xref: /openbmc/linux/net/ipv4/tcp_output.c (revision d06a99045837d3f4d5431793c4c390b0daf2a08d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
57 			   int push_one, gfp_t gfp);
58 
59 /* Account for new data that has been sent to the network. */
60 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
61 {
62 	struct inet_connection_sock *icsk = inet_csk(sk);
63 	struct tcp_sock *tp = tcp_sk(sk);
64 	unsigned int prior_packets = tp->packets_out;
65 
66 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
67 
68 	__skb_unlink(skb, &sk->sk_write_queue);
69 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
70 
71 	tp->packets_out += tcp_skb_pcount(skb);
72 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
73 		tcp_rearm_rto(sk);
74 
75 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
76 		      tcp_skb_pcount(skb));
77 }
78 
79 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
80  * window scaling factor due to loss of precision.
81  * If window has been shrunk, what should we make? It is not clear at all.
82  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
83  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
84  * invalid. OK, let's make this for now:
85  */
86 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
87 {
88 	const struct tcp_sock *tp = tcp_sk(sk);
89 
90 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
91 	    (tp->rx_opt.wscale_ok &&
92 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
93 		return tp->snd_nxt;
94 	else
95 		return tcp_wnd_end(tp);
96 }
97 
98 /* Calculate mss to advertise in SYN segment.
99  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
100  *
101  * 1. It is independent of path mtu.
102  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
103  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
104  *    attached devices, because some buggy hosts are confused by
105  *    large MSS.
106  * 4. We do not make 3, we advertise MSS, calculated from first
107  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
108  *    This may be overridden via information stored in routing table.
109  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
110  *    probably even Jumbo".
111  */
112 static __u16 tcp_advertise_mss(struct sock *sk)
113 {
114 	struct tcp_sock *tp = tcp_sk(sk);
115 	const struct dst_entry *dst = __sk_dst_get(sk);
116 	int mss = tp->advmss;
117 
118 	if (dst) {
119 		unsigned int metric = dst_metric_advmss(dst);
120 
121 		if (metric < mss) {
122 			mss = metric;
123 			tp->advmss = mss;
124 		}
125 	}
126 
127 	return (__u16)mss;
128 }
129 
130 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
131  * This is the first part of cwnd validation mechanism.
132  */
133 void tcp_cwnd_restart(struct sock *sk, s32 delta)
134 {
135 	struct tcp_sock *tp = tcp_sk(sk);
136 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
137 	u32 cwnd = tp->snd_cwnd;
138 
139 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
140 
141 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
142 	restart_cwnd = min(restart_cwnd, cwnd);
143 
144 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
145 		cwnd >>= 1;
146 	tp->snd_cwnd = max(cwnd, restart_cwnd);
147 	tp->snd_cwnd_stamp = tcp_jiffies32;
148 	tp->snd_cwnd_used = 0;
149 }
150 
151 /* Congestion state accounting after a packet has been sent. */
152 static void tcp_event_data_sent(struct tcp_sock *tp,
153 				struct sock *sk)
154 {
155 	struct inet_connection_sock *icsk = inet_csk(sk);
156 	const u32 now = tcp_jiffies32;
157 
158 	if (tcp_packets_in_flight(tp) == 0)
159 		tcp_ca_event(sk, CA_EVENT_TX_START);
160 
161 	tp->lsndtime = now;
162 
163 	/* If it is a reply for ato after last received
164 	 * packet, enter pingpong mode.
165 	 */
166 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
167 		icsk->icsk_ack.pingpong = 1;
168 }
169 
170 /* Account for an ACK we sent. */
171 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
172 {
173 	tcp_dec_quickack_mode(sk, pkts);
174 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
175 }
176 
177 
178 u32 tcp_default_init_rwnd(u32 mss)
179 {
180 	/* Initial receive window should be twice of TCP_INIT_CWND to
181 	 * enable proper sending of new unsent data during fast recovery
182 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
183 	 * limit when mss is larger than 1460.
184 	 */
185 	u32 init_rwnd = TCP_INIT_CWND * 2;
186 
187 	if (mss > 1460)
188 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
189 	return init_rwnd;
190 }
191 
192 /* Determine a window scaling and initial window to offer.
193  * Based on the assumption that the given amount of space
194  * will be offered. Store the results in the tp structure.
195  * NOTE: for smooth operation initial space offering should
196  * be a multiple of mss if possible. We assume here that mss >= 1.
197  * This MUST be enforced by all callers.
198  */
199 void tcp_select_initial_window(int __space, __u32 mss,
200 			       __u32 *rcv_wnd, __u32 *window_clamp,
201 			       int wscale_ok, __u8 *rcv_wscale,
202 			       __u32 init_rcv_wnd)
203 {
204 	unsigned int space = (__space < 0 ? 0 : __space);
205 
206 	/* If no clamp set the clamp to the max possible scaled window */
207 	if (*window_clamp == 0)
208 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
209 	space = min(*window_clamp, space);
210 
211 	/* Quantize space offering to a multiple of mss if possible. */
212 	if (space > mss)
213 		space = rounddown(space, mss);
214 
215 	/* NOTE: offering an initial window larger than 32767
216 	 * will break some buggy TCP stacks. If the admin tells us
217 	 * it is likely we could be speaking with such a buggy stack
218 	 * we will truncate our initial window offering to 32K-1
219 	 * unless the remote has sent us a window scaling option,
220 	 * which we interpret as a sign the remote TCP is not
221 	 * misinterpreting the window field as a signed quantity.
222 	 */
223 	if (sysctl_tcp_workaround_signed_windows)
224 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
225 	else
226 		(*rcv_wnd) = space;
227 
228 	(*rcv_wscale) = 0;
229 	if (wscale_ok) {
230 		/* Set window scaling on max possible window */
231 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
232 		space = max_t(u32, space, sysctl_rmem_max);
233 		space = min_t(u32, space, *window_clamp);
234 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
235 			space >>= 1;
236 			(*rcv_wscale)++;
237 		}
238 	}
239 
240 	if (mss > (1 << *rcv_wscale)) {
241 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
242 			init_rcv_wnd = tcp_default_init_rwnd(mss);
243 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
244 	}
245 
246 	/* Set the clamp no higher than max representable value */
247 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250 
251 /* Chose a new window to advertise, update state in tcp_sock for the
252  * socket, and return result with RFC1323 scaling applied.  The return
253  * value can be stuffed directly into th->window for an outgoing
254  * frame.
255  */
256 static u16 tcp_select_window(struct sock *sk)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 	u32 old_win = tp->rcv_wnd;
260 	u32 cur_win = tcp_receive_window(tp);
261 	u32 new_win = __tcp_select_window(sk);
262 
263 	/* Never shrink the offered window */
264 	if (new_win < cur_win) {
265 		/* Danger Will Robinson!
266 		 * Don't update rcv_wup/rcv_wnd here or else
267 		 * we will not be able to advertise a zero
268 		 * window in time.  --DaveM
269 		 *
270 		 * Relax Will Robinson.
271 		 */
272 		if (new_win == 0)
273 			NET_INC_STATS(sock_net(sk),
274 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
275 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
276 	}
277 	tp->rcv_wnd = new_win;
278 	tp->rcv_wup = tp->rcv_nxt;
279 
280 	/* Make sure we do not exceed the maximum possible
281 	 * scaled window.
282 	 */
283 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
284 		new_win = min(new_win, MAX_TCP_WINDOW);
285 	else
286 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
287 
288 	/* RFC1323 scaling applied */
289 	new_win >>= tp->rx_opt.rcv_wscale;
290 
291 	/* If we advertise zero window, disable fast path. */
292 	if (new_win == 0) {
293 		tp->pred_flags = 0;
294 		if (old_win)
295 			NET_INC_STATS(sock_net(sk),
296 				      LINUX_MIB_TCPTOZEROWINDOWADV);
297 	} else if (old_win == 0) {
298 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
299 	}
300 
301 	return new_win;
302 }
303 
304 /* Packet ECN state for a SYN-ACK */
305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
306 {
307 	const struct tcp_sock *tp = tcp_sk(sk);
308 
309 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
310 	if (!(tp->ecn_flags & TCP_ECN_OK))
311 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
312 	else if (tcp_ca_needs_ecn(sk) ||
313 		 tcp_bpf_ca_needs_ecn(sk))
314 		INET_ECN_xmit(sk);
315 }
316 
317 /* Packet ECN state for a SYN.  */
318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
319 {
320 	struct tcp_sock *tp = tcp_sk(sk);
321 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
322 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
323 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
324 
325 	if (!use_ecn) {
326 		const struct dst_entry *dst = __sk_dst_get(sk);
327 
328 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
329 			use_ecn = true;
330 	}
331 
332 	tp->ecn_flags = 0;
333 
334 	if (use_ecn) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
338 			INET_ECN_xmit(sk);
339 	}
340 }
341 
342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
345 		/* tp->ecn_flags are cleared at a later point in time when
346 		 * SYN ACK is ultimatively being received.
347 		 */
348 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
349 }
350 
351 static void
352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
353 {
354 	if (inet_rsk(req)->ecn_ok)
355 		th->ece = 1;
356 }
357 
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359  * be sent.
360  */
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 			 struct tcphdr *th, int tcp_header_len)
363 {
364 	struct tcp_sock *tp = tcp_sk(sk);
365 
366 	if (tp->ecn_flags & TCP_ECN_OK) {
367 		/* Not-retransmitted data segment: set ECT and inject CWR. */
368 		if (skb->len != tcp_header_len &&
369 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 			INET_ECN_xmit(sk);
371 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 				th->cwr = 1;
374 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 			}
376 		} else if (!tcp_ca_needs_ecn(sk)) {
377 			/* ACK or retransmitted segment: clear ECT|CE */
378 			INET_ECN_dontxmit(sk);
379 		}
380 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 			th->ece = 1;
382 	}
383 }
384 
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386  * auto increment end seqno.
387  */
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 	skb->ip_summed = CHECKSUM_PARTIAL;
391 	skb->csum = 0;
392 
393 	TCP_SKB_CB(skb)->tcp_flags = flags;
394 	TCP_SKB_CB(skb)->sacked = 0;
395 
396 	tcp_skb_pcount_set(skb, 1);
397 
398 	TCP_SKB_CB(skb)->seq = seq;
399 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
400 		seq++;
401 	TCP_SKB_CB(skb)->end_seq = seq;
402 }
403 
404 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
405 {
406 	return tp->snd_una != tp->snd_up;
407 }
408 
409 #define OPTION_SACK_ADVERTISE	(1 << 0)
410 #define OPTION_TS		(1 << 1)
411 #define OPTION_MD5		(1 << 2)
412 #define OPTION_WSCALE		(1 << 3)
413 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
414 #define OPTION_SMC		(1 << 9)
415 
416 static void smc_options_write(__be32 *ptr, u16 *options)
417 {
418 #if IS_ENABLED(CONFIG_SMC)
419 	if (static_branch_unlikely(&tcp_have_smc)) {
420 		if (unlikely(OPTION_SMC & *options)) {
421 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
422 				       (TCPOPT_NOP  << 16) |
423 				       (TCPOPT_EXP <<  8) |
424 				       (TCPOLEN_EXP_SMC_BASE));
425 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
426 		}
427 	}
428 #endif
429 }
430 
431 struct tcp_out_options {
432 	u16 options;		/* bit field of OPTION_* */
433 	u16 mss;		/* 0 to disable */
434 	u8 ws;			/* window scale, 0 to disable */
435 	u8 num_sack_blocks;	/* number of SACK blocks to include */
436 	u8 hash_size;		/* bytes in hash_location */
437 	__u8 *hash_location;	/* temporary pointer, overloaded */
438 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
439 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
440 };
441 
442 /* Write previously computed TCP options to the packet.
443  *
444  * Beware: Something in the Internet is very sensitive to the ordering of
445  * TCP options, we learned this through the hard way, so be careful here.
446  * Luckily we can at least blame others for their non-compliance but from
447  * inter-operability perspective it seems that we're somewhat stuck with
448  * the ordering which we have been using if we want to keep working with
449  * those broken things (not that it currently hurts anybody as there isn't
450  * particular reason why the ordering would need to be changed).
451  *
452  * At least SACK_PERM as the first option is known to lead to a disaster
453  * (but it may well be that other scenarios fail similarly).
454  */
455 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
456 			      struct tcp_out_options *opts)
457 {
458 	u16 options = opts->options;	/* mungable copy */
459 
460 	if (unlikely(OPTION_MD5 & options)) {
461 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
462 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
463 		/* overload cookie hash location */
464 		opts->hash_location = (__u8 *)ptr;
465 		ptr += 4;
466 	}
467 
468 	if (unlikely(opts->mss)) {
469 		*ptr++ = htonl((TCPOPT_MSS << 24) |
470 			       (TCPOLEN_MSS << 16) |
471 			       opts->mss);
472 	}
473 
474 	if (likely(OPTION_TS & options)) {
475 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
476 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
477 				       (TCPOLEN_SACK_PERM << 16) |
478 				       (TCPOPT_TIMESTAMP << 8) |
479 				       TCPOLEN_TIMESTAMP);
480 			options &= ~OPTION_SACK_ADVERTISE;
481 		} else {
482 			*ptr++ = htonl((TCPOPT_NOP << 24) |
483 				       (TCPOPT_NOP << 16) |
484 				       (TCPOPT_TIMESTAMP << 8) |
485 				       TCPOLEN_TIMESTAMP);
486 		}
487 		*ptr++ = htonl(opts->tsval);
488 		*ptr++ = htonl(opts->tsecr);
489 	}
490 
491 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
492 		*ptr++ = htonl((TCPOPT_NOP << 24) |
493 			       (TCPOPT_NOP << 16) |
494 			       (TCPOPT_SACK_PERM << 8) |
495 			       TCPOLEN_SACK_PERM);
496 	}
497 
498 	if (unlikely(OPTION_WSCALE & options)) {
499 		*ptr++ = htonl((TCPOPT_NOP << 24) |
500 			       (TCPOPT_WINDOW << 16) |
501 			       (TCPOLEN_WINDOW << 8) |
502 			       opts->ws);
503 	}
504 
505 	if (unlikely(opts->num_sack_blocks)) {
506 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
507 			tp->duplicate_sack : tp->selective_acks;
508 		int this_sack;
509 
510 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
511 			       (TCPOPT_NOP  << 16) |
512 			       (TCPOPT_SACK <<  8) |
513 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
514 						     TCPOLEN_SACK_PERBLOCK)));
515 
516 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
517 		     ++this_sack) {
518 			*ptr++ = htonl(sp[this_sack].start_seq);
519 			*ptr++ = htonl(sp[this_sack].end_seq);
520 		}
521 
522 		tp->rx_opt.dsack = 0;
523 	}
524 
525 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
526 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
527 		u8 *p = (u8 *)ptr;
528 		u32 len; /* Fast Open option length */
529 
530 		if (foc->exp) {
531 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
532 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
533 				     TCPOPT_FASTOPEN_MAGIC);
534 			p += TCPOLEN_EXP_FASTOPEN_BASE;
535 		} else {
536 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
537 			*p++ = TCPOPT_FASTOPEN;
538 			*p++ = len;
539 		}
540 
541 		memcpy(p, foc->val, foc->len);
542 		if ((len & 3) == 2) {
543 			p[foc->len] = TCPOPT_NOP;
544 			p[foc->len + 1] = TCPOPT_NOP;
545 		}
546 		ptr += (len + 3) >> 2;
547 	}
548 
549 	smc_options_write(ptr, &options);
550 }
551 
552 static void smc_set_option(const struct tcp_sock *tp,
553 			   struct tcp_out_options *opts,
554 			   unsigned int *remaining)
555 {
556 #if IS_ENABLED(CONFIG_SMC)
557 	if (static_branch_unlikely(&tcp_have_smc)) {
558 		if (tp->syn_smc) {
559 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
560 				opts->options |= OPTION_SMC;
561 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
562 			}
563 		}
564 	}
565 #endif
566 }
567 
568 static void smc_set_option_cond(const struct tcp_sock *tp,
569 				const struct inet_request_sock *ireq,
570 				struct tcp_out_options *opts,
571 				unsigned int *remaining)
572 {
573 #if IS_ENABLED(CONFIG_SMC)
574 	if (static_branch_unlikely(&tcp_have_smc)) {
575 		if (tp->syn_smc && ireq->smc_ok) {
576 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
577 				opts->options |= OPTION_SMC;
578 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
579 			}
580 		}
581 	}
582 #endif
583 }
584 
585 /* Compute TCP options for SYN packets. This is not the final
586  * network wire format yet.
