1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 57 int push_one, gfp_t gfp); 58 59 /* Account for new data that has been sent to the network. */ 60 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 61 { 62 struct inet_connection_sock *icsk = inet_csk(sk); 63 struct tcp_sock *tp = tcp_sk(sk); 64 unsigned int prior_packets = tp->packets_out; 65 66 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 67 68 __skb_unlink(skb, &sk->sk_write_queue); 69 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 70 71 tp->packets_out += tcp_skb_pcount(skb); 72 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 73 tcp_rearm_rto(sk); 74 75 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 76 tcp_skb_pcount(skb)); 77 } 78 79 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 80 * window scaling factor due to loss of precision. 81 * If window has been shrunk, what should we make? It is not clear at all. 82 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 83 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 84 * invalid. OK, let's make this for now: 85 */ 86 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 87 { 88 const struct tcp_sock *tp = tcp_sk(sk); 89 90 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 91 (tp->rx_opt.wscale_ok && 92 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 93 return tp->snd_nxt; 94 else 95 return tcp_wnd_end(tp); 96 } 97 98 /* Calculate mss to advertise in SYN segment. 99 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 100 * 101 * 1. It is independent of path mtu. 102 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 103 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 104 * attached devices, because some buggy hosts are confused by 105 * large MSS. 106 * 4. We do not make 3, we advertise MSS, calculated from first 107 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 108 * This may be overridden via information stored in routing table. 109 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 110 * probably even Jumbo". 111 */ 112 static __u16 tcp_advertise_mss(struct sock *sk) 113 { 114 struct tcp_sock *tp = tcp_sk(sk); 115 const struct dst_entry *dst = __sk_dst_get(sk); 116 int mss = tp->advmss; 117 118 if (dst) { 119 unsigned int metric = dst_metric_advmss(dst); 120 121 if (metric < mss) { 122 mss = metric; 123 tp->advmss = mss; 124 } 125 } 126 127 return (__u16)mss; 128 } 129 130 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 131 * This is the first part of cwnd validation mechanism. 132 */ 133 void tcp_cwnd_restart(struct sock *sk, s32 delta) 134 { 135 struct tcp_sock *tp = tcp_sk(sk); 136 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 137 u32 cwnd = tp->snd_cwnd; 138 139 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 140 141 tp->snd_ssthresh = tcp_current_ssthresh(sk); 142 restart_cwnd = min(restart_cwnd, cwnd); 143 144 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 145 cwnd >>= 1; 146 tp->snd_cwnd = max(cwnd, restart_cwnd); 147 tp->snd_cwnd_stamp = tcp_jiffies32; 148 tp->snd_cwnd_used = 0; 149 } 150 151 /* Congestion state accounting after a packet has been sent. */ 152 static void tcp_event_data_sent(struct tcp_sock *tp, 153 struct sock *sk) 154 { 155 struct inet_connection_sock *icsk = inet_csk(sk); 156 const u32 now = tcp_jiffies32; 157 158 if (tcp_packets_in_flight(tp) == 0) 159 tcp_ca_event(sk, CA_EVENT_TX_START); 160 161 tp->lsndtime = now; 162 163 /* If it is a reply for ato after last received 164 * packet, enter pingpong mode. 165 */ 166 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 167 icsk->icsk_ack.pingpong = 1; 168 } 169 170 /* Account for an ACK we sent. */ 171 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 172 { 173 tcp_dec_quickack_mode(sk, pkts); 174 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 175 } 176 177 178 u32 tcp_default_init_rwnd(u32 mss) 179 { 180 /* Initial receive window should be twice of TCP_INIT_CWND to 181 * enable proper sending of new unsent data during fast recovery 182 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 183 * limit when mss is larger than 1460. 184 */ 185 u32 init_rwnd = TCP_INIT_CWND * 2; 186 187 if (mss > 1460) 188 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 189 return init_rwnd; 190 } 191 192 /* Determine a window scaling and initial window to offer. 193 * Based on the assumption that the given amount of space 194 * will be offered. Store the results in the tp structure. 195 * NOTE: for smooth operation initial space offering should 196 * be a multiple of mss if possible. We assume here that mss >= 1. 197 * This MUST be enforced by all callers. 198 */ 199 void tcp_select_initial_window(int __space, __u32 mss, 200 __u32 *rcv_wnd, __u32 *window_clamp, 201 int wscale_ok, __u8 *rcv_wscale, 202 __u32 init_rcv_wnd) 203 { 204 unsigned int space = (__space < 0 ? 0 : __space); 205 206 /* If no clamp set the clamp to the max possible scaled window */ 207 if (*window_clamp == 0) 208 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 209 space = min(*window_clamp, space); 210 211 /* Quantize space offering to a multiple of mss if possible. */ 212 if (space > mss) 213 space = rounddown(space, mss); 214 215 /* NOTE: offering an initial window larger than 32767 216 * will break some buggy TCP stacks. If the admin tells us 217 * it is likely we could be speaking with such a buggy stack 218 * we will truncate our initial window offering to 32K-1 219 * unless the remote has sent us a window scaling option, 220 * which we interpret as a sign the remote TCP is not 221 * misinterpreting the window field as a signed quantity. 222 */ 223 if (sysctl_tcp_workaround_signed_windows) 224 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 225 else 226 (*rcv_wnd) = space; 227 228 (*rcv_wscale) = 0; 229 if (wscale_ok) { 230 /* Set window scaling on max possible window */ 231 space = max_t(u32, space, sysctl_tcp_rmem[2]); 232 space = max_t(u32, space, sysctl_rmem_max); 233 space = min_t(u32, space, *window_clamp); 234 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 235 space >>= 1; 236 (*rcv_wscale)++; 237 } 238 } 239 240 if (mss > (1 << *rcv_wscale)) { 241 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 242 init_rcv_wnd = tcp_default_init_rwnd(mss); 243 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 244 } 245 246 /* Set the clamp no higher than max representable value */ 247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 248 } 249 EXPORT_SYMBOL(tcp_select_initial_window); 250 251 /* Chose a new window to advertise, update state in tcp_sock for the 252 * socket, and return result with RFC1323 scaling applied. The return 253 * value can be stuffed directly into th->window for an outgoing 254 * frame. 255 */ 256 static u16 tcp_select_window(struct sock *sk) 257 { 258 struct tcp_sock *tp = tcp_sk(sk); 259 u32 old_win = tp->rcv_wnd; 260 u32 cur_win = tcp_receive_window(tp); 261 u32 new_win = __tcp_select_window(sk); 262 263 /* Never shrink the offered window */ 264 if (new_win < cur_win) { 265 /* Danger Will Robinson! 266 * Don't update rcv_wup/rcv_wnd here or else 267 * we will not be able to advertise a zero 268 * window in time. --DaveM 269 * 270 * Relax Will Robinson. 271 */ 272 if (new_win == 0) 273 NET_INC_STATS(sock_net(sk), 274 LINUX_MIB_TCPWANTZEROWINDOWADV); 275 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 276 } 277 tp->rcv_wnd = new_win; 278 tp->rcv_wup = tp->rcv_nxt; 279 280 /* Make sure we do not exceed the maximum possible 281 * scaled window. 282 */ 283 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 284 new_win = min(new_win, MAX_TCP_WINDOW); 285 else 286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 287 288 /* RFC1323 scaling applied */ 289 new_win >>= tp->rx_opt.rcv_wscale; 290 291 /* If we advertise zero window, disable fast path. */ 292 if (new_win == 0) { 293 tp->pred_flags = 0; 294 if (old_win) 295 NET_INC_STATS(sock_net(sk), 296 LINUX_MIB_TCPTOZEROWINDOWADV); 297 } else if (old_win == 0) { 298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 299 } 300 301 return new_win; 302 } 303 304 /* Packet ECN state for a SYN-ACK */ 305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 306 { 307 const struct tcp_sock *tp = tcp_sk(sk); 308 309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 310 if (!(tp->ecn_flags & TCP_ECN_OK)) 311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 312 else if (tcp_ca_needs_ecn(sk) || 313 tcp_bpf_ca_needs_ecn(sk)) 314 INET_ECN_xmit(sk); 315 } 316 317 /* Packet ECN state for a SYN. */ 318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 319 { 320 struct tcp_sock *tp = tcp_sk(sk); 321 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 322 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 323 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 324 325 if (!use_ecn) { 326 const struct dst_entry *dst = __sk_dst_get(sk); 327 328 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 329 use_ecn = true; 330 } 331 332 tp->ecn_flags = 0; 333 334 if (use_ecn) { 335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 336 tp->ecn_flags = TCP_ECN_OK; 337 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 338 INET_ECN_xmit(sk); 339 } 340 } 341 342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 343 { 344 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 345 /* tp->ecn_flags are cleared at a later point in time when 346 * SYN ACK is ultimatively being received. 347 */ 348 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 349 } 350 351 static void 352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 353 { 354 if (inet_rsk(req)->ecn_ok) 355 th->ece = 1; 356 } 357 358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 359 * be sent. 360 */ 361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 362 struct tcphdr *th, int tcp_header_len) 363 { 364 struct tcp_sock *tp = tcp_sk(sk); 365 366 if (tp->ecn_flags & TCP_ECN_OK) { 367 /* Not-retransmitted data segment: set ECT and inject CWR. */ 368 if (skb->len != tcp_header_len && 369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 370 INET_ECN_xmit(sk); 371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 373 th->cwr = 1; 374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 375 } 376 } else if (!tcp_ca_needs_ecn(sk)) { 377 /* ACK or retransmitted segment: clear ECT|CE */ 378 INET_ECN_dontxmit(sk); 379 } 380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 381 th->ece = 1; 382 } 383 } 384 385 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 386 * auto increment end seqno. 387 */ 388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 389 { 390 skb->ip_summed = CHECKSUM_PARTIAL; 391 skb->csum = 0; 392 393 TCP_SKB_CB(skb)->tcp_flags = flags; 394 TCP_SKB_CB(skb)->sacked = 0; 395 396 tcp_skb_pcount_set(skb, 1); 397 398 TCP_SKB_CB(skb)->seq = seq; 399 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 400 seq++; 401 TCP_SKB_CB(skb)->end_seq = seq; 402 } 403 404 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 405 { 406 return tp->snd_una != tp->snd_up; 407 } 408 409 #define OPTION_SACK_ADVERTISE (1 << 0) 410 #define OPTION_TS (1 << 1) 411 #define OPTION_MD5 (1 << 2) 412 #define OPTION_WSCALE (1 << 3) 413 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 414 #define OPTION_SMC (1 << 9) 415 416 static void smc_options_write(__be32 *ptr, u16 *options) 417 { 418 #if IS_ENABLED(CONFIG_SMC) 419 if (static_branch_unlikely(&tcp_have_smc)) { 420 if (unlikely(OPTION_SMC & *options)) { 421 *ptr++ = htonl((TCPOPT_NOP << 24) | 422 (TCPOPT_NOP << 16) | 423 (TCPOPT_EXP << 8) | 424 (TCPOLEN_EXP_SMC_BASE)); 425 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 426 } 427 } 428 #endif 429 } 430 431 struct tcp_out_options { 432 u16 options; /* bit field of OPTION_* */ 433 u16 mss; /* 0 to disable */ 434 u8 ws; /* window scale, 0 to disable */ 435 u8 num_sack_blocks; /* number of SACK blocks to include */ 436 u8 hash_size; /* bytes in hash_location */ 437 __u8 *hash_location; /* temporary pointer, overloaded */ 438 __u32 tsval, tsecr; /* need to include OPTION_TS */ 439 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 440 }; 441 442 /* Write previously computed TCP options to the packet. 443 * 444 * Beware: Something in the Internet is very sensitive to the ordering of 445 * TCP options, we learned this through the hard way, so be careful here. 446 * Luckily we can at least blame others for their non-compliance but from 447 * inter-operability perspective it seems that we're somewhat stuck with 448 * the ordering which we have been using if we want to keep working with 449 * those broken things (not that it currently hurts anybody as there isn't 450 * particular reason why the ordering would need to be changed). 451 * 452 * At least SACK_PERM as the first option is known to lead to a disaster 453 * (but it may well be that other scenarios fail similarly). 