1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_jiffies32; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_jiffies32; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 tp->lsndtime = now; 169 170 /* If it is a reply for ato after last received 171 * packet, enter pingpong mode. 172 */ 173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 174 icsk->icsk_ack.pingpong = 1; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 179 { 180 tcp_dec_quickack_mode(sk, pkts); 181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 182 } 183 184 185 u32 tcp_default_init_rwnd(u32 mss) 186 { 187 /* Initial receive window should be twice of TCP_INIT_CWND to 188 * enable proper sending of new unsent data during fast recovery 189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 190 * limit when mss is larger than 1460. 191 */ 192 u32 init_rwnd = TCP_INIT_CWND * 2; 193 194 if (mss > 1460) 195 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 196 return init_rwnd; 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (sysctl_tcp_workaround_signed_windows) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = space; 234 235 (*rcv_wscale) = 0; 236 if (wscale_ok) { 237 /* Set window scaling on max possible window */ 238 space = max_t(u32, space, sysctl_tcp_rmem[2]); 239 space = max_t(u32, space, sysctl_rmem_max); 240 space = min_t(u32, space, *window_clamp); 241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 242 space >>= 1; 243 (*rcv_wscale)++; 244 } 245 } 246 247 if (mss > (1 << *rcv_wscale)) { 248 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 249 init_rcv_wnd = tcp_default_init_rwnd(mss); 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 } 252 253 /* Set the clamp no higher than max representable value */ 254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 255 } 256 EXPORT_SYMBOL(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 u32 old_win = tp->rcv_wnd; 267 u32 cur_win = tcp_receive_window(tp); 268 u32 new_win = __tcp_select_window(sk); 269 270 /* Never shrink the offered window */ 271 if (new_win < cur_win) { 272 /* Danger Will Robinson! 273 * Don't update rcv_wup/rcv_wnd here or else 274 * we will not be able to advertise a zero 275 * window in time. --DaveM 276 * 277 * Relax Will Robinson. 278 */ 279 if (new_win == 0) 280 NET_INC_STATS(sock_net(sk), 281 LINUX_MIB_TCPWANTZEROWINDOWADV); 282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 283 } 284 tp->rcv_wnd = new_win; 285 tp->rcv_wup = tp->rcv_nxt; 286 287 /* Make sure we do not exceed the maximum possible 288 * scaled window. 289 */ 290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 291 new_win = min(new_win, MAX_TCP_WINDOW); 292 else 293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 294 295 /* RFC1323 scaling applied */ 296 new_win >>= tp->rx_opt.rcv_wscale; 297 298 /* If we advertise zero window, disable fast path. */ 299 if (new_win == 0) { 300 tp->pred_flags = 0; 301 if (old_win) 302 NET_INC_STATS(sock_net(sk), 303 LINUX_MIB_TCPTOZEROWINDOWADV); 304 } else if (old_win == 0) { 305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 306 } 307 308 return new_win; 309 } 310 311 /* Packet ECN state for a SYN-ACK */ 312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 313 { 314 const struct tcp_sock *tp = tcp_sk(sk); 315 316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 317 if (!(tp->ecn_flags & TCP_ECN_OK)) 318 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 319 else if (tcp_ca_needs_ecn(sk)) 320 INET_ECN_xmit(sk); 321 } 322 323 /* Packet ECN state for a SYN. */ 324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 325 { 326 struct tcp_sock *tp = tcp_sk(sk); 327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 328 tcp_ca_needs_ecn(sk); 329 330 if (!use_ecn) { 331 const struct dst_entry *dst = __sk_dst_get(sk); 332 333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 334 use_ecn = true; 335 } 336 337 tp->ecn_flags = 0; 338 339 if (use_ecn) { 340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 341 tp->ecn_flags = TCP_ECN_OK; 342 if (tcp_ca_needs_ecn(sk)) 343 INET_ECN_xmit(sk); 344 } 345 } 346 347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 348 { 349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 350 /* tp->ecn_flags are cleared at a later point in time when 351 * SYN ACK is ultimatively being received. 352 */ 353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 354 } 355 356 static void 357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 358 { 359 if (inet_rsk(req)->ecn_ok) 360 th->ece = 1; 361 } 362 363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 364 * be sent. 365 */ 366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 367 struct tcphdr *th, int tcp_header_len) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tp->ecn_flags & TCP_ECN_OK) { 372 /* Not-retransmitted data segment: set ECT and inject CWR. */ 373 if (skb->len != tcp_header_len && 374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 375 INET_ECN_xmit(sk); 376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 378 th->cwr = 1; 379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 380 } 381 } else if (!tcp_ca_needs_ecn(sk)) { 382 /* ACK or retransmitted segment: clear ECT|CE */ 383 INET_ECN_dontxmit(sk); 384 } 385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 386 th->ece = 1; 387 } 388 } 389 390 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 391 * auto increment end seqno. 392 */ 393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 394 { 395 skb->ip_summed = CHECKSUM_PARTIAL; 396 skb->csum = 0; 397 398 TCP_SKB_CB(skb)->tcp_flags = flags; 399 TCP_SKB_CB(skb)->sacked = 0; 400 401 tcp_skb_pcount_set(skb, 1); 402 403 TCP_SKB_CB(skb)->seq = seq; 404 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 405 seq++; 406 TCP_SKB_CB(skb)->end_seq = seq; 407 } 408 409 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 410 { 411 return tp->snd_una != tp->snd_up; 412 } 413 414 #define OPTION_SACK_ADVERTISE (1 << 0) 415 #define OPTION_TS (1 << 1) 416 #define OPTION_MD5 (1 << 2) 417 #define OPTION_WSCALE (1 << 3) 418 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 419 420 struct tcp_out_options { 421 u16 options; /* bit field of OPTION_* */ 422 u16 mss; /* 0 to disable */ 423 u8 ws; /* window scale, 0 to disable */ 424 u8 num_sack_blocks; /* number of SACK blocks to include */ 425 u8 hash_size; /* bytes in hash_location */ 426 __u8 *hash_location; /* temporary pointer, overloaded */ 427 __u32 tsval, tsecr; /* need to include OPTION_TS */ 428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 429 }; 430 431 /* Write previously computed TCP options to the packet. 432 * 433 * Beware: Something in the Internet is very sensitive to the ordering of 434 * TCP options, we learned this through the hard way, so be careful here. 435 * Luckily we can at least blame others for their non-compliance but from 436 * inter-operability perspective it seems that we're somewhat stuck with 437 * the ordering which we have been using if we want to keep working with 438 * those broken things (not that it currently hurts anybody as there isn't 439 * particular reason why the ordering would need to be changed). 440 * 441 * At least SACK_PERM as the first option is known to lead to a disaster 442 * (but it may well be that other scenarios fail similarly). 