587  */
588 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
589 				struct tcp_out_options *opts,
590 				struct tcp_md5sig_key **md5)
591 {
592 	struct tcp_sock *tp = tcp_sk(sk);
593 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
594 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
595 
596 #ifdef CONFIG_TCP_MD5SIG
597 	*md5 = tp->af_specific->md5_lookup(sk, sk);
598 	if (*md5) {
599 		opts->options |= OPTION_MD5;
600 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
601 	}
602 #else
603 	*md5 = NULL;
604 #endif
605 
606 	/* We always get an MSS option.  The option bytes which will be seen in
607 	 * normal data packets should timestamps be used, must be in the MSS
608 	 * advertised.  But we subtract them from tp->mss_cache so that
609 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
610 	 * fact here if necessary.  If we don't do this correctly, as a
611 	 * receiver we won't recognize data packets as being full sized when we
612 	 * should, and thus we won't abide by the delayed ACK rules correctly.
613 	 * SACKs don't matter, we never delay an ACK when we have any of those
614 	 * going out.  */
615 	opts->mss = tcp_advertise_mss(sk);
616 	remaining -= TCPOLEN_MSS_ALIGNED;
617 
618 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
619 		opts->options |= OPTION_TS;
620 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
621 		opts->tsecr = tp->rx_opt.ts_recent;
622 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
623 	}
624 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
625 		opts->ws = tp->rx_opt.rcv_wscale;
626 		opts->options |= OPTION_WSCALE;
627 		remaining -= TCPOLEN_WSCALE_ALIGNED;
628 	}
629 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
630 		opts->options |= OPTION_SACK_ADVERTISE;
631 		if (unlikely(!(OPTION_TS & opts->options)))
632 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
633 	}
634 
635 	if (fastopen && fastopen->cookie.len >= 0) {
636 		u32 need = fastopen->cookie.len;
637 
638 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
639 					       TCPOLEN_FASTOPEN_BASE;
640 		need = (need + 3) & ~3U;  /* Align to 32 bits */
641 		if (remaining >= need) {
642 			opts->options |= OPTION_FAST_OPEN_COOKIE;
643 			opts->fastopen_cookie = &fastopen->cookie;
644 			remaining -= need;
645 			tp->syn_fastopen = 1;
646 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
647 		}
648 	}
649 
650 	smc_set_option(tp, opts, &remaining);
651 
652 	return MAX_TCP_OPTION_SPACE - remaining;
653 }
654 
655 /* Set up TCP options for SYN-ACKs. */
656 static unsigned int tcp_synack_options(const struct sock *sk,
657 				       struct request_sock *req,
658 				       unsigned int mss, struct sk_buff *skb,
659 				       struct tcp_out_options *opts,
660 				       const struct tcp_md5sig_key *md5,
661 				       struct tcp_fastopen_cookie *foc)
662 {
663 	struct inet_request_sock *ireq = inet_rsk(req);
664 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
665 
666 #ifdef CONFIG_TCP_MD5SIG
667 	if (md5) {
668 		opts->options |= OPTION_MD5;
669 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
670 
671 		/* We can't fit any SACK blocks in a packet with MD5 + TS
672 		 * options. There was discussion about disabling SACK
673 		 * rather than TS in order to fit in better with old,
674 		 * buggy kernels, but that was deemed to be unnecessary.
675 		 */
676 		ireq->tstamp_ok &= !ireq->sack_ok;
677 	}
678 #endif
679 
680 	/* We always send an MSS option. */
681 	opts->mss = mss;
682 	remaining -= TCPOLEN_MSS_ALIGNED;
683 
684 	if (likely(ireq->wscale_ok)) {
685 		opts->ws = ireq->rcv_wscale;
686 		opts->options |= OPTION_WSCALE;
687 		remaining -= TCPOLEN_WSCALE_ALIGNED;
688 	}
689 	if (likely(ireq->tstamp_ok)) {
690 		opts->options |= OPTION_TS;
691 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
692 		opts->tsecr = req->ts_recent;
693 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
694 	}
695 	if (likely(ireq->sack_ok)) {
696 		opts->options |= OPTION_SACK_ADVERTISE;
697 		if (unlikely(!ireq->tstamp_ok))
698 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
699 	}
700 	if (foc != NULL && foc->len >= 0) {
701 		u32 need = foc->len;
702 
703 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
704 				   TCPOLEN_FASTOPEN_BASE;
705 		need = (need + 3) & ~3U;  /* Align to 32 bits */
706 		if (remaining >= need) {
707 			opts->options |= OPTION_FAST_OPEN_COOKIE;
708 			opts->fastopen_cookie = foc;
709 			remaining -= need;
710 		}
711 	}
712 
713 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
714 
715 	return MAX_TCP_OPTION_SPACE - remaining;
716 }
717 
718 /* Compute TCP options for ESTABLISHED sockets. This is not the
719  * final wire format yet.
720  */
721 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
722 					struct tcp_out_options *opts,
723 					struct tcp_md5sig_key **md5)
724 {
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	unsigned int size = 0;
727 	unsigned int eff_sacks;
728 
729 	opts->options = 0;
730 
731 #ifdef CONFIG_TCP_MD5SIG
732 	*md5 = tp->af_specific->md5_lookup(sk, sk);
733 	if (unlikely(*md5)) {
734 		opts->options |= OPTION_MD5;
735 		size += TCPOLEN_MD5SIG_ALIGNED;
736 	}
737 #else
738 	*md5 = NULL;
739 #endif
740 
741 	if (likely(tp->rx_opt.tstamp_ok)) {
742 		opts->options |= OPTION_TS;
743 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
744 		opts->tsecr = tp->rx_opt.ts_recent;
745 		size += TCPOLEN_TSTAMP_ALIGNED;
746 	}
747 
748 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
749 	if (unlikely(eff_sacks)) {
750 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
751 		opts->num_sack_blocks =
752 			min_t(unsigned int, eff_sacks,
753 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
754 			      TCPOLEN_SACK_PERBLOCK);
755 		size += TCPOLEN_SACK_BASE_ALIGNED +
756 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
757 	}
758 
759 	return size;
760 }
761 
762 
763 /* TCP SMALL QUEUES (TSQ)
764  *
765  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
766  * to reduce RTT and bufferbloat.
767  * We do this using a special skb destructor (tcp_wfree).
768  *
769  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
770  * needs to be reallocated in a driver.
771  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
772  *
773  * Since transmit from skb destructor is forbidden, we use a tasklet
774  * to process all sockets that eventually need to send more skbs.
775  * We use one tasklet per cpu, with its own queue of sockets.
776  */
777 struct tsq_tasklet {
778 	struct tasklet_struct	tasklet;
779 	struct list_head	head; /* queue of tcp sockets */
780 };
781 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
782 
783 static void tcp_tsq_handler(struct sock *sk)
784 {
785 	if ((1 << sk->sk_state) &
786 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
787 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
788 		struct tcp_sock *tp = tcp_sk(sk);
789 
790 		if (tp->lost_out > tp->retrans_out &&
791 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
792 			tcp_xmit_retransmit_queue(sk);
793 
794 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
795 			       0, GFP_ATOMIC);
796 	}
797 }
798 /*
799  * One tasklet per cpu tries to send more skbs.
800  * We run in tasklet context but need to disable irqs when
801  * transferring tsq->head because tcp_wfree() might
802  * interrupt us (non NAPI drivers)
803  */
804 static void tcp_tasklet_func(unsigned long data)
805 {
806 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
807 	LIST_HEAD(list);
808 	unsigned long flags;
809 	struct list_head *q, *n;
810 	struct tcp_sock *tp;
811 	struct sock *sk;
812 
813 	local_irq_save(flags);
814 	list_splice_init(&tsq->head, &list);
815 	local_irq_restore(flags);
816 
817 	list_for_each_safe(q, n, &list) {
818 		tp = list_entry(q, struct tcp_sock, tsq_node);
819 		list_del(&tp->tsq_node);
820 
821 		sk = (struct sock *)tp;
822 		smp_mb__before_atomic();
823 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
824 
825 		if (!sk->sk_lock.owned &&
826 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
827 			bh_lock_sock(sk);
828 			if (!sock_owned_by_user(sk)) {
829 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
830 				tcp_tsq_handler(sk);
831 			}
832 			bh_unlock_sock(sk);
833 		}
834 
835 		sk_free(sk);
836 	}
837 }
838 
839 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
840 			  TCPF_WRITE_TIMER_DEFERRED |	\
841 			  TCPF_DELACK_TIMER_DEFERRED |	\
842 			  TCPF_MTU_REDUCED_DEFERRED)
843 /**
844  * tcp_release_cb - tcp release_sock() callback
845  * @sk: socket
846  *
847  * called from release_sock() to perform protocol dependent
848  * actions before socket release.
849  */
850 void tcp_release_cb(struct sock *sk)
851 {
852 	unsigned long flags, nflags;
853 
854 	/* perform an atomic operation only if at least one flag is set */
855 	do {
856 		flags = sk->sk_tsq_flags;
857 		if (!(flags & TCP_DEFERRED_ALL))
858 			return;
859 		nflags = flags & ~TCP_DEFERRED_ALL;
860 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
861 
862 	if (flags & TCPF_TSQ_DEFERRED)
863 		tcp_tsq_handler(sk);
864 
865 	/* Here begins the tricky part :
866 	 * We are called from release_sock() with :
867 	 * 1) BH disabled
868 	 * 2) sk_lock.slock spinlock held
869 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
870 	 *
871 	 * But following code is meant to be called from BH handlers,
872 	 * so we should keep BH disabled, but early release socket ownership
873 	 */
874 	sock_release_ownership(sk);
875 
876 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
877 		tcp_write_timer_handler(sk);
878 		__sock_put(sk);
879 	}
880 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
881 		tcp_delack_timer_handler(sk);
882 		__sock_put(sk);
883 	}
884 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
885 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
886 		__sock_put(sk);
887 	}
888 }
889 EXPORT_SYMBOL(tcp_release_cb);
890 
891 void __init tcp_tasklet_init(void)
892 {
893 	int i;
894 
895 	for_each_possible_cpu(i) {
896 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
897 
898 		INIT_LIST_HEAD(&tsq->head);
899 		tasklet_init(&tsq->tasklet,
900 			     tcp_tasklet_func,
901 			     (unsigned long)tsq);
902 	}
903 }
904 
905 /*
906  * Write buffer destructor automatically called from kfree_skb.
907  * We can't xmit new skbs from this context, as we might already
908  * hold qdisc lock.
909  */
910 void tcp_wfree(struct sk_buff *skb)
911 {
912 	struct sock *sk = skb->sk;
913 	struct tcp_sock *tp = tcp_sk(sk);
914 	unsigned long flags, nval, oval;
915 
916 	/* Keep one reference on sk_wmem_alloc.
917 	 * Will be released by sk_free() from here or tcp_tasklet_func()
918 	 */
919 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
920 
921 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
922 	 * Wait until our queues (qdisc + devices) are drained.
923 	 * This gives :
924 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
925 	 * - chance for incoming ACK (processed by another cpu maybe)
926 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
927 	 */
928 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
929 		goto out;
930 
931 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
932 		struct tsq_tasklet *tsq;
933 		bool empty;
934 
935 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
936 			goto out;
937 
938 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
939 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
940 		if (nval != oval)
941 			continue;
942 
943 		/* queue this socket to tasklet queue */
944 		local_irq_save(flags);
945 		tsq = this_cpu_ptr(&tsq_tasklet);
946 		empty = list_empty(&tsq->head);
947 		list_add(&tp->tsq_node, &tsq->head);
948 		if (empty)
949 			tasklet_schedule(&tsq->tasklet);
950 		local_irq_restore(flags);
951 		return;
952 	}
953 out:
954 	sk_free(sk);
955 }
956 
957 /* Note: Called under hard irq.
958  * We can not call TCP stack right away.
959  */
960 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
961 {
962 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
963 	struct sock *sk = (struct sock *)tp;
964 	unsigned long nval, oval;
965 
966 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
967 		struct tsq_tasklet *tsq;
968 		bool empty;
969 
970 		if (oval & TSQF_QUEUED)
971 			break;
972 
973 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
974 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
975 		if (nval != oval)
976 			continue;
977 
978 		if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
979 			break;
980 		/* queue this socket to tasklet queue */
981 		tsq = this_cpu_ptr(&tsq_tasklet);
982 		empty = list_empty(&tsq->head);
983 		list_add(&tp->tsq_node, &tsq->head);
984 		if (empty)
985 			tasklet_schedule(&tsq->tasklet);
986 		break;
987 	}
988 	return HRTIMER_NORESTART;
989 }
990 
991 /* BBR congestion control needs pacing.
992  * Same remark for SO_MAX_PACING_RATE.
993  * sch_fq packet scheduler is efficiently handling pacing,
994  * but is not always installed/used.
995  * Return true if TCP stack should pace packets itself.