454 */ 455 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 456 struct tcp_out_options *opts) 457 { 458 u16 options = opts->options; /* mungable copy */ 459 460 if (unlikely(OPTION_MD5 & options)) { 461 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 462 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 463 /* overload cookie hash location */ 464 opts->hash_location = (__u8 *)ptr; 465 ptr += 4; 466 } 467 468 if (unlikely(opts->mss)) { 469 *ptr++ = htonl((TCPOPT_MSS << 24) | 470 (TCPOLEN_MSS << 16) | 471 opts->mss); 472 } 473 474 if (likely(OPTION_TS & options)) { 475 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 476 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 477 (TCPOLEN_SACK_PERM << 16) | 478 (TCPOPT_TIMESTAMP << 8) | 479 TCPOLEN_TIMESTAMP); 480 options &= ~OPTION_SACK_ADVERTISE; 481 } else { 482 *ptr++ = htonl((TCPOPT_NOP << 24) | 483 (TCPOPT_NOP << 16) | 484 (TCPOPT_TIMESTAMP << 8) | 485 TCPOLEN_TIMESTAMP); 486 } 487 *ptr++ = htonl(opts->tsval); 488 *ptr++ = htonl(opts->tsecr); 489 } 490 491 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 492 *ptr++ = htonl((TCPOPT_NOP << 24) | 493 (TCPOPT_NOP << 16) | 494 (TCPOPT_SACK_PERM << 8) | 495 TCPOLEN_SACK_PERM); 496 } 497 498 if (unlikely(OPTION_WSCALE & options)) { 499 *ptr++ = htonl((TCPOPT_NOP << 24) | 500 (TCPOPT_WINDOW << 16) | 501 (TCPOLEN_WINDOW << 8) | 502 opts->ws); 503 } 504 505 if (unlikely(opts->num_sack_blocks)) { 506 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 507 tp->duplicate_sack : tp->selective_acks; 508 int this_sack; 509 510 *ptr++ = htonl((TCPOPT_NOP << 24) | 511 (TCPOPT_NOP << 16) | 512 (TCPOPT_SACK << 8) | 513 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 514 TCPOLEN_SACK_PERBLOCK))); 515 516 for (this_sack = 0; this_sack < opts->num_sack_blocks; 517 ++this_sack) { 518 *ptr++ = htonl(sp[this_sack].start_seq); 519 *ptr++ = htonl(sp[this_sack].end_seq); 520 } 521 522 tp->rx_opt.dsack = 0; 523 } 524 525 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 526 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 527 u8 *p = (u8 *)ptr; 528 u32 len; /* Fast Open option length */ 529 530 if (foc->exp) { 531 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 532 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 533 TCPOPT_FASTOPEN_MAGIC); 534 p += TCPOLEN_EXP_FASTOPEN_BASE; 535 } else { 536 len = TCPOLEN_FASTOPEN_BASE + foc->len; 537 *p++ = TCPOPT_FASTOPEN; 538 *p++ = len; 539 } 540 541 memcpy(p, foc->val, foc->len); 542 if ((len & 3) == 2) { 543 p[foc->len] = TCPOPT_NOP; 544 p[foc->len + 1] = TCPOPT_NOP; 545 } 546 ptr += (len + 3) >> 2; 547 } 548 549 smc_options_write(ptr, &options); 550 } 551 552 static void smc_set_option(const struct tcp_sock *tp, 553 struct tcp_out_options *opts, 554 unsigned int *remaining) 555 { 556 #if IS_ENABLED(CONFIG_SMC) 557 if (static_branch_unlikely(&tcp_have_smc)) { 558 if (tp->syn_smc) { 559 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 560 opts->options |= OPTION_SMC; 561 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 562 } 563 } 564 } 565 #endif 566 } 567 568 static void smc_set_option_cond(const struct tcp_sock *tp, 569 const struct inet_request_sock *ireq, 570 struct tcp_out_options *opts, 571 unsigned int *remaining) 572 { 573 #if IS_ENABLED(CONFIG_SMC) 574 if (static_branch_unlikely(&tcp_have_smc)) { 575 if (tp->syn_smc && ireq->smc_ok) { 576 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 577 opts->options |= OPTION_SMC; 578 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 579 } 580 } 581 } 582 #endif 583 } 584 585 /* Compute TCP options for SYN packets. This is not the final 586 * network wire format yet. 587 */ 588 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 589 struct tcp_out_options *opts, 590 struct tcp_md5sig_key **md5) 591 { 592 struct tcp_sock *tp = tcp_sk(sk); 593 unsigned int remaining = MAX_TCP_OPTION_SPACE; 594 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 595 596 #ifdef CONFIG_TCP_MD5SIG 597 *md5 = tp->af_specific->md5_lookup(sk, sk); 598 if (*md5) { 599 opts->options |= OPTION_MD5; 600 remaining -= TCPOLEN_MD5SIG_ALIGNED; 601 } 602 #else 603 *md5 = NULL; 604 #endif 605 606 /* We always get an MSS option. The option bytes which will be seen in 607 * normal data packets should timestamps be used, must be in the MSS 608 * advertised. But we subtract them from tp->mss_cache so that 609 * calculations in tcp_sendmsg are simpler etc. So account for this 610 * fact here if necessary. If we don't do this correctly, as a 611 * receiver we won't recognize data packets as being full sized when we 612 * should, and thus we won't abide by the delayed ACK rules correctly. 613 * SACKs don't matter, we never delay an ACK when we have any of those 614 * going out. */ 615 opts->mss = tcp_advertise_mss(sk); 616 remaining -= TCPOLEN_MSS_ALIGNED; 617 618 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 619 opts->options |= OPTION_TS; 620 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 621 opts->tsecr = tp->rx_opt.ts_recent; 622 remaining -= TCPOLEN_TSTAMP_ALIGNED; 623 } 624 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 625 opts->ws = tp->rx_opt.rcv_wscale; 626 opts->options |= OPTION_WSCALE; 627 remaining -= TCPOLEN_WSCALE_ALIGNED; 628 } 629 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 630 opts->options |= OPTION_SACK_ADVERTISE; 631 if (unlikely(!(OPTION_TS & opts->options))) 632 remaining -= TCPOLEN_SACKPERM_ALIGNED; 633 } 634 635 if (fastopen && fastopen->cookie.len >= 0) { 636 u32 need = fastopen->cookie.len; 637 638 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 639 TCPOLEN_FASTOPEN_BASE; 640 need = (need + 3) & ~3U; /* Align to 32 bits */ 641 if (remaining >= need) { 642 opts->options |= OPTION_FAST_OPEN_COOKIE; 643 opts->fastopen_cookie = &fastopen->cookie; 644 remaining -= need; 645 tp->syn_fastopen = 1; 646 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 647 } 648 } 649 650 smc_set_option(tp, opts, &remaining); 651 652 return MAX_TCP_OPTION_SPACE - remaining; 653 } 654 655 /* Set up TCP options for SYN-ACKs. */ 656 static unsigned int tcp_synack_options(const struct sock *sk, 657 struct request_sock *req, 658 unsigned int mss, struct sk_buff *skb, 659 struct tcp_out_options *opts, 660 const struct tcp_md5sig_key *md5, 661 struct tcp_fastopen_cookie *foc) 662 { 663 struct inet_request_sock *ireq = inet_rsk(req); 664 unsigned int remaining = MAX_TCP_OPTION_SPACE; 665 666 #ifdef CONFIG_TCP_MD5SIG 667 if (md5) { 668 opts->options |= OPTION_MD5; 669 remaining -= TCPOLEN_MD5SIG_ALIGNED; 670 671 /* We can't fit any SACK blocks in a packet with MD5 + TS 672 * options. There was discussion about disabling SACK 673 * rather than TS in order to fit in better with old, 674 * buggy kernels, but that was deemed to be unnecessary. 675 */ 676 ireq->tstamp_ok &= !ireq->sack_ok; 677 } 678 #endif 679 680 /* We always send an MSS option. */ 681 opts->mss = mss; 682 remaining -= TCPOLEN_MSS_ALIGNED; 683 684 if (likely(ireq->wscale_ok)) { 685 opts->ws = ireq->rcv_wscale; 686 opts->options |= OPTION_WSCALE; 687 remaining -= TCPOLEN_WSCALE_ALIGNED; 688 } 689 if (likely(ireq->tstamp_ok)) { 690 opts->options |= OPTION_TS; 691 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 692 opts->tsecr = req->ts_recent; 693 remaining -= TCPOLEN_TSTAMP_ALIGNED; 694 } 695 if (likely(ireq->sack_ok)) { 696 opts->options |= OPTION_SACK_ADVERTISE; 697 if (unlikely(!ireq->tstamp_ok)) 698 remaining -= TCPOLEN_SACKPERM_ALIGNED; 699 } 700 if (foc != NULL && foc->len >= 0) { 701 u32 need = foc->len; 702 703 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 704 TCPOLEN_FASTOPEN_BASE; 705 need = (need + 3) & ~3U; /* Align to 32 bits */ 706 if (remaining >= need) { 707 opts->options |= OPTION_FAST_OPEN_COOKIE; 708 opts->fastopen_cookie = foc; 709 remaining -= need; 710 } 711 } 712 713 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 714 715 return MAX_TCP_OPTION_SPACE - remaining; 716 } 717 718 /* Compute TCP options for ESTABLISHED sockets. This is not the 719 * final wire format yet. 720 */ 721 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 722 struct tcp_out_options *opts, 723 struct tcp_md5sig_key **md5) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 unsigned int size = 0; 727 unsigned int eff_sacks; 728 729 opts->options = 0; 730 731 #ifdef CONFIG_TCP_MD5SIG 732 *md5 = tp->af_specific->md5_lookup(sk, sk); 733 if (unlikely(*md5)) { 734 opts->options |= OPTION_MD5; 735 size += TCPOLEN_MD5SIG_ALIGNED; 736 } 737 #else 738 *md5 = NULL; 739 #endif 740 741 if (likely(tp->rx_opt.tstamp_ok)) { 742 opts->options |= OPTION_TS; 743 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 744 opts->tsecr = tp->rx_opt.ts_recent; 745 size += TCPOLEN_TSTAMP_ALIGNED; 746 } 747 748 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 749 if (unlikely(eff_sacks)) { 750 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 751 opts->num_sack_blocks = 752 min_t(unsigned int, eff_sacks, 753 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 754 TCPOLEN_SACK_PERBLOCK); 755 size += TCPOLEN_SACK_BASE_ALIGNED + 756 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 757 } 758 759 return size; 760 } 761 762 763 /* TCP SMALL QUEUES (TSQ) 764 * 765 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 766 * to reduce RTT and bufferbloat. 767 * We do this using a special skb destructor (tcp_wfree). 768 * 769 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 770 * needs to be reallocated in a driver. 771 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 772 * 773 * Since transmit from skb destructor is forbidden, we use a tasklet 774 * to process all sockets that eventually need to send more skbs. 775 * We use one tasklet per cpu, with its own queue of sockets. 776 */ 777 struct tsq_tasklet { 778 struct tasklet_struct tasklet; 779 struct list_head head; /* queue of tcp sockets */ 780 }; 781 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 782 783 static void tcp_tsq_handler(struct sock *sk) 784 { 785 if ((1 << sk->sk_state) & 786 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 787 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 788 struct tcp_sock *tp = tcp_sk(sk); 789 790 if (tp->lost_out > tp->retrans_out && 791 tp->snd_cwnd > tcp_packets_in_flight(tp)) 792 tcp_xmit_retransmit_queue(sk); 793 794 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 795 0, GFP_ATOMIC); 796 } 797 } 798 /* 799 * One tasklet per cpu tries to send more skbs. 800 * We run in tasklet context but need to disable irqs when 801 * transferring tsq->head because tcp_wfree() might 802 * interrupt us (non NAPI drivers) 803 */ 804 static void tcp_tasklet_func(unsigned long data) 805 { 806 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 807 LIST_HEAD(list); 808 unsigned long flags; 809 struct list_head *q, *n; 810 struct tcp_sock *tp; 811 struct sock *sk; 812 813 local_irq_save(flags); 814 list_splice_init(&tsq->head, &list); 815 local_irq_restore(flags); 816 817 list_for_each_safe(q, n, &list) { 818 tp = list_entry(q, struct tcp_sock, tsq_node); 819 list_del(&tp->tsq_node); 820 821 sk = (struct sock *)tp; 822 smp_mb__before_atomic(); 823 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 824 825 if (!sk->sk_lock.owned && 826 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 827 bh_lock_sock(sk); 828 if (!sock_owned_by_user(sk)) { 829 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 830 tcp_tsq_handler(sk); 831 } 832 bh_unlock_sock(sk); 833 } 834 835 sk_free(sk); 836 } 837 } 838 839 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 840 TCPF_WRITE_TIMER_DEFERRED | \ 841 TCPF_DELACK_TIMER_DEFERRED | \ 842 TCPF_MTU_REDUCED_DEFERRED) 843 /** 844 * tcp_release_cb - tcp release_sock() callback 845 * @sk: socket 846 * 847 * called from release_sock() to perform protocol dependent 848 * actions before socket release. 849 */ 850 void tcp_release_cb(struct sock *sk) 851 { 852 unsigned long flags, nflags; 853 854 /* perform an atomic operation only if at least one flag is set */ 855 do { 856 flags = sk->sk_tsq_flags; 857 if (!(flags & TCP_DEFERRED_ALL)) 858 return; 859 nflags = flags & ~TCP_DEFERRED_ALL; 860 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 861 862 if (flags & TCPF_TSQ_DEFERRED) 863 tcp_tsq_handler(sk); 864 865 /* Here begins the tricky part : 866 * We are called from release_sock() with : 867 * 1) BH disabled 868 * 2) sk_lock.slock spinlock held 869 * 3) socket owned by us (sk->sk_lock.owned == 1) 870 * 871 * But following code is meant to be called from BH handlers, 872 * so we should keep BH disabled, but early release socket ownership 873 */ 874 sock_release_ownership(sk); 875 876 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 877 tcp_write_timer_handler(sk); 878 __sock_put(sk); 879 } 880 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 881 tcp_delack_timer_handler(sk); 882 __sock_put(sk); 883 } 884 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 885 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 886 __sock_put(sk); 887 } 888 } 889 EXPORT_SYMBOL(tcp_release_cb); 890 891 void __init tcp_tasklet_init(void) 892 { 893 int i; 894 895 for_each_possible_cpu(i) { 896 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 897 898 INIT_LIST_HEAD(&tsq->head); 899 tasklet_init(&tsq->tasklet, 900 tcp_tasklet_func, 901 (unsigned long)tsq); 902 } 903 } 904 905 /* 906 * Write buffer destructor automatically called from kfree_skb. 907 * We can't xmit new skbs from this context, as we might already 908 * hold qdisc lock. 909 */ 910 void tcp_wfree(struct sk_buff *skb) 911 { 912 struct sock *sk = skb->sk; 913 struct tcp_sock *tp = tcp_sk(sk); 914 unsigned long flags, nval, oval; 915 916 /* Keep one reference on sk_wmem_alloc. 917 * Will be released by sk_free() from here or tcp_tasklet_func() 918 */ 919 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 920 921 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 922 * Wait until our queues (qdisc + devices) are drained. 923 * This gives : 924 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 925 * - chance for incoming ACK (processed by another cpu maybe) 926 * to migrate this flow (skb->ooo_okay will be eventually set) 927 */ 928 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 929 goto out; 930 931 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 932 struct tsq_tasklet *tsq; 933 bool empty; 934 935 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 936 goto out; 937 938 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 939 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 940 if (nval != oval) 941 continue; 942 943 /* queue this socket to tasklet queue */ 944 local_irq_save(flags); 945 tsq = this_cpu_ptr(&tsq_tasklet); 946 empty = list_empty(&tsq->head); 947 list_add(&tp->tsq_node, &tsq->head); 948 if (empty) 949 tasklet_schedule(&tsq->tasklet); 950 local_irq_restore(flags); 951 return; 952 } 953 out: 954 sk_free(sk); 955 } 956 957 /* Note: Called under hard irq. 958 * We can not call TCP stack right away. 959 */ 960 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 961 { 962 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 963 struct sock *sk = (struct sock *)tp; 964 unsigned long nval, oval; 965 966 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 967 struct tsq_tasklet *tsq; 968 bool empty; 969 970 if (oval & TSQF_QUEUED) 971 break; 972 973 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 974 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 975 if (nval != oval) 976 continue; 977 978 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc)) 979 break; 980 /* queue this socket to tasklet queue */ 981 tsq = this_cpu_ptr(&tsq_tasklet); 982 empty = list_empty(&tsq->head); 983 list_add(&tp->tsq_node, &tsq->head); 984 if (empty) 985 tasklet_schedule(&tsq->tasklet); 986 break; 987 } 988 return HRTIMER_NORESTART; 989 } 990 991 /* BBR congestion control needs pacing. 992 * Same remark for SO_MAX_PACING_RATE. 993 * sch_fq packet scheduler is efficiently handling pacing, 994 * but is not always installed/used. 995 * Return true if TCP stack should pace packets itself. 996 */ 997 static bool tcp_needs_internal_pacing(const struct sock *sk) 998 { 999 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1000 } 1001 1002 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 1003 { 1004 u64 len_ns; 1005 u32 rate; 1006 1007 if (!tcp_needs_internal_pacing(sk)) 1008 return; 1009 rate = sk->sk_pacing_rate; 1010 if (!rate || rate == ~0U) 1011 return; 1012 1013 /* Should account for header sizes as sch_fq does, 1014 * but lets make things simple. 1015 */ 1016 len_ns = (u64)skb->len * NSEC_PER_SEC; 1017 do_div(len_ns, rate); 1018 hrtimer_start(&tcp_sk(sk)->pacing_timer, 1019 ktime_add_ns(ktime_get(), len_ns), 1020 HRTIMER_MODE_ABS_PINNED); 1021 } 1022 1023 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 1024 { 1025 skb->skb_mstamp = tp->tcp_mstamp; 1026 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1027 } 1028 1029 /* This routine actually transmits TCP packets queued in by 1030 * tcp_do_sendmsg(). This is used by both the initial 1031 * transmission and possible later retransmissions. 