xref: /openbmc/linux/net/ipv4/tcp_output.c (revision a842fe1425cb20f457abd3f8ef98b468f83ca98b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 
42 #include <linux/compiler.h>
43 #include <linux/gfp.h>
44 #include <linux/module.h>
45 #include <linux/static_key.h>
46 
47 #include <trace/events/tcp.h>
48 
49 /* Refresh clocks of a TCP socket,
50  * ensuring monotically increasing values.
51  */
52 void tcp_mstamp_refresh(struct tcp_sock *tp)
53 {
54 	u64 val = tcp_clock_ns();
55 
56 	tp->tcp_clock_cache = val;
57 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
58 }
59 
60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
61 			   int push_one, gfp_t gfp);
62 
63 /* Account for new data that has been sent to the network. */
64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
65 {
66 	struct inet_connection_sock *icsk = inet_csk(sk);
67 	struct tcp_sock *tp = tcp_sk(sk);
68 	unsigned int prior_packets = tp->packets_out;
69 
70 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
71 
72 	__skb_unlink(skb, &sk->sk_write_queue);
73 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
74 
75 	tp->packets_out += tcp_skb_pcount(skb);
76 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
77 		tcp_rearm_rto(sk);
78 
79 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
80 		      tcp_skb_pcount(skb));
81 }
82 
83 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
84  * window scaling factor due to loss of precision.
85  * If window has been shrunk, what should we make? It is not clear at all.
86  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
87  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
88  * invalid. OK, let's make this for now:
89  */
90 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
91 {
92 	const struct tcp_sock *tp = tcp_sk(sk);
93 
94 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
95 	    (tp->rx_opt.wscale_ok &&
96 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
97 		return tp->snd_nxt;
98 	else
99 		return tcp_wnd_end(tp);
100 }
101 
102 /* Calculate mss to advertise in SYN segment.
103  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
104  *
105  * 1. It is independent of path mtu.
106  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
107  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
108  *    attached devices, because some buggy hosts are confused by
109  *    large MSS.
110  * 4. We do not make 3, we advertise MSS, calculated from first
111  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
112  *    This may be overridden via information stored in routing table.
113  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
114  *    probably even Jumbo".
115  */
116 static __u16 tcp_advertise_mss(struct sock *sk)
117 {
118 	struct tcp_sock *tp = tcp_sk(sk);
119 	const struct dst_entry *dst = __sk_dst_get(sk);
120 	int mss = tp->advmss;
121 
122 	if (dst) {
123 		unsigned int metric = dst_metric_advmss(dst);
124 
125 		if (metric < mss) {
126 			mss = metric;
127 			tp->advmss = mss;
128 		}
129 	}
130 
131 	return (__u16)mss;
132 }
133 
134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
135  * This is the first part of cwnd validation mechanism.
136  */
137 void tcp_cwnd_restart(struct sock *sk, s32 delta)
138 {
139 	struct tcp_sock *tp = tcp_sk(sk);
140 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
141 	u32 cwnd = tp->snd_cwnd;
142 
143 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
144 
145 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
146 	restart_cwnd = min(restart_cwnd, cwnd);
147 
148 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
149 		cwnd >>= 1;
150 	tp->snd_cwnd = max(cwnd, restart_cwnd);
151 	tp->snd_cwnd_stamp = tcp_jiffies32;
152 	tp->snd_cwnd_used = 0;
153 }
154 
155 /* Congestion state accounting after a packet has been sent. */
156 static void tcp_event_data_sent(struct tcp_sock *tp,
157 				struct sock *sk)
158 {
159 	struct inet_connection_sock *icsk = inet_csk(sk);
160 	const u32 now = tcp_jiffies32;
161 
162 	if (tcp_packets_in_flight(tp) == 0)
163 		tcp_ca_event(sk, CA_EVENT_TX_START);
164 
165 	/* If this is the first data packet sent in response to the
166 	 * previous received data,
167 	 * and it is a reply for ato after last received packet,
168 	 * increase pingpong count.
169 	 */
170 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
171 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
172 		inet_csk_inc_pingpong_cnt(sk);
173 
174 	tp->lsndtime = now;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 				      u32 rcv_nxt)
180 {
181 	struct tcp_sock *tp = tcp_sk(sk);
182 
183 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
184 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
185 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
186 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
187 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
188 			__sock_put(sk);
189 	}
190 
191 	if (unlikely(rcv_nxt != tp->rcv_nxt))
192 		return;  /* Special ACK sent by DCTCP to reflect ECN */
193 	tcp_dec_quickack_mode(sk, pkts);
194 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
195 }
196 
197 /* Determine a window scaling and initial window to offer.
198  * Based on the assumption that the given amount of space
199  * will be offered. Store the results in the tp structure.
200  * NOTE: for smooth operation initial space offering should
201  * be a multiple of mss if possible. We assume here that mss >= 1.
202  * This MUST be enforced by all callers.
203  */
204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
205 			       __u32 *rcv_wnd, __u32 *window_clamp,
206 			       int wscale_ok, __u8 *rcv_wscale,
207 			       __u32 init_rcv_wnd)
208 {
209 	unsigned int space = (__space < 0 ? 0 : __space);
210 
211 	/* If no clamp set the clamp to the max possible scaled window */
212 	if (*window_clamp == 0)
213 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
214 	space = min(*window_clamp, space);
215 
216 	/* Quantize space offering to a multiple of mss if possible. */
217 	if (space > mss)
218 		space = rounddown(space, mss);
219 
220 	/* NOTE: offering an initial window larger than 32767
221 	 * will break some buggy TCP stacks. If the admin tells us
222 	 * it is likely we could be speaking with such a buggy stack
223 	 * we will truncate our initial window offering to 32K-1
224 	 * unless the remote has sent us a window scaling option,
225 	 * which we interpret as a sign the remote TCP is not
226 	 * misinterpreting the window field as a signed quantity.
227 	 */
228 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
229 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
230 	else
231 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
232 
233 	if (init_rcv_wnd)
234 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
235 
236 	*rcv_wscale = 0;
237 	if (wscale_ok) {
238 		/* Set window scaling on max possible window */
239 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
240 		space = max_t(u32, space, sysctl_rmem_max);
241 		space = min_t(u32, space, *window_clamp);
242 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
243 				      0, TCP_MAX_WSCALE);
244 	}
245 	/* Set the clamp no higher than max representable value */
246 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
247 }
248 EXPORT_SYMBOL(tcp_select_initial_window);
249 
250 /* Chose a new window to advertise, update state in tcp_sock for the
251  * socket, and return result with RFC1323 scaling applied.  The return
252  * value can be stuffed directly into th->window for an outgoing
253  * frame.
254  */
255 static u16 tcp_select_window(struct sock *sk)
256 {
257 	struct tcp_sock *tp = tcp_sk(sk);
258 	u32 old_win = tp->rcv_wnd;
259 	u32 cur_win = tcp_receive_window(tp);
260 	u32 new_win = __tcp_select_window(sk);
261 
262 	/* Never shrink the offered window */
263 	if (new_win < cur_win) {
264 		/* Danger Will Robinson!
265 		 * Don't update rcv_wup/rcv_wnd here or else
266 		 * we will not be able to advertise a zero
267 		 * window in time.  --DaveM
268 		 *
269 		 * Relax Will Robinson.
270 		 */
271 		if (new_win == 0)
272 			NET_INC_STATS(sock_net(sk),
273 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
274 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
275 	}
276 	tp->rcv_wnd = new_win;
277 	tp->rcv_wup = tp->rcv_nxt;
278 
279 	/* Make sure we do not exceed the maximum possible
280 	 * scaled window.
281 	 */
282 	if (!tp->rx_opt.rcv_wscale &&
283 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
284 		new_win = min(new_win, MAX_TCP_WINDOW);
285 	else
286 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
287 
288 	/* RFC1323 scaling applied */
289 	new_win >>= tp->rx_opt.rcv_wscale;
290 
291 	/* If we advertise zero window, disable fast path. */
292 	if (new_win == 0) {
293 		tp->pred_flags = 0;
294 		if (old_win)
295 			NET_INC_STATS(sock_net(sk),
296 				      LINUX_MIB_TCPTOZEROWINDOWADV);
297 	} else if (old_win == 0) {
298 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
299 	}
300 
301 	return new_win;
302 }
303 
304 /* Packet ECN state for a SYN-ACK */
305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
306 {
307 	const struct tcp_sock *tp = tcp_sk(sk);
308 
309 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
310 	if (!(tp->ecn_flags & TCP_ECN_OK))
311 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
312 	else if (tcp_ca_needs_ecn(sk) ||
313 		 tcp_bpf_ca_needs_ecn(sk))
314 		INET_ECN_xmit(sk);
315 }
316 
317 /* Packet ECN state for a SYN.  */
318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
319 {
320 	struct tcp_sock *tp = tcp_sk(sk);
321 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
322 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
323 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
324 
325 	if (!use_ecn) {
326 		const struct dst_entry *dst = __sk_dst_get(sk);
327 
328 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
329 			use_ecn = true;
330 	}
331 
332 	tp->ecn_flags = 0;
333 
334 	if (use_ecn) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
338 			INET_ECN_xmit(sk);
339 	}
340 }
341 
342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
345 		/* tp->ecn_flags are cleared at a later point in time when
346 		 * SYN ACK is ultimatively being received.
347 		 */
348 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
349 }
350 
351 static void
352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
353 {
354 	if (inet_rsk(req)->ecn_ok)
355 		th->ece = 1;
356 }
357 
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359  * be sent.
360  */
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 			 struct tcphdr *th, int tcp_header_len)
363 {
364 	struct tcp_sock *tp = tcp_sk(sk);
365 
366 	if (tp->ecn_flags & TCP_ECN_OK) {
367 		/* Not-retransmitted data segment: set ECT and inject CWR. */
368 		if (skb->len != tcp_header_len &&
369 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 			INET_ECN_xmit(sk);
371 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 				th->cwr = 1;
374 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 			}
376 		} else if (!tcp_ca_needs_ecn(sk)) {
377 			/* ACK or retransmitted segment: clear ECT|CE */
378 			INET_ECN_dontxmit(sk);
379 		}
380 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 			th->ece = 1;
382 	}
383 }
384 
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386  * auto increment end seqno.
387  */
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 	skb->ip_summed = CHECKSUM_PARTIAL;
391 
392 	TCP_SKB_CB(skb)->tcp_flags = flags;
393 	TCP_SKB_CB(skb)->sacked = 0;
394 
395 	tcp_skb_pcount_set(skb, 1);
396 
397 	TCP_SKB_CB(skb)->seq = seq;
398 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
399 		seq++;
400 	TCP_SKB_CB(skb)->end_seq = seq;
401 }
402 
403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
404 {
405 	return tp->snd_una != tp->snd_up;
406 }
407 
408 #define OPTION_SACK_ADVERTISE	(1 << 0)
409 #define OPTION_TS		(1 << 1)
410 #define OPTION_MD5		(1 << 2)
411 #define OPTION_WSCALE		(1 << 3)
412 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
413 #define OPTION_SMC		(1 << 9)
414 
415 static void smc_options_write(__be32 *ptr, u16 *options)
416 {
417 #if IS_ENABLED(CONFIG_SMC)
418 	if (static_branch_unlikely(&tcp_have_smc)) {
419 		if (unlikely(OPTION_SMC & *options)) {
420 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
421 				       (TCPOPT_NOP  << 16) |
422 				       (TCPOPT_EXP <<  8) |
423 				       (TCPOLEN_EXP_SMC_BASE));
424 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
425 		}
426 	}
427 #endif
428 }
429 
430 struct tcp_out_options {
431 	u16 options;		/* bit field of OPTION_* */
432 	u16 mss;		/* 0 to disable */
433 	u8 ws;			/* window scale, 0 to disable */
434 	u8 num_sack_blocks;	/* number of SACK blocks to include */
435 	u8 hash_size;		/* bytes in hash_location */
436 	__u8 *hash_location;	/* temporary pointer, overloaded */
437 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
438 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
439 };
440 
441 /* Write previously computed TCP options to the packet.
442  *
443  * Beware: Something in the Internet is very sensitive to the ordering of
444  * TCP options, we learned this through the hard way, so be careful here.
445  * Luckily we can at least blame others for their non-compliance but from
446  * inter-operability perspective it seems that we're somewhat stuck with
447  * the ordering which we have been using if we want to keep working with
448  * those broken things (not that it currently hurts anybody as there isn't
449  * particular reason why the ordering would need to be changed).
450  *
451  * At least SACK_PERM as the first option is known to lead to a disaster
452  * (but it may well be that other scenarios fail similarly).
453  */
454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
455 			      struct tcp_out_options *opts)
456 {
457 	u16 options = opts->options;	/* mungable copy */
458 
459 	if (unlikely(OPTION_MD5 & options)) {
460 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
461 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
462 		/* overload cookie hash location */
463 		opts->hash_location = (__u8 *)ptr;
464 		ptr += 4;
465 	}
466 
467 	if (unlikely(opts->mss)) {
468 		*ptr++ = htonl((TCPOPT_MSS << 24) |
469 			       (TCPOLEN_MSS << 16) |
470 			       opts->mss);
471 	}
472 
473 	if (likely(OPTION_TS & options)) {
474 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 				       (TCPOLEN_SACK_PERM << 16) |
477 				       (TCPOPT_TIMESTAMP << 8) |
478 				       TCPOLEN_TIMESTAMP);
479 			options &= ~OPTION_SACK_ADVERTISE;
480 		} else {
481 			*ptr++ = htonl((TCPOPT_NOP << 24) |
482 				       (TCPOPT_NOP << 16) |
483 				       (TCPOPT_TIMESTAMP << 8) |
484 				       TCPOLEN_TIMESTAMP);
485 		}
486 		*ptr++ = htonl(opts->tsval);
487 		*ptr++ = htonl(opts->tsecr);
488 	}
489 
490 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
491 		*ptr++ = htonl((TCPOPT_NOP << 24) |
492 			       (TCPOPT_NOP << 16) |
493 			       (TCPOPT_SACK_PERM << 8) |
494 			       TCPOLEN_SACK_PERM);
495 	}
496 
497 	if (unlikely(OPTION_WSCALE & options)) {
498 		*ptr++ = htonl((TCPOPT_NOP << 24) |
499 			       (TCPOPT_WINDOW << 16) |
500 			       (TCPOLEN_WINDOW << 8) |
501 			       opts->ws);
502 	}
503 
504 	if (unlikely(opts->num_sack_blocks)) {
505 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
506 			tp->duplicate_sack : tp->selective_acks;
507 		int this_sack;
508 
509 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
510 			       (TCPOPT_NOP  << 16) |
511 			       (TCPOPT_SACK <<  8) |
512 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
513 						     TCPOLEN_SACK_PERBLOCK)));
514 
515 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
516 		     ++this_sack) {
517 			*ptr++ = htonl(sp[this_sack].start_seq);
518 			*ptr++ = htonl(sp[this_sack].end_seq);
519 		}
520 
521 		tp->rx_opt.dsack = 0;
522 	}
523 
524 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
525 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
526 		u8 *p = (u8 *)ptr;
527 		u32 len; /* Fast Open option length */
528 
529 		if (foc->exp) {
530 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
531 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
532 				     TCPOPT_FASTOPEN_MAGIC);
533 			p += TCPOLEN_EXP_FASTOPEN_BASE;
534 		} else {
535 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
536 			*p++ = TCPOPT_FASTOPEN;
537 			*p++ = len;
538 		}
539 
540 		memcpy(p, foc->val, foc->len);
541 		if ((len & 3) == 2) {
542 			p[foc->len] = TCPOPT_NOP;
543 			p[foc->len + 1] = TCPOPT_NOP;
544 		}
545 		ptr += (len + 3) >> 2;
546 	}
547 
548 	smc_options_write(ptr, &options);
549 }
550 
551 static void smc_set_option(const struct tcp_sock *tp,
552 			   struct tcp_out_options *opts,
553 			   unsigned int *remaining)
554 {
555 #if IS_ENABLED(CONFIG_SMC)
556 	if (static_branch_unlikely(&tcp_have_smc)) {
557 		if (tp->syn_smc) {
558 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
559 				opts->options |= OPTION_SMC;
560 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
561 			}
562 		}
563 	}
564 #endif
565 }
566 
567 static void smc_set_option_cond(const struct tcp_sock *tp,
568 				const struct inet_request_sock *ireq,
569 				struct tcp_out_options *opts,
570 				unsigned int *remaining)
571 {
572 #if IS_ENABLED(CONFIG_SMC)
573 	if (static_branch_unlikely(&tcp_have_smc)) {
574 		if (tp->syn_smc && ireq->smc_ok) {
575 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
576 				opts->options |= OPTION_SMC;
577 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
578 			}
579 		}
580 	}
581 #endif
582 }
583 
584 /* Compute TCP options for SYN packets. This is not the final
585  * network wire format yet.