996  */
997 static bool tcp_needs_internal_pacing(const struct sock *sk)
998 {
999 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1000 }
1001 
1002 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
1003 {
1004 	u64 len_ns;
1005 	u32 rate;
1006 
1007 	if (!tcp_needs_internal_pacing(sk))
1008 		return;
1009 	rate = sk->sk_pacing_rate;
1010 	if (!rate || rate == ~0U)
1011 		return;
1012 
1013 	/* Should account for header sizes as sch_fq does,
1014 	 * but lets make things simple.
1015 	 */
1016 	len_ns = (u64)skb->len * NSEC_PER_SEC;
1017 	do_div(len_ns, rate);
1018 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
1019 		      ktime_add_ns(ktime_get(), len_ns),
1020 		      HRTIMER_MODE_ABS_PINNED);
1021 }
1022 
1023 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1024 {
1025 	skb->skb_mstamp = tp->tcp_mstamp;
1026 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1027 }
1028 
1029 /* This routine actually transmits TCP packets queued in by
1030  * tcp_do_sendmsg().  This is used by both the initial
1031  * transmission and possible later retransmissions.
1032  * All SKB's seen here are completely headerless.  It is our
1033  * job to build the TCP header, and pass the packet down to
1034  * IP so it can do the same plus pass the packet off to the
1035  * device.
1036  *
1037  * We are working here with either a clone of the original
1038  * SKB, or a fresh unique copy made by the retransmit engine.
1039  */
1040 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1041 			    gfp_t gfp_mask)
1042 {
1043 	const struct inet_connection_sock *icsk = inet_csk(sk);
1044 	struct inet_sock *inet;
1045 	struct tcp_sock *tp;
1046 	struct tcp_skb_cb *tcb;
1047 	struct tcp_out_options opts;
1048 	unsigned int tcp_options_size, tcp_header_size;
1049 	struct sk_buff *oskb = NULL;
1050 	struct tcp_md5sig_key *md5;
1051 	struct tcphdr *th;
1052 	int err;
1053 
1054 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1055 	tp = tcp_sk(sk);
1056 
1057 	if (clone_it) {
1058 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1059 			- tp->snd_una;
1060 		oskb = skb;
1061 
1062 		tcp_skb_tsorted_save(oskb) {
1063 			if (unlikely(skb_cloned(oskb)))
1064 				skb = pskb_copy(oskb, gfp_mask);
1065 			else
1066 				skb = skb_clone(oskb, gfp_mask);
1067 		} tcp_skb_tsorted_restore(oskb);
1068 
1069 		if (unlikely(!skb))
1070 			return -ENOBUFS;
1071 	}
1072 	skb->skb_mstamp = tp->tcp_mstamp;
1073 
1074 	inet = inet_sk(sk);
1075 	tcb = TCP_SKB_CB(skb);
1076 	memset(&opts, 0, sizeof(opts));
1077 
1078 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1079 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1080 	else
1081 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1082 							   &md5);
1083 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1084 
1085 	/* if no packet is in qdisc/device queue, then allow XPS to select
1086 	 * another queue. We can be called from tcp_tsq_handler()
1087 	 * which holds one reference to sk_wmem_alloc.
1088 	 *
1089 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1090 	 * One way to get this would be to set skb->truesize = 2 on them.
1091 	 */
1092 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1093 
1094 	/* If we had to use memory reserve to allocate this skb,
1095 	 * this might cause drops if packet is looped back :
1096 	 * Other socket might not have SOCK_MEMALLOC.
1097 	 * Packets not looped back do not care about pfmemalloc.
1098 	 */
1099 	skb->pfmemalloc = 0;
1100 
1101 	skb_push(skb, tcp_header_size);
1102 	skb_reset_transport_header(skb);
1103 
1104 	skb_orphan(skb);
1105 	skb->sk = sk;
1106 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1107 	skb_set_hash_from_sk(skb, sk);
1108 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1109 
1110 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1111 
1112 	/* Build TCP header and checksum it. */
1113 	th = (struct tcphdr *)skb->data;
1114 	th->source		= inet->inet_sport;
1115 	th->dest		= inet->inet_dport;
1116 	th->seq			= htonl(tcb->seq);
1117 	th->ack_seq		= htonl(tp->rcv_nxt);
1118 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1119 					tcb->tcp_flags);
1120 
1121 	th->check		= 0;
1122 	th->urg_ptr		= 0;
1123 
1124 	/* The urg_mode check is necessary during a below snd_una win probe */
1125 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1126 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1127 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1128 			th->urg = 1;
1129 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1130 			th->urg_ptr = htons(0xFFFF);
1131 			th->urg = 1;
1132 		}
1133 	}
1134 
1135 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1136 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1137 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1138 		th->window      = htons(tcp_select_window(sk));
1139 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1140 	} else {
1141 		/* RFC1323: The window in SYN & SYN/ACK segments
1142 		 * is never scaled.
1143 		 */
1144 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1145 	}
1146 #ifdef CONFIG_TCP_MD5SIG
1147 	/* Calculate the MD5 hash, as we have all we need now */
1148 	if (md5) {
1149 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1150 		tp->af_specific->calc_md5_hash(opts.hash_location,
1151 					       md5, sk, skb);
1152 	}
1153 #endif
1154 
1155 	icsk->icsk_af_ops->send_check(sk, skb);
1156 
1157 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1158 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1159 
1160 	if (skb->len != tcp_header_size) {
1161 		tcp_event_data_sent(tp, sk);
1162 		tp->data_segs_out += tcp_skb_pcount(skb);
1163 		tcp_internal_pacing(sk, skb);
1164 	}
1165 
1166 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1167 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1168 			      tcp_skb_pcount(skb));
1169 
1170 	tp->segs_out += tcp_skb_pcount(skb);
1171 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1172 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1173 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1174 
1175 	/* Our usage of tstamp should remain private */
1176 	skb->tstamp = 0;
1177 
1178 	/* Cleanup our debris for IP stacks */
1179 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1180 			       sizeof(struct inet6_skb_parm)));
1181 
1182 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1183 
1184 	if (unlikely(err > 0)) {
1185 		tcp_enter_cwr(sk);
1186 		err = net_xmit_eval(err);
1187 	}
1188 	if (!err && oskb) {
1189 		tcp_update_skb_after_send(tp, oskb);
1190 		tcp_rate_skb_sent(sk, oskb);
1191 	}
1192 	return err;
1193 }
1194 
1195 /* This routine just queues the buffer for sending.
1196  *
1197  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1198  * otherwise socket can stall.
1199  */
1200 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1201 {
1202 	struct tcp_sock *tp = tcp_sk(sk);
1203 
1204 	/* Advance write_seq and place onto the write_queue. */
1205 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1206 	__skb_header_release(skb);
1207 	tcp_add_write_queue_tail(sk, skb);
1208 	sk->sk_wmem_queued += skb->truesize;
1209 	sk_mem_charge(sk, skb->truesize);
1210 }
1211 
1212 /* Initialize TSO segments for a packet. */
1213 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1214 {
1215 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1216 		/* Avoid the costly divide in the normal
1217 		 * non-TSO case.
1218 		 */
1219 		tcp_skb_pcount_set(skb, 1);
1220 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1221 	} else {
1222 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1223 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1224 	}
1225 }
1226 
1227 /* When a modification to fackets out becomes necessary, we need to check
1228  * skb is counted to fackets_out or not.
1229  */
1230 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1231 				   int decr)
1232 {
1233 	struct tcp_sock *tp = tcp_sk(sk);
1234 
1235 	if (!tp->sacked_out || tcp_is_reno(tp))
1236 		return;
1237 
1238 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1239 		tp->fackets_out -= decr;
1240 }
1241 
1242 /* Pcount in the middle of the write queue got changed, we need to do various
1243  * tweaks to fix counters
1244  */
1245 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1246 {
1247 	struct tcp_sock *tp = tcp_sk(sk);
1248 
1249 	tp->packets_out -= decr;
1250 
1251 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1252 		tp->sacked_out -= decr;
1253 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1254 		tp->retrans_out -= decr;
1255 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1256 		tp->lost_out -= decr;
1257 
1258 	/* Reno case is special. Sigh... */
1259 	if (tcp_is_reno(tp) && decr > 0)
1260 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1261 
1262 	tcp_adjust_fackets_out(sk, skb, decr);
1263 
1264 	if (tp->lost_skb_hint &&
1265 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1266 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1267 		tp->lost_cnt_hint -= decr;
1268 
1269 	tcp_verify_left_out(tp);
1270 }
1271 
1272 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1273 {
1274 	return TCP_SKB_CB(skb)->txstamp_ack ||
1275 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1276 }
1277 
1278 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1279 {
1280 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1281 
1282 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1283 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1284 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1285 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1286 
1287 		shinfo->tx_flags &= ~tsflags;
1288 		shinfo2->tx_flags |= tsflags;
1289 		swap(shinfo->tskey, shinfo2->tskey);
1290 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1291 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1292 	}
1293 }
1294 
1295 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1296 {
1297 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1298 	TCP_SKB_CB(skb)->eor = 0;
1299 }
1300 
1301 /* Insert buff after skb on the write or rtx queue of sk.  */
1302 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1303 					 struct sk_buff *buff,
1304 					 struct sock *sk,
1305 					 enum tcp_queue tcp_queue)
1306 {
1307 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1308 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1309 	else
1310 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1311 }
1312 
1313 /* Function to create two new TCP segments.  Shrinks the given segment
1314  * to the specified size and appends a new segment with the rest of the
1315  * packet to the list.  This won't be called frequently, I hope.
1316  * Remember, these are still headerless SKBs at this point.
1317  */
1318 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1319 		 struct sk_buff *skb, u32 len,
1320 		 unsigned int mss_now, gfp_t gfp)
1321 {
1322 	struct tcp_sock *tp = tcp_sk(sk);
1323 	struct sk_buff *buff;
1324 	int nsize, old_factor;
1325 	int nlen;
1326 	u8 flags;
1327 
1328 	if (WARN_ON(len > skb->len))
1329 		return -EINVAL;
1330 
1331 	nsize = skb_headlen(skb) - len;
1332 	if (nsize < 0)
1333 		nsize = 0;
1334 
1335 	if (skb_unclone(skb, gfp))
1336 		return -ENOMEM;
1337 
1338 	/* Get a new skb... force flag on. */
1339 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1340 	if (!buff)
1341 		return -ENOMEM; /* We'll just try again later. */
1342 
1343 	sk->sk_wmem_queued += buff->truesize;
1344 	sk_mem_charge(sk, buff->truesize);
1345 	nlen = skb->len - len - nsize;
1346 	buff->truesize += nlen;
1347 	skb->truesize -= nlen;
1348 
1349 	/* Correct the sequence numbers. */
1350 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1351 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1352 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1353 
1354 	/* PSH and FIN should only be set in the second packet. */
1355 	flags = TCP_SKB_CB(skb)->tcp_flags;
1356 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1357 	TCP_SKB_CB(buff)->tcp_flags = flags;
1358 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1359 	tcp_skb_fragment_eor(skb, buff);
1360 
1361 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1362 		/* Copy and checksum data tail into the new buffer. */
1363 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1364 						       skb_put(buff, nsize),
1365 						       nsize, 0);
1366 
1367 		skb_trim(skb, len);
1368 
1369 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1370 	} else {
1371 		skb->ip_summed = CHECKSUM_PARTIAL;
1372 		skb_split(skb, buff, len);
1373 	}
1374 
1375 	buff->ip_summed = skb->ip_summed;
1376 
1377 	buff->tstamp = skb->tstamp;
1378 	tcp_fragment_tstamp(skb, buff);
1379 
1380 	old_factor = tcp_skb_pcount(skb);
1381 
1382 	/* Fix up tso_factor for both original and new SKB.  */
1383 	tcp_set_skb_tso_segs(skb, mss_now);
1384 	tcp_set_skb_tso_segs(buff, mss_now);
1385 
1386 	/* Update delivered info for the new segment */
1387 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1388 
1389 	/* If this packet has been sent out already, we must
1390 	 * adjust the various packet counters.
1391 	 */
1392 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1393 		int diff = old_factor - tcp_skb_pcount(skb) -
1394 			tcp_skb_pcount(buff);
1395 
1396 		if (diff)
1397 			tcp_adjust_pcount(sk, skb, diff);
1398 	}
1399 
1400 	/* Link BUFF into the send queue. */
1401 	__skb_header_release(buff);
1402 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1403 	list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1404 
1405 	return 0;
1406 }
1407 
1408 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1409  * data is not copied, but immediately discarded.
