xref: /openbmc/linux/net/ipv4/tcp_output.c (revision f7b3bec6f5167efaf56b756abfafb924cb1d3050)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct inet_connection_sock *icsk = inet_csk(sk);
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	unsigned int prior_packets = tp->packets_out;
80 
81 	tcp_advance_send_head(sk, skb);
82 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 		tcp_rearm_rto(sk);
88 	}
89 
90 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 		      tcp_skb_pcount(skb));
92 }
93 
94 /* SND.NXT, if window was not shrunk.
95  * If window has been shrunk, what should we make? It is not clear at all.
96  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98  * invalid. OK, let's make this for now:
99  */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 	const struct tcp_sock *tp = tcp_sk(sk);
103 
104 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 		return tp->snd_nxt;
106 	else
107 		return tcp_wnd_end(tp);
108 }
109 
110 /* Calculate mss to advertise in SYN segment.
111  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112  *
113  * 1. It is independent of path mtu.
114  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116  *    attached devices, because some buggy hosts are confused by
117  *    large MSS.
118  * 4. We do not make 3, we advertise MSS, calculated from first
119  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
120  *    This may be overridden via information stored in routing table.
121  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122  *    probably even Jumbo".
123  */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 	struct tcp_sock *tp = tcp_sk(sk);
127 	const struct dst_entry *dst = __sk_dst_get(sk);
128 	int mss = tp->advmss;
129 
130 	if (dst) {
131 		unsigned int metric = dst_metric_advmss(dst);
132 
133 		if (metric < mss) {
134 			mss = metric;
135 			tp->advmss = mss;
136 		}
137 	}
138 
139 	return (__u16)mss;
140 }
141 
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143  * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	s32 delta = tcp_time_stamp - tp->lsndtime;
148 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 	u32 cwnd = tp->snd_cwnd;
150 
151 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152 
153 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 	restart_cwnd = min(restart_cwnd, cwnd);
155 
156 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 		cwnd >>= 1;
158 	tp->snd_cwnd = max(cwnd, restart_cwnd);
159 	tp->snd_cwnd_stamp = tcp_time_stamp;
160 	tp->snd_cwnd_used = 0;
161 }
162 
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 				struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	const u32 now = tcp_time_stamp;
169 	const struct dst_entry *dst = __sk_dst_get(sk);
170 
171 	if (sysctl_tcp_slow_start_after_idle &&
172 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
174 
175 	tp->lsndtime = now;
176 
177 	/* If it is a reply for ato after last received
178 	 * packet, enter pingpong mode.
179 	 */
180 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 			icsk->icsk_ack.pingpong = 1;
183 }
184 
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 	tcp_dec_quickack_mode(sk, pkts);
189 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191 
192 
193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 	/* Initial receive window should be twice of TCP_INIT_CWND to
196 	 * enable proper sending of new unsent data during fast recovery
197 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 	 * limit when mss is larger than 1460.
199 	 */
200 	u32 init_rwnd = TCP_INIT_CWND * 2;
201 
202 	if (mss > 1460)
203 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 	return init_rwnd;
205 }
206 
207 /* Determine a window scaling and initial window to offer.
208  * Based on the assumption that the given amount of space
209  * will be offered. Store the results in the tp structure.
210  * NOTE: for smooth operation initial space offering should
211  * be a multiple of mss if possible. We assume here that mss >= 1.
212  * This MUST be enforced by all callers.
213  */
214 void tcp_select_initial_window(int __space, __u32 mss,
215 			       __u32 *rcv_wnd, __u32 *window_clamp,
216 			       int wscale_ok, __u8 *rcv_wscale,
217 			       __u32 init_rcv_wnd)
218 {
219 	unsigned int space = (__space < 0 ? 0 : __space);
220 
221 	/* If no clamp set the clamp to the max possible scaled window */
222 	if (*window_clamp == 0)
223 		(*window_clamp) = (65535 << 14);
224 	space = min(*window_clamp, space);
225 
226 	/* Quantize space offering to a multiple of mss if possible. */
227 	if (space > mss)
228 		space = (space / mss) * mss;
229 
230 	/* NOTE: offering an initial window larger than 32767
231 	 * will break some buggy TCP stacks. If the admin tells us
232 	 * it is likely we could be speaking with such a buggy stack
233 	 * we will truncate our initial window offering to 32K-1
234 	 * unless the remote has sent us a window scaling option,
235 	 * which we interpret as a sign the remote TCP is not
236 	 * misinterpreting the window field as a signed quantity.
237 	 */
238 	if (sysctl_tcp_workaround_signed_windows)
239 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 	else
241 		(*rcv_wnd) = space;
242 
243 	(*rcv_wscale) = 0;
244 	if (wscale_ok) {
245 		/* Set window scaling on max possible window
246 		 * See RFC1323 for an explanation of the limit to 14
247 		 */
248 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 		space = min_t(u32, space, *window_clamp);
250 		while (space > 65535 && (*rcv_wscale) < 14) {
251 			space >>= 1;
252 			(*rcv_wscale)++;
253 		}
254 	}
255 
256 	if (mss > (1 << *rcv_wscale)) {
257 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 			init_rcv_wnd = tcp_default_init_rwnd(mss);
259 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 	}
261 
262 	/* Set the clamp no higher than max representable value */
263 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266 
267 /* Chose a new window to advertise, update state in tcp_sock for the
268  * socket, and return result with RFC1323 scaling applied.  The return
269  * value can be stuffed directly into th->window for an outgoing
270  * frame.
271  */
272 static u16 tcp_select_window(struct sock *sk)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 	u32 old_win = tp->rcv_wnd;
276 	u32 cur_win = tcp_receive_window(tp);
277 	u32 new_win = __tcp_select_window(sk);
278 
279 	/* Never shrink the offered window */
280 	if (new_win < cur_win) {
281 		/* Danger Will Robinson!
282 		 * Don't update rcv_wup/rcv_wnd here or else
283 		 * we will not be able to advertise a zero
284 		 * window in time.  --DaveM
285 		 *
286 		 * Relax Will Robinson.
287 		 */
288 		if (new_win == 0)
289 			NET_INC_STATS(sock_net(sk),
290 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
291 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 	}
293 	tp->rcv_wnd = new_win;
294 	tp->rcv_wup = tp->rcv_nxt;
295 
296 	/* Make sure we do not exceed the maximum possible
297 	 * scaled window.
298 	 */
299 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 		new_win = min(new_win, MAX_TCP_WINDOW);
301 	else
302 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303 
304 	/* RFC1323 scaling applied */
305 	new_win >>= tp->rx_opt.rcv_wscale;
306 
307 	/* If we advertise zero window, disable fast path. */
308 	if (new_win == 0) {
309 		tp->pred_flags = 0;
310 		if (old_win)
311 			NET_INC_STATS(sock_net(sk),
312 				      LINUX_MIB_TCPTOZEROWINDOWADV);
313 	} else if (old_win == 0) {
314 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 	}
316 
317 	return new_win;
318 }
319 
320 /* Packet ECN state for a SYN-ACK */
321 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
322 {
323 	const struct tcp_sock *tp = tcp_sk(sk);
324 
325 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
326 	if (!(tp->ecn_flags & TCP_ECN_OK))
327 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
328 	else if (tcp_ca_needs_ecn(sk))
329 		INET_ECN_xmit(sk);
330 }
331 
332 /* Packet ECN state for a SYN.  */
333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
334 {
335 	struct tcp_sock *tp = tcp_sk(sk);
336 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
337 		       tcp_ca_needs_ecn(sk);
338 
339 	if (!use_ecn) {
340 		const struct dst_entry *dst = __sk_dst_get(sk);
341 
342 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
343 			use_ecn = true;
344 	}
345 
346 	tp->ecn_flags = 0;
347 
348 	if (use_ecn) {
349 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
350 		tp->ecn_flags = TCP_ECN_OK;
351 		if (tcp_ca_needs_ecn(sk))
352 			INET_ECN_xmit(sk);
353 	}
354 }
355 
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
358 		    struct sock *sk)
359 {
360 	if (inet_rsk(req)->ecn_ok) {
361 		th->ece = 1;
362 		if (tcp_ca_needs_ecn(sk))
363 			INET_ECN_xmit(sk);
364 	}
365 }
366 
367 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
368  * be sent.
369  */
370 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
371 				int tcp_header_len)
372 {
373 	struct tcp_sock *tp = tcp_sk(sk);
374 
375 	if (tp->ecn_flags & TCP_ECN_OK) {
376 		/* Not-retransmitted data segment: set ECT and inject CWR. */
377 		if (skb->len != tcp_header_len &&
378 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
379 			INET_ECN_xmit(sk);
380 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
381 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
382 				tcp_hdr(skb)->cwr = 1;
383 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
384 			}
385 		} else if (!tcp_ca_needs_ecn(sk)) {
386 			/* ACK or retransmitted segment: clear ECT|CE */
387 			INET_ECN_dontxmit(sk);
388 		}
389 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
390 			tcp_hdr(skb)->ece = 1;
391 	}
392 }
393 
394 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
395  * auto increment end seqno.
396  */
397 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
398 {
399 	struct skb_shared_info *shinfo = skb_shinfo(skb);
400 
401 	skb->ip_summed = CHECKSUM_PARTIAL;
402 	skb->csum = 0;
403 
404 	TCP_SKB_CB(skb)->tcp_flags = flags;
405 	TCP_SKB_CB(skb)->sacked = 0;
406 
407 	tcp_skb_pcount_set(skb, 1);
408 	shinfo->gso_size = 0;
409 	shinfo->gso_type = 0;
410 
411 	TCP_SKB_CB(skb)->seq = seq;
412 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
413 		seq++;
414 	TCP_SKB_CB(skb)->end_seq = seq;
415 }
416 
417 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
418 {
419 	return tp->snd_una != tp->snd_up;
420 }
421 
422 #define OPTION_SACK_ADVERTISE	(1 << 0)
423 #define OPTION_TS		(1 << 1)
424 #define OPTION_MD5		(1 << 2)
425 #define OPTION_WSCALE		(1 << 3)
426 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
427 
428 struct tcp_out_options {
429 	u16 options;		/* bit field of OPTION_* */
430 	u16 mss;		/* 0 to disable */
431 	u8 ws;			/* window scale, 0 to disable */
432 	u8 num_sack_blocks;	/* number of SACK blocks to include */
433 	u8 hash_size;		/* bytes in hash_location */
434 	__u8 *hash_location;	/* temporary pointer, overloaded */
435 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
436 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
437 };
438 
439 /* Write previously computed TCP options to the packet.
440  *
441  * Beware: Something in the Internet is very sensitive to the ordering of
442  * TCP options, we learned this through the hard way, so be careful here.
443  * Luckily we can at least blame others for their non-compliance but from
444  * inter-operability perspective it seems that we're somewhat stuck with
445  * the ordering which we have been using if we want to keep working with
446  * those broken things (not that it currently hurts anybody as there isn't
447  * particular reason why the ordering would need to be changed).
448  *
449  * At least SACK_PERM as the first option is known to lead to a disaster
450  * (but it may well be that other scenarios fail similarly).
451  */
452 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
453 			      struct tcp_out_options *opts)
454 {
455 	u16 options = opts->options;	/* mungable copy */
456 
457 	if (unlikely(OPTION_MD5 & options)) {
458 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
459 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
460 		/* overload cookie hash location */
461 		opts->hash_location = (__u8 *)ptr;
462 		ptr += 4;
463 	}
464 
465 	if (unlikely(opts->mss)) {
466 		*ptr++ = htonl((TCPOPT_MSS << 24) |
467 			       (TCPOLEN_MSS << 16) |
468 			       opts->mss);
469 	}
470 
471 	if (likely(OPTION_TS & options)) {
472 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
473 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
474 				       (TCPOLEN_SACK_PERM << 16) |
475 				       (TCPOPT_TIMESTAMP << 8) |
476 				       TCPOLEN_TIMESTAMP);
477 			options &= ~OPTION_SACK_ADVERTISE;
478 		} else {
479 			*ptr++ = htonl((TCPOPT_NOP << 24) |
480 				       (TCPOPT_NOP << 16) |
481 				       (TCPOPT_TIMESTAMP << 8) |
482 				       TCPOLEN_TIMESTAMP);
483 		}
484 		*ptr++ = htonl(opts->tsval);
485 		*ptr++ = htonl(opts->tsecr);
486 	}
487 
488 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
489 		*ptr++ = htonl((TCPOPT_NOP << 24) |
490 			       (TCPOPT_NOP << 16) |
491 			       (TCPOPT_SACK_PERM << 8) |
492 			       TCPOLEN_SACK_PERM);
493 	}
494 
495 	if (unlikely(OPTION_WSCALE & options)) {
496 		*ptr++ = htonl((TCPOPT_NOP << 24) |
497 			       (TCPOPT_WINDOW << 16) |
498 			       (TCPOLEN_WINDOW << 8) |
499 			       opts->ws);
500 	}
501 
502 	if (unlikely(opts->num_sack_blocks)) {
503 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
504 			tp->duplicate_sack : tp->selective_acks;
505 		int this_sack;
506 
507 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
508 			       (TCPOPT_NOP  << 16) |
509 			       (TCPOPT_SACK <<  8) |
510 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
511 						     TCPOLEN_SACK_PERBLOCK)));
512 
513 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
514 		     ++this_sack) {
515 			*ptr++ = htonl(sp[this_sack].start_seq);
516 			*ptr++ = htonl(sp[this_sack].end_seq);
517 		}
518 
519 		tp->rx_opt.dsack = 0;
520 	}
521 
522 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
523 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
524 
525 		*ptr++ = htonl((TCPOPT_EXP << 24) |
526 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
527 			       TCPOPT_FASTOPEN_MAGIC);
528 
529 		memcpy(ptr, foc->val, foc->len);
530 		if ((foc->len & 3) == 2) {
531 			u8 *align = ((u8 *)ptr) + foc->len;
532 			align[0] = align[1] = TCPOPT_NOP;
533 		}
534 		ptr += (foc->len + 3) >> 2;
535 	}
536 }
537 
538 /* Compute TCP options for SYN packets. This is not the final
539  * network wire format yet.
