xref: /openbmc/linux/net/ipv4/tcp_output.c (revision ceef9ab6be7234f9e49f79769e0da88d1dccfcc7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 /* Default TSQ limit of four TSO segments */
49 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
50 
51 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
52 			   int push_one, gfp_t gfp);
53 
54 /* Account for new data that has been sent to the network. */
55 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
56 {
57 	struct inet_connection_sock *icsk = inet_csk(sk);
58 	struct tcp_sock *tp = tcp_sk(sk);
59 	unsigned int prior_packets = tp->packets_out;
60 
61 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
62 
63 	__skb_unlink(skb, &sk->sk_write_queue);
64 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
65 
66 	tp->packets_out += tcp_skb_pcount(skb);
67 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
68 		tcp_rearm_rto(sk);
69 
70 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
71 		      tcp_skb_pcount(skb));
72 }
73 
74 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
75  * window scaling factor due to loss of precision.
76  * If window has been shrunk, what should we make? It is not clear at all.
77  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
78  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
79  * invalid. OK, let's make this for now:
80  */
81 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
82 {
83 	const struct tcp_sock *tp = tcp_sk(sk);
84 
85 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
86 	    (tp->rx_opt.wscale_ok &&
87 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
88 		return tp->snd_nxt;
89 	else
90 		return tcp_wnd_end(tp);
91 }
92 
93 /* Calculate mss to advertise in SYN segment.
94  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
95  *
96  * 1. It is independent of path mtu.
97  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
98  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
99  *    attached devices, because some buggy hosts are confused by
100  *    large MSS.
101  * 4. We do not make 3, we advertise MSS, calculated from first
102  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
103  *    This may be overridden via information stored in routing table.
104  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
105  *    probably even Jumbo".
106  */
107 static __u16 tcp_advertise_mss(struct sock *sk)
108 {
109 	struct tcp_sock *tp = tcp_sk(sk);
110 	const struct dst_entry *dst = __sk_dst_get(sk);
111 	int mss = tp->advmss;
112 
113 	if (dst) {
114 		unsigned int metric = dst_metric_advmss(dst);
115 
116 		if (metric < mss) {
117 			mss = metric;
118 			tp->advmss = mss;
119 		}
120 	}
121 
122 	return (__u16)mss;
123 }
124 
125 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
126  * This is the first part of cwnd validation mechanism.
127  */
128 void tcp_cwnd_restart(struct sock *sk, s32 delta)
129 {
130 	struct tcp_sock *tp = tcp_sk(sk);
131 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
132 	u32 cwnd = tp->snd_cwnd;
133 
134 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
135 
136 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
137 	restart_cwnd = min(restart_cwnd, cwnd);
138 
139 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
140 		cwnd >>= 1;
141 	tp->snd_cwnd = max(cwnd, restart_cwnd);
142 	tp->snd_cwnd_stamp = tcp_jiffies32;
143 	tp->snd_cwnd_used = 0;
144 }
145 
146 /* Congestion state accounting after a packet has been sent. */
147 static void tcp_event_data_sent(struct tcp_sock *tp,
148 				struct sock *sk)
149 {
150 	struct inet_connection_sock *icsk = inet_csk(sk);
151 	const u32 now = tcp_jiffies32;
152 
153 	if (tcp_packets_in_flight(tp) == 0)
154 		tcp_ca_event(sk, CA_EVENT_TX_START);
155 
156 	tp->lsndtime = now;
157 
158 	/* If it is a reply for ato after last received
159 	 * packet, enter pingpong mode.
160 	 */
161 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
162 		icsk->icsk_ack.pingpong = 1;
163 }
164 
165 /* Account for an ACK we sent. */
166 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
167 {
168 	tcp_dec_quickack_mode(sk, pkts);
169 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
170 }
171 
172 
173 u32 tcp_default_init_rwnd(u32 mss)
174 {
175 	/* Initial receive window should be twice of TCP_INIT_CWND to
176 	 * enable proper sending of new unsent data during fast recovery
177 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
178 	 * limit when mss is larger than 1460.
179 	 */
180 	u32 init_rwnd = TCP_INIT_CWND * 2;
181 
182 	if (mss > 1460)
183 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
184 	return init_rwnd;
185 }
186 
187 /* Determine a window scaling and initial window to offer.
188  * Based on the assumption that the given amount of space
189  * will be offered. Store the results in the tp structure.
190  * NOTE: for smooth operation initial space offering should
191  * be a multiple of mss if possible. We assume here that mss >= 1.
192  * This MUST be enforced by all callers.
193  */
194 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
195 			       __u32 *rcv_wnd, __u32 *window_clamp,
196 			       int wscale_ok, __u8 *rcv_wscale,
197 			       __u32 init_rcv_wnd)
198 {
199 	unsigned int space = (__space < 0 ? 0 : __space);
200 
201 	/* If no clamp set the clamp to the max possible scaled window */
202 	if (*window_clamp == 0)
203 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
204 	space = min(*window_clamp, space);
205 
206 	/* Quantize space offering to a multiple of mss if possible. */
207 	if (space > mss)
208 		space = rounddown(space, mss);
209 
210 	/* NOTE: offering an initial window larger than 32767
211 	 * will break some buggy TCP stacks. If the admin tells us
212 	 * it is likely we could be speaking with such a buggy stack
213 	 * we will truncate our initial window offering to 32K-1
214 	 * unless the remote has sent us a window scaling option,
215 	 * which we interpret as a sign the remote TCP is not
216 	 * misinterpreting the window field as a signed quantity.
217 	 */
218 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
219 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
220 	else
221 		(*rcv_wnd) = space;
222 
223 	(*rcv_wscale) = 0;
224 	if (wscale_ok) {
225 		/* Set window scaling on max possible window */
226 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
227 		space = max_t(u32, space, sysctl_rmem_max);
228 		space = min_t(u32, space, *window_clamp);
229 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
230 			space >>= 1;
231 			(*rcv_wscale)++;
232 		}
233 	}
234 
235 	if (mss > (1 << *rcv_wscale)) {
236 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
237 			init_rcv_wnd = tcp_default_init_rwnd(mss);
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 	}
240 
241 	/* Set the clamp no higher than max representable value */
242 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
243 }
244 EXPORT_SYMBOL(tcp_select_initial_window);
245 
246 /* Chose a new window to advertise, update state in tcp_sock for the
247  * socket, and return result with RFC1323 scaling applied.  The return
248  * value can be stuffed directly into th->window for an outgoing
249  * frame.
250  */
251 static u16 tcp_select_window(struct sock *sk)
252 {
253 	struct tcp_sock *tp = tcp_sk(sk);
254 	u32 old_win = tp->rcv_wnd;
255 	u32 cur_win = tcp_receive_window(tp);
256 	u32 new_win = __tcp_select_window(sk);
257 
258 	/* Never shrink the offered window */
259 	if (new_win < cur_win) {
260 		/* Danger Will Robinson!
261 		 * Don't update rcv_wup/rcv_wnd here or else
262 		 * we will not be able to advertise a zero
263 		 * window in time.  --DaveM
264 		 *
265 		 * Relax Will Robinson.
266 		 */
267 		if (new_win == 0)
268 			NET_INC_STATS(sock_net(sk),
269 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
270 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
271 	}
272 	tp->rcv_wnd = new_win;
273 	tp->rcv_wup = tp->rcv_nxt;
274 
275 	/* Make sure we do not exceed the maximum possible
276 	 * scaled window.
277 	 */
278 	if (!tp->rx_opt.rcv_wscale &&
279 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
280 		new_win = min(new_win, MAX_TCP_WINDOW);
281 	else
282 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
283 
284 	/* RFC1323 scaling applied */
285 	new_win >>= tp->rx_opt.rcv_wscale;
286 
287 	/* If we advertise zero window, disable fast path. */
288 	if (new_win == 0) {
289 		tp->pred_flags = 0;
290 		if (old_win)
291 			NET_INC_STATS(sock_net(sk),
292 				      LINUX_MIB_TCPTOZEROWINDOWADV);
293 	} else if (old_win == 0) {
294 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
295 	}
296 
297 	return new_win;
298 }
299 
300 /* Packet ECN state for a SYN-ACK */
301 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
302 {
303 	const struct tcp_sock *tp = tcp_sk(sk);
304 
305 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
306 	if (!(tp->ecn_flags & TCP_ECN_OK))
307 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
308 	else if (tcp_ca_needs_ecn(sk) ||
309 		 tcp_bpf_ca_needs_ecn(sk))
310 		INET_ECN_xmit(sk);
311 }
312 
313 /* Packet ECN state for a SYN.  */
314 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
315 {
316 	struct tcp_sock *tp = tcp_sk(sk);
317 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
318 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
319 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
320 
321 	if (!use_ecn) {
322 		const struct dst_entry *dst = __sk_dst_get(sk);
323 
324 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
325 			use_ecn = true;
326 	}
327 
328 	tp->ecn_flags = 0;
329 
330 	if (use_ecn) {
331 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
332 		tp->ecn_flags = TCP_ECN_OK;
333 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
334 			INET_ECN_xmit(sk);
335 	}
336 }
337 
338 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
339 {
340 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
341 		/* tp->ecn_flags are cleared at a later point in time when
342 		 * SYN ACK is ultimatively being received.
343 		 */
344 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
345 }
346 
347 static void
348 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
349 {
350 	if (inet_rsk(req)->ecn_ok)
351 		th->ece = 1;
352 }
353 
354 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
355  * be sent.
356  */
357 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
358 			 struct tcphdr *th, int tcp_header_len)
359 {
360 	struct tcp_sock *tp = tcp_sk(sk);
361 
362 	if (tp->ecn_flags & TCP_ECN_OK) {
363 		/* Not-retransmitted data segment: set ECT and inject CWR. */
364 		if (skb->len != tcp_header_len &&
365 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
366 			INET_ECN_xmit(sk);
367 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
368 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
369 				th->cwr = 1;
370 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
371 			}
372 		} else if (!tcp_ca_needs_ecn(sk)) {
373 			/* ACK or retransmitted segment: clear ECT|CE */
374 			INET_ECN_dontxmit(sk);
375 		}
376 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
377 			th->ece = 1;
378 	}
379 }
380 
381 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
382  * auto increment end seqno.
383  */
384 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
385 {
386 	skb->ip_summed = CHECKSUM_PARTIAL;
387 	skb->csum = 0;
388 
389 	TCP_SKB_CB(skb)->tcp_flags = flags;
390 	TCP_SKB_CB(skb)->sacked = 0;
391 
392 	tcp_skb_pcount_set(skb, 1);
393 
394 	TCP_SKB_CB(skb)->seq = seq;
395 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
396 		seq++;
397 	TCP_SKB_CB(skb)->end_seq = seq;
398 }
399 
400 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
401 {
402 	return tp->snd_una != tp->snd_up;
403 }
404 
405 #define OPTION_SACK_ADVERTISE	(1 << 0)
406 #define OPTION_TS		(1 << 1)
407 #define OPTION_MD5		(1 << 2)
408 #define OPTION_WSCALE		(1 << 3)
409 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
410 #define OPTION_SMC		(1 << 9)
411 
412 static void smc_options_write(__be32 *ptr, u16 *options)
413 {
414 #if IS_ENABLED(CONFIG_SMC)
415 	if (static_branch_unlikely(&tcp_have_smc)) {
416 		if (unlikely(OPTION_SMC & *options)) {
417 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
418 				       (TCPOPT_NOP  << 16) |
419 				       (TCPOPT_EXP <<  8) |
420 				       (TCPOLEN_EXP_SMC_BASE));
421 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
422 		}
423 	}
424 #endif
425 }
426 
427 struct tcp_out_options {
428 	u16 options;		/* bit field of OPTION_* */
429 	u16 mss;		/* 0 to disable */
430 	u8 ws;			/* window scale, 0 to disable */
431 	u8 num_sack_blocks;	/* number of SACK blocks to include */
432 	u8 hash_size;		/* bytes in hash_location */
433 	__u8 *hash_location;	/* temporary pointer, overloaded */
434 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
435 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
436 };
437 
438 /* Write previously computed TCP options to the packet.
439  *
440  * Beware: Something in the Internet is very sensitive to the ordering of
441  * TCP options, we learned this through the hard way, so be careful here.
442  * Luckily we can at least blame others for their non-compliance but from
443  * inter-operability perspective it seems that we're somewhat stuck with
444  * the ordering which we have been using if we want to keep working with
445  * those broken things (not that it currently hurts anybody as there isn't
446  * particular reason why the ordering would need to be changed).
447  *
448  * At least SACK_PERM as the first option is known to lead to a disaster
449  * (but it may well be that other scenarios fail similarly).
450  */
451 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
452 			      struct tcp_out_options *opts)
453 {
454 	u16 options = opts->options;	/* mungable copy */
455 
456 	if (unlikely(OPTION_MD5 & options)) {
457 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
458 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
459 		/* overload cookie hash location */
460 		opts->hash_location = (__u8 *)ptr;
461 		ptr += 4;
462 	}
463 
464 	if (unlikely(opts->mss)) {
465 		*ptr++ = htonl((TCPOPT_MSS << 24) |
466 			       (TCPOLEN_MSS << 16) |
467 			       opts->mss);
468 	}
469 
470 	if (likely(OPTION_TS & options)) {
471 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
472 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
473 				       (TCPOLEN_SACK_PERM << 16) |
474 				       (TCPOPT_TIMESTAMP << 8) |
475 				       TCPOLEN_TIMESTAMP);
476 			options &= ~OPTION_SACK_ADVERTISE;
477 		} else {
478 			*ptr++ = htonl((TCPOPT_NOP << 24) |
479 				       (TCPOPT_NOP << 16) |
480 				       (TCPOPT_TIMESTAMP << 8) |
481 				       TCPOLEN_TIMESTAMP);
482 		}
483 		*ptr++ = htonl(opts->tsval);
484 		*ptr++ = htonl(opts->tsecr);
485 	}
486 
487 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
488 		*ptr++ = htonl((TCPOPT_NOP << 24) |
489 			       (TCPOPT_NOP << 16) |
490 			       (TCPOPT_SACK_PERM << 8) |
491 			       TCPOLEN_SACK_PERM);
492 	}
493 
494 	if (unlikely(OPTION_WSCALE & options)) {
495 		*ptr++ = htonl((TCPOPT_NOP << 24) |
496 			       (TCPOPT_WINDOW << 16) |
497 			       (TCPOLEN_WINDOW << 8) |
498 			       opts->ws);
499 	}
500 
501 	if (unlikely(opts->num_sack_blocks)) {
502 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
503 			tp->duplicate_sack : tp->selective_acks;
504 		int this_sack;
505 
506 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
507 			       (TCPOPT_NOP  << 16) |
508 			       (TCPOPT_SACK <<  8) |
509 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
510 						     TCPOLEN_SACK_PERBLOCK)));
511 
512 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
513 		     ++this_sack) {
514 			*ptr++ = htonl(sp[this_sack].start_seq);
515 			*ptr++ = htonl(sp[this_sack].end_seq);
516 		}
517 
518 		tp->rx_opt.dsack = 0;
519 	}
520 
521 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
522 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
523 		u8 *p = (u8 *)ptr;
524 		u32 len; /* Fast Open option length */
525 
526 		if (foc->exp) {
527 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
528 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
529 				     TCPOPT_FASTOPEN_MAGIC);
530 			p += TCPOLEN_EXP_FASTOPEN_BASE;
531 		} else {
532 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
533 			*p++ = TCPOPT_FASTOPEN;
534 			*p++ = len;
535 		}
536 
537 		memcpy(p, foc->val, foc->len);
538 		if ((len & 3) == 2) {
539 			p[foc->len] = TCPOPT_NOP;
540 			p[foc->len + 1] = TCPOPT_NOP;
541 		}
542 		ptr += (len + 3) >> 2;
543 	}
544 
545 	smc_options_write(ptr, &options);
546 }
547 
548 static void smc_set_option(const struct tcp_sock *tp,
549 			   struct tcp_out_options *opts,
550 			   unsigned int *remaining)
551 {
552 #if IS_ENABLED(CONFIG_SMC)
553 	if (static_branch_unlikely(&tcp_have_smc)) {
554 		if (tp->syn_smc) {
555 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
556 				opts->options |= OPTION_SMC;
557 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
558 			}
559 		}
560 	}
561 #endif
562 }
563 
564 static void smc_set_option_cond(const struct tcp_sock *tp,
565 				const struct inet_request_sock *ireq,
566 				struct tcp_out_options *opts,
567 				unsigned int *remaining)
568 {
569 #if IS_ENABLED(CONFIG_SMC)
570 	if (static_branch_unlikely(&tcp_have_smc)) {
571 		if (tp->syn_smc && ireq->smc_ok) {
572 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
573 				opts->options |= OPTION_SMC;
574 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
575 			}
576 		}
577 	}
578 #endif
579 }
580 
581 /* Compute TCP options for SYN packets. This is not the final
582  * network wire format yet.