1410  */
1411 static int __pskb_trim_head(struct sk_buff *skb, int len)
1412 {
1413 	struct skb_shared_info *shinfo;
1414 	int i, k, eat;
1415 
1416 	eat = min_t(int, len, skb_headlen(skb));
1417 	if (eat) {
1418 		__skb_pull(skb, eat);
1419 		len -= eat;
1420 		if (!len)
1421 			return 0;
1422 	}
1423 	eat = len;
1424 	k = 0;
1425 	shinfo = skb_shinfo(skb);
1426 	for (i = 0; i < shinfo->nr_frags; i++) {
1427 		int size = skb_frag_size(&shinfo->frags[i]);
1428 
1429 		if (size <= eat) {
1430 			skb_frag_unref(skb, i);
1431 			eat -= size;
1432 		} else {
1433 			shinfo->frags[k] = shinfo->frags[i];
1434 			if (eat) {
1435 				shinfo->frags[k].page_offset += eat;
1436 				skb_frag_size_sub(&shinfo->frags[k], eat);
1437 				eat = 0;
1438 			}
1439 			k++;
1440 		}
1441 	}
1442 	shinfo->nr_frags = k;
1443 
1444 	skb->data_len -= len;
1445 	skb->len = skb->data_len;
1446 	return len;
1447 }
1448 
1449 /* Remove acked data from a packet in the transmit queue. */
1450 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1451 {
1452 	u32 delta_truesize;
1453 
1454 	if (skb_unclone(skb, GFP_ATOMIC))
1455 		return -ENOMEM;
1456 
1457 	delta_truesize = __pskb_trim_head(skb, len);
1458 
1459 	TCP_SKB_CB(skb)->seq += len;
1460 	skb->ip_summed = CHECKSUM_PARTIAL;
1461 
1462 	if (delta_truesize) {
1463 		skb->truesize	   -= delta_truesize;
1464 		sk->sk_wmem_queued -= delta_truesize;
1465 		sk_mem_uncharge(sk, delta_truesize);
1466 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1467 	}
1468 
1469 	/* Any change of skb->len requires recalculation of tso factor. */
1470 	if (tcp_skb_pcount(skb) > 1)
1471 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1472 
1473 	return 0;
1474 }
1475 
1476 /* Calculate MSS not accounting any TCP options.  */
1477 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1478 {
1479 	const struct tcp_sock *tp = tcp_sk(sk);
1480 	const struct inet_connection_sock *icsk = inet_csk(sk);
1481 	int mss_now;
1482 
1483 	/* Calculate base mss without TCP options:
1484 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1485 	 */
1486 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1487 
1488 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1489 	if (icsk->icsk_af_ops->net_frag_header_len) {
1490 		const struct dst_entry *dst = __sk_dst_get(sk);
1491 
1492 		if (dst && dst_allfrag(dst))
1493 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1494 	}
1495 
1496 	/* Clamp it (mss_clamp does not include tcp options) */
1497 	if (mss_now > tp->rx_opt.mss_clamp)
1498 		mss_now = tp->rx_opt.mss_clamp;
1499 
1500 	/* Now subtract optional transport overhead */
1501 	mss_now -= icsk->icsk_ext_hdr_len;
1502 
1503 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1504 	if (mss_now < 48)
1505 		mss_now = 48;
1506 	return mss_now;
1507 }
1508 
1509 /* Calculate MSS. Not accounting for SACKs here.  */
1510 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1511 {
1512 	/* Subtract TCP options size, not including SACKs */
1513 	return __tcp_mtu_to_mss(sk, pmtu) -
1514 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1515 }
1516 
1517 /* Inverse of above */
1518 int tcp_mss_to_mtu(struct sock *sk, int mss)
1519 {
1520 	const struct tcp_sock *tp = tcp_sk(sk);
1521 	const struct inet_connection_sock *icsk = inet_csk(sk);
1522 	int mtu;
1523 
1524 	mtu = mss +
1525 	      tp->tcp_header_len +
1526 	      icsk->icsk_ext_hdr_len +
1527 	      icsk->icsk_af_ops->net_header_len;
1528 
1529 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1530 	if (icsk->icsk_af_ops->net_frag_header_len) {
1531 		const struct dst_entry *dst = __sk_dst_get(sk);
1532 
1533 		if (dst && dst_allfrag(dst))
1534 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1535 	}
1536 	return mtu;
1537 }
1538 EXPORT_SYMBOL(tcp_mss_to_mtu);
1539 
1540 /* MTU probing init per socket */
1541 void tcp_mtup_init(struct sock *sk)
1542 {
1543 	struct tcp_sock *tp = tcp_sk(sk);
1544 	struct inet_connection_sock *icsk = inet_csk(sk);
1545 	struct net *net = sock_net(sk);
1546 
1547 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1548 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1549 			       icsk->icsk_af_ops->net_header_len;
1550 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1551 	icsk->icsk_mtup.probe_size = 0;
1552 	if (icsk->icsk_mtup.enabled)
1553 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1554 }
1555 EXPORT_SYMBOL(tcp_mtup_init);
1556 
1557 /* This function synchronize snd mss to current pmtu/exthdr set.
1558 
1559    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1560    for TCP options, but includes only bare TCP header.
1561 
1562    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1563    It is minimum of user_mss and mss received with SYN.
1564    It also does not include TCP options.
1565 
1566    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1567 
1568    tp->mss_cache is current effective sending mss, including
1569    all tcp options except for SACKs. It is evaluated,
1570    taking into account current pmtu, but never exceeds
1571    tp->rx_opt.mss_clamp.
1572 
1573    NOTE1. rfc1122 clearly states that advertised MSS
1574    DOES NOT include either tcp or ip options.
1575 
1576    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1577    are READ ONLY outside this function.		--ANK (980731)
1578  */
1579 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1580 {
1581 	struct tcp_sock *tp = tcp_sk(sk);
1582 	struct inet_connection_sock *icsk = inet_csk(sk);
1583 	int mss_now;
1584 
1585 	if (icsk->icsk_mtup.search_high > pmtu)
1586 		icsk->icsk_mtup.search_high = pmtu;
1587 
1588 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1589 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1590 
1591 	/* And store cached results */
1592 	icsk->icsk_pmtu_cookie = pmtu;
1593 	if (icsk->icsk_mtup.enabled)
1594 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1595 	tp->mss_cache = mss_now;
1596 
1597 	return mss_now;
1598 }
1599 EXPORT_SYMBOL(tcp_sync_mss);
1600 
1601 /* Compute the current effective MSS, taking SACKs and IP options,
1602  * and even PMTU discovery events into account.
1603  */
1604 unsigned int tcp_current_mss(struct sock *sk)
1605 {
1606 	const struct tcp_sock *tp = tcp_sk(sk);
1607 	const struct dst_entry *dst = __sk_dst_get(sk);
1608 	u32 mss_now;
1609 	unsigned int header_len;
1610 	struct tcp_out_options opts;
1611 	struct tcp_md5sig_key *md5;
1612 
1613 	mss_now = tp->mss_cache;
1614 
1615 	if (dst) {
1616 		u32 mtu = dst_mtu(dst);
1617 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1618 			mss_now = tcp_sync_mss(sk, mtu);
1619 	}
1620 
1621 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1622 		     sizeof(struct tcphdr);
1623 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1624 	 * some common options. If this is an odd packet (because we have SACK
1625 	 * blocks etc) then our calculated header_len will be different, and
1626 	 * we have to adjust mss_now correspondingly */
1627 	if (header_len != tp->tcp_header_len) {
1628 		int delta = (int) header_len - tp->tcp_header_len;
1629 		mss_now -= delta;
1630 	}
1631 
1632 	return mss_now;
1633 }
1634 
1635 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1636  * As additional protections, we do not touch cwnd in retransmission phases,
1637  * and if application hit its sndbuf limit recently.
1638  */
1639 static void tcp_cwnd_application_limited(struct sock *sk)
1640 {
1641 	struct tcp_sock *tp = tcp_sk(sk);
1642 
1643 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1644 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1645 		/* Limited by application or receiver window. */
1646 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1647 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1648 		if (win_used < tp->snd_cwnd) {
1649 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1650 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1651 		}
1652 		tp->snd_cwnd_used = 0;
1653 	}
1654 	tp->snd_cwnd_stamp = tcp_jiffies32;
1655 }
1656 
1657 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1658 {
1659 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1660 	struct tcp_sock *tp = tcp_sk(sk);
1661 
1662 	/* Track the maximum number of outstanding packets in each
1663 	 * window, and remember whether we were cwnd-limited then.
1664 	 */
1665 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1666 	    tp->packets_out > tp->max_packets_out) {
1667 		tp->max_packets_out = tp->packets_out;
1668 		tp->max_packets_seq = tp->snd_nxt;
1669 		tp->is_cwnd_limited = is_cwnd_limited;
1670 	}
1671 
1672 	if (tcp_is_cwnd_limited(sk)) {
1673 		/* Network is feed fully. */
1674 		tp->snd_cwnd_used = 0;
1675 		tp->snd_cwnd_stamp = tcp_jiffies32;
1676 	} else {
1677 		/* Network starves. */
1678 		if (tp->packets_out > tp->snd_cwnd_used)
1679 			tp->snd_cwnd_used = tp->packets_out;
1680 
1681 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1682 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1683 		    !ca_ops->cong_control)
1684 			tcp_cwnd_application_limited(sk);
1685 
1686 		/* The following conditions together indicate the starvation
1687 		 * is caused by insufficient sender buffer:
1688 		 * 1) just sent some data (see tcp_write_xmit)
1689 		 * 2) not cwnd limited (this else condition)
1690 		 * 3) no more data to send (tcp_write_queue_empty())
1691 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1692 		 */
1693 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1694 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1695 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1696 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1697 	}
1698 }
1699 
1700 /* Minshall's variant of the Nagle send check. */
1701 static bool tcp_minshall_check(const struct tcp_sock *tp)
1702 {
1703 	return after(tp->snd_sml, tp->snd_una) &&
1704 		!after(tp->snd_sml, tp->snd_nxt);
1705 }
1706 
1707 /* Update snd_sml if this skb is under mss
1708  * Note that a TSO packet might end with a sub-mss segment
1709  * The test is really :
1710  * if ((skb->len % mss) != 0)
1711  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1712  * But we can avoid doing the divide again given we already have
1713  *  skb_pcount = skb->len / mss_now
1714  */
1715 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1716 				const struct sk_buff *skb)
1717 {
1718 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1719 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1720 }
1721 
1722 /* Return false, if packet can be sent now without violation Nagle's rules:
1723  * 1. It is full sized. (provided by caller in %partial bool)
1724  * 2. Or it contains FIN. (already checked by caller)
1725  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1726  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1727  *    With Minshall's modification: all sent small packets are ACKed.
1728  */
1729 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1730 			    int nonagle)
1731 {
1732 	return partial &&
1733 		((nonagle & TCP_NAGLE_CORK) ||
1734 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1735 }
1736 
1737 /* Return how many segs we'd like on a TSO packet,
1738  * to send one TSO packet per ms
1739  */
1740 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1741 		     int min_tso_segs)
1742 {
1743 	u32 bytes, segs;
1744 
1745 	bytes = min(sk->sk_pacing_rate >> 10,
1746 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1747 
1748 	/* Goal is to send at least one packet per ms,
1749 	 * not one big TSO packet every 100 ms.
1750 	 * This preserves ACK clocking and is consistent
1751 	 * with tcp_tso_should_defer() heuristic.
1752 	 */
1753 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1754 
1755 	return min_t(u32, segs, sk->sk_gso_max_segs);
1756 }
1757 EXPORT_SYMBOL(tcp_tso_autosize);
1758 
1759 /* Return the number of segments we want in the skb we are transmitting.
1760  * See if congestion control module wants to decide; otherwise, autosize.
1761  */
1762 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1763 {
1764 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1765 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1766 
1767 	return tso_segs ? :
1768 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1769 }
1770 
1771 /* Returns the portion of skb which can be sent right away */
1772 static unsigned int tcp_mss_split_point(const struct sock *sk,
1773 					const struct sk_buff *skb,
1774 					unsigned int mss_now,
1775 					unsigned int max_segs,
1776 					int nonagle)
1777 {
1778 	const struct tcp_sock *tp = tcp_sk(sk);
1779 	u32 partial, needed, window, max_len;
1780 
1781 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1782 	max_len = mss_now * max_segs;
1783 
1784 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1785 		return max_len;
1786 
1787 	needed = min(skb->len, window);
1788 
1789 	if (max_len <= needed)
1790 		return max_len;
1791 
1792 	partial = needed % mss_now;
1793 	/* If last segment is not a full MSS, check if Nagle rules allow us
1794 	 * to include this last segment in this skb.
1795 	 * Otherwise, we'll split the skb at last MSS boundary
1796 	 */
1797 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1798 		return needed - partial;
1799 
1800 	return needed;
1801 }
1802 
1803 /* Can at least one segment of SKB be sent right now, according to the
1804  * congestion window rules?  If so, return how many segments are allowed.
1805  */
1806 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1807 					 const struct sk_buff *skb)
1808 {
1809 	u32 in_flight, cwnd, halfcwnd;
1810 
1811 	/* Don't be strict about the congestion window for the final FIN.  */
1812 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1813 	    tcp_skb_pcount(skb) == 1)
1814 		return 1;
1815 
1816 	in_flight = tcp_packets_in_flight(tp);
1817 	cwnd = tp->snd_cwnd;
1818 	if (in_flight >= cwnd)
1819 		return 0;
1820 
1821 	/* For better scheduling, ensure we have at least
1822 	 * 2 GSO packets in flight.
1823 	 */
1824 	halfcwnd = max(cwnd >> 1, 1U);
1825 	return min(halfcwnd, cwnd - in_flight);
1826 }
1827 
1828 /* Initialize TSO state of a skb.
1829  * This must be invoked the first time we consider transmitting
1830  * SKB onto the wire.
1831  */
1832 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1833 {
1834 	int tso_segs = tcp_skb_pcount(skb);
1835 
1836 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1837 		tcp_set_skb_tso_segs(skb, mss_now);
1838 		tso_segs = tcp_skb_pcount(skb);
1839 	}
1840 	return tso_segs;
1841 }
1842 
1843 
1844 /* Return true if the Nagle test allows this packet to be
1845  * sent now.
1846  */
1847 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1848 				  unsigned int cur_mss, int nonagle)
1849 {
1850 	/* Nagle rule does not apply to frames, which sit in the middle of the
1851 	 * write_queue (they have no chances to get new data).
1852 	 *
1853 	 * This is implemented in the callers, where they modify the 'nonagle'
1854 	 * argument based upon the location of SKB in the send queue.
1855 	 */
1856 	if (nonagle & TCP_NAGLE_PUSH)
1857 		return true;
1858 
1859 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1860 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1861 		return true;
1862 
1863 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1864 		return true;
1865 
1866 	return false;
1867 }
1868 
1869 /* Does at least the first segment of SKB fit into the send window? */
1870 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1871 			     const struct sk_buff *skb,
1872 			     unsigned int cur_mss)
1873 {
1874 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1875 
1876 	if (skb->len > cur_mss)
1877 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1878 
1879 	return !after(end_seq, tcp_wnd_end(tp));
1880 }
1881 
1882 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1883  * which is put after SKB on the list.  It is very much like
1884  * tcp_fragment() except that it may make several kinds of assumptions
1885  * in order to speed up the splitting operation.  In particular, we
1886  * know that all the data is in scatter-gather pages, and that the
1887  * packet has never been sent out before (and thus is not cloned).
1888  */
1889 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1890 			struct sk_buff *skb, unsigned int len,
1891 			unsigned int mss_now, gfp_t gfp)
1892 {
1893 	struct sk_buff *buff;
1894 	int nlen = skb->len - len;
1895 	u8 flags;
1896 
1897 	/* All of a TSO frame must be composed of paged data.  */
1898 	if (skb->len != skb->data_len)
1899 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1900 
1901 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1902 	if (unlikely(!buff))
1903 		return -ENOMEM;
1904 
1905 	sk->sk_wmem_queued += buff->truesize;
1906 	sk_mem_charge(sk, buff->truesize);
1907 	buff->truesize += nlen;
1908 	skb->truesize -= nlen;
1909 
1910 	/* Correct the sequence numbers. */
1911 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1912 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1913 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1914 
1915 	/* PSH and FIN should only be set in the second packet. */
1916 	flags = TCP_SKB_CB(skb)->tcp_flags;
1917 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1918 	TCP_SKB_CB(buff)->tcp_flags = flags;
1919 
1920 	/* This packet was never sent out yet, so no SACK bits. */
1921 	TCP_SKB_CB(buff)->sacked = 0;
1922 
1923 	tcp_skb_fragment_eor(skb, buff);
1924 
1925 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1926 	skb_split(skb, buff, len);
1927 	tcp_fragment_tstamp(skb, buff);
1928 
1929 	/* Fix up tso_factor for both original and new SKB.  */
1930 	tcp_set_skb_tso_segs(skb, mss_now);
1931 	tcp_set_skb_tso_segs(buff, mss_now);
1932 
1933 	/* Link BUFF into the send queue. */
1934 	__skb_header_release(buff);
1935 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1936 
1937 	return 0;
1938 }
1939 
1940 /* Try to defer sending, if possible, in order to minimize the amount
1941  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1942  *
1943  * This algorithm is from John Heffner.