1032 * All SKB's seen here are completely headerless. It is our 1033 * job to build the TCP header, and pass the packet down to 1034 * IP so it can do the same plus pass the packet off to the 1035 * device. 1036 * 1037 * We are working here with either a clone of the original 1038 * SKB, or a fresh unique copy made by the retransmit engine. 1039 */ 1040 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1041 gfp_t gfp_mask) 1042 { 1043 const struct inet_connection_sock *icsk = inet_csk(sk); 1044 struct inet_sock *inet; 1045 struct tcp_sock *tp; 1046 struct tcp_skb_cb *tcb; 1047 struct tcp_out_options opts; 1048 unsigned int tcp_options_size, tcp_header_size; 1049 struct sk_buff *oskb = NULL; 1050 struct tcp_md5sig_key *md5; 1051 struct tcphdr *th; 1052 int err; 1053 1054 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1055 tp = tcp_sk(sk); 1056 1057 if (clone_it) { 1058 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1059 - tp->snd_una; 1060 oskb = skb; 1061 1062 tcp_skb_tsorted_save(oskb) { 1063 if (unlikely(skb_cloned(oskb))) 1064 skb = pskb_copy(oskb, gfp_mask); 1065 else 1066 skb = skb_clone(oskb, gfp_mask); 1067 } tcp_skb_tsorted_restore(oskb); 1068 1069 if (unlikely(!skb)) 1070 return -ENOBUFS; 1071 } 1072 skb->skb_mstamp = tp->tcp_mstamp; 1073 1074 inet = inet_sk(sk); 1075 tcb = TCP_SKB_CB(skb); 1076 memset(&opts, 0, sizeof(opts)); 1077 1078 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1079 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1080 else 1081 tcp_options_size = tcp_established_options(sk, skb, &opts, 1082 &md5); 1083 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1084 1085 /* if no packet is in qdisc/device queue, then allow XPS to select 1086 * another queue. We can be called from tcp_tsq_handler() 1087 * which holds one reference to sk_wmem_alloc. 1088 * 1089 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1090 * One way to get this would be to set skb->truesize = 2 on them. 1091 */ 1092 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1093 1094 /* If we had to use memory reserve to allocate this skb, 1095 * this might cause drops if packet is looped back : 1096 * Other socket might not have SOCK_MEMALLOC. 1097 * Packets not looped back do not care about pfmemalloc. 1098 */ 1099 skb->pfmemalloc = 0; 1100 1101 skb_push(skb, tcp_header_size); 1102 skb_reset_transport_header(skb); 1103 1104 skb_orphan(skb); 1105 skb->sk = sk; 1106 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1107 skb_set_hash_from_sk(skb, sk); 1108 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1109 1110 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1111 1112 /* Build TCP header and checksum it. */ 1113 th = (struct tcphdr *)skb->data; 1114 th->source = inet->inet_sport; 1115 th->dest = inet->inet_dport; 1116 th->seq = htonl(tcb->seq); 1117 th->ack_seq = htonl(tp->rcv_nxt); 1118 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1119 tcb->tcp_flags); 1120 1121 th->check = 0; 1122 th->urg_ptr = 0; 1123 1124 /* The urg_mode check is necessary during a below snd_una win probe */ 1125 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1126 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1127 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1128 th->urg = 1; 1129 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1130 th->urg_ptr = htons(0xFFFF); 1131 th->urg = 1; 1132 } 1133 } 1134 1135 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1136 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1137 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1138 th->window = htons(tcp_select_window(sk)); 1139 tcp_ecn_send(sk, skb, th, tcp_header_size); 1140 } else { 1141 /* RFC1323: The window in SYN & SYN/ACK segments 1142 * is never scaled. 1143 */ 1144 th->window = htons(min(tp->rcv_wnd, 65535U)); 1145 } 1146 #ifdef CONFIG_TCP_MD5SIG 1147 /* Calculate the MD5 hash, as we have all we need now */ 1148 if (md5) { 1149 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1150 tp->af_specific->calc_md5_hash(opts.hash_location, 1151 md5, sk, skb); 1152 } 1153 #endif 1154 1155 icsk->icsk_af_ops->send_check(sk, skb); 1156 1157 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1158 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1159 1160 if (skb->len != tcp_header_size) { 1161 tcp_event_data_sent(tp, sk); 1162 tp->data_segs_out += tcp_skb_pcount(skb); 1163 tcp_internal_pacing(sk, skb); 1164 } 1165 1166 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1167 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1168 tcp_skb_pcount(skb)); 1169 1170 tp->segs_out += tcp_skb_pcount(skb); 1171 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1172 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1173 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1174 1175 /* Our usage of tstamp should remain private */ 1176 skb->tstamp = 0; 1177 1178 /* Cleanup our debris for IP stacks */ 1179 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1180 sizeof(struct inet6_skb_parm))); 1181 1182 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1183 1184 if (unlikely(err > 0)) { 1185 tcp_enter_cwr(sk); 1186 err = net_xmit_eval(err); 1187 } 1188 if (!err && oskb) { 1189 tcp_update_skb_after_send(tp, oskb); 1190 tcp_rate_skb_sent(sk, oskb); 1191 } 1192 return err; 1193 } 1194 1195 /* This routine just queues the buffer for sending. 1196 * 1197 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1198 * otherwise socket can stall. 1199 */ 1200 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1201 { 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 1204 /* Advance write_seq and place onto the write_queue. */ 1205 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1206 __skb_header_release(skb); 1207 tcp_add_write_queue_tail(sk, skb); 1208 sk->sk_wmem_queued += skb->truesize; 1209 sk_mem_charge(sk, skb->truesize); 1210 } 1211 1212 /* Initialize TSO segments for a packet. */ 1213 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1214 { 1215 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1216 /* Avoid the costly divide in the normal 1217 * non-TSO case. 1218 */ 1219 tcp_skb_pcount_set(skb, 1); 1220 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1221 } else { 1222 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1223 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1224 } 1225 } 1226 1227 /* When a modification to fackets out becomes necessary, we need to check 1228 * skb is counted to fackets_out or not. 1229 */ 1230 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1231 int decr) 1232 { 1233 struct tcp_sock *tp = tcp_sk(sk); 1234 1235 if (!tp->sacked_out || tcp_is_reno(tp)) 1236 return; 1237 1238 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1239 tp->fackets_out -= decr; 1240 } 1241 1242 /* Pcount in the middle of the write queue got changed, we need to do various 1243 * tweaks to fix counters 1244 */ 1245 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1246 { 1247 struct tcp_sock *tp = tcp_sk(sk); 1248 1249 tp->packets_out -= decr; 1250 1251 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1252 tp->sacked_out -= decr; 1253 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1254 tp->retrans_out -= decr; 1255 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1256 tp->lost_out -= decr; 1257 1258 /* Reno case is special. Sigh... */ 1259 if (tcp_is_reno(tp) && decr > 0) 1260 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1261 1262 tcp_adjust_fackets_out(sk, skb, decr); 1263 1264 if (tp->lost_skb_hint && 1265 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1266 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1267 tp->lost_cnt_hint -= decr; 1268 1269 tcp_verify_left_out(tp); 1270 } 1271 1272 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1273 { 1274 return TCP_SKB_CB(skb)->txstamp_ack || 1275 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1276 } 1277 1278 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1279 { 1280 struct skb_shared_info *shinfo = skb_shinfo(skb); 1281 1282 if (unlikely(tcp_has_tx_tstamp(skb)) && 1283 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1284 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1285 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1286 1287 shinfo->tx_flags &= ~tsflags; 1288 shinfo2->tx_flags |= tsflags; 1289 swap(shinfo->tskey, shinfo2->tskey); 1290 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1291 TCP_SKB_CB(skb)->txstamp_ack = 0; 1292 } 1293 } 1294 1295 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1296 { 1297 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1298 TCP_SKB_CB(skb)->eor = 0; 1299 } 1300 1301 /* Insert buff after skb on the write or rtx queue of sk. */ 1302 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1303 struct sk_buff *buff, 1304 struct sock *sk, 1305 enum tcp_queue tcp_queue) 1306 { 1307 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1308 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1309 else 1310 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1311 } 1312 1313 /* Function to create two new TCP segments. Shrinks the given segment 1314 * to the specified size and appends a new segment with the rest of the 1315 * packet to the list. This won't be called frequently, I hope. 1316 * Remember, these are still headerless SKBs at this point. 1317 */ 1318 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1319 struct sk_buff *skb, u32 len, 1320 unsigned int mss_now, gfp_t gfp) 1321 { 1322 struct tcp_sock *tp = tcp_sk(sk); 1323 struct sk_buff *buff; 1324 int nsize, old_factor; 1325 int nlen; 1326 u8 flags; 1327 1328 if (WARN_ON(len > skb->len)) 1329 return -EINVAL; 1330 1331 nsize = skb_headlen(skb) - len; 1332 if (nsize < 0) 1333 nsize = 0; 1334 1335 if (skb_unclone(skb, gfp)) 1336 return -ENOMEM; 1337 1338 /* Get a new skb... force flag on. */ 1339 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1340 if (!buff) 1341 return -ENOMEM; /* We'll just try again later. */ 1342 1343 sk->sk_wmem_queued += buff->truesize; 1344 sk_mem_charge(sk, buff->truesize); 1345 nlen = skb->len - len - nsize; 1346 buff->truesize += nlen; 1347 skb->truesize -= nlen; 1348 1349 /* Correct the sequence numbers. */ 1350 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1351 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1352 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1353 1354 /* PSH and FIN should only be set in the second packet. */ 1355 flags = TCP_SKB_CB(skb)->tcp_flags; 1356 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1357 TCP_SKB_CB(buff)->tcp_flags = flags; 1358 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1359 tcp_skb_fragment_eor(skb, buff); 1360 1361 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1362 /* Copy and checksum data tail into the new buffer. */ 1363 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1364 skb_put(buff, nsize), 1365 nsize, 0); 1366 1367 skb_trim(skb, len); 1368 1369 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1370 } else { 1371 skb->ip_summed = CHECKSUM_PARTIAL; 1372 skb_split(skb, buff, len); 1373 } 1374 1375 buff->ip_summed = skb->ip_summed; 1376 1377 buff->tstamp = skb->tstamp; 1378 tcp_fragment_tstamp(skb, buff); 1379 1380 old_factor = tcp_skb_pcount(skb); 1381 1382 /* Fix up tso_factor for both original and new SKB. */ 1383 tcp_set_skb_tso_segs(skb, mss_now); 1384 tcp_set_skb_tso_segs(buff, mss_now); 1385 1386 /* Update delivered info for the new segment */ 1387 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1388 1389 /* If this packet has been sent out already, we must 1390 * adjust the various packet counters. 1391 */ 1392 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1393 int diff = old_factor - tcp_skb_pcount(skb) - 1394 tcp_skb_pcount(buff); 1395 1396 if (diff) 1397 tcp_adjust_pcount(sk, skb, diff); 1398 } 1399 1400 /* Link BUFF into the send queue. */ 1401 __skb_header_release(buff); 1402 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1403 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1404 1405 return 0; 1406 } 1407 1408 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1409 * data is not copied, but immediately discarded. 1410 */ 1411 static int __pskb_trim_head(struct sk_buff *skb, int len) 1412 { 1413 struct skb_shared_info *shinfo; 1414 int i, k, eat; 1415 1416 eat = min_t(int, len, skb_headlen(skb)); 1417 if (eat) { 1418 __skb_pull(skb, eat); 1419 len -= eat; 1420 if (!len) 1421 return 0; 1422 } 1423 eat = len; 1424 k = 0; 1425 shinfo = skb_shinfo(skb); 1426 for (i = 0; i < shinfo->nr_frags; i++) { 1427 int size = skb_frag_size(&shinfo->frags[i]); 1428 1429 if (size <= eat) { 1430 skb_frag_unref(skb, i); 1431 eat -= size; 1432 } else { 1433 shinfo->frags[k] = shinfo->frags[i]; 1434 if (eat) { 1435 shinfo->frags[k].page_offset += eat; 1436 skb_frag_size_sub(&shinfo->frags[k], eat); 1437 eat = 0; 1438 } 1439 k++; 1440 } 1441 } 1442 shinfo->nr_frags = k; 1443 1444 skb->data_len -= len; 1445 skb->len = skb->data_len; 1446 return len; 1447 } 1448 1449 /* Remove acked data from a packet in the transmit queue. */ 1450 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1451 { 1452 u32 delta_truesize; 1453 1454 if (skb_unclone(skb, GFP_ATOMIC)) 1455 return -ENOMEM; 1456 1457 delta_truesize = __pskb_trim_head(skb, len); 1458 1459 TCP_SKB_CB(skb)->seq += len; 1460 skb->ip_summed = CHECKSUM_PARTIAL; 1461 1462 if (delta_truesize) { 1463 skb->truesize -= delta_truesize; 1464 sk->sk_wmem_queued -= delta_truesize; 1465 sk_mem_uncharge(sk, delta_truesize); 1466 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1467 } 1468 1469 /* Any change of skb->len requires recalculation of tso factor. */ 1470 if (tcp_skb_pcount(skb) > 1) 1471 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1472 1473 return 0; 1474 } 1475 1476 /* Calculate MSS not accounting any TCP options. */ 1477 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1478 { 1479 const struct tcp_sock *tp = tcp_sk(sk); 1480 const struct inet_connection_sock *icsk = inet_csk(sk); 1481 int mss_now; 1482 1483 /* Calculate base mss without TCP options: 1484 It is MMS_S - sizeof(tcphdr) of rfc1122 1485 */ 1486 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1487 1488 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1489 if (icsk->icsk_af_ops->net_frag_header_len) { 1490 const struct dst_entry *dst = __sk_dst_get(sk); 1491 1492 if (dst && dst_allfrag(dst)) 1493 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1494 } 1495 1496 /* Clamp it (mss_clamp does not include tcp options) */ 1497 if (mss_now > tp->rx_opt.mss_clamp) 1498 mss_now = tp->rx_opt.mss_clamp; 1499 1500 /* Now subtract optional transport overhead */ 1501 mss_now -= icsk->icsk_ext_hdr_len; 1502 1503 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1504 if (mss_now < 48) 1505 mss_now = 48; 1506 return mss_now; 1507 } 1508 1509 /* Calculate MSS. Not accounting for SACKs here. */ 1510 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1511 { 1512 /* Subtract TCP options size, not including SACKs */ 1513 return __tcp_mtu_to_mss(sk, pmtu) - 1514 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1515 } 1516 1517 /* Inverse of above */ 1518 int tcp_mss_to_mtu(struct sock *sk, int mss) 1519 { 1520 const struct tcp_sock *tp = tcp_sk(sk); 1521 const struct inet_connection_sock *icsk = inet_csk(sk); 1522 int mtu; 1523 1524 mtu = mss + 1525 tp->tcp_header_len + 1526 icsk->icsk_ext_hdr_len + 1527 icsk->icsk_af_ops->net_header_len; 1528 1529 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1530 if (icsk->icsk_af_ops->net_frag_header_len) { 1531 const struct dst_entry *dst = __sk_dst_get(sk); 1532 1533 if (dst && dst_allfrag(dst)) 1534 mtu += icsk->icsk_af_ops->net_frag_header_len; 1535 } 1536 return mtu; 1537 } 1538 EXPORT_SYMBOL(tcp_mss_to_mtu); 1539 1540 /* MTU probing init per socket */ 1541 void tcp_mtup_init(struct sock *sk) 1542 { 1543 struct tcp_sock *tp = tcp_sk(sk); 1544 struct inet_connection_sock *icsk = inet_csk(sk); 1545 struct net *net = sock_net(sk); 1546 1547 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1548 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1549 icsk->icsk_af_ops->net_header_len; 1550 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1551 icsk->icsk_mtup.probe_size = 0; 1552 if (icsk->icsk_mtup.enabled) 1553 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1554 } 1555 EXPORT_SYMBOL(tcp_mtup_init); 1556 1557 /* This function synchronize snd mss to current pmtu/exthdr set. 1558 1559 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1560 for TCP options, but includes only bare TCP header. 