540  */
541 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
542 				struct tcp_out_options *opts,
543 				struct tcp_md5sig_key **md5)
544 {
545 	struct tcp_sock *tp = tcp_sk(sk);
546 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
547 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
548 
549 #ifdef CONFIG_TCP_MD5SIG
550 	*md5 = tp->af_specific->md5_lookup(sk, sk);
551 	if (*md5) {
552 		opts->options |= OPTION_MD5;
553 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
554 	}
555 #else
556 	*md5 = NULL;
557 #endif
558 
559 	/* We always get an MSS option.  The option bytes which will be seen in
560 	 * normal data packets should timestamps be used, must be in the MSS
561 	 * advertised.  But we subtract them from tp->mss_cache so that
562 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
563 	 * fact here if necessary.  If we don't do this correctly, as a
564 	 * receiver we won't recognize data packets as being full sized when we
565 	 * should, and thus we won't abide by the delayed ACK rules correctly.
566 	 * SACKs don't matter, we never delay an ACK when we have any of those
567 	 * going out.  */
568 	opts->mss = tcp_advertise_mss(sk);
569 	remaining -= TCPOLEN_MSS_ALIGNED;
570 
571 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
572 		opts->options |= OPTION_TS;
573 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
574 		opts->tsecr = tp->rx_opt.ts_recent;
575 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
576 	}
577 	if (likely(sysctl_tcp_window_scaling)) {
578 		opts->ws = tp->rx_opt.rcv_wscale;
579 		opts->options |= OPTION_WSCALE;
580 		remaining -= TCPOLEN_WSCALE_ALIGNED;
581 	}
582 	if (likely(sysctl_tcp_sack)) {
583 		opts->options |= OPTION_SACK_ADVERTISE;
584 		if (unlikely(!(OPTION_TS & opts->options)))
585 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
586 	}
587 
588 	if (fastopen && fastopen->cookie.len >= 0) {
589 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
590 		need = (need + 3) & ~3U;  /* Align to 32 bits */
591 		if (remaining >= need) {
592 			opts->options |= OPTION_FAST_OPEN_COOKIE;
593 			opts->fastopen_cookie = &fastopen->cookie;
594 			remaining -= need;
595 			tp->syn_fastopen = 1;
596 		}
597 	}
598 
599 	return MAX_TCP_OPTION_SPACE - remaining;
600 }
601 
602 /* Set up TCP options for SYN-ACKs. */
603 static unsigned int tcp_synack_options(struct sock *sk,
604 				   struct request_sock *req,
605 				   unsigned int mss, struct sk_buff *skb,
606 				   struct tcp_out_options *opts,
607 				   struct tcp_md5sig_key **md5,
608 				   struct tcp_fastopen_cookie *foc)
609 {
610 	struct inet_request_sock *ireq = inet_rsk(req);
611 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
612 
613 #ifdef CONFIG_TCP_MD5SIG
614 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
615 	if (*md5) {
616 		opts->options |= OPTION_MD5;
617 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
618 
619 		/* We can't fit any SACK blocks in a packet with MD5 + TS
620 		 * options. There was discussion about disabling SACK
621 		 * rather than TS in order to fit in better with old,
622 		 * buggy kernels, but that was deemed to be unnecessary.
623 		 */
624 		ireq->tstamp_ok &= !ireq->sack_ok;
625 	}
626 #else
627 	*md5 = NULL;
628 #endif
629 
630 	/* We always send an MSS option. */
631 	opts->mss = mss;
632 	remaining -= TCPOLEN_MSS_ALIGNED;
633 
634 	if (likely(ireq->wscale_ok)) {
635 		opts->ws = ireq->rcv_wscale;
636 		opts->options |= OPTION_WSCALE;
637 		remaining -= TCPOLEN_WSCALE_ALIGNED;
638 	}
639 	if (likely(ireq->tstamp_ok)) {
640 		opts->options |= OPTION_TS;
641 		opts->tsval = tcp_skb_timestamp(skb);
642 		opts->tsecr = req->ts_recent;
643 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
644 	}
645 	if (likely(ireq->sack_ok)) {
646 		opts->options |= OPTION_SACK_ADVERTISE;
647 		if (unlikely(!ireq->tstamp_ok))
648 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
649 	}
650 	if (foc != NULL && foc->len >= 0) {
651 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
652 		need = (need + 3) & ~3U;  /* Align to 32 bits */
653 		if (remaining >= need) {
654 			opts->options |= OPTION_FAST_OPEN_COOKIE;
655 			opts->fastopen_cookie = foc;
656 			remaining -= need;
657 		}
658 	}
659 
660 	return MAX_TCP_OPTION_SPACE - remaining;
661 }
662 
663 /* Compute TCP options for ESTABLISHED sockets. This is not the
664  * final wire format yet.
665  */
666 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
667 					struct tcp_out_options *opts,
668 					struct tcp_md5sig_key **md5)
669 {
670 	struct tcp_sock *tp = tcp_sk(sk);
671 	unsigned int size = 0;
672 	unsigned int eff_sacks;
673 
674 	opts->options = 0;
675 
676 #ifdef CONFIG_TCP_MD5SIG
677 	*md5 = tp->af_specific->md5_lookup(sk, sk);
678 	if (unlikely(*md5)) {
679 		opts->options |= OPTION_MD5;
680 		size += TCPOLEN_MD5SIG_ALIGNED;
681 	}
682 #else
683 	*md5 = NULL;
684 #endif
685 
686 	if (likely(tp->rx_opt.tstamp_ok)) {
687 		opts->options |= OPTION_TS;
688 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
689 		opts->tsecr = tp->rx_opt.ts_recent;
690 		size += TCPOLEN_TSTAMP_ALIGNED;
691 	}
692 
693 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
694 	if (unlikely(eff_sacks)) {
695 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
696 		opts->num_sack_blocks =
697 			min_t(unsigned int, eff_sacks,
698 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
699 			      TCPOLEN_SACK_PERBLOCK);
700 		size += TCPOLEN_SACK_BASE_ALIGNED +
701 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
702 	}
703 
704 	return size;
705 }
706 
707 
708 /* TCP SMALL QUEUES (TSQ)
709  *
710  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
711  * to reduce RTT and bufferbloat.
712  * We do this using a special skb destructor (tcp_wfree).
713  *
714  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
715  * needs to be reallocated in a driver.
716  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
717  *
718  * Since transmit from skb destructor is forbidden, we use a tasklet
719  * to process all sockets that eventually need to send more skbs.
720  * We use one tasklet per cpu, with its own queue of sockets.
721  */
722 struct tsq_tasklet {
723 	struct tasklet_struct	tasklet;
724 	struct list_head	head; /* queue of tcp sockets */
725 };
726 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
727 
728 static void tcp_tsq_handler(struct sock *sk)
729 {
730 	if ((1 << sk->sk_state) &
731 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
732 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
733 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
734 			       0, GFP_ATOMIC);
735 }
736 /*
737  * One tasklet per cpu tries to send more skbs.
738  * We run in tasklet context but need to disable irqs when
739  * transferring tsq->head because tcp_wfree() might
740  * interrupt us (non NAPI drivers)
741  */
742 static void tcp_tasklet_func(unsigned long data)
743 {
744 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
745 	LIST_HEAD(list);
746 	unsigned long flags;
747 	struct list_head *q, *n;
748 	struct tcp_sock *tp;
749 	struct sock *sk;
750 
751 	local_irq_save(flags);
752 	list_splice_init(&tsq->head, &list);
753 	local_irq_restore(flags);
754 
755 	list_for_each_safe(q, n, &list) {
756 		tp = list_entry(q, struct tcp_sock, tsq_node);
757 		list_del(&tp->tsq_node);
758 
759 		sk = (struct sock *)tp;
760 		bh_lock_sock(sk);
761 
762 		if (!sock_owned_by_user(sk)) {
763 			tcp_tsq_handler(sk);
764 		} else {
765 			/* defer the work to tcp_release_cb() */
766 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
767 		}
768 		bh_unlock_sock(sk);
769 
770 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
771 		sk_free(sk);
772 	}
773 }
774 
775 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
776 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
777 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
778 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
779 /**
780  * tcp_release_cb - tcp release_sock() callback
781  * @sk: socket
782  *
783  * called from release_sock() to perform protocol dependent
784  * actions before socket release.
785  */
786 void tcp_release_cb(struct sock *sk)
787 {
788 	struct tcp_sock *tp = tcp_sk(sk);
789 	unsigned long flags, nflags;
790 
791 	/* perform an atomic operation only if at least one flag is set */
792 	do {
793 		flags = tp->tsq_flags;
794 		if (!(flags & TCP_DEFERRED_ALL))
795 			return;
796 		nflags = flags & ~TCP_DEFERRED_ALL;
797 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
798 
799 	if (flags & (1UL << TCP_TSQ_DEFERRED))
800 		tcp_tsq_handler(sk);
801 
802 	/* Here begins the tricky part :
803 	 * We are called from release_sock() with :
804 	 * 1) BH disabled
805 	 * 2) sk_lock.slock spinlock held
806 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
807 	 *
808 	 * But following code is meant to be called from BH handlers,
809 	 * so we should keep BH disabled, but early release socket ownership
810 	 */
811 	sock_release_ownership(sk);
812 
813 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
814 		tcp_write_timer_handler(sk);
815 		__sock_put(sk);
816 	}
817 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
818 		tcp_delack_timer_handler(sk);
819 		__sock_put(sk);
820 	}
821 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
822 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
823 		__sock_put(sk);
824 	}
825 }
826 EXPORT_SYMBOL(tcp_release_cb);
827 
828 void __init tcp_tasklet_init(void)
829 {
830 	int i;
831 
832 	for_each_possible_cpu(i) {
833 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
834 
835 		INIT_LIST_HEAD(&tsq->head);
836 		tasklet_init(&tsq->tasklet,
837 			     tcp_tasklet_func,
838 			     (unsigned long)tsq);
839 	}
840 }
841 
842 /*
843  * Write buffer destructor automatically called from kfree_skb.
844  * We can't xmit new skbs from this context, as we might already
845  * hold qdisc lock.
846  */
847 void tcp_wfree(struct sk_buff *skb)
848 {
849 	struct sock *sk = skb->sk;
850 	struct tcp_sock *tp = tcp_sk(sk);
851 	int wmem;
852 
853 	/* Keep one reference on sk_wmem_alloc.
854 	 * Will be released by sk_free() from here or tcp_tasklet_func()
855 	 */
856 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
857 
858 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
859 	 * Wait until our queues (qdisc + devices) are drained.
860 	 * This gives :
861 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
862 	 * - chance for incoming ACK (processed by another cpu maybe)
863 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
864 	 */
865 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
866 		goto out;
867 
868 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
869 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
870 		unsigned long flags;
871 		struct tsq_tasklet *tsq;
872 
873 		/* queue this socket to tasklet queue */
874 		local_irq_save(flags);
875 		tsq = this_cpu_ptr(&tsq_tasklet);
876 		list_add(&tp->tsq_node, &tsq->head);
877 		tasklet_schedule(&tsq->tasklet);
878 		local_irq_restore(flags);
879 		return;
880 	}
881 out:
882 	sk_free(sk);
883 }
884 
885 /* This routine actually transmits TCP packets queued in by
886  * tcp_do_sendmsg().  This is used by both the initial
887  * transmission and possible later retransmissions.
888  * All SKB's seen here are completely headerless.  It is our
889  * job to build the TCP header, and pass the packet down to
890  * IP so it can do the same plus pass the packet off to the
891  * device.
892  *
893  * We are working here with either a clone of the original
894  * SKB, or a fresh unique copy made by the retransmit engine.