443 */ 444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 445 struct tcp_out_options *opts) 446 { 447 u16 options = opts->options; /* mungable copy */ 448 449 if (unlikely(OPTION_MD5 & options)) { 450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 452 /* overload cookie hash location */ 453 opts->hash_location = (__u8 *)ptr; 454 ptr += 4; 455 } 456 457 if (unlikely(opts->mss)) { 458 *ptr++ = htonl((TCPOPT_MSS << 24) | 459 (TCPOLEN_MSS << 16) | 460 opts->mss); 461 } 462 463 if (likely(OPTION_TS & options)) { 464 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 466 (TCPOLEN_SACK_PERM << 16) | 467 (TCPOPT_TIMESTAMP << 8) | 468 TCPOLEN_TIMESTAMP); 469 options &= ~OPTION_SACK_ADVERTISE; 470 } else { 471 *ptr++ = htonl((TCPOPT_NOP << 24) | 472 (TCPOPT_NOP << 16) | 473 (TCPOPT_TIMESTAMP << 8) | 474 TCPOLEN_TIMESTAMP); 475 } 476 *ptr++ = htonl(opts->tsval); 477 *ptr++ = htonl(opts->tsecr); 478 } 479 480 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_SACK_PERM << 8) | 484 TCPOLEN_SACK_PERM); 485 } 486 487 if (unlikely(OPTION_WSCALE & options)) { 488 *ptr++ = htonl((TCPOPT_NOP << 24) | 489 (TCPOPT_WINDOW << 16) | 490 (TCPOLEN_WINDOW << 8) | 491 opts->ws); 492 } 493 494 if (unlikely(opts->num_sack_blocks)) { 495 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 496 tp->duplicate_sack : tp->selective_acks; 497 int this_sack; 498 499 *ptr++ = htonl((TCPOPT_NOP << 24) | 500 (TCPOPT_NOP << 16) | 501 (TCPOPT_SACK << 8) | 502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 503 TCPOLEN_SACK_PERBLOCK))); 504 505 for (this_sack = 0; this_sack < opts->num_sack_blocks; 506 ++this_sack) { 507 *ptr++ = htonl(sp[this_sack].start_seq); 508 *ptr++ = htonl(sp[this_sack].end_seq); 509 } 510 511 tp->rx_opt.dsack = 0; 512 } 513 514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 516 u8 *p = (u8 *)ptr; 517 u32 len; /* Fast Open option length */ 518 519 if (foc->exp) { 520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 522 TCPOPT_FASTOPEN_MAGIC); 523 p += TCPOLEN_EXP_FASTOPEN_BASE; 524 } else { 525 len = TCPOLEN_FASTOPEN_BASE + foc->len; 526 *p++ = TCPOPT_FASTOPEN; 527 *p++ = len; 528 } 529 530 memcpy(p, foc->val, foc->len); 531 if ((len & 3) == 2) { 532 p[foc->len] = TCPOPT_NOP; 533 p[foc->len + 1] = TCPOPT_NOP; 534 } 535 ptr += (len + 3) >> 2; 536 } 537 } 538 539 /* Compute TCP options for SYN packets. This is not the final 540 * network wire format yet. 541 */ 542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 543 struct tcp_out_options *opts, 544 struct tcp_md5sig_key **md5) 545 { 546 struct tcp_sock *tp = tcp_sk(sk); 547 unsigned int remaining = MAX_TCP_OPTION_SPACE; 548 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 549 550 #ifdef CONFIG_TCP_MD5SIG 551 *md5 = tp->af_specific->md5_lookup(sk, sk); 552 if (*md5) { 553 opts->options |= OPTION_MD5; 554 remaining -= TCPOLEN_MD5SIG_ALIGNED; 555 } 556 #else 557 *md5 = NULL; 558 #endif 559 560 /* We always get an MSS option. The option bytes which will be seen in 561 * normal data packets should timestamps be used, must be in the MSS 562 * advertised. But we subtract them from tp->mss_cache so that 563 * calculations in tcp_sendmsg are simpler etc. So account for this 564 * fact here if necessary. If we don't do this correctly, as a 565 * receiver we won't recognize data packets as being full sized when we 566 * should, and thus we won't abide by the delayed ACK rules correctly. 567 * SACKs don't matter, we never delay an ACK when we have any of those 568 * going out. */ 569 opts->mss = tcp_advertise_mss(sk); 570 remaining -= TCPOLEN_MSS_ALIGNED; 571 572 if (likely(sysctl_tcp_timestamps && !*md5)) { 573 opts->options |= OPTION_TS; 574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 575 opts->tsecr = tp->rx_opt.ts_recent; 576 remaining -= TCPOLEN_TSTAMP_ALIGNED; 577 } 578 if (likely(sysctl_tcp_window_scaling)) { 579 opts->ws = tp->rx_opt.rcv_wscale; 580 opts->options |= OPTION_WSCALE; 581 remaining -= TCPOLEN_WSCALE_ALIGNED; 582 } 583 if (likely(sysctl_tcp_sack)) { 584 opts->options |= OPTION_SACK_ADVERTISE; 585 if (unlikely(!(OPTION_TS & opts->options))) 586 remaining -= TCPOLEN_SACKPERM_ALIGNED; 587 } 588 589 if (fastopen && fastopen->cookie.len >= 0) { 590 u32 need = fastopen->cookie.len; 591 592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 593 TCPOLEN_FASTOPEN_BASE; 594 need = (need + 3) & ~3U; /* Align to 32 bits */ 595 if (remaining >= need) { 596 opts->options |= OPTION_FAST_OPEN_COOKIE; 597 opts->fastopen_cookie = &fastopen->cookie; 598 remaining -= need; 599 tp->syn_fastopen = 1; 600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 601 } 602 } 603 604 return MAX_TCP_OPTION_SPACE - remaining; 605 } 606 607 /* Set up TCP options for SYN-ACKs. */ 608 static unsigned int tcp_synack_options(struct request_sock *req, 609 unsigned int mss, struct sk_buff *skb, 610 struct tcp_out_options *opts, 611 const struct tcp_md5sig_key *md5, 612 struct tcp_fastopen_cookie *foc) 613 { 614 struct inet_request_sock *ireq = inet_rsk(req); 615 unsigned int remaining = MAX_TCP_OPTION_SPACE; 616 617 #ifdef CONFIG_TCP_MD5SIG 618 if (md5) { 619 opts->options |= OPTION_MD5; 620 remaining -= TCPOLEN_MD5SIG_ALIGNED; 621 622 /* We can't fit any SACK blocks in a packet with MD5 + TS 623 * options. There was discussion about disabling SACK 624 * rather than TS in order to fit in better with old, 625 * buggy kernels, but that was deemed to be unnecessary. 626 */ 627 ireq->tstamp_ok &= !ireq->sack_ok; 628 } 629 #endif 630 631 /* We always send an MSS option. */ 632 opts->mss = mss; 633 remaining -= TCPOLEN_MSS_ALIGNED; 634 635 if (likely(ireq->wscale_ok)) { 636 opts->ws = ireq->rcv_wscale; 637 opts->options |= OPTION_WSCALE; 638 remaining -= TCPOLEN_WSCALE_ALIGNED; 639 } 640 if (likely(ireq->tstamp_ok)) { 641 opts->options |= OPTION_TS; 642 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 643 opts->tsecr = req->ts_recent; 644 remaining -= TCPOLEN_TSTAMP_ALIGNED; 645 } 646 if (likely(ireq->sack_ok)) { 647 opts->options |= OPTION_SACK_ADVERTISE; 648 if (unlikely(!ireq->tstamp_ok)) 649 remaining -= TCPOLEN_SACKPERM_ALIGNED; 650 } 651 if (foc != NULL && foc->len >= 0) { 652 u32 need = foc->len; 653 654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 655 TCPOLEN_FASTOPEN_BASE; 656 need = (need + 3) & ~3U; /* Align to 32 bits */ 657 if (remaining >= need) { 658 opts->options |= OPTION_FAST_OPEN_COOKIE; 659 opts->fastopen_cookie = foc; 660 remaining -= need; 661 } 662 } 663 664 return MAX_TCP_OPTION_SPACE - remaining; 665 } 666 667 /* Compute TCP options for ESTABLISHED sockets. This is not the 668 * final wire format yet. 669 */ 670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 671 struct tcp_out_options *opts, 672 struct tcp_md5sig_key **md5) 673 { 674 struct tcp_sock *tp = tcp_sk(sk); 675 unsigned int size = 0; 676 unsigned int eff_sacks; 677 678 opts->options = 0; 679 680 #ifdef CONFIG_TCP_MD5SIG 681 *md5 = tp->af_specific->md5_lookup(sk, sk); 682 if (unlikely(*md5)) { 683 opts->options |= OPTION_MD5; 684 size += TCPOLEN_MD5SIG_ALIGNED; 685 } 686 #else 687 *md5 = NULL; 688 #endif 689 690 if (likely(tp->rx_opt.tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 693 opts->tsecr = tp->rx_opt.ts_recent; 694 size += TCPOLEN_TSTAMP_ALIGNED; 695 } 696 697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 698 if (unlikely(eff_sacks)) { 699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 700 opts->num_sack_blocks = 701 min_t(unsigned int, eff_sacks, 702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 703 TCPOLEN_SACK_PERBLOCK); 704 size += TCPOLEN_SACK_BASE_ALIGNED + 705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 706 } 707 708 return size; 709 } 710 711 712 /* TCP SMALL QUEUES (TSQ) 713 * 714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 715 * to reduce RTT and bufferbloat. 716 * We do this using a special skb destructor (tcp_wfree). 717 * 718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 719 * needs to be reallocated in a driver. 