1561 1562 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1563 It is minimum of user_mss and mss received with SYN. 1564 It also does not include TCP options. 1565 1566 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1567 1568 tp->mss_cache is current effective sending mss, including 1569 all tcp options except for SACKs. It is evaluated, 1570 taking into account current pmtu, but never exceeds 1571 tp->rx_opt.mss_clamp. 1572 1573 NOTE1. rfc1122 clearly states that advertised MSS 1574 DOES NOT include either tcp or ip options. 1575 1576 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1577 are READ ONLY outside this function. --ANK (980731) 1578 */ 1579 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1580 { 1581 struct tcp_sock *tp = tcp_sk(sk); 1582 struct inet_connection_sock *icsk = inet_csk(sk); 1583 int mss_now; 1584 1585 if (icsk->icsk_mtup.search_high > pmtu) 1586 icsk->icsk_mtup.search_high = pmtu; 1587 1588 mss_now = tcp_mtu_to_mss(sk, pmtu); 1589 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1590 1591 /* And store cached results */ 1592 icsk->icsk_pmtu_cookie = pmtu; 1593 if (icsk->icsk_mtup.enabled) 1594 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1595 tp->mss_cache = mss_now; 1596 1597 return mss_now; 1598 } 1599 EXPORT_SYMBOL(tcp_sync_mss); 1600 1601 /* Compute the current effective MSS, taking SACKs and IP options, 1602 * and even PMTU discovery events into account. 1603 */ 1604 unsigned int tcp_current_mss(struct sock *sk) 1605 { 1606 const struct tcp_sock *tp = tcp_sk(sk); 1607 const struct dst_entry *dst = __sk_dst_get(sk); 1608 u32 mss_now; 1609 unsigned int header_len; 1610 struct tcp_out_options opts; 1611 struct tcp_md5sig_key *md5; 1612 1613 mss_now = tp->mss_cache; 1614 1615 if (dst) { 1616 u32 mtu = dst_mtu(dst); 1617 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1618 mss_now = tcp_sync_mss(sk, mtu); 1619 } 1620 1621 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1622 sizeof(struct tcphdr); 1623 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1624 * some common options. If this is an odd packet (because we have SACK 1625 * blocks etc) then our calculated header_len will be different, and 1626 * we have to adjust mss_now correspondingly */ 1627 if (header_len != tp->tcp_header_len) { 1628 int delta = (int) header_len - tp->tcp_header_len; 1629 mss_now -= delta; 1630 } 1631 1632 return mss_now; 1633 } 1634 1635 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1636 * As additional protections, we do not touch cwnd in retransmission phases, 1637 * and if application hit its sndbuf limit recently. 1638 */ 1639 static void tcp_cwnd_application_limited(struct sock *sk) 1640 { 1641 struct tcp_sock *tp = tcp_sk(sk); 1642 1643 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1644 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1645 /* Limited by application or receiver window. */ 1646 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1647 u32 win_used = max(tp->snd_cwnd_used, init_win); 1648 if (win_used < tp->snd_cwnd) { 1649 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1650 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1651 } 1652 tp->snd_cwnd_used = 0; 1653 } 1654 tp->snd_cwnd_stamp = tcp_jiffies32; 1655 } 1656 1657 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1658 { 1659 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1660 struct tcp_sock *tp = tcp_sk(sk); 1661 1662 /* Track the maximum number of outstanding packets in each 1663 * window, and remember whether we were cwnd-limited then. 1664 */ 1665 if (!before(tp->snd_una, tp->max_packets_seq) || 1666 tp->packets_out > tp->max_packets_out) { 1667 tp->max_packets_out = tp->packets_out; 1668 tp->max_packets_seq = tp->snd_nxt; 1669 tp->is_cwnd_limited = is_cwnd_limited; 1670 } 1671 1672 if (tcp_is_cwnd_limited(sk)) { 1673 /* Network is feed fully. */ 1674 tp->snd_cwnd_used = 0; 1675 tp->snd_cwnd_stamp = tcp_jiffies32; 1676 } else { 1677 /* Network starves. */ 1678 if (tp->packets_out > tp->snd_cwnd_used) 1679 tp->snd_cwnd_used = tp->packets_out; 1680 1681 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1682 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1683 !ca_ops->cong_control) 1684 tcp_cwnd_application_limited(sk); 1685 1686 /* The following conditions together indicate the starvation 1687 * is caused by insufficient sender buffer: 1688 * 1) just sent some data (see tcp_write_xmit) 1689 * 2) not cwnd limited (this else condition) 1690 * 3) no more data to send (tcp_write_queue_empty()) 1691 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1692 */ 1693 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1694 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1695 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1696 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1697 } 1698 } 1699 1700 /* Minshall's variant of the Nagle send check. */ 1701 static bool tcp_minshall_check(const struct tcp_sock *tp) 1702 { 1703 return after(tp->snd_sml, tp->snd_una) && 1704 !after(tp->snd_sml, tp->snd_nxt); 1705 } 1706 1707 /* Update snd_sml if this skb is under mss 1708 * Note that a TSO packet might end with a sub-mss segment 1709 * The test is really : 1710 * if ((skb->len % mss) != 0) 1711 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1712 * But we can avoid doing the divide again given we already have 1713 * skb_pcount = skb->len / mss_now 1714 */ 1715 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1716 const struct sk_buff *skb) 1717 { 1718 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1719 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1720 } 1721 1722 /* Return false, if packet can be sent now without violation Nagle's rules: 1723 * 1. It is full sized. (provided by caller in %partial bool) 1724 * 2. Or it contains FIN. (already checked by caller) 1725 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1726 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1727 * With Minshall's modification: all sent small packets are ACKed. 1728 */ 1729 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1730 int nonagle) 1731 { 1732 return partial && 1733 ((nonagle & TCP_NAGLE_CORK) || 1734 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1735 } 1736 1737 /* Return how many segs we'd like on a TSO packet, 1738 * to send one TSO packet per ms 1739 */ 1740 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1741 int min_tso_segs) 1742 { 1743 u32 bytes, segs; 1744 1745 bytes = min(sk->sk_pacing_rate >> 10, 1746 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1747 1748 /* Goal is to send at least one packet per ms, 1749 * not one big TSO packet every 100 ms. 1750 * This preserves ACK clocking and is consistent 1751 * with tcp_tso_should_defer() heuristic. 1752 */ 1753 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1754 1755 return min_t(u32, segs, sk->sk_gso_max_segs); 1756 } 1757 EXPORT_SYMBOL(tcp_tso_autosize); 1758 1759 /* Return the number of segments we want in the skb we are transmitting. 1760 * See if congestion control module wants to decide; otherwise, autosize. 1761 */ 1762 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1763 { 1764 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1765 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1766 1767 return tso_segs ? : 1768 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1769 } 1770 1771 /* Returns the portion of skb which can be sent right away */ 1772 static unsigned int tcp_mss_split_point(const struct sock *sk, 1773 const struct sk_buff *skb, 1774 unsigned int mss_now, 1775 unsigned int max_segs, 1776 int nonagle) 1777 { 1778 const struct tcp_sock *tp = tcp_sk(sk); 1779 u32 partial, needed, window, max_len; 1780 1781 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1782 max_len = mss_now * max_segs; 1783 1784 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1785 return max_len; 1786 1787 needed = min(skb->len, window); 1788 1789 if (max_len <= needed) 1790 return max_len; 1791 1792 partial = needed % mss_now; 1793 /* If last segment is not a full MSS, check if Nagle rules allow us 1794 * to include this last segment in this skb. 1795 * Otherwise, we'll split the skb at last MSS boundary 1796 */ 1797 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1798 return needed - partial; 1799 1800 return needed; 1801 } 1802 1803 /* Can at least one segment of SKB be sent right now, according to the 1804 * congestion window rules? If so, return how many segments are allowed. 1805 */ 1806 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1807 const struct sk_buff *skb) 1808 { 1809 u32 in_flight, cwnd, halfcwnd; 1810 1811 /* Don't be strict about the congestion window for the final FIN. */ 1812 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1813 tcp_skb_pcount(skb) == 1) 1814 return 1; 1815 1816 in_flight = tcp_packets_in_flight(tp); 1817 cwnd = tp->snd_cwnd; 1818 if (in_flight >= cwnd) 1819 return 0; 1820 1821 /* For better scheduling, ensure we have at least 1822 * 2 GSO packets in flight. 1823 */ 1824 halfcwnd = max(cwnd >> 1, 1U); 1825 return min(halfcwnd, cwnd - in_flight); 1826 } 1827 1828 /* Initialize TSO state of a skb. 1829 * This must be invoked the first time we consider transmitting 1830 * SKB onto the wire. 1831 */ 1832 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1833 { 1834 int tso_segs = tcp_skb_pcount(skb); 1835 1836 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1837 tcp_set_skb_tso_segs(skb, mss_now); 1838 tso_segs = tcp_skb_pcount(skb); 1839 } 1840 return tso_segs; 1841 } 1842 1843 1844 /* Return true if the Nagle test allows this packet to be 1845 * sent now. 1846 */ 1847 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1848 unsigned int cur_mss, int nonagle) 1849 { 1850 /* Nagle rule does not apply to frames, which sit in the middle of the 1851 * write_queue (they have no chances to get new data). 1852 * 1853 * This is implemented in the callers, where they modify the 'nonagle' 1854 * argument based upon the location of SKB in the send queue. 1855 */ 1856 if (nonagle & TCP_NAGLE_PUSH) 1857 return true; 1858 1859 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1860 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1861 return true; 1862 1863 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1864 return true; 1865 1866 return false; 1867 } 1868 1869 /* Does at least the first segment of SKB fit into the send window? */ 1870 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1871 const struct sk_buff *skb, 1872 unsigned int cur_mss) 1873 { 1874 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1875 1876 if (skb->len > cur_mss) 1877 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1878 1879 return !after(end_seq, tcp_wnd_end(tp)); 1880 } 1881 1882 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1883 * which is put after SKB on the list. It is very much like 1884 * tcp_fragment() except that it may make several kinds of assumptions 1885 * in order to speed up the splitting operation. In particular, we 1886 * know that all the data is in scatter-gather pages, and that the 1887 * packet has never been sent out before (and thus is not cloned). 1888 */ 1889 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1890 struct sk_buff *skb, unsigned int len, 1891 unsigned int mss_now, gfp_t gfp) 1892 { 1893 struct sk_buff *buff; 1894 int nlen = skb->len - len; 1895 u8 flags; 1896 1897 /* All of a TSO frame must be composed of paged data. */ 1898 if (skb->len != skb->data_len) 1899 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1900 1901 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1902 if (unlikely(!buff)) 1903 return -ENOMEM; 1904 1905 sk->sk_wmem_queued += buff->truesize; 1906 sk_mem_charge(sk, buff->truesize); 1907 buff->truesize += nlen; 1908 skb->truesize -= nlen; 1909 1910 /* Correct the sequence numbers. */ 1911 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1912 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1913 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1914 1915 /* PSH and FIN should only be set in the second packet. */ 1916 flags = TCP_SKB_CB(skb)->tcp_flags; 1917 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1918 TCP_SKB_CB(buff)->tcp_flags = flags; 1919 1920 /* This packet was never sent out yet, so no SACK bits. */ 1921 TCP_SKB_CB(buff)->sacked = 0; 1922 1923 tcp_skb_fragment_eor(skb, buff); 1924 1925 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1926 skb_split(skb, buff, len); 1927 tcp_fragment_tstamp(skb, buff); 1928 1929 /* Fix up tso_factor for both original and new SKB. */ 1930 tcp_set_skb_tso_segs(skb, mss_now); 1931 tcp_set_skb_tso_segs(buff, mss_now); 1932 1933 /* Link BUFF into the send queue. */ 1934 __skb_header_release(buff); 1935 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1936 1937 return 0; 1938 } 1939 1940 /* Try to defer sending, if possible, in order to minimize the amount 1941 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1942 * 1943 * This algorithm is from John Heffner. 