895  */
896 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
897 			    gfp_t gfp_mask)
898 {
899 	const struct inet_connection_sock *icsk = inet_csk(sk);
900 	struct inet_sock *inet;
901 	struct tcp_sock *tp;
902 	struct tcp_skb_cb *tcb;
903 	struct tcp_out_options opts;
904 	unsigned int tcp_options_size, tcp_header_size;
905 	struct tcp_md5sig_key *md5;
906 	struct tcphdr *th;
907 	int err;
908 
909 	BUG_ON(!skb || !tcp_skb_pcount(skb));
910 
911 	if (clone_it) {
912 		skb_mstamp_get(&skb->skb_mstamp);
913 
914 		if (unlikely(skb_cloned(skb)))
915 			skb = pskb_copy(skb, gfp_mask);
916 		else
917 			skb = skb_clone(skb, gfp_mask);
918 		if (unlikely(!skb))
919 			return -ENOBUFS;
920 	}
921 
922 	inet = inet_sk(sk);
923 	tp = tcp_sk(sk);
924 	tcb = TCP_SKB_CB(skb);
925 	memset(&opts, 0, sizeof(opts));
926 
927 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
928 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
929 	else
930 		tcp_options_size = tcp_established_options(sk, skb, &opts,
931 							   &md5);
932 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
933 
934 	if (tcp_packets_in_flight(tp) == 0)
935 		tcp_ca_event(sk, CA_EVENT_TX_START);
936 
937 	/* if no packet is in qdisc/device queue, then allow XPS to select
938 	 * another queue. We can be called from tcp_tsq_handler()
939 	 * which holds one reference to sk_wmem_alloc.
940 	 *
941 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
942 	 * One way to get this would be to set skb->truesize = 2 on them.
943 	 */
944 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
945 
946 	skb_push(skb, tcp_header_size);
947 	skb_reset_transport_header(skb);
948 
949 	skb_orphan(skb);
950 	skb->sk = sk;
951 	skb->destructor = tcp_wfree;
952 	skb_set_hash_from_sk(skb, sk);
953 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
954 
955 	/* Build TCP header and checksum it. */
956 	th = tcp_hdr(skb);
957 	th->source		= inet->inet_sport;
958 	th->dest		= inet->inet_dport;
959 	th->seq			= htonl(tcb->seq);
960 	th->ack_seq		= htonl(tp->rcv_nxt);
961 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
962 					tcb->tcp_flags);
963 
964 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
965 		/* RFC1323: The window in SYN & SYN/ACK segments
966 		 * is never scaled.
967 		 */
968 		th->window	= htons(min(tp->rcv_wnd, 65535U));
969 	} else {
970 		th->window	= htons(tcp_select_window(sk));
971 	}
972 	th->check		= 0;
973 	th->urg_ptr		= 0;
974 
975 	/* The urg_mode check is necessary during a below snd_una win probe */
976 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
977 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
978 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
979 			th->urg = 1;
980 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
981 			th->urg_ptr = htons(0xFFFF);
982 			th->urg = 1;
983 		}
984 	}
985 
986 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
987 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
988 		tcp_ecn_send(sk, skb, tcp_header_size);
989 
990 #ifdef CONFIG_TCP_MD5SIG
991 	/* Calculate the MD5 hash, as we have all we need now */
992 	if (md5) {
993 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
994 		tp->af_specific->calc_md5_hash(opts.hash_location,
995 					       md5, sk, NULL, skb);
996 	}
997 #endif
998 
999 	icsk->icsk_af_ops->send_check(sk, skb);
1000 
1001 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1002 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1003 
1004 	if (skb->len != tcp_header_size)
1005 		tcp_event_data_sent(tp, sk);
1006 
1007 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1008 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1009 			      tcp_skb_pcount(skb));
1010 
1011 	/* OK, its time to fill skb_shinfo(skb)->gso_segs */
1012 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1013 
1014 	/* Our usage of tstamp should remain private */
1015 	skb->tstamp.tv64 = 0;
1016 
1017 	/* Cleanup our debris for IP stacks */
1018 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1019 			       sizeof(struct inet6_skb_parm)));
1020 
1021 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1022 
1023 	if (likely(err <= 0))
1024 		return err;
1025 
1026 	tcp_enter_cwr(sk);
1027 
1028 	return net_xmit_eval(err);
1029 }
1030 
1031 /* This routine just queues the buffer for sending.
1032  *
1033  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1034  * otherwise socket can stall.
1035  */
1036 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1037 {
1038 	struct tcp_sock *tp = tcp_sk(sk);
1039 
1040 	/* Advance write_seq and place onto the write_queue. */
1041 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1042 	__skb_header_release(skb);
1043 	tcp_add_write_queue_tail(sk, skb);
1044 	sk->sk_wmem_queued += skb->truesize;
1045 	sk_mem_charge(sk, skb->truesize);
1046 }
1047 
1048 /* Initialize TSO segments for a packet. */
1049 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1050 				 unsigned int mss_now)
1051 {
1052 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1053 
1054 	/* Make sure we own this skb before messing gso_size/gso_segs */
1055 	WARN_ON_ONCE(skb_cloned(skb));
1056 
1057 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1058 		/* Avoid the costly divide in the normal
1059 		 * non-TSO case.
1060 		 */
1061 		tcp_skb_pcount_set(skb, 1);
1062 		shinfo->gso_size = 0;
1063 		shinfo->gso_type = 0;
1064 	} else {
1065 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1066 		shinfo->gso_size = mss_now;
1067 		shinfo->gso_type = sk->sk_gso_type;
1068 	}
1069 }
1070 
1071 /* When a modification to fackets out becomes necessary, we need to check
1072  * skb is counted to fackets_out or not.
1073  */
1074 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1075 				   int decr)
1076 {
1077 	struct tcp_sock *tp = tcp_sk(sk);
1078 
1079 	if (!tp->sacked_out || tcp_is_reno(tp))
1080 		return;
1081 
1082 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1083 		tp->fackets_out -= decr;
1084 }
1085 
1086 /* Pcount in the middle of the write queue got changed, we need to do various
1087  * tweaks to fix counters
1088  */
1089 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1090 {
1091 	struct tcp_sock *tp = tcp_sk(sk);
1092 
1093 	tp->packets_out -= decr;
1094 
1095 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1096 		tp->sacked_out -= decr;
1097 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1098 		tp->retrans_out -= decr;
1099 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1100 		tp->lost_out -= decr;
1101 
1102 	/* Reno case is special. Sigh... */
1103 	if (tcp_is_reno(tp) && decr > 0)
1104 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1105 
1106 	tcp_adjust_fackets_out(sk, skb, decr);
1107 
1108 	if (tp->lost_skb_hint &&
1109 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1110 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1111 		tp->lost_cnt_hint -= decr;
1112 
1113 	tcp_verify_left_out(tp);
1114 }
1115 
1116 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1117 {
1118 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1119 
1120 	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1121 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1122 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1123 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1124 
1125 		shinfo->tx_flags &= ~tsflags;
1126 		shinfo2->tx_flags |= tsflags;
1127 		swap(shinfo->tskey, shinfo2->tskey);
1128 	}
1129 }
1130 
1131 /* Function to create two new TCP segments.  Shrinks the given segment
1132  * to the specified size and appends a new segment with the rest of the
1133  * packet to the list.  This won't be called frequently, I hope.
1134  * Remember, these are still headerless SKBs at this point.
1135  */
1136 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1137 		 unsigned int mss_now, gfp_t gfp)
1138 {
1139 	struct tcp_sock *tp = tcp_sk(sk);
1140 	struct sk_buff *buff;
1141 	int nsize, old_factor;
1142 	int nlen;
1143 	u8 flags;
1144 
1145 	if (WARN_ON(len > skb->len))
1146 		return -EINVAL;
1147 
1148 	nsize = skb_headlen(skb) - len;
1149 	if (nsize < 0)
1150 		nsize = 0;
1151 
1152 	if (skb_unclone(skb, gfp))
1153 		return -ENOMEM;
1154 
1155 	/* Get a new skb... force flag on. */
1156 	buff = sk_stream_alloc_skb(sk, nsize, gfp);
1157 	if (buff == NULL)
1158 		return -ENOMEM; /* We'll just try again later. */
1159 
1160 	sk->sk_wmem_queued += buff->truesize;
1161 	sk_mem_charge(sk, buff->truesize);
1162 	nlen = skb->len - len - nsize;
1163 	buff->truesize += nlen;
1164 	skb->truesize -= nlen;
1165 
1166 	/* Correct the sequence numbers. */
1167 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1168 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1169 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1170 
1171 	/* PSH and FIN should only be set in the second packet. */
1172 	flags = TCP_SKB_CB(skb)->tcp_flags;
1173 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1174 	TCP_SKB_CB(buff)->tcp_flags = flags;
1175 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1176 
1177 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1178 		/* Copy and checksum data tail into the new buffer. */
1179 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1180 						       skb_put(buff, nsize),
1181 						       nsize, 0);
1182 
1183 		skb_trim(skb, len);
1184 
1185 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1186 	} else {
1187 		skb->ip_summed = CHECKSUM_PARTIAL;
1188 		skb_split(skb, buff, len);
1189 	}
1190 
1191 	buff->ip_summed = skb->ip_summed;
1192 
1193 	buff->tstamp = skb->tstamp;
1194 	tcp_fragment_tstamp(skb, buff);
1195 
1196 	old_factor = tcp_skb_pcount(skb);
1197 
1198 	/* Fix up tso_factor for both original and new SKB.  */
1199 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1200 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1201 
1202 	/* If this packet has been sent out already, we must
1203 	 * adjust the various packet counters.
1204 	 */
1205 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1206 		int diff = old_factor - tcp_skb_pcount(skb) -
1207 			tcp_skb_pcount(buff);
1208 
1209 		if (diff)
1210 			tcp_adjust_pcount(sk, skb, diff);
1211 	}
1212 
1213 	/* Link BUFF into the send queue. */
1214 	__skb_header_release(buff);
1215 	tcp_insert_write_queue_after(skb, buff, sk);
1216 
1217 	return 0;
1218 }
1219 
1220 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1221  * eventually). The difference is that pulled data not copied, but
1222  * immediately discarded.
1223  */
1224 static void __pskb_trim_head(struct sk_buff *skb, int len)
1225 {
1226 	struct skb_shared_info *shinfo;
1227 	int i, k, eat;
1228 
1229 	eat = min_t(int, len, skb_headlen(skb));
1230 	if (eat) {
1231 		__skb_pull(skb, eat);
1232 		len -= eat;
1233 		if (!len)
1234 			return;
1235 	}
1236 	eat = len;
1237 	k = 0;
1238 	shinfo = skb_shinfo(skb);
1239 	for (i = 0; i < shinfo->nr_frags; i++) {
1240 		int size = skb_frag_size(&shinfo->frags[i]);
1241 
1242 		if (size <= eat) {
1243 			skb_frag_unref(skb, i);
1244 			eat -= size;
1245 		} else {
1246 			shinfo->frags[k] = shinfo->frags[i];
1247 			if (eat) {
1248 				shinfo->frags[k].page_offset += eat;
1249 				skb_frag_size_sub(&shinfo->frags[k], eat);
1250 				eat = 0;
1251 			}
1252 			k++;
1253 		}
1254 	}
1255 	shinfo->nr_frags = k;
1256 
1257 	skb_reset_tail_pointer(skb);
1258 	skb->data_len -= len;
1259 	skb->len = skb->data_len;
1260 }
1261 
1262 /* Remove acked data from a packet in the transmit queue. */
1263 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1264 {
1265 	if (skb_unclone(skb, GFP_ATOMIC))
1266 		return -ENOMEM;
1267 
1268 	__pskb_trim_head(skb, len);
1269 
1270 	TCP_SKB_CB(skb)->seq += len;
1271 	skb->ip_summed = CHECKSUM_PARTIAL;
1272 
1273 	skb->truesize	     -= len;
1274 	sk->sk_wmem_queued   -= len;
1275 	sk_mem_uncharge(sk, len);
1276 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1277 
1278 	/* Any change of skb->len requires recalculation of tso factor. */
1279 	if (tcp_skb_pcount(skb) > 1)
1280 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1281 
1282 	return 0;
1283 }
1284 
1285 /* Calculate MSS not accounting any TCP options.  */
1286 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1287 {
1288 	const struct tcp_sock *tp = tcp_sk(sk);
1289 	const struct inet_connection_sock *icsk = inet_csk(sk);
1290 	int mss_now;
1291 
1292 	/* Calculate base mss without TCP options:
1293 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1294 	 */
1295 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1296 
1297 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1298 	if (icsk->icsk_af_ops->net_frag_header_len) {
1299 		const struct dst_entry *dst = __sk_dst_get(sk);
1300 
1301 		if (dst && dst_allfrag(dst))
1302 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1303 	}
1304 
1305 	/* Clamp it (mss_clamp does not include tcp options) */
1306 	if (mss_now > tp->rx_opt.mss_clamp)
1307 		mss_now = tp->rx_opt.mss_clamp;
1308 
1309 	/* Now subtract optional transport overhead */
1310 	mss_now -= icsk->icsk_ext_hdr_len;
1311 
1312 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1313 	if (mss_now < 48)
1314 		mss_now = 48;
1315 	return mss_now;
1316 }
1317 
1318 /* Calculate MSS. Not accounting for SACKs here.  */
1319 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1320 {
1321 	/* Subtract TCP options size, not including SACKs */
1322 	return __tcp_mtu_to_mss(sk, pmtu) -
1323 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1324 }
1325 
1326 /* Inverse of above */
1327 int tcp_mss_to_mtu(struct sock *sk, int mss)
1328 {
1329 	const struct tcp_sock *tp = tcp_sk(sk);
1330 	const struct inet_connection_sock *icsk = inet_csk(sk);
1331 	int mtu;
1332 
1333 	mtu = mss +
1334 	      tp->tcp_header_len +
1335 	      icsk->icsk_ext_hdr_len +
1336 	      icsk->icsk_af_ops->net_header_len;
1337 
1338 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1339 	if (icsk->icsk_af_ops->net_frag_header_len) {
1340 		const struct dst_entry *dst = __sk_dst_get(sk);
1341 
1342 		if (dst && dst_allfrag(dst))
1343 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1344 	}
1345 	return mtu;
1346 }
1347 
1348 /* MTU probing init per socket */
1349 void tcp_mtup_init(struct sock *sk)
1350 {
1351 	struct tcp_sock *tp = tcp_sk(sk);
1352 	struct inet_connection_sock *icsk = inet_csk(sk);
1353 
1354 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1355 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1356 			       icsk->icsk_af_ops->net_header_len;
1357 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1358 	icsk->icsk_mtup.probe_size = 0;
1359 }
1360 EXPORT_SYMBOL(tcp_mtup_init);
1361 
1362 /* This function synchronize snd mss to current pmtu/exthdr set.