586  */
587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
588 				struct tcp_out_options *opts,
589 				struct tcp_md5sig_key **md5)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
593 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
594 
595 	*md5 = NULL;
596 #ifdef CONFIG_TCP_MD5SIG
597 	if (static_branch_unlikely(&tcp_md5_needed) &&
598 	    rcu_access_pointer(tp->md5sig_info)) {
599 		*md5 = tp->af_specific->md5_lookup(sk, sk);
600 		if (*md5) {
601 			opts->options |= OPTION_MD5;
602 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
603 		}
604 	}
605 #endif
606 
607 	/* We always get an MSS option.  The option bytes which will be seen in
608 	 * normal data packets should timestamps be used, must be in the MSS
609 	 * advertised.  But we subtract them from tp->mss_cache so that
610 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
611 	 * fact here if necessary.  If we don't do this correctly, as a
612 	 * receiver we won't recognize data packets as being full sized when we
613 	 * should, and thus we won't abide by the delayed ACK rules correctly.
614 	 * SACKs don't matter, we never delay an ACK when we have any of those
615 	 * going out.  */
616 	opts->mss = tcp_advertise_mss(sk);
617 	remaining -= TCPOLEN_MSS_ALIGNED;
618 
619 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
620 		opts->options |= OPTION_TS;
621 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
622 		opts->tsecr = tp->rx_opt.ts_recent;
623 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 	}
625 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
626 		opts->ws = tp->rx_opt.rcv_wscale;
627 		opts->options |= OPTION_WSCALE;
628 		remaining -= TCPOLEN_WSCALE_ALIGNED;
629 	}
630 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
631 		opts->options |= OPTION_SACK_ADVERTISE;
632 		if (unlikely(!(OPTION_TS & opts->options)))
633 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
634 	}
635 
636 	if (fastopen && fastopen->cookie.len >= 0) {
637 		u32 need = fastopen->cookie.len;
638 
639 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
640 					       TCPOLEN_FASTOPEN_BASE;
641 		need = (need + 3) & ~3U;  /* Align to 32 bits */
642 		if (remaining >= need) {
643 			opts->options |= OPTION_FAST_OPEN_COOKIE;
644 			opts->fastopen_cookie = &fastopen->cookie;
645 			remaining -= need;
646 			tp->syn_fastopen = 1;
647 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
648 		}
649 	}
650 
651 	smc_set_option(tp, opts, &remaining);
652 
653 	return MAX_TCP_OPTION_SPACE - remaining;
654 }
655 
656 /* Set up TCP options for SYN-ACKs. */
657 static unsigned int tcp_synack_options(const struct sock *sk,
658 				       struct request_sock *req,
659 				       unsigned int mss, struct sk_buff *skb,
660 				       struct tcp_out_options *opts,
661 				       const struct tcp_md5sig_key *md5,
662 				       struct tcp_fastopen_cookie *foc)
663 {
664 	struct inet_request_sock *ireq = inet_rsk(req);
665 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
666 
667 #ifdef CONFIG_TCP_MD5SIG
668 	if (md5) {
669 		opts->options |= OPTION_MD5;
670 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
671 
672 		/* We can't fit any SACK blocks in a packet with MD5 + TS
673 		 * options. There was discussion about disabling SACK
674 		 * rather than TS in order to fit in better with old,
675 		 * buggy kernels, but that was deemed to be unnecessary.
676 		 */
677 		ireq->tstamp_ok &= !ireq->sack_ok;
678 	}
679 #endif
680 
681 	/* We always send an MSS option. */
682 	opts->mss = mss;
683 	remaining -= TCPOLEN_MSS_ALIGNED;
684 
685 	if (likely(ireq->wscale_ok)) {
686 		opts->ws = ireq->rcv_wscale;
687 		opts->options |= OPTION_WSCALE;
688 		remaining -= TCPOLEN_WSCALE_ALIGNED;
689 	}
690 	if (likely(ireq->tstamp_ok)) {
691 		opts->options |= OPTION_TS;
692 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
693 		opts->tsecr = req->ts_recent;
694 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 	if (likely(ireq->sack_ok)) {
697 		opts->options |= OPTION_SACK_ADVERTISE;
698 		if (unlikely(!ireq->tstamp_ok))
699 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
700 	}
701 	if (foc != NULL && foc->len >= 0) {
702 		u32 need = foc->len;
703 
704 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
705 				   TCPOLEN_FASTOPEN_BASE;
706 		need = (need + 3) & ~3U;  /* Align to 32 bits */
707 		if (remaining >= need) {
708 			opts->options |= OPTION_FAST_OPEN_COOKIE;
709 			opts->fastopen_cookie = foc;
710 			remaining -= need;
711 		}
712 	}
713 
714 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
715 
716 	return MAX_TCP_OPTION_SPACE - remaining;
717 }
718 
719 /* Compute TCP options for ESTABLISHED sockets. This is not the
720  * final wire format yet.
721  */
722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
723 					struct tcp_out_options *opts,
724 					struct tcp_md5sig_key **md5)
725 {
726 	struct tcp_sock *tp = tcp_sk(sk);
727 	unsigned int size = 0;
728 	unsigned int eff_sacks;
729 
730 	opts->options = 0;
731 
732 	*md5 = NULL;
733 #ifdef CONFIG_TCP_MD5SIG
734 	if (static_branch_unlikely(&tcp_md5_needed) &&
735 	    rcu_access_pointer(tp->md5sig_info)) {
736 		*md5 = tp->af_specific->md5_lookup(sk, sk);
737 		if (*md5) {
738 			opts->options |= OPTION_MD5;
739 			size += TCPOLEN_MD5SIG_ALIGNED;
740 		}
741 	}
742 #endif
743 
744 	if (likely(tp->rx_opt.tstamp_ok)) {
745 		opts->options |= OPTION_TS;
746 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
747 		opts->tsecr = tp->rx_opt.ts_recent;
748 		size += TCPOLEN_TSTAMP_ALIGNED;
749 	}
750 
751 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
752 	if (unlikely(eff_sacks)) {
753 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
754 		opts->num_sack_blocks =
755 			min_t(unsigned int, eff_sacks,
756 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
757 			      TCPOLEN_SACK_PERBLOCK);
758 		size += TCPOLEN_SACK_BASE_ALIGNED +
759 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
760 	}
761 
762 	return size;
763 }
764 
765 
766 /* TCP SMALL QUEUES (TSQ)
767  *
768  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
769  * to reduce RTT and bufferbloat.
770  * We do this using a special skb destructor (tcp_wfree).
771  *
772  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
773  * needs to be reallocated in a driver.
774  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
775  *
776  * Since transmit from skb destructor is forbidden, we use a tasklet
777  * to process all sockets that eventually need to send more skbs.
778  * We use one tasklet per cpu, with its own queue of sockets.
779  */
780 struct tsq_tasklet {
781 	struct tasklet_struct	tasklet;
782 	struct list_head	head; /* queue of tcp sockets */
783 };
784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
785 
786 static void tcp_tsq_write(struct sock *sk)
787 {
788 	if ((1 << sk->sk_state) &
789 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
790 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
791 		struct tcp_sock *tp = tcp_sk(sk);
792 
793 		if (tp->lost_out > tp->retrans_out &&
794 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
795 			tcp_mstamp_refresh(tp);
796 			tcp_xmit_retransmit_queue(sk);
797 		}
798 
799 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
800 			       0, GFP_ATOMIC);
801 	}
802 }
803 
804 static void tcp_tsq_handler(struct sock *sk)
805 {
806 	bh_lock_sock(sk);
807 	if (!sock_owned_by_user(sk))
808 		tcp_tsq_write(sk);
809 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
810 		sock_hold(sk);
811 	bh_unlock_sock(sk);
812 }
813 /*
814  * One tasklet per cpu tries to send more skbs.
815  * We run in tasklet context but need to disable irqs when
816  * transferring tsq->head because tcp_wfree() might
817  * interrupt us (non NAPI drivers)
818  */
819 static void tcp_tasklet_func(unsigned long data)
820 {
821 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
822 	LIST_HEAD(list);
823 	unsigned long flags;
824 	struct list_head *q, *n;
825 	struct tcp_sock *tp;
826 	struct sock *sk;
827 
828 	local_irq_save(flags);
829 	list_splice_init(&tsq->head, &list);
830 	local_irq_restore(flags);
831 
832 	list_for_each_safe(q, n, &list) {
833 		tp = list_entry(q, struct tcp_sock, tsq_node);
834 		list_del(&tp->tsq_node);
835 
836 		sk = (struct sock *)tp;
837 		smp_mb__before_atomic();
838 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
839 
840 		tcp_tsq_handler(sk);
841 		sk_free(sk);
842 	}
843 }
844 
845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
846 			  TCPF_WRITE_TIMER_DEFERRED |	\
847 			  TCPF_DELACK_TIMER_DEFERRED |	\
848 			  TCPF_MTU_REDUCED_DEFERRED)
849 /**
850  * tcp_release_cb - tcp release_sock() callback
851  * @sk: socket
852  *
853  * called from release_sock() to perform protocol dependent
854  * actions before socket release.
855  */
856 void tcp_release_cb(struct sock *sk)
857 {
858 	unsigned long flags, nflags;
859 
860 	/* perform an atomic operation only if at least one flag is set */
861 	do {
862 		flags = sk->sk_tsq_flags;
863 		if (!(flags & TCP_DEFERRED_ALL))
864 			return;
865 		nflags = flags & ~TCP_DEFERRED_ALL;
866 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
867 
868 	if (flags & TCPF_TSQ_DEFERRED) {
869 		tcp_tsq_write(sk);
870 		__sock_put(sk);
871 	}
872 	/* Here begins the tricky part :
873 	 * We are called from release_sock() with :
874 	 * 1) BH disabled
875 	 * 2) sk_lock.slock spinlock held
876 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
877 	 *
878 	 * But following code is meant to be called from BH handlers,
879 	 * so we should keep BH disabled, but early release socket ownership
880 	 */
881 	sock_release_ownership(sk);
882 
883 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
884 		tcp_write_timer_handler(sk);
885 		__sock_put(sk);
886 	}
887 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
888 		tcp_delack_timer_handler(sk);
889 		__sock_put(sk);
890 	}
891 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
892 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
893 		__sock_put(sk);
894 	}
895 }
896 EXPORT_SYMBOL(tcp_release_cb);
897 
898 void __init tcp_tasklet_init(void)
899 {
900 	int i;
901 
902 	for_each_possible_cpu(i) {
903 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
904 
905 		INIT_LIST_HEAD(&tsq->head);
906 		tasklet_init(&tsq->tasklet,
907 			     tcp_tasklet_func,
908 			     (unsigned long)tsq);
909 	}
910 }
911 
912 /*
913  * Write buffer destructor automatically called from kfree_skb.
914  * We can't xmit new skbs from this context, as we might already
915  * hold qdisc lock.
916  */
917 void tcp_wfree(struct sk_buff *skb)
918 {
919 	struct sock *sk = skb->sk;
920 	struct tcp_sock *tp = tcp_sk(sk);
921 	unsigned long flags, nval, oval;
922 
923 	/* Keep one reference on sk_wmem_alloc.
924 	 * Will be released by sk_free() from here or tcp_tasklet_func()
925 	 */
926 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
927 
928 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
929 	 * Wait until our queues (qdisc + devices) are drained.
930 	 * This gives :
931 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
932 	 * - chance for incoming ACK (processed by another cpu maybe)
933 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
934 	 */
935 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
936 		goto out;
937 
938 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
939 		struct tsq_tasklet *tsq;
940 		bool empty;
941 
942 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
943 			goto out;
944 
945 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
946 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
947 		if (nval != oval)
948 			continue;
949 
950 		/* queue this socket to tasklet queue */
951 		local_irq_save(flags);
952 		tsq = this_cpu_ptr(&tsq_tasklet);
953 		empty = list_empty(&tsq->head);
954 		list_add(&tp->tsq_node, &tsq->head);
955 		if (empty)
956 			tasklet_schedule(&tsq->tasklet);
957 		local_irq_restore(flags);
958 		return;
959 	}
960 out:
961 	sk_free(sk);
962 }
963 
964 /* Note: Called under soft irq.
965  * We can call TCP stack right away, unless socket is owned by user.
966  */
967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
968 {
969 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
970 	struct sock *sk = (struct sock *)tp;
971 
972 	tcp_tsq_handler(sk);
973 	sock_put(sk);
974 
975 	return HRTIMER_NORESTART;
976 }
977 
978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
979 				      u64 prior_wstamp)
980 {
981 	struct tcp_sock *tp = tcp_sk(sk);
982 
983 	if (sk->sk_pacing_status != SK_PACING_NONE) {
984 		unsigned long rate = sk->sk_pacing_rate;
985 
986 		/* Original sch_fq does not pace first 10 MSS
987 		 * Note that tp->data_segs_out overflows after 2^32 packets,
988 		 * this is a minor annoyance.