720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 721 * 722 * Since transmit from skb destructor is forbidden, we use a tasklet 723 * to process all sockets that eventually need to send more skbs. 724 * We use one tasklet per cpu, with its own queue of sockets. 725 */ 726 struct tsq_tasklet { 727 struct tasklet_struct tasklet; 728 struct list_head head; /* queue of tcp sockets */ 729 }; 730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 731 732 static void tcp_tsq_handler(struct sock *sk) 733 { 734 if ((1 << sk->sk_state) & 735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 737 struct tcp_sock *tp = tcp_sk(sk); 738 739 if (tp->lost_out > tp->retrans_out && 740 tp->snd_cwnd > tcp_packets_in_flight(tp)) 741 tcp_xmit_retransmit_queue(sk); 742 743 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 744 0, GFP_ATOMIC); 745 } 746 } 747 /* 748 * One tasklet per cpu tries to send more skbs. 749 * We run in tasklet context but need to disable irqs when 750 * transferring tsq->head because tcp_wfree() might 751 * interrupt us (non NAPI drivers) 752 */ 753 static void tcp_tasklet_func(unsigned long data) 754 { 755 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 756 LIST_HEAD(list); 757 unsigned long flags; 758 struct list_head *q, *n; 759 struct tcp_sock *tp; 760 struct sock *sk; 761 762 local_irq_save(flags); 763 list_splice_init(&tsq->head, &list); 764 local_irq_restore(flags); 765 766 list_for_each_safe(q, n, &list) { 767 tp = list_entry(q, struct tcp_sock, tsq_node); 768 list_del(&tp->tsq_node); 769 770 sk = (struct sock *)tp; 771 smp_mb__before_atomic(); 772 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 773 774 if (!sk->sk_lock.owned && 775 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 776 bh_lock_sock(sk); 777 if (!sock_owned_by_user(sk)) { 778 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 779 tcp_tsq_handler(sk); 780 } 781 bh_unlock_sock(sk); 782 } 783 784 sk_free(sk); 785 } 786 } 787 788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 789 TCPF_WRITE_TIMER_DEFERRED | \ 790 TCPF_DELACK_TIMER_DEFERRED | \ 791 TCPF_MTU_REDUCED_DEFERRED) 792 /** 793 * tcp_release_cb - tcp release_sock() callback 794 * @sk: socket 795 * 796 * called from release_sock() to perform protocol dependent 797 * actions before socket release. 798 */ 799 void tcp_release_cb(struct sock *sk) 800 { 801 unsigned long flags, nflags; 802 803 /* perform an atomic operation only if at least one flag is set */ 804 do { 805 flags = sk->sk_tsq_flags; 806 if (!(flags & TCP_DEFERRED_ALL)) 807 return; 808 nflags = flags & ~TCP_DEFERRED_ALL; 809 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 810 811 if (flags & TCPF_TSQ_DEFERRED) 812 tcp_tsq_handler(sk); 813 814 /* Here begins the tricky part : 815 * We are called from release_sock() with : 816 * 1) BH disabled 817 * 2) sk_lock.slock spinlock held 818 * 3) socket owned by us (sk->sk_lock.owned == 1) 819 * 820 * But following code is meant to be called from BH handlers, 821 * so we should keep BH disabled, but early release socket ownership 822 */ 823 sock_release_ownership(sk); 824 825 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 826 tcp_write_timer_handler(sk); 827 __sock_put(sk); 828 } 829 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 830 tcp_delack_timer_handler(sk); 831 __sock_put(sk); 832 } 833 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 835 __sock_put(sk); 836 } 837 } 838 EXPORT_SYMBOL(tcp_release_cb); 839 840 void __init tcp_tasklet_init(void) 841 { 842 int i; 843 844 for_each_possible_cpu(i) { 845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 846 847 INIT_LIST_HEAD(&tsq->head); 848 tasklet_init(&tsq->tasklet, 849 tcp_tasklet_func, 850 (unsigned long)tsq); 851 } 852 } 853 854 /* 855 * Write buffer destructor automatically called from kfree_skb. 856 * We can't xmit new skbs from this context, as we might already 857 * hold qdisc lock. 858 */ 859 void tcp_wfree(struct sk_buff *skb) 860 { 861 struct sock *sk = skb->sk; 862 struct tcp_sock *tp = tcp_sk(sk); 863 unsigned long flags, nval, oval; 864 int wmem; 865 866 /* Keep one reference on sk_wmem_alloc. 867 * Will be released by sk_free() from here or tcp_tasklet_func() 868 */ 869 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 870 871 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 872 * Wait until our queues (qdisc + devices) are drained. 873 * This gives : 874 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 875 * - chance for incoming ACK (processed by another cpu maybe) 876 * to migrate this flow (skb->ooo_okay will be eventually set) 877 */ 878 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 879 goto out; 880 881 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 882 struct tsq_tasklet *tsq; 883 bool empty; 884 885 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 886 goto out; 887 888 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 889 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 890 if (nval != oval) 891 continue; 892 893 /* queue this socket to tasklet queue */ 894 local_irq_save(flags); 895 tsq = this_cpu_ptr(&tsq_tasklet); 896 empty = list_empty(&tsq->head); 897 list_add(&tp->tsq_node, &tsq->head); 898 if (empty) 899 tasklet_schedule(&tsq->tasklet); 900 local_irq_restore(flags); 901 return; 902 } 903 out: 904 sk_free(sk); 905 } 906 907 /* Note: Called under hard irq. 908 * We can not call TCP stack right away. 909 */ 910 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 911 { 912 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 913 struct sock *sk = (struct sock *)tp; 914 unsigned long nval, oval; 915 916 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 917 struct tsq_tasklet *tsq; 918 bool empty; 919 920 if (oval & TSQF_QUEUED) 921 break; 922 923 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 924 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 925 if (nval != oval) 926 continue; 927 928 if (!atomic_inc_not_zero(&sk->sk_wmem_alloc)) 929 break; 930 /* queue this socket to tasklet queue */ 931 tsq = this_cpu_ptr(&tsq_tasklet); 932 empty = list_empty(&tsq->head); 933 list_add(&tp->tsq_node, &tsq->head); 934 if (empty) 935 tasklet_schedule(&tsq->tasklet); 936 break; 937 } 938 return HRTIMER_NORESTART; 939 } 940 941 /* BBR congestion control needs pacing. 942 * Same remark for SO_MAX_PACING_RATE. 943 * sch_fq packet scheduler is efficiently handling pacing, 944 * but is not always installed/used. 945 * Return true if TCP stack should pace packets itself. 946 */ 947 static bool tcp_needs_internal_pacing(const struct sock *sk) 948 { 949 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 950 } 951 952 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 953 { 954 u64 len_ns; 955 u32 rate; 956 957 if (!tcp_needs_internal_pacing(sk)) 958 return; 959 rate = sk->sk_pacing_rate; 960 if (!rate || rate == ~0U) 961 return; 962 963 /* Should account for header sizes as sch_fq does, 964 * but lets make things simple. 965 */ 966 len_ns = (u64)skb->len * NSEC_PER_SEC; 967 do_div(len_ns, rate); 968 hrtimer_start(&tcp_sk(sk)->pacing_timer, 969 ktime_add_ns(ktime_get(), len_ns), 970 HRTIMER_MODE_ABS_PINNED); 971 } 972 973 /* This routine actually transmits TCP packets queued in by 974 * tcp_do_sendmsg(). This is used by both the initial 975 * transmission and possible later retransmissions. 976 * All SKB's seen here are completely headerless. It is our 977 * job to build the TCP header, and pass the packet down to 978 * IP so it can do the same plus pass the packet off to the 979 * device. 980 * 981 * We are working here with either a clone of the original 982 * SKB, or a fresh unique copy made by the retransmit engine. 