583  */
584 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
585 				struct tcp_out_options *opts,
586 				struct tcp_md5sig_key **md5)
587 {
588 	struct tcp_sock *tp = tcp_sk(sk);
589 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
590 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
591 
592 #ifdef CONFIG_TCP_MD5SIG
593 	*md5 = tp->af_specific->md5_lookup(sk, sk);
594 	if (*md5) {
595 		opts->options |= OPTION_MD5;
596 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
597 	}
598 #else
599 	*md5 = NULL;
600 #endif
601 
602 	/* We always get an MSS option.  The option bytes which will be seen in
603 	 * normal data packets should timestamps be used, must be in the MSS
604 	 * advertised.  But we subtract them from tp->mss_cache so that
605 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
606 	 * fact here if necessary.  If we don't do this correctly, as a
607 	 * receiver we won't recognize data packets as being full sized when we
608 	 * should, and thus we won't abide by the delayed ACK rules correctly.
609 	 * SACKs don't matter, we never delay an ACK when we have any of those
610 	 * going out.  */
611 	opts->mss = tcp_advertise_mss(sk);
612 	remaining -= TCPOLEN_MSS_ALIGNED;
613 
614 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
615 		opts->options |= OPTION_TS;
616 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
617 		opts->tsecr = tp->rx_opt.ts_recent;
618 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
619 	}
620 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
621 		opts->ws = tp->rx_opt.rcv_wscale;
622 		opts->options |= OPTION_WSCALE;
623 		remaining -= TCPOLEN_WSCALE_ALIGNED;
624 	}
625 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
626 		opts->options |= OPTION_SACK_ADVERTISE;
627 		if (unlikely(!(OPTION_TS & opts->options)))
628 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
629 	}
630 
631 	if (fastopen && fastopen->cookie.len >= 0) {
632 		u32 need = fastopen->cookie.len;
633 
634 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
635 					       TCPOLEN_FASTOPEN_BASE;
636 		need = (need + 3) & ~3U;  /* Align to 32 bits */
637 		if (remaining >= need) {
638 			opts->options |= OPTION_FAST_OPEN_COOKIE;
639 			opts->fastopen_cookie = &fastopen->cookie;
640 			remaining -= need;
641 			tp->syn_fastopen = 1;
642 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
643 		}
644 	}
645 
646 	smc_set_option(tp, opts, &remaining);
647 
648 	return MAX_TCP_OPTION_SPACE - remaining;
649 }
650 
651 /* Set up TCP options for SYN-ACKs. */
652 static unsigned int tcp_synack_options(const struct sock *sk,
653 				       struct request_sock *req,
654 				       unsigned int mss, struct sk_buff *skb,
655 				       struct tcp_out_options *opts,
656 				       const struct tcp_md5sig_key *md5,
657 				       struct tcp_fastopen_cookie *foc)
658 {
659 	struct inet_request_sock *ireq = inet_rsk(req);
660 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
661 
662 #ifdef CONFIG_TCP_MD5SIG
663 	if (md5) {
664 		opts->options |= OPTION_MD5;
665 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
666 
667 		/* We can't fit any SACK blocks in a packet with MD5 + TS
668 		 * options. There was discussion about disabling SACK
669 		 * rather than TS in order to fit in better with old,
670 		 * buggy kernels, but that was deemed to be unnecessary.
671 		 */
672 		ireq->tstamp_ok &= !ireq->sack_ok;
673 	}
674 #endif
675 
676 	/* We always send an MSS option. */
677 	opts->mss = mss;
678 	remaining -= TCPOLEN_MSS_ALIGNED;
679 
680 	if (likely(ireq->wscale_ok)) {
681 		opts->ws = ireq->rcv_wscale;
682 		opts->options |= OPTION_WSCALE;
683 		remaining -= TCPOLEN_WSCALE_ALIGNED;
684 	}
685 	if (likely(ireq->tstamp_ok)) {
686 		opts->options |= OPTION_TS;
687 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
688 		opts->tsecr = req->ts_recent;
689 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
690 	}
691 	if (likely(ireq->sack_ok)) {
692 		opts->options |= OPTION_SACK_ADVERTISE;
693 		if (unlikely(!ireq->tstamp_ok))
694 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
695 	}
696 	if (foc != NULL && foc->len >= 0) {
697 		u32 need = foc->len;
698 
699 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
700 				   TCPOLEN_FASTOPEN_BASE;
701 		need = (need + 3) & ~3U;  /* Align to 32 bits */
702 		if (remaining >= need) {
703 			opts->options |= OPTION_FAST_OPEN_COOKIE;
704 			opts->fastopen_cookie = foc;
705 			remaining -= need;
706 		}
707 	}
708 
709 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
710 
711 	return MAX_TCP_OPTION_SPACE - remaining;
712 }
713 
714 /* Compute TCP options for ESTABLISHED sockets. This is not the
715  * final wire format yet.
716  */
717 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
718 					struct tcp_out_options *opts,
719 					struct tcp_md5sig_key **md5)
720 {
721 	struct tcp_sock *tp = tcp_sk(sk);
722 	unsigned int size = 0;
723 	unsigned int eff_sacks;
724 
725 	opts->options = 0;
726 
727 #ifdef CONFIG_TCP_MD5SIG
728 	*md5 = tp->af_specific->md5_lookup(sk, sk);
729 	if (unlikely(*md5)) {
730 		opts->options |= OPTION_MD5;
731 		size += TCPOLEN_MD5SIG_ALIGNED;
732 	}
733 #else
734 	*md5 = NULL;
735 #endif
736 
737 	if (likely(tp->rx_opt.tstamp_ok)) {
738 		opts->options |= OPTION_TS;
739 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
740 		opts->tsecr = tp->rx_opt.ts_recent;
741 		size += TCPOLEN_TSTAMP_ALIGNED;
742 	}
743 
744 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
745 	if (unlikely(eff_sacks)) {
746 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
747 		opts->num_sack_blocks =
748 			min_t(unsigned int, eff_sacks,
749 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
750 			      TCPOLEN_SACK_PERBLOCK);
751 		size += TCPOLEN_SACK_BASE_ALIGNED +
752 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
753 	}
754 
755 	return size;
756 }
757 
758 
759 /* TCP SMALL QUEUES (TSQ)
760  *
761  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
762  * to reduce RTT and bufferbloat.
763  * We do this using a special skb destructor (tcp_wfree).
764  *
765  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
766  * needs to be reallocated in a driver.
767  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
768  *
769  * Since transmit from skb destructor is forbidden, we use a tasklet
770  * to process all sockets that eventually need to send more skbs.
771  * We use one tasklet per cpu, with its own queue of sockets.
772  */
773 struct tsq_tasklet {
774 	struct tasklet_struct	tasklet;
775 	struct list_head	head; /* queue of tcp sockets */
776 };
777 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
778 
779 static void tcp_tsq_handler(struct sock *sk)
780 {
781 	if ((1 << sk->sk_state) &
782 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
783 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
784 		struct tcp_sock *tp = tcp_sk(sk);
785 
786 		if (tp->lost_out > tp->retrans_out &&
787 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
788 			tcp_xmit_retransmit_queue(sk);
789 
790 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
791 			       0, GFP_ATOMIC);
792 	}
793 }
794 /*
795  * One tasklet per cpu tries to send more skbs.
796  * We run in tasklet context but need to disable irqs when
797  * transferring tsq->head because tcp_wfree() might
798  * interrupt us (non NAPI drivers)
799  */
800 static void tcp_tasklet_func(unsigned long data)
801 {
802 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
803 	LIST_HEAD(list);
804 	unsigned long flags;
805 	struct list_head *q, *n;
806 	struct tcp_sock *tp;
807 	struct sock *sk;
808 
809 	local_irq_save(flags);
810 	list_splice_init(&tsq->head, &list);
811 	local_irq_restore(flags);
812 
813 	list_for_each_safe(q, n, &list) {
814 		tp = list_entry(q, struct tcp_sock, tsq_node);
815 		list_del(&tp->tsq_node);
816 
817 		sk = (struct sock *)tp;
818 		smp_mb__before_atomic();
819 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
820 
821 		if (!sk->sk_lock.owned &&
822 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
823 			bh_lock_sock(sk);
824 			if (!sock_owned_by_user(sk)) {
825 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
826 				tcp_tsq_handler(sk);
827 			}
828 			bh_unlock_sock(sk);
829 		}
830 
831 		sk_free(sk);
832 	}
833 }
834 
835 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
836 			  TCPF_WRITE_TIMER_DEFERRED |	\
837 			  TCPF_DELACK_TIMER_DEFERRED |	\
838 			  TCPF_MTU_REDUCED_DEFERRED)
839 /**
840  * tcp_release_cb - tcp release_sock() callback
841  * @sk: socket
842  *
843  * called from release_sock() to perform protocol dependent
844  * actions before socket release.
845  */
846 void tcp_release_cb(struct sock *sk)
847 {
848 	unsigned long flags, nflags;
849 
850 	/* perform an atomic operation only if at least one flag is set */
851 	do {
852 		flags = sk->sk_tsq_flags;
853 		if (!(flags & TCP_DEFERRED_ALL))
854 			return;
855 		nflags = flags & ~TCP_DEFERRED_ALL;
856 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
857 
858 	if (flags & TCPF_TSQ_DEFERRED)
859 		tcp_tsq_handler(sk);
860 
861 	/* Here begins the tricky part :
862 	 * We are called from release_sock() with :
863 	 * 1) BH disabled
864 	 * 2) sk_lock.slock spinlock held
865 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
866 	 *
867 	 * But following code is meant to be called from BH handlers,
868 	 * so we should keep BH disabled, but early release socket ownership
869 	 */
870 	sock_release_ownership(sk);
871 
872 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
873 		tcp_write_timer_handler(sk);
874 		__sock_put(sk);
875 	}
876 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
877 		tcp_delack_timer_handler(sk);
878 		__sock_put(sk);
879 	}
880 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
881 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
882 		__sock_put(sk);
883 	}
884 }
885 EXPORT_SYMBOL(tcp_release_cb);
886 
887 void __init tcp_tasklet_init(void)
888 {
889 	int i;
890 
891 	for_each_possible_cpu(i) {
892 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
893 
894 		INIT_LIST_HEAD(&tsq->head);
895 		tasklet_init(&tsq->tasklet,
896 			     tcp_tasklet_func,
897 			     (unsigned long)tsq);
898 	}
899 }
900 
901 /*
902  * Write buffer destructor automatically called from kfree_skb.
903  * We can't xmit new skbs from this context, as we might already
904  * hold qdisc lock.
905  */
906 void tcp_wfree(struct sk_buff *skb)
907 {
908 	struct sock *sk = skb->sk;
909 	struct tcp_sock *tp = tcp_sk(sk);
910 	unsigned long flags, nval, oval;
911 
912 	/* Keep one reference on sk_wmem_alloc.
913 	 * Will be released by sk_free() from here or tcp_tasklet_func()
914 	 */
915 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
916 
917 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
918 	 * Wait until our queues (qdisc + devices) are drained.
919 	 * This gives :
920 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
921 	 * - chance for incoming ACK (processed by another cpu maybe)
922 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
923 	 */
924 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
925 		goto out;
926 
927 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
928 		struct tsq_tasklet *tsq;
929 		bool empty;
930 
931 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
932 			goto out;
933 
934 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
935 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
936 		if (nval != oval)
937 			continue;
938 
939 		/* queue this socket to tasklet queue */
940 		local_irq_save(flags);
941 		tsq = this_cpu_ptr(&tsq_tasklet);
942 		empty = list_empty(&tsq->head);
943 		list_add(&tp->tsq_node, &tsq->head);
944 		if (empty)
945 			tasklet_schedule(&tsq->tasklet);
946 		local_irq_restore(flags);
947 		return;
948 	}
949 out:
950 	sk_free(sk);
951 }
952 
953 /* Note: Called under hard irq.
954  * We can not call TCP stack right away.
955  */
956 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
957 {
958 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
959 	struct sock *sk = (struct sock *)tp;
960 	unsigned long nval, oval;
961 
962 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
963 		struct tsq_tasklet *tsq;
964 		bool empty;
965 
966 		if (oval & TSQF_QUEUED)
967 			break;
968 
969 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
970 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
971 		if (nval != oval)
972 			continue;
973 
974 		if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
975 			break;
976 		/* queue this socket to tasklet queue */
977 		tsq = this_cpu_ptr(&tsq_tasklet);
978 		empty = list_empty(&tsq->head);
979 		list_add(&tp->tsq_node, &tsq->head);
980 		if (empty)
981 			tasklet_schedule(&tsq->tasklet);
982 		break;
983 	}
984 	return HRTIMER_NORESTART;
985 }
986 
987 /* BBR congestion control needs pacing.