989 		 */
990 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
991 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
992 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
993 
994 			/* take into account OS jitter */
995 			len_ns -= min_t(u64, len_ns / 2, credit);
996 			tp->tcp_wstamp_ns += len_ns;
997 		}
998 	}
999 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1000 }
1001 
1002 /* This routine actually transmits TCP packets queued in by
1003  * tcp_do_sendmsg().  This is used by both the initial
1004  * transmission and possible later retransmissions.
1005  * All SKB's seen here are completely headerless.  It is our
1006  * job to build the TCP header, and pass the packet down to
1007  * IP so it can do the same plus pass the packet off to the
1008  * device.
1009  *
1010  * We are working here with either a clone of the original
1011  * SKB, or a fresh unique copy made by the retransmit engine.
1012  */
1013 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1014 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1015 {
1016 	const struct inet_connection_sock *icsk = inet_csk(sk);
1017 	struct inet_sock *inet;
1018 	struct tcp_sock *tp;
1019 	struct tcp_skb_cb *tcb;
1020 	struct tcp_out_options opts;
1021 	unsigned int tcp_options_size, tcp_header_size;
1022 	struct sk_buff *oskb = NULL;
1023 	struct tcp_md5sig_key *md5;
1024 	struct tcphdr *th;
1025 	u64 prior_wstamp;
1026 	int err;
1027 
1028 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1029 	tp = tcp_sk(sk);
1030 	prior_wstamp = tp->tcp_wstamp_ns;
1031 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1032 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1033 	if (clone_it) {
1034 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1035 			- tp->snd_una;
1036 		oskb = skb;
1037 
1038 		tcp_skb_tsorted_save(oskb) {
1039 			if (unlikely(skb_cloned(oskb)))
1040 				skb = pskb_copy(oskb, gfp_mask);
1041 			else
1042 				skb = skb_clone(oskb, gfp_mask);
1043 		} tcp_skb_tsorted_restore(oskb);
1044 
1045 		if (unlikely(!skb))
1046 			return -ENOBUFS;
1047 	}
1048 
1049 	inet = inet_sk(sk);
1050 	tcb = TCP_SKB_CB(skb);
1051 	memset(&opts, 0, sizeof(opts));
1052 
1053 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1054 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1055 	else
1056 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1057 							   &md5);
1058 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1059 
1060 	/* if no packet is in qdisc/device queue, then allow XPS to select
1061 	 * another queue. We can be called from tcp_tsq_handler()
1062 	 * which holds one reference to sk.
1063 	 *
1064 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1065 	 * One way to get this would be to set skb->truesize = 2 on them.
1066 	 */
1067 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1068 
1069 	/* If we had to use memory reserve to allocate this skb,
1070 	 * this might cause drops if packet is looped back :
1071 	 * Other socket might not have SOCK_MEMALLOC.
1072 	 * Packets not looped back do not care about pfmemalloc.
1073 	 */
1074 	skb->pfmemalloc = 0;
1075 
1076 	skb_push(skb, tcp_header_size);
1077 	skb_reset_transport_header(skb);
1078 
1079 	skb_orphan(skb);
1080 	skb->sk = sk;
1081 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1082 	skb_set_hash_from_sk(skb, sk);
1083 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1084 
1085 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1086 
1087 	/* Build TCP header and checksum it. */
1088 	th = (struct tcphdr *)skb->data;
1089 	th->source		= inet->inet_sport;
1090 	th->dest		= inet->inet_dport;
1091 	th->seq			= htonl(tcb->seq);
1092 	th->ack_seq		= htonl(rcv_nxt);
1093 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1094 					tcb->tcp_flags);
1095 
1096 	th->check		= 0;
1097 	th->urg_ptr		= 0;
1098 
1099 	/* The urg_mode check is necessary during a below snd_una win probe */
1100 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1101 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1102 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1103 			th->urg = 1;
1104 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1105 			th->urg_ptr = htons(0xFFFF);
1106 			th->urg = 1;
1107 		}
1108 	}
1109 
1110 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1111 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1112 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1113 		th->window      = htons(tcp_select_window(sk));
1114 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1115 	} else {
1116 		/* RFC1323: The window in SYN & SYN/ACK segments
1117 		 * is never scaled.
1118 		 */
1119 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1120 	}
1121 #ifdef CONFIG_TCP_MD5SIG
1122 	/* Calculate the MD5 hash, as we have all we need now */
1123 	if (md5) {
1124 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1125 		tp->af_specific->calc_md5_hash(opts.hash_location,
1126 					       md5, sk, skb);
1127 	}
1128 #endif
1129 
1130 	icsk->icsk_af_ops->send_check(sk, skb);
1131 
1132 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1133 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1134 
1135 	if (skb->len != tcp_header_size) {
1136 		tcp_event_data_sent(tp, sk);
1137 		tp->data_segs_out += tcp_skb_pcount(skb);
1138 		tp->bytes_sent += skb->len - tcp_header_size;
1139 	}
1140 
1141 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1142 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1143 			      tcp_skb_pcount(skb));
1144 
1145 	tp->segs_out += tcp_skb_pcount(skb);
1146 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1147 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1148 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1149 
1150 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1151 
1152 	/* Cleanup our debris for IP stacks */
1153 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1154 			       sizeof(struct inet6_skb_parm)));
1155 
1156 	tcp_add_tx_delay(skb, tp);
1157 
1158 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1159 
1160 	if (unlikely(err > 0)) {
1161 		tcp_enter_cwr(sk);
1162 		err = net_xmit_eval(err);
1163 	}
1164 	if (!err && oskb) {
1165 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1166 		tcp_rate_skb_sent(sk, oskb);
1167 	}
1168 	return err;
1169 }
1170 
1171 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1172 			    gfp_t gfp_mask)
1173 {
1174 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1175 				  tcp_sk(sk)->rcv_nxt);
1176 }
1177 
1178 /* This routine just queues the buffer for sending.
1179  *
1180  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1181  * otherwise socket can stall.
1182  */
1183 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1184 {
1185 	struct tcp_sock *tp = tcp_sk(sk);
1186 
1187 	/* Advance write_seq and place onto the write_queue. */
1188 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1189 	__skb_header_release(skb);
1190 	tcp_add_write_queue_tail(sk, skb);
1191 	sk->sk_wmem_queued += skb->truesize;
1192 	sk_mem_charge(sk, skb->truesize);
1193 }
1194 
1195 /* Initialize TSO segments for a packet. */
1196 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1197 {
1198 	if (skb->len <= mss_now) {
1199 		/* Avoid the costly divide in the normal
1200 		 * non-TSO case.
1201 		 */
1202 		tcp_skb_pcount_set(skb, 1);
1203 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1204 	} else {
1205 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1206 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1207 	}
1208 }
1209 
1210 /* Pcount in the middle of the write queue got changed, we need to do various
1211  * tweaks to fix counters
1212  */
1213 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1214 {
1215 	struct tcp_sock *tp = tcp_sk(sk);
1216 
1217 	tp->packets_out -= decr;
1218 
1219 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1220 		tp->sacked_out -= decr;
1221 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1222 		tp->retrans_out -= decr;
1223 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1224 		tp->lost_out -= decr;
1225 
1226 	/* Reno case is special. Sigh... */
1227 	if (tcp_is_reno(tp) && decr > 0)
1228 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1229 
1230 	if (tp->lost_skb_hint &&
1231 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1232 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1233 		tp->lost_cnt_hint -= decr;
1234 
1235 	tcp_verify_left_out(tp);
1236 }
1237 
1238 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1239 {
1240 	return TCP_SKB_CB(skb)->txstamp_ack ||
1241 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1242 }
1243 
1244 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1245 {
1246 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1247 
1248 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1249 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1250 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1251 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1252 
1253 		shinfo->tx_flags &= ~tsflags;
1254 		shinfo2->tx_flags |= tsflags;
1255 		swap(shinfo->tskey, shinfo2->tskey);
1256 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1257 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1258 	}
1259 }
1260 
1261 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1262 {
1263 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1264 	TCP_SKB_CB(skb)->eor = 0;
1265 }
1266 
1267 /* Insert buff after skb on the write or rtx queue of sk.  */
1268 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1269 					 struct sk_buff *buff,
1270 					 struct sock *sk,
1271 					 enum tcp_queue tcp_queue)
1272 {
1273 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1274 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1275 	else
1276 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1277 }
1278 
1279 /* Function to create two new TCP segments.  Shrinks the given segment
1280  * to the specified size and appends a new segment with the rest of the
1281  * packet to the list.  This won't be called frequently, I hope.
1282  * Remember, these are still headerless SKBs at this point.
1283  */
1284 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1285 		 struct sk_buff *skb, u32 len,
1286 		 unsigned int mss_now, gfp_t gfp)
1287 {
1288 	struct tcp_sock *tp = tcp_sk(sk);
1289 	struct sk_buff *buff;
1290 	int nsize, old_factor;
1291 	int nlen;
1292 	u8 flags;
1293 
1294 	if (WARN_ON(len > skb->len))
1295 		return -EINVAL;
1296 
1297 	nsize = skb_headlen(skb) - len;
1298 	if (nsize < 0)
1299 		nsize = 0;
1300 
1301 	if (skb_unclone(skb, gfp))
1302 		return -ENOMEM;
1303 
1304 	/* Get a new skb... force flag on. */
1305 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1306 	if (!buff)
1307 		return -ENOMEM; /* We'll just try again later. */
1308 
1309 	sk->sk_wmem_queued += buff->truesize;
1310 	sk_mem_charge(sk, buff->truesize);
1311 	nlen = skb->len - len - nsize;
1312 	buff->truesize += nlen;
1313 	skb->truesize -= nlen;
1314 
1315 	/* Correct the sequence numbers. */
1316 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1317 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1318 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1319 
1320 	/* PSH and FIN should only be set in the second packet. */
1321 	flags = TCP_SKB_CB(skb)->tcp_flags;
1322 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1323 	TCP_SKB_CB(buff)->tcp_flags = flags;
1324 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1325 	tcp_skb_fragment_eor(skb, buff);
1326 
1327 	skb_split(skb, buff, len);
1328 
1329 	buff->ip_summed = CHECKSUM_PARTIAL;
1330 
1331 	buff->tstamp = skb->tstamp;
1332 	tcp_fragment_tstamp(skb, buff);
1333 
1334 	old_factor = tcp_skb_pcount(skb);
1335 
1336 	/* Fix up tso_factor for both original and new SKB.  */
1337 	tcp_set_skb_tso_segs(skb, mss_now);
1338 	tcp_set_skb_tso_segs(buff, mss_now);
1339 
1340 	/* Update delivered info for the new segment */
1341 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1342 
1343 	/* If this packet has been sent out already, we must
1344 	 * adjust the various packet counters.
1345 	 */
1346 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1347 		int diff = old_factor - tcp_skb_pcount(skb) -
1348 			tcp_skb_pcount(buff);
1349 
1350 		if (diff)
1351 			tcp_adjust_pcount(sk, skb, diff);
1352 	}
1353 
1354 	/* Link BUFF into the send queue. */
1355 	__skb_header_release(buff);
1356 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1357 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1358 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1359 
1360 	return 0;
1361 }
1362 
1363 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1364  * data is not copied, but immediately discarded.
1365  */
1366 static int __pskb_trim_head(struct sk_buff *skb, int len)
1367 {
1368 	struct skb_shared_info *shinfo;
1369 	int i, k, eat;
1370 
1371 	eat = min_t(int, len, skb_headlen(skb));
1372 	if (eat) {
1373 		__skb_pull(skb, eat);
1374 		len -= eat;
1375 		if (!len)
1376 			return 0;
1377 	}
1378 	eat = len;
1379 	k = 0;
1380 	shinfo = skb_shinfo(skb);
1381 	for (i = 0; i < shinfo->nr_frags; i++) {
1382 		int size = skb_frag_size(&shinfo->frags[i]);
1383 
1384 		if (size <= eat) {
1385 			skb_frag_unref(skb, i);
1386 			eat -= size;
1387 		} else {
1388 			shinfo->frags[k] = shinfo->frags[i];
1389 			if (eat) {
1390 				shinfo->frags[k].page_offset += eat;
1391 				skb_frag_size_sub(&shinfo->frags[k], eat);
1392 				eat = 0;
1393 			}
1394 			k++;
1395 		}
1396 	}
1397 	shinfo->nr_frags = k;
1398 
1399 	skb->data_len -= len;
1400 	skb->len = skb->data_len;
1401 	return len;
1402 }
1403 
1404 /* Remove acked data from a packet in the transmit queue. */
1405 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1406 {
1407 	u32 delta_truesize;
1408 
1409 	if (skb_unclone(skb, GFP_ATOMIC))
1410 		return -ENOMEM;
1411 
1412 	delta_truesize = __pskb_trim_head(skb, len);
1413 
1414 	TCP_SKB_CB(skb)->seq += len;
1415 	skb->ip_summed = CHECKSUM_PARTIAL;
1416 
1417 	if (delta_truesize) {
1418 		skb->truesize	   -= delta_truesize;
1419 		sk->sk_wmem_queued -= delta_truesize;
1420 		sk_mem_uncharge(sk, delta_truesize);
1421 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1422 	}
1423 
1424 	/* Any change of skb->len requires recalculation of tso factor. */
1425 	if (tcp_skb_pcount(skb) > 1)
1426 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1427 
1428 	return 0;
1429 }
1430 
1431 /* Calculate MSS not accounting any TCP options.  */
1432 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1433 {
1434 	const struct tcp_sock *tp = tcp_sk(sk);
1435 	const struct inet_connection_sock *icsk = inet_csk(sk);
1436 	int mss_now;
1437 
1438 	/* Calculate base mss without TCP options:
1439 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1440 	 */
1441 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1442 
1443 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1444 	if (icsk->icsk_af_ops->net_frag_header_len) {
1445 		const struct dst_entry *dst = __sk_dst_get(sk);
1446 
1447 		if (dst && dst_allfrag(dst))
1448 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1449 	}
1450 
1451 	/* Clamp it (mss_clamp does not include tcp options) */
1452 	if (mss_now > tp->rx_opt.mss_clamp)
1453 		mss_now = tp->rx_opt.mss_clamp;
1454 
1455 	/* Now subtract optional transport overhead */
1456 	mss_now -= icsk->icsk_ext_hdr_len;
1457 
1458 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1459 	if (mss_now < 48)
1460 		mss_now = 48;
1461 	return mss_now;
1462 }
1463 
1464 /* Calculate MSS. Not accounting for SACKs here.  */
1465 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1466 {
1467 	/* Subtract TCP options size, not including SACKs */
1468 	return __tcp_mtu_to_mss(sk, pmtu) -
1469 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1470 }
1471 
1472 /* Inverse of above */
1473 int tcp_mss_to_mtu(struct sock *sk, int mss)
1474 {
1475 	const struct tcp_sock *tp = tcp_sk(sk);
1476 	const struct inet_connection_sock *icsk = inet_csk(sk);
1477 	int mtu;
1478 
1479 	mtu = mss +
1480 	      tp->tcp_header_len +
1481 	      icsk->icsk_ext_hdr_len +
1482 	      icsk->icsk_af_ops->net_header_len;
1483 
1484 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1485 	if (icsk->icsk_af_ops->net_frag_header_len) {
1486 		const struct dst_entry *dst = __sk_dst_get(sk);
1487 
1488 		if (dst && dst_allfrag(dst))
1489 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1490 	}
1491 	return mtu;
1492 }
1493 EXPORT_SYMBOL(tcp_mss_to_mtu);
1494 
1495 /* MTU probing init per socket */
1496 void tcp_mtup_init(struct sock *sk)
1497 {
1498 	struct tcp_sock *tp = tcp_sk(sk);
1499 	struct inet_connection_sock *icsk = inet_csk(sk);
1500 	struct net *net = sock_net(sk);
1501 
1502 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1503 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1504 			       icsk->icsk_af_ops->net_header_len;
1505 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1506 	icsk->icsk_mtup.probe_size = 0;
1507 	if (icsk->icsk_mtup.enabled)
1508 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1509 }
1510 EXPORT_SYMBOL(tcp_mtup_init);
1511 
1512 /* This function synchronize snd mss to current pmtu/exthdr set.
