1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 /* Default TSQ limit of four TSO segments */ 49 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 50 51 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 52 int push_one, gfp_t gfp); 53 54 /* Account for new data that has been sent to the network. */ 55 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 56 { 57 struct inet_connection_sock *icsk = inet_csk(sk); 58 struct tcp_sock *tp = tcp_sk(sk); 59 unsigned int prior_packets = tp->packets_out; 60 61 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 62 63 __skb_unlink(skb, &sk->sk_write_queue); 64 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 65 66 tp->packets_out += tcp_skb_pcount(skb); 67 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 68 tcp_rearm_rto(sk); 69 70 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 71 tcp_skb_pcount(skb)); 72 } 73 74 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 75 * window scaling factor due to loss of precision. 76 * If window has been shrunk, what should we make? It is not clear at all. 77 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 78 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 79 * invalid. OK, let's make this for now: 80 */ 81 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 82 { 83 const struct tcp_sock *tp = tcp_sk(sk); 84 85 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 86 (tp->rx_opt.wscale_ok && 87 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 88 return tp->snd_nxt; 89 else 90 return tcp_wnd_end(tp); 91 } 92 93 /* Calculate mss to advertise in SYN segment. 94 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 95 * 96 * 1. It is independent of path mtu. 97 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 98 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 99 * attached devices, because some buggy hosts are confused by 100 * large MSS. 101 * 4. We do not make 3, we advertise MSS, calculated from first 102 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 103 * This may be overridden via information stored in routing table. 104 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 105 * probably even Jumbo". 106 */ 107 static __u16 tcp_advertise_mss(struct sock *sk) 108 { 109 struct tcp_sock *tp = tcp_sk(sk); 110 const struct dst_entry *dst = __sk_dst_get(sk); 111 int mss = tp->advmss; 112 113 if (dst) { 114 unsigned int metric = dst_metric_advmss(dst); 115 116 if (metric < mss) { 117 mss = metric; 118 tp->advmss = mss; 119 } 120 } 121 122 return (__u16)mss; 123 } 124 125 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 126 * This is the first part of cwnd validation mechanism. 127 */ 128 void tcp_cwnd_restart(struct sock *sk, s32 delta) 129 { 130 struct tcp_sock *tp = tcp_sk(sk); 131 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 132 u32 cwnd = tp->snd_cwnd; 133 134 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 135 136 tp->snd_ssthresh = tcp_current_ssthresh(sk); 137 restart_cwnd = min(restart_cwnd, cwnd); 138 139 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 140 cwnd >>= 1; 141 tp->snd_cwnd = max(cwnd, restart_cwnd); 142 tp->snd_cwnd_stamp = tcp_jiffies32; 143 tp->snd_cwnd_used = 0; 144 } 145 146 /* Congestion state accounting after a packet has been sent. */ 147 static void tcp_event_data_sent(struct tcp_sock *tp, 148 struct sock *sk) 149 { 150 struct inet_connection_sock *icsk = inet_csk(sk); 151 const u32 now = tcp_jiffies32; 152 153 if (tcp_packets_in_flight(tp) == 0) 154 tcp_ca_event(sk, CA_EVENT_TX_START); 155 156 tp->lsndtime = now; 157 158 /* If it is a reply for ato after last received 159 * packet, enter pingpong mode. 160 */ 161 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 162 icsk->icsk_ack.pingpong = 1; 163 } 164 165 /* Account for an ACK we sent. */ 166 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 167 { 168 tcp_dec_quickack_mode(sk, pkts); 169 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 170 } 171 172 173 u32 tcp_default_init_rwnd(u32 mss) 174 { 175 /* Initial receive window should be twice of TCP_INIT_CWND to 176 * enable proper sending of new unsent data during fast recovery 177 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 178 * limit when mss is larger than 1460. 179 */ 180 u32 init_rwnd = TCP_INIT_CWND * 2; 181 182 if (mss > 1460) 183 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 184 return init_rwnd; 185 } 186 187 /* Determine a window scaling and initial window to offer. 188 * Based on the assumption that the given amount of space 189 * will be offered. Store the results in the tp structure. 190 * NOTE: for smooth operation initial space offering should 191 * be a multiple of mss if possible. We assume here that mss >= 1. 192 * This MUST be enforced by all callers. 193 */ 194 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 195 __u32 *rcv_wnd, __u32 *window_clamp, 196 int wscale_ok, __u8 *rcv_wscale, 197 __u32 init_rcv_wnd) 198 { 199 unsigned int space = (__space < 0 ? 0 : __space); 200 201 /* If no clamp set the clamp to the max possible scaled window */ 202 if (*window_clamp == 0) 203 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 204 space = min(*window_clamp, space); 205 206 /* Quantize space offering to a multiple of mss if possible. */ 207 if (space > mss) 208 space = rounddown(space, mss); 209 210 /* NOTE: offering an initial window larger than 32767 211 * will break some buggy TCP stacks. If the admin tells us 212 * it is likely we could be speaking with such a buggy stack 213 * we will truncate our initial window offering to 32K-1 214 * unless the remote has sent us a window scaling option, 215 * which we interpret as a sign the remote TCP is not 216 * misinterpreting the window field as a signed quantity. 217 */ 218 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 219 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 220 else 221 (*rcv_wnd) = space; 222 223 (*rcv_wscale) = 0; 224 if (wscale_ok) { 225 /* Set window scaling on max possible window */ 226 space = max_t(u32, space, sysctl_tcp_rmem[2]); 227 space = max_t(u32, space, sysctl_rmem_max); 228 space = min_t(u32, space, *window_clamp); 229 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 230 space >>= 1; 231 (*rcv_wscale)++; 232 } 233 } 234 235 if (mss > (1 << *rcv_wscale)) { 236 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 237 init_rcv_wnd = tcp_default_init_rwnd(mss); 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 } 240 241 /* Set the clamp no higher than max representable value */ 242 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 243 } 244 EXPORT_SYMBOL(tcp_select_initial_window); 245 246 /* Chose a new window to advertise, update state in tcp_sock for the 247 * socket, and return result with RFC1323 scaling applied. The return 248 * value can be stuffed directly into th->window for an outgoing 249 * frame. 250 */ 251 static u16 tcp_select_window(struct sock *sk) 252 { 253 struct tcp_sock *tp = tcp_sk(sk); 254 u32 old_win = tp->rcv_wnd; 255 u32 cur_win = tcp_receive_window(tp); 256 u32 new_win = __tcp_select_window(sk); 257 258 /* Never shrink the offered window */ 259 if (new_win < cur_win) { 260 /* Danger Will Robinson! 261 * Don't update rcv_wup/rcv_wnd here or else 262 * we will not be able to advertise a zero 263 * window in time. --DaveM 264 * 265 * Relax Will Robinson. 266 */ 267 if (new_win == 0) 268 NET_INC_STATS(sock_net(sk), 269 LINUX_MIB_TCPWANTZEROWINDOWADV); 270 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 271 } 272 tp->rcv_wnd = new_win; 273 tp->rcv_wup = tp->rcv_nxt; 274 275 /* Make sure we do not exceed the maximum possible 276 * scaled window. 277 */ 278 if (!tp->rx_opt.rcv_wscale && 279 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 280 new_win = min(new_win, MAX_TCP_WINDOW); 281 else 282 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 283 284 /* RFC1323 scaling applied */ 285 new_win >>= tp->rx_opt.rcv_wscale; 286 287 /* If we advertise zero window, disable fast path. */ 288 if (new_win == 0) { 289 tp->pred_flags = 0; 290 if (old_win) 291 NET_INC_STATS(sock_net(sk), 292 LINUX_MIB_TCPTOZEROWINDOWADV); 293 } else if (old_win == 0) { 294 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 295 } 296 297 return new_win; 298 } 299 300 /* Packet ECN state for a SYN-ACK */ 301 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 302 { 303 const struct tcp_sock *tp = tcp_sk(sk); 304 305 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 306 if (!(tp->ecn_flags & TCP_ECN_OK)) 307 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 308 else if (tcp_ca_needs_ecn(sk) || 309 tcp_bpf_ca_needs_ecn(sk)) 310 INET_ECN_xmit(sk); 311 } 312 313 /* Packet ECN state for a SYN. */ 314 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 315 { 316 struct tcp_sock *tp = tcp_sk(sk); 317 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 318 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 319 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 320 321 if (!use_ecn) { 322 const struct dst_entry *dst = __sk_dst_get(sk); 323 324 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 325 use_ecn = true; 326 } 327 328 tp->ecn_flags = 0; 329 330 if (use_ecn) { 331 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 332 tp->ecn_flags = TCP_ECN_OK; 333 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 334 INET_ECN_xmit(sk); 335 } 336 } 337 338 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 339 { 340 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 341 /* tp->ecn_flags are cleared at a later point in time when 342 * SYN ACK is ultimatively being received. 343 */ 344 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 345 } 346 347 static void 348 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 349 { 350 if (inet_rsk(req)->ecn_ok) 351 th->ece = 1; 352 } 353 354 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 355 * be sent. 356 */ 357 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 358 struct tcphdr *th, int tcp_header_len) 359 { 360 struct tcp_sock *tp = tcp_sk(sk); 361 362 if (tp->ecn_flags & TCP_ECN_OK) { 363 /* Not-retransmitted data segment: set ECT and inject CWR. */ 364 if (skb->len != tcp_header_len && 365 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 366 INET_ECN_xmit(sk); 367 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 368 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 369 th->cwr = 1; 370 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 371 } 372 } else if (!tcp_ca_needs_ecn(sk)) { 373 /* ACK or retransmitted segment: clear ECT|CE */ 374 INET_ECN_dontxmit(sk); 375 } 376 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 377 th->ece = 1; 378 } 379 } 380 381 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 382 * auto increment end seqno. 383 */ 384 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 385 { 386 skb->ip_summed = CHECKSUM_PARTIAL; 387 skb->csum = 0; 388 389 TCP_SKB_CB(skb)->tcp_flags = flags; 390 TCP_SKB_CB(skb)->sacked = 0; 391 392 tcp_skb_pcount_set(skb, 1); 393 394 TCP_SKB_CB(skb)->seq = seq; 395 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 396 seq++; 397 TCP_SKB_CB(skb)->end_seq = seq; 398 } 399 400 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 401 { 402 return tp->snd_una != tp->snd_up; 403 } 404 405 #define OPTION_SACK_ADVERTISE (1 << 0) 406 #define OPTION_TS (1 << 1) 407 #define OPTION_MD5 (1 << 2) 408 #define OPTION_WSCALE (1 << 3) 409 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 410 #define OPTION_SMC (1 << 9) 411 412 static void smc_options_write(__be32 *ptr, u16 *options) 413 { 414 #if IS_ENABLED(CONFIG_SMC) 415 if (static_branch_unlikely(&tcp_have_smc)) { 416 if (unlikely(OPTION_SMC & *options)) { 417 *ptr++ = htonl((TCPOPT_NOP << 24) | 418 (TCPOPT_NOP << 16) | 419 (TCPOPT_EXP << 8) | 420 (TCPOLEN_EXP_SMC_BASE)); 421 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 422 } 423 } 424 #endif 425 } 426 427 struct tcp_out_options { 428 u16 options; /* bit field of OPTION_* */ 429 u16 mss; /* 0 to disable */ 430 u8 ws; /* window scale, 0 to disable */ 431 u8 num_sack_blocks; /* number of SACK blocks to include */ 432 u8 hash_size; /* bytes in hash_location */ 433 __u8 *hash_location; /* temporary pointer, overloaded */ 434 __u32 tsval, tsecr; /* need to include OPTION_TS */ 435 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 436 }; 437 438 /* Write previously computed TCP options to the packet. 439 * 440 * Beware: Something in the Internet is very sensitive to the ordering of 441 * TCP options, we learned this through the hard way, so be careful here. 442 * Luckily we can at least blame others for their non-compliance but from 443 * inter-operability perspective it seems that we're somewhat stuck with 444 * the ordering which we have been using if we want to keep working with 445 * those broken things (not that it currently hurts anybody as there isn't 446 * particular reason why the ordering would need to be changed). 447 * 448 * At least SACK_PERM as the first option is known to lead to a disaster 449 * (but it may well be that other scenarios fail similarly). 