1944 */ 1945 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1946 bool *is_cwnd_limited, u32 max_segs) 1947 { 1948 const struct inet_connection_sock *icsk = inet_csk(sk); 1949 u32 age, send_win, cong_win, limit, in_flight; 1950 struct tcp_sock *tp = tcp_sk(sk); 1951 struct sk_buff *head; 1952 int win_divisor; 1953 1954 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1955 goto send_now; 1956 1957 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1958 goto send_now; 1959 1960 /* Avoid bursty behavior by allowing defer 1961 * only if the last write was recent. 1962 */ 1963 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1964 goto send_now; 1965 1966 in_flight = tcp_packets_in_flight(tp); 1967 1968 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1969 1970 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1971 1972 /* From in_flight test above, we know that cwnd > in_flight. */ 1973 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1974 1975 limit = min(send_win, cong_win); 1976 1977 /* If a full-sized TSO skb can be sent, do it. */ 1978 if (limit >= max_segs * tp->mss_cache) 1979 goto send_now; 1980 1981 /* Middle in queue won't get any more data, full sendable already? */ 1982 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1983 goto send_now; 1984 1985 win_divisor = ACCESS_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1986 if (win_divisor) { 1987 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1988 1989 /* If at least some fraction of a window is available, 1990 * just use it. 1991 */ 1992 chunk /= win_divisor; 1993 if (limit >= chunk) 1994 goto send_now; 1995 } else { 1996 /* Different approach, try not to defer past a single 1997 * ACK. Receiver should ACK every other full sized 1998 * frame, so if we have space for more than 3 frames 1999 * then send now. 2000 */ 2001 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2002 goto send_now; 2003 } 2004 2005 /* TODO : use tsorted_sent_queue ? */ 2006 head = tcp_rtx_queue_head(sk); 2007 if (!head) 2008 goto send_now; 2009 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 2010 /* If next ACK is likely to come too late (half srtt), do not defer */ 2011 if (age < (tp->srtt_us >> 4)) 2012 goto send_now; 2013 2014 /* Ok, it looks like it is advisable to defer. */ 2015 2016 if (cong_win < send_win && cong_win <= skb->len) 2017 *is_cwnd_limited = true; 2018 2019 return true; 2020 2021 send_now: 2022 return false; 2023 } 2024 2025 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2026 { 2027 struct inet_connection_sock *icsk = inet_csk(sk); 2028 struct tcp_sock *tp = tcp_sk(sk); 2029 struct net *net = sock_net(sk); 2030 u32 interval; 2031 s32 delta; 2032 2033 interval = net->ipv4.sysctl_tcp_probe_interval; 2034 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2035 if (unlikely(delta >= interval * HZ)) { 2036 int mss = tcp_current_mss(sk); 2037 2038 /* Update current search range */ 2039 icsk->icsk_mtup.probe_size = 0; 2040 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2041 sizeof(struct tcphdr) + 2042 icsk->icsk_af_ops->net_header_len; 2043 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2044 2045 /* Update probe time stamp */ 2046 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2047 } 2048 } 2049 2050 /* Create a new MTU probe if we are ready. 2051 * MTU probe is regularly attempting to increase the path MTU by 2052 * deliberately sending larger packets. This discovers routing 2053 * changes resulting in larger path MTUs. 2054 * 2055 * Returns 0 if we should wait to probe (no cwnd available), 2056 * 1 if a probe was sent, 2057 * -1 otherwise 2058 */ 2059 static int tcp_mtu_probe(struct sock *sk) 2060 { 2061 struct inet_connection_sock *icsk = inet_csk(sk); 2062 struct tcp_sock *tp = tcp_sk(sk); 2063 struct sk_buff *skb, *nskb, *next; 2064 struct net *net = sock_net(sk); 2065 int probe_size; 2066 int size_needed; 2067 int copy, len; 2068 int mss_now; 2069 int interval; 2070 2071 /* Not currently probing/verifying, 2072 * not in recovery, 2073 * have enough cwnd, and 2074 * not SACKing (the variable headers throw things off) 2075 */ 2076 if (likely(!icsk->icsk_mtup.enabled || 2077 icsk->icsk_mtup.probe_size || 2078 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2079 tp->snd_cwnd < 11 || 2080 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2081 return -1; 2082 2083 /* Use binary search for probe_size between tcp_mss_base, 2084 * and current mss_clamp. if (search_high - search_low) 2085 * smaller than a threshold, backoff from probing. 2086 */ 2087 mss_now = tcp_current_mss(sk); 2088 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2089 icsk->icsk_mtup.search_low) >> 1); 2090 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2091 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2092 /* When misfortune happens, we are reprobing actively, 2093 * and then reprobe timer has expired. We stick with current 2094 * probing process by not resetting search range to its orignal. 2095 */ 2096 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2097 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2098 /* Check whether enough time has elaplased for 2099 * another round of probing. 2100 */ 2101 tcp_mtu_check_reprobe(sk); 2102 return -1; 2103 } 2104 2105 /* Have enough data in the send queue to probe? */ 2106 if (tp->write_seq - tp->snd_nxt < size_needed) 2107 return -1; 2108 2109 if (tp->snd_wnd < size_needed) 2110 return -1; 2111 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2112 return 0; 2113 2114 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2115 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2116 if (!tcp_packets_in_flight(tp)) 2117 return -1; 2118 else 2119 return 0; 2120 } 2121 2122 /* We're allowed to probe. Build it now. */ 2123 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2124 if (!nskb) 2125 return -1; 2126 sk->sk_wmem_queued += nskb->truesize; 2127 sk_mem_charge(sk, nskb->truesize); 2128 2129 skb = tcp_send_head(sk); 2130 2131 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2132 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2133 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2134 TCP_SKB_CB(nskb)->sacked = 0; 2135 nskb->csum = 0; 2136 nskb->ip_summed = skb->ip_summed; 2137 2138 tcp_insert_write_queue_before(nskb, skb, sk); 2139 2140 len = 0; 2141 tcp_for_write_queue_from_safe(skb, next, sk) { 2142 copy = min_t(int, skb->len, probe_size - len); 2143 if (nskb->ip_summed) { 2144 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2145 } else { 2146 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2147 skb_put(nskb, copy), 2148 copy, 0); 2149 nskb->csum = csum_block_add(nskb->csum, csum, len); 2150 } 2151 2152 if (skb->len <= copy) { 2153 /* We've eaten all the data from this skb. 2154 * Throw it away. */ 2155 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2156 tcp_unlink_write_queue(skb, sk); 2157 sk_wmem_free_skb(sk, skb); 2158 } else { 2159 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2160 ~(TCPHDR_FIN|TCPHDR_PSH); 2161 if (!skb_shinfo(skb)->nr_frags) { 2162 skb_pull(skb, copy); 2163 if (skb->ip_summed != CHECKSUM_PARTIAL) 2164 skb->csum = csum_partial(skb->data, 2165 skb->len, 0); 2166 } else { 2167 __pskb_trim_head(skb, copy); 2168 tcp_set_skb_tso_segs(skb, mss_now); 2169 } 2170 TCP_SKB_CB(skb)->seq += copy; 2171 } 2172 2173 len += copy; 2174 2175 if (len >= probe_size) 2176 break; 2177 } 2178 tcp_init_tso_segs(nskb, nskb->len); 2179 2180 /* We're ready to send. If this fails, the probe will 2181 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2182 */ 2183 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2184 /* Decrement cwnd here because we are sending 2185 * effectively two packets. */ 2186 tp->snd_cwnd--; 2187 tcp_event_new_data_sent(sk, nskb); 2188 2189 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2190 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2191 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2192 2193 return 1; 2194 } 2195 2196 return -1; 2197 } 2198 2199 static bool tcp_pacing_check(const struct sock *sk) 2200 { 2201 return tcp_needs_internal_pacing(sk) && 2202 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2203 } 2204 2205 /* TCP Small Queues : 2206 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2207 * (These limits are doubled for retransmits) 2208 * This allows for : 2209 * - better RTT estimation and ACK scheduling 2210 * - faster recovery 2211 * - high rates 2212 * Alas, some drivers / subsystems require a fair amount 2213 * of queued bytes to ensure line rate. 2214 * One example is wifi aggregation (802.11 AMPDU) 2215 */ 2216 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2217 unsigned int factor) 2218 { 2219 unsigned int limit; 2220 2221 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2222 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2223 limit <<= factor; 2224 2225 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2226 /* Always send skb if rtx queue is empty. 2227 * No need to wait for TX completion to call us back, 2228 * after softirq/tasklet schedule. 2229 * This helps when TX completions are delayed too much. 2230 */ 2231 if (tcp_rtx_queue_empty(sk)) 2232 return false; 2233 2234 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2235 /* It is possible TX completion already happened 2236 * before we set TSQ_THROTTLED, so we must 2237 * test again the condition. 2238 */ 2239 smp_mb__after_atomic(); 2240 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2247 { 2248 const u32 now = tcp_jiffies32; 2249 enum tcp_chrono old = tp->chrono_type; 2250 2251 if (old > TCP_CHRONO_UNSPEC) 2252 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2253 tp->chrono_start = now; 2254 tp->chrono_type = new; 2255 } 2256 2257 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2258 { 2259 struct tcp_sock *tp = tcp_sk(sk); 2260 2261 /* If there are multiple conditions worthy of tracking in a 2262 * chronograph then the highest priority enum takes precedence 2263 * over the other conditions. So that if something "more interesting" 2264 * starts happening, stop the previous chrono and start a new one. 2265 */ 2266 if (type > tp->chrono_type) 2267 tcp_chrono_set(tp, type); 2268 } 2269 2270 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2271 { 2272 struct tcp_sock *tp = tcp_sk(sk); 2273 2274 2275 /* There are multiple conditions worthy of tracking in a 2276 * chronograph, so that the highest priority enum takes 2277 * precedence over the other conditions (see tcp_chrono_start). 2278 * If a condition stops, we only stop chrono tracking if 2279 * it's the "most interesting" or current chrono we are 2280 * tracking and starts busy chrono if we have pending data. 2281 */ 2282 if (tcp_rtx_and_write_queues_empty(sk)) 2283 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2284 else if (type == tp->chrono_type) 2285 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2286 } 2287 2288 /* This routine writes packets to the network. It advances the 2289 * send_head. This happens as incoming acks open up the remote 2290 * window for us. 2291 * 2292 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2293 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2294 * account rare use of URG, this is not a big flaw. 2295 * 2296 * Send at most one packet when push_one > 0. Temporarily ignore 2297 * cwnd limit to force at most one packet out when push_one == 2. 2298 2299 * Returns true, if no segments are in flight and we have queued segments, 2300 * but cannot send anything now because of SWS or another problem. 2301 */ 2302 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2303 int push_one, gfp_t gfp) 2304 { 2305 struct tcp_sock *tp = tcp_sk(sk); 2306 struct sk_buff *skb; 2307 unsigned int tso_segs, sent_pkts; 2308 int cwnd_quota; 2309 int result; 2310 bool is_cwnd_limited = false, is_rwnd_limited = false; 2311 u32 max_segs; 2312 2313 sent_pkts = 0; 2314 2315 if (!push_one) { 2316 /* Do MTU probing. */ 2317 result = tcp_mtu_probe(sk); 2318 if (!result) { 2319 return false; 2320 } else if (result > 0) { 2321 sent_pkts = 1; 2322 } 2323 } 2324 2325 max_segs = tcp_tso_segs(sk, mss_now); 2326 tcp_mstamp_refresh(tp); 2327 while ((skb = tcp_send_head(sk))) { 2328 unsigned int limit; 2329 2330 if (tcp_pacing_check(sk)) 2331 break; 2332 2333 tso_segs = tcp_init_tso_segs(skb, mss_now); 2334 BUG_ON(!tso_segs); 2335 2336 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2337 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2338 tcp_update_skb_after_send(tp, skb); 2339 goto repair; /* Skip network transmission */ 2340 } 2341 2342 cwnd_quota = tcp_cwnd_test(tp, skb); 2343 if (!cwnd_quota) { 2344 if (push_one == 2) 2345 /* Force out a loss probe pkt. */ 2346 cwnd_quota = 1; 2347 else 2348 break; 2349 } 2350 2351 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2352 is_rwnd_limited = true; 2353 break; 2354 } 2355 2356 if (tso_segs == 1) { 2357 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2358 (tcp_skb_is_last(sk, skb) ? 2359 nonagle : TCP_NAGLE_PUSH)))) 2360 break; 2361 } else { 2362 if (!push_one && 2363 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2364 max_segs)) 2365 break; 2366 } 2367 2368 limit = mss_now; 2369 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2370 limit = tcp_mss_split_point(sk, skb, mss_now, 2371 min_t(unsigned int, 2372 cwnd_quota, 2373 max_segs), 2374 nonagle); 2375 2376 if (skb->len > limit && 2377 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2378 skb, limit, mss_now, gfp))) 2379 break; 2380 2381 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2382 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2383 if (tcp_small_queue_check(sk, skb, 0)) 2384 break; 2385 2386 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2387 break; 2388 2389 repair: 2390 /* Advance the send_head. This one is sent out. 2391 * This call will increment packets_out. 2392 */ 2393 tcp_event_new_data_sent(sk, skb); 2394 2395 tcp_minshall_update(tp, mss_now, skb); 2396 sent_pkts += tcp_skb_pcount(skb); 2397 2398 if (push_one) 2399 break; 2400 } 2401 2402 if (is_rwnd_limited) 2403 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2404 else 2405 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2406 2407 if (likely(sent_pkts)) { 2408 if (tcp_in_cwnd_reduction(sk)) 2409 tp->prr_out += sent_pkts; 2410 2411 /* Send one loss probe per tail loss episode. */ 2412 if (push_one != 2) 2413 tcp_schedule_loss_probe(sk); 2414 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2415 tcp_cwnd_validate(sk, is_cwnd_limited); 2416 return false; 2417 } 2418 return !tp->packets_out && !tcp_write_queue_empty(sk); 2419 } 2420 2421 bool tcp_schedule_loss_probe(struct sock *sk) 2422 { 2423 struct inet_connection_sock *icsk = inet_csk(sk); 2424 struct tcp_sock *tp = tcp_sk(sk); 2425 u32 timeout, rto_delta_us; 2426 int early_retrans; 2427 2428 /* Don't do any loss probe on a Fast Open connection before 3WHS 2429 * finishes. 