988  * Same remark for SO_MAX_PACING_RATE.
989  * sch_fq packet scheduler is efficiently handling pacing,
990  * but is not always installed/used.
991  * Return true if TCP stack should pace packets itself.
992  */
993 static bool tcp_needs_internal_pacing(const struct sock *sk)
994 {
995 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
996 }
997 
998 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
999 {
1000 	u64 len_ns;
1001 	u32 rate;
1002 
1003 	if (!tcp_needs_internal_pacing(sk))
1004 		return;
1005 	rate = sk->sk_pacing_rate;
1006 	if (!rate || rate == ~0U)
1007 		return;
1008 
1009 	/* Should account for header sizes as sch_fq does,
1010 	 * but lets make things simple.
1011 	 */
1012 	len_ns = (u64)skb->len * NSEC_PER_SEC;
1013 	do_div(len_ns, rate);
1014 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
1015 		      ktime_add_ns(ktime_get(), len_ns),
1016 		      HRTIMER_MODE_ABS_PINNED);
1017 }
1018 
1019 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1020 {
1021 	skb->skb_mstamp = tp->tcp_mstamp;
1022 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1023 }
1024 
1025 /* This routine actually transmits TCP packets queued in by
1026  * tcp_do_sendmsg().  This is used by both the initial
1027  * transmission and possible later retransmissions.
1028  * All SKB's seen here are completely headerless.  It is our
1029  * job to build the TCP header, and pass the packet down to
1030  * IP so it can do the same plus pass the packet off to the
1031  * device.
1032  *
1033  * We are working here with either a clone of the original
1034  * SKB, or a fresh unique copy made by the retransmit engine.
1035  */
1036 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1037 			    gfp_t gfp_mask)
1038 {
1039 	const struct inet_connection_sock *icsk = inet_csk(sk);
1040 	struct inet_sock *inet;
1041 	struct tcp_sock *tp;
1042 	struct tcp_skb_cb *tcb;
1043 	struct tcp_out_options opts;
1044 	unsigned int tcp_options_size, tcp_header_size;
1045 	struct sk_buff *oskb = NULL;
1046 	struct tcp_md5sig_key *md5;
1047 	struct tcphdr *th;
1048 	int err;
1049 
1050 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1051 	tp = tcp_sk(sk);
1052 
1053 	if (clone_it) {
1054 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1055 			- tp->snd_una;
1056 		oskb = skb;
1057 
1058 		tcp_skb_tsorted_save(oskb) {
1059 			if (unlikely(skb_cloned(oskb)))
1060 				skb = pskb_copy(oskb, gfp_mask);
1061 			else
1062 				skb = skb_clone(oskb, gfp_mask);
1063 		} tcp_skb_tsorted_restore(oskb);
1064 
1065 		if (unlikely(!skb))
1066 			return -ENOBUFS;
1067 	}
1068 	skb->skb_mstamp = tp->tcp_mstamp;
1069 
1070 	inet = inet_sk(sk);
1071 	tcb = TCP_SKB_CB(skb);
1072 	memset(&opts, 0, sizeof(opts));
1073 
1074 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1075 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1076 	else
1077 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1078 							   &md5);
1079 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1080 
1081 	/* if no packet is in qdisc/device queue, then allow XPS to select
1082 	 * another queue. We can be called from tcp_tsq_handler()
1083 	 * which holds one reference to sk_wmem_alloc.
1084 	 *
1085 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1086 	 * One way to get this would be to set skb->truesize = 2 on them.
1087 	 */
1088 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1089 
1090 	/* If we had to use memory reserve to allocate this skb,
1091 	 * this might cause drops if packet is looped back :
1092 	 * Other socket might not have SOCK_MEMALLOC.
1093 	 * Packets not looped back do not care about pfmemalloc.
1094 	 */
1095 	skb->pfmemalloc = 0;
1096 
1097 	skb_push(skb, tcp_header_size);
1098 	skb_reset_transport_header(skb);
1099 
1100 	skb_orphan(skb);
1101 	skb->sk = sk;
1102 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1103 	skb_set_hash_from_sk(skb, sk);
1104 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1105 
1106 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1107 
1108 	/* Build TCP header and checksum it. */
1109 	th = (struct tcphdr *)skb->data;
1110 	th->source		= inet->inet_sport;
1111 	th->dest		= inet->inet_dport;
1112 	th->seq			= htonl(tcb->seq);
1113 	th->ack_seq		= htonl(tp->rcv_nxt);
1114 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1115 					tcb->tcp_flags);
1116 
1117 	th->check		= 0;
1118 	th->urg_ptr		= 0;
1119 
1120 	/* The urg_mode check is necessary during a below snd_una win probe */
1121 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1122 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1123 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1124 			th->urg = 1;
1125 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1126 			th->urg_ptr = htons(0xFFFF);
1127 			th->urg = 1;
1128 		}
1129 	}
1130 
1131 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1132 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1133 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1134 		th->window      = htons(tcp_select_window(sk));
1135 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1136 	} else {
1137 		/* RFC1323: The window in SYN & SYN/ACK segments
1138 		 * is never scaled.
1139 		 */
1140 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1141 	}
1142 #ifdef CONFIG_TCP_MD5SIG
1143 	/* Calculate the MD5 hash, as we have all we need now */
1144 	if (md5) {
1145 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1146 		tp->af_specific->calc_md5_hash(opts.hash_location,
1147 					       md5, sk, skb);
1148 	}
1149 #endif
1150 
1151 	icsk->icsk_af_ops->send_check(sk, skb);
1152 
1153 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1154 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1155 
1156 	if (skb->len != tcp_header_size) {
1157 		tcp_event_data_sent(tp, sk);
1158 		tp->data_segs_out += tcp_skb_pcount(skb);
1159 		tcp_internal_pacing(sk, skb);
1160 	}
1161 
1162 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1163 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1164 			      tcp_skb_pcount(skb));
1165 
1166 	tp->segs_out += tcp_skb_pcount(skb);
1167 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1168 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1169 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1170 
1171 	/* Our usage of tstamp should remain private */
1172 	skb->tstamp = 0;
1173 
1174 	/* Cleanup our debris for IP stacks */
1175 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1176 			       sizeof(struct inet6_skb_parm)));
1177 
1178 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1179 
1180 	if (unlikely(err > 0)) {
1181 		tcp_enter_cwr(sk);
1182 		err = net_xmit_eval(err);
1183 	}
1184 	if (!err && oskb) {
1185 		tcp_update_skb_after_send(tp, oskb);
1186 		tcp_rate_skb_sent(sk, oskb);
1187 	}
1188 	return err;
1189 }
1190 
1191 /* This routine just queues the buffer for sending.
1192  *
1193  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1194  * otherwise socket can stall.
1195  */
1196 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1197 {
1198 	struct tcp_sock *tp = tcp_sk(sk);
1199 
1200 	/* Advance write_seq and place onto the write_queue. */
1201 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1202 	__skb_header_release(skb);
1203 	tcp_add_write_queue_tail(sk, skb);
1204 	sk->sk_wmem_queued += skb->truesize;
1205 	sk_mem_charge(sk, skb->truesize);
1206 }
1207 
1208 /* Initialize TSO segments for a packet. */
1209 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1210 {
1211 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1212 		/* Avoid the costly divide in the normal
1213 		 * non-TSO case.
1214 		 */
1215 		tcp_skb_pcount_set(skb, 1);
1216 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1217 	} else {
1218 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1219 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1220 	}
1221 }
1222 
1223 /* When a modification to fackets out becomes necessary, we need to check
1224  * skb is counted to fackets_out or not.
1225  */
1226 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1227 				   int decr)
1228 {
1229 	struct tcp_sock *tp = tcp_sk(sk);
1230 
1231 	if (!tp->sacked_out || tcp_is_reno(tp))
1232 		return;
1233 
1234 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1235 		tp->fackets_out -= decr;
1236 }
1237 
1238 /* Pcount in the middle of the write queue got changed, we need to do various
1239  * tweaks to fix counters
1240  */
1241 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1242 {
1243 	struct tcp_sock *tp = tcp_sk(sk);
1244 
1245 	tp->packets_out -= decr;
1246 
1247 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1248 		tp->sacked_out -= decr;
1249 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1250 		tp->retrans_out -= decr;
1251 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1252 		tp->lost_out -= decr;
1253 
1254 	/* Reno case is special. Sigh... */
1255 	if (tcp_is_reno(tp) && decr > 0)
1256 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1257 
1258 	tcp_adjust_fackets_out(sk, skb, decr);
1259 
1260 	if (tp->lost_skb_hint &&
1261 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1262 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1263 		tp->lost_cnt_hint -= decr;
1264 
1265 	tcp_verify_left_out(tp);
1266 }
1267 
1268 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1269 {
1270 	return TCP_SKB_CB(skb)->txstamp_ack ||
1271 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1272 }
1273 
1274 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1275 {
1276 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1277 
1278 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1279 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1280 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1281 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1282 
1283 		shinfo->tx_flags &= ~tsflags;
1284 		shinfo2->tx_flags |= tsflags;
1285 		swap(shinfo->tskey, shinfo2->tskey);
1286 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1287 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1288 	}
1289 }
1290 
1291 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1292 {
1293 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1294 	TCP_SKB_CB(skb)->eor = 0;
1295 }
1296 
1297 /* Insert buff after skb on the write or rtx queue of sk.  */
1298 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1299 					 struct sk_buff *buff,
1300 					 struct sock *sk,
1301 					 enum tcp_queue tcp_queue)
1302 {
1303 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1304 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1305 	else
1306 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1307 }
1308 
1309 /* Function to create two new TCP segments.  Shrinks the given segment
1310  * to the specified size and appends a new segment with the rest of the
1311  * packet to the list.  This won't be called frequently, I hope.
1312  * Remember, these are still headerless SKBs at this point.
1313  */
1314 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1315 		 struct sk_buff *skb, u32 len,
1316 		 unsigned int mss_now, gfp_t gfp)
1317 {
1318 	struct tcp_sock *tp = tcp_sk(sk);
1319 	struct sk_buff *buff;
1320 	int nsize, old_factor;
1321 	int nlen;
1322 	u8 flags;
1323 
1324 	if (WARN_ON(len > skb->len))
1325 		return -EINVAL;
1326 
1327 	nsize = skb_headlen(skb) - len;
1328 	if (nsize < 0)
1329 		nsize = 0;
1330 
1331 	if (skb_unclone(skb, gfp))
1332 		return -ENOMEM;
1333 
1334 	/* Get a new skb... force flag on. */
1335 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1336 	if (!buff)
1337 		return -ENOMEM; /* We'll just try again later. */
1338 
1339 	sk->sk_wmem_queued += buff->truesize;
1340 	sk_mem_charge(sk, buff->truesize);
1341 	nlen = skb->len - len - nsize;
1342 	buff->truesize += nlen;
1343 	skb->truesize -= nlen;
1344 
1345 	/* Correct the sequence numbers. */
1346 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1347 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1348 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1349 
1350 	/* PSH and FIN should only be set in the second packet. */
1351 	flags = TCP_SKB_CB(skb)->tcp_flags;
1352 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1353 	TCP_SKB_CB(buff)->tcp_flags = flags;
1354 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1355 	tcp_skb_fragment_eor(skb, buff);
1356 
1357 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1358 		/* Copy and checksum data tail into the new buffer. */
1359 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1360 						       skb_put(buff, nsize),
1361 						       nsize, 0);
1362 
1363 		skb_trim(skb, len);
1364 
1365 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1366 	} else {
1367 		skb->ip_summed = CHECKSUM_PARTIAL;
1368 		skb_split(skb, buff, len);
1369 	}
1370 
1371 	buff->ip_summed = skb->ip_summed;
1372 
1373 	buff->tstamp = skb->tstamp;
1374 	tcp_fragment_tstamp(skb, buff);
1375 
1376 	old_factor = tcp_skb_pcount(skb);
1377 
1378 	/* Fix up tso_factor for both original and new SKB.  */
1379 	tcp_set_skb_tso_segs(skb, mss_now);
1380 	tcp_set_skb_tso_segs(buff, mss_now);
1381 
1382 	/* Update delivered info for the new segment */
1383 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1384 
1385 	/* If this packet has been sent out already, we must
1386 	 * adjust the various packet counters.
1387 	 */
1388 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1389 		int diff = old_factor - tcp_skb_pcount(skb) -
1390 			tcp_skb_pcount(buff);
1391 
1392 		if (diff)
1393 			tcp_adjust_pcount(sk, skb, diff);
1394 	}
1395 
1396 	/* Link BUFF into the send queue. */
1397 	__skb_header_release(buff);
1398 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1399 	list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1400 
1401 	return 0;
1402 }
1403 
1404 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1405  * data is not copied, but immediately discarded.