450 */ 451 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 452 struct tcp_out_options *opts) 453 { 454 u16 options = opts->options; /* mungable copy */ 455 456 if (unlikely(OPTION_MD5 & options)) { 457 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 458 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 459 /* overload cookie hash location */ 460 opts->hash_location = (__u8 *)ptr; 461 ptr += 4; 462 } 463 464 if (unlikely(opts->mss)) { 465 *ptr++ = htonl((TCPOPT_MSS << 24) | 466 (TCPOLEN_MSS << 16) | 467 opts->mss); 468 } 469 470 if (likely(OPTION_TS & options)) { 471 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 472 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 473 (TCPOLEN_SACK_PERM << 16) | 474 (TCPOPT_TIMESTAMP << 8) | 475 TCPOLEN_TIMESTAMP); 476 options &= ~OPTION_SACK_ADVERTISE; 477 } else { 478 *ptr++ = htonl((TCPOPT_NOP << 24) | 479 (TCPOPT_NOP << 16) | 480 (TCPOPT_TIMESTAMP << 8) | 481 TCPOLEN_TIMESTAMP); 482 } 483 *ptr++ = htonl(opts->tsval); 484 *ptr++ = htonl(opts->tsecr); 485 } 486 487 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 488 *ptr++ = htonl((TCPOPT_NOP << 24) | 489 (TCPOPT_NOP << 16) | 490 (TCPOPT_SACK_PERM << 8) | 491 TCPOLEN_SACK_PERM); 492 } 493 494 if (unlikely(OPTION_WSCALE & options)) { 495 *ptr++ = htonl((TCPOPT_NOP << 24) | 496 (TCPOPT_WINDOW << 16) | 497 (TCPOLEN_WINDOW << 8) | 498 opts->ws); 499 } 500 501 if (unlikely(opts->num_sack_blocks)) { 502 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 503 tp->duplicate_sack : tp->selective_acks; 504 int this_sack; 505 506 *ptr++ = htonl((TCPOPT_NOP << 24) | 507 (TCPOPT_NOP << 16) | 508 (TCPOPT_SACK << 8) | 509 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 510 TCPOLEN_SACK_PERBLOCK))); 511 512 for (this_sack = 0; this_sack < opts->num_sack_blocks; 513 ++this_sack) { 514 *ptr++ = htonl(sp[this_sack].start_seq); 515 *ptr++ = htonl(sp[this_sack].end_seq); 516 } 517 518 tp->rx_opt.dsack = 0; 519 } 520 521 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 522 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 523 u8 *p = (u8 *)ptr; 524 u32 len; /* Fast Open option length */ 525 526 if (foc->exp) { 527 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 528 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 529 TCPOPT_FASTOPEN_MAGIC); 530 p += TCPOLEN_EXP_FASTOPEN_BASE; 531 } else { 532 len = TCPOLEN_FASTOPEN_BASE + foc->len; 533 *p++ = TCPOPT_FASTOPEN; 534 *p++ = len; 535 } 536 537 memcpy(p, foc->val, foc->len); 538 if ((len & 3) == 2) { 539 p[foc->len] = TCPOPT_NOP; 540 p[foc->len + 1] = TCPOPT_NOP; 541 } 542 ptr += (len + 3) >> 2; 543 } 544 545 smc_options_write(ptr, &options); 546 } 547 548 static void smc_set_option(const struct tcp_sock *tp, 549 struct tcp_out_options *opts, 550 unsigned int *remaining) 551 { 552 #if IS_ENABLED(CONFIG_SMC) 553 if (static_branch_unlikely(&tcp_have_smc)) { 554 if (tp->syn_smc) { 555 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 556 opts->options |= OPTION_SMC; 557 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 558 } 559 } 560 } 561 #endif 562 } 563 564 static void smc_set_option_cond(const struct tcp_sock *tp, 565 const struct inet_request_sock *ireq, 566 struct tcp_out_options *opts, 567 unsigned int *remaining) 568 { 569 #if IS_ENABLED(CONFIG_SMC) 570 if (static_branch_unlikely(&tcp_have_smc)) { 571 if (tp->syn_smc && ireq->smc_ok) { 572 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 573 opts->options |= OPTION_SMC; 574 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 575 } 576 } 577 } 578 #endif 579 } 580 581 /* Compute TCP options for SYN packets. This is not the final 582 * network wire format yet. 583 */ 584 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 585 struct tcp_out_options *opts, 586 struct tcp_md5sig_key **md5) 587 { 588 struct tcp_sock *tp = tcp_sk(sk); 589 unsigned int remaining = MAX_TCP_OPTION_SPACE; 590 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 591 592 #ifdef CONFIG_TCP_MD5SIG 593 *md5 = tp->af_specific->md5_lookup(sk, sk); 594 if (*md5) { 595 opts->options |= OPTION_MD5; 596 remaining -= TCPOLEN_MD5SIG_ALIGNED; 597 } 598 #else 599 *md5 = NULL; 600 #endif 601 602 /* We always get an MSS option. The option bytes which will be seen in 603 * normal data packets should timestamps be used, must be in the MSS 604 * advertised. But we subtract them from tp->mss_cache so that 605 * calculations in tcp_sendmsg are simpler etc. So account for this 606 * fact here if necessary. If we don't do this correctly, as a 607 * receiver we won't recognize data packets as being full sized when we 608 * should, and thus we won't abide by the delayed ACK rules correctly. 609 * SACKs don't matter, we never delay an ACK when we have any of those 610 * going out. */ 611 opts->mss = tcp_advertise_mss(sk); 612 remaining -= TCPOLEN_MSS_ALIGNED; 613 614 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 615 opts->options |= OPTION_TS; 616 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 617 opts->tsecr = tp->rx_opt.ts_recent; 618 remaining -= TCPOLEN_TSTAMP_ALIGNED; 619 } 620 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 621 opts->ws = tp->rx_opt.rcv_wscale; 622 opts->options |= OPTION_WSCALE; 623 remaining -= TCPOLEN_WSCALE_ALIGNED; 624 } 625 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 626 opts->options |= OPTION_SACK_ADVERTISE; 627 if (unlikely(!(OPTION_TS & opts->options))) 628 remaining -= TCPOLEN_SACKPERM_ALIGNED; 629 } 630 631 if (fastopen && fastopen->cookie.len >= 0) { 632 u32 need = fastopen->cookie.len; 633 634 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 635 TCPOLEN_FASTOPEN_BASE; 636 need = (need + 3) & ~3U; /* Align to 32 bits */ 637 if (remaining >= need) { 638 opts->options |= OPTION_FAST_OPEN_COOKIE; 639 opts->fastopen_cookie = &fastopen->cookie; 640 remaining -= need; 641 tp->syn_fastopen = 1; 642 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 643 } 644 } 645 646 smc_set_option(tp, opts, &remaining); 647 648 return MAX_TCP_OPTION_SPACE - remaining; 649 } 650 651 /* Set up TCP options for SYN-ACKs. */ 652 static unsigned int tcp_synack_options(const struct sock *sk, 653 struct request_sock *req, 654 unsigned int mss, struct sk_buff *skb, 655 struct tcp_out_options *opts, 656 const struct tcp_md5sig_key *md5, 657 struct tcp_fastopen_cookie *foc) 658 { 659 struct inet_request_sock *ireq = inet_rsk(req); 660 unsigned int remaining = MAX_TCP_OPTION_SPACE; 661 662 #ifdef CONFIG_TCP_MD5SIG 663 if (md5) { 664 opts->options |= OPTION_MD5; 665 remaining -= TCPOLEN_MD5SIG_ALIGNED; 666 667 /* We can't fit any SACK blocks in a packet with MD5 + TS 668 * options. There was discussion about disabling SACK 669 * rather than TS in order to fit in better with old, 670 * buggy kernels, but that was deemed to be unnecessary. 671 */ 672 ireq->tstamp_ok &= !ireq->sack_ok; 673 } 674 #endif 675 676 /* We always send an MSS option. */ 677 opts->mss = mss; 678 remaining -= TCPOLEN_MSS_ALIGNED; 679 680 if (likely(ireq->wscale_ok)) { 681 opts->ws = ireq->rcv_wscale; 682 opts->options |= OPTION_WSCALE; 683 remaining -= TCPOLEN_WSCALE_ALIGNED; 684 } 685 if (likely(ireq->tstamp_ok)) { 686 opts->options |= OPTION_TS; 687 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 688 opts->tsecr = req->ts_recent; 689 remaining -= TCPOLEN_TSTAMP_ALIGNED; 690 } 691 if (likely(ireq->sack_ok)) { 692 opts->options |= OPTION_SACK_ADVERTISE; 693 if (unlikely(!ireq->tstamp_ok)) 694 remaining -= TCPOLEN_SACKPERM_ALIGNED; 695 } 696 if (foc != NULL && foc->len >= 0) { 697 u32 need = foc->len; 698 699 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 700 TCPOLEN_FASTOPEN_BASE; 701 need = (need + 3) & ~3U; /* Align to 32 bits */ 702 if (remaining >= need) { 703 opts->options |= OPTION_FAST_OPEN_COOKIE; 704 opts->fastopen_cookie = foc; 705 remaining -= need; 706 } 707 } 708 709 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 710 711 return MAX_TCP_OPTION_SPACE - remaining; 712 } 713 714 /* Compute TCP options for ESTABLISHED sockets. This is not the 715 * final wire format yet. 716 */ 717 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 718 struct tcp_out_options *opts, 719 struct tcp_md5sig_key **md5) 720 { 721 struct tcp_sock *tp = tcp_sk(sk); 722 unsigned int size = 0; 723 unsigned int eff_sacks; 724 725 opts->options = 0; 726 727 #ifdef CONFIG_TCP_MD5SIG 728 *md5 = tp->af_specific->md5_lookup(sk, sk); 729 if (unlikely(*md5)) { 730 opts->options |= OPTION_MD5; 731 size += TCPOLEN_MD5SIG_ALIGNED; 732 } 733 #else 734 *md5 = NULL; 735 #endif 736 737 if (likely(tp->rx_opt.tstamp_ok)) { 738 opts->options |= OPTION_TS; 739 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 740 opts->tsecr = tp->rx_opt.ts_recent; 741 size += TCPOLEN_TSTAMP_ALIGNED; 742 } 743 744 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 745 if (unlikely(eff_sacks)) { 746 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 747 opts->num_sack_blocks = 748 min_t(unsigned int, eff_sacks, 749 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 750 TCPOLEN_SACK_PERBLOCK); 751 size += TCPOLEN_SACK_BASE_ALIGNED + 752 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 753 } 754 755 return size; 756 } 757 758 759 /* TCP SMALL QUEUES (TSQ) 760 * 761 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 762 * to reduce RTT and bufferbloat. 763 * We do this using a special skb destructor (tcp_wfree). 764 * 765 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 766 * needs to be reallocated in a driver. 767 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 768 * 769 * Since transmit from skb destructor is forbidden, we use a tasklet 770 * to process all sockets that eventually need to send more skbs. 771 * We use one tasklet per cpu, with its own queue of sockets. 772 */ 773 struct tsq_tasklet { 774 struct tasklet_struct tasklet; 775 struct list_head head; /* queue of tcp sockets */ 776 }; 777 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 778 779 static void tcp_tsq_handler(struct sock *sk) 780 { 781 if ((1 << sk->sk_state) & 782 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 783 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 784 struct tcp_sock *tp = tcp_sk(sk); 785 786 if (tp->lost_out > tp->retrans_out && 787 tp->snd_cwnd > tcp_packets_in_flight(tp)) 788 tcp_xmit_retransmit_queue(sk); 789 790 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 791 0, GFP_ATOMIC); 792 } 793 } 794 /* 795 * One tasklet per cpu tries to send more skbs. 796 * We run in tasklet context but need to disable irqs when 797 * transferring tsq->head because tcp_wfree() might 798 * interrupt us (non NAPI drivers) 799 */ 800 static void tcp_tasklet_func(unsigned long data) 801 { 802 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 803 LIST_HEAD(list); 804 unsigned long flags; 805 struct list_head *q, *n; 806 struct tcp_sock *tp; 807 struct sock *sk; 808 809 local_irq_save(flags); 810 list_splice_init(&tsq->head, &list); 811 local_irq_restore(flags); 812 813 list_for_each_safe(q, n, &list) { 814 tp = list_entry(q, struct tcp_sock, tsq_node); 815 list_del(&tp->tsq_node); 816 817 sk = (struct sock *)tp; 818 smp_mb__before_atomic(); 819 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 820 821 if (!sk->sk_lock.owned && 822 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 823 bh_lock_sock(sk); 824 if (!sock_owned_by_user(sk)) { 825 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 826 tcp_tsq_handler(sk); 827 } 828 bh_unlock_sock(sk); 829 } 830 831 sk_free(sk); 832 } 833 } 834 835 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 836 TCPF_WRITE_TIMER_DEFERRED | \ 837 TCPF_DELACK_TIMER_DEFERRED | \ 838 TCPF_MTU_REDUCED_DEFERRED) 839 /** 840 * tcp_release_cb - tcp release_sock() callback 841 * @sk: socket 842 * 843 * called from release_sock() to perform protocol dependent 844 * actions before socket release. 845 */ 846 void tcp_release_cb(struct sock *sk) 847 { 848 unsigned long flags, nflags; 849 850 /* perform an atomic operation only if at least one flag is set */ 851 do { 852 flags = sk->sk_tsq_flags; 853 if (!(flags & TCP_DEFERRED_ALL)) 854 return; 855 nflags = flags & ~TCP_DEFERRED_ALL; 856 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 857 858 if (flags & TCPF_TSQ_DEFERRED) 859 tcp_tsq_handler(sk); 860 861 /* Here begins the tricky part : 862 * We are called from release_sock() with : 863 * 1) BH disabled 864 * 2) sk_lock.slock spinlock held 865 * 3) socket owned by us (sk->sk_lock.owned == 1) 866 * 867 * But following code is meant to be called from BH handlers, 868 * so we should keep BH disabled, but early release socket ownership 869 */ 870 sock_release_ownership(sk); 871 872 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 873 tcp_write_timer_handler(sk); 874 __sock_put(sk); 875 } 876 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 877 tcp_delack_timer_handler(sk); 878 __sock_put(sk); 879 } 880 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 881 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 882 __sock_put(sk); 883 } 884 } 885 EXPORT_SYMBOL(tcp_release_cb); 886 887 void __init tcp_tasklet_init(void) 888 { 889 int i; 890 891 for_each_possible_cpu(i) { 892 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 893 894 INIT_LIST_HEAD(&tsq->head); 895 tasklet_init(&tsq->tasklet, 896 tcp_tasklet_func, 897 (unsigned long)tsq); 898 } 899 } 900 901 /* 902 * Write buffer destructor automatically called from kfree_skb. 903 * We can't xmit new skbs from this context, as we might already 904 * hold qdisc lock. 905 */ 906 void tcp_wfree(struct sk_buff *skb) 907 { 908 struct sock *sk = skb->sk; 909 struct tcp_sock *tp = tcp_sk(sk); 910 unsigned long flags, nval, oval; 911 912 /* Keep one reference on sk_wmem_alloc. 913 * Will be released by sk_free() from here or tcp_tasklet_func() 914 */ 915 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 916 917 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 918 * Wait until our queues (qdisc + devices) are drained. 919 * This gives : 920 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 921 * - chance for incoming ACK (processed by another cpu maybe) 922 * to migrate this flow (skb->ooo_okay will be eventually set) 923 */ 924 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 925 goto out; 926 927 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 928 struct tsq_tasklet *tsq; 929 bool empty; 930 931 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 932 goto out; 933 934 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 935 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 936 if (nval != oval) 937 continue; 938 939 /* queue this socket to tasklet queue */ 940 local_irq_save(flags); 941 tsq = this_cpu_ptr(&tsq_tasklet); 942 empty = list_empty(&tsq->head); 943 list_add(&tp->tsq_node, &tsq->head); 944 if (empty) 945 tasklet_schedule(&tsq->tasklet); 946 local_irq_restore(flags); 947 return; 948 } 949 out: 950 sk_free(sk); 951 } 952 953 /* Note: Called under hard irq. 954 * We can not call TCP stack right away. 955 */ 956 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 957 { 958 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 959 struct sock *sk = (struct sock *)tp; 960 unsigned long nval, oval; 961 962 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 963 struct tsq_tasklet *tsq; 964 bool empty; 965 966 if (oval & TSQF_QUEUED) 967 break; 968 969 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 970 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 971 if (nval != oval) 972 continue; 973 974 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc)) 975 break; 976 /* queue this socket to tasklet queue */ 977 tsq = this_cpu_ptr(&tsq_tasklet); 978 empty = list_empty(&tsq->head); 979 list_add(&tp->tsq_node, &tsq->head); 980 if (empty) 981 tasklet_schedule(&tsq->tasklet); 982 break; 983 } 984 return HRTIMER_NORESTART; 985 } 986 987 /* BBR congestion control needs pacing. 988 * Same remark for SO_MAX_PACING_RATE. 989 * sch_fq packet scheduler is efficiently handling pacing, 990 * but is not always installed/used. 991 * Return true if TCP stack should pace packets itself. 992 */ 993 static bool tcp_needs_internal_pacing(const struct sock *sk) 994 { 995 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 996 } 997 998 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 999 { 1000 u64 len_ns; 1001 u32 rate; 1002 1003 if (!tcp_needs_internal_pacing(sk)) 1004 return; 1005 rate = sk->sk_pacing_rate; 1006 if (!rate || rate == ~0U) 1007 return; 1008 1009 /* Should account for header sizes as sch_fq does, 1010 * but lets make things simple. 