983 */ 984 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 985 gfp_t gfp_mask) 986 { 987 const struct inet_connection_sock *icsk = inet_csk(sk); 988 struct inet_sock *inet; 989 struct tcp_sock *tp; 990 struct tcp_skb_cb *tcb; 991 struct tcp_out_options opts; 992 unsigned int tcp_options_size, tcp_header_size; 993 struct tcp_md5sig_key *md5; 994 struct tcphdr *th; 995 int err; 996 997 BUG_ON(!skb || !tcp_skb_pcount(skb)); 998 tp = tcp_sk(sk); 999 1000 skb->skb_mstamp = tp->tcp_mstamp; 1001 if (clone_it) { 1002 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1003 - tp->snd_una; 1004 tcp_rate_skb_sent(sk, skb); 1005 1006 if (unlikely(skb_cloned(skb))) 1007 skb = pskb_copy(skb, gfp_mask); 1008 else 1009 skb = skb_clone(skb, gfp_mask); 1010 if (unlikely(!skb)) 1011 return -ENOBUFS; 1012 } 1013 1014 inet = inet_sk(sk); 1015 tcb = TCP_SKB_CB(skb); 1016 memset(&opts, 0, sizeof(opts)); 1017 1018 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1019 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1020 else 1021 tcp_options_size = tcp_established_options(sk, skb, &opts, 1022 &md5); 1023 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1024 1025 /* if no packet is in qdisc/device queue, then allow XPS to select 1026 * another queue. We can be called from tcp_tsq_handler() 1027 * which holds one reference to sk_wmem_alloc. 1028 * 1029 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1030 * One way to get this would be to set skb->truesize = 2 on them. 1031 */ 1032 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1033 1034 /* If we had to use memory reserve to allocate this skb, 1035 * this might cause drops if packet is looped back : 1036 * Other socket might not have SOCK_MEMALLOC. 1037 * Packets not looped back do not care about pfmemalloc. 1038 */ 1039 skb->pfmemalloc = 0; 1040 1041 skb_push(skb, tcp_header_size); 1042 skb_reset_transport_header(skb); 1043 1044 skb_orphan(skb); 1045 skb->sk = sk; 1046 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1047 skb_set_hash_from_sk(skb, sk); 1048 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1049 1050 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1051 1052 /* Build TCP header and checksum it. */ 1053 th = (struct tcphdr *)skb->data; 1054 th->source = inet->inet_sport; 1055 th->dest = inet->inet_dport; 1056 th->seq = htonl(tcb->seq); 1057 th->ack_seq = htonl(tp->rcv_nxt); 1058 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1059 tcb->tcp_flags); 1060 1061 th->check = 0; 1062 th->urg_ptr = 0; 1063 1064 /* The urg_mode check is necessary during a below snd_una win probe */ 1065 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1066 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1067 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1068 th->urg = 1; 1069 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1070 th->urg_ptr = htons(0xFFFF); 1071 th->urg = 1; 1072 } 1073 } 1074 1075 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1076 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1077 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1078 th->window = htons(tcp_select_window(sk)); 1079 tcp_ecn_send(sk, skb, th, tcp_header_size); 1080 } else { 1081 /* RFC1323: The window in SYN & SYN/ACK segments 1082 * is never scaled. 1083 */ 1084 th->window = htons(min(tp->rcv_wnd, 65535U)); 1085 } 1086 #ifdef CONFIG_TCP_MD5SIG 1087 /* Calculate the MD5 hash, as we have all we need now */ 1088 if (md5) { 1089 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1090 tp->af_specific->calc_md5_hash(opts.hash_location, 1091 md5, sk, skb); 1092 } 1093 #endif 1094 1095 icsk->icsk_af_ops->send_check(sk, skb); 1096 1097 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1098 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1099 1100 if (skb->len != tcp_header_size) { 1101 tcp_event_data_sent(tp, sk); 1102 tp->data_segs_out += tcp_skb_pcount(skb); 1103 tcp_internal_pacing(sk, skb); 1104 } 1105 1106 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1107 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1108 tcp_skb_pcount(skb)); 1109 1110 tp->segs_out += tcp_skb_pcount(skb); 1111 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1112 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1113 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1114 1115 /* Our usage of tstamp should remain private */ 1116 skb->tstamp = 0; 1117 1118 /* Cleanup our debris for IP stacks */ 1119 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1120 sizeof(struct inet6_skb_parm))); 1121 1122 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1123 1124 if (likely(err <= 0)) 1125 return err; 1126 1127 tcp_enter_cwr(sk); 1128 1129 return net_xmit_eval(err); 1130 } 1131 1132 /* This routine just queues the buffer for sending. 1133 * 1134 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1135 * otherwise socket can stall. 1136 */ 1137 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1138 { 1139 struct tcp_sock *tp = tcp_sk(sk); 1140 1141 /* Advance write_seq and place onto the write_queue. */ 1142 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1143 __skb_header_release(skb); 1144 tcp_add_write_queue_tail(sk, skb); 1145 sk->sk_wmem_queued += skb->truesize; 1146 sk_mem_charge(sk, skb->truesize); 1147 } 1148 1149 /* Initialize TSO segments for a packet. */ 1150 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1151 { 1152 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1153 /* Avoid the costly divide in the normal 1154 * non-TSO case. 1155 */ 1156 tcp_skb_pcount_set(skb, 1); 1157 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1158 } else { 1159 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1160 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1161 } 1162 } 1163 1164 /* When a modification to fackets out becomes necessary, we need to check 1165 * skb is counted to fackets_out or not. 1166 */ 1167 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1168 int decr) 1169 { 1170 struct tcp_sock *tp = tcp_sk(sk); 1171 1172 if (!tp->sacked_out || tcp_is_reno(tp)) 1173 return; 1174 1175 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1176 tp->fackets_out -= decr; 1177 } 1178 1179 /* Pcount in the middle of the write queue got changed, we need to do various 1180 * tweaks to fix counters 1181 */ 1182 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1183 { 1184 struct tcp_sock *tp = tcp_sk(sk); 1185 1186 tp->packets_out -= decr; 1187 1188 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1189 tp->sacked_out -= decr; 1190 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1191 tp->retrans_out -= decr; 1192 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1193 tp->lost_out -= decr; 1194 1195 /* Reno case is special. Sigh... */ 1196 if (tcp_is_reno(tp) && decr > 0) 1197 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1198 1199 tcp_adjust_fackets_out(sk, skb, decr); 1200 1201 if (tp->lost_skb_hint && 1202 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1203 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1204 tp->lost_cnt_hint -= decr; 1205 1206 tcp_verify_left_out(tp); 1207 } 1208 1209 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1210 { 1211 return TCP_SKB_CB(skb)->txstamp_ack || 1212 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1213 } 1214 1215 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1216 { 1217 struct skb_shared_info *shinfo = skb_shinfo(skb); 1218 1219 if (unlikely(tcp_has_tx_tstamp(skb)) && 1220 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1221 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1222 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1223 1224 shinfo->tx_flags &= ~tsflags; 1225 shinfo2->tx_flags |= tsflags; 1226 swap(shinfo->tskey, shinfo2->tskey); 1227 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1228 TCP_SKB_CB(skb)->txstamp_ack = 0; 1229 } 1230 } 1231 1232 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1233 { 1234 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1235 TCP_SKB_CB(skb)->eor = 0; 1236 } 1237 1238 /* Function to create two new TCP segments. Shrinks the given segment 1239 * to the specified size and appends a new segment with the rest of the 1240 * packet to the list. This won't be called frequently, I hope. 1241 * Remember, these are still headerless SKBs at this point. 