1363 
1364    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1365    for TCP options, but includes only bare TCP header.
1366 
1367    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1368    It is minimum of user_mss and mss received with SYN.
1369    It also does not include TCP options.
1370 
1371    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1372 
1373    tp->mss_cache is current effective sending mss, including
1374    all tcp options except for SACKs. It is evaluated,
1375    taking into account current pmtu, but never exceeds
1376    tp->rx_opt.mss_clamp.
1377 
1378    NOTE1. rfc1122 clearly states that advertised MSS
1379    DOES NOT include either tcp or ip options.
1380 
1381    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1382    are READ ONLY outside this function.		--ANK (980731)
1383  */
1384 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1385 {
1386 	struct tcp_sock *tp = tcp_sk(sk);
1387 	struct inet_connection_sock *icsk = inet_csk(sk);
1388 	int mss_now;
1389 
1390 	if (icsk->icsk_mtup.search_high > pmtu)
1391 		icsk->icsk_mtup.search_high = pmtu;
1392 
1393 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1394 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1395 
1396 	/* And store cached results */
1397 	icsk->icsk_pmtu_cookie = pmtu;
1398 	if (icsk->icsk_mtup.enabled)
1399 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1400 	tp->mss_cache = mss_now;
1401 
1402 	return mss_now;
1403 }
1404 EXPORT_SYMBOL(tcp_sync_mss);
1405 
1406 /* Compute the current effective MSS, taking SACKs and IP options,
1407  * and even PMTU discovery events into account.
1408  */
1409 unsigned int tcp_current_mss(struct sock *sk)
1410 {
1411 	const struct tcp_sock *tp = tcp_sk(sk);
1412 	const struct dst_entry *dst = __sk_dst_get(sk);
1413 	u32 mss_now;
1414 	unsigned int header_len;
1415 	struct tcp_out_options opts;
1416 	struct tcp_md5sig_key *md5;
1417 
1418 	mss_now = tp->mss_cache;
1419 
1420 	if (dst) {
1421 		u32 mtu = dst_mtu(dst);
1422 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1423 			mss_now = tcp_sync_mss(sk, mtu);
1424 	}
1425 
1426 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1427 		     sizeof(struct tcphdr);
1428 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1429 	 * some common options. If this is an odd packet (because we have SACK
1430 	 * blocks etc) then our calculated header_len will be different, and
1431 	 * we have to adjust mss_now correspondingly */
1432 	if (header_len != tp->tcp_header_len) {
1433 		int delta = (int) header_len - tp->tcp_header_len;
1434 		mss_now -= delta;
1435 	}
1436 
1437 	return mss_now;
1438 }
1439 
1440 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1441  * As additional protections, we do not touch cwnd in retransmission phases,
1442  * and if application hit its sndbuf limit recently.
1443  */
1444 static void tcp_cwnd_application_limited(struct sock *sk)
1445 {
1446 	struct tcp_sock *tp = tcp_sk(sk);
1447 
1448 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1449 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1450 		/* Limited by application or receiver window. */
1451 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1452 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1453 		if (win_used < tp->snd_cwnd) {
1454 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1455 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1456 		}
1457 		tp->snd_cwnd_used = 0;
1458 	}
1459 	tp->snd_cwnd_stamp = tcp_time_stamp;
1460 }
1461 
1462 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1463 {
1464 	struct tcp_sock *tp = tcp_sk(sk);
1465 
1466 	/* Track the maximum number of outstanding packets in each
1467 	 * window, and remember whether we were cwnd-limited then.
1468 	 */
1469 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1470 	    tp->packets_out > tp->max_packets_out) {
1471 		tp->max_packets_out = tp->packets_out;
1472 		tp->max_packets_seq = tp->snd_nxt;
1473 		tp->is_cwnd_limited = is_cwnd_limited;
1474 	}
1475 
1476 	if (tcp_is_cwnd_limited(sk)) {
1477 		/* Network is feed fully. */
1478 		tp->snd_cwnd_used = 0;
1479 		tp->snd_cwnd_stamp = tcp_time_stamp;
1480 	} else {
1481 		/* Network starves. */
1482 		if (tp->packets_out > tp->snd_cwnd_used)
1483 			tp->snd_cwnd_used = tp->packets_out;
1484 
1485 		if (sysctl_tcp_slow_start_after_idle &&
1486 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1487 			tcp_cwnd_application_limited(sk);
1488 	}
1489 }
1490 
1491 /* Minshall's variant of the Nagle send check. */
1492 static bool tcp_minshall_check(const struct tcp_sock *tp)
1493 {
1494 	return after(tp->snd_sml, tp->snd_una) &&
1495 		!after(tp->snd_sml, tp->snd_nxt);
1496 }
1497 
1498 /* Update snd_sml if this skb is under mss
1499  * Note that a TSO packet might end with a sub-mss segment
1500  * The test is really :
1501  * if ((skb->len % mss) != 0)
1502  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1503  * But we can avoid doing the divide again given we already have
1504  *  skb_pcount = skb->len / mss_now
1505  */
1506 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1507 				const struct sk_buff *skb)
1508 {
1509 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1510 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1511 }
1512 
1513 /* Return false, if packet can be sent now without violation Nagle's rules:
1514  * 1. It is full sized. (provided by caller in %partial bool)
1515  * 2. Or it contains FIN. (already checked by caller)
1516  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1517  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1518  *    With Minshall's modification: all sent small packets are ACKed.
1519  */
1520 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1521 			    int nonagle)
1522 {
1523 	return partial &&
1524 		((nonagle & TCP_NAGLE_CORK) ||
1525 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1526 }
1527 /* Returns the portion of skb which can be sent right away */
1528 static unsigned int tcp_mss_split_point(const struct sock *sk,
1529 					const struct sk_buff *skb,
1530 					unsigned int mss_now,
1531 					unsigned int max_segs,
1532 					int nonagle)
1533 {
1534 	const struct tcp_sock *tp = tcp_sk(sk);
1535 	u32 partial, needed, window, max_len;
1536 
1537 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1538 	max_len = mss_now * max_segs;
1539 
1540 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1541 		return max_len;
1542 
1543 	needed = min(skb->len, window);
1544 
1545 	if (max_len <= needed)
1546 		return max_len;
1547 
1548 	partial = needed % mss_now;
1549 	/* If last segment is not a full MSS, check if Nagle rules allow us
1550 	 * to include this last segment in this skb.
1551 	 * Otherwise, we'll split the skb at last MSS boundary
1552 	 */
1553 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1554 		return needed - partial;
1555 
1556 	return needed;
1557 }
1558 
1559 /* Can at least one segment of SKB be sent right now, according to the
1560  * congestion window rules?  If so, return how many segments are allowed.
1561  */
1562 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1563 					 const struct sk_buff *skb)
1564 {
1565 	u32 in_flight, cwnd;
1566 
1567 	/* Don't be strict about the congestion window for the final FIN.  */
1568 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1569 	    tcp_skb_pcount(skb) == 1)
1570 		return 1;
1571 
1572 	in_flight = tcp_packets_in_flight(tp);
1573 	cwnd = tp->snd_cwnd;
1574 	if (in_flight < cwnd)
1575 		return (cwnd - in_flight);
1576 
1577 	return 0;
1578 }
1579 
1580 /* Initialize TSO state of a skb.
1581  * This must be invoked the first time we consider transmitting
1582  * SKB onto the wire.
1583  */
1584 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1585 			     unsigned int mss_now)
1586 {
1587 	int tso_segs = tcp_skb_pcount(skb);
1588 
1589 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1590 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1591 		tso_segs = tcp_skb_pcount(skb);
1592 	}
1593 	return tso_segs;
1594 }
1595 
1596 
1597 /* Return true if the Nagle test allows this packet to be
1598  * sent now.
1599  */
1600 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1601 				  unsigned int cur_mss, int nonagle)
1602 {
1603 	/* Nagle rule does not apply to frames, which sit in the middle of the
1604 	 * write_queue (they have no chances to get new data).
1605 	 *
1606 	 * This is implemented in the callers, where they modify the 'nonagle'
1607 	 * argument based upon the location of SKB in the send queue.
1608 	 */
1609 	if (nonagle & TCP_NAGLE_PUSH)
1610 		return true;
1611 
1612 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1613 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1614 		return true;
1615 
1616 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1617 		return true;
1618 
1619 	return false;
1620 }
1621 
1622 /* Does at least the first segment of SKB fit into the send window? */
1623 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1624 			     const struct sk_buff *skb,
1625 			     unsigned int cur_mss)
1626 {
1627 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1628 
1629 	if (skb->len > cur_mss)
1630 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1631 
1632 	return !after(end_seq, tcp_wnd_end(tp));
1633 }
1634 
1635 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1636  * should be put on the wire right now.  If so, it returns the number of
1637  * packets allowed by the congestion window.
1638  */
1639 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1640 				 unsigned int cur_mss, int nonagle)
1641 {
1642 	const struct tcp_sock *tp = tcp_sk(sk);
1643 	unsigned int cwnd_quota;
1644 
1645 	tcp_init_tso_segs(sk, skb, cur_mss);
1646 
1647 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1648 		return 0;
1649 
1650 	cwnd_quota = tcp_cwnd_test(tp, skb);
1651 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1652 		cwnd_quota = 0;
1653 
1654 	return cwnd_quota;
1655 }
1656 
1657 /* Test if sending is allowed right now. */
1658 bool tcp_may_send_now(struct sock *sk)
1659 {
1660 	const struct tcp_sock *tp = tcp_sk(sk);
1661 	struct sk_buff *skb = tcp_send_head(sk);
1662 
1663 	return skb &&
1664 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1665 			     (tcp_skb_is_last(sk, skb) ?
1666 			      tp->nonagle : TCP_NAGLE_PUSH));
1667 }
1668 
1669 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1670  * which is put after SKB on the list.  It is very much like
1671  * tcp_fragment() except that it may make several kinds of assumptions
1672  * in order to speed up the splitting operation.  In particular, we
1673  * know that all the data is in scatter-gather pages, and that the
1674  * packet has never been sent out before (and thus is not cloned).
1675  */
1676 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1677 			unsigned int mss_now, gfp_t gfp)
1678 {
1679 	struct sk_buff *buff;
1680 	int nlen = skb->len - len;
1681 	u8 flags;
1682 
1683 	/* All of a TSO frame must be composed of paged data.  */
1684 	if (skb->len != skb->data_len)
1685 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1686 
1687 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1688 	if (unlikely(buff == NULL))
1689 		return -ENOMEM;
1690 
1691 	sk->sk_wmem_queued += buff->truesize;
1692 	sk_mem_charge(sk, buff->truesize);
1693 	buff->truesize += nlen;
1694 	skb->truesize -= nlen;
1695 
1696 	/* Correct the sequence numbers. */
1697 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1698 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1699 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1700 
1701 	/* PSH and FIN should only be set in the second packet. */
1702 	flags = TCP_SKB_CB(skb)->tcp_flags;
1703 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1704 	TCP_SKB_CB(buff)->tcp_flags = flags;
1705 
1706 	/* This packet was never sent out yet, so no SACK bits. */
1707 	TCP_SKB_CB(buff)->sacked = 0;
1708 
1709 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1710 	skb_split(skb, buff, len);
1711 	tcp_fragment_tstamp(skb, buff);
1712 
1713 	/* Fix up tso_factor for both original and new SKB.  */
1714 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1715 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1716 
1717 	/* Link BUFF into the send queue. */
1718 	__skb_header_release(buff);
1719 	tcp_insert_write_queue_after(skb, buff, sk);
1720 
1721 	return 0;
1722 }
1723 
1724 /* Try to defer sending, if possible, in order to minimize the amount
1725  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1726  *
1727  * This algorithm is from John Heffner.