1011 */ 1012 len_ns = (u64)skb->len * NSEC_PER_SEC; 1013 do_div(len_ns, rate); 1014 hrtimer_start(&tcp_sk(sk)->pacing_timer, 1015 ktime_add_ns(ktime_get(), len_ns), 1016 HRTIMER_MODE_ABS_PINNED); 1017 } 1018 1019 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 1020 { 1021 skb->skb_mstamp = tp->tcp_mstamp; 1022 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1023 } 1024 1025 /* This routine actually transmits TCP packets queued in by 1026 * tcp_do_sendmsg(). This is used by both the initial 1027 * transmission and possible later retransmissions. 1028 * All SKB's seen here are completely headerless. It is our 1029 * job to build the TCP header, and pass the packet down to 1030 * IP so it can do the same plus pass the packet off to the 1031 * device. 1032 * 1033 * We are working here with either a clone of the original 1034 * SKB, or a fresh unique copy made by the retransmit engine. 1035 */ 1036 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1037 gfp_t gfp_mask) 1038 { 1039 const struct inet_connection_sock *icsk = inet_csk(sk); 1040 struct inet_sock *inet; 1041 struct tcp_sock *tp; 1042 struct tcp_skb_cb *tcb; 1043 struct tcp_out_options opts; 1044 unsigned int tcp_options_size, tcp_header_size; 1045 struct sk_buff *oskb = NULL; 1046 struct tcp_md5sig_key *md5; 1047 struct tcphdr *th; 1048 int err; 1049 1050 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1051 tp = tcp_sk(sk); 1052 1053 if (clone_it) { 1054 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1055 - tp->snd_una; 1056 oskb = skb; 1057 1058 tcp_skb_tsorted_save(oskb) { 1059 if (unlikely(skb_cloned(oskb))) 1060 skb = pskb_copy(oskb, gfp_mask); 1061 else 1062 skb = skb_clone(oskb, gfp_mask); 1063 } tcp_skb_tsorted_restore(oskb); 1064 1065 if (unlikely(!skb)) 1066 return -ENOBUFS; 1067 } 1068 skb->skb_mstamp = tp->tcp_mstamp; 1069 1070 inet = inet_sk(sk); 1071 tcb = TCP_SKB_CB(skb); 1072 memset(&opts, 0, sizeof(opts)); 1073 1074 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1075 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1076 else 1077 tcp_options_size = tcp_established_options(sk, skb, &opts, 1078 &md5); 1079 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1080 1081 /* if no packet is in qdisc/device queue, then allow XPS to select 1082 * another queue. We can be called from tcp_tsq_handler() 1083 * which holds one reference to sk_wmem_alloc. 1084 * 1085 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1086 * One way to get this would be to set skb->truesize = 2 on them. 1087 */ 1088 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1089 1090 /* If we had to use memory reserve to allocate this skb, 1091 * this might cause drops if packet is looped back : 1092 * Other socket might not have SOCK_MEMALLOC. 1093 * Packets not looped back do not care about pfmemalloc. 1094 */ 1095 skb->pfmemalloc = 0; 1096 1097 skb_push(skb, tcp_header_size); 1098 skb_reset_transport_header(skb); 1099 1100 skb_orphan(skb); 1101 skb->sk = sk; 1102 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1103 skb_set_hash_from_sk(skb, sk); 1104 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1105 1106 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1107 1108 /* Build TCP header and checksum it. */ 1109 th = (struct tcphdr *)skb->data; 1110 th->source = inet->inet_sport; 1111 th->dest = inet->inet_dport; 1112 th->seq = htonl(tcb->seq); 1113 th->ack_seq = htonl(tp->rcv_nxt); 1114 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1115 tcb->tcp_flags); 1116 1117 th->check = 0; 1118 th->urg_ptr = 0; 1119 1120 /* The urg_mode check is necessary during a below snd_una win probe */ 1121 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1122 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1123 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1124 th->urg = 1; 1125 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1126 th->urg_ptr = htons(0xFFFF); 1127 th->urg = 1; 1128 } 1129 } 1130 1131 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1132 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1133 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1134 th->window = htons(tcp_select_window(sk)); 1135 tcp_ecn_send(sk, skb, th, tcp_header_size); 1136 } else { 1137 /* RFC1323: The window in SYN & SYN/ACK segments 1138 * is never scaled. 1139 */ 1140 th->window = htons(min(tp->rcv_wnd, 65535U)); 1141 } 1142 #ifdef CONFIG_TCP_MD5SIG 1143 /* Calculate the MD5 hash, as we have all we need now */ 1144 if (md5) { 1145 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1146 tp->af_specific->calc_md5_hash(opts.hash_location, 1147 md5, sk, skb); 1148 } 1149 #endif 1150 1151 icsk->icsk_af_ops->send_check(sk, skb); 1152 1153 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1154 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1155 1156 if (skb->len != tcp_header_size) { 1157 tcp_event_data_sent(tp, sk); 1158 tp->data_segs_out += tcp_skb_pcount(skb); 1159 tcp_internal_pacing(sk, skb); 1160 } 1161 1162 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1163 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1164 tcp_skb_pcount(skb)); 1165 1166 tp->segs_out += tcp_skb_pcount(skb); 1167 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1168 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1169 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1170 1171 /* Our usage of tstamp should remain private */ 1172 skb->tstamp = 0; 1173 1174 /* Cleanup our debris for IP stacks */ 1175 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1176 sizeof(struct inet6_skb_parm))); 1177 1178 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1179 1180 if (unlikely(err > 0)) { 1181 tcp_enter_cwr(sk); 1182 err = net_xmit_eval(err); 1183 } 1184 if (!err && oskb) { 1185 tcp_update_skb_after_send(tp, oskb); 1186 tcp_rate_skb_sent(sk, oskb); 1187 } 1188 return err; 1189 } 1190 1191 /* This routine just queues the buffer for sending. 1192 * 1193 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1194 * otherwise socket can stall. 1195 */ 1196 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1197 { 1198 struct tcp_sock *tp = tcp_sk(sk); 1199 1200 /* Advance write_seq and place onto the write_queue. */ 1201 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1202 __skb_header_release(skb); 1203 tcp_add_write_queue_tail(sk, skb); 1204 sk->sk_wmem_queued += skb->truesize; 1205 sk_mem_charge(sk, skb->truesize); 1206 } 1207 1208 /* Initialize TSO segments for a packet. */ 1209 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1210 { 1211 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1212 /* Avoid the costly divide in the normal 1213 * non-TSO case. 1214 */ 1215 tcp_skb_pcount_set(skb, 1); 1216 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1217 } else { 1218 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1219 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1220 } 1221 } 1222 1223 /* When a modification to fackets out becomes necessary, we need to check 1224 * skb is counted to fackets_out or not. 1225 */ 1226 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1227 int decr) 1228 { 1229 struct tcp_sock *tp = tcp_sk(sk); 1230 1231 if (!tp->sacked_out || tcp_is_reno(tp)) 1232 return; 1233 1234 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1235 tp->fackets_out -= decr; 1236 } 1237 1238 /* Pcount in the middle of the write queue got changed, we need to do various 1239 * tweaks to fix counters 1240 */ 1241 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1242 { 1243 struct tcp_sock *tp = tcp_sk(sk); 1244 1245 tp->packets_out -= decr; 1246 1247 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1248 tp->sacked_out -= decr; 1249 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1250 tp->retrans_out -= decr; 1251 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1252 tp->lost_out -= decr; 1253 1254 /* Reno case is special. Sigh... */ 1255 if (tcp_is_reno(tp) && decr > 0) 1256 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1257 1258 tcp_adjust_fackets_out(sk, skb, decr); 1259 1260 if (tp->lost_skb_hint && 1261 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1262 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1263 tp->lost_cnt_hint -= decr; 1264 1265 tcp_verify_left_out(tp); 1266 } 1267 1268 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1269 { 1270 return TCP_SKB_CB(skb)->txstamp_ack || 1271 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1272 } 1273 1274 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1275 { 1276 struct skb_shared_info *shinfo = skb_shinfo(skb); 1277 1278 if (unlikely(tcp_has_tx_tstamp(skb)) && 1279 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1280 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1281 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1282 1283 shinfo->tx_flags &= ~tsflags; 1284 shinfo2->tx_flags |= tsflags; 1285 swap(shinfo->tskey, shinfo2->tskey); 1286 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1287 TCP_SKB_CB(skb)->txstamp_ack = 0; 1288 } 1289 } 1290 1291 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1292 { 1293 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1294 TCP_SKB_CB(skb)->eor = 0; 1295 } 1296 1297 /* Insert buff after skb on the write or rtx queue of sk. */ 1298 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1299 struct sk_buff *buff, 1300 struct sock *sk, 1301 enum tcp_queue tcp_queue) 1302 { 1303 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1304 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1305 else 1306 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1307 } 1308 1309 /* Function to create two new TCP segments. Shrinks the given segment 1310 * to the specified size and appends a new segment with the rest of the 1311 * packet to the list. This won't be called frequently, I hope. 1312 * Remember, these are still headerless SKBs at this point. 1313 */ 1314 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1315 struct sk_buff *skb, u32 len, 1316 unsigned int mss_now, gfp_t gfp) 1317 { 1318 struct tcp_sock *tp = tcp_sk(sk); 1319 struct sk_buff *buff; 1320 int nsize, old_factor; 1321 int nlen; 1322 u8 flags; 1323 1324 if (WARN_ON(len > skb->len)) 1325 return -EINVAL; 1326 1327 nsize = skb_headlen(skb) - len; 1328 if (nsize < 0) 1329 nsize = 0; 1330 1331 if (skb_unclone(skb, gfp)) 1332 return -ENOMEM; 1333 1334 /* Get a new skb... force flag on. */ 1335 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1336 if (!buff) 1337 return -ENOMEM; /* We'll just try again later. */ 1338 1339 sk->sk_wmem_queued += buff->truesize; 1340 sk_mem_charge(sk, buff->truesize); 1341 nlen = skb->len - len - nsize; 1342 buff->truesize += nlen; 1343 skb->truesize -= nlen; 1344 1345 /* Correct the sequence numbers. */ 1346 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1347 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1348 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1349 1350 /* PSH and FIN should only be set in the second packet. */ 1351 flags = TCP_SKB_CB(skb)->tcp_flags; 1352 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1353 TCP_SKB_CB(buff)->tcp_flags = flags; 1354 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1355 tcp_skb_fragment_eor(skb, buff); 1356 1357 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1358 /* Copy and checksum data tail into the new buffer. */ 1359 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1360 skb_put(buff, nsize), 1361 nsize, 0); 1362 1363 skb_trim(skb, len); 1364 1365 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1366 } else { 1367 skb->ip_summed = CHECKSUM_PARTIAL; 1368 skb_split(skb, buff, len); 1369 } 1370 1371 buff->ip_summed = skb->ip_summed; 1372 1373 buff->tstamp = skb->tstamp; 1374 tcp_fragment_tstamp(skb, buff); 1375 1376 old_factor = tcp_skb_pcount(skb); 1377 1378 /* Fix up tso_factor for both original and new SKB. */ 1379 tcp_set_skb_tso_segs(skb, mss_now); 1380 tcp_set_skb_tso_segs(buff, mss_now); 1381 1382 /* Update delivered info for the new segment */ 1383 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1384 1385 /* If this packet has been sent out already, we must 1386 * adjust the various packet counters. 1387 */ 1388 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1389 int diff = old_factor - tcp_skb_pcount(skb) - 1390 tcp_skb_pcount(buff); 1391 1392 if (diff) 1393 tcp_adjust_pcount(sk, skb, diff); 1394 } 1395 1396 /* Link BUFF into the send queue. */ 1397 __skb_header_release(buff); 1398 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1399 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1400 1401 return 0; 1402 } 1403 1404 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1405 * data is not copied, but immediately discarded. 1406 */ 1407 static int __pskb_trim_head(struct sk_buff *skb, int len) 1408 { 1409 struct skb_shared_info *shinfo; 1410 int i, k, eat; 1411 1412 eat = min_t(int, len, skb_headlen(skb)); 1413 if (eat) { 1414 __skb_pull(skb, eat); 1415 len -= eat; 1416 if (!len) 1417 return 0; 1418 } 1419 eat = len; 1420 k = 0; 1421 shinfo = skb_shinfo(skb); 1422 for (i = 0; i < shinfo->nr_frags; i++) { 1423 int size = skb_frag_size(&shinfo->frags[i]); 1424 1425 if (size <= eat) { 1426 skb_frag_unref(skb, i); 1427 eat -= size; 1428 } else { 1429 shinfo->frags[k] = shinfo->frags[i]; 1430 if (eat) { 1431 shinfo->frags[k].page_offset += eat; 1432 skb_frag_size_sub(&shinfo->frags[k], eat); 1433 eat = 0; 1434 } 1435 k++; 1436 } 1437 } 1438 shinfo->nr_frags = k; 1439 1440 skb->data_len -= len; 1441 skb->len = skb->data_len; 1442 return len; 1443 } 1444 1445 /* Remove acked data from a packet in the transmit queue. */ 1446 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1447 { 1448 u32 delta_truesize; 1449 1450 if (skb_unclone(skb, GFP_ATOMIC)) 1451 return -ENOMEM; 1452 1453 delta_truesize = __pskb_trim_head(skb, len); 1454 1455 TCP_SKB_CB(skb)->seq += len; 1456 skb->ip_summed = CHECKSUM_PARTIAL; 1457 1458 if (delta_truesize) { 1459 skb->truesize -= delta_truesize; 1460 sk->sk_wmem_queued -= delta_truesize; 1461 sk_mem_uncharge(sk, delta_truesize); 1462 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1463 } 1464 1465 /* Any change of skb->len requires recalculation of tso factor. */ 1466 if (tcp_skb_pcount(skb) > 1) 1467 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1468 1469 return 0; 1470 } 1471 1472 /* Calculate MSS not accounting any TCP options. */ 1473 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1474 { 1475 const struct tcp_sock *tp = tcp_sk(sk); 1476 const struct inet_connection_sock *icsk = inet_csk(sk); 1477 int mss_now; 1478 1479 /* Calculate base mss without TCP options: 1480 It is MMS_S - sizeof(tcphdr) of rfc1122 1481 */ 1482 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1483 1484 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1485 if (icsk->icsk_af_ops->net_frag_header_len) { 1486 const struct dst_entry *dst = __sk_dst_get(sk); 1487 1488 if (dst && dst_allfrag(dst)) 1489 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1490 } 1491 1492 /* Clamp it (mss_clamp does not include tcp options) */ 1493 if (mss_now > tp->rx_opt.mss_clamp) 1494 mss_now = tp->rx_opt.mss_clamp; 1495 1496 /* Now subtract optional transport overhead */ 1497 mss_now -= icsk->icsk_ext_hdr_len; 1498 1499 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1500 if (mss_now < 48) 1501 mss_now = 48; 1502 return mss_now; 1503 } 1504 1505 /* Calculate MSS. Not accounting for SACKs here. */ 1506 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1507 { 1508 /* Subtract TCP options size, not including SACKs */ 1509 return __tcp_mtu_to_mss(sk, pmtu) - 1510 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1511 } 1512 1513 /* Inverse of above */ 1514 int tcp_mss_to_mtu(struct sock *sk, int mss) 1515 { 1516 const struct tcp_sock *tp = tcp_sk(sk); 1517 const struct inet_connection_sock *icsk = inet_csk(sk); 1518 int mtu; 1519 1520 mtu = mss + 1521 tp->tcp_header_len + 1522 icsk->icsk_ext_hdr_len + 1523 icsk->icsk_af_ops->net_header_len; 1524 1525 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1526 if (icsk->icsk_af_ops->net_frag_header_len) { 1527 const struct dst_entry *dst = __sk_dst_get(sk); 1528 1529 if (dst && dst_allfrag(dst)) 1530 mtu += icsk->icsk_af_ops->net_frag_header_len; 1531 } 1532 return mtu; 1533 } 1534 EXPORT_SYMBOL(tcp_mss_to_mtu); 1535 1536 /* MTU probing init per socket */ 1537 void tcp_mtup_init(struct sock *sk) 1538 { 1539 struct tcp_sock *tp = tcp_sk(sk); 1540 struct inet_connection_sock *icsk = inet_csk(sk); 1541 struct net *net = sock_net(sk); 1542 1543 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1544 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1545 icsk->icsk_af_ops->net_header_len; 1546 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1547 icsk->icsk_mtup.probe_size = 0; 1548 if (icsk->icsk_mtup.enabled) 1549 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1550 } 1551 EXPORT_SYMBOL(tcp_mtup_init); 1552 1553 /* This function synchronize snd mss to current pmtu/exthdr set. 1554 1555 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1556 for TCP options, but includes only bare TCP header. 