1944  */
1945 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1946 				 bool *is_cwnd_limited, u32 max_segs)
1947 {
1948 	const struct inet_connection_sock *icsk = inet_csk(sk);
1949 	u32 age, send_win, cong_win, limit, in_flight;
1950 	struct tcp_sock *tp = tcp_sk(sk);
1951 	struct sk_buff *head;
1952 	int win_divisor;
1953 
1954 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1955 		goto send_now;
1956 
1957 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1958 		goto send_now;
1959 
1960 	/* Avoid bursty behavior by allowing defer
1961 	 * only if the last write was recent.
1962 	 */
1963 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1964 		goto send_now;
1965 
1966 	in_flight = tcp_packets_in_flight(tp);
1967 
1968 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1969 
1970 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1971 
1972 	/* From in_flight test above, we know that cwnd > in_flight.  */
1973 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1974 
1975 	limit = min(send_win, cong_win);
1976 
1977 	/* If a full-sized TSO skb can be sent, do it. */
1978 	if (limit >= max_segs * tp->mss_cache)
1979 		goto send_now;
1980 
1981 	/* Middle in queue won't get any more data, full sendable already? */
1982 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1983 		goto send_now;
1984 
1985 	win_divisor = ACCESS_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1986 	if (win_divisor) {
1987 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1988 
1989 		/* If at least some fraction of a window is available,
1990 		 * just use it.
1991 		 */
1992 		chunk /= win_divisor;
1993 		if (limit >= chunk)
1994 			goto send_now;
1995 	} else {
1996 		/* Different approach, try not to defer past a single
1997 		 * ACK.  Receiver should ACK every other full sized
1998 		 * frame, so if we have space for more than 3 frames
1999 		 * then send now.
2000 		 */
2001 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2002 			goto send_now;
2003 	}
2004 
2005 	/* TODO : use tsorted_sent_queue ? */
2006 	head = tcp_rtx_queue_head(sk);
2007 	if (!head)
2008 		goto send_now;
2009 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
2010 	/* If next ACK is likely to come too late (half srtt), do not defer */
2011 	if (age < (tp->srtt_us >> 4))
2012 		goto send_now;
2013 
2014 	/* Ok, it looks like it is advisable to defer. */
2015 
2016 	if (cong_win < send_win && cong_win <= skb->len)
2017 		*is_cwnd_limited = true;
2018 
2019 	return true;
2020 
2021 send_now:
2022 	return false;
2023 }
2024 
2025 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2026 {
2027 	struct inet_connection_sock *icsk = inet_csk(sk);
2028 	struct tcp_sock *tp = tcp_sk(sk);
2029 	struct net *net = sock_net(sk);
2030 	u32 interval;
2031 	s32 delta;
2032 
2033 	interval = net->ipv4.sysctl_tcp_probe_interval;
2034 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2035 	if (unlikely(delta >= interval * HZ)) {
2036 		int mss = tcp_current_mss(sk);
2037 
2038 		/* Update current search range */
2039 		icsk->icsk_mtup.probe_size = 0;
2040 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2041 			sizeof(struct tcphdr) +
2042 			icsk->icsk_af_ops->net_header_len;
2043 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2044 
2045 		/* Update probe time stamp */
2046 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2047 	}
2048 }
2049 
2050 /* Create a new MTU probe if we are ready.
2051  * MTU probe is regularly attempting to increase the path MTU by
2052  * deliberately sending larger packets.  This discovers routing
2053  * changes resulting in larger path MTUs.
2054  *
2055  * Returns 0 if we should wait to probe (no cwnd available),
2056  *         1 if a probe was sent,
2057  *         -1 otherwise
2058  */
2059 static int tcp_mtu_probe(struct sock *sk)
2060 {
2061 	struct inet_connection_sock *icsk = inet_csk(sk);
2062 	struct tcp_sock *tp = tcp_sk(sk);
2063 	struct sk_buff *skb, *nskb, *next;
2064 	struct net *net = sock_net(sk);
2065 	int probe_size;
2066 	int size_needed;
2067 	int copy, len;
2068 	int mss_now;
2069 	int interval;
2070 
2071 	/* Not currently probing/verifying,
2072 	 * not in recovery,
2073 	 * have enough cwnd, and
2074 	 * not SACKing (the variable headers throw things off)
2075 	 */
2076 	if (likely(!icsk->icsk_mtup.enabled ||
2077 		   icsk->icsk_mtup.probe_size ||
2078 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2079 		   tp->snd_cwnd < 11 ||
2080 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2081 		return -1;
2082 
2083 	/* Use binary search for probe_size between tcp_mss_base,
2084 	 * and current mss_clamp. if (search_high - search_low)
2085 	 * smaller than a threshold, backoff from probing.
2086 	 */
2087 	mss_now = tcp_current_mss(sk);
2088 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2089 				    icsk->icsk_mtup.search_low) >> 1);
2090 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2091 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2092 	/* When misfortune happens, we are reprobing actively,
2093 	 * and then reprobe timer has expired. We stick with current
2094 	 * probing process by not resetting search range to its orignal.
2095 	 */
2096 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2097 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2098 		/* Check whether enough time has elaplased for
2099 		 * another round of probing.
2100 		 */
2101 		tcp_mtu_check_reprobe(sk);
2102 		return -1;
2103 	}
2104 
2105 	/* Have enough data in the send queue to probe? */
2106 	if (tp->write_seq - tp->snd_nxt < size_needed)
2107 		return -1;
2108 
2109 	if (tp->snd_wnd < size_needed)
2110 		return -1;
2111 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2112 		return 0;
2113 
2114 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2115 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2116 		if (!tcp_packets_in_flight(tp))
2117 			return -1;
2118 		else
2119 			return 0;
2120 	}
2121 
2122 	/* We're allowed to probe.  Build it now. */
2123 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2124 	if (!nskb)
2125 		return -1;
2126 	sk->sk_wmem_queued += nskb->truesize;
2127 	sk_mem_charge(sk, nskb->truesize);
2128 
2129 	skb = tcp_send_head(sk);
2130 
2131 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2132 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2133 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2134 	TCP_SKB_CB(nskb)->sacked = 0;
2135 	nskb->csum = 0;
2136 	nskb->ip_summed = skb->ip_summed;
2137 
2138 	tcp_insert_write_queue_before(nskb, skb, sk);
2139 
2140 	len = 0;
2141 	tcp_for_write_queue_from_safe(skb, next, sk) {
2142 		copy = min_t(int, skb->len, probe_size - len);
2143 		if (nskb->ip_summed) {
2144 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2145 		} else {
2146 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2147 							     skb_put(nskb, copy),
2148 							     copy, 0);
2149 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2150 		}
2151 
2152 		if (skb->len <= copy) {
2153 			/* We've eaten all the data from this skb.
2154 			 * Throw it away. */
2155 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2156 			tcp_unlink_write_queue(skb, sk);
2157 			sk_wmem_free_skb(sk, skb);
2158 		} else {
2159 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2160 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2161 			if (!skb_shinfo(skb)->nr_frags) {
2162 				skb_pull(skb, copy);
2163 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2164 					skb->csum = csum_partial(skb->data,
2165 								 skb->len, 0);
2166 			} else {
2167 				__pskb_trim_head(skb, copy);
2168 				tcp_set_skb_tso_segs(skb, mss_now);
2169 			}
2170 			TCP_SKB_CB(skb)->seq += copy;
2171 		}
2172 
2173 		len += copy;
2174 
2175 		if (len >= probe_size)
2176 			break;
2177 	}
2178 	tcp_init_tso_segs(nskb, nskb->len);
2179 
2180 	/* We're ready to send.  If this fails, the probe will
2181 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2182 	 */
2183 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2184 		/* Decrement cwnd here because we are sending
2185 		 * effectively two packets. */
2186 		tp->snd_cwnd--;
2187 		tcp_event_new_data_sent(sk, nskb);
2188 
2189 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2190 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2191 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2192 
2193 		return 1;
2194 	}
2195 
2196 	return -1;
2197 }
2198 
2199 static bool tcp_pacing_check(const struct sock *sk)
2200 {
2201 	return tcp_needs_internal_pacing(sk) &&
2202 	       hrtimer_active(&tcp_sk(sk)->pacing_timer);
2203 }
2204 
2205 /* TCP Small Queues :
2206  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2207  * (These limits are doubled for retransmits)
2208  * This allows for :
2209  *  - better RTT estimation and ACK scheduling
2210  *  - faster recovery
2211  *  - high rates
2212  * Alas, some drivers / subsystems require a fair amount
2213  * of queued bytes to ensure line rate.
2214  * One example is wifi aggregation (802.11 AMPDU)
2215  */
2216 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2217 				  unsigned int factor)
2218 {
2219 	unsigned int limit;
2220 
2221 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2222 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2223 	limit <<= factor;
2224 
2225 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2226 		/* Always send skb if rtx queue is empty.
2227 		 * No need to wait for TX completion to call us back,
2228 		 * after softirq/tasklet schedule.
2229 		 * This helps when TX completions are delayed too much.
2230 		 */
2231 		if (tcp_rtx_queue_empty(sk))
2232 			return false;
2233 
2234 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2235 		/* It is possible TX completion already happened
2236 		 * before we set TSQ_THROTTLED, so we must
2237 		 * test again the condition.
2238 		 */
2239 		smp_mb__after_atomic();
2240 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2241 			return true;
2242 	}
2243 	return false;
2244 }
2245 
2246 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2247 {
2248 	const u32 now = tcp_jiffies32;
2249 	enum tcp_chrono old = tp->chrono_type;
2250 
2251 	if (old > TCP_CHRONO_UNSPEC)
2252 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2253 	tp->chrono_start = now;
2254 	tp->chrono_type = new;
2255 }
2256 
2257 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2258 {
2259 	struct tcp_sock *tp = tcp_sk(sk);
2260 
2261 	/* If there are multiple conditions worthy of tracking in a
2262 	 * chronograph then the highest priority enum takes precedence
2263 	 * over the other conditions. So that if something "more interesting"
2264 	 * starts happening, stop the previous chrono and start a new one.
2265 	 */
2266 	if (type > tp->chrono_type)
2267 		tcp_chrono_set(tp, type);
2268 }
2269 
2270 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2271 {
2272 	struct tcp_sock *tp = tcp_sk(sk);
2273 
2274 
2275 	/* There are multiple conditions worthy of tracking in a
2276 	 * chronograph, so that the highest priority enum takes
2277 	 * precedence over the other conditions (see tcp_chrono_start).
2278 	 * If a condition stops, we only stop chrono tracking if
2279 	 * it's the "most interesting" or current chrono we are
2280 	 * tracking and starts busy chrono if we have pending data.
2281 	 */
2282 	if (tcp_rtx_and_write_queues_empty(sk))
2283 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2284 	else if (type == tp->chrono_type)
2285 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2286 }
2287 
2288 /* This routine writes packets to the network.  It advances the
2289  * send_head.  This happens as incoming acks open up the remote
2290  * window for us.
2291  *
2292  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2293  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2294  * account rare use of URG, this is not a big flaw.
2295  *
2296  * Send at most one packet when push_one > 0. Temporarily ignore
2297  * cwnd limit to force at most one packet out when push_one == 2.
2298 
2299  * Returns true, if no segments are in flight and we have queued segments,
2300  * but cannot send anything now because of SWS or another problem.
2301  */
2302 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2303 			   int push_one, gfp_t gfp)
2304 {
2305 	struct tcp_sock *tp = tcp_sk(sk);
2306 	struct sk_buff *skb;
2307 	unsigned int tso_segs, sent_pkts;
2308 	int cwnd_quota;
2309 	int result;
2310 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2311 	u32 max_segs;
2312 
2313 	sent_pkts = 0;
2314 
2315 	if (!push_one) {
2316 		/* Do MTU probing. */
2317 		result = tcp_mtu_probe(sk);
2318 		if (!result) {
2319 			return false;
2320 		} else if (result > 0) {
2321 			sent_pkts = 1;
2322 		}
2323 	}
2324 
2325 	max_segs = tcp_tso_segs(sk, mss_now);
2326 	tcp_mstamp_refresh(tp);
2327 	while ((skb = tcp_send_head(sk))) {
2328 		unsigned int limit;
2329 
2330 		if (tcp_pacing_check(sk))
2331 			break;
2332 
2333 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2334 		BUG_ON(!tso_segs);
2335 
2336 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2337 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2338 			tcp_update_skb_after_send(tp, skb);
2339 			goto repair; /* Skip network transmission */
2340 		}
2341 
2342 		cwnd_quota = tcp_cwnd_test(tp, skb);
2343 		if (!cwnd_quota) {
2344 			if (push_one == 2)
2345 				/* Force out a loss probe pkt. */
2346 				cwnd_quota = 1;
2347 			else
2348 				break;
2349 		}
2350 
2351 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2352 			is_rwnd_limited = true;
2353 			break;
2354 		}
2355 
2356 		if (tso_segs == 1) {
2357 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2358 						     (tcp_skb_is_last(sk, skb) ?
2359 						      nonagle : TCP_NAGLE_PUSH))))
2360 				break;
2361 		} else {
2362 			if (!push_one &&
2363 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2364 						 max_segs))
2365 				break;
2366 		}
2367 
2368 		limit = mss_now;
2369 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2370 			limit = tcp_mss_split_point(sk, skb, mss_now,
2371 						    min_t(unsigned int,
2372 							  cwnd_quota,
2373 							  max_segs),
2374 						    nonagle);
2375 
2376 		if (skb->len > limit &&
2377 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2378 					  skb, limit, mss_now, gfp)))
2379 			break;
2380 
2381 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2382 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2383 		if (tcp_small_queue_check(sk, skb, 0))
2384 			break;
2385 
2386 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2387 			break;
2388 
2389 repair:
2390 		/* Advance the send_head.  This one is sent out.
2391 		 * This call will increment packets_out.
2392 		 */
2393 		tcp_event_new_data_sent(sk, skb);
2394 
2395 		tcp_minshall_update(tp, mss_now, skb);
2396 		sent_pkts += tcp_skb_pcount(skb);
2397 
2398 		if (push_one)
2399 			break;
2400 	}
2401 
2402 	if (is_rwnd_limited)
2403 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2404 	else
2405 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2406 
2407 	if (likely(sent_pkts)) {
2408 		if (tcp_in_cwnd_reduction(sk))
2409 			tp->prr_out += sent_pkts;
2410 
2411 		/* Send one loss probe per tail loss episode. */
2412 		if (push_one != 2)
2413 			tcp_schedule_loss_probe(sk);
2414 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2415 		tcp_cwnd_validate(sk, is_cwnd_limited);
2416 		return false;
2417 	}
2418 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2419 }
2420 
2421 bool tcp_schedule_loss_probe(struct sock *sk)
2422 {
2423 	struct inet_connection_sock *icsk = inet_csk(sk);
2424 	struct tcp_sock *tp = tcp_sk(sk);
2425 	u32 timeout, rto_delta_us;
2426 	int early_retrans;
2427 
2428 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2429 	 * finishes.