1242 */ 1243 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1244 unsigned int mss_now, gfp_t gfp) 1245 { 1246 struct tcp_sock *tp = tcp_sk(sk); 1247 struct sk_buff *buff; 1248 int nsize, old_factor; 1249 int nlen; 1250 u8 flags; 1251 1252 if (WARN_ON(len > skb->len)) 1253 return -EINVAL; 1254 1255 nsize = skb_headlen(skb) - len; 1256 if (nsize < 0) 1257 nsize = 0; 1258 1259 if (skb_unclone(skb, gfp)) 1260 return -ENOMEM; 1261 1262 /* Get a new skb... force flag on. */ 1263 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1264 if (!buff) 1265 return -ENOMEM; /* We'll just try again later. */ 1266 1267 sk->sk_wmem_queued += buff->truesize; 1268 sk_mem_charge(sk, buff->truesize); 1269 nlen = skb->len - len - nsize; 1270 buff->truesize += nlen; 1271 skb->truesize -= nlen; 1272 1273 /* Correct the sequence numbers. */ 1274 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1275 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1276 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1277 1278 /* PSH and FIN should only be set in the second packet. */ 1279 flags = TCP_SKB_CB(skb)->tcp_flags; 1280 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1281 TCP_SKB_CB(buff)->tcp_flags = flags; 1282 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1283 tcp_skb_fragment_eor(skb, buff); 1284 1285 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1286 /* Copy and checksum data tail into the new buffer. */ 1287 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1288 skb_put(buff, nsize), 1289 nsize, 0); 1290 1291 skb_trim(skb, len); 1292 1293 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1294 } else { 1295 skb->ip_summed = CHECKSUM_PARTIAL; 1296 skb_split(skb, buff, len); 1297 } 1298 1299 buff->ip_summed = skb->ip_summed; 1300 1301 buff->tstamp = skb->tstamp; 1302 tcp_fragment_tstamp(skb, buff); 1303 1304 old_factor = tcp_skb_pcount(skb); 1305 1306 /* Fix up tso_factor for both original and new SKB. */ 1307 tcp_set_skb_tso_segs(skb, mss_now); 1308 tcp_set_skb_tso_segs(buff, mss_now); 1309 1310 /* Update delivered info for the new segment */ 1311 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1312 1313 /* If this packet has been sent out already, we must 1314 * adjust the various packet counters. 1315 */ 1316 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1317 int diff = old_factor - tcp_skb_pcount(skb) - 1318 tcp_skb_pcount(buff); 1319 1320 if (diff) 1321 tcp_adjust_pcount(sk, skb, diff); 1322 } 1323 1324 /* Link BUFF into the send queue. */ 1325 __skb_header_release(buff); 1326 tcp_insert_write_queue_after(skb, buff, sk); 1327 1328 return 0; 1329 } 1330 1331 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1332 * data is not copied, but immediately discarded. 1333 */ 1334 static int __pskb_trim_head(struct sk_buff *skb, int len) 1335 { 1336 struct skb_shared_info *shinfo; 1337 int i, k, eat; 1338 1339 eat = min_t(int, len, skb_headlen(skb)); 1340 if (eat) { 1341 __skb_pull(skb, eat); 1342 len -= eat; 1343 if (!len) 1344 return 0; 1345 } 1346 eat = len; 1347 k = 0; 1348 shinfo = skb_shinfo(skb); 1349 for (i = 0; i < shinfo->nr_frags; i++) { 1350 int size = skb_frag_size(&shinfo->frags[i]); 1351 1352 if (size <= eat) { 1353 skb_frag_unref(skb, i); 1354 eat -= size; 1355 } else { 1356 shinfo->frags[k] = shinfo->frags[i]; 1357 if (eat) { 1358 shinfo->frags[k].page_offset += eat; 1359 skb_frag_size_sub(&shinfo->frags[k], eat); 1360 eat = 0; 1361 } 1362 k++; 1363 } 1364 } 1365 shinfo->nr_frags = k; 1366 1367 skb->data_len -= len; 1368 skb->len = skb->data_len; 1369 return len; 1370 } 1371 1372 /* Remove acked data from a packet in the transmit queue. */ 1373 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1374 { 1375 u32 delta_truesize; 1376 1377 if (skb_unclone(skb, GFP_ATOMIC)) 1378 return -ENOMEM; 1379 1380 delta_truesize = __pskb_trim_head(skb, len); 1381 1382 TCP_SKB_CB(skb)->seq += len; 1383 skb->ip_summed = CHECKSUM_PARTIAL; 1384 1385 if (delta_truesize) { 1386 skb->truesize -= delta_truesize; 1387 sk->sk_wmem_queued -= delta_truesize; 1388 sk_mem_uncharge(sk, delta_truesize); 1389 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1390 } 1391 1392 /* Any change of skb->len requires recalculation of tso factor. */ 1393 if (tcp_skb_pcount(skb) > 1) 1394 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1395 1396 return 0; 1397 } 1398 1399 /* Calculate MSS not accounting any TCP options. */ 1400 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1401 { 1402 const struct tcp_sock *tp = tcp_sk(sk); 1403 const struct inet_connection_sock *icsk = inet_csk(sk); 1404 int mss_now; 1405 1406 /* Calculate base mss without TCP options: 1407 It is MMS_S - sizeof(tcphdr) of rfc1122 1408 */ 1409 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1410 1411 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1412 if (icsk->icsk_af_ops->net_frag_header_len) { 1413 const struct dst_entry *dst = __sk_dst_get(sk); 1414 1415 if (dst && dst_allfrag(dst)) 1416 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1417 } 1418 1419 /* Clamp it (mss_clamp does not include tcp options) */ 1420 if (mss_now > tp->rx_opt.mss_clamp) 1421 mss_now = tp->rx_opt.mss_clamp; 1422 1423 /* Now subtract optional transport overhead */ 1424 mss_now -= icsk->icsk_ext_hdr_len; 1425 1426 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1427 if (mss_now < 48) 1428 mss_now = 48; 1429 return mss_now; 1430 } 1431 1432 /* Calculate MSS. Not accounting for SACKs here. */ 1433 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1434 { 1435 /* Subtract TCP options size, not including SACKs */ 1436 return __tcp_mtu_to_mss(sk, pmtu) - 1437 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1438 } 1439 1440 /* Inverse of above */ 1441 int tcp_mss_to_mtu(struct sock *sk, int mss) 1442 { 1443 const struct tcp_sock *tp = tcp_sk(sk); 1444 const struct inet_connection_sock *icsk = inet_csk(sk); 1445 int mtu; 1446 1447 mtu = mss + 1448 tp->tcp_header_len + 1449 icsk->icsk_ext_hdr_len + 1450 icsk->icsk_af_ops->net_header_len; 1451 1452 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1453 if (icsk->icsk_af_ops->net_frag_header_len) { 1454 const struct dst_entry *dst = __sk_dst_get(sk); 1455 1456 if (dst && dst_allfrag(dst)) 1457 mtu += icsk->icsk_af_ops->net_frag_header_len; 1458 } 1459 return mtu; 1460 } 1461 EXPORT_SYMBOL(tcp_mss_to_mtu); 1462 1463 /* MTU probing init per socket */ 1464 void tcp_mtup_init(struct sock *sk) 1465 { 1466 struct tcp_sock *tp = tcp_sk(sk); 1467 struct inet_connection_sock *icsk = inet_csk(sk); 1468 struct net *net = sock_net(sk); 1469 1470 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1471 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1472 icsk->icsk_af_ops->net_header_len; 1473 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1474 icsk->icsk_mtup.probe_size = 0; 1475 if (icsk->icsk_mtup.enabled) 1476 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1477 } 1478 EXPORT_SYMBOL(tcp_mtup_init); 1479 1480 /* This function synchronize snd mss to current pmtu/exthdr set. 1481 1482 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1483 for TCP options, but includes only bare TCP header. 