2430 */ 2431 if (tp->fastopen_rsk) 2432 return false; 2433 2434 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2435 /* Schedule a loss probe in 2*RTT for SACK capable connections 2436 * in Open state, that are either limited by cwnd or application. 2437 */ 2438 if ((early_retrans != 3 && early_retrans != 4) || 2439 !tp->packets_out || !tcp_is_sack(tp) || 2440 icsk->icsk_ca_state != TCP_CA_Open) 2441 return false; 2442 2443 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2444 !tcp_write_queue_empty(sk)) 2445 return false; 2446 2447 /* Probe timeout is 2*rtt. Add minimum RTO to account 2448 * for delayed ack when there's one outstanding packet. If no RTT 2449 * sample is available then probe after TCP_TIMEOUT_INIT. 2450 */ 2451 if (tp->srtt_us) { 2452 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2453 if (tp->packets_out == 1) 2454 timeout += TCP_RTO_MIN; 2455 else 2456 timeout += TCP_TIMEOUT_MIN; 2457 } else { 2458 timeout = TCP_TIMEOUT_INIT; 2459 } 2460 2461 /* If the RTO formula yields an earlier time, then use that time. */ 2462 rto_delta_us = tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2463 if (rto_delta_us > 0) 2464 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2465 2466 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2467 TCP_RTO_MAX); 2468 return true; 2469 } 2470 2471 /* Thanks to skb fast clones, we can detect if a prior transmit of 2472 * a packet is still in a qdisc or driver queue. 2473 * In this case, there is very little point doing a retransmit ! 2474 */ 2475 static bool skb_still_in_host_queue(const struct sock *sk, 2476 const struct sk_buff *skb) 2477 { 2478 if (unlikely(skb_fclone_busy(sk, skb))) { 2479 NET_INC_STATS(sock_net(sk), 2480 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2481 return true; 2482 } 2483 return false; 2484 } 2485 2486 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2487 * retransmit the last segment. 2488 */ 2489 void tcp_send_loss_probe(struct sock *sk) 2490 { 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 struct sk_buff *skb; 2493 int pcount; 2494 int mss = tcp_current_mss(sk); 2495 2496 skb = tcp_send_head(sk); 2497 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2498 pcount = tp->packets_out; 2499 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2500 if (tp->packets_out > pcount) 2501 goto probe_sent; 2502 goto rearm_timer; 2503 } 2504 skb = skb_rb_last(&sk->tcp_rtx_queue); 2505 2506 /* At most one outstanding TLP retransmission. */ 2507 if (tp->tlp_high_seq) 2508 goto rearm_timer; 2509 2510 /* Retransmit last segment. */ 2511 if (WARN_ON(!skb)) 2512 goto rearm_timer; 2513 2514 if (skb_still_in_host_queue(sk, skb)) 2515 goto rearm_timer; 2516 2517 pcount = tcp_skb_pcount(skb); 2518 if (WARN_ON(!pcount)) 2519 goto rearm_timer; 2520 2521 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2522 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2523 (pcount - 1) * mss, mss, 2524 GFP_ATOMIC))) 2525 goto rearm_timer; 2526 skb = skb_rb_next(skb); 2527 } 2528 2529 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2530 goto rearm_timer; 2531 2532 if (__tcp_retransmit_skb(sk, skb, 1)) 2533 goto rearm_timer; 2534 2535 /* Record snd_nxt for loss detection. */ 2536 tp->tlp_high_seq = tp->snd_nxt; 2537 2538 probe_sent: 2539 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2540 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2541 inet_csk(sk)->icsk_pending = 0; 2542 rearm_timer: 2543 tcp_rearm_rto(sk); 2544 } 2545 2546 /* Push out any pending frames which were held back due to 2547 * TCP_CORK or attempt at coalescing tiny packets. 2548 * The socket must be locked by the caller. 2549 */ 2550 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2551 int nonagle) 2552 { 2553 /* If we are closed, the bytes will have to remain here. 2554 * In time closedown will finish, we empty the write queue and 2555 * all will be happy. 2556 */ 2557 if (unlikely(sk->sk_state == TCP_CLOSE)) 2558 return; 2559 2560 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2561 sk_gfp_mask(sk, GFP_ATOMIC))) 2562 tcp_check_probe_timer(sk); 2563 } 2564 2565 /* Send _single_ skb sitting at the send head. This function requires 2566 * true push pending frames to setup probe timer etc. 2567 */ 2568 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2569 { 2570 struct sk_buff *skb = tcp_send_head(sk); 2571 2572 BUG_ON(!skb || skb->len < mss_now); 2573 2574 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2575 } 2576 2577 /* This function returns the amount that we can raise the 2578 * usable window based on the following constraints 2579 * 2580 * 1. The window can never be shrunk once it is offered (RFC 793) 2581 * 2. We limit memory per socket 2582 * 2583 * RFC 1122: 2584 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2585 * RECV.NEXT + RCV.WIN fixed until: 2586 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2587 * 2588 * i.e. don't raise the right edge of the window until you can raise 2589 * it at least MSS bytes. 2590 * 2591 * Unfortunately, the recommended algorithm breaks header prediction, 2592 * since header prediction assumes th->window stays fixed. 2593 * 2594 * Strictly speaking, keeping th->window fixed violates the receiver 2595 * side SWS prevention criteria. The problem is that under this rule 2596 * a stream of single byte packets will cause the right side of the 2597 * window to always advance by a single byte. 2598 * 2599 * Of course, if the sender implements sender side SWS prevention 2600 * then this will not be a problem. 2601 * 2602 * BSD seems to make the following compromise: 2603 * 2604 * If the free space is less than the 1/4 of the maximum 2605 * space available and the free space is less than 1/2 mss, 2606 * then set the window to 0. 2607 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2608 * Otherwise, just prevent the window from shrinking 2609 * and from being larger than the largest representable value. 2610 * 2611 * This prevents incremental opening of the window in the regime 2612 * where TCP is limited by the speed of the reader side taking 2613 * data out of the TCP receive queue. It does nothing about 2614 * those cases where the window is constrained on the sender side 2615 * because the pipeline is full. 2616 * 2617 * BSD also seems to "accidentally" limit itself to windows that are a 2618 * multiple of MSS, at least until the free space gets quite small. 2619 * This would appear to be a side effect of the mbuf implementation. 2620 * Combining these two algorithms results in the observed behavior 2621 * of having a fixed window size at almost all times. 2622 * 2623 * Below we obtain similar behavior by forcing the offered window to 2624 * a multiple of the mss when it is feasible to do so. 2625 * 2626 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2627 * Regular options like TIMESTAMP are taken into account. 2628 */ 2629 u32 __tcp_select_window(struct sock *sk) 2630 { 2631 struct inet_connection_sock *icsk = inet_csk(sk); 2632 struct tcp_sock *tp = tcp_sk(sk); 2633 /* MSS for the peer's data. Previous versions used mss_clamp 2634 * here. I don't know if the value based on our guesses 2635 * of peer's MSS is better for the performance. It's more correct 2636 * but may be worse for the performance because of rcv_mss 2637 * fluctuations. --SAW 1998/11/1 2638 */ 2639 int mss = icsk->icsk_ack.rcv_mss; 2640 int free_space = tcp_space(sk); 2641 int allowed_space = tcp_full_space(sk); 2642 int full_space = min_t(int, tp->window_clamp, allowed_space); 2643 int window; 2644 2645 if (unlikely(mss > full_space)) { 2646 mss = full_space; 2647 if (mss <= 0) 2648 return 0; 2649 } 2650 if (free_space < (full_space >> 1)) { 2651 icsk->icsk_ack.quick = 0; 2652 2653 if (tcp_under_memory_pressure(sk)) 2654 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2655 4U * tp->advmss); 2656 2657 /* free_space might become our new window, make sure we don't 2658 * increase it due to wscale. 2659 */ 2660 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2661 2662 /* if free space is less than mss estimate, or is below 1/16th 2663 * of the maximum allowed, try to move to zero-window, else 2664 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2665 * new incoming data is dropped due to memory limits. 2666 * With large window, mss test triggers way too late in order 2667 * to announce zero window in time before rmem limit kicks in. 2668 */ 2669 if (free_space < (allowed_space >> 4) || free_space < mss) 2670 return 0; 2671 } 2672 2673 if (free_space > tp->rcv_ssthresh) 2674 free_space = tp->rcv_ssthresh; 2675 2676 /* Don't do rounding if we are using window scaling, since the 2677 * scaled window will not line up with the MSS boundary anyway. 2678 */ 2679 if (tp->rx_opt.rcv_wscale) { 2680 window = free_space; 2681 2682 /* Advertise enough space so that it won't get scaled away. 2683 * Import case: prevent zero window announcement if 2684 * 1<<rcv_wscale > mss. 2685 */ 2686 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2687 } else { 2688 window = tp->rcv_wnd; 2689 /* Get the largest window that is a nice multiple of mss. 2690 * Window clamp already applied above. 2691 * If our current window offering is within 1 mss of the 2692 * free space we just keep it. This prevents the divide 2693 * and multiply from happening most of the time. 2694 * We also don't do any window rounding when the free space 2695 * is too small. 2696 */ 2697 if (window <= free_space - mss || window > free_space) 2698 window = rounddown(free_space, mss); 2699 else if (mss == full_space && 2700 free_space > window + (full_space >> 1)) 2701 window = free_space; 2702 } 2703 2704 return window; 2705 } 2706 2707 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2708 const struct sk_buff *next_skb) 2709 { 2710 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2711 const struct skb_shared_info *next_shinfo = 2712 skb_shinfo(next_skb); 2713 struct skb_shared_info *shinfo = skb_shinfo(skb); 2714 2715 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2716 shinfo->tskey = next_shinfo->tskey; 2717 TCP_SKB_CB(skb)->txstamp_ack |= 2718 TCP_SKB_CB(next_skb)->txstamp_ack; 2719 } 2720 } 2721 2722 /* Collapses two adjacent SKB's during retransmission. */ 2723 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 struct sk_buff *next_skb = skb_rb_next(skb); 2727 int skb_size, next_skb_size; 2728 2729 skb_size = skb->len; 2730 next_skb_size = next_skb->len; 2731 2732 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2733 2734 if (next_skb_size) { 2735 if (next_skb_size <= skb_availroom(skb)) 2736 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2737 next_skb_size); 2738 else if (!skb_shift(skb, next_skb, next_skb_size)) 2739 return false; 2740 } 2741 tcp_highest_sack_combine(sk, next_skb, skb); 2742 2743 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2744 skb->ip_summed = CHECKSUM_PARTIAL; 2745 2746 if (skb->ip_summed != CHECKSUM_PARTIAL) 2747 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2748 2749 /* Update sequence range on original skb. */ 2750 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2751 2752 /* Merge over control information. This moves PSH/FIN etc. over */ 2753 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2754 2755 /* All done, get rid of second SKB and account for it so 2756 * packet counting does not break. 2757 */ 2758 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2759 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2760 2761 /* changed transmit queue under us so clear hints */ 2762 tcp_clear_retrans_hints_partial(tp); 2763 if (next_skb == tp->retransmit_skb_hint) 2764 tp->retransmit_skb_hint = skb; 2765 2766 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2767 2768 tcp_skb_collapse_tstamp(skb, next_skb); 2769 2770 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2771 return true; 2772 } 2773 2774 /* Check if coalescing SKBs is legal. */ 2775 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2776 { 2777 if (tcp_skb_pcount(skb) > 1) 2778 return false; 2779 if (skb_cloned(skb)) 2780 return false; 2781 /* Some heuristics for collapsing over SACK'd could be invented */ 2782 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2783 return false; 2784 2785 return true; 2786 } 2787 2788 /* Collapse packets in the retransmit queue to make to create 2789 * less packets on the wire. This is only done on retransmission. 2790 */ 2791 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2792 int space) 2793 { 2794 struct tcp_sock *tp = tcp_sk(sk); 2795 struct sk_buff *skb = to, *tmp; 2796 bool first = true; 2797 2798 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2799 return; 2800 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2801 return; 2802 2803 skb_rbtree_walk_from_safe(skb, tmp) { 2804 if (!tcp_can_collapse(sk, skb)) 2805 break; 2806 2807 if (!tcp_skb_can_collapse_to(to)) 2808 break; 2809 2810 space -= skb->len; 2811 2812 if (first) { 2813 first = false; 2814 continue; 2815 } 2816 2817 if (space < 0) 2818 break; 2819 2820 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2821 break; 2822 2823 if (!tcp_collapse_retrans(sk, to)) 2824 break; 2825 } 2826 } 2827 2828 /* This retransmits one SKB. Policy decisions and retransmit queue 2829 * state updates are done by the caller. Returns non-zero if an 2830 * error occurred which prevented the send. 2831 */ 2832 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2833 { 2834 struct inet_connection_sock *icsk = inet_csk(sk); 2835 struct tcp_sock *tp = tcp_sk(sk); 2836 unsigned int cur_mss; 2837 int diff, len, err; 2838 2839 2840 /* Inconclusive MTU probe */ 2841 if (icsk->icsk_mtup.probe_size) 2842 icsk->icsk_mtup.probe_size = 0; 2843 2844 /* Do not sent more than we queued. 1/4 is reserved for possible 2845 * copying overhead: fragmentation, tunneling, mangling etc. 2846 */ 2847 if (refcount_read(&sk->sk_wmem_alloc) > 2848 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2849 sk->sk_sndbuf)) 2850 return -EAGAIN; 2851 2852 if (skb_still_in_host_queue(sk, skb)) 2853 return -EBUSY; 2854 2855 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2856 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2857 BUG(); 2858 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2859 return -ENOMEM; 2860 } 2861 2862 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2863 return -EHOSTUNREACH; /* Routing failure or similar. */ 2864 2865 cur_mss = tcp_current_mss(sk); 2866 2867 /* If receiver has shrunk his window, and skb is out of 2868 * new window, do not retransmit it. The exception is the 2869 * case, when window is shrunk to zero. In this case 2870 * our retransmit serves as a zero window probe. 