1557 1558 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1559 It is minimum of user_mss and mss received with SYN. 1560 It also does not include TCP options. 1561 1562 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1563 1564 tp->mss_cache is current effective sending mss, including 1565 all tcp options except for SACKs. It is evaluated, 1566 taking into account current pmtu, but never exceeds 1567 tp->rx_opt.mss_clamp. 1568 1569 NOTE1. rfc1122 clearly states that advertised MSS 1570 DOES NOT include either tcp or ip options. 1571 1572 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1573 are READ ONLY outside this function. --ANK (980731) 1574 */ 1575 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1576 { 1577 struct tcp_sock *tp = tcp_sk(sk); 1578 struct inet_connection_sock *icsk = inet_csk(sk); 1579 int mss_now; 1580 1581 if (icsk->icsk_mtup.search_high > pmtu) 1582 icsk->icsk_mtup.search_high = pmtu; 1583 1584 mss_now = tcp_mtu_to_mss(sk, pmtu); 1585 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1586 1587 /* And store cached results */ 1588 icsk->icsk_pmtu_cookie = pmtu; 1589 if (icsk->icsk_mtup.enabled) 1590 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1591 tp->mss_cache = mss_now; 1592 1593 return mss_now; 1594 } 1595 EXPORT_SYMBOL(tcp_sync_mss); 1596 1597 /* Compute the current effective MSS, taking SACKs and IP options, 1598 * and even PMTU discovery events into account. 1599 */ 1600 unsigned int tcp_current_mss(struct sock *sk) 1601 { 1602 const struct tcp_sock *tp = tcp_sk(sk); 1603 const struct dst_entry *dst = __sk_dst_get(sk); 1604 u32 mss_now; 1605 unsigned int header_len; 1606 struct tcp_out_options opts; 1607 struct tcp_md5sig_key *md5; 1608 1609 mss_now = tp->mss_cache; 1610 1611 if (dst) { 1612 u32 mtu = dst_mtu(dst); 1613 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1614 mss_now = tcp_sync_mss(sk, mtu); 1615 } 1616 1617 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1618 sizeof(struct tcphdr); 1619 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1620 * some common options. If this is an odd packet (because we have SACK 1621 * blocks etc) then our calculated header_len will be different, and 1622 * we have to adjust mss_now correspondingly */ 1623 if (header_len != tp->tcp_header_len) { 1624 int delta = (int) header_len - tp->tcp_header_len; 1625 mss_now -= delta; 1626 } 1627 1628 return mss_now; 1629 } 1630 1631 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1632 * As additional protections, we do not touch cwnd in retransmission phases, 1633 * and if application hit its sndbuf limit recently. 1634 */ 1635 static void tcp_cwnd_application_limited(struct sock *sk) 1636 { 1637 struct tcp_sock *tp = tcp_sk(sk); 1638 1639 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1640 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1641 /* Limited by application or receiver window. */ 1642 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1643 u32 win_used = max(tp->snd_cwnd_used, init_win); 1644 if (win_used < tp->snd_cwnd) { 1645 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1646 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1647 } 1648 tp->snd_cwnd_used = 0; 1649 } 1650 tp->snd_cwnd_stamp = tcp_jiffies32; 1651 } 1652 1653 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1654 { 1655 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1656 struct tcp_sock *tp = tcp_sk(sk); 1657 1658 /* Track the maximum number of outstanding packets in each 1659 * window, and remember whether we were cwnd-limited then. 1660 */ 1661 if (!before(tp->snd_una, tp->max_packets_seq) || 1662 tp->packets_out > tp->max_packets_out) { 1663 tp->max_packets_out = tp->packets_out; 1664 tp->max_packets_seq = tp->snd_nxt; 1665 tp->is_cwnd_limited = is_cwnd_limited; 1666 } 1667 1668 if (tcp_is_cwnd_limited(sk)) { 1669 /* Network is feed fully. */ 1670 tp->snd_cwnd_used = 0; 1671 tp->snd_cwnd_stamp = tcp_jiffies32; 1672 } else { 1673 /* Network starves. */ 1674 if (tp->packets_out > tp->snd_cwnd_used) 1675 tp->snd_cwnd_used = tp->packets_out; 1676 1677 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1678 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1679 !ca_ops->cong_control) 1680 tcp_cwnd_application_limited(sk); 1681 1682 /* The following conditions together indicate the starvation 1683 * is caused by insufficient sender buffer: 1684 * 1) just sent some data (see tcp_write_xmit) 1685 * 2) not cwnd limited (this else condition) 1686 * 3) no more data to send (tcp_write_queue_empty()) 1687 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1688 */ 1689 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1690 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1691 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1692 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1693 } 1694 } 1695 1696 /* Minshall's variant of the Nagle send check. */ 1697 static bool tcp_minshall_check(const struct tcp_sock *tp) 1698 { 1699 return after(tp->snd_sml, tp->snd_una) && 1700 !after(tp->snd_sml, tp->snd_nxt); 1701 } 1702 1703 /* Update snd_sml if this skb is under mss 1704 * Note that a TSO packet might end with a sub-mss segment 1705 * The test is really : 1706 * if ((skb->len % mss) != 0) 1707 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1708 * But we can avoid doing the divide again given we already have 1709 * skb_pcount = skb->len / mss_now 1710 */ 1711 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1712 const struct sk_buff *skb) 1713 { 1714 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1715 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1716 } 1717 1718 /* Return false, if packet can be sent now without violation Nagle's rules: 1719 * 1. It is full sized. (provided by caller in %partial bool) 1720 * 2. Or it contains FIN. (already checked by caller) 1721 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1722 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1723 * With Minshall's modification: all sent small packets are ACKed. 1724 */ 1725 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1726 int nonagle) 1727 { 1728 return partial && 1729 ((nonagle & TCP_NAGLE_CORK) || 1730 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1731 } 1732 1733 /* Return how many segs we'd like on a TSO packet, 1734 * to send one TSO packet per ms 1735 */ 1736 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1737 int min_tso_segs) 1738 { 1739 u32 bytes, segs; 1740 1741 bytes = min(sk->sk_pacing_rate >> 10, 1742 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1743 1744 /* Goal is to send at least one packet per ms, 1745 * not one big TSO packet every 100 ms. 1746 * This preserves ACK clocking and is consistent 1747 * with tcp_tso_should_defer() heuristic. 1748 */ 1749 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1750 1751 return min_t(u32, segs, sk->sk_gso_max_segs); 1752 } 1753 EXPORT_SYMBOL(tcp_tso_autosize); 1754 1755 /* Return the number of segments we want in the skb we are transmitting. 1756 * See if congestion control module wants to decide; otherwise, autosize. 1757 */ 1758 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1759 { 1760 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1761 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1762 1763 return tso_segs ? : 1764 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1765 } 1766 1767 /* Returns the portion of skb which can be sent right away */ 1768 static unsigned int tcp_mss_split_point(const struct sock *sk, 1769 const struct sk_buff *skb, 1770 unsigned int mss_now, 1771 unsigned int max_segs, 1772 int nonagle) 1773 { 1774 const struct tcp_sock *tp = tcp_sk(sk); 1775 u32 partial, needed, window, max_len; 1776 1777 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1778 max_len = mss_now * max_segs; 1779 1780 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1781 return max_len; 1782 1783 needed = min(skb->len, window); 1784 1785 if (max_len <= needed) 1786 return max_len; 1787 1788 partial = needed % mss_now; 1789 /* If last segment is not a full MSS, check if Nagle rules allow us 1790 * to include this last segment in this skb. 1791 * Otherwise, we'll split the skb at last MSS boundary 1792 */ 1793 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1794 return needed - partial; 1795 1796 return needed; 1797 } 1798 1799 /* Can at least one segment of SKB be sent right now, according to the 1800 * congestion window rules? If so, return how many segments are allowed. 1801 */ 1802 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1803 const struct sk_buff *skb) 1804 { 1805 u32 in_flight, cwnd, halfcwnd; 1806 1807 /* Don't be strict about the congestion window for the final FIN. */ 1808 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1809 tcp_skb_pcount(skb) == 1) 1810 return 1; 1811 1812 in_flight = tcp_packets_in_flight(tp); 1813 cwnd = tp->snd_cwnd; 1814 if (in_flight >= cwnd) 1815 return 0; 1816 1817 /* For better scheduling, ensure we have at least 1818 * 2 GSO packets in flight. 1819 */ 1820 halfcwnd = max(cwnd >> 1, 1U); 1821 return min(halfcwnd, cwnd - in_flight); 1822 } 1823 1824 /* Initialize TSO state of a skb. 1825 * This must be invoked the first time we consider transmitting 1826 * SKB onto the wire. 1827 */ 1828 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1829 { 1830 int tso_segs = tcp_skb_pcount(skb); 1831 1832 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1833 tcp_set_skb_tso_segs(skb, mss_now); 1834 tso_segs = tcp_skb_pcount(skb); 1835 } 1836 return tso_segs; 1837 } 1838 1839 1840 /* Return true if the Nagle test allows this packet to be 1841 * sent now. 1842 */ 1843 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1844 unsigned int cur_mss, int nonagle) 1845 { 1846 /* Nagle rule does not apply to frames, which sit in the middle of the 1847 * write_queue (they have no chances to get new data). 1848 * 1849 * This is implemented in the callers, where they modify the 'nonagle' 1850 * argument based upon the location of SKB in the send queue. 1851 */ 1852 if (nonagle & TCP_NAGLE_PUSH) 1853 return true; 1854 1855 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1856 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1857 return true; 1858 1859 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1860 return true; 1861 1862 return false; 1863 } 1864 1865 /* Does at least the first segment of SKB fit into the send window? */ 1866 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1867 const struct sk_buff *skb, 1868 unsigned int cur_mss) 1869 { 1870 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1871 1872 if (skb->len > cur_mss) 1873 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1874 1875 return !after(end_seq, tcp_wnd_end(tp)); 1876 } 1877 1878 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1879 * which is put after SKB on the list. It is very much like 1880 * tcp_fragment() except that it may make several kinds of assumptions 1881 * in order to speed up the splitting operation. In particular, we 1882 * know that all the data is in scatter-gather pages, and that the 1883 * packet has never been sent out before (and thus is not cloned). 1884 */ 1885 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1886 struct sk_buff *skb, unsigned int len, 1887 unsigned int mss_now, gfp_t gfp) 1888 { 1889 struct sk_buff *buff; 1890 int nlen = skb->len - len; 1891 u8 flags; 1892 1893 /* All of a TSO frame must be composed of paged data. */ 1894 if (skb->len != skb->data_len) 1895 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1896 1897 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1898 if (unlikely(!buff)) 1899 return -ENOMEM; 1900 1901 sk->sk_wmem_queued += buff->truesize; 1902 sk_mem_charge(sk, buff->truesize); 1903 buff->truesize += nlen; 1904 skb->truesize -= nlen; 1905 1906 /* Correct the sequence numbers. */ 1907 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1908 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1909 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1910 1911 /* PSH and FIN should only be set in the second packet. */ 1912 flags = TCP_SKB_CB(skb)->tcp_flags; 1913 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1914 TCP_SKB_CB(buff)->tcp_flags = flags; 1915 1916 /* This packet was never sent out yet, so no SACK bits. */ 1917 TCP_SKB_CB(buff)->sacked = 0; 1918 1919 tcp_skb_fragment_eor(skb, buff); 1920 1921 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1922 skb_split(skb, buff, len); 1923 tcp_fragment_tstamp(skb, buff); 1924 1925 /* Fix up tso_factor for both original and new SKB. */ 1926 tcp_set_skb_tso_segs(skb, mss_now); 1927 tcp_set_skb_tso_segs(buff, mss_now); 1928 1929 /* Link BUFF into the send queue. */ 1930 __skb_header_release(buff); 1931 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1932 1933 return 0; 1934 } 1935 1936 /* Try to defer sending, if possible, in order to minimize the amount 1937 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1938 * 1939 * This algorithm is from John Heffner. 