1484 1485 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1486 It is minimum of user_mss and mss received with SYN. 1487 It also does not include TCP options. 1488 1489 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1490 1491 tp->mss_cache is current effective sending mss, including 1492 all tcp options except for SACKs. It is evaluated, 1493 taking into account current pmtu, but never exceeds 1494 tp->rx_opt.mss_clamp. 1495 1496 NOTE1. rfc1122 clearly states that advertised MSS 1497 DOES NOT include either tcp or ip options. 1498 1499 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1500 are READ ONLY outside this function. --ANK (980731) 1501 */ 1502 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1503 { 1504 struct tcp_sock *tp = tcp_sk(sk); 1505 struct inet_connection_sock *icsk = inet_csk(sk); 1506 int mss_now; 1507 1508 if (icsk->icsk_mtup.search_high > pmtu) 1509 icsk->icsk_mtup.search_high = pmtu; 1510 1511 mss_now = tcp_mtu_to_mss(sk, pmtu); 1512 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1513 1514 /* And store cached results */ 1515 icsk->icsk_pmtu_cookie = pmtu; 1516 if (icsk->icsk_mtup.enabled) 1517 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1518 tp->mss_cache = mss_now; 1519 1520 return mss_now; 1521 } 1522 EXPORT_SYMBOL(tcp_sync_mss); 1523 1524 /* Compute the current effective MSS, taking SACKs and IP options, 1525 * and even PMTU discovery events into account. 1526 */ 1527 unsigned int tcp_current_mss(struct sock *sk) 1528 { 1529 const struct tcp_sock *tp = tcp_sk(sk); 1530 const struct dst_entry *dst = __sk_dst_get(sk); 1531 u32 mss_now; 1532 unsigned int header_len; 1533 struct tcp_out_options opts; 1534 struct tcp_md5sig_key *md5; 1535 1536 mss_now = tp->mss_cache; 1537 1538 if (dst) { 1539 u32 mtu = dst_mtu(dst); 1540 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1541 mss_now = tcp_sync_mss(sk, mtu); 1542 } 1543 1544 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1545 sizeof(struct tcphdr); 1546 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1547 * some common options. If this is an odd packet (because we have SACK 1548 * blocks etc) then our calculated header_len will be different, and 1549 * we have to adjust mss_now correspondingly */ 1550 if (header_len != tp->tcp_header_len) { 1551 int delta = (int) header_len - tp->tcp_header_len; 1552 mss_now -= delta; 1553 } 1554 1555 return mss_now; 1556 } 1557 1558 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1559 * As additional protections, we do not touch cwnd in retransmission phases, 1560 * and if application hit its sndbuf limit recently. 1561 */ 1562 static void tcp_cwnd_application_limited(struct sock *sk) 1563 { 1564 struct tcp_sock *tp = tcp_sk(sk); 1565 1566 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1567 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1568 /* Limited by application or receiver window. */ 1569 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1570 u32 win_used = max(tp->snd_cwnd_used, init_win); 1571 if (win_used < tp->snd_cwnd) { 1572 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1573 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1574 } 1575 tp->snd_cwnd_used = 0; 1576 } 1577 tp->snd_cwnd_stamp = tcp_jiffies32; 1578 } 1579 1580 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1581 { 1582 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1583 struct tcp_sock *tp = tcp_sk(sk); 1584 1585 /* Track the maximum number of outstanding packets in each 1586 * window, and remember whether we were cwnd-limited then. 1587 */ 1588 if (!before(tp->snd_una, tp->max_packets_seq) || 1589 tp->packets_out > tp->max_packets_out) { 1590 tp->max_packets_out = tp->packets_out; 1591 tp->max_packets_seq = tp->snd_nxt; 1592 tp->is_cwnd_limited = is_cwnd_limited; 1593 } 1594 1595 if (tcp_is_cwnd_limited(sk)) { 1596 /* Network is feed fully. */ 1597 tp->snd_cwnd_used = 0; 1598 tp->snd_cwnd_stamp = tcp_jiffies32; 1599 } else { 1600 /* Network starves. */ 1601 if (tp->packets_out > tp->snd_cwnd_used) 1602 tp->snd_cwnd_used = tp->packets_out; 1603 1604 if (sysctl_tcp_slow_start_after_idle && 1605 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1606 !ca_ops->cong_control) 1607 tcp_cwnd_application_limited(sk); 1608 1609 /* The following conditions together indicate the starvation 1610 * is caused by insufficient sender buffer: 1611 * 1) just sent some data (see tcp_write_xmit) 1612 * 2) not cwnd limited (this else condition) 1613 * 3) no more data to send (null tcp_send_head ) 1614 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1615 */ 1616 if (!tcp_send_head(sk) && sk->sk_socket && 1617 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1618 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1619 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1620 } 1621 } 1622 1623 /* Minshall's variant of the Nagle send check. */ 1624 static bool tcp_minshall_check(const struct tcp_sock *tp) 1625 { 1626 return after(tp->snd_sml, tp->snd_una) && 1627 !after(tp->snd_sml, tp->snd_nxt); 1628 } 1629 1630 /* Update snd_sml if this skb is under mss 1631 * Note that a TSO packet might end with a sub-mss segment 1632 * The test is really : 1633 * if ((skb->len % mss) != 0) 1634 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1635 * But we can avoid doing the divide again given we already have 1636 * skb_pcount = skb->len / mss_now 1637 */ 1638 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1639 const struct sk_buff *skb) 1640 { 1641 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1642 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1643 } 1644 1645 /* Return false, if packet can be sent now without violation Nagle's rules: 1646 * 1. It is full sized. (provided by caller in %partial bool) 1647 * 2. Or it contains FIN. (already checked by caller) 1648 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1649 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1650 * With Minshall's modification: all sent small packets are ACKed. 1651 */ 1652 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1653 int nonagle) 1654 { 1655 return partial && 1656 ((nonagle & TCP_NAGLE_CORK) || 1657 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1658 } 1659 1660 /* Return how many segs we'd like on a TSO packet, 1661 * to send one TSO packet per ms 1662 */ 1663 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1664 int min_tso_segs) 1665 { 1666 u32 bytes, segs; 1667 1668 bytes = min(sk->sk_pacing_rate >> 10, 1669 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1670 1671 /* Goal is to send at least one packet per ms, 1672 * not one big TSO packet every 100 ms. 1673 * This preserves ACK clocking and is consistent 1674 * with tcp_tso_should_defer() heuristic. 1675 */ 1676 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1677 1678 return min_t(u32, segs, sk->sk_gso_max_segs); 1679 } 1680 EXPORT_SYMBOL(tcp_tso_autosize); 1681 1682 /* Return the number of segments we want in the skb we are transmitting. 1683 * See if congestion control module wants to decide; otherwise, autosize. 