2871 */ 2872 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2873 TCP_SKB_CB(skb)->seq != tp->snd_una) 2874 return -EAGAIN; 2875 2876 len = cur_mss * segs; 2877 if (skb->len > len) { 2878 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2879 cur_mss, GFP_ATOMIC)) 2880 return -ENOMEM; /* We'll try again later. */ 2881 } else { 2882 if (skb_unclone(skb, GFP_ATOMIC)) 2883 return -ENOMEM; 2884 2885 diff = tcp_skb_pcount(skb); 2886 tcp_set_skb_tso_segs(skb, cur_mss); 2887 diff -= tcp_skb_pcount(skb); 2888 if (diff) 2889 tcp_adjust_pcount(sk, skb, diff); 2890 if (skb->len < cur_mss) 2891 tcp_retrans_try_collapse(sk, skb, cur_mss); 2892 } 2893 2894 /* RFC3168, section 6.1.1.1. ECN fallback */ 2895 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2896 tcp_ecn_clear_syn(sk, skb); 2897 2898 /* Update global and local TCP statistics. */ 2899 segs = tcp_skb_pcount(skb); 2900 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2901 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2902 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2903 tp->total_retrans += segs; 2904 2905 /* make sure skb->data is aligned on arches that require it 2906 * and check if ack-trimming & collapsing extended the headroom 2907 * beyond what csum_start can cover. 2908 */ 2909 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2910 skb_headroom(skb) >= 0xFFFF)) { 2911 struct sk_buff *nskb; 2912 2913 tcp_skb_tsorted_save(skb) { 2914 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2915 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2916 -ENOBUFS; 2917 } tcp_skb_tsorted_restore(skb); 2918 2919 if (!err) 2920 tcp_update_skb_after_send(tp, skb); 2921 } else { 2922 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2923 } 2924 2925 if (likely(!err)) { 2926 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2927 trace_tcp_retransmit_skb(sk, skb); 2928 } else if (err != -EBUSY) { 2929 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2930 } 2931 return err; 2932 } 2933 2934 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2935 { 2936 struct tcp_sock *tp = tcp_sk(sk); 2937 int err = __tcp_retransmit_skb(sk, skb, segs); 2938 2939 if (err == 0) { 2940 #if FASTRETRANS_DEBUG > 0 2941 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2942 net_dbg_ratelimited("retrans_out leaked\n"); 2943 } 2944 #endif 2945 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2946 tp->retrans_out += tcp_skb_pcount(skb); 2947 2948 /* Save stamp of the first retransmit. */ 2949 if (!tp->retrans_stamp) 2950 tp->retrans_stamp = tcp_skb_timestamp(skb); 2951 2952 } 2953 2954 if (tp->undo_retrans < 0) 2955 tp->undo_retrans = 0; 2956 tp->undo_retrans += tcp_skb_pcount(skb); 2957 return err; 2958 } 2959 2960 /* This gets called after a retransmit timeout, and the initially 2961 * retransmitted data is acknowledged. It tries to continue 2962 * resending the rest of the retransmit queue, until either 2963 * we've sent it all or the congestion window limit is reached. 2964 * If doing SACK, the first ACK which comes back for a timeout 2965 * based retransmit packet might feed us FACK information again. 2966 * If so, we use it to avoid unnecessarily retransmissions. 2967 */ 2968 void tcp_xmit_retransmit_queue(struct sock *sk) 2969 { 2970 const struct inet_connection_sock *icsk = inet_csk(sk); 2971 struct sk_buff *skb, *rtx_head, *hole = NULL; 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 u32 max_segs; 2974 int mib_idx; 2975 2976 if (!tp->packets_out) 2977 return; 2978 2979 rtx_head = tcp_rtx_queue_head(sk); 2980 skb = tp->retransmit_skb_hint ?: rtx_head; 2981 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2982 skb_rbtree_walk_from(skb) { 2983 __u8 sacked; 2984 int segs; 2985 2986 if (tcp_pacing_check(sk)) 2987 break; 2988 2989 /* we could do better than to assign each time */ 2990 if (!hole) 2991 tp->retransmit_skb_hint = skb; 2992 2993 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2994 if (segs <= 0) 2995 return; 2996 sacked = TCP_SKB_CB(skb)->sacked; 2997 /* In case tcp_shift_skb_data() have aggregated large skbs, 2998 * we need to make sure not sending too bigs TSO packets 2999 */ 3000 segs = min_t(int, segs, max_segs); 3001 3002 if (tp->retrans_out >= tp->lost_out) { 3003 break; 3004 } else if (!(sacked & TCPCB_LOST)) { 3005 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3006 hole = skb; 3007 continue; 3008 3009 } else { 3010 if (icsk->icsk_ca_state != TCP_CA_Loss) 3011 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3012 else 3013 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3014 } 3015 3016 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3017 continue; 3018 3019 if (tcp_small_queue_check(sk, skb, 1)) 3020 return; 3021 3022 if (tcp_retransmit_skb(sk, skb, segs)) 3023 return; 3024 3025 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3026 3027 if (tcp_in_cwnd_reduction(sk)) 3028 tp->prr_out += tcp_skb_pcount(skb); 3029 3030 if (skb == rtx_head && 3031 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3032 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3033 inet_csk(sk)->icsk_rto, 3034 TCP_RTO_MAX); 3035 } 3036 } 3037 3038 /* We allow to exceed memory limits for FIN packets to expedite 3039 * connection tear down and (memory) recovery. 3040 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3041 * or even be forced to close flow without any FIN. 3042 * In general, we want to allow one skb per socket to avoid hangs 3043 * with edge trigger epoll() 3044 */ 3045 void sk_forced_mem_schedule(struct sock *sk, int size) 3046 { 3047 int amt; 3048 3049 if (size <= sk->sk_forward_alloc) 3050 return; 3051 amt = sk_mem_pages(size); 3052 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3053 sk_memory_allocated_add(sk, amt); 3054 3055 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3056 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3057 } 3058 3059 /* Send a FIN. The caller locks the socket for us. 3060 * We should try to send a FIN packet really hard, but eventually give up. 3061 */ 3062 void tcp_send_fin(struct sock *sk) 3063 { 3064 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3065 struct tcp_sock *tp = tcp_sk(sk); 3066 3067 /* Optimization, tack on the FIN if we have one skb in write queue and 3068 * this skb was not yet sent, or we are under memory pressure. 3069 * Note: in the latter case, FIN packet will be sent after a timeout, 3070 * as TCP stack thinks it has already been transmitted. 3071 */ 3072 if (!tskb && tcp_under_memory_pressure(sk)) 3073 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3074 3075 if (tskb) { 3076 coalesce: 3077 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3078 TCP_SKB_CB(tskb)->end_seq++; 3079 tp->write_seq++; 3080 if (tcp_write_queue_empty(sk)) { 3081 /* This means tskb was already sent. 3082 * Pretend we included the FIN on previous transmit. 3083 * We need to set tp->snd_nxt to the value it would have 3084 * if FIN had been sent. This is because retransmit path 3085 * does not change tp->snd_nxt. 3086 */ 3087 tp->snd_nxt++; 3088 return; 3089 } 3090 } else { 3091 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3092 if (unlikely(!skb)) { 3093 if (tskb) 3094 goto coalesce; 3095 return; 3096 } 3097 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3098 skb_reserve(skb, MAX_TCP_HEADER); 3099 sk_forced_mem_schedule(sk, skb->truesize); 3100 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3101 tcp_init_nondata_skb(skb, tp->write_seq, 3102 TCPHDR_ACK | TCPHDR_FIN); 3103 tcp_queue_skb(sk, skb); 3104 } 3105 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3106 } 3107 3108 /* We get here when a process closes a file descriptor (either due to 3109 * an explicit close() or as a byproduct of exit()'ing) and there 3110 * was unread data in the receive queue. This behavior is recommended 3111 * by RFC 2525, section 2.17. -DaveM 3112 */ 3113 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3114 { 3115 struct sk_buff *skb; 3116 3117 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3118 3119 /* NOTE: No TCP options attached and we never retransmit this. */ 3120 skb = alloc_skb(MAX_TCP_HEADER, priority); 3121 if (!skb) { 3122 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3123 return; 3124 } 3125 3126 /* Reserve space for headers and prepare control bits. */ 3127 skb_reserve(skb, MAX_TCP_HEADER); 3128 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3129 TCPHDR_ACK | TCPHDR_RST); 3130 tcp_mstamp_refresh(tcp_sk(sk)); 3131 /* Send it off. */ 3132 if (tcp_transmit_skb(sk, skb, 0, priority)) 3133 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3134 3135 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3136 * skb here is different to the troublesome skb, so use NULL 3137 */ 3138 trace_tcp_send_reset(sk, NULL); 3139 } 3140 3141 /* Send a crossed SYN-ACK during socket establishment. 3142 * WARNING: This routine must only be called when we have already sent 3143 * a SYN packet that crossed the incoming SYN that caused this routine 3144 * to get called. If this assumption fails then the initial rcv_wnd 3145 * and rcv_wscale values will not be correct. 3146 */ 3147 int tcp_send_synack(struct sock *sk) 3148 { 3149 struct sk_buff *skb; 3150 3151 skb = tcp_rtx_queue_head(sk); 3152 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3153 pr_err("%s: wrong queue state\n", __func__); 3154 return -EFAULT; 3155 } 3156 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3157 if (skb_cloned(skb)) { 3158 struct sk_buff *nskb; 3159 3160 tcp_skb_tsorted_save(skb) { 3161 nskb = skb_copy(skb, GFP_ATOMIC); 3162 } tcp_skb_tsorted_restore(skb); 3163 if (!nskb) 3164 return -ENOMEM; 3165 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3166 tcp_rtx_queue_unlink_and_free(skb, sk); 3167 __skb_header_release(nskb); 3168 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3169 sk->sk_wmem_queued += nskb->truesize; 3170 sk_mem_charge(sk, nskb->truesize); 3171 skb = nskb; 3172 } 3173 3174 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3175 tcp_ecn_send_synack(sk, skb); 3176 } 3177 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3178 } 3179 3180 /** 3181 * tcp_make_synack - Prepare a SYN-ACK. 3182 * sk: listener socket 3183 * dst: dst entry attached to the SYNACK 3184 * req: request_sock pointer 3185 * 3186 * Allocate one skb and build a SYNACK packet. 3187 * @dst is consumed : Caller should not use it again. 3188 */ 3189 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3190 struct request_sock *req, 3191 struct tcp_fastopen_cookie *foc, 3192 enum tcp_synack_type synack_type) 3193 { 3194 struct inet_request_sock *ireq = inet_rsk(req); 3195 const struct tcp_sock *tp = tcp_sk(sk); 3196 struct tcp_md5sig_key *md5 = NULL; 3197 struct tcp_out_options opts; 3198 struct sk_buff *skb; 3199 int tcp_header_size; 3200 struct tcphdr *th; 3201 int mss; 3202 3203 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3204 if (unlikely(!skb)) { 3205 dst_release(dst); 3206 return NULL; 3207 } 3208 /* Reserve space for headers. */ 3209 skb_reserve(skb, MAX_TCP_HEADER); 3210 3211 switch (synack_type) { 3212 case TCP_SYNACK_NORMAL: 3213 skb_set_owner_w(skb, req_to_sk(req)); 3214 break; 3215 case TCP_SYNACK_COOKIE: 3216 /* Under synflood, we do not attach skb to a socket, 3217 * to avoid false sharing. 3218 */ 3219 break; 3220 case TCP_SYNACK_FASTOPEN: 3221 /* sk is a const pointer, because we want to express multiple 3222 * cpu might call us concurrently. 3223 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3224 */ 3225 skb_set_owner_w(skb, (struct sock *)sk); 3226 break; 3227 } 3228 skb_dst_set(skb, dst); 3229 3230 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3231 3232 memset(&opts, 0, sizeof(opts)); 3233 #ifdef CONFIG_SYN_COOKIES 3234 if (unlikely(req->cookie_ts)) 3235 skb->skb_mstamp = cookie_init_timestamp(req); 3236 else 3237 #endif 3238 skb->skb_mstamp = tcp_clock_us(); 3239 3240 #ifdef CONFIG_TCP_MD5SIG 3241 rcu_read_lock(); 3242 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3243 #endif 3244 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3245 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3246 foc) + sizeof(*th); 3247 3248 skb_push(skb, tcp_header_size); 3249 skb_reset_transport_header(skb); 3250 3251 th = (struct tcphdr *)skb->data; 3252 memset(th, 0, sizeof(struct tcphdr)); 3253 th->syn = 1; 3254 th->ack = 1; 3255 tcp_ecn_make_synack(req, th); 3256 th->source = htons(ireq->ir_num); 3257 th->dest = ireq->ir_rmt_port; 3258 skb->mark = ireq->ir_mark; 3259 /* Setting of flags are superfluous here for callers (and ECE is 3260 * not even correctly set) 3261 */ 3262 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3263 TCPHDR_SYN | TCPHDR_ACK); 3264 3265 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3266 /* XXX data is queued and acked as is. No buffer/window check */ 3267 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3268 3269 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3270 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3271 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3272 th->doff = (tcp_header_size >> 2); 3273 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3274 3275 #ifdef CONFIG_TCP_MD5SIG 3276 /* Okay, we have all we need - do the md5 hash if needed */ 3277 if (md5) 3278 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3279 md5, req_to_sk(req), skb); 3280 rcu_read_unlock(); 3281 #endif 3282 3283 /* Do not fool tcpdump (if any), clean our debris */ 3284 skb->tstamp = 0; 3285 return skb; 3286 } 3287 EXPORT_SYMBOL(tcp_make_synack); 3288 3289 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3290 { 3291 struct inet_connection_sock *icsk = inet_csk(sk); 3292 const struct tcp_congestion_ops *ca; 3293 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3294 3295 if (ca_key == TCP_CA_UNSPEC) 3296 return; 3297 3298 rcu_read_lock(); 3299 ca = tcp_ca_find_key(ca_key); 3300 if (likely(ca && try_module_get(ca->owner))) { 3301 module_put(icsk->icsk_ca_ops->owner); 3302 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3303 icsk->icsk_ca_ops = ca; 3304 } 3305 rcu_read_unlock(); 3306 } 3307 3308 /* Do all connect socket setups that can be done AF independent. */ 3309 static void tcp_connect_init(struct sock *sk) 3310 { 3311 const struct dst_entry *dst = __sk_dst_get(sk); 3312 struct tcp_sock *tp = tcp_sk(sk); 3313 __u8 rcv_wscale; 3314 u32 rcv_wnd; 3315 3316 /* We'll fix this up when we get a response from the other end. 3317 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3318 */ 3319 tp->tcp_header_len = sizeof(struct tcphdr); 3320 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3321 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3322 3323 #ifdef CONFIG_TCP_MD5SIG 3324 if (tp->af_specific->md5_lookup(sk, sk)) 3325 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3326 #endif 3327 3328 /* If user gave his TCP_MAXSEG, record it to clamp */ 3329 if (tp->rx_opt.user_mss) 3330 