1940 */ 1941 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1942 bool *is_cwnd_limited, u32 max_segs) 1943 { 1944 const struct inet_connection_sock *icsk = inet_csk(sk); 1945 u32 age, send_win, cong_win, limit, in_flight; 1946 struct tcp_sock *tp = tcp_sk(sk); 1947 struct sk_buff *head; 1948 int win_divisor; 1949 1950 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1951 goto send_now; 1952 1953 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1954 goto send_now; 1955 1956 /* Avoid bursty behavior by allowing defer 1957 * only if the last write was recent. 1958 */ 1959 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1960 goto send_now; 1961 1962 in_flight = tcp_packets_in_flight(tp); 1963 1964 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1965 1966 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1967 1968 /* From in_flight test above, we know that cwnd > in_flight. */ 1969 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1970 1971 limit = min(send_win, cong_win); 1972 1973 /* If a full-sized TSO skb can be sent, do it. */ 1974 if (limit >= max_segs * tp->mss_cache) 1975 goto send_now; 1976 1977 /* Middle in queue won't get any more data, full sendable already? */ 1978 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1979 goto send_now; 1980 1981 win_divisor = ACCESS_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1982 if (win_divisor) { 1983 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1984 1985 /* If at least some fraction of a window is available, 1986 * just use it. 1987 */ 1988 chunk /= win_divisor; 1989 if (limit >= chunk) 1990 goto send_now; 1991 } else { 1992 /* Different approach, try not to defer past a single 1993 * ACK. Receiver should ACK every other full sized 1994 * frame, so if we have space for more than 3 frames 1995 * then send now. 1996 */ 1997 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1998 goto send_now; 1999 } 2000 2001 /* TODO : use tsorted_sent_queue ? */ 2002 head = tcp_rtx_queue_head(sk); 2003 if (!head) 2004 goto send_now; 2005 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 2006 /* If next ACK is likely to come too late (half srtt), do not defer */ 2007 if (age < (tp->srtt_us >> 4)) 2008 goto send_now; 2009 2010 /* Ok, it looks like it is advisable to defer. */ 2011 2012 if (cong_win < send_win && cong_win <= skb->len) 2013 *is_cwnd_limited = true; 2014 2015 return true; 2016 2017 send_now: 2018 return false; 2019 } 2020 2021 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2022 { 2023 struct inet_connection_sock *icsk = inet_csk(sk); 2024 struct tcp_sock *tp = tcp_sk(sk); 2025 struct net *net = sock_net(sk); 2026 u32 interval; 2027 s32 delta; 2028 2029 interval = net->ipv4.sysctl_tcp_probe_interval; 2030 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2031 if (unlikely(delta >= interval * HZ)) { 2032 int mss = tcp_current_mss(sk); 2033 2034 /* Update current search range */ 2035 icsk->icsk_mtup.probe_size = 0; 2036 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2037 sizeof(struct tcphdr) + 2038 icsk->icsk_af_ops->net_header_len; 2039 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2040 2041 /* Update probe time stamp */ 2042 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2043 } 2044 } 2045 2046 /* Create a new MTU probe if we are ready. 2047 * MTU probe is regularly attempting to increase the path MTU by 2048 * deliberately sending larger packets. This discovers routing 2049 * changes resulting in larger path MTUs. 2050 * 2051 * Returns 0 if we should wait to probe (no cwnd available), 2052 * 1 if a probe was sent, 2053 * -1 otherwise 2054 */ 2055 static int tcp_mtu_probe(struct sock *sk) 2056 { 2057 struct inet_connection_sock *icsk = inet_csk(sk); 2058 struct tcp_sock *tp = tcp_sk(sk); 2059 struct sk_buff *skb, *nskb, *next; 2060 struct net *net = sock_net(sk); 2061 int probe_size; 2062 int size_needed; 2063 int copy, len; 2064 int mss_now; 2065 int interval; 2066 2067 /* Not currently probing/verifying, 2068 * not in recovery, 2069 * have enough cwnd, and 2070 * not SACKing (the variable headers throw things off) 2071 */ 2072 if (likely(!icsk->icsk_mtup.enabled || 2073 icsk->icsk_mtup.probe_size || 2074 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2075 tp->snd_cwnd < 11 || 2076 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2077 return -1; 2078 2079 /* Use binary search for probe_size between tcp_mss_base, 2080 * and current mss_clamp. if (search_high - search_low) 2081 * smaller than a threshold, backoff from probing. 2082 */ 2083 mss_now = tcp_current_mss(sk); 2084 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2085 icsk->icsk_mtup.search_low) >> 1); 2086 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2087 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2088 /* When misfortune happens, we are reprobing actively, 2089 * and then reprobe timer has expired. We stick with current 2090 * probing process by not resetting search range to its orignal. 2091 */ 2092 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2093 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2094 /* Check whether enough time has elaplased for 2095 * another round of probing. 2096 */ 2097 tcp_mtu_check_reprobe(sk); 2098 return -1; 2099 } 2100 2101 /* Have enough data in the send queue to probe? */ 2102 if (tp->write_seq - tp->snd_nxt < size_needed) 2103 return -1; 2104 2105 if (tp->snd_wnd < size_needed) 2106 return -1; 2107 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2108 return 0; 2109 2110 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2111 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2112 if (!tcp_packets_in_flight(tp)) 2113 return -1; 2114 else 2115 return 0; 2116 } 2117 2118 /* We're allowed to probe. Build it now. */ 2119 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2120 if (!nskb) 2121 return -1; 2122 sk->sk_wmem_queued += nskb->truesize; 2123 sk_mem_charge(sk, nskb->truesize); 2124 2125 skb = tcp_send_head(sk); 2126 2127 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2128 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2129 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2130 TCP_SKB_CB(nskb)->sacked = 0; 2131 nskb->csum = 0; 2132 nskb->ip_summed = skb->ip_summed; 2133 2134 tcp_insert_write_queue_before(nskb, skb, sk); 2135 2136 len = 0; 2137 tcp_for_write_queue_from_safe(skb, next, sk) { 2138 copy = min_t(int, skb->len, probe_size - len); 2139 if (nskb->ip_summed) { 2140 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2141 } else { 2142 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2143 skb_put(nskb, copy), 2144 copy, 0); 2145 nskb->csum = csum_block_add(nskb->csum, csum, len); 2146 } 2147 2148 if (skb->len <= copy) { 2149 /* We've eaten all the data from this skb. 2150 * Throw it away. */ 2151 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2152 tcp_unlink_write_queue(skb, sk); 2153 sk_wmem_free_skb(sk, skb); 2154 } else { 2155 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2156 ~(TCPHDR_FIN|TCPHDR_PSH); 2157 if (!skb_shinfo(skb)->nr_frags) { 2158 skb_pull(skb, copy); 2159 if (skb->ip_summed != CHECKSUM_PARTIAL) 2160 skb->csum = csum_partial(skb->data, 2161 skb->len, 0); 2162 } else { 2163 __pskb_trim_head(skb, copy); 2164 tcp_set_skb_tso_segs(skb, mss_now); 2165 } 2166 TCP_SKB_CB(skb)->seq += copy; 2167 } 2168 2169 len += copy; 2170 2171 if (len >= probe_size) 2172 break; 2173 } 2174 tcp_init_tso_segs(nskb, nskb->len); 2175 2176 /* We're ready to send. If this fails, the probe will 2177 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2178 */ 2179 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2180 /* Decrement cwnd here because we are sending 2181 * effectively two packets. */ 2182 tp->snd_cwnd--; 2183 tcp_event_new_data_sent(sk, nskb); 2184 2185 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2186 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2187 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2188 2189 return 1; 2190 } 2191 2192 return -1; 2193 } 2194 2195 static bool tcp_pacing_check(const struct sock *sk) 2196 { 2197 return tcp_needs_internal_pacing(sk) && 2198 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2199 } 2200 2201 /* TCP Small Queues : 2202 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2203 * (These limits are doubled for retransmits) 2204 * This allows for : 2205 * - better RTT estimation and ACK scheduling 2206 * - faster recovery 2207 * - high rates 2208 * Alas, some drivers / subsystems require a fair amount 2209 * of queued bytes to ensure line rate. 2210 * One example is wifi aggregation (802.11 AMPDU) 2211 */ 2212 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2213 unsigned int factor) 2214 { 2215 unsigned int limit; 2216 2217 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2218 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2219 limit <<= factor; 2220 2221 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2222 /* Always send skb if rtx queue is empty. 2223 * No need to wait for TX completion to call us back, 2224 * after softirq/tasklet schedule. 2225 * This helps when TX completions are delayed too much. 2226 */ 2227 if (tcp_rtx_queue_empty(sk)) 2228 return false; 2229 2230 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2231 /* It is possible TX completion already happened 2232 * before we set TSQ_THROTTLED, so we must 2233 * test again the condition. 2234 */ 2235 smp_mb__after_atomic(); 2236 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2237 return true; 2238 } 2239 return false; 2240 } 2241 2242 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2243 { 2244 const u32 now = tcp_jiffies32; 2245 enum tcp_chrono old = tp->chrono_type; 2246 2247 if (old > TCP_CHRONO_UNSPEC) 2248 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2249 tp->chrono_start = now; 2250 tp->chrono_type = new; 2251 } 2252 2253 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2254 { 2255 struct tcp_sock *tp = tcp_sk(sk); 2256 2257 /* If there are multiple conditions worthy of tracking in a 2258 * chronograph then the highest priority enum takes precedence 2259 * over the other conditions. So that if something "more interesting" 2260 * starts happening, stop the previous chrono and start a new one. 2261 */ 2262 if (type > tp->chrono_type) 2263 tcp_chrono_set(tp, type); 2264 } 2265 2266 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2267 { 2268 struct tcp_sock *tp = tcp_sk(sk); 2269 2270 2271 /* There are multiple conditions worthy of tracking in a 2272 * chronograph, so that the highest priority enum takes 2273 * precedence over the other conditions (see tcp_chrono_start). 2274 * If a condition stops, we only stop chrono tracking if 2275 * it's the "most interesting" or current chrono we are 2276 * tracking and starts busy chrono if we have pending data. 2277 */ 2278 if (tcp_rtx_and_write_queues_empty(sk)) 2279 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2280 else if (type == tp->chrono_type) 2281 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2282 } 2283 2284 /* This routine writes packets to the network. It advances the 2285 * send_head. This happens as incoming acks open up the remote 2286 * window for us. 2287 * 2288 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2289 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2290 * account rare use of URG, this is not a big flaw. 2291 * 2292 * Send at most one packet when push_one > 0. Temporarily ignore 2293 * cwnd limit to force at most one packet out when push_one == 2. 2294 2295 * Returns true, if no segments are in flight and we have queued segments, 2296 * but cannot send anything now because of SWS or another problem. 2297 */ 2298 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2299 int push_one, gfp_t gfp) 2300 { 2301 struct tcp_sock *tp = tcp_sk(sk); 2302 struct sk_buff *skb; 2303 unsigned int tso_segs, sent_pkts; 2304 int cwnd_quota; 2305 int result; 2306 bool is_cwnd_limited = false, is_rwnd_limited = false; 2307 u32 max_segs; 2308 2309 sent_pkts = 0; 2310 2311 if (!push_one) { 2312 /* Do MTU probing. */ 2313 result = tcp_mtu_probe(sk); 2314 if (!result) { 2315 return false; 2316 } else if (result > 0) { 2317 sent_pkts = 1; 2318 } 2319 } 2320 2321 max_segs = tcp_tso_segs(sk, mss_now); 2322 tcp_mstamp_refresh(tp); 2323 while ((skb = tcp_send_head(sk))) { 2324 unsigned int limit; 2325 2326 if (tcp_pacing_check(sk)) 2327 break; 2328 2329 tso_segs = tcp_init_tso_segs(skb, mss_now); 2330 BUG_ON(!tso_segs); 2331 2332 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2333 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2334 tcp_update_skb_after_send(tp, skb); 2335 goto repair; /* Skip network transmission */ 2336 } 2337 2338 cwnd_quota = tcp_cwnd_test(tp, skb); 2339 if (!cwnd_quota) { 2340 if (push_one == 2) 2341 /* Force out a loss probe pkt. */ 2342 cwnd_quota = 1; 2343 else 2344 break; 2345 } 2346 2347 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2348 is_rwnd_limited = true; 2349 break; 2350 } 2351 2352 if (tso_segs == 1) { 2353 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2354 (tcp_skb_is_last(sk, skb) ? 2355 nonagle : TCP_NAGLE_PUSH)))) 2356 break; 2357 } else { 2358 if (!push_one && 2359 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2360 max_segs)) 2361 break; 2362 } 2363 2364 limit = mss_now; 2365 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2366 limit = tcp_mss_split_point(sk, skb, mss_now, 2367 min_t(unsigned int, 2368 cwnd_quota, 2369 max_segs), 2370 nonagle); 2371 2372 if (skb->len > limit && 2373 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2374 skb, limit, mss_now, gfp))) 2375 break; 2376 2377 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2378 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2379 if (tcp_small_queue_check(sk, skb, 0)) 2380 break; 2381 2382 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2383 break; 2384 2385 repair: 2386 /* Advance the send_head. This one is sent out. 2387 * This call will increment packets_out. 2388 */ 2389 tcp_event_new_data_sent(sk, skb); 2390 2391 tcp_minshall_update(tp, mss_now, skb); 2392 sent_pkts += tcp_skb_pcount(skb); 2393 2394 if (push_one) 2395 break; 2396 } 2397 2398 if (is_rwnd_limited) 2399 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2400 else 2401 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2402 2403 if (likely(sent_pkts)) { 2404 if (tcp_in_cwnd_reduction(sk)) 2405 tp->prr_out += sent_pkts; 2406 2407 /* Send one loss probe per tail loss episode. */ 2408 if (push_one != 2) 2409 tcp_schedule_loss_probe(sk); 2410 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2411 tcp_cwnd_validate(sk, is_cwnd_limited); 2412 return false; 2413 } 2414 return !tp->packets_out && !tcp_write_queue_empty(sk); 2415 } 2416 2417 bool tcp_schedule_loss_probe(struct sock *sk) 2418 { 2419 struct inet_connection_sock *icsk = inet_csk(sk); 2420 struct tcp_sock *tp = tcp_sk(sk); 2421 u32 timeout, rto_delta_us; 2422 int early_retrans; 2423 2424 /* Don't do any loss probe on a Fast Open connection before 3WHS 2425 * finishes. 