1513 
1514    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1515    for TCP options, but includes only bare TCP header.
1516 
1517    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1518    It is minimum of user_mss and mss received with SYN.
1519    It also does not include TCP options.
1520 
1521    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1522 
1523    tp->mss_cache is current effective sending mss, including
1524    all tcp options except for SACKs. It is evaluated,
1525    taking into account current pmtu, but never exceeds
1526    tp->rx_opt.mss_clamp.
1527 
1528    NOTE1. rfc1122 clearly states that advertised MSS
1529    DOES NOT include either tcp or ip options.
1530 
1531    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1532    are READ ONLY outside this function.		--ANK (980731)
1533  */
1534 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1535 {
1536 	struct tcp_sock *tp = tcp_sk(sk);
1537 	struct inet_connection_sock *icsk = inet_csk(sk);
1538 	int mss_now;
1539 
1540 	if (icsk->icsk_mtup.search_high > pmtu)
1541 		icsk->icsk_mtup.search_high = pmtu;
1542 
1543 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1544 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1545 
1546 	/* And store cached results */
1547 	icsk->icsk_pmtu_cookie = pmtu;
1548 	if (icsk->icsk_mtup.enabled)
1549 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1550 	tp->mss_cache = mss_now;
1551 
1552 	return mss_now;
1553 }
1554 EXPORT_SYMBOL(tcp_sync_mss);
1555 
1556 /* Compute the current effective MSS, taking SACKs and IP options,
1557  * and even PMTU discovery events into account.
1558  */
1559 unsigned int tcp_current_mss(struct sock *sk)
1560 {
1561 	const struct tcp_sock *tp = tcp_sk(sk);
1562 	const struct dst_entry *dst = __sk_dst_get(sk);
1563 	u32 mss_now;
1564 	unsigned int header_len;
1565 	struct tcp_out_options opts;
1566 	struct tcp_md5sig_key *md5;
1567 
1568 	mss_now = tp->mss_cache;
1569 
1570 	if (dst) {
1571 		u32 mtu = dst_mtu(dst);
1572 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1573 			mss_now = tcp_sync_mss(sk, mtu);
1574 	}
1575 
1576 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1577 		     sizeof(struct tcphdr);
1578 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1579 	 * some common options. If this is an odd packet (because we have SACK
1580 	 * blocks etc) then our calculated header_len will be different, and
1581 	 * we have to adjust mss_now correspondingly */
1582 	if (header_len != tp->tcp_header_len) {
1583 		int delta = (int) header_len - tp->tcp_header_len;
1584 		mss_now -= delta;
1585 	}
1586 
1587 	return mss_now;
1588 }
1589 
1590 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1591  * As additional protections, we do not touch cwnd in retransmission phases,
1592  * and if application hit its sndbuf limit recently.
1593  */
1594 static void tcp_cwnd_application_limited(struct sock *sk)
1595 {
1596 	struct tcp_sock *tp = tcp_sk(sk);
1597 
1598 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1599 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1600 		/* Limited by application or receiver window. */
1601 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1602 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1603 		if (win_used < tp->snd_cwnd) {
1604 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1605 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1606 		}
1607 		tp->snd_cwnd_used = 0;
1608 	}
1609 	tp->snd_cwnd_stamp = tcp_jiffies32;
1610 }
1611 
1612 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1613 {
1614 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1615 	struct tcp_sock *tp = tcp_sk(sk);
1616 
1617 	/* Track the maximum number of outstanding packets in each
1618 	 * window, and remember whether we were cwnd-limited then.
1619 	 */
1620 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1621 	    tp->packets_out > tp->max_packets_out) {
1622 		tp->max_packets_out = tp->packets_out;
1623 		tp->max_packets_seq = tp->snd_nxt;
1624 		tp->is_cwnd_limited = is_cwnd_limited;
1625 	}
1626 
1627 	if (tcp_is_cwnd_limited(sk)) {
1628 		/* Network is feed fully. */
1629 		tp->snd_cwnd_used = 0;
1630 		tp->snd_cwnd_stamp = tcp_jiffies32;
1631 	} else {
1632 		/* Network starves. */
1633 		if (tp->packets_out > tp->snd_cwnd_used)
1634 			tp->snd_cwnd_used = tp->packets_out;
1635 
1636 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1637 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1638 		    !ca_ops->cong_control)
1639 			tcp_cwnd_application_limited(sk);
1640 
1641 		/* The following conditions together indicate the starvation
1642 		 * is caused by insufficient sender buffer:
1643 		 * 1) just sent some data (see tcp_write_xmit)
1644 		 * 2) not cwnd limited (this else condition)
1645 		 * 3) no more data to send (tcp_write_queue_empty())
1646 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1647 		 */
1648 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1649 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1650 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1651 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1652 	}
1653 }
1654 
1655 /* Minshall's variant of the Nagle send check. */
1656 static bool tcp_minshall_check(const struct tcp_sock *tp)
1657 {
1658 	return after(tp->snd_sml, tp->snd_una) &&
1659 		!after(tp->snd_sml, tp->snd_nxt);
1660 }
1661 
1662 /* Update snd_sml if this skb is under mss
1663  * Note that a TSO packet might end with a sub-mss segment
1664  * The test is really :
1665  * if ((skb->len % mss) != 0)
1666  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1667  * But we can avoid doing the divide again given we already have
1668  *  skb_pcount = skb->len / mss_now
1669  */
1670 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1671 				const struct sk_buff *skb)
1672 {
1673 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1674 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1675 }
1676 
1677 /* Return false, if packet can be sent now without violation Nagle's rules:
1678  * 1. It is full sized. (provided by caller in %partial bool)
1679  * 2. Or it contains FIN. (already checked by caller)
1680  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1681  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1682  *    With Minshall's modification: all sent small packets are ACKed.
1683  */
1684 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1685 			    int nonagle)
1686 {
1687 	return partial &&
1688 		((nonagle & TCP_NAGLE_CORK) ||
1689 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1690 }
1691 
1692 /* Return how many segs we'd like on a TSO packet,
1693  * to send one TSO packet per ms
1694  */
1695 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1696 			    int min_tso_segs)
1697 {
1698 	u32 bytes, segs;
1699 
1700 	bytes = min_t(unsigned long,
1701 		      sk->sk_pacing_rate >> sk->sk_pacing_shift,
1702 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1703 
1704 	/* Goal is to send at least one packet per ms,
1705 	 * not one big TSO packet every 100 ms.
1706 	 * This preserves ACK clocking and is consistent
1707 	 * with tcp_tso_should_defer() heuristic.
1708 	 */
1709 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1710 
1711 	return segs;
1712 }
1713 
1714 /* Return the number of segments we want in the skb we are transmitting.
1715  * See if congestion control module wants to decide; otherwise, autosize.
1716  */
1717 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1718 {
1719 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1720 	u32 min_tso, tso_segs;
1721 
1722 	min_tso = ca_ops->min_tso_segs ?
1723 			ca_ops->min_tso_segs(sk) :
1724 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1725 
1726 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1727 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1728 }
1729 
1730 /* Returns the portion of skb which can be sent right away */
1731 static unsigned int tcp_mss_split_point(const struct sock *sk,
1732 					const struct sk_buff *skb,
1733 					unsigned int mss_now,
1734 					unsigned int max_segs,
1735 					int nonagle)
1736 {
1737 	const struct tcp_sock *tp = tcp_sk(sk);
1738 	u32 partial, needed, window, max_len;
1739 
1740 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1741 	max_len = mss_now * max_segs;
1742 
1743 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1744 		return max_len;
1745 
1746 	needed = min(skb->len, window);
1747 
1748 	if (max_len <= needed)
1749 		return max_len;
1750 
1751 	partial = needed % mss_now;
1752 	/* If last segment is not a full MSS, check if Nagle rules allow us
1753 	 * to include this last segment in this skb.
1754 	 * Otherwise, we'll split the skb at last MSS boundary
1755 	 */
1756 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1757 		return needed - partial;
1758 
1759 	return needed;
1760 }
1761 
1762 /* Can at least one segment of SKB be sent right now, according to the
1763  * congestion window rules?  If so, return how many segments are allowed.
1764  */
1765 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1766 					 const struct sk_buff *skb)
1767 {
1768 	u32 in_flight, cwnd, halfcwnd;
1769 
1770 	/* Don't be strict about the congestion window for the final FIN.  */
1771 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1772 	    tcp_skb_pcount(skb) == 1)
1773 		return 1;
1774 
1775 	in_flight = tcp_packets_in_flight(tp);
1776 	cwnd = tp->snd_cwnd;
1777 	if (in_flight >= cwnd)
1778 		return 0;
1779 
1780 	/* For better scheduling, ensure we have at least
1781 	 * 2 GSO packets in flight.
1782 	 */
1783 	halfcwnd = max(cwnd >> 1, 1U);
1784 	return min(halfcwnd, cwnd - in_flight);
1785 }
1786 
1787 /* Initialize TSO state of a skb.
1788  * This must be invoked the first time we consider transmitting
1789  * SKB onto the wire.
1790  */
1791 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1792 {
1793 	int tso_segs = tcp_skb_pcount(skb);
1794 
1795 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1796 		tcp_set_skb_tso_segs(skb, mss_now);
1797 		tso_segs = tcp_skb_pcount(skb);
1798 	}
1799 	return tso_segs;
1800 }
1801 
1802 
1803 /* Return true if the Nagle test allows this packet to be
1804  * sent now.
1805  */
1806 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1807 				  unsigned int cur_mss, int nonagle)
1808 {
1809 	/* Nagle rule does not apply to frames, which sit in the middle of the
1810 	 * write_queue (they have no chances to get new data).
1811 	 *
1812 	 * This is implemented in the callers, where they modify the 'nonagle'
1813 	 * argument based upon the location of SKB in the send queue.
1814 	 */
1815 	if (nonagle & TCP_NAGLE_PUSH)
1816 		return true;
1817 
1818 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1819 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1820 		return true;
1821 
1822 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1823 		return true;
1824 
1825 	return false;
1826 }
1827 
1828 /* Does at least the first segment of SKB fit into the send window? */
1829 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1830 			     const struct sk_buff *skb,
1831 			     unsigned int cur_mss)
1832 {
1833 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1834 
1835 	if (skb->len > cur_mss)
1836 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1837 
1838 	return !after(end_seq, tcp_wnd_end(tp));
1839 }
1840 
1841 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1842  * which is put after SKB on the list.  It is very much like
1843  * tcp_fragment() except that it may make several kinds of assumptions
1844  * in order to speed up the splitting operation.  In particular, we
1845  * know that all the data is in scatter-gather pages, and that the
1846  * packet has never been sent out before (and thus is not cloned).
1847  */
1848 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1849 			unsigned int mss_now, gfp_t gfp)
1850 {
1851 	int nlen = skb->len - len;
1852 	struct sk_buff *buff;
1853 	u8 flags;
1854 
1855 	/* All of a TSO frame must be composed of paged data.  */
1856 	if (skb->len != skb->data_len)
1857 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1858 				    skb, len, mss_now, gfp);
1859 
1860 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1861 	if (unlikely(!buff))
1862 		return -ENOMEM;
1863 
1864 	sk->sk_wmem_queued += buff->truesize;
1865 	sk_mem_charge(sk, buff->truesize);
1866 	buff->truesize += nlen;
1867 	skb->truesize -= nlen;
1868 
1869 	/* Correct the sequence numbers. */
1870 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1871 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1872 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1873 
1874 	/* PSH and FIN should only be set in the second packet. */
1875 	flags = TCP_SKB_CB(skb)->tcp_flags;
1876 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1877 	TCP_SKB_CB(buff)->tcp_flags = flags;
1878 
1879 	/* This packet was never sent out yet, so no SACK bits. */
1880 	TCP_SKB_CB(buff)->sacked = 0;
1881 
1882 	tcp_skb_fragment_eor(skb, buff);
1883 
1884 	buff->ip_summed = CHECKSUM_PARTIAL;
1885 	skb_split(skb, buff, len);
1886 	tcp_fragment_tstamp(skb, buff);
1887 
1888 	/* Fix up tso_factor for both original and new SKB.  */
1889 	tcp_set_skb_tso_segs(skb, mss_now);
1890 	tcp_set_skb_tso_segs(buff, mss_now);
1891 
1892 	/* Link BUFF into the send queue. */
1893 	__skb_header_release(buff);
1894 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1895 
1896 	return 0;
1897 }
1898 
1899 /* Try to defer sending, if possible, in order to minimize the amount
1900  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1901  *
1902  * This algorithm is from John Heffner.
1903  */
1904 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1905 				 bool *is_cwnd_limited,
1906 				 bool *is_rwnd_limited,
1907 				 u32 max_segs)
1908 {
1909 	const struct inet_connection_sock *icsk = inet_csk(sk);
1910 	u32 send_win, cong_win, limit, in_flight;
1911 	struct tcp_sock *tp = tcp_sk(sk);
1912 	struct sk_buff *head;
1913 	int win_divisor;
1914 	s64 delta;
1915 
1916 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1917 		goto send_now;
1918 
1919 	/* Avoid bursty behavior by allowing defer
1920 	 * only if the last write was recent (1 ms).
1921 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
1922 	 * packets waiting in a qdisc or device for EDT delivery.