1728  */
1729 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1730 				 bool *is_cwnd_limited)
1731 {
1732 	struct tcp_sock *tp = tcp_sk(sk);
1733 	const struct inet_connection_sock *icsk = inet_csk(sk);
1734 	u32 send_win, cong_win, limit, in_flight;
1735 	int win_divisor;
1736 
1737 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1738 		goto send_now;
1739 
1740 	if (icsk->icsk_ca_state != TCP_CA_Open)
1741 		goto send_now;
1742 
1743 	/* Defer for less than two clock ticks. */
1744 	if (tp->tso_deferred &&
1745 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1746 		goto send_now;
1747 
1748 	in_flight = tcp_packets_in_flight(tp);
1749 
1750 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1751 
1752 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1753 
1754 	/* From in_flight test above, we know that cwnd > in_flight.  */
1755 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1756 
1757 	limit = min(send_win, cong_win);
1758 
1759 	/* If a full-sized TSO skb can be sent, do it. */
1760 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1761 			   tp->xmit_size_goal_segs * tp->mss_cache))
1762 		goto send_now;
1763 
1764 	/* Middle in queue won't get any more data, full sendable already? */
1765 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1766 		goto send_now;
1767 
1768 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1769 	if (win_divisor) {
1770 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1771 
1772 		/* If at least some fraction of a window is available,
1773 		 * just use it.
1774 		 */
1775 		chunk /= win_divisor;
1776 		if (limit >= chunk)
1777 			goto send_now;
1778 	} else {
1779 		/* Different approach, try not to defer past a single
1780 		 * ACK.  Receiver should ACK every other full sized
1781 		 * frame, so if we have space for more than 3 frames
1782 		 * then send now.
1783 		 */
1784 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1785 			goto send_now;
1786 	}
1787 
1788 	/* Ok, it looks like it is advisable to defer.
1789 	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1790 	 */
1791 	if (!tp->tso_deferred)
1792 		tp->tso_deferred = 1 | (jiffies << 1);
1793 
1794 	if (cong_win < send_win && cong_win < skb->len)
1795 		*is_cwnd_limited = true;
1796 
1797 	return true;
1798 
1799 send_now:
1800 	tp->tso_deferred = 0;
1801 	return false;
1802 }
1803 
1804 /* Create a new MTU probe if we are ready.
1805  * MTU probe is regularly attempting to increase the path MTU by
1806  * deliberately sending larger packets.  This discovers routing
1807  * changes resulting in larger path MTUs.
1808  *
1809  * Returns 0 if we should wait to probe (no cwnd available),
1810  *         1 if a probe was sent,
1811  *         -1 otherwise
1812  */
1813 static int tcp_mtu_probe(struct sock *sk)
1814 {
1815 	struct tcp_sock *tp = tcp_sk(sk);
1816 	struct inet_connection_sock *icsk = inet_csk(sk);
1817 	struct sk_buff *skb, *nskb, *next;
1818 	int len;
1819 	int probe_size;
1820 	int size_needed;
1821 	int copy;
1822 	int mss_now;
1823 
1824 	/* Not currently probing/verifying,
1825 	 * not in recovery,
1826 	 * have enough cwnd, and
1827 	 * not SACKing (the variable headers throw things off) */
1828 	if (!icsk->icsk_mtup.enabled ||
1829 	    icsk->icsk_mtup.probe_size ||
1830 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1831 	    tp->snd_cwnd < 11 ||
1832 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1833 		return -1;
1834 
1835 	/* Very simple search strategy: just double the MSS. */
1836 	mss_now = tcp_current_mss(sk);
1837 	probe_size = 2 * tp->mss_cache;
1838 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1839 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1840 		/* TODO: set timer for probe_converge_event */
1841 		return -1;
1842 	}
1843 
1844 	/* Have enough data in the send queue to probe? */
1845 	if (tp->write_seq - tp->snd_nxt < size_needed)
1846 		return -1;
1847 
1848 	if (tp->snd_wnd < size_needed)
1849 		return -1;
1850 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1851 		return 0;
1852 
1853 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1854 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1855 		if (!tcp_packets_in_flight(tp))
1856 			return -1;
1857 		else
1858 			return 0;
1859 	}
1860 
1861 	/* We're allowed to probe.  Build it now. */
1862 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1863 		return -1;
1864 	sk->sk_wmem_queued += nskb->truesize;
1865 	sk_mem_charge(sk, nskb->truesize);
1866 
1867 	skb = tcp_send_head(sk);
1868 
1869 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1870 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1871 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1872 	TCP_SKB_CB(nskb)->sacked = 0;
1873 	nskb->csum = 0;
1874 	nskb->ip_summed = skb->ip_summed;
1875 
1876 	tcp_insert_write_queue_before(nskb, skb, sk);
1877 
1878 	len = 0;
1879 	tcp_for_write_queue_from_safe(skb, next, sk) {
1880 		copy = min_t(int, skb->len, probe_size - len);
1881 		if (nskb->ip_summed)
1882 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1883 		else
1884 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1885 							    skb_put(nskb, copy),
1886 							    copy, nskb->csum);
1887 
1888 		if (skb->len <= copy) {
1889 			/* We've eaten all the data from this skb.
1890 			 * Throw it away. */
1891 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1892 			tcp_unlink_write_queue(skb, sk);
1893 			sk_wmem_free_skb(sk, skb);
1894 		} else {
1895 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1896 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1897 			if (!skb_shinfo(skb)->nr_frags) {
1898 				skb_pull(skb, copy);
1899 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1900 					skb->csum = csum_partial(skb->data,
1901 								 skb->len, 0);
1902 			} else {
1903 				__pskb_trim_head(skb, copy);
1904 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1905 			}
1906 			TCP_SKB_CB(skb)->seq += copy;
1907 		}
1908 
1909 		len += copy;
1910 
1911 		if (len >= probe_size)
1912 			break;
1913 	}
1914 	tcp_init_tso_segs(sk, nskb, nskb->len);
1915 
1916 	/* We're ready to send.  If this fails, the probe will
1917 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
1918 	 */
1919 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1920 		/* Decrement cwnd here because we are sending
1921 		 * effectively two packets. */
1922 		tp->snd_cwnd--;
1923 		tcp_event_new_data_sent(sk, nskb);
1924 
1925 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1926 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1927 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1928 
1929 		return 1;
1930 	}
1931 
1932 	return -1;
1933 }
1934 
1935 /* This routine writes packets to the network.  It advances the
1936  * send_head.  This happens as incoming acks open up the remote
1937  * window for us.
1938  *
1939  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1940  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1941  * account rare use of URG, this is not a big flaw.
1942  *
1943  * Send at most one packet when push_one > 0. Temporarily ignore
1944  * cwnd limit to force at most one packet out when push_one == 2.
1945 
1946  * Returns true, if no segments are in flight and we have queued segments,
1947  * but cannot send anything now because of SWS or another problem.
1948  */
1949 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1950 			   int push_one, gfp_t gfp)
1951 {
1952 	struct tcp_sock *tp = tcp_sk(sk);
1953 	struct sk_buff *skb;
1954 	unsigned int tso_segs, sent_pkts;
1955 	int cwnd_quota;
1956 	int result;
1957 	bool is_cwnd_limited = false;
1958 
1959 	sent_pkts = 0;
1960 
1961 	if (!push_one) {
1962 		/* Do MTU probing. */
1963 		result = tcp_mtu_probe(sk);
1964 		if (!result) {
1965 			return false;
1966 		} else if (result > 0) {
1967 			sent_pkts = 1;
1968 		}
1969 	}
1970 
1971 	while ((skb = tcp_send_head(sk))) {
1972 		unsigned int limit;
1973 
1974 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1975 		BUG_ON(!tso_segs);
1976 
1977 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
1978 			/* "skb_mstamp" is used as a start point for the retransmit timer */
1979 			skb_mstamp_get(&skb->skb_mstamp);
1980 			goto repair; /* Skip network transmission */
1981 		}
1982 
1983 		cwnd_quota = tcp_cwnd_test(tp, skb);
1984 		if (!cwnd_quota) {
1985 			is_cwnd_limited = true;
1986 			if (push_one == 2)
1987 				/* Force out a loss probe pkt. */
1988 				cwnd_quota = 1;
1989 			else
1990 				break;
1991 		}
1992 
1993 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1994 			break;
1995 
1996 		if (tso_segs == 1) {
1997 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1998 						     (tcp_skb_is_last(sk, skb) ?
1999 						      nonagle : TCP_NAGLE_PUSH))))
2000 				break;
2001 		} else {
2002 			if (!push_one &&
2003 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited))
2004 				break;
2005 		}
2006 
2007 		/* TCP Small Queues :
2008 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2009 		 * This allows for :
2010 		 *  - better RTT estimation and ACK scheduling
2011 		 *  - faster recovery
2012 		 *  - high rates
2013 		 * Alas, some drivers / subsystems require a fair amount
2014 		 * of queued bytes to ensure line rate.
2015 		 * One example is wifi aggregation (802.11 AMPDU)
2016 		 */
2017 		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
2018 			      sk->sk_pacing_rate >> 10);
2019 
2020 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2021 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2022 			/* It is possible TX completion already happened
2023 			 * before we set TSQ_THROTTLED, so we must
2024 			 * test again the condition.
2025 			 */
2026 			smp_mb__after_atomic();
2027 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2028 				break;
2029 		}
2030 
2031 		limit = mss_now;
2032 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2033 			limit = tcp_mss_split_point(sk, skb, mss_now,
2034 						    min_t(unsigned int,
2035 							  cwnd_quota,
2036 							  sk->sk_gso_max_segs),
2037 						    nonagle);
2038 
2039 		if (skb->len > limit &&
2040 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2041 			break;
2042 
2043 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2044 			break;
2045 
2046 repair:
2047 		/* Advance the send_head.  This one is sent out.
2048 		 * This call will increment packets_out.
2049 		 */
2050 		tcp_event_new_data_sent(sk, skb);
2051 
2052 		tcp_minshall_update(tp, mss_now, skb);
2053 		sent_pkts += tcp_skb_pcount(skb);
2054 
2055 		if (push_one)
2056 			break;
2057 	}
2058 
2059 	if (likely(sent_pkts)) {
2060 		if (tcp_in_cwnd_reduction(sk))
2061 			tp->prr_out += sent_pkts;
2062 
2063 		/* Send one loss probe per tail loss episode. */
2064 		if (push_one != 2)
2065 			tcp_schedule_loss_probe(sk);
2066 		tcp_cwnd_validate(sk, is_cwnd_limited);
2067 		return false;
2068 	}
2069 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2070 }
2071 
2072 bool tcp_schedule_loss_probe(struct sock *sk)
2073 {
2074 	struct inet_connection_sock *icsk = inet_csk(sk);
2075 	struct tcp_sock *tp = tcp_sk(sk);
2076 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2077 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2078 
2079 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2080 		return false;
2081 	/* No consecutive loss probes. */
2082 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2083 		tcp_rearm_rto(sk);
2084 		return false;
2085 	}
2086 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2087 	 * finishes.
2088 	 */
2089 	if (sk->sk_state == TCP_SYN_RECV)
2090 		return false;
2091 
2092 	/* TLP is only scheduled when next timer event is RTO. */
2093 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2094 		return false;
2095 
2096 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2097 	 * in Open state, that are either limited by cwnd or application.
2098 	 */
2099 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2100 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2101 		return false;
2102 
2103 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2104 	     tcp_send_head(sk))
2105 		return false;
2106 
2107 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2108 	 * for delayed ack when there's one outstanding packet.
2109 	 */
2110 	timeout = rtt << 1;
2111 	if (tp->packets_out == 1)
2112 		timeout = max_t(u32, timeout,
2113 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2114 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2115 
2116 	/* If RTO is shorter, just schedule TLP in its place. */
2117 	tlp_time_stamp = tcp_time_stamp + timeout;
2118 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2119 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2120 		s32 delta = rto_time_stamp - tcp_time_stamp;
2121 		if (delta > 0)
2122 			timeout = delta;
2123 	}
2124 
2125 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2126 				  TCP_RTO_MAX);
2127 	return true;
2128 }
2129 
2130 /* Thanks to skb fast clones, we can detect if a prior transmit of
2131  * a packet is still in a qdisc or driver queue.
2132  * In this case, there is very little point doing a retransmit !
2133  * Note: This is called from BH context only.
2134  */
2135 static bool skb_still_in_host_queue(const struct sock *sk,
2136 				    const struct sk_buff *skb)
2137 {
2138 	if (unlikely(skb_fclone_busy(sk, skb))) {
2139 		NET_INC_STATS_BH(sock_net(sk),
2140 				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2141 		return true;
2142 	}
2143 	return false;
2144 }
2145 
2146 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2147  * retransmit the last segment.