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3331 tp->max_window = 0; 3332 tcp_mtup_init(sk); 3333 tcp_sync_mss(sk, dst_mtu(dst)); 3334 3335 tcp_ca_dst_init(sk, dst); 3336 3337 if (!tp->window_clamp) 3338 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3339 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3340 3341 tcp_initialize_rcv_mss(sk); 3342 3343 /* limit the window selection if the user enforce a smaller rx buffer */ 3344 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3345 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3346 tp->window_clamp = tcp_full_space(sk); 3347 3348 rcv_wnd = tcp_rwnd_init_bpf(sk); 3349 if (rcv_wnd == 0) 3350 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3351 3352 tcp_select_initial_window(tcp_full_space(sk), 3353 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3354 &tp->rcv_wnd, 3355 &tp->window_clamp, 3356 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3357 &rcv_wscale, 3358 rcv_wnd); 3359 3360 tp->rx_opt.rcv_wscale = rcv_wscale; 3361 tp->rcv_ssthresh = tp->rcv_wnd; 3362 3363 sk->sk_err = 0; 3364 sock_reset_flag(sk, SOCK_DONE); 3365 tp->snd_wnd = 0; 3366 tcp_init_wl(tp, 0); 3367 tp->snd_una = tp->write_seq; 3368 tp->snd_sml = tp->write_seq; 3369 tp->snd_up = tp->write_seq; 3370 tp->snd_nxt = tp->write_seq; 3371 3372 if (likely(!tp->repair)) 3373 tp->rcv_nxt = 0; 3374 else 3375 tp->rcv_tstamp = tcp_jiffies32; 3376 tp->rcv_wup = tp->rcv_nxt; 3377 tp->copied_seq = tp->rcv_nxt; 3378 3379 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3380 inet_csk(sk)->icsk_retransmits = 0; 3381 tcp_clear_retrans(tp); 3382 } 3383 3384 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3385 { 3386 struct tcp_sock *tp = tcp_sk(sk); 3387 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3388 3389 tcb->end_seq += skb->len; 3390 __skb_header_release(skb); 3391 sk->sk_wmem_queued += skb->truesize; 3392 sk_mem_charge(sk, skb->truesize); 3393 tp->write_seq = tcb->end_seq; 3394 tp->packets_out += tcp_skb_pcount(skb); 3395 } 3396 3397 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3398 * queue a data-only packet after the regular SYN, such that regular SYNs 3399 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3400 * only the SYN sequence, the data are retransmitted in the first ACK. 3401 * If cookie is not cached or other error occurs, falls back to send a 3402 * regular SYN with Fast Open cookie request option. 3403 */ 3404 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3405 { 3406 struct tcp_sock *tp = tcp_sk(sk); 3407 struct tcp_fastopen_request *fo = tp->fastopen_req; 3408 int space, err = 0; 3409 struct sk_buff *syn_data; 3410 3411 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3412 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3413 goto fallback; 3414 3415 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3416 * user-MSS. Reserve maximum option space for middleboxes that add 3417 * private TCP options. The cost is reduced data space in SYN :( 3418 */ 3419 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3420 3421 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3422 MAX_TCP_OPTION_SPACE; 3423 3424 space = min_t(size_t, space, fo->size); 3425 3426 /* limit to order-0 allocations */ 3427 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3428 3429 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3430 if (!syn_data) 3431 goto fallback; 3432 syn_data->ip_summed = CHECKSUM_PARTIAL; 3433 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3434 if (space) { 3435 int copied = copy_from_iter(skb_put(syn_data, space), space, 3436 &fo->data->msg_iter); 3437 if (unlikely(!copied)) { 3438 tcp_skb_tsorted_anchor_cleanup(syn_data); 3439 kfree_skb(syn_data); 3440 goto fallback; 3441 } 3442 if (copied != space) { 3443 skb_trim(syn_data, copied); 3444 space = copied; 3445 } 3446 } 3447 /* No more data pending in inet_wait_for_connect() */ 3448 if (space == fo->size) 3449 fo->data = NULL; 3450 fo->copied = space; 3451 3452 tcp_connect_queue_skb(sk, syn_data); 3453 if (syn_data->len) 3454 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3455 3456 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3457 3458 syn->skb_mstamp = syn_data->skb_mstamp; 3459 3460 /* Now full SYN+DATA was cloned and sent (or not), 3461 * remove the SYN from the original skb (syn_data) 3462 * we keep in write queue in case of a retransmit, as we 3463 * also have the SYN packet (with no data) in the same queue. 3464 */ 3465 TCP_SKB_CB(syn_data)->seq++; 3466 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3467 if (!err) { 3468 tp->syn_data = (fo->copied > 0); 3469 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3470 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3471 goto done; 3472 } 3473 3474 /* data was not sent, put it in write_queue */ 3475 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3476 tp->packets_out -= tcp_skb_pcount(syn_data); 3477 3478 fallback: 3479 /* Send a regular SYN with Fast Open cookie request option */ 3480 if (fo->cookie.len > 0) 3481 fo->cookie.len = 0; 3482 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3483 if (err) 3484 tp->syn_fastopen = 0; 3485 done: 3486 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3487 return err; 3488 } 3489 3490 /* Build a SYN and send it off. */ 3491 int tcp_connect(struct sock *sk) 3492 { 3493 struct tcp_sock *tp = tcp_sk(sk); 3494 struct sk_buff *buff; 3495 int err; 3496 3497 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB); 3498 3499 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3500 return -EHOSTUNREACH; /* Routing failure or similar. */ 3501 3502 tcp_connect_init(sk); 3503 3504 if (unlikely(tp->repair)) { 3505 tcp_finish_connect(sk, NULL); 3506 return 0; 3507 } 3508 3509 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3510 if (unlikely(!buff)) 3511 return -ENOBUFS; 3512 3513 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3514 tcp_mstamp_refresh(tp); 3515 tp->retrans_stamp = tcp_time_stamp(tp); 3516 tcp_connect_queue_skb(sk, buff); 3517 tcp_ecn_send_syn(sk, buff); 3518 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3519 3520 /* Send off SYN; include data in Fast Open. */ 3521 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3522 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3523 if (err == -ECONNREFUSED) 3524 return err; 3525 3526 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3527 * in order to make this packet get counted in tcpOutSegs. 3528 */ 3529 tp->snd_nxt = tp->write_seq; 3530 tp->pushed_seq = tp->write_seq; 3531 buff = tcp_send_head(sk); 3532 if (unlikely(buff)) { 3533 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3534 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3535 } 3536 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3537 3538 /* Timer for repeating the SYN until an answer. */ 3539 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3540 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3541 return 0; 3542 } 3543 EXPORT_SYMBOL(tcp_connect); 3544 3545 /* Send out a delayed ack, the caller does the policy checking 3546 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3547 * for details. 3548 */ 3549 void tcp_send_delayed_ack(struct sock *sk) 3550 { 3551 struct inet_connection_sock *icsk = inet_csk(sk); 3552 int ato = icsk->icsk_ack.ato; 3553 unsigned long timeout; 3554 3555 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3556 3557 if (ato > TCP_DELACK_MIN) { 3558 const struct tcp_sock *tp = tcp_sk(sk); 3559 int max_ato = HZ / 2; 3560 3561 if (icsk->icsk_ack.pingpong || 3562 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3563 max_ato = TCP_DELACK_MAX; 3564 3565 /* Slow path, intersegment interval is "high". */ 3566 3567 /* If some rtt estimate is known, use it to bound delayed ack. 3568 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3569 * directly. 3570 */ 3571 if (tp->srtt_us) { 3572 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3573 TCP_DELACK_MIN); 3574 3575 if (rtt < max_ato) 3576 max_ato = rtt; 3577 } 3578 3579 ato = min(ato, max_ato); 3580 } 3581 3582 /* Stay within the limit we were given */ 3583 timeout = jiffies + ato; 3584 3585 /* Use new timeout only if there wasn't a older one earlier. */ 3586 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3587 /* If delack timer was blocked or is about to expire, 3588 * send ACK now. 3589 */ 3590 if (icsk->icsk_ack.blocked || 3591 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3592 tcp_send_ack(sk); 3593 return; 3594 } 3595 3596 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3597 timeout = icsk->icsk_ack.timeout; 3598 } 3599 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3600 icsk->icsk_ack.timeout = timeout; 3601 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3602 } 3603 3604 /* This routine sends an ack and also updates the window. */ 3605 void tcp_send_ack(struct sock *sk) 3606 { 3607 struct sk_buff *buff; 3608 3609 /* If we have been reset, we may not send again. */ 3610 if (sk->sk_state == TCP_CLOSE) 3611 return; 3612 3613 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3614 3615 /* We are not putting this on the write queue, so 3616 * tcp_transmit_skb() will set the ownership to this 3617 * sock. 3618 */ 3619 buff = alloc_skb(MAX_TCP_HEADER, 3620 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3621 if (unlikely(!buff)) { 3622 inet_csk_schedule_ack(sk); 3623 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3624 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3625 TCP_DELACK_MAX, TCP_RTO_MAX); 3626 return; 3627 } 3628 3629 /* Reserve space for headers and prepare control bits. */ 3630 skb_reserve(buff, MAX_TCP_HEADER); 3631 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3632 3633 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3634 * too much. 3635 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3636 */ 3637 skb_set_tcp_pure_ack(buff); 3638 3639 /* Send it off, this clears delayed acks for us. */ 3640 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3641 } 3642 EXPORT_SYMBOL_GPL(tcp_send_ack); 3643 3644 /* This routine sends a packet with an out of date sequence 3645 * number. It assumes the other end will try to ack it. 3646 * 3647 * Question: what should we make while urgent mode? 3648 * 4.4BSD forces sending single byte of data. We cannot send 3649 * out of window data, because we have SND.NXT==SND.MAX... 3650 * 3651 * Current solution: to send TWO zero-length segments in urgent mode: 3652 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3653 * out-of-date with SND.UNA-1 to probe window. 3654 */ 3655 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3656 { 3657 struct tcp_sock *tp = tcp_sk(sk); 3658 struct sk_buff *skb; 3659 3660 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3661 skb = alloc_skb(MAX_TCP_HEADER, 3662 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3663 if (!skb) 3664 return -1; 3665 3666 /* Reserve space for headers and set control bits. */ 3667 skb_reserve(skb, MAX_TCP_HEADER); 3668 /* Use a previous sequence. This should cause the other 3669 * end to send an ack. Don't queue or clone SKB, just 3670 * send it. 3671 */ 3672 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3673 NET_INC_STATS(sock_net(sk), mib); 3674 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3675 } 3676 3677 /* Called from setsockopt( ... TCP_REPAIR ) */ 3678 void tcp_send_window_probe(struct sock *sk) 3679 { 3680 if (sk->sk_state == TCP_ESTABLISHED) { 3681 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3682 tcp_mstamp_refresh(tcp_sk(sk)); 3683 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3684 } 3685 } 3686 3687 /* Initiate keepalive or window probe from timer. */ 3688 int tcp_write_wakeup(struct sock *sk, int mib) 3689 { 3690 struct tcp_sock *tp = tcp_sk(sk); 3691 struct sk_buff *skb; 3692 3693 if (sk->sk_state == TCP_CLOSE) 3694 return -1; 3695 3696 skb = tcp_send_head(sk); 3697 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3698 int err; 3699 unsigned int mss = tcp_current_mss(sk); 3700 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3701 3702 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3703 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3704 3705 /* We are probing the opening of a window 3706 * but the window size is != 0 3707 * must have been a result SWS avoidance ( sender ) 3708 */ 3709 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3710 skb->len > mss) { 3711 seg_size = min(seg_size, mss); 3712 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3713 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3714 skb, seg_size, mss, GFP_ATOMIC)) 3715 return -1; 3716 } else if (!tcp_skb_pcount(skb)) 3717 tcp_set_skb_tso_segs(skb, mss); 3718 3719 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3720 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3721 if (!err) 3722 tcp_event_new_data_sent(sk, skb); 3723 return err; 3724 } else { 3725 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3726 tcp_xmit_probe_skb(sk, 1, mib); 3727 return tcp_xmit_probe_skb(sk, 0, mib); 3728 } 3729 } 3730 3731 /* A window probe timeout has occurred. If window is not closed send 3732 * a partial packet else a zero probe. 3733 */ 3734 void tcp_send_probe0(struct sock *sk) 3735 { 3736 struct inet_connection_sock *icsk = inet_csk(sk); 3737 struct tcp_sock *tp = tcp_sk(sk); 3738 struct net *net = sock_net(sk); 3739 unsigned long probe_max; 3740 int err; 3741 3742 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3743 3744 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3745 /* Cancel probe timer, if it is not required. */ 3746 icsk->icsk_probes_out = 0; 3747 icsk->icsk_backoff = 0; 3748 return; 3749 } 3750 3751 if (err <= 0) { 3752 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3753 icsk->icsk_backoff++; 3754 icsk->icsk_probes_out++; 3755 probe_max = TCP_RTO_MAX; 3756 } else { 3757 /* If packet was not sent due to local congestion, 3758 * do not backoff and do not remember icsk_probes_out. 3759 * Let local senders to fight for local resources. 3760 * 3761 * Use accumulated backoff yet. 3762 */ 3763 if (!icsk->icsk_probes_out) 3764 icsk->icsk_probes_out = 1; 3765 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3766 } 3767 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3768 tcp_probe0_when(sk, probe_max), 3769 TCP_RTO_MAX); 3770 } 3771 3772 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3773 { 3774 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3775 struct flowi fl; 3776 int res; 3777 3778 tcp_rsk(req)->txhash = net_tx_rndhash(); 3779 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3780 if (!res) { 3781 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3782 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3783 if (unlikely(tcp_passive_fastopen(sk))) 3784 tcp_sk(sk)->total_retrans++; 3785 } 3786 return res; 3787 } 3788 EXPORT_SYMBOL(tcp_rtx_synack); 3789