1923 	 */
1924 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1925 	if (delta > 0)
1926 		goto send_now;
1927 
1928 	in_flight = tcp_packets_in_flight(tp);
1929 
1930 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1931 	BUG_ON(tp->snd_cwnd <= in_flight);
1932 
1933 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1934 
1935 	/* From in_flight test above, we know that cwnd > in_flight.  */
1936 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1937 
1938 	limit = min(send_win, cong_win);
1939 
1940 	/* If a full-sized TSO skb can be sent, do it. */
1941 	if (limit >= max_segs * tp->mss_cache)
1942 		goto send_now;
1943 
1944 	/* Middle in queue won't get any more data, full sendable already? */
1945 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1946 		goto send_now;
1947 
1948 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1949 	if (win_divisor) {
1950 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1951 
1952 		/* If at least some fraction of a window is available,
1953 		 * just use it.
1954 		 */
1955 		chunk /= win_divisor;
1956 		if (limit >= chunk)
1957 			goto send_now;
1958 	} else {
1959 		/* Different approach, try not to defer past a single
1960 		 * ACK.  Receiver should ACK every other full sized
1961 		 * frame, so if we have space for more than 3 frames
1962 		 * then send now.
1963 		 */
1964 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1965 			goto send_now;
1966 	}
1967 
1968 	/* TODO : use tsorted_sent_queue ? */
1969 	head = tcp_rtx_queue_head(sk);
1970 	if (!head)
1971 		goto send_now;
1972 	delta = tp->tcp_clock_cache - head->tstamp;
1973 	/* If next ACK is likely to come too late (half srtt), do not defer */
1974 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
1975 		goto send_now;
1976 
1977 	/* Ok, it looks like it is advisable to defer.
1978 	 * Three cases are tracked :
1979 	 * 1) We are cwnd-limited
1980 	 * 2) We are rwnd-limited
1981 	 * 3) We are application limited.
1982 	 */
1983 	if (cong_win < send_win) {
1984 		if (cong_win <= skb->len) {
1985 			*is_cwnd_limited = true;
1986 			return true;
1987 		}
1988 	} else {
1989 		if (send_win <= skb->len) {
1990 			*is_rwnd_limited = true;
1991 			return true;
1992 		}
1993 	}
1994 
1995 	/* If this packet won't get more data, do not wait. */
1996 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
1997 	    TCP_SKB_CB(skb)->eor)
1998 		goto send_now;
1999 
2000 	return true;
2001 
2002 send_now:
2003 	return false;
2004 }
2005 
2006 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2007 {
2008 	struct inet_connection_sock *icsk = inet_csk(sk);
2009 	struct tcp_sock *tp = tcp_sk(sk);
2010 	struct net *net = sock_net(sk);
2011 	u32 interval;
2012 	s32 delta;
2013 
2014 	interval = net->ipv4.sysctl_tcp_probe_interval;
2015 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2016 	if (unlikely(delta >= interval * HZ)) {
2017 		int mss = tcp_current_mss(sk);
2018 
2019 		/* Update current search range */
2020 		icsk->icsk_mtup.probe_size = 0;
2021 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2022 			sizeof(struct tcphdr) +
2023 			icsk->icsk_af_ops->net_header_len;
2024 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2025 
2026 		/* Update probe time stamp */
2027 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2028 	}
2029 }
2030 
2031 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2032 {
2033 	struct sk_buff *skb, *next;
2034 
2035 	skb = tcp_send_head(sk);
2036 	tcp_for_write_queue_from_safe(skb, next, sk) {
2037 		if (len <= skb->len)
2038 			break;
2039 
2040 		if (unlikely(TCP_SKB_CB(skb)->eor))
2041 			return false;
2042 
2043 		len -= skb->len;
2044 	}
2045 
2046 	return true;
2047 }
2048 
2049 /* Create a new MTU probe if we are ready.
2050  * MTU probe is regularly attempting to increase the path MTU by
2051  * deliberately sending larger packets.  This discovers routing
2052  * changes resulting in larger path MTUs.
2053  *
2054  * Returns 0 if we should wait to probe (no cwnd available),
2055  *         1 if a probe was sent,
2056  *         -1 otherwise
2057  */
2058 static int tcp_mtu_probe(struct sock *sk)
2059 {
2060 	struct inet_connection_sock *icsk = inet_csk(sk);
2061 	struct tcp_sock *tp = tcp_sk(sk);
2062 	struct sk_buff *skb, *nskb, *next;
2063 	struct net *net = sock_net(sk);
2064 	int probe_size;
2065 	int size_needed;
2066 	int copy, len;
2067 	int mss_now;
2068 	int interval;
2069 
2070 	/* Not currently probing/verifying,
2071 	 * not in recovery,
2072 	 * have enough cwnd, and
2073 	 * not SACKing (the variable headers throw things off)
2074 	 */
2075 	if (likely(!icsk->icsk_mtup.enabled ||
2076 		   icsk->icsk_mtup.probe_size ||
2077 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2078 		   tp->snd_cwnd < 11 ||
2079 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2080 		return -1;
2081 
2082 	/* Use binary search for probe_size between tcp_mss_base,
2083 	 * and current mss_clamp. if (search_high - search_low)
2084 	 * smaller than a threshold, backoff from probing.
2085 	 */
2086 	mss_now = tcp_current_mss(sk);
2087 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2088 				    icsk->icsk_mtup.search_low) >> 1);
2089 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2090 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2091 	/* When misfortune happens, we are reprobing actively,
2092 	 * and then reprobe timer has expired. We stick with current
2093 	 * probing process by not resetting search range to its orignal.
2094 	 */
2095 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2096 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2097 		/* Check whether enough time has elaplased for
2098 		 * another round of probing.
2099 		 */
2100 		tcp_mtu_check_reprobe(sk);
2101 		return -1;
2102 	}
2103 
2104 	/* Have enough data in the send queue to probe? */
2105 	if (tp->write_seq - tp->snd_nxt < size_needed)
2106 		return -1;
2107 
2108 	if (tp->snd_wnd < size_needed)
2109 		return -1;
2110 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2111 		return 0;
2112 
2113 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2114 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2115 		if (!tcp_packets_in_flight(tp))
2116 			return -1;
2117 		else
2118 			return 0;
2119 	}
2120 
2121 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2122 		return -1;
2123 
2124 	/* We're allowed to probe.  Build it now. */
2125 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2126 	if (!nskb)
2127 		return -1;
2128 	sk->sk_wmem_queued += nskb->truesize;
2129 	sk_mem_charge(sk, nskb->truesize);
2130 
2131 	skb = tcp_send_head(sk);
2132 
2133 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2134 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2135 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2136 	TCP_SKB_CB(nskb)->sacked = 0;
2137 	nskb->csum = 0;
2138 	nskb->ip_summed = CHECKSUM_PARTIAL;
2139 
2140 	tcp_insert_write_queue_before(nskb, skb, sk);
2141 	tcp_highest_sack_replace(sk, skb, nskb);
2142 
2143 	len = 0;
2144 	tcp_for_write_queue_from_safe(skb, next, sk) {
2145 		copy = min_t(int, skb->len, probe_size - len);
2146 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2147 
2148 		if (skb->len <= copy) {
2149 			/* We've eaten all the data from this skb.
2150 			 * Throw it away. */
2151 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2152 			/* If this is the last SKB we copy and eor is set
2153 			 * we need to propagate it to the new skb.
2154 			 */
2155 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2156 			tcp_unlink_write_queue(skb, sk);
2157 			sk_wmem_free_skb(sk, skb);
2158 		} else {
2159 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2160 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2161 			if (!skb_shinfo(skb)->nr_frags) {
2162 				skb_pull(skb, copy);
2163 			} else {
2164 				__pskb_trim_head(skb, copy);
2165 				tcp_set_skb_tso_segs(skb, mss_now);
2166 			}
2167 			TCP_SKB_CB(skb)->seq += copy;
2168 		}
2169 
2170 		len += copy;
2171 
2172 		if (len >= probe_size)
2173 			break;
2174 	}
2175 	tcp_init_tso_segs(nskb, nskb->len);
2176 
2177 	/* We're ready to send.  If this fails, the probe will
2178 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2179 	 */
2180 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2181 		/* Decrement cwnd here because we are sending
2182 		 * effectively two packets. */
2183 		tp->snd_cwnd--;
2184 		tcp_event_new_data_sent(sk, nskb);
2185 
2186 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2187 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2188 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2189 
2190 		return 1;
2191 	}
2192 
2193 	return -1;
2194 }
2195 
2196 static bool tcp_pacing_check(struct sock *sk)
2197 {
2198 	struct tcp_sock *tp = tcp_sk(sk);
2199 
2200 	if (!tcp_needs_internal_pacing(sk))
2201 		return false;
2202 
2203 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2204 		return false;
2205 
2206 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2207 		hrtimer_start(&tp->pacing_timer,
2208 			      ns_to_ktime(tp->tcp_wstamp_ns),
2209 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2210 		sock_hold(sk);
2211 	}
2212 	return true;
2213 }
2214 
2215 /* TCP Small Queues :
2216  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2217  * (These limits are doubled for retransmits)
2218  * This allows for :
2219  *  - better RTT estimation and ACK scheduling
2220  *  - faster recovery
2221  *  - high rates
2222  * Alas, some drivers / subsystems require a fair amount
2223  * of queued bytes to ensure line rate.
2224  * One example is wifi aggregation (802.11 AMPDU)
2225  */
2226 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2227 				  unsigned int factor)
2228 {
2229 	unsigned long limit;
2230 
2231 	limit = max_t(unsigned long,
2232 		      2 * skb->truesize,
2233 		      sk->sk_pacing_rate >> sk->sk_pacing_shift);
2234 	if (sk->sk_pacing_status == SK_PACING_NONE)
2235 		limit = min_t(unsigned long, limit,
2236 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2237 	limit <<= factor;
2238 
2239 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2240 	    tcp_sk(sk)->tcp_tx_delay) {
2241 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2242 
2243 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2244 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2245 		 * USEC_PER_SEC is approximated by 2^20.
2246 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2247 		 */
2248 		extra_bytes >>= (20 - 1);
2249 		limit += extra_bytes;
2250 	}
2251 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2252 		/* Always send skb if rtx queue is empty.
2253 		 * No need to wait for TX completion to call us back,
2254 		 * after softirq/tasklet schedule.
2255 		 * This helps when TX completions are delayed too much.
2256 		 */
2257 		if (tcp_rtx_queue_empty(sk))
2258 			return false;
2259 
2260 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2261 		/* It is possible TX completion already happened
2262 		 * before we set TSQ_THROTTLED, so we must
2263 		 * test again the condition.
2264 		 */
2265 		smp_mb__after_atomic();
2266 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2267 			return true;
2268 	}
2269 	return false;
2270 }
2271 
2272 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2273 {
2274 	const u32 now = tcp_jiffies32;
2275 	enum tcp_chrono old = tp->chrono_type;
2276 
2277 	if (old > TCP_CHRONO_UNSPEC)
2278 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2279 	tp->chrono_start = now;
2280 	tp->chrono_type = new;
2281 }
2282 
2283 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2284 {
2285 	struct tcp_sock *tp = tcp_sk(sk);
2286 
2287 	/* If there are multiple conditions worthy of tracking in a
2288 	 * chronograph then the highest priority enum takes precedence
2289 	 * over the other conditions. So that if something "more interesting"
2290 	 * starts happening, stop the previous chrono and start a new one.
2291 	 */
2292 	if (type > tp->chrono_type)
2293 		tcp_chrono_set(tp, type);
2294 }
2295 
2296 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2297 {
2298 	struct tcp_sock *tp = tcp_sk(sk);
2299 
2300 
2301 	/* There are multiple conditions worthy of tracking in a
2302 	 * chronograph, so that the highest priority enum takes
2303 	 * precedence over the other conditions (see tcp_chrono_start).
2304 	 * If a condition stops, we only stop chrono tracking if
2305 	 * it's the "most interesting" or current chrono we are
2306 	 * tracking and starts busy chrono if we have pending data.
2307 	 */
2308 	if (tcp_rtx_and_write_queues_empty(sk))
2309 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2310 	else if (type == tp->chrono_type)
2311 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2312 }
2313 
2314 /* This routine writes packets to the network.  It advances the
2315  * send_head.  This happens as incoming acks open up the remote
2316  * window for us.
2317  *
2318  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2319  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2320  * account rare use of URG, this is not a big flaw.
2321  *
2322  * Send at most one packet when push_one > 0. Temporarily ignore
2323  * cwnd limit to force at most one packet out when push_one == 2.
2324 
2325  * Returns true, if no segments are in flight and we have queued segments,
2326  * but cannot send anything now because of SWS or another problem.
2327  */
2328 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2329 			   int push_one, gfp_t gfp)
2330 {
2331 	struct tcp_sock *tp = tcp_sk(sk);
2332 	struct sk_buff *skb;
2333 	unsigned int tso_segs, sent_pkts;
2334 	int cwnd_quota;
2335 	int result;
2336 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2337 	u32 max_segs;
2338 
2339 	sent_pkts = 0;
2340 
2341 	tcp_mstamp_refresh(tp);
2342 	if (!push_one) {
2343 		/* Do MTU probing. */
2344 		result = tcp_mtu_probe(sk);
2345 		if (!result) {
2346 			return false;
2347 		} else if (result > 0) {
2348 			sent_pkts = 1;
2349 		}
2350 	}
2351 
2352 	max_segs = tcp_tso_segs(sk, mss_now);
2353 	while ((skb = tcp_send_head(sk))) {
2354 		unsigned int limit;
2355 
2356 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2357 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2358 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2359 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2360 			tcp_init_tso_segs(skb, mss_now);
2361 			goto repair; /* Skip network transmission */
2362 		}
2363 
2364 		if (tcp_pacing_check(sk))
2365 			break;
2366 
2367 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2368 		BUG_ON(!tso_segs);
2369 
2370 		cwnd_quota = tcp_cwnd_test(tp, skb);
2371 		if (!cwnd_quota) {
2372 			if (push_one == 2)
2373 				/* Force out a loss probe pkt. */
2374 				cwnd_quota = 1;
2375 			else
2376 				break;
2377 		}
2378 
2379 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2380 			is_rwnd_limited = true;
2381 			break;
2382 		}
2383 
2384 		if (tso_segs == 1) {
2385 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2386 						     (tcp_skb_is_last(sk, skb) ?
2387 						      nonagle : TCP_NAGLE_PUSH))))
2388 				break;
2389 		} else {
2390 			if (!push_one &&
2391 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2392 						 &is_rwnd_limited, max_segs))
2393 				break;
2394 		}
2395 
2396 		limit = mss_now;
2397 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2398 			limit = tcp_mss_split_point(sk, skb, mss_now,
2399 						    min_t(unsigned int,
2400 							  cwnd_quota,
2401 							  max_segs),
2402 						    nonagle);
2403 
2404 		if (skb->len > limit &&
2405 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2406 			break;
2407 
2408 		if (tcp_small_queue_check(sk, skb, 0))
2409 			break;
2410 
2411 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2412 			break;
2413 
2414 repair:
2415 		/* Advance the send_head.  This one is sent out.
2416 		 * This call will increment packets_out.