2148  */
2149 void tcp_send_loss_probe(struct sock *sk)
2150 {
2151 	struct tcp_sock *tp = tcp_sk(sk);
2152 	struct sk_buff *skb;
2153 	int pcount;
2154 	int mss = tcp_current_mss(sk);
2155 	int err = -1;
2156 
2157 	if (tcp_send_head(sk) != NULL) {
2158 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2159 		goto rearm_timer;
2160 	}
2161 
2162 	/* At most one outstanding TLP retransmission. */
2163 	if (tp->tlp_high_seq)
2164 		goto rearm_timer;
2165 
2166 	/* Retransmit last segment. */
2167 	skb = tcp_write_queue_tail(sk);
2168 	if (WARN_ON(!skb))
2169 		goto rearm_timer;
2170 
2171 	if (skb_still_in_host_queue(sk, skb))
2172 		goto rearm_timer;
2173 
2174 	pcount = tcp_skb_pcount(skb);
2175 	if (WARN_ON(!pcount))
2176 		goto rearm_timer;
2177 
2178 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2179 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2180 					  GFP_ATOMIC)))
2181 			goto rearm_timer;
2182 		skb = tcp_write_queue_tail(sk);
2183 	}
2184 
2185 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2186 		goto rearm_timer;
2187 
2188 	err = __tcp_retransmit_skb(sk, skb);
2189 
2190 	/* Record snd_nxt for loss detection. */
2191 	if (likely(!err))
2192 		tp->tlp_high_seq = tp->snd_nxt;
2193 
2194 rearm_timer:
2195 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2196 				  inet_csk(sk)->icsk_rto,
2197 				  TCP_RTO_MAX);
2198 
2199 	if (likely(!err))
2200 		NET_INC_STATS_BH(sock_net(sk),
2201 				 LINUX_MIB_TCPLOSSPROBES);
2202 }
2203 
2204 /* Push out any pending frames which were held back due to
2205  * TCP_CORK or attempt at coalescing tiny packets.
2206  * The socket must be locked by the caller.
2207  */
2208 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2209 			       int nonagle)
2210 {
2211 	/* If we are closed, the bytes will have to remain here.
2212 	 * In time closedown will finish, we empty the write queue and
2213 	 * all will be happy.
2214 	 */
2215 	if (unlikely(sk->sk_state == TCP_CLOSE))
2216 		return;
2217 
2218 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2219 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2220 		tcp_check_probe_timer(sk);
2221 }
2222 
2223 /* Send _single_ skb sitting at the send head. This function requires
2224  * true push pending frames to setup probe timer etc.
2225  */
2226 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2227 {
2228 	struct sk_buff *skb = tcp_send_head(sk);
2229 
2230 	BUG_ON(!skb || skb->len < mss_now);
2231 
2232 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2233 }
2234 
2235 /* This function returns the amount that we can raise the
2236  * usable window based on the following constraints
2237  *
2238  * 1. The window can never be shrunk once it is offered (RFC 793)
2239  * 2. We limit memory per socket
2240  *
2241  * RFC 1122:
2242  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2243  *  RECV.NEXT + RCV.WIN fixed until:
2244  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2245  *
2246  * i.e. don't raise the right edge of the window until you can raise
2247  * it at least MSS bytes.
2248  *
2249  * Unfortunately, the recommended algorithm breaks header prediction,
2250  * since header prediction assumes th->window stays fixed.
2251  *
2252  * Strictly speaking, keeping th->window fixed violates the receiver
2253  * side SWS prevention criteria. The problem is that under this rule
2254  * a stream of single byte packets will cause the right side of the
2255  * window to always advance by a single byte.
2256  *
2257  * Of course, if the sender implements sender side SWS prevention
2258  * then this will not be a problem.
2259  *
2260  * BSD seems to make the following compromise:
2261  *
2262  *	If the free space is less than the 1/4 of the maximum
2263  *	space available and the free space is less than 1/2 mss,
2264  *	then set the window to 0.
2265  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2266  *	Otherwise, just prevent the window from shrinking
2267  *	and from being larger than the largest representable value.
2268  *
2269  * This prevents incremental opening of the window in the regime
2270  * where TCP is limited by the speed of the reader side taking
2271  * data out of the TCP receive queue. It does nothing about
2272  * those cases where the window is constrained on the sender side
2273  * because the pipeline is full.
2274  *
2275  * BSD also seems to "accidentally" limit itself to windows that are a
2276  * multiple of MSS, at least until the free space gets quite small.
2277  * This would appear to be a side effect of the mbuf implementation.
2278  * Combining these two algorithms results in the observed behavior
2279  * of having a fixed window size at almost all times.
2280  *
2281  * Below we obtain similar behavior by forcing the offered window to
2282  * a multiple of the mss when it is feasible to do so.
2283  *
2284  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2285  * Regular options like TIMESTAMP are taken into account.
2286  */
2287 u32 __tcp_select_window(struct sock *sk)
2288 {
2289 	struct inet_connection_sock *icsk = inet_csk(sk);
2290 	struct tcp_sock *tp = tcp_sk(sk);
2291 	/* MSS for the peer's data.  Previous versions used mss_clamp
2292 	 * here.  I don't know if the value based on our guesses
2293 	 * of peer's MSS is better for the performance.  It's more correct
2294 	 * but may be worse for the performance because of rcv_mss
2295 	 * fluctuations.  --SAW  1998/11/1
2296 	 */
2297 	int mss = icsk->icsk_ack.rcv_mss;
2298 	int free_space = tcp_space(sk);
2299 	int allowed_space = tcp_full_space(sk);
2300 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2301 	int window;
2302 
2303 	if (mss > full_space)
2304 		mss = full_space;
2305 
2306 	if (free_space < (full_space >> 1)) {
2307 		icsk->icsk_ack.quick = 0;
2308 
2309 		if (sk_under_memory_pressure(sk))
2310 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2311 					       4U * tp->advmss);
2312 
2313 		/* free_space might become our new window, make sure we don't
2314 		 * increase it due to wscale.
2315 		 */
2316 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2317 
2318 		/* if free space is less than mss estimate, or is below 1/16th
2319 		 * of the maximum allowed, try to move to zero-window, else
2320 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2321 		 * new incoming data is dropped due to memory limits.
2322 		 * With large window, mss test triggers way too late in order
2323 		 * to announce zero window in time before rmem limit kicks in.
2324 		 */
2325 		if (free_space < (allowed_space >> 4) || free_space < mss)
2326 			return 0;
2327 	}
2328 
2329 	if (free_space > tp->rcv_ssthresh)
2330 		free_space = tp->rcv_ssthresh;
2331 
2332 	/* Don't do rounding if we are using window scaling, since the
2333 	 * scaled window will not line up with the MSS boundary anyway.
2334 	 */
2335 	window = tp->rcv_wnd;
2336 	if (tp->rx_opt.rcv_wscale) {
2337 		window = free_space;
2338 
2339 		/* Advertise enough space so that it won't get scaled away.
2340 		 * Import case: prevent zero window announcement if
2341 		 * 1<<rcv_wscale > mss.
2342 		 */
2343 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2344 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2345 				  << tp->rx_opt.rcv_wscale);
2346 	} else {
2347 		/* Get the largest window that is a nice multiple of mss.
2348 		 * Window clamp already applied above.
2349 		 * If our current window offering is within 1 mss of the
2350 		 * free space we just keep it. This prevents the divide
2351 		 * and multiply from happening most of the time.
2352 		 * We also don't do any window rounding when the free space
2353 		 * is too small.
2354 		 */
2355 		if (window <= free_space - mss || window > free_space)
2356 			window = (free_space / mss) * mss;
2357 		else if (mss == full_space &&
2358 			 free_space > window + (full_space >> 1))
2359 			window = free_space;
2360 	}
2361 
2362 	return window;
2363 }
2364 
2365 /* Collapses two adjacent SKB's during retransmission. */
2366 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2367 {
2368 	struct tcp_sock *tp = tcp_sk(sk);
2369 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2370 	int skb_size, next_skb_size;
2371 
2372 	skb_size = skb->len;
2373 	next_skb_size = next_skb->len;
2374 
2375 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2376 
2377 	tcp_highest_sack_combine(sk, next_skb, skb);
2378 
2379 	tcp_unlink_write_queue(next_skb, sk);
2380 
2381 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2382 				  next_skb_size);
2383 
2384 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2385 		skb->ip_summed = CHECKSUM_PARTIAL;
2386 
2387 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2388 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2389 
2390 	/* Update sequence range on original skb. */
2391 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2392 
2393 	/* Merge over control information. This moves PSH/FIN etc. over */
2394 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2395 
2396 	/* All done, get rid of second SKB and account for it so
2397 	 * packet counting does not break.
2398 	 */
2399 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2400 
2401 	/* changed transmit queue under us so clear hints */
2402 	tcp_clear_retrans_hints_partial(tp);
2403 	if (next_skb == tp->retransmit_skb_hint)
2404 		tp->retransmit_skb_hint = skb;
2405 
2406 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2407 
2408 	sk_wmem_free_skb(sk, next_skb);
2409 }
2410 
2411 /* Check if coalescing SKBs is legal. */
2412 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2413 {
2414 	if (tcp_skb_pcount(skb) > 1)
2415 		return false;
2416 	/* TODO: SACK collapsing could be used to remove this condition */
2417 	if (skb_shinfo(skb)->nr_frags != 0)
2418 		return false;
2419 	if (skb_cloned(skb))
2420 		return false;
2421 	if (skb == tcp_send_head(sk))
2422 		return false;
2423 	/* Some heurestics for collapsing over SACK'd could be invented */
2424 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2425 		return false;
2426 
2427 	return true;
2428 }
2429 
2430 /* Collapse packets in the retransmit queue to make to create
2431  * less packets on the wire. This is only done on retransmission.
2432  */
2433 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2434 				     int space)
2435 {
2436 	struct tcp_sock *tp = tcp_sk(sk);
2437 	struct sk_buff *skb = to, *tmp;
2438 	bool first = true;
2439 
2440 	if (!sysctl_tcp_retrans_collapse)
2441 		return;
2442 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2443 		return;
2444 
2445 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2446 		if (!tcp_can_collapse(sk, skb))
2447 			break;
2448 
2449 		space -= skb->len;
2450 
2451 		if (first) {
2452 			first = false;
2453 			continue;
2454 		}
2455 
2456 		if (space < 0)
2457 			break;
2458 		/* Punt if not enough space exists in the first SKB for
2459 		 * the data in the second
2460 		 */
2461 		if (skb->len > skb_availroom(to))
2462 			break;
2463 
2464 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2465 			break;
2466 
2467 		tcp_collapse_retrans(sk, to);
2468 	}
2469 }
2470 
2471 /* This retransmits one SKB.  Policy decisions and retransmit queue
2472  * state updates are done by the caller.  Returns non-zero if an
2473  * error occurred which prevented the send.
2474  */
2475 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2476 {
2477 	struct tcp_sock *tp = tcp_sk(sk);
2478 	struct inet_connection_sock *icsk = inet_csk(sk);
2479 	unsigned int cur_mss;
2480 	int err;
2481 
2482 	/* Inconslusive MTU probe */
2483 	if (icsk->icsk_mtup.probe_size) {
2484 		icsk->icsk_mtup.probe_size = 0;
2485 	}
2486 
2487 	/* Do not sent more than we queued. 1/4 is reserved for possible
2488 	 * copying overhead: fragmentation, tunneling, mangling etc.
2489 	 */
2490 	if (atomic_read(&sk->sk_wmem_alloc) >
2491 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2492 		return -EAGAIN;
2493 
2494 	if (skb_still_in_host_queue(sk, skb))
2495 		return -EBUSY;
2496 
2497 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2498 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2499 			BUG();
2500 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2501 			return -ENOMEM;
2502 	}
2503 
2504 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2505 		return -EHOSTUNREACH; /* Routing failure or similar. */
2506 
2507 	cur_mss = tcp_current_mss(sk);
2508 
2509 	/* If receiver has shrunk his window, and skb is out of
2510 	 * new window, do not retransmit it. The exception is the
2511 	 * case, when window is shrunk to zero. In this case
2512 	 * our retransmit serves as a zero window probe.
2513 	 */
2514 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2515 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2516 		return -EAGAIN;
2517 
2518 	if (skb->len > cur_mss) {
2519 		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2520 			return -ENOMEM; /* We'll try again later. */
2521 	} else {
2522 		int oldpcount = tcp_skb_pcount(skb);
2523 
2524 		if (unlikely(oldpcount > 1)) {
2525 			if (skb_unclone(skb, GFP_ATOMIC))
2526 				return -ENOMEM;
2527 			tcp_init_tso_segs(sk, skb, cur_mss);
2528 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2529 		}
2530 	}
2531 
2532 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2533 
2534 	/* Make a copy, if the first transmission SKB clone we made
2535 	 * is still in somebody's hands, else make a clone.
2536 	 */
2537 
2538 	/* make sure skb->data is aligned on arches that require it
2539 	 * and check if ack-trimming & collapsing extended the headroom
2540 	 * beyond what csum_start can cover.
2541 	 */
2542 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2543 		     skb_headroom(skb) >= 0xFFFF)) {
2544 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2545 						   GFP_ATOMIC);
2546 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2547 			     -ENOBUFS;
2548 	} else {
2549 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2550 	}
2551 
2552 	if (likely(!err)) {
2553 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2554 		/* Update global TCP statistics. */
2555 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2556 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2557 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2558 		tp->total_retrans++;
2559 	}
2560 	return err;
2561 }
2562 
2563 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2564 {
2565 	struct tcp_sock *tp = tcp_sk(sk);
2566 	int err = __tcp_retransmit_skb(sk, skb);
2567 
2568 	if (err == 0) {
2569 #if FASTRETRANS_DEBUG > 0
2570 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2571 			net_dbg_ratelimited("retrans_out leaked\n");
2572 		}
2573 #endif
2574 		if (!tp->retrans_out)
2575 			tp->lost_retrans_low = tp->snd_nxt;
2576 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2577 		tp->retrans_out += tcp_skb_pcount(skb);
2578 
2579 		/* Save stamp of the first retransmit. */
2580 		if (!tp->retrans_stamp)
2581 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2582 
2583 		/* snd_nxt is stored to detect loss of retransmitted segment,
2584 		 * see tcp_input.c tcp_sacktag_write_queue().