2426 */ 2427 if (tp->fastopen_rsk) 2428 return false; 2429 2430 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2431 /* Schedule a loss probe in 2*RTT for SACK capable connections 2432 * in Open state, that are either limited by cwnd or application. 2433 */ 2434 if ((early_retrans != 3 && early_retrans != 4) || 2435 !tp->packets_out || !tcp_is_sack(tp) || 2436 icsk->icsk_ca_state != TCP_CA_Open) 2437 return false; 2438 2439 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2440 !tcp_write_queue_empty(sk)) 2441 return false; 2442 2443 /* Probe timeout is 2*rtt. Add minimum RTO to account 2444 * for delayed ack when there's one outstanding packet. If no RTT 2445 * sample is available then probe after TCP_TIMEOUT_INIT. 2446 */ 2447 if (tp->srtt_us) { 2448 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2449 if (tp->packets_out == 1) 2450 timeout += TCP_RTO_MIN; 2451 else 2452 timeout += TCP_TIMEOUT_MIN; 2453 } else { 2454 timeout = TCP_TIMEOUT_INIT; 2455 } 2456 2457 /* If the RTO formula yields an earlier time, then use that time. */ 2458 rto_delta_us = tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2459 if (rto_delta_us > 0) 2460 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2461 2462 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2463 TCP_RTO_MAX); 2464 return true; 2465 } 2466 2467 /* Thanks to skb fast clones, we can detect if a prior transmit of 2468 * a packet is still in a qdisc or driver queue. 2469 * In this case, there is very little point doing a retransmit ! 2470 */ 2471 static bool skb_still_in_host_queue(const struct sock *sk, 2472 const struct sk_buff *skb) 2473 { 2474 if (unlikely(skb_fclone_busy(sk, skb))) { 2475 NET_INC_STATS(sock_net(sk), 2476 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2477 return true; 2478 } 2479 return false; 2480 } 2481 2482 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2483 * retransmit the last segment. 2484 */ 2485 void tcp_send_loss_probe(struct sock *sk) 2486 { 2487 struct tcp_sock *tp = tcp_sk(sk); 2488 struct sk_buff *skb; 2489 int pcount; 2490 int mss = tcp_current_mss(sk); 2491 2492 skb = tcp_send_head(sk); 2493 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2494 pcount = tp->packets_out; 2495 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2496 if (tp->packets_out > pcount) 2497 goto probe_sent; 2498 goto rearm_timer; 2499 } 2500 skb = skb_rb_last(&sk->tcp_rtx_queue); 2501 2502 /* At most one outstanding TLP retransmission. */ 2503 if (tp->tlp_high_seq) 2504 goto rearm_timer; 2505 2506 /* Retransmit last segment. */ 2507 if (WARN_ON(!skb)) 2508 goto rearm_timer; 2509 2510 if (skb_still_in_host_queue(sk, skb)) 2511 goto rearm_timer; 2512 2513 pcount = tcp_skb_pcount(skb); 2514 if (WARN_ON(!pcount)) 2515 goto rearm_timer; 2516 2517 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2518 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2519 (pcount - 1) * mss, mss, 2520 GFP_ATOMIC))) 2521 goto rearm_timer; 2522 skb = skb_rb_next(skb); 2523 } 2524 2525 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2526 goto rearm_timer; 2527 2528 if (__tcp_retransmit_skb(sk, skb, 1)) 2529 goto rearm_timer; 2530 2531 /* Record snd_nxt for loss detection. */ 2532 tp->tlp_high_seq = tp->snd_nxt; 2533 2534 probe_sent: 2535 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2536 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2537 inet_csk(sk)->icsk_pending = 0; 2538 rearm_timer: 2539 tcp_rearm_rto(sk); 2540 } 2541 2542 /* Push out any pending frames which were held back due to 2543 * TCP_CORK or attempt at coalescing tiny packets. 2544 * The socket must be locked by the caller. 2545 */ 2546 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2547 int nonagle) 2548 { 2549 /* If we are closed, the bytes will have to remain here. 2550 * In time closedown will finish, we empty the write queue and 2551 * all will be happy. 2552 */ 2553 if (unlikely(sk->sk_state == TCP_CLOSE)) 2554 return; 2555 2556 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2557 sk_gfp_mask(sk, GFP_ATOMIC))) 2558 tcp_check_probe_timer(sk); 2559 } 2560 2561 /* Send _single_ skb sitting at the send head. This function requires 2562 * true push pending frames to setup probe timer etc. 2563 */ 2564 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2565 { 2566 struct sk_buff *skb = tcp_send_head(sk); 2567 2568 BUG_ON(!skb || skb->len < mss_now); 2569 2570 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2571 } 2572 2573 /* This function returns the amount that we can raise the 2574 * usable window based on the following constraints 2575 * 2576 * 1. The window can never be shrunk once it is offered (RFC 793) 2577 * 2. We limit memory per socket 2578 * 2579 * RFC 1122: 2580 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2581 * RECV.NEXT + RCV.WIN fixed until: 2582 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2583 * 2584 * i.e. don't raise the right edge of the window until you can raise 2585 * it at least MSS bytes. 2586 * 2587 * Unfortunately, the recommended algorithm breaks header prediction, 2588 * since header prediction assumes th->window stays fixed. 2589 * 2590 * Strictly speaking, keeping th->window fixed violates the receiver 2591 * side SWS prevention criteria. The problem is that under this rule 2592 * a stream of single byte packets will cause the right side of the 2593 * window to always advance by a single byte. 2594 * 2595 * Of course, if the sender implements sender side SWS prevention 2596 * then this will not be a problem. 2597 * 2598 * BSD seems to make the following compromise: 2599 * 2600 * If the free space is less than the 1/4 of the maximum 2601 * space available and the free space is less than 1/2 mss, 2602 * then set the window to 0. 2603 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2604 * Otherwise, just prevent the window from shrinking 2605 * and from being larger than the largest representable value. 2606 * 2607 * This prevents incremental opening of the window in the regime 2608 * where TCP is limited by the speed of the reader side taking 2609 * data out of the TCP receive queue. It does nothing about 2610 * those cases where the window is constrained on the sender side 2611 * because the pipeline is full. 2612 * 2613 * BSD also seems to "accidentally" limit itself to windows that are a 2614 * multiple of MSS, at least until the free space gets quite small. 2615 * This would appear to be a side effect of the mbuf implementation. 2616 * Combining these two algorithms results in the observed behavior 2617 * of having a fixed window size at almost all times. 2618 * 2619 * Below we obtain similar behavior by forcing the offered window to 2620 * a multiple of the mss when it is feasible to do so. 2621 * 2622 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2623 * Regular options like TIMESTAMP are taken into account. 2624 */ 2625 u32 __tcp_select_window(struct sock *sk) 2626 { 2627 struct inet_connection_sock *icsk = inet_csk(sk); 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 /* MSS for the peer's data. Previous versions used mss_clamp 2630 * here. I don't know if the value based on our guesses 2631 * of peer's MSS is better for the performance. It's more correct 2632 * but may be worse for the performance because of rcv_mss 2633 * fluctuations. --SAW 1998/11/1 2634 */ 2635 int mss = icsk->icsk_ack.rcv_mss; 2636 int free_space = tcp_space(sk); 2637 int allowed_space = tcp_full_space(sk); 2638 int full_space = min_t(int, tp->window_clamp, allowed_space); 2639 int window; 2640 2641 if (unlikely(mss > full_space)) { 2642 mss = full_space; 2643 if (mss <= 0) 2644 return 0; 2645 } 2646 if (free_space < (full_space >> 1)) { 2647 icsk->icsk_ack.quick = 0; 2648 2649 if (tcp_under_memory_pressure(sk)) 2650 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2651 4U * tp->advmss); 2652 2653 /* free_space might become our new window, make sure we don't 2654 * increase it due to wscale. 2655 */ 2656 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2657 2658 /* if free space is less than mss estimate, or is below 1/16th 2659 * of the maximum allowed, try to move to zero-window, else 2660 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2661 * new incoming data is dropped due to memory limits. 2662 * With large window, mss test triggers way too late in order 2663 * to announce zero window in time before rmem limit kicks in. 2664 */ 2665 if (free_space < (allowed_space >> 4) || free_space < mss) 2666 return 0; 2667 } 2668 2669 if (free_space > tp->rcv_ssthresh) 2670 free_space = tp->rcv_ssthresh; 2671 2672 /* Don't do rounding if we are using window scaling, since the 2673 * scaled window will not line up with the MSS boundary anyway. 2674 */ 2675 if (tp->rx_opt.rcv_wscale) { 2676 window = free_space; 2677 2678 /* Advertise enough space so that it won't get scaled away. 2679 * Import case: prevent zero window announcement if 2680 * 1<<rcv_wscale > mss. 2681 */ 2682 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2683 } else { 2684 window = tp->rcv_wnd; 2685 /* Get the largest window that is a nice multiple of mss. 2686 * Window clamp already applied above. 2687 * If our current window offering is within 1 mss of the 2688 * free space we just keep it. This prevents the divide 2689 * and multiply from happening most of the time. 2690 * We also don't do any window rounding when the free space 2691 * is too small. 2692 */ 2693 if (window <= free_space - mss || window > free_space) 2694 window = rounddown(free_space, mss); 2695 else if (mss == full_space && 2696 free_space > window + (full_space >> 1)) 2697 window = free_space; 2698 } 2699 2700 return window; 2701 } 2702 2703 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2704 const struct sk_buff *next_skb) 2705 { 2706 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2707 const struct skb_shared_info *next_shinfo = 2708 skb_shinfo(next_skb); 2709 struct skb_shared_info *shinfo = skb_shinfo(skb); 2710 2711 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2712 shinfo->tskey = next_shinfo->tskey; 2713 TCP_SKB_CB(skb)->txstamp_ack |= 2714 TCP_SKB_CB(next_skb)->txstamp_ack; 2715 } 2716 } 2717 2718 /* Collapses two adjacent SKB's during retransmission. */ 2719 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2720 { 2721 struct tcp_sock *tp = tcp_sk(sk); 2722 struct sk_buff *next_skb = skb_rb_next(skb); 2723 int skb_size, next_skb_size; 2724 2725 skb_size = skb->len; 2726 next_skb_size = next_skb->len; 2727 2728 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2729 2730 if (next_skb_size) { 2731 if (next_skb_size <= skb_availroom(skb)) 2732 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2733 next_skb_size); 2734 else if (!skb_shift(skb, next_skb, next_skb_size)) 2735 return false; 2736 } 2737 tcp_highest_sack_combine(sk, next_skb, skb); 2738 2739 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2740 skb->ip_summed = CHECKSUM_PARTIAL; 2741 2742 if (skb->ip_summed != CHECKSUM_PARTIAL) 2743 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2744 2745 /* Update sequence range on original skb. */ 2746 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2747 2748 /* Merge over control information. This moves PSH/FIN etc. over */ 2749 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2750 2751 /* All done, get rid of second SKB and account for it so 2752 * packet counting does not break. 2753 */ 2754 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2755 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2756 2757 /* changed transmit queue under us so clear hints */ 2758 tcp_clear_retrans_hints_partial(tp); 2759 if (next_skb == tp->retransmit_skb_hint) 2760 tp->retransmit_skb_hint = skb; 2761 2762 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2763 2764 tcp_skb_collapse_tstamp(skb, next_skb); 2765 2766 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2767 return true; 2768 } 2769 2770 /* Check if coalescing SKBs is legal. */ 2771 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2772 { 2773 if (tcp_skb_pcount(skb) > 1) 2774 return false; 2775 if (skb_cloned(skb)) 2776 return false; 2777 /* Some heuristics for collapsing over SACK'd could be invented */ 2778 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2779 return false; 2780 2781 return true; 2782 } 2783 2784 /* Collapse packets in the retransmit queue to make to create 2785 * less packets on the wire. This is only done on retransmission. 2786 */ 2787 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2788 int space) 2789 { 2790 struct tcp_sock *tp = tcp_sk(sk); 2791 struct sk_buff *skb = to, *tmp; 2792 bool first = true; 2793 2794 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2795 return; 2796 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2797 return; 2798 2799 skb_rbtree_walk_from_safe(skb, tmp) { 2800 if (!tcp_can_collapse(sk, skb)) 2801 break; 2802 2803 if (!tcp_skb_can_collapse_to(to)) 2804 break; 2805 2806 space -= skb->len; 2807 2808 if (first) { 2809 first = false; 2810 continue; 2811 } 2812 2813 if (space < 0) 2814 break; 2815 2816 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2817 break; 2818 2819 if (!tcp_collapse_retrans(sk, to)) 2820 break; 2821 } 2822 } 2823 2824 /* This retransmits one SKB. Policy decisions and retransmit queue 2825 * state updates are done by the caller. Returns non-zero if an 2826 * error occurred which prevented the send. 2827 */ 2828 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2829 { 2830 struct inet_connection_sock *icsk = inet_csk(sk); 2831 struct tcp_sock *tp = tcp_sk(sk); 2832 unsigned int cur_mss; 2833 int diff, len, err; 2834 2835 2836 /* Inconclusive MTU probe */ 2837 if (icsk->icsk_mtup.probe_size) 2838 icsk->icsk_mtup.probe_size = 0; 2839 2840 /* Do not sent more than we queued. 1/4 is reserved for possible 2841 * copying overhead: fragmentation, tunneling, mangling etc. 2842 */ 2843 if (refcount_read(&sk->sk_wmem_alloc) > 2844 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2845 sk->sk_sndbuf)) 2846 return -EAGAIN; 2847 2848 if (skb_still_in_host_queue(sk, skb)) 2849 return -EBUSY; 2850 2851 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2852 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2853 BUG(); 2854 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2855 return -ENOMEM; 2856 } 2857 2858 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2859 return -EHOSTUNREACH; /* Routing failure or similar. */ 2860 2861 cur_mss = tcp_current_mss(sk); 2862 2863 /* If receiver has shrunk his window, and skb is out of 2864 * new window, do not retransmit it. The exception is the 2865 * case, when window is shrunk to zero. In this case 2866 * our retransmit serves as a zero window probe. 