1406  */
1407 static int __pskb_trim_head(struct sk_buff *skb, int len)
1408 {
1409 	struct skb_shared_info *shinfo;
1410 	int i, k, eat;
1411 
1412 	eat = min_t(int, len, skb_headlen(skb));
1413 	if (eat) {
1414 		__skb_pull(skb, eat);
1415 		len -= eat;
1416 		if (!len)
1417 			return 0;
1418 	}
1419 	eat = len;
1420 	k = 0;
1421 	shinfo = skb_shinfo(skb);
1422 	for (i = 0; i < shinfo->nr_frags; i++) {
1423 		int size = skb_frag_size(&shinfo->frags[i]);
1424 
1425 		if (size <= eat) {
1426 			skb_frag_unref(skb, i);
1427 			eat -= size;
1428 		} else {
1429 			shinfo->frags[k] = shinfo->frags[i];
1430 			if (eat) {
1431 				shinfo->frags[k].page_offset += eat;
1432 				skb_frag_size_sub(&shinfo->frags[k], eat);
1433 				eat = 0;
1434 			}
1435 			k++;
1436 		}
1437 	}
1438 	shinfo->nr_frags = k;
1439 
1440 	skb->data_len -= len;
1441 	skb->len = skb->data_len;
1442 	return len;
1443 }
1444 
1445 /* Remove acked data from a packet in the transmit queue. */
1446 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1447 {
1448 	u32 delta_truesize;
1449 
1450 	if (skb_unclone(skb, GFP_ATOMIC))
1451 		return -ENOMEM;
1452 
1453 	delta_truesize = __pskb_trim_head(skb, len);
1454 
1455 	TCP_SKB_CB(skb)->seq += len;
1456 	skb->ip_summed = CHECKSUM_PARTIAL;
1457 
1458 	if (delta_truesize) {
1459 		skb->truesize	   -= delta_truesize;
1460 		sk->sk_wmem_queued -= delta_truesize;
1461 		sk_mem_uncharge(sk, delta_truesize);
1462 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1463 	}
1464 
1465 	/* Any change of skb->len requires recalculation of tso factor. */
1466 	if (tcp_skb_pcount(skb) > 1)
1467 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1468 
1469 	return 0;
1470 }
1471 
1472 /* Calculate MSS not accounting any TCP options.  */
1473 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1474 {
1475 	const struct tcp_sock *tp = tcp_sk(sk);
1476 	const struct inet_connection_sock *icsk = inet_csk(sk);
1477 	int mss_now;
1478 
1479 	/* Calculate base mss without TCP options:
1480 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1481 	 */
1482 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1483 
1484 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1485 	if (icsk->icsk_af_ops->net_frag_header_len) {
1486 		const struct dst_entry *dst = __sk_dst_get(sk);
1487 
1488 		if (dst && dst_allfrag(dst))
1489 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1490 	}
1491 
1492 	/* Clamp it (mss_clamp does not include tcp options) */
1493 	if (mss_now > tp->rx_opt.mss_clamp)
1494 		mss_now = tp->rx_opt.mss_clamp;
1495 
1496 	/* Now subtract optional transport overhead */
1497 	mss_now -= icsk->icsk_ext_hdr_len;
1498 
1499 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1500 	if (mss_now < 48)
1501 		mss_now = 48;
1502 	return mss_now;
1503 }
1504 
1505 /* Calculate MSS. Not accounting for SACKs here.  */
1506 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1507 {
1508 	/* Subtract TCP options size, not including SACKs */
1509 	return __tcp_mtu_to_mss(sk, pmtu) -
1510 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1511 }
1512 
1513 /* Inverse of above */
1514 int tcp_mss_to_mtu(struct sock *sk, int mss)
1515 {
1516 	const struct tcp_sock *tp = tcp_sk(sk);
1517 	const struct inet_connection_sock *icsk = inet_csk(sk);
1518 	int mtu;
1519 
1520 	mtu = mss +
1521 	      tp->tcp_header_len +
1522 	      icsk->icsk_ext_hdr_len +
1523 	      icsk->icsk_af_ops->net_header_len;
1524 
1525 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1526 	if (icsk->icsk_af_ops->net_frag_header_len) {
1527 		const struct dst_entry *dst = __sk_dst_get(sk);
1528 
1529 		if (dst && dst_allfrag(dst))
1530 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1531 	}
1532 	return mtu;
1533 }
1534 EXPORT_SYMBOL(tcp_mss_to_mtu);
1535 
1536 /* MTU probing init per socket */
1537 void tcp_mtup_init(struct sock *sk)
1538 {
1539 	struct tcp_sock *tp = tcp_sk(sk);
1540 	struct inet_connection_sock *icsk = inet_csk(sk);
1541 	struct net *net = sock_net(sk);
1542 
1543 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1544 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1545 			       icsk->icsk_af_ops->net_header_len;
1546 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1547 	icsk->icsk_mtup.probe_size = 0;
1548 	if (icsk->icsk_mtup.enabled)
1549 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1550 }
1551 EXPORT_SYMBOL(tcp_mtup_init);
1552 
1553 /* This function synchronize snd mss to current pmtu/exthdr set.
1554 
1555    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1556    for TCP options, but includes only bare TCP header.
1557 
1558    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1559    It is minimum of user_mss and mss received with SYN.
1560    It also does not include TCP options.
1561 
1562    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1563 
1564    tp->mss_cache is current effective sending mss, including
1565    all tcp options except for SACKs. It is evaluated,
1566    taking into account current pmtu, but never exceeds
1567    tp->rx_opt.mss_clamp.
1568 
1569    NOTE1. rfc1122 clearly states that advertised MSS
1570    DOES NOT include either tcp or ip options.
1571 
1572    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1573    are READ ONLY outside this function.		--ANK (980731)
1574  */
1575 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1576 {
1577 	struct tcp_sock *tp = tcp_sk(sk);
1578 	struct inet_connection_sock *icsk = inet_csk(sk);
1579 	int mss_now;
1580 
1581 	if (icsk->icsk_mtup.search_high > pmtu)
1582 		icsk->icsk_mtup.search_high = pmtu;
1583 
1584 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1585 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1586 
1587 	/* And store cached results */
1588 	icsk->icsk_pmtu_cookie = pmtu;
1589 	if (icsk->icsk_mtup.enabled)
1590 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1591 	tp->mss_cache = mss_now;
1592 
1593 	return mss_now;
1594 }
1595 EXPORT_SYMBOL(tcp_sync_mss);
1596 
1597 /* Compute the current effective MSS, taking SACKs and IP options,
1598  * and even PMTU discovery events into account.
1599  */
1600 unsigned int tcp_current_mss(struct sock *sk)
1601 {
1602 	const struct tcp_sock *tp = tcp_sk(sk);
1603 	const struct dst_entry *dst = __sk_dst_get(sk);
1604 	u32 mss_now;
1605 	unsigned int header_len;
1606 	struct tcp_out_options opts;
1607 	struct tcp_md5sig_key *md5;
1608 
1609 	mss_now = tp->mss_cache;
1610 
1611 	if (dst) {
1612 		u32 mtu = dst_mtu(dst);
1613 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1614 			mss_now = tcp_sync_mss(sk, mtu);
1615 	}
1616 
1617 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1618 		     sizeof(struct tcphdr);
1619 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1620 	 * some common options. If this is an odd packet (because we have SACK
1621 	 * blocks etc) then our calculated header_len will be different, and
1622 	 * we have to adjust mss_now correspondingly */
1623 	if (header_len != tp->tcp_header_len) {
1624 		int delta = (int) header_len - tp->tcp_header_len;
1625 		mss_now -= delta;
1626 	}
1627 
1628 	return mss_now;
1629 }
1630 
1631 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1632  * As additional protections, we do not touch cwnd in retransmission phases,
1633  * and if application hit its sndbuf limit recently.
1634  */
1635 static void tcp_cwnd_application_limited(struct sock *sk)
1636 {
1637 	struct tcp_sock *tp = tcp_sk(sk);
1638 
1639 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1640 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1641 		/* Limited by application or receiver window. */
1642 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1643 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1644 		if (win_used < tp->snd_cwnd) {
1645 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1646 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1647 		}
1648 		tp->snd_cwnd_used = 0;
1649 	}
1650 	tp->snd_cwnd_stamp = tcp_jiffies32;
1651 }
1652 
1653 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1654 {
1655 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1656 	struct tcp_sock *tp = tcp_sk(sk);
1657 
1658 	/* Track the maximum number of outstanding packets in each
1659 	 * window, and remember whether we were cwnd-limited then.
1660 	 */
1661 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1662 	    tp->packets_out > tp->max_packets_out) {
1663 		tp->max_packets_out = tp->packets_out;
1664 		tp->max_packets_seq = tp->snd_nxt;
1665 		tp->is_cwnd_limited = is_cwnd_limited;
1666 	}
1667 
1668 	if (tcp_is_cwnd_limited(sk)) {
1669 		/* Network is feed fully. */
1670 		tp->snd_cwnd_used = 0;
1671 		tp->snd_cwnd_stamp = tcp_jiffies32;
1672 	} else {
1673 		/* Network starves. */
1674 		if (tp->packets_out > tp->snd_cwnd_used)
1675 			tp->snd_cwnd_used = tp->packets_out;
1676 
1677 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1678 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1679 		    !ca_ops->cong_control)
1680 			tcp_cwnd_application_limited(sk);
1681 
1682 		/* The following conditions together indicate the starvation
1683 		 * is caused by insufficient sender buffer:
1684 		 * 1) just sent some data (see tcp_write_xmit)
1685 		 * 2) not cwnd limited (this else condition)
1686 		 * 3) no more data to send (tcp_write_queue_empty())
1687 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1688 		 */
1689 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1690 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1691 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1692 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1693 	}
1694 }
1695 
1696 /* Minshall's variant of the Nagle send check. */
1697 static bool tcp_minshall_check(const struct tcp_sock *tp)
1698 {
1699 	return after(tp->snd_sml, tp->snd_una) &&
1700 		!after(tp->snd_sml, tp->snd_nxt);
1701 }
1702 
1703 /* Update snd_sml if this skb is under mss
1704  * Note that a TSO packet might end with a sub-mss segment
1705  * The test is really :
1706  * if ((skb->len % mss) != 0)
1707  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1708  * But we can avoid doing the divide again given we already have
1709  *  skb_pcount = skb->len / mss_now
1710  */
1711 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1712 				const struct sk_buff *skb)
1713 {
1714 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1715 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1716 }
1717 
1718 /* Return false, if packet can be sent now without violation Nagle's rules:
1719  * 1. It is full sized. (provided by caller in %partial bool)
1720  * 2. Or it contains FIN. (already checked by caller)
1721  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1722  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1723  *    With Minshall's modification: all sent small packets are ACKed.
1724  */
1725 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1726 			    int nonagle)
1727 {
1728 	return partial &&
1729 		((nonagle & TCP_NAGLE_CORK) ||
1730 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1731 }
1732 
1733 /* Return how many segs we'd like on a TSO packet,
1734  * to send one TSO packet per ms
1735  */
1736 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1737 		     int min_tso_segs)
1738 {
1739 	u32 bytes, segs;
1740 
1741 	bytes = min(sk->sk_pacing_rate >> 10,
1742 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1743 
1744 	/* Goal is to send at least one packet per ms,
1745 	 * not one big TSO packet every 100 ms.
1746 	 * This preserves ACK clocking and is consistent
1747 	 * with tcp_tso_should_defer() heuristic.
1748 	 */
1749 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1750 
1751 	return min_t(u32, segs, sk->sk_gso_max_segs);
1752 }
1753 EXPORT_SYMBOL(tcp_tso_autosize);
1754 
1755 /* Return the number of segments we want in the skb we are transmitting.
1756  * See if congestion control module wants to decide; otherwise, autosize.
1757  */
1758 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1759 {
1760 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1761 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1762 
1763 	return tso_segs ? :
1764 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1765 }
1766 
1767 /* Returns the portion of skb which can be sent right away */
1768 static unsigned int tcp_mss_split_point(const struct sock *sk,
1769 					const struct sk_buff *skb,
1770 					unsigned int mss_now,
1771 					unsigned int max_segs,
1772 					int nonagle)
1773 {
1774 	const struct tcp_sock *tp = tcp_sk(sk);
1775 	u32 partial, needed, window, max_len;
1776 
1777 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1778 	max_len = mss_now * max_segs;
1779 
1780 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1781 		return max_len;
1782 
1783 	needed = min(skb->len, window);
1784 
1785 	if (max_len <= needed)
1786 		return max_len;
1787 
1788 	partial = needed % mss_now;
1789 	/* If last segment is not a full MSS, check if Nagle rules allow us
1790 	 * to include this last segment in this skb.
1791 	 * Otherwise, we'll split the skb at last MSS boundary
1792 	 */
1793 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1794 		return needed - partial;
1795 
1796 	return needed;
1797 }
1798 
1799 /* Can at least one segment of SKB be sent right now, according to the
1800  * congestion window rules?  If so, return how many segments are allowed.
1801  */
1802 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1803 					 const struct sk_buff *skb)
1804 {
1805 	u32 in_flight, cwnd, halfcwnd;
1806 
1807 	/* Don't be strict about the congestion window for the final FIN.  */
1808 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1809 	    tcp_skb_pcount(skb) == 1)
1810 		return 1;
1811 
1812 	in_flight = tcp_packets_in_flight(tp);
1813 	cwnd = tp->snd_cwnd;
1814 	if (in_flight >= cwnd)
1815 		return 0;
1816 
1817 	/* For better scheduling, ensure we have at least
1818 	 * 2 GSO packets in flight.
1819 	 */
1820 	halfcwnd = max(cwnd >> 1, 1U);
1821 	return min(halfcwnd, cwnd - in_flight);
1822 }
1823 
1824 /* Initialize TSO state of a skb.
1825  * This must be invoked the first time we consider transmitting
1826  * SKB onto the wire.
1827  */
1828 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1829 {
1830 	int tso_segs = tcp_skb_pcount(skb);
1831 
1832 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1833 		tcp_set_skb_tso_segs(skb, mss_now);
1834 		tso_segs = tcp_skb_pcount(skb);
1835 	}
1836 	return tso_segs;
1837 }
1838 
1839 
1840 /* Return true if the Nagle test allows this packet to be
1841  * sent now.
1842  */
1843 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1844 				  unsigned int cur_mss, int nonagle)
1845 {
1846 	/* Nagle rule does not apply to frames, which sit in the middle of the
1847 	 * write_queue (they have no chances to get new data).
1848 	 *
1849 	 * This is implemented in the callers, where they modify the 'nonagle'
1850 	 * argument based upon the location of SKB in the send queue.
1851 	 */
1852 	if (nonagle & TCP_NAGLE_PUSH)
1853 		return true;
1854 
1855 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1856 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1857 		return true;
1858 
1859 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1860 		return true;
1861 
1862 	return false;
1863 }
1864 
1865 /* Does at least the first segment of SKB fit into the send window? */
1866 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1867 			     const struct sk_buff *skb,
1868 			     unsigned int cur_mss)
1869 {
1870 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1871 
1872 	if (skb->len > cur_mss)
1873 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1874 
1875 	return !after(end_seq, tcp_wnd_end(tp));
1876 }
1877 
1878 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1879  * which is put after SKB on the list.  It is very much like
1880  * tcp_fragment() except that it may make several kinds of assumptions
1881  * in order to speed up the splitting operation.  In particular, we
1882  * know that all the data is in scatter-gather pages, and that the
1883  * packet has never been sent out before (and thus is not cloned).
1884  */
1885 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1886 			struct sk_buff *skb, unsigned int len,
1887 			unsigned int mss_now, gfp_t gfp)
1888 {
1889 	struct sk_buff *buff;
1890 	int nlen = skb->len - len;
1891 	u8 flags;
1892 
1893 	/* All of a TSO frame must be composed of paged data.  */
1894 	if (skb->len != skb->data_len)
1895 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1896 
1897 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1898 	if (unlikely(!buff))
1899 		return -ENOMEM;
1900 
1901 	sk->sk_wmem_queued += buff->truesize;
1902 	sk_mem_charge(sk, buff->truesize);
1903 	buff->truesize += nlen;
1904 	skb->truesize -= nlen;
1905 
1906 	/* Correct the sequence numbers. */
1907 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1908 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1909 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1910 
1911 	/* PSH and FIN should only be set in the second packet. */
1912 	flags = TCP_SKB_CB(skb)->tcp_flags;
1913 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1914 	TCP_SKB_CB(buff)->tcp_flags = flags;
1915 
1916 	/* This packet was never sent out yet, so no SACK bits. */
1917 	TCP_SKB_CB(buff)->sacked = 0;
1918 
1919 	tcp_skb_fragment_eor(skb, buff);
1920 
1921 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1922 	skb_split(skb, buff, len);
1923 	tcp_fragment_tstamp(skb, buff);
1924 
1925 	/* Fix up tso_factor for both original and new SKB.  */
1926 	tcp_set_skb_tso_segs(skb, mss_now);
1927 	tcp_set_skb_tso_segs(buff, mss_now);
1928 
1929 	/* Link BUFF into the send queue. */
1930 	__skb_header_release(buff);
1931 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1932 
1933 	return 0;
1934 }
1935 
1936 /* Try to defer sending, if possible, in order to minimize the amount
1937  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1938  *
1939  * This algorithm is from John Heffner.