1684 */ 1685 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1686 { 1687 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1688 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1689 1690 return tso_segs ? : 1691 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1692 } 1693 1694 /* Returns the portion of skb which can be sent right away */ 1695 static unsigned int tcp_mss_split_point(const struct sock *sk, 1696 const struct sk_buff *skb, 1697 unsigned int mss_now, 1698 unsigned int max_segs, 1699 int nonagle) 1700 { 1701 const struct tcp_sock *tp = tcp_sk(sk); 1702 u32 partial, needed, window, max_len; 1703 1704 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1705 max_len = mss_now * max_segs; 1706 1707 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1708 return max_len; 1709 1710 needed = min(skb->len, window); 1711 1712 if (max_len <= needed) 1713 return max_len; 1714 1715 partial = needed % mss_now; 1716 /* If last segment is not a full MSS, check if Nagle rules allow us 1717 * to include this last segment in this skb. 1718 * Otherwise, we'll split the skb at last MSS boundary 1719 */ 1720 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1721 return needed - partial; 1722 1723 return needed; 1724 } 1725 1726 /* Can at least one segment of SKB be sent right now, according to the 1727 * congestion window rules? If so, return how many segments are allowed. 1728 */ 1729 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1730 const struct sk_buff *skb) 1731 { 1732 u32 in_flight, cwnd, halfcwnd; 1733 1734 /* Don't be strict about the congestion window for the final FIN. */ 1735 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1736 tcp_skb_pcount(skb) == 1) 1737 return 1; 1738 1739 in_flight = tcp_packets_in_flight(tp); 1740 cwnd = tp->snd_cwnd; 1741 if (in_flight >= cwnd) 1742 return 0; 1743 1744 /* For better scheduling, ensure we have at least 1745 * 2 GSO packets in flight. 1746 */ 1747 halfcwnd = max(cwnd >> 1, 1U); 1748 return min(halfcwnd, cwnd - in_flight); 1749 } 1750 1751 /* Initialize TSO state of a skb. 1752 * This must be invoked the first time we consider transmitting 1753 * SKB onto the wire. 1754 */ 1755 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1756 { 1757 int tso_segs = tcp_skb_pcount(skb); 1758 1759 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1760 tcp_set_skb_tso_segs(skb, mss_now); 1761 tso_segs = tcp_skb_pcount(skb); 1762 } 1763 return tso_segs; 1764 } 1765 1766 1767 /* Return true if the Nagle test allows this packet to be 1768 * sent now. 1769 */ 1770 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1771 unsigned int cur_mss, int nonagle) 1772 { 1773 /* Nagle rule does not apply to frames, which sit in the middle of the 1774 * write_queue (they have no chances to get new data). 1775 * 1776 * This is implemented in the callers, where they modify the 'nonagle' 1777 * argument based upon the location of SKB in the send queue. 1778 */ 1779 if (nonagle & TCP_NAGLE_PUSH) 1780 return true; 1781 1782 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1783 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1784 return true; 1785 1786 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1787 return true; 1788 1789 return false; 1790 } 1791 1792 /* Does at least the first segment of SKB fit into the send window? */ 1793 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1794 const struct sk_buff *skb, 1795 unsigned int cur_mss) 1796 { 1797 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1798 1799 if (skb->len > cur_mss) 1800 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1801 1802 return !after(end_seq, tcp_wnd_end(tp)); 1803 } 1804 1805 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1806 * should be put on the wire right now. If so, it returns the number of 1807 * packets allowed by the congestion window. 1808 */ 1809 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1810 unsigned int cur_mss, int nonagle) 1811 { 1812 const struct tcp_sock *tp = tcp_sk(sk); 1813 unsigned int cwnd_quota; 1814 1815 tcp_init_tso_segs(skb, cur_mss); 1816 1817 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1818 return 0; 1819 1820 cwnd_quota = tcp_cwnd_test(tp, skb); 1821 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1822 cwnd_quota = 0; 1823 1824 return cwnd_quota; 1825 } 1826 1827 /* Test if sending is allowed right now. */ 1828 bool tcp_may_send_now(struct sock *sk) 1829 { 1830 const struct tcp_sock *tp = tcp_sk(sk); 1831 struct sk_buff *skb = tcp_send_head(sk); 1832 1833 return skb && 1834 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1835 (tcp_skb_is_last(sk, skb) ? 1836 tp->nonagle : TCP_NAGLE_PUSH)); 1837 } 1838 1839 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1840 * which is put after SKB on the list. It is very much like 1841 * tcp_fragment() except that it may make several kinds of assumptions 1842 * in order to speed up the splitting operation. In particular, we 1843 * know that all the data is in scatter-gather pages, and that the 1844 * packet has never been sent out before (and thus is not cloned). 1845 */ 1846 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1847 unsigned int mss_now, gfp_t gfp) 1848 { 1849 struct sk_buff *buff; 1850 int nlen = skb->len - len; 1851 u8 flags; 1852 1853 /* All of a TSO frame must be composed of paged data. */ 1854 if (skb->len != skb->data_len) 1855 return tcp_fragment(sk, skb, len, mss_now, gfp); 1856 1857 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1858 if (unlikely(!buff)) 1859 return -ENOMEM; 1860 1861 sk->sk_wmem_queued += buff->truesize; 1862 sk_mem_charge(sk, buff->truesize); 1863 buff->truesize += nlen; 1864 skb->truesize -= nlen; 1865 1866 /* Correct the sequence numbers. */ 1867 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1868 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1869 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1870 1871 /* PSH and FIN should only be set in the second packet. */ 1872 flags = TCP_SKB_CB(skb)->tcp_flags; 1873 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1874 TCP_SKB_CB(buff)->tcp_flags = flags; 1875 1876 /* This packet was never sent out yet, so no SACK bits. */ 1877 TCP_SKB_CB(buff)->sacked = 0; 1878 1879 tcp_skb_fragment_eor(skb, buff); 1880 1881 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1882 skb_split(skb, buff, len); 1883 tcp_fragment_tstamp(skb, buff); 1884 1885 /* Fix up tso_factor for both original and new SKB. */ 1886 tcp_set_skb_tso_segs(skb, mss_now); 1887 tcp_set_skb_tso_segs(buff, mss_now); 1888 1889 /* Link BUFF into the send queue. */ 1890 __skb_header_release(buff); 1891 tcp_insert_write_queue_after(skb, buff, sk); 1892 1893 return 0; 1894 } 1895 1896 /* Try to defer sending, if possible, in order to minimize the amount 1897 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1898 * 1899 * This algorithm is from John Heffner. 1900 */ 1901 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1902 bool *is_cwnd_limited, u32 max_segs) 1903 { 1904 const struct inet_connection_sock *icsk = inet_csk(sk); 1905 u32 age, send_win, cong_win, limit, in_flight; 1906 struct tcp_sock *tp = tcp_sk(sk); 1907 struct sk_buff *head; 1908 int win_divisor; 1909 1910 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1911 goto send_now; 1912 1913 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1914 goto send_now; 1915 1916 /* Avoid bursty behavior by allowing defer 1917 * only if the last write was recent. 