2585 		 */
2586 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2587 	} else if (err != -EBUSY) {
2588 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2589 	}
2590 
2591 	if (tp->undo_retrans < 0)
2592 		tp->undo_retrans = 0;
2593 	tp->undo_retrans += tcp_skb_pcount(skb);
2594 	return err;
2595 }
2596 
2597 /* Check if we forward retransmits are possible in the current
2598  * window/congestion state.
2599  */
2600 static bool tcp_can_forward_retransmit(struct sock *sk)
2601 {
2602 	const struct inet_connection_sock *icsk = inet_csk(sk);
2603 	const struct tcp_sock *tp = tcp_sk(sk);
2604 
2605 	/* Forward retransmissions are possible only during Recovery. */
2606 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2607 		return false;
2608 
2609 	/* No forward retransmissions in Reno are possible. */
2610 	if (tcp_is_reno(tp))
2611 		return false;
2612 
2613 	/* Yeah, we have to make difficult choice between forward transmission
2614 	 * and retransmission... Both ways have their merits...
2615 	 *
2616 	 * For now we do not retransmit anything, while we have some new
2617 	 * segments to send. In the other cases, follow rule 3 for
2618 	 * NextSeg() specified in RFC3517.
2619 	 */
2620 
2621 	if (tcp_may_send_now(sk))
2622 		return false;
2623 
2624 	return true;
2625 }
2626 
2627 /* This gets called after a retransmit timeout, and the initially
2628  * retransmitted data is acknowledged.  It tries to continue
2629  * resending the rest of the retransmit queue, until either
2630  * we've sent it all or the congestion window limit is reached.
2631  * If doing SACK, the first ACK which comes back for a timeout
2632  * based retransmit packet might feed us FACK information again.
2633  * If so, we use it to avoid unnecessarily retransmissions.
2634  */
2635 void tcp_xmit_retransmit_queue(struct sock *sk)
2636 {
2637 	const struct inet_connection_sock *icsk = inet_csk(sk);
2638 	struct tcp_sock *tp = tcp_sk(sk);
2639 	struct sk_buff *skb;
2640 	struct sk_buff *hole = NULL;
2641 	u32 last_lost;
2642 	int mib_idx;
2643 	int fwd_rexmitting = 0;
2644 
2645 	if (!tp->packets_out)
2646 		return;
2647 
2648 	if (!tp->lost_out)
2649 		tp->retransmit_high = tp->snd_una;
2650 
2651 	if (tp->retransmit_skb_hint) {
2652 		skb = tp->retransmit_skb_hint;
2653 		last_lost = TCP_SKB_CB(skb)->end_seq;
2654 		if (after(last_lost, tp->retransmit_high))
2655 			last_lost = tp->retransmit_high;
2656 	} else {
2657 		skb = tcp_write_queue_head(sk);
2658 		last_lost = tp->snd_una;
2659 	}
2660 
2661 	tcp_for_write_queue_from(skb, sk) {
2662 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2663 
2664 		if (skb == tcp_send_head(sk))
2665 			break;
2666 		/* we could do better than to assign each time */
2667 		if (hole == NULL)
2668 			tp->retransmit_skb_hint = skb;
2669 
2670 		/* Assume this retransmit will generate
2671 		 * only one packet for congestion window
2672 		 * calculation purposes.  This works because
2673 		 * tcp_retransmit_skb() will chop up the
2674 		 * packet to be MSS sized and all the
2675 		 * packet counting works out.
2676 		 */
2677 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2678 			return;
2679 
2680 		if (fwd_rexmitting) {
2681 begin_fwd:
2682 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2683 				break;
2684 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2685 
2686 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2687 			tp->retransmit_high = last_lost;
2688 			if (!tcp_can_forward_retransmit(sk))
2689 				break;
2690 			/* Backtrack if necessary to non-L'ed skb */
2691 			if (hole != NULL) {
2692 				skb = hole;
2693 				hole = NULL;
2694 			}
2695 			fwd_rexmitting = 1;
2696 			goto begin_fwd;
2697 
2698 		} else if (!(sacked & TCPCB_LOST)) {
2699 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2700 				hole = skb;
2701 			continue;
2702 
2703 		} else {
2704 			last_lost = TCP_SKB_CB(skb)->end_seq;
2705 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2706 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2707 			else
2708 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2709 		}
2710 
2711 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2712 			continue;
2713 
2714 		if (tcp_retransmit_skb(sk, skb))
2715 			return;
2716 
2717 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2718 
2719 		if (tcp_in_cwnd_reduction(sk))
2720 			tp->prr_out += tcp_skb_pcount(skb);
2721 
2722 		if (skb == tcp_write_queue_head(sk))
2723 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2724 						  inet_csk(sk)->icsk_rto,
2725 						  TCP_RTO_MAX);
2726 	}
2727 }
2728 
2729 /* Send a fin.  The caller locks the socket for us.  This cannot be
2730  * allowed to fail queueing a FIN frame under any circumstances.
2731  */
2732 void tcp_send_fin(struct sock *sk)
2733 {
2734 	struct tcp_sock *tp = tcp_sk(sk);
2735 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2736 	int mss_now;
2737 
2738 	/* Optimization, tack on the FIN if we have a queue of
2739 	 * unsent frames.  But be careful about outgoing SACKS
2740 	 * and IP options.
2741 	 */
2742 	mss_now = tcp_current_mss(sk);
2743 
2744 	if (tcp_send_head(sk) != NULL) {
2745 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2746 		TCP_SKB_CB(skb)->end_seq++;
2747 		tp->write_seq++;
2748 	} else {
2749 		/* Socket is locked, keep trying until memory is available. */
2750 		for (;;) {
2751 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2752 					       sk->sk_allocation);
2753 			if (skb)
2754 				break;
2755 			yield();
2756 		}
2757 
2758 		/* Reserve space for headers and prepare control bits. */
2759 		skb_reserve(skb, MAX_TCP_HEADER);
2760 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2761 		tcp_init_nondata_skb(skb, tp->write_seq,
2762 				     TCPHDR_ACK | TCPHDR_FIN);
2763 		tcp_queue_skb(sk, skb);
2764 	}
2765 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2766 }
2767 
2768 /* We get here when a process closes a file descriptor (either due to
2769  * an explicit close() or as a byproduct of exit()'ing) and there
2770  * was unread data in the receive queue.  This behavior is recommended
2771  * by RFC 2525, section 2.17.  -DaveM
2772  */
2773 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2774 {
2775 	struct sk_buff *skb;
2776 
2777 	/* NOTE: No TCP options attached and we never retransmit this. */
2778 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2779 	if (!skb) {
2780 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2781 		return;
2782 	}
2783 
2784 	/* Reserve space for headers and prepare control bits. */
2785 	skb_reserve(skb, MAX_TCP_HEADER);
2786 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2787 			     TCPHDR_ACK | TCPHDR_RST);
2788 	/* Send it off. */
2789 	if (tcp_transmit_skb(sk, skb, 0, priority))
2790 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2791 
2792 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2793 }
2794 
2795 /* Send a crossed SYN-ACK during socket establishment.
2796  * WARNING: This routine must only be called when we have already sent
2797  * a SYN packet that crossed the incoming SYN that caused this routine
2798  * to get called. If this assumption fails then the initial rcv_wnd
2799  * and rcv_wscale values will not be correct.
2800  */
2801 int tcp_send_synack(struct sock *sk)
2802 {
2803 	struct sk_buff *skb;
2804 
2805 	skb = tcp_write_queue_head(sk);
2806 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2807 		pr_debug("%s: wrong queue state\n", __func__);
2808 		return -EFAULT;
2809 	}
2810 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2811 		if (skb_cloned(skb)) {
2812 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2813 			if (nskb == NULL)
2814 				return -ENOMEM;
2815 			tcp_unlink_write_queue(skb, sk);
2816 			__skb_header_release(nskb);
2817 			__tcp_add_write_queue_head(sk, nskb);
2818 			sk_wmem_free_skb(sk, skb);
2819 			sk->sk_wmem_queued += nskb->truesize;
2820 			sk_mem_charge(sk, nskb->truesize);
2821 			skb = nskb;
2822 		}
2823 
2824 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2825 		tcp_ecn_send_synack(sk, skb);
2826 	}
2827 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2828 }
2829 
2830 /**
2831  * tcp_make_synack - Prepare a SYN-ACK.
2832  * sk: listener socket
2833  * dst: dst entry attached to the SYNACK
2834  * req: request_sock pointer
2835  *
2836  * Allocate one skb and build a SYNACK packet.
2837  * @dst is consumed : Caller should not use it again.
2838  */
2839 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2840 				struct request_sock *req,
2841 				struct tcp_fastopen_cookie *foc)
2842 {
2843 	struct tcp_out_options opts;
2844 	struct inet_request_sock *ireq = inet_rsk(req);
2845 	struct tcp_sock *tp = tcp_sk(sk);
2846 	struct tcphdr *th;
2847 	struct sk_buff *skb;
2848 	struct tcp_md5sig_key *md5;
2849 	int tcp_header_size;
2850 	int mss;
2851 
2852 	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2853 	if (unlikely(!skb)) {
2854 		dst_release(dst);
2855 		return NULL;
2856 	}
2857 	/* Reserve space for headers. */
2858 	skb_reserve(skb, MAX_TCP_HEADER);
2859 
2860 	skb_dst_set(skb, dst);
2861 	security_skb_owned_by(skb, sk);
2862 
2863 	mss = dst_metric_advmss(dst);
2864 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2865 		mss = tp->rx_opt.user_mss;
2866 
2867 	memset(&opts, 0, sizeof(opts));
2868 #ifdef CONFIG_SYN_COOKIES
2869 	if (unlikely(req->cookie_ts))
2870 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2871 	else
2872 #endif
2873 	skb_mstamp_get(&skb->skb_mstamp);
2874 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2875 					     foc) + sizeof(*th);
2876 
2877 	skb_push(skb, tcp_header_size);
2878 	skb_reset_transport_header(skb);
2879 
2880 	th = tcp_hdr(skb);
2881 	memset(th, 0, sizeof(struct tcphdr));
2882 	th->syn = 1;
2883 	th->ack = 1;
2884 	tcp_ecn_make_synack(req, th, sk);
2885 	th->source = htons(ireq->ir_num);
2886 	th->dest = ireq->ir_rmt_port;
2887 	/* Setting of flags are superfluous here for callers (and ECE is
2888 	 * not even correctly set)
2889 	 */
2890 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2891 			     TCPHDR_SYN | TCPHDR_ACK);
2892 
2893 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2894 	/* XXX data is queued and acked as is. No buffer/window check */
2895 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2896 
2897 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2898 	th->window = htons(min(req->rcv_wnd, 65535U));
2899 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2900 	th->doff = (tcp_header_size >> 2);
2901 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2902 
2903 #ifdef CONFIG_TCP_MD5SIG
2904 	/* Okay, we have all we need - do the md5 hash if needed */
2905 	if (md5) {
2906 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2907 					       md5, NULL, req, skb);
2908 	}
2909 #endif
2910 
2911 	return skb;
2912 }
2913 EXPORT_SYMBOL(tcp_make_synack);
2914 
2915 /* Do all connect socket setups that can be done AF independent. */
2916 static void tcp_connect_init(struct sock *sk)
2917 {
2918 	const struct dst_entry *dst = __sk_dst_get(sk);
2919 	struct tcp_sock *tp = tcp_sk(sk);
2920 	__u8 rcv_wscale;
2921 
2922 	/* We'll fix this up when we get a response from the other end.