1940  */
1941 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1942 				 bool *is_cwnd_limited, u32 max_segs)
1943 {
1944 	const struct inet_connection_sock *icsk = inet_csk(sk);
1945 	u32 age, send_win, cong_win, limit, in_flight;
1946 	struct tcp_sock *tp = tcp_sk(sk);
1947 	struct sk_buff *head;
1948 	int win_divisor;
1949 
1950 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1951 		goto send_now;
1952 
1953 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1954 		goto send_now;
1955 
1956 	/* Avoid bursty behavior by allowing defer
1957 	 * only if the last write was recent.
1958 	 */
1959 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1960 		goto send_now;
1961 
1962 	in_flight = tcp_packets_in_flight(tp);
1963 
1964 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1965 
1966 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1967 
1968 	/* From in_flight test above, we know that cwnd > in_flight.  */
1969 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1970 
1971 	limit = min(send_win, cong_win);
1972 
1973 	/* If a full-sized TSO skb can be sent, do it. */
1974 	if (limit >= max_segs * tp->mss_cache)
1975 		goto send_now;
1976 
1977 	/* Middle in queue won't get any more data, full sendable already? */
1978 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1979 		goto send_now;
1980 
1981 	win_divisor = ACCESS_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1982 	if (win_divisor) {
1983 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1984 
1985 		/* If at least some fraction of a window is available,
1986 		 * just use it.
1987 		 */
1988 		chunk /= win_divisor;
1989 		if (limit >= chunk)
1990 			goto send_now;
1991 	} else {
1992 		/* Different approach, try not to defer past a single
1993 		 * ACK.  Receiver should ACK every other full sized
1994 		 * frame, so if we have space for more than 3 frames
1995 		 * then send now.
1996 		 */
1997 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1998 			goto send_now;
1999 	}
2000 
2001 	/* TODO : use tsorted_sent_queue ? */
2002 	head = tcp_rtx_queue_head(sk);
2003 	if (!head)
2004 		goto send_now;
2005 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
2006 	/* If next ACK is likely to come too late (half srtt), do not defer */
2007 	if (age < (tp->srtt_us >> 4))
2008 		goto send_now;
2009 
2010 	/* Ok, it looks like it is advisable to defer. */
2011 
2012 	if (cong_win < send_win && cong_win <= skb->len)
2013 		*is_cwnd_limited = true;
2014 
2015 	return true;
2016 
2017 send_now:
2018 	return false;
2019 }
2020 
2021 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2022 {
2023 	struct inet_connection_sock *icsk = inet_csk(sk);
2024 	struct tcp_sock *tp = tcp_sk(sk);
2025 	struct net *net = sock_net(sk);
2026 	u32 interval;
2027 	s32 delta;
2028 
2029 	interval = net->ipv4.sysctl_tcp_probe_interval;
2030 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2031 	if (unlikely(delta >= interval * HZ)) {
2032 		int mss = tcp_current_mss(sk);
2033 
2034 		/* Update current search range */
2035 		icsk->icsk_mtup.probe_size = 0;
2036 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2037 			sizeof(struct tcphdr) +
2038 			icsk->icsk_af_ops->net_header_len;
2039 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2040 
2041 		/* Update probe time stamp */
2042 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2043 	}
2044 }
2045 
2046 /* Create a new MTU probe if we are ready.
2047  * MTU probe is regularly attempting to increase the path MTU by
2048  * deliberately sending larger packets.  This discovers routing
2049  * changes resulting in larger path MTUs.
2050  *
2051  * Returns 0 if we should wait to probe (no cwnd available),
2052  *         1 if a probe was sent,
2053  *         -1 otherwise
2054  */
2055 static int tcp_mtu_probe(struct sock *sk)
2056 {
2057 	struct inet_connection_sock *icsk = inet_csk(sk);
2058 	struct tcp_sock *tp = tcp_sk(sk);
2059 	struct sk_buff *skb, *nskb, *next;
2060 	struct net *net = sock_net(sk);
2061 	int probe_size;
2062 	int size_needed;
2063 	int copy, len;
2064 	int mss_now;
2065 	int interval;
2066 
2067 	/* Not currently probing/verifying,
2068 	 * not in recovery,
2069 	 * have enough cwnd, and
2070 	 * not SACKing (the variable headers throw things off)
2071 	 */
2072 	if (likely(!icsk->icsk_mtup.enabled ||
2073 		   icsk->icsk_mtup.probe_size ||
2074 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2075 		   tp->snd_cwnd < 11 ||
2076 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2077 		return -1;
2078 
2079 	/* Use binary search for probe_size between tcp_mss_base,
2080 	 * and current mss_clamp. if (search_high - search_low)
2081 	 * smaller than a threshold, backoff from probing.
2082 	 */
2083 	mss_now = tcp_current_mss(sk);
2084 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2085 				    icsk->icsk_mtup.search_low) >> 1);
2086 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2087 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2088 	/* When misfortune happens, we are reprobing actively,
2089 	 * and then reprobe timer has expired. We stick with current
2090 	 * probing process by not resetting search range to its orignal.
2091 	 */
2092 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2093 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2094 		/* Check whether enough time has elaplased for
2095 		 * another round of probing.
2096 		 */
2097 		tcp_mtu_check_reprobe(sk);
2098 		return -1;
2099 	}
2100 
2101 	/* Have enough data in the send queue to probe? */
2102 	if (tp->write_seq - tp->snd_nxt < size_needed)
2103 		return -1;
2104 
2105 	if (tp->snd_wnd < size_needed)
2106 		return -1;
2107 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2108 		return 0;
2109 
2110 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2111 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2112 		if (!tcp_packets_in_flight(tp))
2113 			return -1;
2114 		else
2115 			return 0;
2116 	}
2117 
2118 	/* We're allowed to probe.  Build it now. */
2119 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2120 	if (!nskb)
2121 		return -1;
2122 	sk->sk_wmem_queued += nskb->truesize;
2123 	sk_mem_charge(sk, nskb->truesize);
2124 
2125 	skb = tcp_send_head(sk);
2126 
2127 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2128 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2129 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2130 	TCP_SKB_CB(nskb)->sacked = 0;
2131 	nskb->csum = 0;
2132 	nskb->ip_summed = skb->ip_summed;
2133 
2134 	tcp_insert_write_queue_before(nskb, skb, sk);
2135 
2136 	len = 0;
2137 	tcp_for_write_queue_from_safe(skb, next, sk) {
2138 		copy = min_t(int, skb->len, probe_size - len);
2139 		if (nskb->ip_summed) {
2140 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2141 		} else {
2142 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2143 							     skb_put(nskb, copy),
2144 							     copy, 0);
2145 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2146 		}
2147 
2148 		if (skb->len <= copy) {
2149 			/* We've eaten all the data from this skb.
2150 			 * Throw it away. */
2151 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2152 			tcp_unlink_write_queue(skb, sk);
2153 			sk_wmem_free_skb(sk, skb);
2154 		} else {
2155 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2156 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2157 			if (!skb_shinfo(skb)->nr_frags) {
2158 				skb_pull(skb, copy);
2159 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2160 					skb->csum = csum_partial(skb->data,
2161 								 skb->len, 0);
2162 			} else {
2163 				__pskb_trim_head(skb, copy);
2164 				tcp_set_skb_tso_segs(skb, mss_now);
2165 			}
2166 			TCP_SKB_CB(skb)->seq += copy;
2167 		}
2168 
2169 		len += copy;
2170 
2171 		if (len >= probe_size)
2172 			break;
2173 	}
2174 	tcp_init_tso_segs(nskb, nskb->len);
2175 
2176 	/* We're ready to send.  If this fails, the probe will
2177 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2178 	 */
2179 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2180 		/* Decrement cwnd here because we are sending
2181 		 * effectively two packets. */
2182 		tp->snd_cwnd--;
2183 		tcp_event_new_data_sent(sk, nskb);
2184 
2185 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2186 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2187 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2188 
2189 		return 1;
2190 	}
2191 
2192 	return -1;
2193 }
2194 
2195 static bool tcp_pacing_check(const struct sock *sk)
2196 {
2197 	return tcp_needs_internal_pacing(sk) &&
2198 	       hrtimer_active(&tcp_sk(sk)->pacing_timer);
2199 }
2200 
2201 /* TCP Small Queues :
2202  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2203  * (These limits are doubled for retransmits)
2204  * This allows for :
2205  *  - better RTT estimation and ACK scheduling
2206  *  - faster recovery
2207  *  - high rates
2208  * Alas, some drivers / subsystems require a fair amount
2209  * of queued bytes to ensure line rate.
2210  * One example is wifi aggregation (802.11 AMPDU)
2211  */
2212 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2213 				  unsigned int factor)
2214 {
2215 	unsigned int limit;
2216 
2217 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2218 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2219 	limit <<= factor;
2220 
2221 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2222 		/* Always send skb if rtx queue is empty.
2223 		 * No need to wait for TX completion to call us back,
2224 		 * after softirq/tasklet schedule.
2225 		 * This helps when TX completions are delayed too much.
2226 		 */
2227 		if (tcp_rtx_queue_empty(sk))
2228 			return false;
2229 
2230 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2231 		/* It is possible TX completion already happened
2232 		 * before we set TSQ_THROTTLED, so we must
2233 		 * test again the condition.
2234 		 */
2235 		smp_mb__after_atomic();
2236 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2237 			return true;
2238 	}
2239 	return false;
2240 }
2241 
2242 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2243 {
2244 	const u32 now = tcp_jiffies32;
2245 	enum tcp_chrono old = tp->chrono_type;
2246 
2247 	if (old > TCP_CHRONO_UNSPEC)
2248 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2249 	tp->chrono_start = now;
2250 	tp->chrono_type = new;
2251 }
2252 
2253 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2254 {
2255 	struct tcp_sock *tp = tcp_sk(sk);
2256 
2257 	/* If there are multiple conditions worthy of tracking in a
2258 	 * chronograph then the highest priority enum takes precedence
2259 	 * over the other conditions. So that if something "more interesting"
2260 	 * starts happening, stop the previous chrono and start a new one.
2261 	 */
2262 	if (type > tp->chrono_type)
2263 		tcp_chrono_set(tp, type);
2264 }
2265 
2266 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2267 {
2268 	struct tcp_sock *tp = tcp_sk(sk);
2269 
2270 
2271 	/* There are multiple conditions worthy of tracking in a
2272 	 * chronograph, so that the highest priority enum takes
2273 	 * precedence over the other conditions (see tcp_chrono_start).
2274 	 * If a condition stops, we only stop chrono tracking if
2275 	 * it's the "most interesting" or current chrono we are
2276 	 * tracking and starts busy chrono if we have pending data.
2277 	 */
2278 	if (tcp_rtx_and_write_queues_empty(sk))
2279 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2280 	else if (type == tp->chrono_type)
2281 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2282 }
2283 
2284 /* This routine writes packets to the network.  It advances the
2285  * send_head.  This happens as incoming acks open up the remote
2286  * window for us.
2287  *
2288  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2289  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2290  * account rare use of URG, this is not a big flaw.
2291  *
2292  * Send at most one packet when push_one > 0. Temporarily ignore
2293  * cwnd limit to force at most one packet out when push_one == 2.
2294 
2295  * Returns true, if no segments are in flight and we have queued segments,
2296  * but cannot send anything now because of SWS or another problem.
2297  */
2298 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2299 			   int push_one, gfp_t gfp)
2300 {
2301 	struct tcp_sock *tp = tcp_sk(sk);
2302 	struct sk_buff *skb;
2303 	unsigned int tso_segs, sent_pkts;
2304 	int cwnd_quota;
2305 	int result;
2306 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2307 	u32 max_segs;
2308 
2309 	sent_pkts = 0;
2310 
2311 	if (!push_one) {
2312 		/* Do MTU probing. */
2313 		result = tcp_mtu_probe(sk);
2314 		if (!result) {
2315 			return false;
2316 		} else if (result > 0) {
2317 			sent_pkts = 1;
2318 		}
2319 	}
2320 
2321 	max_segs = tcp_tso_segs(sk, mss_now);
2322 	tcp_mstamp_refresh(tp);
2323 	while ((skb = tcp_send_head(sk))) {
2324 		unsigned int limit;
2325 
2326 		if (tcp_pacing_check(sk))
2327 			break;
2328 
2329 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2330 		BUG_ON(!tso_segs);
2331 
2332 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2333 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2334 			tcp_update_skb_after_send(tp, skb);
2335 			goto repair; /* Skip network transmission */
2336 		}
2337 
2338 		cwnd_quota = tcp_cwnd_test(tp, skb);
2339 		if (!cwnd_quota) {
2340 			if (push_one == 2)
2341 				/* Force out a loss probe pkt. */
2342 				cwnd_quota = 1;
2343 			else
2344 				break;
2345 		}
2346 
2347 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2348 			is_rwnd_limited = true;
2349 			break;
2350 		}
2351 
2352 		if (tso_segs == 1) {
2353 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2354 						     (tcp_skb_is_last(sk, skb) ?
2355 						      nonagle : TCP_NAGLE_PUSH))))
2356 				break;
2357 		} else {
2358 			if (!push_one &&
2359 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2360 						 max_segs))
2361 				break;
2362 		}
2363 
2364 		limit = mss_now;
2365 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2366 			limit = tcp_mss_split_point(sk, skb, mss_now,
2367 						    min_t(unsigned int,
2368 							  cwnd_quota,
2369 							  max_segs),
2370 						    nonagle);
2371 
2372 		if (skb->len > limit &&
2373 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2374 					  skb, limit, mss_now, gfp)))
2375 			break;
2376 
2377 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2378 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2379 		if (tcp_small_queue_check(sk, skb, 0))
2380 			break;
2381 
2382 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2383 			break;
2384 
2385 repair:
2386 		/* Advance the send_head.  This one is sent out.
2387 		 * This call will increment packets_out.