2417 		 */
2418 		tcp_event_new_data_sent(sk, skb);
2419 
2420 		tcp_minshall_update(tp, mss_now, skb);
2421 		sent_pkts += tcp_skb_pcount(skb);
2422 
2423 		if (push_one)
2424 			break;
2425 	}
2426 
2427 	if (is_rwnd_limited)
2428 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2429 	else
2430 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2431 
2432 	if (likely(sent_pkts)) {
2433 		if (tcp_in_cwnd_reduction(sk))
2434 			tp->prr_out += sent_pkts;
2435 
2436 		/* Send one loss probe per tail loss episode. */
2437 		if (push_one != 2)
2438 			tcp_schedule_loss_probe(sk, false);
2439 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2440 		tcp_cwnd_validate(sk, is_cwnd_limited);
2441 		return false;
2442 	}
2443 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2444 }
2445 
2446 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2447 {
2448 	struct inet_connection_sock *icsk = inet_csk(sk);
2449 	struct tcp_sock *tp = tcp_sk(sk);
2450 	u32 timeout, rto_delta_us;
2451 	int early_retrans;
2452 
2453 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2454 	 * finishes.
2455 	 */
2456 	if (tp->fastopen_rsk)
2457 		return false;
2458 
2459 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2460 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2461 	 * not in loss recovery, that are either limited by cwnd or application.
2462 	 */
2463 	if ((early_retrans != 3 && early_retrans != 4) ||
2464 	    !tp->packets_out || !tcp_is_sack(tp) ||
2465 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2466 	     icsk->icsk_ca_state != TCP_CA_CWR))
2467 		return false;
2468 
2469 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2470 	 * for delayed ack when there's one outstanding packet. If no RTT
2471 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2472 	 */
2473 	if (tp->srtt_us) {
2474 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2475 		if (tp->packets_out == 1)
2476 			timeout += TCP_RTO_MIN;
2477 		else
2478 			timeout += TCP_TIMEOUT_MIN;
2479 	} else {
2480 		timeout = TCP_TIMEOUT_INIT;
2481 	}
2482 
2483 	/* If the RTO formula yields an earlier time, then use that time. */
2484 	rto_delta_us = advancing_rto ?
2485 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2486 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2487 	if (rto_delta_us > 0)
2488 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2489 
2490 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2491 			     TCP_RTO_MAX, NULL);
2492 	return true;
2493 }
2494 
2495 /* Thanks to skb fast clones, we can detect if a prior transmit of
2496  * a packet is still in a qdisc or driver queue.
2497  * In this case, there is very little point doing a retransmit !
2498  */
2499 static bool skb_still_in_host_queue(const struct sock *sk,
2500 				    const struct sk_buff *skb)
2501 {
2502 	if (unlikely(skb_fclone_busy(sk, skb))) {
2503 		NET_INC_STATS(sock_net(sk),
2504 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2505 		return true;
2506 	}
2507 	return false;
2508 }
2509 
2510 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2511  * retransmit the last segment.
2512  */
2513 void tcp_send_loss_probe(struct sock *sk)
2514 {
2515 	struct tcp_sock *tp = tcp_sk(sk);
2516 	struct sk_buff *skb;
2517 	int pcount;
2518 	int mss = tcp_current_mss(sk);
2519 
2520 	skb = tcp_send_head(sk);
2521 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2522 		pcount = tp->packets_out;
2523 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2524 		if (tp->packets_out > pcount)
2525 			goto probe_sent;
2526 		goto rearm_timer;
2527 	}
2528 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2529 	if (unlikely(!skb)) {
2530 		WARN_ONCE(tp->packets_out,
2531 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2532 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2533 		inet_csk(sk)->icsk_pending = 0;
2534 		return;
2535 	}
2536 
2537 	/* At most one outstanding TLP retransmission. */
2538 	if (tp->tlp_high_seq)
2539 		goto rearm_timer;
2540 
2541 	if (skb_still_in_host_queue(sk, skb))
2542 		goto rearm_timer;
2543 
2544 	pcount = tcp_skb_pcount(skb);
2545 	if (WARN_ON(!pcount))
2546 		goto rearm_timer;
2547 
2548 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2549 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2550 					  (pcount - 1) * mss, mss,
2551 					  GFP_ATOMIC)))
2552 			goto rearm_timer;
2553 		skb = skb_rb_next(skb);
2554 	}
2555 
2556 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2557 		goto rearm_timer;
2558 
2559 	if (__tcp_retransmit_skb(sk, skb, 1))
2560 		goto rearm_timer;
2561 
2562 	/* Record snd_nxt for loss detection. */
2563 	tp->tlp_high_seq = tp->snd_nxt;
2564 
2565 probe_sent:
2566 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2567 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2568 	inet_csk(sk)->icsk_pending = 0;
2569 rearm_timer:
2570 	tcp_rearm_rto(sk);
2571 }
2572 
2573 /* Push out any pending frames which were held back due to
2574  * TCP_CORK or attempt at coalescing tiny packets.
2575  * The socket must be locked by the caller.
2576  */
2577 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2578 			       int nonagle)
2579 {
2580 	/* If we are closed, the bytes will have to remain here.
2581 	 * In time closedown will finish, we empty the write queue and
2582 	 * all will be happy.
2583 	 */
2584 	if (unlikely(sk->sk_state == TCP_CLOSE))
2585 		return;
2586 
2587 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2588 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2589 		tcp_check_probe_timer(sk);
2590 }
2591 
2592 /* Send _single_ skb sitting at the send head. This function requires
2593  * true push pending frames to setup probe timer etc.
2594  */
2595 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2596 {
2597 	struct sk_buff *skb = tcp_send_head(sk);
2598 
2599 	BUG_ON(!skb || skb->len < mss_now);
2600 
2601 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2602 }
2603 
2604 /* This function returns the amount that we can raise the
2605  * usable window based on the following constraints
2606  *
2607  * 1. The window can never be shrunk once it is offered (RFC 793)
2608  * 2. We limit memory per socket
2609  *
2610  * RFC 1122:
2611  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2612  *  RECV.NEXT + RCV.WIN fixed until:
2613  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2614  *
2615  * i.e. don't raise the right edge of the window until you can raise
2616  * it at least MSS bytes.
2617  *
2618  * Unfortunately, the recommended algorithm breaks header prediction,
2619  * since header prediction assumes th->window stays fixed.
2620  *
2621  * Strictly speaking, keeping th->window fixed violates the receiver
2622  * side SWS prevention criteria. The problem is that under this rule
2623  * a stream of single byte packets will cause the right side of the
2624  * window to always advance by a single byte.
2625  *
2626  * Of course, if the sender implements sender side SWS prevention
2627  * then this will not be a problem.
2628  *
2629  * BSD seems to make the following compromise:
2630  *
2631  *	If the free space is less than the 1/4 of the maximum
2632  *	space available and the free space is less than 1/2 mss,
2633  *	then set the window to 0.
2634  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2635  *	Otherwise, just prevent the window from shrinking
2636  *	and from being larger than the largest representable value.
2637  *
2638  * This prevents incremental opening of the window in the regime
2639  * where TCP is limited by the speed of the reader side taking
2640  * data out of the TCP receive queue. It does nothing about
2641  * those cases where the window is constrained on the sender side
2642  * because the pipeline is full.
2643  *
2644  * BSD also seems to "accidentally" limit itself to windows that are a
2645  * multiple of MSS, at least until the free space gets quite small.
2646  * This would appear to be a side effect of the mbuf implementation.
2647  * Combining these two algorithms results in the observed behavior
2648  * of having a fixed window size at almost all times.
2649  *
2650  * Below we obtain similar behavior by forcing the offered window to
2651  * a multiple of the mss when it is feasible to do so.
2652  *
2653  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2654  * Regular options like TIMESTAMP are taken into account.
2655  */
2656 u32 __tcp_select_window(struct sock *sk)
2657 {
2658 	struct inet_connection_sock *icsk = inet_csk(sk);
2659 	struct tcp_sock *tp = tcp_sk(sk);
2660 	/* MSS for the peer's data.  Previous versions used mss_clamp
2661 	 * here.  I don't know if the value based on our guesses
2662 	 * of peer's MSS is better for the performance.  It's more correct
2663 	 * but may be worse for the performance because of rcv_mss
2664 	 * fluctuations.  --SAW  1998/11/1
2665 	 */
2666 	int mss = icsk->icsk_ack.rcv_mss;
2667 	int free_space = tcp_space(sk);
2668 	int allowed_space = tcp_full_space(sk);
2669 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2670 	int window;
2671 
2672 	if (unlikely(mss > full_space)) {
2673 		mss = full_space;
2674 		if (mss <= 0)
2675 			return 0;
2676 	}
2677 	if (free_space < (full_space >> 1)) {
2678 		icsk->icsk_ack.quick = 0;
2679 
2680 		if (tcp_under_memory_pressure(sk))
2681 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2682 					       4U * tp->advmss);
2683 
2684 		/* free_space might become our new window, make sure we don't
2685 		 * increase it due to wscale.
2686 		 */
2687 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2688 
2689 		/* if free space is less than mss estimate, or is below 1/16th
2690 		 * of the maximum allowed, try to move to zero-window, else
2691 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2692 		 * new incoming data is dropped due to memory limits.
2693 		 * With large window, mss test triggers way too late in order
2694 		 * to announce zero window in time before rmem limit kicks in.
2695 		 */
2696 		if (free_space < (allowed_space >> 4) || free_space < mss)
2697 			return 0;
2698 	}
2699 
2700 	if (free_space > tp->rcv_ssthresh)
2701 		free_space = tp->rcv_ssthresh;
2702 
2703 	/* Don't do rounding if we are using window scaling, since the
2704 	 * scaled window will not line up with the MSS boundary anyway.
2705 	 */
2706 	if (tp->rx_opt.rcv_wscale) {
2707 		window = free_space;
2708 
2709 		/* Advertise enough space so that it won't get scaled away.
2710 		 * Import case: prevent zero window announcement if
2711 		 * 1<<rcv_wscale > mss.
2712 		 */
2713 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2714 	} else {
2715 		window = tp->rcv_wnd;
2716 		/* Get the largest window that is a nice multiple of mss.
2717 		 * Window clamp already applied above.
2718 		 * If our current window offering is within 1 mss of the
2719 		 * free space we just keep it. This prevents the divide
2720 		 * and multiply from happening most of the time.
2721 		 * We also don't do any window rounding when the free space
2722 		 * is too small.
2723 		 */
2724 		if (window <= free_space - mss || window > free_space)
2725 			window = rounddown(free_space, mss);
2726 		else if (mss == full_space &&
2727 			 free_space > window + (full_space >> 1))
2728 			window = free_space;
2729 	}
2730 
2731 	return window;
2732 }
2733 
2734 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2735 			     const struct sk_buff *next_skb)
2736 {
2737 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2738 		const struct skb_shared_info *next_shinfo =
2739 			skb_shinfo(next_skb);
2740 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2741 
2742 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2743 		shinfo->tskey = next_shinfo->tskey;
2744 		TCP_SKB_CB(skb)->txstamp_ack |=
2745 			TCP_SKB_CB(next_skb)->txstamp_ack;
2746 	}
2747 }
2748 
2749 /* Collapses two adjacent SKB's during retransmission. */
2750 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2751 {
2752 	struct tcp_sock *tp = tcp_sk(sk);
2753 	struct sk_buff *next_skb = skb_rb_next(skb);
2754 	int next_skb_size;
2755 
2756 	next_skb_size = next_skb->len;
2757 
2758 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2759 
2760 	if (next_skb_size) {
2761 		if (next_skb_size <= skb_availroom(skb))
2762 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2763 				      next_skb_size);
2764 		else if (!skb_shift(skb, next_skb, next_skb_size))
2765 			return false;
2766 	}
2767 	tcp_highest_sack_replace(sk, next_skb, skb);
2768 
2769 	/* Update sequence range on original skb. */
2770 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2771 
2772 	/* Merge over control information. This moves PSH/FIN etc. over */
2773 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2774 
2775 	/* All done, get rid of second SKB and account for it so
2776 	 * packet counting does not break.
2777 	 */
2778 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2779 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2780 
2781 	/* changed transmit queue under us so clear hints */
2782 	tcp_clear_retrans_hints_partial(tp);
2783 	if (next_skb == tp->retransmit_skb_hint)
2784 		tp->retransmit_skb_hint = skb;
2785 
2786 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2787 
2788 	tcp_skb_collapse_tstamp(skb, next_skb);
2789 
2790 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2791 	return true;
2792 }
2793 
2794 /* Check if coalescing SKBs is legal. */
2795 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2796 {
2797 	if (tcp_skb_pcount(skb) > 1)
2798 		return false;
2799 	if (skb_cloned(skb))
2800 		return false;
2801 	/* Some heuristics for collapsing over SACK'd could be invented */
2802 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2803 		return false;
2804 
2805 	return true;
2806 }
2807 
2808 /* Collapse packets in the retransmit queue to make to create
2809  * less packets on the wire. This is only done on retransmission.
2810  */
2811 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2812 				     int space)
2813 {
2814 	struct tcp_sock *tp = tcp_sk(sk);
2815 	struct sk_buff *skb = to, *tmp;
2816 	bool first = true;
2817 
2818 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2819 		return;
2820 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2821 		return;
2822 
2823 	skb_rbtree_walk_from_safe(skb, tmp) {
2824 		if (!tcp_can_collapse(sk, skb))
2825 			break;
2826 
2827 		if (!tcp_skb_can_collapse_to(to))
2828 			break;
2829 
2830 		space -= skb->len;
2831 
2832 		if (first) {
2833 			first = false;
2834 			continue;
2835 		}
2836 
2837 		if (space < 0)
2838 			break;
2839 
2840 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2841 			break;
2842 
2843 		if (!tcp_collapse_retrans(sk, to))
2844 			break;
2845 	}
2846 }
2847 
2848 /* This retransmits one SKB.  Policy decisions and retransmit queue
2849  * state updates are done by the caller.  Returns non-zero if an
2850  * error occurred which prevented the send.
2851  */
2852 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2853 {
2854 	struct inet_connection_sock *icsk = inet_csk(sk);
2855 	struct tcp_sock *tp = tcp_sk(sk);
2856 	unsigned int cur_mss;
2857 	int diff, len, err;
2858 
2859 
2860 	/* Inconclusive MTU probe */
2861 	if (icsk->icsk_mtup.probe_size)
2862 		icsk->icsk_mtup.probe_size = 0;
2863 
2864 	/* Do not sent more than we queued. 1/4 is reserved for possible
2865 	 * copying overhead: fragmentation, tunneling, mangling etc.