2867 */ 2868 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2869 TCP_SKB_CB(skb)->seq != tp->snd_una) 2870 return -EAGAIN; 2871 2872 len = cur_mss * segs; 2873 if (skb->len > len) { 2874 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2875 cur_mss, GFP_ATOMIC)) 2876 return -ENOMEM; /* We'll try again later. */ 2877 } else { 2878 if (skb_unclone(skb, GFP_ATOMIC)) 2879 return -ENOMEM; 2880 2881 diff = tcp_skb_pcount(skb); 2882 tcp_set_skb_tso_segs(skb, cur_mss); 2883 diff -= tcp_skb_pcount(skb); 2884 if (diff) 2885 tcp_adjust_pcount(sk, skb, diff); 2886 if (skb->len < cur_mss) 2887 tcp_retrans_try_collapse(sk, skb, cur_mss); 2888 } 2889 2890 /* RFC3168, section 6.1.1.1. ECN fallback */ 2891 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2892 tcp_ecn_clear_syn(sk, skb); 2893 2894 /* Update global and local TCP statistics. */ 2895 segs = tcp_skb_pcount(skb); 2896 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2897 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2898 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2899 tp->total_retrans += segs; 2900 2901 /* make sure skb->data is aligned on arches that require it 2902 * and check if ack-trimming & collapsing extended the headroom 2903 * beyond what csum_start can cover. 2904 */ 2905 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2906 skb_headroom(skb) >= 0xFFFF)) { 2907 struct sk_buff *nskb; 2908 2909 tcp_skb_tsorted_save(skb) { 2910 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2911 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2912 -ENOBUFS; 2913 } tcp_skb_tsorted_restore(skb); 2914 2915 if (!err) 2916 tcp_update_skb_after_send(tp, skb); 2917 } else { 2918 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2919 } 2920 2921 if (likely(!err)) { 2922 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2923 trace_tcp_retransmit_skb(sk, skb); 2924 } else if (err != -EBUSY) { 2925 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2926 } 2927 return err; 2928 } 2929 2930 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2931 { 2932 struct tcp_sock *tp = tcp_sk(sk); 2933 int err = __tcp_retransmit_skb(sk, skb, segs); 2934 2935 if (err == 0) { 2936 #if FASTRETRANS_DEBUG > 0 2937 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2938 net_dbg_ratelimited("retrans_out leaked\n"); 2939 } 2940 #endif 2941 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2942 tp->retrans_out += tcp_skb_pcount(skb); 2943 2944 /* Save stamp of the first retransmit. */ 2945 if (!tp->retrans_stamp) 2946 tp->retrans_stamp = tcp_skb_timestamp(skb); 2947 2948 } 2949 2950 if (tp->undo_retrans < 0) 2951 tp->undo_retrans = 0; 2952 tp->undo_retrans += tcp_skb_pcount(skb); 2953 return err; 2954 } 2955 2956 /* This gets called after a retransmit timeout, and the initially 2957 * retransmitted data is acknowledged. It tries to continue 2958 * resending the rest of the retransmit queue, until either 2959 * we've sent it all or the congestion window limit is reached. 2960 * If doing SACK, the first ACK which comes back for a timeout 2961 * based retransmit packet might feed us FACK information again. 2962 * If so, we use it to avoid unnecessarily retransmissions. 2963 */ 2964 void tcp_xmit_retransmit_queue(struct sock *sk) 2965 { 2966 const struct inet_connection_sock *icsk = inet_csk(sk); 2967 struct sk_buff *skb, *rtx_head, *hole = NULL; 2968 struct tcp_sock *tp = tcp_sk(sk); 2969 u32 max_segs; 2970 int mib_idx; 2971 2972 if (!tp->packets_out) 2973 return; 2974 2975 rtx_head = tcp_rtx_queue_head(sk); 2976 skb = tp->retransmit_skb_hint ?: rtx_head; 2977 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2978 skb_rbtree_walk_from(skb) { 2979 __u8 sacked; 2980 int segs; 2981 2982 if (tcp_pacing_check(sk)) 2983 break; 2984 2985 /* we could do better than to assign each time */ 2986 if (!hole) 2987 tp->retransmit_skb_hint = skb; 2988 2989 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2990 if (segs <= 0) 2991 return; 2992 sacked = TCP_SKB_CB(skb)->sacked; 2993 /* In case tcp_shift_skb_data() have aggregated large skbs, 2994 * we need to make sure not sending too bigs TSO packets 2995 */ 2996 segs = min_t(int, segs, max_segs); 2997 2998 if (tp->retrans_out >= tp->lost_out) { 2999 break; 3000 } else if (!(sacked & TCPCB_LOST)) { 3001 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3002 hole = skb; 3003 continue; 3004 3005 } else { 3006 if (icsk->icsk_ca_state != TCP_CA_Loss) 3007 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3008 else 3009 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3010 } 3011 3012 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3013 continue; 3014 3015 if (tcp_small_queue_check(sk, skb, 1)) 3016 return; 3017 3018 if (tcp_retransmit_skb(sk, skb, segs)) 3019 return; 3020 3021 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3022 3023 if (tcp_in_cwnd_reduction(sk)) 3024 tp->prr_out += tcp_skb_pcount(skb); 3025 3026 if (skb == rtx_head && 3027 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3028 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3029 inet_csk(sk)->icsk_rto, 3030 TCP_RTO_MAX); 3031 } 3032 } 3033 3034 /* We allow to exceed memory limits for FIN packets to expedite 3035 * connection tear down and (memory) recovery. 3036 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3037 * or even be forced to close flow without any FIN. 3038 * In general, we want to allow one skb per socket to avoid hangs 3039 * with edge trigger epoll() 3040 */ 3041 void sk_forced_mem_schedule(struct sock *sk, int size) 3042 { 3043 int amt; 3044 3045 if (size <= sk->sk_forward_alloc) 3046 return; 3047 amt = sk_mem_pages(size); 3048 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3049 sk_memory_allocated_add(sk, amt); 3050 3051 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3052 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3053 } 3054 3055 /* Send a FIN. The caller locks the socket for us. 3056 * We should try to send a FIN packet really hard, but eventually give up. 3057 */ 3058 void tcp_send_fin(struct sock *sk) 3059 { 3060 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3061 struct tcp_sock *tp = tcp_sk(sk); 3062 3063 /* Optimization, tack on the FIN if we have one skb in write queue and 3064 * this skb was not yet sent, or we are under memory pressure. 3065 * Note: in the latter case, FIN packet will be sent after a timeout, 3066 * as TCP stack thinks it has already been transmitted. 3067 */ 3068 if (!tskb && tcp_under_memory_pressure(sk)) 3069 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3070 3071 if (tskb) { 3072 coalesce: 3073 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3074 TCP_SKB_CB(tskb)->end_seq++; 3075 tp->write_seq++; 3076 if (tcp_write_queue_empty(sk)) { 3077 /* This means tskb was already sent. 3078 * Pretend we included the FIN on previous transmit. 3079 * We need to set tp->snd_nxt to the value it would have 3080 * if FIN had been sent. This is because retransmit path 3081 * does not change tp->snd_nxt. 3082 */ 3083 tp->snd_nxt++; 3084 return; 3085 } 3086 } else { 3087 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3088 if (unlikely(!skb)) { 3089 if (tskb) 3090 goto coalesce; 3091 return; 3092 } 3093 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3094 skb_reserve(skb, MAX_TCP_HEADER); 3095 sk_forced_mem_schedule(sk, skb->truesize); 3096 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3097 tcp_init_nondata_skb(skb, tp->write_seq, 3098 TCPHDR_ACK | TCPHDR_FIN); 3099 tcp_queue_skb(sk, skb); 3100 } 3101 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3102 } 3103 3104 /* We get here when a process closes a file descriptor (either due to 3105 * an explicit close() or as a byproduct of exit()'ing) and there 3106 * was unread data in the receive queue. This behavior is recommended 3107 * by RFC 2525, section 2.17. -DaveM 3108 */ 3109 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3110 { 3111 struct sk_buff *skb; 3112 3113 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3114 3115 /* NOTE: No TCP options attached and we never retransmit this. */ 3116 skb = alloc_skb(MAX_TCP_HEADER, priority); 3117 if (!skb) { 3118 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3119 return; 3120 } 3121 3122 /* Reserve space for headers and prepare control bits. */ 3123 skb_reserve(skb, MAX_TCP_HEADER); 3124 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3125 TCPHDR_ACK | TCPHDR_RST); 3126 tcp_mstamp_refresh(tcp_sk(sk)); 3127 /* Send it off. */ 3128 if (tcp_transmit_skb(sk, skb, 0, priority)) 3129 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3130 3131 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3132 * skb here is different to the troublesome skb, so use NULL 3133 */ 3134 trace_tcp_send_reset(sk, NULL); 3135 } 3136 3137 /* Send a crossed SYN-ACK during socket establishment. 3138 * WARNING: This routine must only be called when we have already sent 3139 * a SYN packet that crossed the incoming SYN that caused this routine 3140 * to get called. If this assumption fails then the initial rcv_wnd 3141 * and rcv_wscale values will not be correct. 3142 */ 3143 int tcp_send_synack(struct sock *sk) 3144 { 3145 struct sk_buff *skb; 3146 3147 skb = tcp_rtx_queue_head(sk); 3148 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3149 pr_err("%s: wrong queue state\n", __func__); 3150 return -EFAULT; 3151 } 3152 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3153 if (skb_cloned(skb)) { 3154 struct sk_buff *nskb; 3155 3156 tcp_skb_tsorted_save(skb) { 3157 nskb = skb_copy(skb, GFP_ATOMIC); 3158 } tcp_skb_tsorted_restore(skb); 3159 if (!nskb) 3160 return -ENOMEM; 3161 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3162 tcp_rtx_queue_unlink_and_free(skb, sk); 3163 __skb_header_release(nskb); 3164 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3165 sk->sk_wmem_queued += nskb->truesize; 3166 sk_mem_charge(sk, nskb->truesize); 3167 skb = nskb; 3168 } 3169 3170 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3171 tcp_ecn_send_synack(sk, skb); 3172 } 3173 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3174 } 3175 3176 /** 3177 * tcp_make_synack - Prepare a SYN-ACK. 3178 * sk: listener socket 3179 * dst: dst entry attached to the SYNACK 3180 * req: request_sock pointer 3181 * 3182 * Allocate one skb and build a SYNACK packet. 3183 * @dst is consumed : Caller should not use it again. 3184 */ 3185 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3186 struct request_sock *req, 3187 struct tcp_fastopen_cookie *foc, 3188 enum tcp_synack_type synack_type) 3189 { 3190 struct inet_request_sock *ireq = inet_rsk(req); 3191 const struct tcp_sock *tp = tcp_sk(sk); 3192 struct tcp_md5sig_key *md5 = NULL; 3193 struct tcp_out_options opts; 3194 struct sk_buff *skb; 3195 int tcp_header_size; 3196 struct tcphdr *th; 3197 int mss; 3198 3199 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3200 if (unlikely(!skb)) { 3201 dst_release(dst); 3202 return NULL; 3203 } 3204 /* Reserve space for headers. */ 3205 skb_reserve(skb, MAX_TCP_HEADER); 3206 3207 switch (synack_type) { 3208 case TCP_SYNACK_NORMAL: 3209 skb_set_owner_w(skb, req_to_sk(req)); 3210 break; 3211 case TCP_SYNACK_COOKIE: 3212 /* Under synflood, we do not attach skb to a socket, 3213 * to avoid false sharing. 3214 */ 3215 break; 3216 case TCP_SYNACK_FASTOPEN: 3217 /* sk is a const pointer, because we want to express multiple 3218 * cpu might call us concurrently. 3219 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3220 */ 3221 skb_set_owner_w(skb, (struct sock *)sk); 3222 break; 3223 } 3224 skb_dst_set(skb, dst); 3225 3226 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3227 3228 memset(&opts, 0, sizeof(opts)); 3229 #ifdef CONFIG_SYN_COOKIES 3230 if (unlikely(req->cookie_ts)) 3231 skb->skb_mstamp = cookie_init_timestamp(req); 3232 else 3233 #endif 3234 skb->skb_mstamp = tcp_clock_us(); 3235 3236 #ifdef CONFIG_TCP_MD5SIG 3237 rcu_read_lock(); 3238 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3239 #endif 3240 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3241 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3242 foc) + sizeof(*th); 3243 3244 skb_push(skb, tcp_header_size); 3245 skb_reset_transport_header(skb); 3246 3247 th = (struct tcphdr *)skb->data; 3248 memset(th, 0, sizeof(struct tcphdr)); 3249 th->syn = 1; 3250 th->ack = 1; 3251 tcp_ecn_make_synack(req, th); 3252 th->source = htons(ireq->ir_num); 3253 th->dest = ireq->ir_rmt_port; 3254 skb->mark = ireq->ir_mark; 3255 /* Setting of flags are superfluous here for callers (and ECE is 3256 * not even correctly set) 3257 */ 3258 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3259 TCPHDR_SYN | TCPHDR_ACK); 3260 3261 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3262 /* XXX data is queued and acked as is. No buffer/window check */ 3263 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3264 3265 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3266 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3267 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3268 th->doff = (tcp_header_size >> 2); 3269 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3270 3271 #ifdef CONFIG_TCP_MD5SIG 3272 /* Okay, we have all we need - do the md5 hash if needed */ 3273 if (md5) 3274 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3275 md5, req_to_sk(req), skb); 3276 rcu_read_unlock(); 3277 #endif 3278 3279 /* Do not fool tcpdump (if any), clean our debris */ 3280 skb->tstamp = 0; 3281 return skb; 3282 } 3283 EXPORT_SYMBOL(tcp_make_synack); 3284 3285 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3286 { 3287 struct inet_connection_sock *icsk = inet_csk(sk); 3288 const struct tcp_congestion_ops *ca; 3289 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3290 3291 if (ca_key == TCP_CA_UNSPEC) 3292 return; 3293 3294 rcu_read_lock(); 3295 ca = tcp_ca_find_key(ca_key); 3296 if (likely(ca && try_module_get(ca->owner))) { 3297 module_put(icsk->icsk_ca_ops->owner); 3298 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3299 icsk->icsk_ca_ops = ca; 3300 } 3301 rcu_read_unlock(); 3302 } 3303 3304 /* Do all connect socket setups that can be done AF independent. */ 3305 static void tcp_connect_init(struct sock *sk) 3306 { 3307 const struct dst_entry *dst = __sk_dst_get(sk); 3308 struct tcp_sock *tp = tcp_sk(sk); 3309 __u8 rcv_wscale; 3310 u32 rcv_wnd; 3311 3312 /* We'll fix this up when we get a response from the other end. 3313 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3314 */ 3315 tp->tcp_header_len = sizeof(struct tcphdr); 3316 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3317 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3318 3319 #ifdef CONFIG_TCP_MD5SIG 3320 if (tp->af_specific->md5_lookup(sk, sk)) 3321 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3322 #endif 3323 3324 /* If user gave his TCP_MAXSEG, record it to clamp */ 3325 if (tp->rx_opt.user_mss) 3326 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3327 tp->max_window = 0; 3328 tcp_mtup_init(sk); 3329 tcp_sync_mss(sk, dst_mtu(dst)); 3330 3331 tcp_ca_dst_init(sk, dst); 3332 3333 if (!tp->window_clamp) 3334 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3335 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3336 3337 tcp_initialize_rcv_mss(sk); 3338 3339 /* limit the window selection if the user enforce a smaller rx buffer */ 3340 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3341 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3342 tp->window_clamp = tcp_full_space(sk); 3343 3344 rcv_wnd = tcp_rwnd_init_bpf(sk); 3345 if (rcv_wnd == 0) 3346 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3347 3348 tcp_select_initial_window(sk, tcp_full_space(sk), 3349 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3350 &tp->rcv_wnd, 3351 &tp->window_clamp, 3352 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3353 &rcv_wscale, 3354 rcv_wnd); 3355 3356 tp->rx_opt.rcv_wscale = rcv_wscale; 3357 tp->rcv_ssthresh = tp->rcv_wnd; 3358 3359 sk->sk_err = 0; 3360 sock_reset_flag(sk, SOCK_DONE); 3361 tp->snd_wnd = 0; 3362 tcp_init_wl(tp, 0); 3363 tp->snd_una = tp->write_seq; 3364 tp->snd_sml = tp->write_seq; 3365 tp->snd_up = tp->write_seq; 3366 tp->snd_nxt = tp->write_seq; 3367 3368 if (likely(!tp->repair)) 3369 tp->rcv_nxt = 0; 3370 else 3371 tp->rcv_tstamp = tcp_jiffies32; 3372 tp->rcv_wup = tp->rcv_nxt; 3373 tp->copied_seq = tp->rcv_nxt; 3374 3375 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3376 inet_csk(sk)->icsk_retransmits = 0; 3377 tcp_clear_retrans(tp); 3378 } 3379 3380 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3381 { 3382 struct tcp_sock *tp = tcp_sk(sk); 3383 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3384 3385 tcb->end_seq += skb->len; 3386 __skb_header_release(skb); 3387 sk->sk_wmem_queued += skb->truesize; 3388 sk_mem_charge(sk, skb->truesize); 3389 tp->write_seq = tcb->end_seq; 3390 tp->packets_out += tcp_skb_pcount(skb); 3391 } 3392 3393 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3394 * queue a data-only packet after the regular SYN, such that regular SYNs 3395 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3396 * only the SYN sequence, the data are retransmitted in the first ACK. 3397 * If cookie is not cached or other error occurs, falls back to send a 3398 * regular SYN with Fast Open cookie request option. 3399 */ 3400 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3401 { 3402 struct tcp_sock *tp = tcp_sk(sk); 3403 struct tcp_fastopen_request *fo = tp->fastopen_req; 3404 int space, err = 0; 3405 struct sk_buff *syn_data; 3406 3407 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3408 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3409 goto fallback; 3410 3411 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3412 * user-MSS. Reserve maximum option space for middleboxes that add 3413 * private TCP options. The cost is reduced data space in SYN :( 3414 */ 3415 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3416 3417 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3418 MAX_TCP_OPTION_SPACE; 3419 3420 space = min_t(size_t, space, fo->size); 3421 3422 /* limit to order-0 allocations */ 3423 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3424 3425 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3426 if (!syn_data) 3427 goto fallback; 3428 syn_data->ip_summed = CHECKSUM_PARTIAL; 3429 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3430 if (space) { 3431 int copied = copy_from_iter(skb_put(syn_data, space), space, 3432 &fo->data->msg_iter); 3433 if (unlikely(!copied)) { 3434 tcp_skb_tsorted_anchor_cleanup(syn_data); 3435 kfree_skb(syn_data); 3436 goto fallback; 3437 } 3438 if (copied != space) { 3439 skb_trim(syn_data, copied); 3440 space = copied; 3441 } 3442 } 3443 /* No more data pending in inet_wait_for_connect() */ 3444 if (space == fo->size) 3445 fo->data = NULL; 3446 fo->copied = space; 3447 3448 tcp_connect_queue_skb(sk, syn_data); 3449 if (syn_data->len) 3450 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3451 3452 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3453 3454 syn->skb_mstamp = syn_data->skb_mstamp; 3455 3456 /* Now full SYN+DATA was cloned and sent (or not), 3457 * remove the SYN from the original skb (syn_data) 3458 * we keep in write queue in case of a retransmit, as we 3459 * also have the SYN packet (with no data) in the same queue. 3460 */ 3461 TCP_SKB_CB(syn_data)->seq++; 3462 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3463 if (!err) { 3464 tp->syn_data = (fo->copied > 0); 3465 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3466 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3467 goto done; 3468 } 3469 3470 /* data was not sent, put it in write_queue */ 3471 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3472 tp->packets_out -= tcp_skb_pcount(syn_data); 3473 3474 fallback: 3475 /* Send a regular SYN with Fast Open cookie request option */ 3476 if (fo->cookie.len > 0) 3477 fo->cookie.len = 0; 3478 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3479 if (err) 3480 tp->syn_fastopen = 0; 3481 done: 3482 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3483 return err; 3484 } 3485 3486 /* Build a SYN and send it off. */ 3487 int tcp_connect(struct sock *sk) 3488 { 3489 struct tcp_sock *tp = tcp_sk(sk); 3490 struct sk_buff *buff; 3491 int err; 3492 3493 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB); 3494 3495 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3496 return -EHOSTUNREACH; /* Routing failure or similar. */ 3497 3498 tcp_connect_init(sk); 3499 3500 if (unlikely(tp->repair)) { 3501 tcp_finish_connect(sk, NULL); 3502 return 0; 3503 } 3504 3505 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3506 if (unlikely(!buff)) 3507 return -ENOBUFS; 3508 3509 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3510 tcp_mstamp_refresh(tp); 3511 tp->retrans_stamp = tcp_time_stamp(tp); 3512 tcp_connect_queue_skb(sk, buff); 3513 tcp_ecn_send_syn(sk, buff); 3514 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3515 3516 /* Send off SYN; include data in Fast Open. */ 3517 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3518 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3519 if (err == -ECONNREFUSED) 3520 return err; 3521 3522 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3523 * in order to make this packet get counted in tcpOutSegs. 3524 */ 3525 tp->snd_nxt = tp->write_seq; 3526 tp->pushed_seq = tp->write_seq; 3527 buff = tcp_send_head(sk); 3528 if (unlikely(buff)) { 3529 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3530 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3531 } 3532 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3533 3534 /* Timer for repeating the SYN until an answer. */ 3535 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3536 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3537 return 0; 3538 } 3539 EXPORT_SYMBOL(tcp_connect); 3540 3541 /* Send out a delayed ack, the caller does the policy checking 3542 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3543 * for details. 3544 */ 3545 void tcp_send_delayed_ack(struct sock *sk) 3546 { 3547 struct inet_connection_sock *icsk = inet_csk(sk); 3548 int ato = icsk->icsk_ack.ato; 3549 unsigned long timeout; 3550 3551 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3552 3553 if (ato > TCP_DELACK_MIN) { 3554 const struct tcp_sock *tp = tcp_sk(sk); 3555 int max_ato = HZ / 2; 3556 3557 if (icsk->icsk_ack.pingpong || 3558 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3559 max_ato = TCP_DELACK_MAX; 3560 3561 /* Slow path, intersegment interval is "high". */ 3562 3563 /* If some rtt estimate is known, use it to bound delayed ack. 3564 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3565 * directly. 3566 */ 3567 if (tp->srtt_us) { 3568 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3569 TCP_DELACK_MIN); 3570 3571 if (rtt < max_ato) 3572 max_ato = rtt; 3573 } 3574 3575 ato = min(ato, max_ato); 3576 } 3577 3578 /* Stay within the limit we were given */ 3579 timeout = jiffies + ato; 3580 3581 /* Use new timeout only if there wasn't a older one earlier. */ 3582 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3583 /* If delack timer was blocked or is about to expire, 3584 * send ACK now. 3585 */ 3586 if (icsk->icsk_ack.blocked || 3587 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3588 tcp_send_ack(sk); 3589 return; 3590 } 3591 3592 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3593 timeout = icsk->icsk_ack.timeout; 3594 } 3595 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3596 icsk->icsk_ack.timeout = timeout; 3597 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3598 } 3599 3600 /* This routine sends an ack and also updates the window. */ 3601 void tcp_send_ack(struct sock *sk) 3602 { 3603 struct sk_buff *buff; 3604 3605 /* If we have been reset, we may not send again. */ 3606 if (sk->sk_state == TCP_CLOSE) 3607 return; 3608 3609 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3610 3611 /* We are not putting this on the write queue, so 3612 * tcp_transmit_skb() will set the ownership to this 3613 * sock. 3614 */ 3615 buff = alloc_skb(MAX_TCP_HEADER, 3616 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3617 if (unlikely(!buff)) { 3618 inet_csk_schedule_ack(sk); 3619 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3620 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3621 TCP_DELACK_MAX, TCP_RTO_MAX); 3622 return; 3623 } 3624 3625 /* Reserve space for headers and prepare control bits. */ 3626 skb_reserve(buff, MAX_TCP_HEADER); 3627 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3628 3629 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3630 * too much. 3631 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3632 */ 3633 skb_set_tcp_pure_ack(buff); 3634 3635 /* Send it off, this clears delayed acks for us. */ 3636 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3637 } 3638 EXPORT_SYMBOL_GPL(tcp_send_ack); 3639 3640 /* This routine sends a packet with an out of date sequence 3641 * number. It assumes the other end will try to ack it. 3642 * 3643 * Question: what should we make while urgent mode? 3644 * 4.4BSD forces sending single byte of data. We cannot send 3645 * out of window data, because we have SND.NXT==SND.MAX... 3646 * 3647 * Current solution: to send TWO zero-length segments in urgent mode: 3648 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3649 * out-of-date with SND.UNA-1 to probe window. 3650 */ 3651 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3652 { 3653 struct tcp_sock *tp = tcp_sk(sk); 3654 struct sk_buff *skb; 3655 3656 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3657 skb = alloc_skb(MAX_TCP_HEADER, 3658 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3659 if (!skb) 3660 return -1; 3661 3662 /* Reserve space for headers and set control bits. */ 3663 skb_reserve(skb, MAX_TCP_HEADER); 3664 /* Use a previous sequence. This should cause the other 3665 * end to send an ack. Don't queue or clone SKB, just 3666 * send it. 3667 */ 3668 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3669 NET_INC_STATS(sock_net(sk), mib); 3670 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3671 } 3672 3673 /* Called from setsockopt( ... TCP_REPAIR ) */ 3674 void tcp_send_window_probe(struct sock *sk) 3675 { 3676 if (sk->sk_state == TCP_ESTABLISHED) { 3677 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3678 tcp_mstamp_refresh(tcp_sk(sk)); 3679 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3680 } 3681 } 3682 3683 /* Initiate keepalive or window probe from timer. */ 3684 int tcp_write_wakeup(struct sock *sk, int mib) 3685 { 3686 struct tcp_sock *tp = tcp_sk(sk); 3687 struct sk_buff *skb; 3688 3689 if (sk->sk_state == TCP_CLOSE) 3690 return -1; 3691 3692 skb = tcp_send_head(sk); 3693 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3694 int err; 3695 unsigned int mss = tcp_current_mss(sk); 3696 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3697 3698 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3699 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3700 3701 /* We are probing the opening of a window 3702 * but the window size is != 0 3703 * must have been a result SWS avoidance ( sender ) 3704 */ 3705 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3706 skb->len > mss) { 3707 seg_size = min(seg_size, mss); 3708 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3709 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3710 skb, seg_size, mss, GFP_ATOMIC)) 3711 return -1; 3712 } else if (!tcp_skb_pcount(skb)) 3713 tcp_set_skb_tso_segs(skb, mss); 3714 3715 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3716 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3717 if (!err) 3718 tcp_event_new_data_sent(sk, skb); 3719 return err; 3720 } else { 3721 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3722 tcp_xmit_probe_skb(sk, 1, mib); 3723 return tcp_xmit_probe_skb(sk, 0, mib); 3724 } 3725 } 3726 3727 /* A window probe timeout has occurred. If window is not closed send 3728 * a partial packet else a zero probe. 3729 */ 3730 void tcp_send_probe0(struct sock *sk) 3731 { 3732 struct inet_connection_sock *icsk = inet_csk(sk); 3733 struct tcp_sock *tp = tcp_sk(sk); 3734 struct net *net = sock_net(sk); 3735 unsigned long probe_max; 3736 int err; 3737 3738 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3739 3740 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3741 /* Cancel probe timer, if it is not required. */ 3742 icsk->icsk_probes_out = 0; 3743 icsk->icsk_backoff = 0; 3744 return; 3745 } 3746 3747 if (err <= 0) { 3748 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3749 icsk->icsk_backoff++; 3750 icsk->icsk_probes_out++; 3751 probe_max = TCP_RTO_MAX; 3752 } else { 3753 /* If packet was not sent due to local congestion, 3754 * do not backoff and do not remember icsk_probes_out. 3755 * Let local senders to fight for local resources. 3756 * 3757 * Use accumulated backoff yet. 3758 */ 3759 if (!icsk->icsk_probes_out) 3760 icsk->icsk_probes_out = 1; 3761 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3762 } 3763 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3764 tcp_probe0_when(sk, probe_max), 3765 TCP_RTO_MAX); 3766 } 3767 3768 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3769 { 3770 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3771 struct flowi fl; 3772 int res; 3773 3774 tcp_rsk(req)->txhash = net_tx_rndhash(); 3775 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3776 if (!res) { 3777 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3778 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3779 if (unlikely(tcp_passive_fastopen(sk))) 3780 tcp_sk(sk)->total_retrans++; 3781 } 3782 return res; 3783 } 3784 EXPORT_SYMBOL(tcp_rtx_synack); 3785