2430 	 */
2431 	if (tp->fastopen_rsk)
2432 		return false;
2433 
2434 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2435 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2436 	 * in Open state, that are either limited by cwnd or application.
2437 	 */
2438 	if ((early_retrans != 3 && early_retrans != 4) ||
2439 	    !tp->packets_out || !tcp_is_sack(tp) ||
2440 	    icsk->icsk_ca_state != TCP_CA_Open)
2441 		return false;
2442 
2443 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2444 	     !tcp_write_queue_empty(sk))
2445 		return false;
2446 
2447 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2448 	 * for delayed ack when there's one outstanding packet. If no RTT
2449 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2450 	 */
2451 	if (tp->srtt_us) {
2452 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2453 		if (tp->packets_out == 1)
2454 			timeout += TCP_RTO_MIN;
2455 		else
2456 			timeout += TCP_TIMEOUT_MIN;
2457 	} else {
2458 		timeout = TCP_TIMEOUT_INIT;
2459 	}
2460 
2461 	/* If the RTO formula yields an earlier time, then use that time. */
2462 	rto_delta_us = tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2463 	if (rto_delta_us > 0)
2464 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2465 
2466 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2467 				  TCP_RTO_MAX);
2468 	return true;
2469 }
2470 
2471 /* Thanks to skb fast clones, we can detect if a prior transmit of
2472  * a packet is still in a qdisc or driver queue.
2473  * In this case, there is very little point doing a retransmit !
2474  */
2475 static bool skb_still_in_host_queue(const struct sock *sk,
2476 				    const struct sk_buff *skb)
2477 {
2478 	if (unlikely(skb_fclone_busy(sk, skb))) {
2479 		NET_INC_STATS(sock_net(sk),
2480 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2481 		return true;
2482 	}
2483 	return false;
2484 }
2485 
2486 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2487  * retransmit the last segment.
2488  */
2489 void tcp_send_loss_probe(struct sock *sk)
2490 {
2491 	struct tcp_sock *tp = tcp_sk(sk);
2492 	struct sk_buff *skb;
2493 	int pcount;
2494 	int mss = tcp_current_mss(sk);
2495 
2496 	skb = tcp_send_head(sk);
2497 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2498 		pcount = tp->packets_out;
2499 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2500 		if (tp->packets_out > pcount)
2501 			goto probe_sent;
2502 		goto rearm_timer;
2503 	}
2504 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2505 
2506 	/* At most one outstanding TLP retransmission. */
2507 	if (tp->tlp_high_seq)
2508 		goto rearm_timer;
2509 
2510 	/* Retransmit last segment. */
2511 	if (WARN_ON(!skb))
2512 		goto rearm_timer;
2513 
2514 	if (skb_still_in_host_queue(sk, skb))
2515 		goto rearm_timer;
2516 
2517 	pcount = tcp_skb_pcount(skb);
2518 	if (WARN_ON(!pcount))
2519 		goto rearm_timer;
2520 
2521 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2522 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2523 					  (pcount - 1) * mss, mss,
2524 					  GFP_ATOMIC)))
2525 			goto rearm_timer;
2526 		skb = skb_rb_next(skb);
2527 	}
2528 
2529 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2530 		goto rearm_timer;
2531 
2532 	if (__tcp_retransmit_skb(sk, skb, 1))
2533 		goto rearm_timer;
2534 
2535 	/* Record snd_nxt for loss detection. */
2536 	tp->tlp_high_seq = tp->snd_nxt;
2537 
2538 probe_sent:
2539 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2540 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2541 	inet_csk(sk)->icsk_pending = 0;
2542 rearm_timer:
2543 	tcp_rearm_rto(sk);
2544 }
2545 
2546 /* Push out any pending frames which were held back due to
2547  * TCP_CORK or attempt at coalescing tiny packets.
2548  * The socket must be locked by the caller.
2549  */
2550 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2551 			       int nonagle)
2552 {
2553 	/* If we are closed, the bytes will have to remain here.
2554 	 * In time closedown will finish, we empty the write queue and
2555 	 * all will be happy.
2556 	 */
2557 	if (unlikely(sk->sk_state == TCP_CLOSE))
2558 		return;
2559 
2560 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2561 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2562 		tcp_check_probe_timer(sk);
2563 }
2564 
2565 /* Send _single_ skb sitting at the send head. This function requires
2566  * true push pending frames to setup probe timer etc.
2567  */
2568 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2569 {
2570 	struct sk_buff *skb = tcp_send_head(sk);
2571 
2572 	BUG_ON(!skb || skb->len < mss_now);
2573 
2574 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2575 }
2576 
2577 /* This function returns the amount that we can raise the
2578  * usable window based on the following constraints
2579  *
2580  * 1. The window can never be shrunk once it is offered (RFC 793)
2581  * 2. We limit memory per socket
2582  *
2583  * RFC 1122:
2584  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2585  *  RECV.NEXT + RCV.WIN fixed until:
2586  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2587  *
2588  * i.e. don't raise the right edge of the window until you can raise
2589  * it at least MSS bytes.
2590  *
2591  * Unfortunately, the recommended algorithm breaks header prediction,
2592  * since header prediction assumes th->window stays fixed.
2593  *
2594  * Strictly speaking, keeping th->window fixed violates the receiver
2595  * side SWS prevention criteria. The problem is that under this rule
2596  * a stream of single byte packets will cause the right side of the
2597  * window to always advance by a single byte.
2598  *
2599  * Of course, if the sender implements sender side SWS prevention
2600  * then this will not be a problem.
2601  *
2602  * BSD seems to make the following compromise:
2603  *
2604  *	If the free space is less than the 1/4 of the maximum
2605  *	space available and the free space is less than 1/2 mss,
2606  *	then set the window to 0.
2607  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2608  *	Otherwise, just prevent the window from shrinking
2609  *	and from being larger than the largest representable value.
2610  *
2611  * This prevents incremental opening of the window in the regime
2612  * where TCP is limited by the speed of the reader side taking
2613  * data out of the TCP receive queue. It does nothing about
2614  * those cases where the window is constrained on the sender side
2615  * because the pipeline is full.
2616  *
2617  * BSD also seems to "accidentally" limit itself to windows that are a
2618  * multiple of MSS, at least until the free space gets quite small.
2619  * This would appear to be a side effect of the mbuf implementation.
2620  * Combining these two algorithms results in the observed behavior
2621  * of having a fixed window size at almost all times.
2622  *
2623  * Below we obtain similar behavior by forcing the offered window to
2624  * a multiple of the mss when it is feasible to do so.
2625  *
2626  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2627  * Regular options like TIMESTAMP are taken into account.
2628  */
2629 u32 __tcp_select_window(struct sock *sk)
2630 {
2631 	struct inet_connection_sock *icsk = inet_csk(sk);
2632 	struct tcp_sock *tp = tcp_sk(sk);
2633 	/* MSS for the peer's data.  Previous versions used mss_clamp
2634 	 * here.  I don't know if the value based on our guesses
2635 	 * of peer's MSS is better for the performance.  It's more correct
2636 	 * but may be worse for the performance because of rcv_mss
2637 	 * fluctuations.  --SAW  1998/11/1
2638 	 */
2639 	int mss = icsk->icsk_ack.rcv_mss;
2640 	int free_space = tcp_space(sk);
2641 	int allowed_space = tcp_full_space(sk);
2642 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2643 	int window;
2644 
2645 	if (unlikely(mss > full_space)) {
2646 		mss = full_space;
2647 		if (mss <= 0)
2648 			return 0;
2649 	}
2650 	if (free_space < (full_space >> 1)) {
2651 		icsk->icsk_ack.quick = 0;
2652 
2653 		if (tcp_under_memory_pressure(sk))
2654 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2655 					       4U * tp->advmss);
2656 
2657 		/* free_space might become our new window, make sure we don't
2658 		 * increase it due to wscale.
2659 		 */
2660 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2661 
2662 		/* if free space is less than mss estimate, or is below 1/16th
2663 		 * of the maximum allowed, try to move to zero-window, else
2664 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2665 		 * new incoming data is dropped due to memory limits.
2666 		 * With large window, mss test triggers way too late in order
2667 		 * to announce zero window in time before rmem limit kicks in.
2668 		 */
2669 		if (free_space < (allowed_space >> 4) || free_space < mss)
2670 			return 0;
2671 	}
2672 
2673 	if (free_space > tp->rcv_ssthresh)
2674 		free_space = tp->rcv_ssthresh;
2675 
2676 	/* Don't do rounding if we are using window scaling, since the
2677 	 * scaled window will not line up with the MSS boundary anyway.
2678 	 */
2679 	if (tp->rx_opt.rcv_wscale) {
2680 		window = free_space;
2681 
2682 		/* Advertise enough space so that it won't get scaled away.
2683 		 * Import case: prevent zero window announcement if
2684 		 * 1<<rcv_wscale > mss.
2685 		 */
2686 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2687 	} else {
2688 		window = tp->rcv_wnd;
2689 		/* Get the largest window that is a nice multiple of mss.
2690 		 * Window clamp already applied above.
2691 		 * If our current window offering is within 1 mss of the
2692 		 * free space we just keep it. This prevents the divide
2693 		 * and multiply from happening most of the time.
2694 		 * We also don't do any window rounding when the free space
2695 		 * is too small.
2696 		 */
2697 		if (window <= free_space - mss || window > free_space)
2698 			window = rounddown(free_space, mss);
2699 		else if (mss == full_space &&
2700 			 free_space > window + (full_space >> 1))
2701 			window = free_space;
2702 	}
2703 
2704 	return window;
2705 }
2706 
2707 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2708 			     const struct sk_buff *next_skb)
2709 {
2710 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2711 		const struct skb_shared_info *next_shinfo =
2712 			skb_shinfo(next_skb);
2713 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2714 
2715 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2716 		shinfo->tskey = next_shinfo->tskey;
2717 		TCP_SKB_CB(skb)->txstamp_ack |=
2718 			TCP_SKB_CB(next_skb)->txstamp_ack;
2719 	}
2720 }
2721 
2722 /* Collapses two adjacent SKB's during retransmission. */
2723 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 	struct sk_buff *next_skb = skb_rb_next(skb);
2727 	int skb_size, next_skb_size;
2728 
2729 	skb_size = skb->len;
2730 	next_skb_size = next_skb->len;
2731 
2732 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2733 
2734 	if (next_skb_size) {
2735 		if (next_skb_size <= skb_availroom(skb))
2736 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2737 				      next_skb_size);
2738 		else if (!skb_shift(skb, next_skb, next_skb_size))
2739 			return false;
2740 	}
2741 	tcp_highest_sack_combine(sk, next_skb, skb);
2742 
2743 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2744 		skb->ip_summed = CHECKSUM_PARTIAL;
2745 
2746 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2747 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2748 
2749 	/* Update sequence range on original skb. */
2750 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2751 
2752 	/* Merge over control information. This moves PSH/FIN etc. over */
2753 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2754 
2755 	/* All done, get rid of second SKB and account for it so
2756 	 * packet counting does not break.
2757 	 */
2758 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2759 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2760 
2761 	/* changed transmit queue under us so clear hints */
2762 	tcp_clear_retrans_hints_partial(tp);
2763 	if (next_skb == tp->retransmit_skb_hint)
2764 		tp->retransmit_skb_hint = skb;
2765 
2766 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2767 
2768 	tcp_skb_collapse_tstamp(skb, next_skb);
2769 
2770 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2771 	return true;
2772 }
2773 
2774 /* Check if coalescing SKBs is legal. */
2775 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2776 {
2777 	if (tcp_skb_pcount(skb) > 1)
2778 		return false;
2779 	if (skb_cloned(skb))
2780 		return false;
2781 	/* Some heuristics for collapsing over SACK'd could be invented */
2782 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2783 		return false;
2784 
2785 	return true;
2786 }
2787 
2788 /* Collapse packets in the retransmit queue to make to create
2789  * less packets on the wire. This is only done on retransmission.
2790  */
2791 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2792 				     int space)
2793 {
2794 	struct tcp_sock *tp = tcp_sk(sk);
2795 	struct sk_buff *skb = to, *tmp;
2796 	bool first = true;
2797 
2798 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2799 		return;
2800 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2801 		return;
2802 
2803 	skb_rbtree_walk_from_safe(skb, tmp) {
2804 		if (!tcp_can_collapse(sk, skb))
2805 			break;
2806 
2807 		if (!tcp_skb_can_collapse_to(to))
2808 			break;
2809 
2810 		space -= skb->len;
2811 
2812 		if (first) {
2813 			first = false;
2814 			continue;
2815 		}
2816 
2817 		if (space < 0)
2818 			break;
2819 
2820 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2821 			break;
2822 
2823 		if (!tcp_collapse_retrans(sk, to))
2824 			break;
2825 	}
2826 }
2827 
2828 /* This retransmits one SKB.  Policy decisions and retransmit queue
2829  * state updates are done by the caller.  Returns non-zero if an
2830  * error occurred which prevented the send.
2831  */
2832 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2833 {
2834 	struct inet_connection_sock *icsk = inet_csk(sk);
2835 	struct tcp_sock *tp = tcp_sk(sk);
2836 	unsigned int cur_mss;
2837 	int diff, len, err;
2838 
2839 
2840 	/* Inconclusive MTU probe */
2841 	if (icsk->icsk_mtup.probe_size)
2842 		icsk->icsk_mtup.probe_size = 0;
2843 
2844 	/* Do not sent more than we queued. 1/4 is reserved for possible
2845 	 * copying overhead: fragmentation, tunneling, mangling etc.
2846 	 */
2847 	if (refcount_read(&sk->sk_wmem_alloc) >
2848 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2849 		  sk->sk_sndbuf))
2850 		return -EAGAIN;
2851 
2852 	if (skb_still_in_host_queue(sk, skb))
2853 		return -EBUSY;
2854 
2855 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2856 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2857 			BUG();
2858 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2859 			return -ENOMEM;
2860 	}
2861 
2862 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2863 		return -EHOSTUNREACH; /* Routing failure or similar. */
2864 
2865 	cur_mss = tcp_current_mss(sk);
2866 
2867 	/* If receiver has shrunk his window, and skb is out of
2868 	 * new window, do not retransmit it. The exception is the
2869 	 * case, when window is shrunk to zero. In this case
2870 	 * our retransmit serves as a zero window probe.