2866 	 */
2867 	if (refcount_read(&sk->sk_wmem_alloc) >
2868 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2869 		  sk->sk_sndbuf))
2870 		return -EAGAIN;
2871 
2872 	if (skb_still_in_host_queue(sk, skb))
2873 		return -EBUSY;
2874 
2875 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2876 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2877 			WARN_ON_ONCE(1);
2878 			return -EINVAL;
2879 		}
2880 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2881 			return -ENOMEM;
2882 	}
2883 
2884 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2885 		return -EHOSTUNREACH; /* Routing failure or similar. */
2886 
2887 	cur_mss = tcp_current_mss(sk);
2888 
2889 	/* If receiver has shrunk his window, and skb is out of
2890 	 * new window, do not retransmit it. The exception is the
2891 	 * case, when window is shrunk to zero. In this case
2892 	 * our retransmit serves as a zero window probe.
2893 	 */
2894 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2895 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2896 		return -EAGAIN;
2897 
2898 	len = cur_mss * segs;
2899 	if (skb->len > len) {
2900 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2901 				 cur_mss, GFP_ATOMIC))
2902 			return -ENOMEM; /* We'll try again later. */
2903 	} else {
2904 		if (skb_unclone(skb, GFP_ATOMIC))
2905 			return -ENOMEM;
2906 
2907 		diff = tcp_skb_pcount(skb);
2908 		tcp_set_skb_tso_segs(skb, cur_mss);
2909 		diff -= tcp_skb_pcount(skb);
2910 		if (diff)
2911 			tcp_adjust_pcount(sk, skb, diff);
2912 		if (skb->len < cur_mss)
2913 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2914 	}
2915 
2916 	/* RFC3168, section 6.1.1.1. ECN fallback */
2917 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2918 		tcp_ecn_clear_syn(sk, skb);
2919 
2920 	/* Update global and local TCP statistics. */
2921 	segs = tcp_skb_pcount(skb);
2922 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2923 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2924 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2925 	tp->total_retrans += segs;
2926 	tp->bytes_retrans += skb->len;
2927 
2928 	/* make sure skb->data is aligned on arches that require it
2929 	 * and check if ack-trimming & collapsing extended the headroom
2930 	 * beyond what csum_start can cover.
2931 	 */
2932 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2933 		     skb_headroom(skb) >= 0xFFFF)) {
2934 		struct sk_buff *nskb;
2935 
2936 		tcp_skb_tsorted_save(skb) {
2937 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2938 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2939 				     -ENOBUFS;
2940 		} tcp_skb_tsorted_restore(skb);
2941 
2942 		if (!err) {
2943 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2944 			tcp_rate_skb_sent(sk, skb);
2945 		}
2946 	} else {
2947 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2948 	}
2949 
2950 	/* To avoid taking spuriously low RTT samples based on a timestamp
2951 	 * for a transmit that never happened, always mark EVER_RETRANS
2952 	 */
2953 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2954 
2955 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2956 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2957 				  TCP_SKB_CB(skb)->seq, segs, err);
2958 
2959 	if (likely(!err)) {
2960 		trace_tcp_retransmit_skb(sk, skb);
2961 	} else if (err != -EBUSY) {
2962 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2963 	}
2964 	return err;
2965 }
2966 
2967 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2968 {
2969 	struct tcp_sock *tp = tcp_sk(sk);
2970 	int err = __tcp_retransmit_skb(sk, skb, segs);
2971 
2972 	if (err == 0) {
2973 #if FASTRETRANS_DEBUG > 0
2974 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2975 			net_dbg_ratelimited("retrans_out leaked\n");
2976 		}
2977 #endif
2978 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2979 		tp->retrans_out += tcp_skb_pcount(skb);
2980 	}
2981 
2982 	/* Save stamp of the first (attempted) retransmit. */
2983 	if (!tp->retrans_stamp)
2984 		tp->retrans_stamp = tcp_skb_timestamp(skb);
2985 
2986 	if (tp->undo_retrans < 0)
2987 		tp->undo_retrans = 0;
2988 	tp->undo_retrans += tcp_skb_pcount(skb);
2989 	return err;
2990 }
2991 
2992 /* This gets called after a retransmit timeout, and the initially
2993  * retransmitted data is acknowledged.  It tries to continue
2994  * resending the rest of the retransmit queue, until either
2995  * we've sent it all or the congestion window limit is reached.
2996  */
2997 void tcp_xmit_retransmit_queue(struct sock *sk)
2998 {
2999 	const struct inet_connection_sock *icsk = inet_csk(sk);
3000 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3001 	struct tcp_sock *tp = tcp_sk(sk);
3002 	u32 max_segs;
3003 	int mib_idx;
3004 
3005 	if (!tp->packets_out)
3006 		return;
3007 
3008 	rtx_head = tcp_rtx_queue_head(sk);
3009 	skb = tp->retransmit_skb_hint ?: rtx_head;
3010 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3011 	skb_rbtree_walk_from(skb) {
3012 		__u8 sacked;
3013 		int segs;
3014 
3015 		if (tcp_pacing_check(sk))
3016 			break;
3017 
3018 		/* we could do better than to assign each time */
3019 		if (!hole)
3020 			tp->retransmit_skb_hint = skb;
3021 
3022 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3023 		if (segs <= 0)
3024 			return;
3025 		sacked = TCP_SKB_CB(skb)->sacked;
3026 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3027 		 * we need to make sure not sending too bigs TSO packets
3028 		 */
3029 		segs = min_t(int, segs, max_segs);
3030 
3031 		if (tp->retrans_out >= tp->lost_out) {
3032 			break;
3033 		} else if (!(sacked & TCPCB_LOST)) {
3034 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3035 				hole = skb;
3036 			continue;
3037 
3038 		} else {
3039 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3040 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3041 			else
3042 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3043 		}
3044 
3045 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3046 			continue;
3047 
3048 		if (tcp_small_queue_check(sk, skb, 1))
3049 			return;
3050 
3051 		if (tcp_retransmit_skb(sk, skb, segs))
3052 			return;
3053 
3054 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3055 
3056 		if (tcp_in_cwnd_reduction(sk))
3057 			tp->prr_out += tcp_skb_pcount(skb);
3058 
3059 		if (skb == rtx_head &&
3060 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3061 			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3062 					     inet_csk(sk)->icsk_rto,
3063 					     TCP_RTO_MAX,
3064 					     skb);
3065 	}
3066 }
3067 
3068 /* We allow to exceed memory limits for FIN packets to expedite
3069  * connection tear down and (memory) recovery.
3070  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3071  * or even be forced to close flow without any FIN.
3072  * In general, we want to allow one skb per socket to avoid hangs
3073  * with edge trigger epoll()
3074  */
3075 void sk_forced_mem_schedule(struct sock *sk, int size)
3076 {
3077 	int amt;
3078 
3079 	if (size <= sk->sk_forward_alloc)
3080 		return;
3081 	amt = sk_mem_pages(size);
3082 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3083 	sk_memory_allocated_add(sk, amt);
3084 
3085 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3086 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3087 }
3088 
3089 /* Send a FIN. The caller locks the socket for us.
3090  * We should try to send a FIN packet really hard, but eventually give up.
3091  */
3092 void tcp_send_fin(struct sock *sk)
3093 {
3094 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3095 	struct tcp_sock *tp = tcp_sk(sk);
3096 
3097 	/* Optimization, tack on the FIN if we have one skb in write queue and
3098 	 * this skb was not yet sent, or we are under memory pressure.
3099 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3100 	 * as TCP stack thinks it has already been transmitted.
3101 	 */
3102 	if (!tskb && tcp_under_memory_pressure(sk))
3103 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3104 
3105 	if (tskb) {
3106 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3107 		TCP_SKB_CB(tskb)->end_seq++;
3108 		tp->write_seq++;
3109 		if (tcp_write_queue_empty(sk)) {
3110 			/* This means tskb was already sent.
3111 			 * Pretend we included the FIN on previous transmit.
3112 			 * We need to set tp->snd_nxt to the value it would have
3113 			 * if FIN had been sent. This is because retransmit path
3114 			 * does not change tp->snd_nxt.
3115 			 */
3116 			tp->snd_nxt++;
3117 			return;
3118 		}
3119 	} else {
3120 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3121 		if (unlikely(!skb))
3122 			return;
3123 
3124 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3125 		skb_reserve(skb, MAX_TCP_HEADER);
3126 		sk_forced_mem_schedule(sk, skb->truesize);
3127 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3128 		tcp_init_nondata_skb(skb, tp->write_seq,
3129 				     TCPHDR_ACK | TCPHDR_FIN);
3130 		tcp_queue_skb(sk, skb);
3131 	}
3132 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3133 }
3134 
3135 /* We get here when a process closes a file descriptor (either due to
3136  * an explicit close() or as a byproduct of exit()'ing) and there
3137  * was unread data in the receive queue.  This behavior is recommended
3138  * by RFC 2525, section 2.17.  -DaveM
3139  */
3140 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3141 {
3142 	struct sk_buff *skb;
3143 
3144 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3145 
3146 	/* NOTE: No TCP options attached and we never retransmit this. */
3147 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3148 	if (!skb) {
3149 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3150 		return;
3151 	}
3152 
3153 	/* Reserve space for headers and prepare control bits. */
3154 	skb_reserve(skb, MAX_TCP_HEADER);
3155 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3156 			     TCPHDR_ACK | TCPHDR_RST);
3157 	tcp_mstamp_refresh(tcp_sk(sk));
3158 	/* Send it off. */
3159 	if (tcp_transmit_skb(sk, skb, 0, priority))
3160 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3161 
3162 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3163 	 * skb here is different to the troublesome skb, so use NULL
3164 	 */
3165 	trace_tcp_send_reset(sk, NULL);
3166 }
3167 
3168 /* Send a crossed SYN-ACK during socket establishment.
3169  * WARNING: This routine must only be called when we have already sent
3170  * a SYN packet that crossed the incoming SYN that caused this routine
3171  * to get called. If this assumption fails then the initial rcv_wnd
3172  * and rcv_wscale values will not be correct.
3173  */
3174 int tcp_send_synack(struct sock *sk)
3175 {
3176 	struct sk_buff *skb;
3177 
3178 	skb = tcp_rtx_queue_head(sk);
3179 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3180 		pr_err("%s: wrong queue state\n", __func__);
3181 		return -EFAULT;
3182 	}
3183 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3184 		if (skb_cloned(skb)) {
3185 			struct sk_buff *nskb;
3186 
3187 			tcp_skb_tsorted_save(skb) {
3188 				nskb = skb_copy(skb, GFP_ATOMIC);
3189 			} tcp_skb_tsorted_restore(skb);
3190 			if (!nskb)
3191 				return -ENOMEM;
3192 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3193 			tcp_rtx_queue_unlink_and_free(skb, sk);
3194 			__skb_header_release(nskb);
3195 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3196 			sk->sk_wmem_queued += nskb->truesize;
3197 			sk_mem_charge(sk, nskb->truesize);
3198 			skb = nskb;
3199 		}
3200 
3201 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3202 		tcp_ecn_send_synack(sk, skb);
3203 	}
3204 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3205 }
3206 
3207 /**
3208  * tcp_make_synack - Prepare a SYN-ACK.
3209  * sk: listener socket
3210  * dst: dst entry attached to the SYNACK
3211  * req: request_sock pointer
3212  *
3213  * Allocate one skb and build a SYNACK packet.
3214  * @dst is consumed : Caller should not use it again.
3215  */
3216 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3217 				struct request_sock *req,
3218 				struct tcp_fastopen_cookie *foc,
3219 				enum tcp_synack_type synack_type)
3220 {
3221 	struct inet_request_sock *ireq = inet_rsk(req);
3222 	const struct tcp_sock *tp = tcp_sk(sk);
3223 	struct tcp_md5sig_key *md5 = NULL;
3224 	struct tcp_out_options opts;
3225 	struct sk_buff *skb;
3226 	int tcp_header_size;
3227 	struct tcphdr *th;
3228 	int mss;
3229 	u64 now;
3230 
3231 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3232 	if (unlikely(!skb)) {
3233 		dst_release(dst);
3234 		return NULL;
3235 	}
3236 	/* Reserve space for headers. */
3237 	skb_reserve(skb, MAX_TCP_HEADER);
3238 
3239 	switch (synack_type) {
3240 	case TCP_SYNACK_NORMAL:
3241 		skb_set_owner_w(skb, req_to_sk(req));
3242 		break;
3243 	case TCP_SYNACK_COOKIE:
3244 		/* Under synflood, we do not attach skb to a socket,
3245 		 * to avoid false sharing.
3246 		 */
3247 		break;
3248 	case TCP_SYNACK_FASTOPEN:
3249 		/* sk is a const pointer, because we want to express multiple
3250 		 * cpu might call us concurrently.
3251 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3252 		 */
3253 		skb_set_owner_w(skb, (struct sock *)sk);
3254 		break;
3255 	}
3256 	skb_dst_set(skb, dst);
3257 
3258 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3259 
3260 	memset(&opts, 0, sizeof(opts));
3261 	now = tcp_clock_ns();
3262 #ifdef CONFIG_SYN_COOKIES
3263 	if (unlikely(req->cookie_ts))
3264 		skb->skb_mstamp_ns = cookie_init_timestamp(req);
3265 	else
3266 #endif
3267 	{
3268 		skb->skb_mstamp_ns = now;
3269 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3270 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3271 	}
3272 
3273 #ifdef CONFIG_TCP_MD5SIG
3274 	rcu_read_lock();
3275 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3276 #endif
3277 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3278 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3279 					     foc) + sizeof(*th);
3280 
3281 	skb_push(skb, tcp_header_size);
3282 	skb_reset_transport_header(skb);
3283 
3284 	th = (struct tcphdr *)skb->data;
3285 	memset(th, 0, sizeof(struct tcphdr));
3286 	th->syn = 1;
3287 	th->ack = 1;
3288 	tcp_ecn_make_synack(req, th);
3289 	th->source = htons(ireq->ir_num);
3290 	th->dest = ireq->ir_rmt_port;
3291 	skb->mark = ireq->ir_mark;
3292 	skb->ip_summed = CHECKSUM_PARTIAL;
3293 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3294 	/* XXX data is queued and acked as is. No buffer/window check */
3295 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3296 
3297 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3298 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3299 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3300 	th->doff = (tcp_header_size >> 2);
3301 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3302 
3303 #ifdef CONFIG_TCP_MD5SIG
3304 	/* Okay, we have all we need - do the md5 hash if needed */
3305 	if (md5)
3306 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3307 					       md5, req_to_sk(req), skb);
3308 	rcu_read_unlock();
3309 #endif
3310 
3311 	skb->skb_mstamp_ns = now;
3312 	tcp_add_tx_delay(skb, tp);
3313 
3314 	return skb;
3315 }
3316 EXPORT_SYMBOL(tcp_make_synack);
3317 
3318 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3319 {
3320 	struct inet_connection_sock *icsk = inet_csk(sk);
3321 	const struct tcp_congestion_ops *ca;
3322 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3323 
3324 	if (ca_key == TCP_CA_UNSPEC)
3325 		return;
3326 
3327 	rcu_read_lock();
3328 	ca = tcp_ca_find_key(ca_key);
3329 	if (likely(ca && try_module_get(ca->owner))) {
3330 		module_put(icsk->icsk_ca_ops->owner);
3331 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3332 		icsk->icsk_ca_ops = ca;
3333 	}
3334 	rcu_read_unlock();
3335 }
3336 
3337 /* Do all connect socket setups that can be done AF independent. */
3338 static void tcp_connect_init(struct sock *sk)
3339 {
3340 	const struct dst_entry *dst = __sk_dst_get(sk);
3341 	struct tcp_sock *tp = tcp_sk(sk);
3342 	__u8 rcv_wscale;
3343 	u32 rcv_wnd;
3344 
3345 	/* We'll fix this up when we get a response from the other end.