2388 		 */
2389 		tcp_event_new_data_sent(sk, skb);
2390 
2391 		tcp_minshall_update(tp, mss_now, skb);
2392 		sent_pkts += tcp_skb_pcount(skb);
2393 
2394 		if (push_one)
2395 			break;
2396 	}
2397 
2398 	if (is_rwnd_limited)
2399 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2400 	else
2401 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2402 
2403 	if (likely(sent_pkts)) {
2404 		if (tcp_in_cwnd_reduction(sk))
2405 			tp->prr_out += sent_pkts;
2406 
2407 		/* Send one loss probe per tail loss episode. */
2408 		if (push_one != 2)
2409 			tcp_schedule_loss_probe(sk);
2410 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2411 		tcp_cwnd_validate(sk, is_cwnd_limited);
2412 		return false;
2413 	}
2414 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2415 }
2416 
2417 bool tcp_schedule_loss_probe(struct sock *sk)
2418 {
2419 	struct inet_connection_sock *icsk = inet_csk(sk);
2420 	struct tcp_sock *tp = tcp_sk(sk);
2421 	u32 timeout, rto_delta_us;
2422 	int early_retrans;
2423 
2424 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2425 	 * finishes.
2426 	 */
2427 	if (tp->fastopen_rsk)
2428 		return false;
2429 
2430 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2431 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2432 	 * in Open state, that are either limited by cwnd or application.
2433 	 */
2434 	if ((early_retrans != 3 && early_retrans != 4) ||
2435 	    !tp->packets_out || !tcp_is_sack(tp) ||
2436 	    icsk->icsk_ca_state != TCP_CA_Open)
2437 		return false;
2438 
2439 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2440 	     !tcp_write_queue_empty(sk))
2441 		return false;
2442 
2443 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2444 	 * for delayed ack when there's one outstanding packet. If no RTT
2445 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2446 	 */
2447 	if (tp->srtt_us) {
2448 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2449 		if (tp->packets_out == 1)
2450 			timeout += TCP_RTO_MIN;
2451 		else
2452 			timeout += TCP_TIMEOUT_MIN;
2453 	} else {
2454 		timeout = TCP_TIMEOUT_INIT;
2455 	}
2456 
2457 	/* If the RTO formula yields an earlier time, then use that time. */
2458 	rto_delta_us = tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2459 	if (rto_delta_us > 0)
2460 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2461 
2462 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2463 				  TCP_RTO_MAX);
2464 	return true;
2465 }
2466 
2467 /* Thanks to skb fast clones, we can detect if a prior transmit of
2468  * a packet is still in a qdisc or driver queue.
2469  * In this case, there is very little point doing a retransmit !
2470  */
2471 static bool skb_still_in_host_queue(const struct sock *sk,
2472 				    const struct sk_buff *skb)
2473 {
2474 	if (unlikely(skb_fclone_busy(sk, skb))) {
2475 		NET_INC_STATS(sock_net(sk),
2476 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2477 		return true;
2478 	}
2479 	return false;
2480 }
2481 
2482 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2483  * retransmit the last segment.
2484  */
2485 void tcp_send_loss_probe(struct sock *sk)
2486 {
2487 	struct tcp_sock *tp = tcp_sk(sk);
2488 	struct sk_buff *skb;
2489 	int pcount;
2490 	int mss = tcp_current_mss(sk);
2491 
2492 	skb = tcp_send_head(sk);
2493 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2494 		pcount = tp->packets_out;
2495 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2496 		if (tp->packets_out > pcount)
2497 			goto probe_sent;
2498 		goto rearm_timer;
2499 	}
2500 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2501 
2502 	/* At most one outstanding TLP retransmission. */
2503 	if (tp->tlp_high_seq)
2504 		goto rearm_timer;
2505 
2506 	/* Retransmit last segment. */
2507 	if (WARN_ON(!skb))
2508 		goto rearm_timer;
2509 
2510 	if (skb_still_in_host_queue(sk, skb))
2511 		goto rearm_timer;
2512 
2513 	pcount = tcp_skb_pcount(skb);
2514 	if (WARN_ON(!pcount))
2515 		goto rearm_timer;
2516 
2517 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2518 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2519 					  (pcount - 1) * mss, mss,
2520 					  GFP_ATOMIC)))
2521 			goto rearm_timer;
2522 		skb = skb_rb_next(skb);
2523 	}
2524 
2525 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2526 		goto rearm_timer;
2527 
2528 	if (__tcp_retransmit_skb(sk, skb, 1))
2529 		goto rearm_timer;
2530 
2531 	/* Record snd_nxt for loss detection. */
2532 	tp->tlp_high_seq = tp->snd_nxt;
2533 
2534 probe_sent:
2535 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2536 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2537 	inet_csk(sk)->icsk_pending = 0;
2538 rearm_timer:
2539 	tcp_rearm_rto(sk);
2540 }
2541 
2542 /* Push out any pending frames which were held back due to
2543  * TCP_CORK or attempt at coalescing tiny packets.
2544  * The socket must be locked by the caller.
2545  */
2546 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2547 			       int nonagle)
2548 {
2549 	/* If we are closed, the bytes will have to remain here.
2550 	 * In time closedown will finish, we empty the write queue and
2551 	 * all will be happy.
2552 	 */
2553 	if (unlikely(sk->sk_state == TCP_CLOSE))
2554 		return;
2555 
2556 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2557 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2558 		tcp_check_probe_timer(sk);
2559 }
2560 
2561 /* Send _single_ skb sitting at the send head. This function requires
2562  * true push pending frames to setup probe timer etc.
2563  */
2564 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2565 {
2566 	struct sk_buff *skb = tcp_send_head(sk);
2567 
2568 	BUG_ON(!skb || skb->len < mss_now);
2569 
2570 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2571 }
2572 
2573 /* This function returns the amount that we can raise the
2574  * usable window based on the following constraints
2575  *
2576  * 1. The window can never be shrunk once it is offered (RFC 793)
2577  * 2. We limit memory per socket
2578  *
2579  * RFC 1122:
2580  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2581  *  RECV.NEXT + RCV.WIN fixed until:
2582  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2583  *
2584  * i.e. don't raise the right edge of the window until you can raise
2585  * it at least MSS bytes.
2586  *
2587  * Unfortunately, the recommended algorithm breaks header prediction,
2588  * since header prediction assumes th->window stays fixed.
2589  *
2590  * Strictly speaking, keeping th->window fixed violates the receiver
2591  * side SWS prevention criteria. The problem is that under this rule
2592  * a stream of single byte packets will cause the right side of the
2593  * window to always advance by a single byte.
2594  *
2595  * Of course, if the sender implements sender side SWS prevention
2596  * then this will not be a problem.
2597  *
2598  * BSD seems to make the following compromise:
2599  *
2600  *	If the free space is less than the 1/4 of the maximum
2601  *	space available and the free space is less than 1/2 mss,
2602  *	then set the window to 0.
2603  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2604  *	Otherwise, just prevent the window from shrinking
2605  *	and from being larger than the largest representable value.
2606  *
2607  * This prevents incremental opening of the window in the regime
2608  * where TCP is limited by the speed of the reader side taking
2609  * data out of the TCP receive queue. It does nothing about
2610  * those cases where the window is constrained on the sender side
2611  * because the pipeline is full.
2612  *
2613  * BSD also seems to "accidentally" limit itself to windows that are a
2614  * multiple of MSS, at least until the free space gets quite small.
2615  * This would appear to be a side effect of the mbuf implementation.
2616  * Combining these two algorithms results in the observed behavior
2617  * of having a fixed window size at almost all times.
2618  *
2619  * Below we obtain similar behavior by forcing the offered window to
2620  * a multiple of the mss when it is feasible to do so.
2621  *
2622  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2623  * Regular options like TIMESTAMP are taken into account.
2624  */
2625 u32 __tcp_select_window(struct sock *sk)
2626 {
2627 	struct inet_connection_sock *icsk = inet_csk(sk);
2628 	struct tcp_sock *tp = tcp_sk(sk);
2629 	/* MSS for the peer's data.  Previous versions used mss_clamp
2630 	 * here.  I don't know if the value based on our guesses
2631 	 * of peer's MSS is better for the performance.  It's more correct
2632 	 * but may be worse for the performance because of rcv_mss
2633 	 * fluctuations.  --SAW  1998/11/1
2634 	 */
2635 	int mss = icsk->icsk_ack.rcv_mss;
2636 	int free_space = tcp_space(sk);
2637 	int allowed_space = tcp_full_space(sk);
2638 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2639 	int window;
2640 
2641 	if (unlikely(mss > full_space)) {
2642 		mss = full_space;
2643 		if (mss <= 0)
2644 			return 0;
2645 	}
2646 	if (free_space < (full_space >> 1)) {
2647 		icsk->icsk_ack.quick = 0;
2648 
2649 		if (tcp_under_memory_pressure(sk))
2650 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2651 					       4U * tp->advmss);
2652 
2653 		/* free_space might become our new window, make sure we don't
2654 		 * increase it due to wscale.
2655 		 */
2656 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2657 
2658 		/* if free space is less than mss estimate, or is below 1/16th
2659 		 * of the maximum allowed, try to move to zero-window, else
2660 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2661 		 * new incoming data is dropped due to memory limits.
2662 		 * With large window, mss test triggers way too late in order
2663 		 * to announce zero window in time before rmem limit kicks in.
2664 		 */
2665 		if (free_space < (allowed_space >> 4) || free_space < mss)
2666 			return 0;
2667 	}
2668 
2669 	if (free_space > tp->rcv_ssthresh)
2670 		free_space = tp->rcv_ssthresh;
2671 
2672 	/* Don't do rounding if we are using window scaling, since the
2673 	 * scaled window will not line up with the MSS boundary anyway.
2674 	 */
2675 	if (tp->rx_opt.rcv_wscale) {
2676 		window = free_space;
2677 
2678 		/* Advertise enough space so that it won't get scaled away.
2679 		 * Import case: prevent zero window announcement if
2680 		 * 1<<rcv_wscale > mss.
2681 		 */
2682 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2683 	} else {
2684 		window = tp->rcv_wnd;
2685 		/* Get the largest window that is a nice multiple of mss.
2686 		 * Window clamp already applied above.
2687 		 * If our current window offering is within 1 mss of the
2688 		 * free space we just keep it. This prevents the divide
2689 		 * and multiply from happening most of the time.
2690 		 * We also don't do any window rounding when the free space
2691 		 * is too small.
2692 		 */
2693 		if (window <= free_space - mss || window > free_space)
2694 			window = rounddown(free_space, mss);
2695 		else if (mss == full_space &&
2696 			 free_space > window + (full_space >> 1))
2697 			window = free_space;
2698 	}
2699 
2700 	return window;
2701 }
2702 
2703 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2704 			     const struct sk_buff *next_skb)
2705 {
2706 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2707 		const struct skb_shared_info *next_shinfo =
2708 			skb_shinfo(next_skb);
2709 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2710 
2711 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2712 		shinfo->tskey = next_shinfo->tskey;
2713 		TCP_SKB_CB(skb)->txstamp_ack |=
2714 			TCP_SKB_CB(next_skb)->txstamp_ack;
2715 	}
2716 }
2717 
2718 /* Collapses two adjacent SKB's during retransmission. */
2719 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2720 {
2721 	struct tcp_sock *tp = tcp_sk(sk);
2722 	struct sk_buff *next_skb = skb_rb_next(skb);
2723 	int skb_size, next_skb_size;
2724 
2725 	skb_size = skb->len;
2726 	next_skb_size = next_skb->len;
2727 
2728 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2729 
2730 	if (next_skb_size) {
2731 		if (next_skb_size <= skb_availroom(skb))
2732 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2733 				      next_skb_size);
2734 		else if (!skb_shift(skb, next_skb, next_skb_size))
2735 			return false;
2736 	}
2737 	tcp_highest_sack_combine(sk, next_skb, skb);
2738 
2739 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2740 		skb->ip_summed = CHECKSUM_PARTIAL;
2741 
2742 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2743 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2744 
2745 	/* Update sequence range on original skb. */
2746 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2747 
2748 	/* Merge over control information. This moves PSH/FIN etc. over */
2749 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2750 
2751 	/* All done, get rid of second SKB and account for it so
2752 	 * packet counting does not break.
2753 	 */
2754 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2755 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2756 
2757 	/* changed transmit queue under us so clear hints */
2758 	tcp_clear_retrans_hints_partial(tp);
2759 	if (next_skb == tp->retransmit_skb_hint)
2760 		tp->retransmit_skb_hint = skb;
2761 
2762 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2763 
2764 	tcp_skb_collapse_tstamp(skb, next_skb);
2765 
2766 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2767 	return true;
2768 }
2769 
2770 /* Check if coalescing SKBs is legal. */
2771 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2772 {
2773 	if (tcp_skb_pcount(skb) > 1)
2774 		return false;
2775 	if (skb_cloned(skb))
2776 		return false;
2777 	/* Some heuristics for collapsing over SACK'd could be invented */
2778 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2779 		return false;
2780 
2781 	return true;
2782 }
2783 
2784 /* Collapse packets in the retransmit queue to make to create
2785  * less packets on the wire. This is only done on retransmission.
2786  */
2787 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2788 				     int space)
2789 {
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 	struct sk_buff *skb = to, *tmp;
2792 	bool first = true;
2793 
2794 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2795 		return;
2796 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2797 		return;
2798 
2799 	skb_rbtree_walk_from_safe(skb, tmp) {
2800 		if (!tcp_can_collapse(sk, skb))
2801 			break;
2802 
2803 		if (!tcp_skb_can_collapse_to(to))
2804 			break;
2805 
2806 		space -= skb->len;
2807 
2808 		if (first) {
2809 			first = false;
2810 			continue;
2811 		}
2812 
2813 		if (space < 0)
2814 			break;
2815 
2816 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2817 			break;
2818 
2819 		if (!tcp_collapse_retrans(sk, to))
2820 			break;
2821 	}
2822 }
2823 
2824 /* This retransmits one SKB.  Policy decisions and retransmit queue
2825  * state updates are done by the caller.  Returns non-zero if an
2826  * error occurred which prevented the send.
2827  */
2828 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2829 {
2830 	struct inet_connection_sock *icsk = inet_csk(sk);
2831 	struct tcp_sock *tp = tcp_sk(sk);
2832 	unsigned int cur_mss;
2833 	int diff, len, err;
2834 
2835 
2836 	/* Inconclusive MTU probe */
2837 	if (icsk->icsk_mtup.probe_size)
2838 		icsk->icsk_mtup.probe_size = 0;
2839 
2840 	/* Do not sent more than we queued. 1/4 is reserved for possible
2841 	 * copying overhead: fragmentation, tunneling, mangling etc.
2842 	 */
2843 	if (refcount_read(&sk->sk_wmem_alloc) >
2844 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2845 		  sk->sk_sndbuf))
2846 		return -EAGAIN;
2847 
2848 	if (skb_still_in_host_queue(sk, skb))
2849 		return -EBUSY;
2850 
2851 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2852 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2853 			BUG();
2854 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2855 			return -ENOMEM;
2856 	}
2857 
2858 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2859 		return -EHOSTUNREACH; /* Routing failure or similar. */
2860 
2861 	cur_mss = tcp_current_mss(sk);
2862 
2863 	/* If receiver has shrunk his window, and skb is out of
2864 	 * new window, do not retransmit it. The exception is the
2865 	 * case, when window is shrunk to zero. In this case
2866 	 * our retransmit serves as a zero window probe.
