; i++) {
2872 		INIT_HLIST_HEAD(&table->hash2[i].head);
2873 		table->hash2[i].count = 0;
2874 		spin_lock_init(&table->hash2[i].lock);
2875 	}
2876 }
2877 
2878 u32 udp_flow_hashrnd(void)
2879 {
2880 	static u32 hashrnd __read_mostly;
2881 
2882 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2883 
2884 	return hashrnd;
2885 }
2886 EXPORT_SYMBOL(udp_flow_hashrnd);
2887 
2888 static void __udp_sysctl_init(struct net *net)
2889 {
2890 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2891 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2892 
2893 #ifdef CONFIG_NET_L3_MASTER_DEV
2894 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
2895 #endif
2896 }
2897 
2898 static int __net_init udp_sysctl_init(struct net *net)
2899 {
2900 	__udp_sysctl_init(net);
2901 	return 0;
2902 }
2903 
2904 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2905 	.init	= udp_sysctl_init,
2906 };
2907 
2908 void __init udp_init(void)
2909 {
2910 	unsigned long limit;
2911 	unsigned int i;
2912 
2913 	udp_table_init(&udp_table, "UDP");
2914 	limit = nr_free_buffer_pages() / 8;
2915 	limit = max(limit, 128UL);
2916 	sysctl_udp_mem[0] = limit / 4 * 3;
2917 	sysctl_udp_mem[1] = limit;
2918 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2919 
2920 	__udp_sysctl_init(&init_net);
2921 
2922 	/* 16 spinlocks per cpu */
2923 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2924 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2925 				GFP_KERNEL);
2926 	if (!udp_busylocks)
2927 		panic("UDP: failed to alloc udp_busylocks\n");
2928 	for (i = 0; i < (1U << udp_busylocks_log); i++)
2929 		spin_lock_init(udp_busylocks + i);
2930 
2931 	if (register_pernet_subsys(&udp_sysctl_ops))
2932 		panic("UDP: failed to init sysctl parameters.\n");
2933 }
2934