3346 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3347 	 */
3348 	tp->tcp_header_len = sizeof(struct tcphdr);
3349 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3350 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3351 
3352 #ifdef CONFIG_TCP_MD5SIG
3353 	if (tp->af_specific->md5_lookup(sk, sk))
3354 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3355 #endif
3356 
3357 	/* If user gave his TCP_MAXSEG, record it to clamp */
3358 	if (tp->rx_opt.user_mss)
3359 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3360 	tp->max_window = 0;
3361 	tcp_mtup_init(sk);
3362 	tcp_sync_mss(sk, dst_mtu(dst));
3363 
3364 	tcp_ca_dst_init(sk, dst);
3365 
3366 	if (!tp->window_clamp)
3367 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3368 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3369 
3370 	tcp_initialize_rcv_mss(sk);
3371 
3372 	/* limit the window selection if the user enforce a smaller rx buffer */
3373 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3374 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3375 		tp->window_clamp = tcp_full_space(sk);
3376 
3377 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3378 	if (rcv_wnd == 0)
3379 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3380 
3381 	tcp_select_initial_window(sk, tcp_full_space(sk),
3382 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3383 				  &tp->rcv_wnd,
3384 				  &tp->window_clamp,
3385 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3386 				  &rcv_wscale,
3387 				  rcv_wnd);
3388 
3389 	tp->rx_opt.rcv_wscale = rcv_wscale;
3390 	tp->rcv_ssthresh = tp->rcv_wnd;
3391 
3392 	sk->sk_err = 0;
3393 	sock_reset_flag(sk, SOCK_DONE);
3394 	tp->snd_wnd = 0;
3395 	tcp_init_wl(tp, 0);
3396 	tcp_write_queue_purge(sk);
3397 	tp->snd_una = tp->write_seq;
3398 	tp->snd_sml = tp->write_seq;
3399 	tp->snd_up = tp->write_seq;
3400 	tp->snd_nxt = tp->write_seq;
3401 
3402 	if (likely(!tp->repair))
3403 		tp->rcv_nxt = 0;
3404 	else
3405 		tp->rcv_tstamp = tcp_jiffies32;
3406 	tp->rcv_wup = tp->rcv_nxt;
3407 	tp->copied_seq = tp->rcv_nxt;
3408 
3409 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3410 	inet_csk(sk)->icsk_retransmits = 0;
3411 	tcp_clear_retrans(tp);
3412 }
3413 
3414 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3415 {
3416 	struct tcp_sock *tp = tcp_sk(sk);
3417 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3418 
3419 	tcb->end_seq += skb->len;
3420 	__skb_header_release(skb);
3421 	sk->sk_wmem_queued += skb->truesize;
3422 	sk_mem_charge(sk, skb->truesize);
3423 	tp->write_seq = tcb->end_seq;
3424 	tp->packets_out += tcp_skb_pcount(skb);
3425 }
3426 
3427 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3428  * queue a data-only packet after the regular SYN, such that regular SYNs
3429  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3430  * only the SYN sequence, the data are retransmitted in the first ACK.
3431  * If cookie is not cached or other error occurs, falls back to send a
3432  * regular SYN with Fast Open cookie request option.
3433  */
3434 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3435 {
3436 	struct tcp_sock *tp = tcp_sk(sk);
3437 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3438 	int space, err = 0;
3439 	struct sk_buff *syn_data;
3440 
3441 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3442 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3443 		goto fallback;
3444 
3445 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3446 	 * user-MSS. Reserve maximum option space for middleboxes that add
3447 	 * private TCP options. The cost is reduced data space in SYN :(
3448 	 */
3449 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3450 
3451 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3452 		MAX_TCP_OPTION_SPACE;
3453 
3454 	space = min_t(size_t, space, fo->size);
3455 
3456 	/* limit to order-0 allocations */
3457 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3458 
3459 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3460 	if (!syn_data)
3461 		goto fallback;
3462 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3463 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3464 	if (space) {
3465 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3466 					    &fo->data->msg_iter);
3467 		if (unlikely(!copied)) {
3468 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3469 			kfree_skb(syn_data);
3470 			goto fallback;
3471 		}
3472 		if (copied != space) {
3473 			skb_trim(syn_data, copied);
3474 			space = copied;
3475 		}
3476 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3477 	}
3478 	/* No more data pending in inet_wait_for_connect() */
3479 	if (space == fo->size)
3480 		fo->data = NULL;
3481 	fo->copied = space;
3482 
3483 	tcp_connect_queue_skb(sk, syn_data);
3484 	if (syn_data->len)
3485 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3486 
3487 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3488 
3489 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3490 
3491 	/* Now full SYN+DATA was cloned and sent (or not),
3492 	 * remove the SYN from the original skb (syn_data)
3493 	 * we keep in write queue in case of a retransmit, as we
3494 	 * also have the SYN packet (with no data) in the same queue.
3495 	 */
3496 	TCP_SKB_CB(syn_data)->seq++;
3497 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3498 	if (!err) {
3499 		tp->syn_data = (fo->copied > 0);
3500 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3501 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3502 		goto done;
3503 	}
3504 
3505 	/* data was not sent, put it in write_queue */
3506 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3507 	tp->packets_out -= tcp_skb_pcount(syn_data);
3508 
3509 fallback:
3510 	/* Send a regular SYN with Fast Open cookie request option */
3511 	if (fo->cookie.len > 0)
3512 		fo->cookie.len = 0;
3513 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3514 	if (err)
3515 		tp->syn_fastopen = 0;
3516 done:
3517 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3518 	return err;
3519 }
3520 
3521 /* Build a SYN and send it off. */
3522 int tcp_connect(struct sock *sk)
3523 {
3524 	struct tcp_sock *tp = tcp_sk(sk);
3525 	struct sk_buff *buff;
3526 	int err;
3527 
3528 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3529 
3530 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3531 		return -EHOSTUNREACH; /* Routing failure or similar. */
3532 
3533 	tcp_connect_init(sk);
3534 
3535 	if (unlikely(tp->repair)) {
3536 		tcp_finish_connect(sk, NULL);
3537 		return 0;
3538 	}
3539 
3540 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3541 	if (unlikely(!buff))
3542 		return -ENOBUFS;
3543 
3544 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3545 	tcp_mstamp_refresh(tp);
3546 	tp->retrans_stamp = tcp_time_stamp(tp);
3547 	tcp_connect_queue_skb(sk, buff);
3548 	tcp_ecn_send_syn(sk, buff);
3549 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3550 
3551 	/* Send off SYN; include data in Fast Open. */
3552 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3553 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3554 	if (err == -ECONNREFUSED)
3555 		return err;
3556 
3557 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3558 	 * in order to make this packet get counted in tcpOutSegs.
3559 	 */
3560 	tp->snd_nxt = tp->write_seq;
3561 	tp->pushed_seq = tp->write_seq;
3562 	buff = tcp_send_head(sk);
3563 	if (unlikely(buff)) {
3564 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3565 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3566 	}
3567 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3568 
3569 	/* Timer for repeating the SYN until an answer. */
3570 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3571 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3572 	return 0;
3573 }
3574 EXPORT_SYMBOL(tcp_connect);
3575 
3576 /* Send out a delayed ack, the caller does the policy checking
3577  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3578  * for details.
3579  */
3580 void tcp_send_delayed_ack(struct sock *sk)
3581 {
3582 	struct inet_connection_sock *icsk = inet_csk(sk);
3583 	int ato = icsk->icsk_ack.ato;
3584 	unsigned long timeout;
3585 
3586 	if (ato > TCP_DELACK_MIN) {
3587 		const struct tcp_sock *tp = tcp_sk(sk);
3588 		int max_ato = HZ / 2;
3589 
3590 		if (inet_csk_in_pingpong_mode(sk) ||
3591 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3592 			max_ato = TCP_DELACK_MAX;
3593 
3594 		/* Slow path, intersegment interval is "high". */
3595 
3596 		/* If some rtt estimate is known, use it to bound delayed ack.
3597 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3598 		 * directly.
3599 		 */
3600 		if (tp->srtt_us) {
3601 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3602 					TCP_DELACK_MIN);
3603 
3604 			if (rtt < max_ato)
3605 				max_ato = rtt;
3606 		}
3607 
3608 		ato = min(ato, max_ato);
3609 	}
3610 
3611 	/* Stay within the limit we were given */
3612 	timeout = jiffies + ato;
3613 
3614 	/* Use new timeout only if there wasn't a older one earlier. */
3615 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3616 		/* If delack timer was blocked or is about to expire,
3617 		 * send ACK now.
3618 		 */
3619 		if (icsk->icsk_ack.blocked ||
3620 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3621 			tcp_send_ack(sk);
3622 			return;
3623 		}
3624 
3625 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3626 			timeout = icsk->icsk_ack.timeout;
3627 	}
3628 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3629 	icsk->icsk_ack.timeout = timeout;
3630 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3631 }
3632 
3633 /* This routine sends an ack and also updates the window. */
3634 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3635 {
3636 	struct sk_buff *buff;
3637 
3638 	/* If we have been reset, we may not send again. */
3639 	if (sk->sk_state == TCP_CLOSE)
3640 		return;
3641 
3642 	/* We are not putting this on the write queue, so
3643 	 * tcp_transmit_skb() will set the ownership to this
3644 	 * sock.
3645 	 */
3646 	buff = alloc_skb(MAX_TCP_HEADER,
3647 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3648 	if (unlikely(!buff)) {
3649 		inet_csk_schedule_ack(sk);
3650 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3651 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3652 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3653 		return;
3654 	}
3655 
3656 	/* Reserve space for headers and prepare control bits. */
3657 	skb_reserve(buff, MAX_TCP_HEADER);
3658 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3659 
3660 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3661 	 * too much.
3662 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3663 	 */
3664 	skb_set_tcp_pure_ack(buff);
3665 
3666 	/* Send it off, this clears delayed acks for us. */
3667 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3668 }
3669 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3670 
3671 void tcp_send_ack(struct sock *sk)
3672 {
3673 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3674 }
3675 
3676 /* This routine sends a packet with an out of date sequence
3677  * number. It assumes the other end will try to ack it.
3678  *
3679  * Question: what should we make while urgent mode?
3680  * 4.4BSD forces sending single byte of data. We cannot send
3681  * out of window data, because we have SND.NXT==SND.MAX...
3682  *
3683  * Current solution: to send TWO zero-length segments in urgent mode:
3684  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3685  * out-of-date with SND.UNA-1 to probe window.
3686  */
3687 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3688 {
3689 	struct tcp_sock *tp = tcp_sk(sk);
3690 	struct sk_buff *skb;
3691 
3692 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3693 	skb = alloc_skb(MAX_TCP_HEADER,
3694 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3695 	if (!skb)
3696 		return -1;
3697 
3698 	/* Reserve space for headers and set control bits. */
3699 	skb_reserve(skb, MAX_TCP_HEADER);
3700 	/* Use a previous sequence.  This should cause the other
3701 	 * end to send an ack.  Don't queue or clone SKB, just
3702 	 * send it.
3703 	 */
3704 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3705 	NET_INC_STATS(sock_net(sk), mib);
3706 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3707 }
3708 
3709 /* Called from setsockopt( ... TCP_REPAIR ) */
3710 void tcp_send_window_probe(struct sock *sk)
3711 {
3712 	if (sk->sk_state == TCP_ESTABLISHED) {
3713 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3714 		tcp_mstamp_refresh(tcp_sk(sk));
3715 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3716 	}
3717 }
3718 
3719 /* Initiate keepalive or window probe from timer. */
3720 int tcp_write_wakeup(struct sock *sk, int mib)
3721 {
3722 	struct tcp_sock *tp = tcp_sk(sk);
3723 	struct sk_buff *skb;
3724 
3725 	if (sk->sk_state == TCP_CLOSE)
3726 		return -1;
3727 
3728 	skb = tcp_send_head(sk);
3729 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3730 		int err;
3731 		unsigned int mss = tcp_current_mss(sk);
3732 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3733 
3734 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3735 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3736 
3737 		/* We are probing the opening of a window
3738 		 * but the window size is != 0
3739 		 * must have been a result SWS avoidance ( sender )
3740 		 */
3741 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3742 		    skb->len > mss) {
3743 			seg_size = min(seg_size, mss);
3744 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3745 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3746 					 skb, seg_size, mss, GFP_ATOMIC))
3747 				return -1;
3748 		} else if (!tcp_skb_pcount(skb))
3749 			tcp_set_skb_tso_segs(skb, mss);
3750 
3751 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3752 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3753 		if (!err)
3754 			tcp_event_new_data_sent(sk, skb);
3755 		return err;
3756 	} else {
3757 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3758 			tcp_xmit_probe_skb(sk, 1, mib);
3759 		return tcp_xmit_probe_skb(sk, 0, mib);
3760 	}
3761 }
3762 
3763 /* A window probe timeout has occurred.  If window is not closed send
3764  * a partial packet else a zero probe.
3765  */
3766 void tcp_send_probe0(struct sock *sk)
3767 {
3768 	struct inet_connection_sock *icsk = inet_csk(sk);
3769 	struct tcp_sock *tp = tcp_sk(sk);
3770 	struct net *net = sock_net(sk);
3771 	unsigned long timeout;
3772 	int err;
3773 
3774 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3775 
3776 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3777 		/* Cancel probe timer, if it is not required. */
3778 		icsk->icsk_probes_out = 0;
3779 		icsk->icsk_backoff = 0;
3780 		return;
3781 	}
3782 
3783 	icsk->icsk_probes_out++;
3784 	if (err <= 0) {
3785 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3786 			icsk->icsk_backoff++;
3787 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3788 	} else {
3789 		/* If packet was not sent due to local congestion,
3790 		 * Let senders fight for local resources conservatively.
3791 		 */
3792 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3793 	}
3794 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3795 }
3796 
3797 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3798 {
3799 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3800 	struct flowi fl;
3801 	int res;
3802 
3803 	tcp_rsk(req)->txhash = net_tx_rndhash();
3804 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3805 	if (!res) {
3806 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3807 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3808 		if (unlikely(tcp_passive_fastopen(sk)))
3809 			tcp_sk(sk)->total_retrans++;
3810 		trace_tcp_retransmit_synack(sk, req);
3811 	}
3812 	return res;
3813 }
3814 EXPORT_SYMBOL(tcp_rtx_synack);
3815