2923 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2924 	 */
2925 	tp->tcp_header_len = sizeof(struct tcphdr) +
2926 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2927 
2928 #ifdef CONFIG_TCP_MD5SIG
2929 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2930 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2931 #endif
2932 
2933 	/* If user gave his TCP_MAXSEG, record it to clamp */
2934 	if (tp->rx_opt.user_mss)
2935 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2936 	tp->max_window = 0;
2937 	tcp_mtup_init(sk);
2938 	tcp_sync_mss(sk, dst_mtu(dst));
2939 
2940 	if (!tp->window_clamp)
2941 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2942 	tp->advmss = dst_metric_advmss(dst);
2943 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2944 		tp->advmss = tp->rx_opt.user_mss;
2945 
2946 	tcp_initialize_rcv_mss(sk);
2947 
2948 	/* limit the window selection if the user enforce a smaller rx buffer */
2949 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2950 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2951 		tp->window_clamp = tcp_full_space(sk);
2952 
2953 	tcp_select_initial_window(tcp_full_space(sk),
2954 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2955 				  &tp->rcv_wnd,
2956 				  &tp->window_clamp,
2957 				  sysctl_tcp_window_scaling,
2958 				  &rcv_wscale,
2959 				  dst_metric(dst, RTAX_INITRWND));
2960 
2961 	tp->rx_opt.rcv_wscale = rcv_wscale;
2962 	tp->rcv_ssthresh = tp->rcv_wnd;
2963 
2964 	sk->sk_err = 0;
2965 	sock_reset_flag(sk, SOCK_DONE);
2966 	tp->snd_wnd = 0;
2967 	tcp_init_wl(tp, 0);
2968 	tp->snd_una = tp->write_seq;
2969 	tp->snd_sml = tp->write_seq;
2970 	tp->snd_up = tp->write_seq;
2971 	tp->snd_nxt = tp->write_seq;
2972 
2973 	if (likely(!tp->repair))
2974 		tp->rcv_nxt = 0;
2975 	else
2976 		tp->rcv_tstamp = tcp_time_stamp;
2977 	tp->rcv_wup = tp->rcv_nxt;
2978 	tp->copied_seq = tp->rcv_nxt;
2979 
2980 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2981 	inet_csk(sk)->icsk_retransmits = 0;
2982 	tcp_clear_retrans(tp);
2983 }
2984 
2985 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2986 {
2987 	struct tcp_sock *tp = tcp_sk(sk);
2988 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2989 
2990 	tcb->end_seq += skb->len;
2991 	__skb_header_release(skb);
2992 	__tcp_add_write_queue_tail(sk, skb);
2993 	sk->sk_wmem_queued += skb->truesize;
2994 	sk_mem_charge(sk, skb->truesize);
2995 	tp->write_seq = tcb->end_seq;
2996 	tp->packets_out += tcp_skb_pcount(skb);
2997 }
2998 
2999 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3000  * queue a data-only packet after the regular SYN, such that regular SYNs
3001  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3002  * only the SYN sequence, the data are retransmitted in the first ACK.
3003  * If cookie is not cached or other error occurs, falls back to send a
3004  * regular SYN with Fast Open cookie request option.
3005  */
3006 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3007 {
3008 	struct tcp_sock *tp = tcp_sk(sk);
3009 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3010 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
3011 	struct sk_buff *syn_data = NULL, *data;
3012 	unsigned long last_syn_loss = 0;
3013 
3014 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3015 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3016 			       &syn_loss, &last_syn_loss);
3017 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3018 	if (syn_loss > 1 &&
3019 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3020 		fo->cookie.len = -1;
3021 		goto fallback;
3022 	}
3023 
3024 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3025 		fo->cookie.len = -1;
3026 	else if (fo->cookie.len <= 0)
3027 		goto fallback;
3028 
3029 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3030 	 * user-MSS. Reserve maximum option space for middleboxes that add
3031 	 * private TCP options. The cost is reduced data space in SYN :(
3032 	 */
3033 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3034 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3035 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3036 		MAX_TCP_OPTION_SPACE;
3037 
3038 	space = min_t(size_t, space, fo->size);
3039 
3040 	/* limit to order-0 allocations */
3041 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3042 
3043 	syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
3044 				   sk->sk_allocation);
3045 	if (syn_data == NULL)
3046 		goto fallback;
3047 
3048 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
3049 		struct iovec *iov = &fo->data->msg_iov[i];
3050 		unsigned char __user *from = iov->iov_base;
3051 		int len = iov->iov_len;
3052 
3053 		if (syn_data->len + len > space)
3054 			len = space - syn_data->len;
3055 		else if (i + 1 == iovlen)
3056 			/* No more data pending in inet_wait_for_connect() */
3057 			fo->data = NULL;
3058 
3059 		if (skb_add_data(syn_data, from, len))
3060 			goto fallback;
3061 	}
3062 
3063 	/* Queue a data-only packet after the regular SYN for retransmission */
3064 	data = pskb_copy(syn_data, sk->sk_allocation);
3065 	if (data == NULL)
3066 		goto fallback;
3067 	TCP_SKB_CB(data)->seq++;
3068 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
3069 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
3070 	tcp_connect_queue_skb(sk, data);
3071 	fo->copied = data->len;
3072 
3073 	/* syn_data is about to be sent, we need to take current time stamps
3074 	 * for the packets that are in write queue : SYN packet and DATA
3075 	 */
3076 	skb_mstamp_get(&syn->skb_mstamp);
3077 	data->skb_mstamp = syn->skb_mstamp;
3078 
3079 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
3080 		tp->syn_data = (fo->copied > 0);
3081 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3082 		goto done;
3083 	}
3084 	syn_data = NULL;
3085 
3086 fallback:
3087 	/* Send a regular SYN with Fast Open cookie request option */
3088 	if (fo->cookie.len > 0)
3089 		fo->cookie.len = 0;
3090 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3091 	if (err)
3092 		tp->syn_fastopen = 0;
3093 	kfree_skb(syn_data);
3094 done:
3095 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3096 	return err;
3097 }
3098 
3099 /* Build a SYN and send it off. */
3100 int tcp_connect(struct sock *sk)
3101 {
3102 	struct tcp_sock *tp = tcp_sk(sk);
3103 	struct sk_buff *buff;
3104 	int err;
3105 
3106 	tcp_connect_init(sk);
3107 
3108 	if (unlikely(tp->repair)) {
3109 		tcp_finish_connect(sk, NULL);
3110 		return 0;
3111 	}
3112 
3113 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3114 	if (unlikely(buff == NULL))
3115 		return -ENOBUFS;
3116 
3117 	/* Reserve space for headers. */
3118 	skb_reserve(buff, MAX_TCP_HEADER);
3119 
3120 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3121 	tp->retrans_stamp = tcp_time_stamp;
3122 	tcp_connect_queue_skb(sk, buff);
3123 	tcp_ecn_send_syn(sk, buff);
3124 
3125 	/* Send off SYN; include data in Fast Open. */
3126 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3127 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3128 	if (err == -ECONNREFUSED)
3129 		return err;
3130 
3131 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3132 	 * in order to make this packet get counted in tcpOutSegs.
3133 	 */
3134 	tp->snd_nxt = tp->write_seq;
3135 	tp->pushed_seq = tp->write_seq;
3136 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3137 
3138 	/* Timer for repeating the SYN until an answer. */
3139 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3140 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL(tcp_connect);
3144 
3145 /* Send out a delayed ack, the caller does the policy checking
3146  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3147  * for details.
3148  */
3149 void tcp_send_delayed_ack(struct sock *sk)
3150 {
3151 	struct inet_connection_sock *icsk = inet_csk(sk);
3152 	int ato = icsk->icsk_ack.ato;
3153 	unsigned long timeout;
3154 
3155 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3156 
3157 	if (ato > TCP_DELACK_MIN) {
3158 		const struct tcp_sock *tp = tcp_sk(sk);
3159 		int max_ato = HZ / 2;
3160 
3161 		if (icsk->icsk_ack.pingpong ||
3162 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3163 			max_ato = TCP_DELACK_MAX;
3164 
3165 		/* Slow path, intersegment interval is "high". */
3166 
3167 		/* If some rtt estimate is known, use it to bound delayed ack.
3168 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3169 		 * directly.
3170 		 */
3171 		if (tp->srtt_us) {
3172 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3173 					TCP_DELACK_MIN);
3174 
3175 			if (rtt < max_ato)
3176 				max_ato = rtt;
3177 		}
3178 
3179 		ato = min(ato, max_ato);
3180 	}
3181 
3182 	/* Stay within the limit we were given */
3183 	timeout = jiffies + ato;
3184 
3185 	/* Use new timeout only if there wasn't a older one earlier. */
3186 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3187 		/* If delack timer was blocked or is about to expire,
3188 		 * send ACK now.
3189 		 */
3190 		if (icsk->icsk_ack.blocked ||
3191 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3192 			tcp_send_ack(sk);
3193 			return;
3194 		}
3195 
3196 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3197 			timeout = icsk->icsk_ack.timeout;
3198 	}
3199 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3200 	icsk->icsk_ack.timeout = timeout;
3201 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3202 }
3203 
3204 /* This routine sends an ack and also updates the window. */
3205 void tcp_send_ack(struct sock *sk)
3206 {
3207 	struct sk_buff *buff;
3208 
3209 	/* If we have been reset, we may not send again. */
3210 	if (sk->sk_state == TCP_CLOSE)
3211 		return;
3212 
3213 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3214 
3215 	/* We are not putting this on the write queue, so
3216 	 * tcp_transmit_skb() will set the ownership to this
3217 	 * sock.
3218 	 */
3219 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3220 	if (buff == NULL) {
3221 		inet_csk_schedule_ack(sk);
3222 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3223 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3224 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3225 		return;
3226 	}
3227 
3228 	/* Reserve space for headers and prepare control bits. */
3229 	skb_reserve(buff, MAX_TCP_HEADER);
3230 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3231 
3232 	/* Send it off, this clears delayed acks for us. */
3233 	skb_mstamp_get(&buff->skb_mstamp);
3234 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3235 }
3236 EXPORT_SYMBOL_GPL(tcp_send_ack);
3237 
3238 /* This routine sends a packet with an out of date sequence
3239  * number. It assumes the other end will try to ack it.
3240  *
3241  * Question: what should we make while urgent mode?
3242  * 4.4BSD forces sending single byte of data. We cannot send
3243  * out of window data, because we have SND.NXT==SND.MAX...
3244  *
3245  * Current solution: to send TWO zero-length segments in urgent mode:
3246  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3247  * out-of-date with SND.UNA-1 to probe window.
3248  */
3249 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3250 {
3251 	struct tcp_sock *tp = tcp_sk(sk);
3252 	struct sk_buff *skb;
3253 
3254 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3255 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3256 	if (skb == NULL)
3257 		return -1;
3258 
3259 	/* Reserve space for headers and set control bits. */
3260 	skb_reserve(skb, MAX_TCP_HEADER);
3261 	/* Use a previous sequence.  This should cause the other
3262 	 * end to send an ack.  Don't queue or clone SKB, just
3263 	 * send it.
3264 	 */
3265 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3266 	skb_mstamp_get(&skb->skb_mstamp);
3267 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3268 }
3269 
3270 void tcp_send_window_probe(struct sock *sk)
3271 {
3272 	if (sk->sk_state == TCP_ESTABLISHED) {
3273 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3274 		tcp_xmit_probe_skb(sk, 0);
3275 	}
3276 }
3277 
3278 /* Initiate keepalive or window probe from timer. */
3279 int tcp_write_wakeup(struct sock *sk)
3280 {
3281 	struct tcp_sock *tp = tcp_sk(sk);
3282 	struct sk_buff *skb;
3283 
3284 	if (sk->sk_state == TCP_CLOSE)
3285 		return -1;
3286 
3287 	if ((skb = tcp_send_head(sk)) != NULL &&
3288 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3289 		int err;
3290 		unsigned int mss = tcp_current_mss(sk);
3291 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3292 
3293 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3294 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3295 
3296 		/* We are probing the opening of a window
3297 		 * but the window size is != 0
3298 		 * must have been a result SWS avoidance ( sender )
3299 		 */
3300 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3301 		    skb->len > mss) {
3302 			seg_size = min(seg_size, mss);
3303 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3304 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3305 				return -1;
3306 		} else if (!tcp_skb_pcount(skb))
3307 			tcp_set_skb_tso_segs(sk, skb, mss);
3308 
3309 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3310 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3311 		if (!err)
3312 			tcp_event_new_data_sent(sk, skb);
3313 		return err;
3314 	} else {
3315 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3316 			tcp_xmit_probe_skb(sk, 1);
3317 		return tcp_xmit_probe_skb(sk, 0);
3318 	}
3319 }
3320 
3321 /* A window probe timeout has occurred.  If window is not closed send
3322  * a partial packet else a zero probe.
3323  */
3324 void tcp_send_probe0(struct sock *sk)
3325 {
3326 	struct inet_connection_sock *icsk = inet_csk(sk);
3327 	struct tcp_sock *tp = tcp_sk(sk);
3328 	unsigned long probe_max;
3329 	int err;
3330 
3331 	err = tcp_write_wakeup(sk);
3332 
3333 	if (tp->packets_out || !tcp_send_head(sk)) {
3334 		/* Cancel probe timer, if it is not required. */
3335 		icsk->icsk_probes_out = 0;
3336 		icsk->icsk_backoff = 0;
3337 		return;
3338 	}
3339 
3340 	if (err <= 0) {
3341 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3342 			icsk->icsk_backoff++;
3343 		icsk->icsk_probes_out++;
3344 		probe_max = TCP_RTO_MAX;
3345 	} else {
3346 		/* If packet was not sent due to local congestion,
3347 		 * do not backoff and do not remember icsk_probes_out.
3348 		 * Let local senders to fight for local resources.
3349 		 *
3350 		 * Use accumulated backoff yet.
3351 		 */
3352 		if (!icsk->icsk_probes_out)
3353 			icsk->icsk_probes_out = 1;
3354 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3355 	}
3356 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3357 				  inet_csk_rto_backoff(icsk, probe_max),
3358 				  TCP_RTO_MAX);
3359 }
3360 
3361 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3362 {
3363 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3364 	struct flowi fl;
3365 	int res;
3366 
3367 	res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3368 	if (!res) {
3369 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3370 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3371 	}
3372 	return res;
3373 }
3374 EXPORT_SYMBOL(tcp_rtx_synack);
3375