2867 	 */
2868 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2869 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2870 		return -EAGAIN;
2871 
2872 	len = cur_mss * segs;
2873 	if (skb->len > len) {
2874 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2875 				 cur_mss, GFP_ATOMIC))
2876 			return -ENOMEM; /* We'll try again later. */
2877 	} else {
2878 		if (skb_unclone(skb, GFP_ATOMIC))
2879 			return -ENOMEM;
2880 
2881 		diff = tcp_skb_pcount(skb);
2882 		tcp_set_skb_tso_segs(skb, cur_mss);
2883 		diff -= tcp_skb_pcount(skb);
2884 		if (diff)
2885 			tcp_adjust_pcount(sk, skb, diff);
2886 		if (skb->len < cur_mss)
2887 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2888 	}
2889 
2890 	/* RFC3168, section 6.1.1.1. ECN fallback */
2891 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2892 		tcp_ecn_clear_syn(sk, skb);
2893 
2894 	/* Update global and local TCP statistics. */
2895 	segs = tcp_skb_pcount(skb);
2896 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2897 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2898 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2899 	tp->total_retrans += segs;
2900 
2901 	/* make sure skb->data is aligned on arches that require it
2902 	 * and check if ack-trimming & collapsing extended the headroom
2903 	 * beyond what csum_start can cover.
2904 	 */
2905 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2906 		     skb_headroom(skb) >= 0xFFFF)) {
2907 		struct sk_buff *nskb;
2908 
2909 		tcp_skb_tsorted_save(skb) {
2910 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2911 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2912 				     -ENOBUFS;
2913 		} tcp_skb_tsorted_restore(skb);
2914 
2915 		if (!err)
2916 			tcp_update_skb_after_send(tp, skb);
2917 	} else {
2918 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2919 	}
2920 
2921 	if (likely(!err)) {
2922 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2923 		trace_tcp_retransmit_skb(sk, skb);
2924 	} else if (err != -EBUSY) {
2925 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2926 	}
2927 	return err;
2928 }
2929 
2930 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2931 {
2932 	struct tcp_sock *tp = tcp_sk(sk);
2933 	int err = __tcp_retransmit_skb(sk, skb, segs);
2934 
2935 	if (err == 0) {
2936 #if FASTRETRANS_DEBUG > 0
2937 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2938 			net_dbg_ratelimited("retrans_out leaked\n");
2939 		}
2940 #endif
2941 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2942 		tp->retrans_out += tcp_skb_pcount(skb);
2943 
2944 		/* Save stamp of the first retransmit. */
2945 		if (!tp->retrans_stamp)
2946 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2947 
2948 	}
2949 
2950 	if (tp->undo_retrans < 0)
2951 		tp->undo_retrans = 0;
2952 	tp->undo_retrans += tcp_skb_pcount(skb);
2953 	return err;
2954 }
2955 
2956 /* This gets called after a retransmit timeout, and the initially
2957  * retransmitted data is acknowledged.  It tries to continue
2958  * resending the rest of the retransmit queue, until either
2959  * we've sent it all or the congestion window limit is reached.
2960  * If doing SACK, the first ACK which comes back for a timeout
2961  * based retransmit packet might feed us FACK information again.
2962  * If so, we use it to avoid unnecessarily retransmissions.
2963  */
2964 void tcp_xmit_retransmit_queue(struct sock *sk)
2965 {
2966 	const struct inet_connection_sock *icsk = inet_csk(sk);
2967 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2968 	struct tcp_sock *tp = tcp_sk(sk);
2969 	u32 max_segs;
2970 	int mib_idx;
2971 
2972 	if (!tp->packets_out)
2973 		return;
2974 
2975 	rtx_head = tcp_rtx_queue_head(sk);
2976 	skb = tp->retransmit_skb_hint ?: rtx_head;
2977 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2978 	skb_rbtree_walk_from(skb) {
2979 		__u8 sacked;
2980 		int segs;
2981 
2982 		if (tcp_pacing_check(sk))
2983 			break;
2984 
2985 		/* we could do better than to assign each time */
2986 		if (!hole)
2987 			tp->retransmit_skb_hint = skb;
2988 
2989 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2990 		if (segs <= 0)
2991 			return;
2992 		sacked = TCP_SKB_CB(skb)->sacked;
2993 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2994 		 * we need to make sure not sending too bigs TSO packets
2995 		 */
2996 		segs = min_t(int, segs, max_segs);
2997 
2998 		if (tp->retrans_out >= tp->lost_out) {
2999 			break;
3000 		} else if (!(sacked & TCPCB_LOST)) {
3001 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3002 				hole = skb;
3003 			continue;
3004 
3005 		} else {
3006 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3007 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3008 			else
3009 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3010 		}
3011 
3012 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3013 			continue;
3014 
3015 		if (tcp_small_queue_check(sk, skb, 1))
3016 			return;
3017 
3018 		if (tcp_retransmit_skb(sk, skb, segs))
3019 			return;
3020 
3021 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3022 
3023 		if (tcp_in_cwnd_reduction(sk))
3024 			tp->prr_out += tcp_skb_pcount(skb);
3025 
3026 		if (skb == rtx_head &&
3027 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3028 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3029 						  inet_csk(sk)->icsk_rto,
3030 						  TCP_RTO_MAX);
3031 	}
3032 }
3033 
3034 /* We allow to exceed memory limits for FIN packets to expedite
3035  * connection tear down and (memory) recovery.
3036  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3037  * or even be forced to close flow without any FIN.
3038  * In general, we want to allow one skb per socket to avoid hangs
3039  * with edge trigger epoll()
3040  */
3041 void sk_forced_mem_schedule(struct sock *sk, int size)
3042 {
3043 	int amt;
3044 
3045 	if (size <= sk->sk_forward_alloc)
3046 		return;
3047 	amt = sk_mem_pages(size);
3048 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3049 	sk_memory_allocated_add(sk, amt);
3050 
3051 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3052 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3053 }
3054 
3055 /* Send a FIN. The caller locks the socket for us.
3056  * We should try to send a FIN packet really hard, but eventually give up.
3057  */
3058 void tcp_send_fin(struct sock *sk)
3059 {
3060 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3061 	struct tcp_sock *tp = tcp_sk(sk);
3062 
3063 	/* Optimization, tack on the FIN if we have one skb in write queue and
3064 	 * this skb was not yet sent, or we are under memory pressure.
3065 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3066 	 * as TCP stack thinks it has already been transmitted.
3067 	 */
3068 	if (!tskb && tcp_under_memory_pressure(sk))
3069 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3070 
3071 	if (tskb) {
3072 coalesce:
3073 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3074 		TCP_SKB_CB(tskb)->end_seq++;
3075 		tp->write_seq++;
3076 		if (tcp_write_queue_empty(sk)) {
3077 			/* This means tskb was already sent.
3078 			 * Pretend we included the FIN on previous transmit.
3079 			 * We need to set tp->snd_nxt to the value it would have
3080 			 * if FIN had been sent. This is because retransmit path
3081 			 * does not change tp->snd_nxt.
3082 			 */
3083 			tp->snd_nxt++;
3084 			return;
3085 		}
3086 	} else {
3087 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3088 		if (unlikely(!skb)) {
3089 			if (tskb)
3090 				goto coalesce;
3091 			return;
3092 		}
3093 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3094 		skb_reserve(skb, MAX_TCP_HEADER);
3095 		sk_forced_mem_schedule(sk, skb->truesize);
3096 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3097 		tcp_init_nondata_skb(skb, tp->write_seq,
3098 				     TCPHDR_ACK | TCPHDR_FIN);
3099 		tcp_queue_skb(sk, skb);
3100 	}
3101 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3102 }
3103 
3104 /* We get here when a process closes a file descriptor (either due to
3105  * an explicit close() or as a byproduct of exit()'ing) and there
3106  * was unread data in the receive queue.  This behavior is recommended
3107  * by RFC 2525, section 2.17.  -DaveM
3108  */
3109 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3110 {
3111 	struct sk_buff *skb;
3112 
3113 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3114 
3115 	/* NOTE: No TCP options attached and we never retransmit this. */
3116 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3117 	if (!skb) {
3118 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3119 		return;
3120 	}
3121 
3122 	/* Reserve space for headers and prepare control bits. */
3123 	skb_reserve(skb, MAX_TCP_HEADER);
3124 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3125 			     TCPHDR_ACK | TCPHDR_RST);
3126 	tcp_mstamp_refresh(tcp_sk(sk));
3127 	/* Send it off. */
3128 	if (tcp_transmit_skb(sk, skb, 0, priority))
3129 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3130 
3131 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3132 	 * skb here is different to the troublesome skb, so use NULL
3133 	 */
3134 	trace_tcp_send_reset(sk, NULL);
3135 }
3136 
3137 /* Send a crossed SYN-ACK during socket establishment.
3138  * WARNING: This routine must only be called when we have already sent
3139  * a SYN packet that crossed the incoming SYN that caused this routine
3140  * to get called. If this assumption fails then the initial rcv_wnd
3141  * and rcv_wscale values will not be correct.
3142  */
3143 int tcp_send_synack(struct sock *sk)
3144 {
3145 	struct sk_buff *skb;
3146 
3147 	skb = tcp_rtx_queue_head(sk);
3148 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3149 		pr_err("%s: wrong queue state\n", __func__);
3150 		return -EFAULT;
3151 	}
3152 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3153 		if (skb_cloned(skb)) {
3154 			struct sk_buff *nskb;
3155 
3156 			tcp_skb_tsorted_save(skb) {
3157 				nskb = skb_copy(skb, GFP_ATOMIC);
3158 			} tcp_skb_tsorted_restore(skb);
3159 			if (!nskb)
3160 				return -ENOMEM;
3161 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3162 			tcp_rtx_queue_unlink_and_free(skb, sk);
3163 			__skb_header_release(nskb);
3164 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3165 			sk->sk_wmem_queued += nskb->truesize;
3166 			sk_mem_charge(sk, nskb->truesize);
3167 			skb = nskb;
3168 		}
3169 
3170 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3171 		tcp_ecn_send_synack(sk, skb);
3172 	}
3173 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3174 }
3175 
3176 /**
3177  * tcp_make_synack - Prepare a SYN-ACK.
3178  * sk: listener socket
3179  * dst: dst entry attached to the SYNACK
3180  * req: request_sock pointer
3181  *
3182  * Allocate one skb and build a SYNACK packet.
3183  * @dst is consumed : Caller should not use it again.
3184  */
3185 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3186 				struct request_sock *req,
3187 				struct tcp_fastopen_cookie *foc,
3188 				enum tcp_synack_type synack_type)
3189 {
3190 	struct inet_request_sock *ireq = inet_rsk(req);
3191 	const struct tcp_sock *tp = tcp_sk(sk);
3192 	struct tcp_md5sig_key *md5 = NULL;
3193 	struct tcp_out_options opts;
3194 	struct sk_buff *skb;
3195 	int tcp_header_size;
3196 	struct tcphdr *th;
3197 	int mss;
3198 
3199 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3200 	if (unlikely(!skb)) {
3201 		dst_release(dst);
3202 		return NULL;
3203 	}
3204 	/* Reserve space for headers. */
3205 	skb_reserve(skb, MAX_TCP_HEADER);
3206 
3207 	switch (synack_type) {
3208 	case TCP_SYNACK_NORMAL:
3209 		skb_set_owner_w(skb, req_to_sk(req));
3210 		break;
3211 	case TCP_SYNACK_COOKIE:
3212 		/* Under synflood, we do not attach skb to a socket,
3213 		 * to avoid false sharing.
3214 		 */
3215 		break;
3216 	case TCP_SYNACK_FASTOPEN:
3217 		/* sk is a const pointer, because we want to express multiple
3218 		 * cpu might call us concurrently.
3219 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3220 		 */
3221 		skb_set_owner_w(skb, (struct sock *)sk);
3222 		break;
3223 	}
3224 	skb_dst_set(skb, dst);
3225 
3226 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3227 
3228 	memset(&opts, 0, sizeof(opts));
3229 #ifdef CONFIG_SYN_COOKIES
3230 	if (unlikely(req->cookie_ts))
3231 		skb->skb_mstamp = cookie_init_timestamp(req);
3232 	else
3233 #endif
3234 		skb->skb_mstamp = tcp_clock_us();
3235 
3236 #ifdef CONFIG_TCP_MD5SIG
3237 	rcu_read_lock();
3238 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3239 #endif
3240 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3241 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3242 					     foc) + sizeof(*th);
3243 
3244 	skb_push(skb, tcp_header_size);
3245 	skb_reset_transport_header(skb);
3246 
3247 	th = (struct tcphdr *)skb->data;
3248 	memset(th, 0, sizeof(struct tcphdr));
3249 	th->syn = 1;
3250 	th->ack = 1;
3251 	tcp_ecn_make_synack(req, th);
3252 	th->source = htons(ireq->ir_num);
3253 	th->dest = ireq->ir_rmt_port;
3254 	skb->mark = ireq->ir_mark;
3255 	/* Setting of flags are superfluous here for callers (and ECE is
3256 	 * not even correctly set)
3257 	 */
3258 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3259 			     TCPHDR_SYN | TCPHDR_ACK);
3260 
3261 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3262 	/* XXX data is queued and acked as is. No buffer/window check */
3263 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3264 
3265 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3266 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3267 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3268 	th->doff = (tcp_header_size >> 2);
3269 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3270 
3271 #ifdef CONFIG_TCP_MD5SIG
3272 	/* Okay, we have all we need - do the md5 hash if needed */
3273 	if (md5)
3274 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3275 					       md5, req_to_sk(req), skb);
3276 	rcu_read_unlock();
3277 #endif
3278 
3279 	/* Do not fool tcpdump (if any), clean our debris */
3280 	skb->tstamp = 0;
3281 	return skb;
3282 }
3283 EXPORT_SYMBOL(tcp_make_synack);
3284 
3285 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3286 {
3287 	struct inet_connection_sock *icsk = inet_csk(sk);
3288 	const struct tcp_congestion_ops *ca;
3289 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3290 
3291 	if (ca_key == TCP_CA_UNSPEC)
3292 		return;
3293 
3294 	rcu_read_lock();
3295 	ca = tcp_ca_find_key(ca_key);
3296 	if (likely(ca && try_module_get(ca->owner))) {
3297 		module_put(icsk->icsk_ca_ops->owner);
3298 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3299 		icsk->icsk_ca_ops = ca;
3300 	}
3301 	rcu_read_unlock();
3302 }
3303 
3304 /* Do all connect socket setups that can be done AF independent. */
3305 static void tcp_connect_init(struct sock *sk)
3306 {
3307 	const struct dst_entry *dst = __sk_dst_get(sk);
3308 	struct tcp_sock *tp = tcp_sk(sk);
3309 	__u8 rcv_wscale;
3310 	u32 rcv_wnd;
3311 
3312 	/* We'll fix this up when we get a response from the other end.