2871 	 */
2872 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2873 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2874 		return -EAGAIN;
2875 
2876 	len = cur_mss * segs;
2877 	if (skb->len > len) {
2878 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2879 				 cur_mss, GFP_ATOMIC))
2880 			return -ENOMEM; /* We'll try again later. */
2881 	} else {
2882 		if (skb_unclone(skb, GFP_ATOMIC))
2883 			return -ENOMEM;
2884 
2885 		diff = tcp_skb_pcount(skb);
2886 		tcp_set_skb_tso_segs(skb, cur_mss);
2887 		diff -= tcp_skb_pcount(skb);
2888 		if (diff)
2889 			tcp_adjust_pcount(sk, skb, diff);
2890 		if (skb->len < cur_mss)
2891 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2892 	}
2893 
2894 	/* RFC3168, section 6.1.1.1. ECN fallback */
2895 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2896 		tcp_ecn_clear_syn(sk, skb);
2897 
2898 	/* Update global and local TCP statistics. */
2899 	segs = tcp_skb_pcount(skb);
2900 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2901 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2902 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2903 	tp->total_retrans += segs;
2904 
2905 	/* make sure skb->data is aligned on arches that require it
2906 	 * and check if ack-trimming & collapsing extended the headroom
2907 	 * beyond what csum_start can cover.
2908 	 */
2909 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2910 		     skb_headroom(skb) >= 0xFFFF)) {
2911 		struct sk_buff *nskb;
2912 
2913 		tcp_skb_tsorted_save(skb) {
2914 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2915 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2916 				     -ENOBUFS;
2917 		} tcp_skb_tsorted_restore(skb);
2918 
2919 		if (!err)
2920 			tcp_update_skb_after_send(tp, skb);
2921 	} else {
2922 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2923 	}
2924 
2925 	if (likely(!err)) {
2926 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2927 		trace_tcp_retransmit_skb(sk, skb);
2928 	} else if (err != -EBUSY) {
2929 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2930 	}
2931 	return err;
2932 }
2933 
2934 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2935 {
2936 	struct tcp_sock *tp = tcp_sk(sk);
2937 	int err = __tcp_retransmit_skb(sk, skb, segs);
2938 
2939 	if (err == 0) {
2940 #if FASTRETRANS_DEBUG > 0
2941 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2942 			net_dbg_ratelimited("retrans_out leaked\n");
2943 		}
2944 #endif
2945 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2946 		tp->retrans_out += tcp_skb_pcount(skb);
2947 
2948 		/* Save stamp of the first retransmit. */
2949 		if (!tp->retrans_stamp)
2950 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2951 
2952 	}
2953 
2954 	if (tp->undo_retrans < 0)
2955 		tp->undo_retrans = 0;
2956 	tp->undo_retrans += tcp_skb_pcount(skb);
2957 	return err;
2958 }
2959 
2960 /* This gets called after a retransmit timeout, and the initially
2961  * retransmitted data is acknowledged.  It tries to continue
2962  * resending the rest of the retransmit queue, until either
2963  * we've sent it all or the congestion window limit is reached.
2964  * If doing SACK, the first ACK which comes back for a timeout
2965  * based retransmit packet might feed us FACK information again.
2966  * If so, we use it to avoid unnecessarily retransmissions.
2967  */
2968 void tcp_xmit_retransmit_queue(struct sock *sk)
2969 {
2970 	const struct inet_connection_sock *icsk = inet_csk(sk);
2971 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 	u32 max_segs;
2974 	int mib_idx;
2975 
2976 	if (!tp->packets_out)
2977 		return;
2978 
2979 	rtx_head = tcp_rtx_queue_head(sk);
2980 	skb = tp->retransmit_skb_hint ?: rtx_head;
2981 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2982 	skb_rbtree_walk_from(skb) {
2983 		__u8 sacked;
2984 		int segs;
2985 
2986 		if (tcp_pacing_check(sk))
2987 			break;
2988 
2989 		/* we could do better than to assign each time */
2990 		if (!hole)
2991 			tp->retransmit_skb_hint = skb;
2992 
2993 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2994 		if (segs <= 0)
2995 			return;
2996 		sacked = TCP_SKB_CB(skb)->sacked;
2997 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2998 		 * we need to make sure not sending too bigs TSO packets
2999 		 */
3000 		segs = min_t(int, segs, max_segs);
3001 
3002 		if (tp->retrans_out >= tp->lost_out) {
3003 			break;
3004 		} else if (!(sacked & TCPCB_LOST)) {
3005 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3006 				hole = skb;
3007 			continue;
3008 
3009 		} else {
3010 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3011 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3012 			else
3013 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3014 		}
3015 
3016 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3017 			continue;
3018 
3019 		if (tcp_small_queue_check(sk, skb, 1))
3020 			return;
3021 
3022 		if (tcp_retransmit_skb(sk, skb, segs))
3023 			return;
3024 
3025 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3026 
3027 		if (tcp_in_cwnd_reduction(sk))
3028 			tp->prr_out += tcp_skb_pcount(skb);
3029 
3030 		if (skb == rtx_head &&
3031 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3032 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3033 						  inet_csk(sk)->icsk_rto,
3034 						  TCP_RTO_MAX);
3035 	}
3036 }
3037 
3038 /* We allow to exceed memory limits for FIN packets to expedite
3039  * connection tear down and (memory) recovery.
3040  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3041  * or even be forced to close flow without any FIN.
3042  * In general, we want to allow one skb per socket to avoid hangs
3043  * with edge trigger epoll()
3044  */
3045 void sk_forced_mem_schedule(struct sock *sk, int size)
3046 {
3047 	int amt;
3048 
3049 	if (size <= sk->sk_forward_alloc)
3050 		return;
3051 	amt = sk_mem_pages(size);
3052 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3053 	sk_memory_allocated_add(sk, amt);
3054 
3055 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3056 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3057 }
3058 
3059 /* Send a FIN. The caller locks the socket for us.
3060  * We should try to send a FIN packet really hard, but eventually give up.
3061  */
3062 void tcp_send_fin(struct sock *sk)
3063 {
3064 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3065 	struct tcp_sock *tp = tcp_sk(sk);
3066 
3067 	/* Optimization, tack on the FIN if we have one skb in write queue and
3068 	 * this skb was not yet sent, or we are under memory pressure.
3069 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3070 	 * as TCP stack thinks it has already been transmitted.
3071 	 */
3072 	if (!tskb && tcp_under_memory_pressure(sk))
3073 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3074 
3075 	if (tskb) {
3076 coalesce:
3077 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3078 		TCP_SKB_CB(tskb)->end_seq++;
3079 		tp->write_seq++;
3080 		if (tcp_write_queue_empty(sk)) {
3081 			/* This means tskb was already sent.
3082 			 * Pretend we included the FIN on previous transmit.
3083 			 * We need to set tp->snd_nxt to the value it would have
3084 			 * if FIN had been sent. This is because retransmit path
3085 			 * does not change tp->snd_nxt.
3086 			 */
3087 			tp->snd_nxt++;
3088 			return;
3089 		}
3090 	} else {
3091 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3092 		if (unlikely(!skb)) {
3093 			if (tskb)
3094 				goto coalesce;
3095 			return;
3096 		}
3097 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3098 		skb_reserve(skb, MAX_TCP_HEADER);
3099 		sk_forced_mem_schedule(sk, skb->truesize);
3100 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3101 		tcp_init_nondata_skb(skb, tp->write_seq,
3102 				     TCPHDR_ACK | TCPHDR_FIN);
3103 		tcp_queue_skb(sk, skb);
3104 	}
3105 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3106 }
3107 
3108 /* We get here when a process closes a file descriptor (either due to
3109  * an explicit close() or as a byproduct of exit()'ing) and there
3110  * was unread data in the receive queue.  This behavior is recommended
3111  * by RFC 2525, section 2.17.  -DaveM
3112  */
3113 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3114 {
3115 	struct sk_buff *skb;
3116 
3117 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3118 
3119 	/* NOTE: No TCP options attached and we never retransmit this. */
3120 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3121 	if (!skb) {
3122 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3123 		return;
3124 	}
3125 
3126 	/* Reserve space for headers and prepare control bits. */
3127 	skb_reserve(skb, MAX_TCP_HEADER);
3128 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3129 			     TCPHDR_ACK | TCPHDR_RST);
3130 	tcp_mstamp_refresh(tcp_sk(sk));
3131 	/* Send it off. */
3132 	if (tcp_transmit_skb(sk, skb, 0, priority))
3133 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3134 
3135 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3136 	 * skb here is different to the troublesome skb, so use NULL
3137 	 */
3138 	trace_tcp_send_reset(sk, NULL);
3139 }
3140 
3141 /* Send a crossed SYN-ACK during socket establishment.
3142  * WARNING: This routine must only be called when we have already sent
3143  * a SYN packet that crossed the incoming SYN that caused this routine
3144  * to get called. If this assumption fails then the initial rcv_wnd
3145  * and rcv_wscale values will not be correct.
3146  */
3147 int tcp_send_synack(struct sock *sk)
3148 {
3149 	struct sk_buff *skb;
3150 
3151 	skb = tcp_rtx_queue_head(sk);
3152 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3153 		pr_err("%s: wrong queue state\n", __func__);
3154 		return -EFAULT;
3155 	}
3156 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3157 		if (skb_cloned(skb)) {
3158 			struct sk_buff *nskb;
3159 
3160 			tcp_skb_tsorted_save(skb) {
3161 				nskb = skb_copy(skb, GFP_ATOMIC);
3162 			} tcp_skb_tsorted_restore(skb);
3163 			if (!nskb)
3164 				return -ENOMEM;
3165 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3166 			tcp_rtx_queue_unlink_and_free(skb, sk);
3167 			__skb_header_release(nskb);
3168 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3169 			sk->sk_wmem_queued += nskb->truesize;
3170 			sk_mem_charge(sk, nskb->truesize);
3171 			skb = nskb;
3172 		}
3173 
3174 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3175 		tcp_ecn_send_synack(sk, skb);
3176 	}
3177 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3178 }
3179 
3180 /**
3181  * tcp_make_synack - Prepare a SYN-ACK.
3182  * sk: listener socket
3183  * dst: dst entry attached to the SYNACK
3184  * req: request_sock pointer
3185  *
3186  * Allocate one skb and build a SYNACK packet.
3187  * @dst is consumed : Caller should not use it again.
3188  */
3189 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3190 				struct request_sock *req,
3191 				struct tcp_fastopen_cookie *foc,
3192 				enum tcp_synack_type synack_type)
3193 {
3194 	struct inet_request_sock *ireq = inet_rsk(req);
3195 	const struct tcp_sock *tp = tcp_sk(sk);
3196 	struct tcp_md5sig_key *md5 = NULL;
3197 	struct tcp_out_options opts;
3198 	struct sk_buff *skb;
3199 	int tcp_header_size;
3200 	struct tcphdr *th;
3201 	int mss;
3202 
3203 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3204 	if (unlikely(!skb)) {
3205 		dst_release(dst);
3206 		return NULL;
3207 	}
3208 	/* Reserve space for headers. */
3209 	skb_reserve(skb, MAX_TCP_HEADER);
3210 
3211 	switch (synack_type) {
3212 	case TCP_SYNACK_NORMAL:
3213 		skb_set_owner_w(skb, req_to_sk(req));
3214 		break;
3215 	case TCP_SYNACK_COOKIE:
3216 		/* Under synflood, we do not attach skb to a socket,
3217 		 * to avoid false sharing.
3218 		 */
3219 		break;
3220 	case TCP_SYNACK_FASTOPEN:
3221 		/* sk is a const pointer, because we want to express multiple
3222 		 * cpu might call us concurrently.
3223 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3224 		 */
3225 		skb_set_owner_w(skb, (struct sock *)sk);
3226 		break;
3227 	}
3228 	skb_dst_set(skb, dst);
3229 
3230 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3231 
3232 	memset(&opts, 0, sizeof(opts));
3233 #ifdef CONFIG_SYN_COOKIES
3234 	if (unlikely(req->cookie_ts))
3235 		skb->skb_mstamp = cookie_init_timestamp(req);
3236 	else
3237 #endif
3238 		skb->skb_mstamp = tcp_clock_us();
3239 
3240 #ifdef CONFIG_TCP_MD5SIG
3241 	rcu_read_lock();
3242 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3243 #endif
3244 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3245 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3246 					     foc) + sizeof(*th);
3247 
3248 	skb_push(skb, tcp_header_size);
3249 	skb_reset_transport_header(skb);
3250 
3251 	th = (struct tcphdr *)skb->data;
3252 	memset(th, 0, sizeof(struct tcphdr));
3253 	th->syn = 1;
3254 	th->ack = 1;
3255 	tcp_ecn_make_synack(req, th);
3256 	th->source = htons(ireq->ir_num);
3257 	th->dest = ireq->ir_rmt_port;
3258 	skb->mark = ireq->ir_mark;
3259 	/* Setting of flags are superfluous here for callers (and ECE is
3260 	 * not even correctly set)
3261 	 */
3262 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3263 			     TCPHDR_SYN | TCPHDR_ACK);
3264 
3265 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3266 	/* XXX data is queued and acked as is. No buffer/window check */
3267 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3268 
3269 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3270 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3271 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3272 	th->doff = (tcp_header_size >> 2);
3273 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3274 
3275 #ifdef CONFIG_TCP_MD5SIG
3276 	/* Okay, we have all we need - do the md5 hash if needed */
3277 	if (md5)
3278 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3279 					       md5, req_to_sk(req), skb);
3280 	rcu_read_unlock();
3281 #endif
3282 
3283 	/* Do not fool tcpdump (if any), clean our debris */
3284 	skb->tstamp = 0;
3285 	return skb;
3286 }
3287 EXPORT_SYMBOL(tcp_make_synack);
3288 
3289 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3290 {
3291 	struct inet_connection_sock *icsk = inet_csk(sk);
3292 	const struct tcp_congestion_ops *ca;
3293 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3294 
3295 	if (ca_key == TCP_CA_UNSPEC)
3296 		return;
3297 
3298 	rcu_read_lock();
3299 	ca = tcp_ca_find_key(ca_key);
3300 	if (likely(ca && try_module_get(ca->owner))) {
3301 		module_put(icsk->icsk_ca_ops->owner);
3302 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3303 		icsk->icsk_ca_ops = ca;
3304 	}
3305 	rcu_read_unlock();
3306 }
3307 
3308 /* Do all connect socket setups that can be done AF independent. */
3309 static void tcp_connect_init(struct sock *sk)
3310 {
3311 	const struct dst_entry *dst = __sk_dst_get(sk);
3312 	struct tcp_sock *tp = tcp_sk(sk);
3313 	__u8 rcv_wscale;
3314 	u32 rcv_wnd;
3315 
3316 	/* We'll fix this up when we get a response from the other end.
3317 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3318 	 */
3319 	tp->tcp_header_len = sizeof(struct tcphdr);
3320 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3321 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3322 
3323 #ifdef CONFIG_TCP_MD5SIG
3324 	if (tp->af_specific->md5_lookup(sk, sk))
3325 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3326 #endif
3327 
3328 	/* If user gave his TCP_MAXSEG, record it to clamp */
3329 	if (tp->rx_opt.user_mss)
3330 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3331 	tp->max_window = 0;
3332 	tcp_mtup_init(sk);
3333 	tcp_sync_mss(sk, dst_mtu(dst));
3334 
3335 	tcp_ca_dst_init(sk, dst);
3336 
3337 	if (!tp->window_clamp)
3338 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3339 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3340 
3341 	tcp_initialize_rcv_mss(sk);
3342 
3343 	/* limit the window selection if the user enforce a smaller rx buffer */
3344 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3345 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3346 		tp->window_clamp = tcp_full_space(sk);
3347 
3348 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3349 	if (rcv_wnd == 0)
3350 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3351 
3352 	tcp_select_initial_window(tcp_full_space(sk),
3353 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3354 				  &tp->rcv_wnd,
3355 				  &tp->window_clamp,
3356 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3357 				  &rcv_wscale,
3358 				  rcv_wnd);
3359 
3360 	tp->rx_opt.rcv_wscale = rcv_wscale;
3361 	tp->rcv_ssthresh = tp->rcv_wnd;
3362 
3363 	sk->sk_err = 0;
3364 	sock_reset_flag(sk, SOCK_DONE);
3365 	tp->snd_wnd = 0;
3366 	tcp_init_wl(tp, 0);
3367 	tp->snd_una = tp->write_seq;
3368 	tp->snd_sml = tp->write_seq;
3369 	tp->snd_up = tp->write_seq;
3370 	tp->snd_nxt = tp->write_seq;
3371 
3372 	if (likely(!tp->repair))
3373 		tp->rcv_nxt = 0;
3374 	else
3375 		tp->rcv_tstamp = tcp_jiffies32;
3376 	tp->rcv_wup = tp->rcv_nxt;
3377 	tp->copied_seq = tp->rcv_nxt;
3378 
3379 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3380 	inet_csk(sk)->icsk_retransmits = 0;
3381 	tcp_clear_retrans(tp);
3382 }
3383 
3384 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3385 {
3386 	struct tcp_sock *tp = tcp_sk(sk);
3387 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3388 
3389 	tcb->end_seq += skb->len;
3390 	__skb_header_release(skb);
3391 	sk->sk_wmem_queued += skb->truesize;
3392 	sk_mem_charge(sk, skb->truesize);
3393 	tp->write_seq = tcb->end_seq;
3394 	tp->packets_out += tcp_skb_pcount(skb);
3395 }
3396 
3397 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3398  * queue a data-only packet after the regular SYN, such that regular SYNs
3399  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3400  * only the SYN sequence, the data are retransmitted in the first ACK.
3401  * If cookie is not cached or other error occurs, falls back to send a
3402  * regular SYN with Fast Open cookie request option.
3403  */
3404 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3405 {
3406 	struct tcp_sock *tp = tcp_sk(sk);
3407 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3408 	int space, err = 0;
3409 	struct sk_buff *syn_data;
3410 
3411 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3412 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3413 		goto fallback;
3414 
3415 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3416 	 * user-MSS. Reserve maximum option space for middleboxes that add
3417 	 * private TCP options. The cost is reduced data space in SYN :(
3418 	 */
3419 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3420 
3421 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3422 		MAX_TCP_OPTION_SPACE;
3423 
3424 	space = min_t(size_t, space, fo->size);
3425 
3426 	/* limit to order-0 allocations */
3427 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3428 
3429 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3430 	if (!syn_data)
3431 		goto fallback;
3432 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3433 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3434 	if (space) {
3435 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3436 					    &fo->data->msg_iter);
3437 		if (unlikely(!copied)) {
3438 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3439 			kfree_skb(syn_data);
3440 			goto fallback;
3441 		}
3442 		if (copied != space) {
3443 			skb_trim(syn_data, copied);
3444 			space = copied;
3445 		}
3446 	}
3447 	/* No more data pending in inet_wait_for_connect() */
3448 	if (space == fo->size)
3449 		fo->data = NULL;
3450 	fo->copied = space;
3451 
3452 	tcp_connect_queue_skb(sk, syn_data);
3453 	if (syn_data->len)
3454 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3455 
3456 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3457 
3458 	syn->skb_mstamp = syn_data->skb_mstamp;
3459 
3460 	/* Now full SYN+DATA was cloned and sent (or not),
3461 	 * remove the SYN from the original skb (syn_data)
3462 	 * we keep in write queue in case of a retransmit, as we
3463 	 * also have the SYN packet (with no data) in the same queue.
3464 	 */
3465 	TCP_SKB_CB(syn_data)->seq++;
3466 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3467 	if (!err) {
3468 		tp->syn_data = (fo->copied > 0);
3469 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3470 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3471 		goto done;
3472 	}
3473 
3474 	/* data was not sent, put it in write_queue */
3475 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3476 	tp->packets_out -= tcp_skb_pcount(syn_data);
3477 
3478 fallback:
3479 	/* Send a regular SYN with Fast Open cookie request option */
3480 	if (fo->cookie.len > 0)
3481 		fo->cookie.len = 0;
3482 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3483 	if (err)
3484 		tp->syn_fastopen = 0;
3485 done:
3486 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3487 	return err;
3488 }
3489 
3490 /* Build a SYN and send it off. */
3491 int tcp_connect(struct sock *sk)
3492 {
3493 	struct tcp_sock *tp = tcp_sk(sk);
3494 	struct sk_buff *buff;
3495 	int err;
3496 
3497 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3498 
3499 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3500 		return -EHOSTUNREACH; /* Routing failure or similar. */
3501 
3502 	tcp_connect_init(sk);
3503 
3504 	if (unlikely(tp->repair)) {
3505 		tcp_finish_connect(sk, NULL);
3506 		return 0;
3507 	}
3508 
3509 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3510 	if (unlikely(!buff))
3511 		return -ENOBUFS;
3512 
3513 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3514 	tcp_mstamp_refresh(tp);
3515 	tp->retrans_stamp = tcp_time_stamp(tp);
3516 	tcp_connect_queue_skb(sk, buff);
3517 	tcp_ecn_send_syn(sk, buff);
3518 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3519 
3520 	/* Send off SYN; include data in Fast Open. */
3521 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3522 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3523 	if (err == -ECONNREFUSED)
3524 		return err;
3525 
3526 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3527 	 * in order to make this packet get counted in tcpOutSegs.
3528 	 */
3529 	tp->snd_nxt = tp->write_seq;
3530 	tp->pushed_seq = tp->write_seq;
3531 	buff = tcp_send_head(sk);
3532 	if (unlikely(buff)) {
3533 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3534 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3535 	}
3536 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3537 
3538 	/* Timer for repeating the SYN until an answer. */
3539 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3540 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3541 	return 0;
3542 }
3543 EXPORT_SYMBOL(tcp_connect);
3544 
3545 /* Send out a delayed ack, the caller does the policy checking
3546  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3547  * for details.
3548  */
3549 void tcp_send_delayed_ack(struct sock *sk)
3550 {
3551 	struct inet_connection_sock *icsk = inet_csk(sk);
3552 	int ato = icsk->icsk_ack.ato;
3553 	unsigned long timeout;
3554 
3555 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3556 
3557 	if (ato > TCP_DELACK_MIN) {
3558 		const struct tcp_sock *tp = tcp_sk(sk);
3559 		int max_ato = HZ / 2;
3560 
3561 		if (icsk->icsk_ack.pingpong ||
3562 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3563 			max_ato = TCP_DELACK_MAX;
3564 
3565 		/* Slow path, intersegment interval is "high". */
3566 
3567 		/* If some rtt estimate is known, use it to bound delayed ack.
3568 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3569 		 * directly.
3570 		 */
3571 		if (tp->srtt_us) {
3572 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3573 					TCP_DELACK_MIN);
3574 
3575 			if (rtt < max_ato)
3576 				max_ato = rtt;
3577 		}
3578 
3579 		ato = min(ato, max_ato);
3580 	}
3581 
3582 	/* Stay within the limit we were given */
3583 	timeout = jiffies + ato;
3584 
3585 	/* Use new timeout only if there wasn't a older one earlier. */
3586 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3587 		/* If delack timer was blocked or is about to expire,
3588 		 * send ACK now.
3589 		 */
3590 		if (icsk->icsk_ack.blocked ||
3591 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3592 			tcp_send_ack(sk);
3593 			return;
3594 		}
3595 
3596 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3597 			timeout = icsk->icsk_ack.timeout;
3598 	}
3599 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3600 	icsk->icsk_ack.timeout = timeout;
3601 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3602 }
3603 
3604 /* This routine sends an ack and also updates the window. */
3605 void tcp_send_ack(struct sock *sk)
3606 {
3607 	struct sk_buff *buff;
3608 
3609 	/* If we have been reset, we may not send again. */
3610 	if (sk->sk_state == TCP_CLOSE)
3611 		return;
3612 
3613 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3614 
3615 	/* We are not putting this on the write queue, so
3616 	 * tcp_transmit_skb() will set the ownership to this
3617 	 * sock.
3618 	 */
3619 	buff = alloc_skb(MAX_TCP_HEADER,
3620 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3621 	if (unlikely(!buff)) {
3622 		inet_csk_schedule_ack(sk);
3623 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3624 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3625 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3626 		return;
3627 	}
3628 
3629 	/* Reserve space for headers and prepare control bits. */
3630 	skb_reserve(buff, MAX_TCP_HEADER);
3631 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3632 
3633 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3634 	 * too much.
3635 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3636 	 */
3637 	skb_set_tcp_pure_ack(buff);
3638 
3639 	/* Send it off, this clears delayed acks for us. */
3640 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3641 }
3642 EXPORT_SYMBOL_GPL(tcp_send_ack);
3643 
3644 /* This routine sends a packet with an out of date sequence
3645  * number. It assumes the other end will try to ack it.
3646  *
3647  * Question: what should we make while urgent mode?
3648  * 4.4BSD forces sending single byte of data. We cannot send
3649  * out of window data, because we have SND.NXT==SND.MAX...
3650  *
3651  * Current solution: to send TWO zero-length segments in urgent mode:
3652  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3653  * out-of-date with SND.UNA-1 to probe window.
3654  */
3655 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3656 {
3657 	struct tcp_sock *tp = tcp_sk(sk);
3658 	struct sk_buff *skb;
3659 
3660 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3661 	skb = alloc_skb(MAX_TCP_HEADER,
3662 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3663 	if (!skb)
3664 		return -1;
3665 
3666 	/* Reserve space for headers and set control bits. */
3667 	skb_reserve(skb, MAX_TCP_HEADER);
3668 	/* Use a previous sequence.  This should cause the other
3669 	 * end to send an ack.  Don't queue or clone SKB, just
3670 	 * send it.
3671 	 */
3672 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3673 	NET_INC_STATS(sock_net(sk), mib);
3674 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3675 }
3676 
3677 /* Called from setsockopt( ... TCP_REPAIR ) */
3678 void tcp_send_window_probe(struct sock *sk)
3679 {
3680 	if (sk->sk_state == TCP_ESTABLISHED) {
3681 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3682 		tcp_mstamp_refresh(tcp_sk(sk));
3683 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3684 	}
3685 }
3686 
3687 /* Initiate keepalive or window probe from timer. */
3688 int tcp_write_wakeup(struct sock *sk, int mib)
3689 {
3690 	struct tcp_sock *tp = tcp_sk(sk);
3691 	struct sk_buff *skb;
3692 
3693 	if (sk->sk_state == TCP_CLOSE)
3694 		return -1;
3695 
3696 	skb = tcp_send_head(sk);
3697 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3698 		int err;
3699 		unsigned int mss = tcp_current_mss(sk);
3700 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3701 
3702 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3703 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3704 
3705 		/* We are probing the opening of a window
3706 		 * but the window size is != 0
3707 		 * must have been a result SWS avoidance ( sender )
3708 		 */
3709 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3710 		    skb->len > mss) {
3711 			seg_size = min(seg_size, mss);
3712 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3713 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3714 					 skb, seg_size, mss, GFP_ATOMIC))
3715 				return -1;
3716 		} else if (!tcp_skb_pcount(skb))
3717 			tcp_set_skb_tso_segs(skb, mss);
3718 
3719 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3720 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3721 		if (!err)
3722 			tcp_event_new_data_sent(sk, skb);
3723 		return err;
3724 	} else {
3725 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3726 			tcp_xmit_probe_skb(sk, 1, mib);
3727 		return tcp_xmit_probe_skb(sk, 0, mib);
3728 	}
3729 }
3730 
3731 /* A window probe timeout has occurred.  If window is not closed send
3732  * a partial packet else a zero probe.
3733  */
3734 void tcp_send_probe0(struct sock *sk)
3735 {
3736 	struct inet_connection_sock *icsk = inet_csk(sk);
3737 	struct tcp_sock *tp = tcp_sk(sk);
3738 	struct net *net = sock_net(sk);
3739 	unsigned long probe_max;
3740 	int err;
3741 
3742 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3743 
3744 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3745 		/* Cancel probe timer, if it is not required. */
3746 		icsk->icsk_probes_out = 0;
3747 		icsk->icsk_backoff = 0;
3748 		return;
3749 	}
3750 
3751 	if (err <= 0) {
3752 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3753 			icsk->icsk_backoff++;
3754 		icsk->icsk_probes_out++;
3755 		probe_max = TCP_RTO_MAX;
3756 	} else {
3757 		/* If packet was not sent due to local congestion,
3758 		 * do not backoff and do not remember icsk_probes_out.
3759 		 * Let local senders to fight for local resources.
3760 		 *
3761 		 * Use accumulated backoff yet.
3762 		 */
3763 		if (!icsk->icsk_probes_out)
3764 			icsk->icsk_probes_out = 1;
3765 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3766 	}
3767 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3768 				  tcp_probe0_when(sk, probe_max),
3769 				  TCP_RTO_MAX);
3770 }
3771 
3772 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3773 {
3774 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3775 	struct flowi fl;
3776 	int res;
3777 
3778 	tcp_rsk(req)->txhash = net_tx_rndhash();
3779 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3780 	if (!res) {
3781 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3782 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3783 		if (unlikely(tcp_passive_fastopen(sk)))
3784 			tcp_sk(sk)->total_retrans++;
3785 	}
3786 	return res;
3787 }
3788 EXPORT_SYMBOL(tcp_rtx_synack);
3789