3313 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3314 	 */
3315 	tp->tcp_header_len = sizeof(struct tcphdr);
3316 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3317 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3318 
3319 #ifdef CONFIG_TCP_MD5SIG
3320 	if (tp->af_specific->md5_lookup(sk, sk))
3321 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3322 #endif
3323 
3324 	/* If user gave his TCP_MAXSEG, record it to clamp */
3325 	if (tp->rx_opt.user_mss)
3326 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3327 	tp->max_window = 0;
3328 	tcp_mtup_init(sk);
3329 	tcp_sync_mss(sk, dst_mtu(dst));
3330 
3331 	tcp_ca_dst_init(sk, dst);
3332 
3333 	if (!tp->window_clamp)
3334 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3335 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3336 
3337 	tcp_initialize_rcv_mss(sk);
3338 
3339 	/* limit the window selection if the user enforce a smaller rx buffer */
3340 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3341 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3342 		tp->window_clamp = tcp_full_space(sk);
3343 
3344 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3345 	if (rcv_wnd == 0)
3346 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3347 
3348 	tcp_select_initial_window(sk, tcp_full_space(sk),
3349 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3350 				  &tp->rcv_wnd,
3351 				  &tp->window_clamp,
3352 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3353 				  &rcv_wscale,
3354 				  rcv_wnd);
3355 
3356 	tp->rx_opt.rcv_wscale = rcv_wscale;
3357 	tp->rcv_ssthresh = tp->rcv_wnd;
3358 
3359 	sk->sk_err = 0;
3360 	sock_reset_flag(sk, SOCK_DONE);
3361 	tp->snd_wnd = 0;
3362 	tcp_init_wl(tp, 0);
3363 	tp->snd_una = tp->write_seq;
3364 	tp->snd_sml = tp->write_seq;
3365 	tp->snd_up = tp->write_seq;
3366 	tp->snd_nxt = tp->write_seq;
3367 
3368 	if (likely(!tp->repair))
3369 		tp->rcv_nxt = 0;
3370 	else
3371 		tp->rcv_tstamp = tcp_jiffies32;
3372 	tp->rcv_wup = tp->rcv_nxt;
3373 	tp->copied_seq = tp->rcv_nxt;
3374 
3375 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3376 	inet_csk(sk)->icsk_retransmits = 0;
3377 	tcp_clear_retrans(tp);
3378 }
3379 
3380 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3381 {
3382 	struct tcp_sock *tp = tcp_sk(sk);
3383 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3384 
3385 	tcb->end_seq += skb->len;
3386 	__skb_header_release(skb);
3387 	sk->sk_wmem_queued += skb->truesize;
3388 	sk_mem_charge(sk, skb->truesize);
3389 	tp->write_seq = tcb->end_seq;
3390 	tp->packets_out += tcp_skb_pcount(skb);
3391 }
3392 
3393 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3394  * queue a data-only packet after the regular SYN, such that regular SYNs
3395  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3396  * only the SYN sequence, the data are retransmitted in the first ACK.
3397  * If cookie is not cached or other error occurs, falls back to send a
3398  * regular SYN with Fast Open cookie request option.
3399  */
3400 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3401 {
3402 	struct tcp_sock *tp = tcp_sk(sk);
3403 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3404 	int space, err = 0;
3405 	struct sk_buff *syn_data;
3406 
3407 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3408 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3409 		goto fallback;
3410 
3411 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3412 	 * user-MSS. Reserve maximum option space for middleboxes that add
3413 	 * private TCP options. The cost is reduced data space in SYN :(
3414 	 */
3415 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3416 
3417 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3418 		MAX_TCP_OPTION_SPACE;
3419 
3420 	space = min_t(size_t, space, fo->size);
3421 
3422 	/* limit to order-0 allocations */
3423 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3424 
3425 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3426 	if (!syn_data)
3427 		goto fallback;
3428 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3429 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3430 	if (space) {
3431 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3432 					    &fo->data->msg_iter);
3433 		if (unlikely(!copied)) {
3434 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3435 			kfree_skb(syn_data);
3436 			goto fallback;
3437 		}
3438 		if (copied != space) {
3439 			skb_trim(syn_data, copied);
3440 			space = copied;
3441 		}
3442 	}
3443 	/* No more data pending in inet_wait_for_connect() */
3444 	if (space == fo->size)
3445 		fo->data = NULL;
3446 	fo->copied = space;
3447 
3448 	tcp_connect_queue_skb(sk, syn_data);
3449 	if (syn_data->len)
3450 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3451 
3452 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3453 
3454 	syn->skb_mstamp = syn_data->skb_mstamp;
3455 
3456 	/* Now full SYN+DATA was cloned and sent (or not),
3457 	 * remove the SYN from the original skb (syn_data)
3458 	 * we keep in write queue in case of a retransmit, as we
3459 	 * also have the SYN packet (with no data) in the same queue.
3460 	 */
3461 	TCP_SKB_CB(syn_data)->seq++;
3462 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3463 	if (!err) {
3464 		tp->syn_data = (fo->copied > 0);
3465 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3466 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3467 		goto done;
3468 	}
3469 
3470 	/* data was not sent, put it in write_queue */
3471 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3472 	tp->packets_out -= tcp_skb_pcount(syn_data);
3473 
3474 fallback:
3475 	/* Send a regular SYN with Fast Open cookie request option */
3476 	if (fo->cookie.len > 0)
3477 		fo->cookie.len = 0;
3478 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3479 	if (err)
3480 		tp->syn_fastopen = 0;
3481 done:
3482 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3483 	return err;
3484 }
3485 
3486 /* Build a SYN and send it off. */
3487 int tcp_connect(struct sock *sk)
3488 {
3489 	struct tcp_sock *tp = tcp_sk(sk);
3490 	struct sk_buff *buff;
3491 	int err;
3492 
3493 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3494 
3495 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3496 		return -EHOSTUNREACH; /* Routing failure or similar. */
3497 
3498 	tcp_connect_init(sk);
3499 
3500 	if (unlikely(tp->repair)) {
3501 		tcp_finish_connect(sk, NULL);
3502 		return 0;
3503 	}
3504 
3505 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3506 	if (unlikely(!buff))
3507 		return -ENOBUFS;
3508 
3509 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3510 	tcp_mstamp_refresh(tp);
3511 	tp->retrans_stamp = tcp_time_stamp(tp);
3512 	tcp_connect_queue_skb(sk, buff);
3513 	tcp_ecn_send_syn(sk, buff);
3514 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3515 
3516 	/* Send off SYN; include data in Fast Open. */
3517 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3518 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3519 	if (err == -ECONNREFUSED)
3520 		return err;
3521 
3522 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3523 	 * in order to make this packet get counted in tcpOutSegs.
3524 	 */
3525 	tp->snd_nxt = tp->write_seq;
3526 	tp->pushed_seq = tp->write_seq;
3527 	buff = tcp_send_head(sk);
3528 	if (unlikely(buff)) {
3529 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3530 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3531 	}
3532 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3533 
3534 	/* Timer for repeating the SYN until an answer. */
3535 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3536 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3537 	return 0;
3538 }
3539 EXPORT_SYMBOL(tcp_connect);
3540 
3541 /* Send out a delayed ack, the caller does the policy checking
3542  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3543  * for details.
3544  */
3545 void tcp_send_delayed_ack(struct sock *sk)
3546 {
3547 	struct inet_connection_sock *icsk = inet_csk(sk);
3548 	int ato = icsk->icsk_ack.ato;
3549 	unsigned long timeout;
3550 
3551 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3552 
3553 	if (ato > TCP_DELACK_MIN) {
3554 		const struct tcp_sock *tp = tcp_sk(sk);
3555 		int max_ato = HZ / 2;
3556 
3557 		if (icsk->icsk_ack.pingpong ||
3558 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3559 			max_ato = TCP_DELACK_MAX;
3560 
3561 		/* Slow path, intersegment interval is "high". */
3562 
3563 		/* If some rtt estimate is known, use it to bound delayed ack.
3564 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3565 		 * directly.
3566 		 */
3567 		if (tp->srtt_us) {
3568 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3569 					TCP_DELACK_MIN);
3570 
3571 			if (rtt < max_ato)
3572 				max_ato = rtt;
3573 		}
3574 
3575 		ato = min(ato, max_ato);
3576 	}
3577 
3578 	/* Stay within the limit we were given */
3579 	timeout = jiffies + ato;
3580 
3581 	/* Use new timeout only if there wasn't a older one earlier. */
3582 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3583 		/* If delack timer was blocked or is about to expire,
3584 		 * send ACK now.
3585 		 */
3586 		if (icsk->icsk_ack.blocked ||
3587 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3588 			tcp_send_ack(sk);
3589 			return;
3590 		}
3591 
3592 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3593 			timeout = icsk->icsk_ack.timeout;
3594 	}
3595 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3596 	icsk->icsk_ack.timeout = timeout;
3597 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3598 }
3599 
3600 /* This routine sends an ack and also updates the window. */
3601 void tcp_send_ack(struct sock *sk)
3602 {
3603 	struct sk_buff *buff;
3604 
3605 	/* If we have been reset, we may not send again. */
3606 	if (sk->sk_state == TCP_CLOSE)
3607 		return;
3608 
3609 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3610 
3611 	/* We are not putting this on the write queue, so
3612 	 * tcp_transmit_skb() will set the ownership to this
3613 	 * sock.
3614 	 */
3615 	buff = alloc_skb(MAX_TCP_HEADER,
3616 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3617 	if (unlikely(!buff)) {
3618 		inet_csk_schedule_ack(sk);
3619 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3620 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3621 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3622 		return;
3623 	}
3624 
3625 	/* Reserve space for headers and prepare control bits. */
3626 	skb_reserve(buff, MAX_TCP_HEADER);
3627 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3628 
3629 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3630 	 * too much.
3631 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3632 	 */
3633 	skb_set_tcp_pure_ack(buff);
3634 
3635 	/* Send it off, this clears delayed acks for us. */
3636 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3637 }
3638 EXPORT_SYMBOL_GPL(tcp_send_ack);
3639 
3640 /* This routine sends a packet with an out of date sequence
3641  * number. It assumes the other end will try to ack it.
3642  *
3643  * Question: what should we make while urgent mode?
3644  * 4.4BSD forces sending single byte of data. We cannot send
3645  * out of window data, because we have SND.NXT==SND.MAX...
3646  *
3647  * Current solution: to send TWO zero-length segments in urgent mode:
3648  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3649  * out-of-date with SND.UNA-1 to probe window.
3650  */
3651 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3652 {
3653 	struct tcp_sock *tp = tcp_sk(sk);
3654 	struct sk_buff *skb;
3655 
3656 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3657 	skb = alloc_skb(MAX_TCP_HEADER,
3658 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3659 	if (!skb)
3660 		return -1;
3661 
3662 	/* Reserve space for headers and set control bits. */
3663 	skb_reserve(skb, MAX_TCP_HEADER);
3664 	/* Use a previous sequence.  This should cause the other
3665 	 * end to send an ack.  Don't queue or clone SKB, just
3666 	 * send it.
3667 	 */
3668 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3669 	NET_INC_STATS(sock_net(sk), mib);
3670 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3671 }
3672 
3673 /* Called from setsockopt( ... TCP_REPAIR ) */
3674 void tcp_send_window_probe(struct sock *sk)
3675 {
3676 	if (sk->sk_state == TCP_ESTABLISHED) {
3677 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3678 		tcp_mstamp_refresh(tcp_sk(sk));
3679 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3680 	}
3681 }
3682 
3683 /* Initiate keepalive or window probe from timer. */
3684 int tcp_write_wakeup(struct sock *sk, int mib)
3685 {
3686 	struct tcp_sock *tp = tcp_sk(sk);
3687 	struct sk_buff *skb;
3688 
3689 	if (sk->sk_state == TCP_CLOSE)
3690 		return -1;
3691 
3692 	skb = tcp_send_head(sk);
3693 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3694 		int err;
3695 		unsigned int mss = tcp_current_mss(sk);
3696 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3697 
3698 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3699 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3700 
3701 		/* We are probing the opening of a window
3702 		 * but the window size is != 0
3703 		 * must have been a result SWS avoidance ( sender )
3704 		 */
3705 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3706 		    skb->len > mss) {
3707 			seg_size = min(seg_size, mss);
3708 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3709 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3710 					 skb, seg_size, mss, GFP_ATOMIC))
3711 				return -1;
3712 		} else if (!tcp_skb_pcount(skb))
3713 			tcp_set_skb_tso_segs(skb, mss);
3714 
3715 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3716 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3717 		if (!err)
3718 			tcp_event_new_data_sent(sk, skb);
3719 		return err;
3720 	} else {
3721 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3722 			tcp_xmit_probe_skb(sk, 1, mib);
3723 		return tcp_xmit_probe_skb(sk, 0, mib);
3724 	}
3725 }
3726 
3727 /* A window probe timeout has occurred.  If window is not closed send
3728  * a partial packet else a zero probe.
3729  */
3730 void tcp_send_probe0(struct sock *sk)
3731 {
3732 	struct inet_connection_sock *icsk = inet_csk(sk);
3733 	struct tcp_sock *tp = tcp_sk(sk);
3734 	struct net *net = sock_net(sk);
3735 	unsigned long probe_max;
3736 	int err;
3737 
3738 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3739 
3740 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3741 		/* Cancel probe timer, if it is not required. */
3742 		icsk->icsk_probes_out = 0;
3743 		icsk->icsk_backoff = 0;
3744 		return;
3745 	}
3746 
3747 	if (err <= 0) {
3748 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3749 			icsk->icsk_backoff++;
3750 		icsk->icsk_probes_out++;
3751 		probe_max = TCP_RTO_MAX;
3752 	} else {
3753 		/* If packet was not sent due to local congestion,
3754 		 * do not backoff and do not remember icsk_probes_out.
3755 		 * Let local senders to fight for local resources.
3756 		 *
3757 		 * Use accumulated backoff yet.
3758 		 */
3759 		if (!icsk->icsk_probes_out)
3760 			icsk->icsk_probes_out = 1;
3761 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3762 	}
3763 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3764 				  tcp_probe0_when(sk, probe_max),
3765 				  TCP_RTO_MAX);
3766 }
3767 
3768 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3769 {
3770 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3771 	struct flowi fl;
3772 	int res;
3773 
3774 	tcp_rsk(req)->txhash = net_tx_rndhash();
3775 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3776 	if (!res) {
3777 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3778 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3779 		if (unlikely(tcp_passive_fastopen(sk)))
3780 			tcp_sk(sk)->total_retrans++;
3781 	}
3782 	return res;
3783 }
3784 EXPORT_SYMBOL(tcp_rtx_synack);
3785