1918 */ 1919 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1920 goto send_now; 1921 1922 in_flight = tcp_packets_in_flight(tp); 1923 1924 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1925 1926 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1927 1928 /* From in_flight test above, we know that cwnd > in_flight. */ 1929 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1930 1931 limit = min(send_win, cong_win); 1932 1933 /* If a full-sized TSO skb can be sent, do it. */ 1934 if (limit >= max_segs * tp->mss_cache) 1935 goto send_now; 1936 1937 /* Middle in queue won't get any more data, full sendable already? */ 1938 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1939 goto send_now; 1940 1941 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1942 if (win_divisor) { 1943 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1944 1945 /* If at least some fraction of a window is available, 1946 * just use it. 1947 */ 1948 chunk /= win_divisor; 1949 if (limit >= chunk) 1950 goto send_now; 1951 } else { 1952 /* Different approach, try not to defer past a single 1953 * ACK. Receiver should ACK every other full sized 1954 * frame, so if we have space for more than 3 frames 1955 * then send now. 1956 */ 1957 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1958 goto send_now; 1959 } 1960 1961 head = tcp_write_queue_head(sk); 1962 1963 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1964 /* If next ACK is likely to come too late (half srtt), do not defer */ 1965 if (age < (tp->srtt_us >> 4)) 1966 goto send_now; 1967 1968 /* Ok, it looks like it is advisable to defer. */ 1969 1970 if (cong_win < send_win && cong_win <= skb->len) 1971 *is_cwnd_limited = true; 1972 1973 return true; 1974 1975 send_now: 1976 return false; 1977 } 1978 1979 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1980 { 1981 struct inet_connection_sock *icsk = inet_csk(sk); 1982 struct tcp_sock *tp = tcp_sk(sk); 1983 struct net *net = sock_net(sk); 1984 u32 interval; 1985 s32 delta; 1986 1987 interval = net->ipv4.sysctl_tcp_probe_interval; 1988 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1989 if (unlikely(delta >= interval * HZ)) { 1990 int mss = tcp_current_mss(sk); 1991 1992 /* Update current search range */ 1993 icsk->icsk_mtup.probe_size = 0; 1994 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1995 sizeof(struct tcphdr) + 1996 icsk->icsk_af_ops->net_header_len; 1997 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1998 1999 /* Update probe time stamp */ 2000 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2001 } 2002 } 2003 2004 /* Create a new MTU probe if we are ready. 2005 * MTU probe is regularly attempting to increase the path MTU by 2006 * deliberately sending larger packets. This discovers routing 2007 * changes resulting in larger path MTUs. 2008 * 2009 * Returns 0 if we should wait to probe (no cwnd available), 2010 * 1 if a probe was sent, 2011 * -1 otherwise 2012 */ 2013 static int tcp_mtu_probe(struct sock *sk) 2014 { 2015 struct inet_connection_sock *icsk = inet_csk(sk); 2016 struct tcp_sock *tp = tcp_sk(sk); 2017 struct sk_buff *skb, *nskb, *next; 2018 struct net *net = sock_net(sk); 2019 int probe_size; 2020 int size_needed; 2021 int copy, len; 2022 int mss_now; 2023 int interval; 2024 2025 /* Not currently probing/verifying, 2026 * not in recovery, 2027 * have enough cwnd, and 2028 * not SACKing (the variable headers throw things off) 2029 */ 2030 if (likely(!icsk->icsk_mtup.enabled || 2031 icsk->icsk_mtup.probe_size || 2032 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2033 tp->snd_cwnd < 11 || 2034 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2035 return -1; 2036 2037 /* Use binary search for probe_size between tcp_mss_base, 2038 * and current mss_clamp. if (search_high - search_low) 2039 * smaller than a threshold, backoff from probing. 2040 */ 2041 mss_now = tcp_current_mss(sk); 2042 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2043 icsk->icsk_mtup.search_low) >> 1); 2044 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2045 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2046 /* When misfortune happens, we are reprobing actively, 2047 * and then reprobe timer has expired. We stick with current 2048 * probing process by not resetting search range to its orignal. 2049 */ 2050 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2051 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2052 /* Check whether enough time has elaplased for 2053 * another round of probing. 2054 */ 2055 tcp_mtu_check_reprobe(sk); 2056 return -1; 2057 } 2058 2059 /* Have enough data in the send queue to probe? */ 2060 if (tp->write_seq - tp->snd_nxt < size_needed) 2061 return -1; 2062 2063 if (tp->snd_wnd < size_needed) 2064 return -1; 2065 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2066 return 0; 2067 2068 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2069 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2070 if (!tcp_packets_in_flight(tp)) 2071 return -1; 2072 else 2073 return 0; 2074 } 2075 2076 /* We're allowed to probe. Build it now. */ 2077 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2078 if (!nskb) 2079 return -1; 2080 sk->sk_wmem_queued += nskb->truesize; 2081 sk_mem_charge(sk, nskb->truesize); 2082 2083 skb = tcp_send_head(sk); 2084 2085 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2086 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2087 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2088 TCP_SKB_CB(nskb)->sacked = 0; 2089 nskb->csum = 0; 2090 nskb->ip_summed = skb->ip_summed; 2091 2092 tcp_insert_write_queue_before(nskb, skb, sk); 2093 2094 len = 0; 2095 tcp_for_write_queue_from_safe(skb, next, sk) { 2096 copy = min_t(int, skb->len, probe_size - len); 2097 if (nskb->ip_summed) { 2098 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2099 } else { 2100 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2101 skb_put(nskb, copy), 2102 copy, 0); 2103 nskb->csum = csum_block_add(nskb->csum, csum, len); 2104 } 2105 2106 if (skb->len <= copy) { 2107 /* We've eaten all the data from this skb. 2108 * Throw it away. */ 2109 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2110 tcp_unlink_write_queue(skb, sk); 2111 sk_wmem_free_skb(sk, skb); 2112 } else { 2113 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2114 ~(TCPHDR_FIN|TCPHDR_PSH); 2115 if (!skb_shinfo(skb)->nr_frags) { 2116 skb_pull(skb, copy); 2117 if (skb->ip_summed != CHECKSUM_PARTIAL) 2118 skb->csum = csum_partial(skb->data, 2119 skb->len, 0); 2120 } else { 2121 __pskb_trim_head(skb, copy); 2122 tcp_set_skb_tso_segs(skb, mss_now); 2123 } 2124 TCP_SKB_CB(skb)->seq += copy; 2125 } 2126 2127 len += copy; 2128 2129 if (len >= probe_size) 2130 break; 2131 } 2132 tcp_init_tso_segs(nskb, nskb->len); 2133 2134 /* We're ready to send. If this fails, the probe will 2135 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2136 */ 2137 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2138 /* Decrement cwnd here because we are sending 2139 * effectively two packets. */ 2140 tp->snd_cwnd--; 2141 tcp_event_new_data_sent(sk, nskb); 2142 2143 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2144 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2145 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2146 2147 return 1; 2148 } 2149 2150 return -1; 2151 } 2152 2153 static bool tcp_pacing_check(const struct sock *sk) 2154 { 2155 return tcp_needs_internal_pacing(sk) && 2156 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2157 } 2158 2159 /* TCP Small Queues : 2160 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2161 * (These limits are doubled for retransmits) 2162 * This allows for : 2163 * - better RTT estimation and ACK scheduling 2164 * - faster recovery 2165 * - high rates 2166 * Alas, some drivers / subsystems require a fair amount 2167 * of queued bytes to ensure line rate. 2168 * One example is wifi aggregation (802.11 AMPDU) 2169 */ 2170 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2171 unsigned int factor) 2172 { 2173 unsigned int limit; 2174 2175 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2176 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2177 limit <<= factor; 2178 2179 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2180 /* Always send the 1st or 2nd skb in write queue. 2181 * No need to wait for TX completion to call us back, 2182 * after softirq/tasklet schedule. 2183 * This helps when TX completions are delayed too much. 2184 */ 2185 if (skb == sk->sk_write_queue.next || 2186 skb->prev == sk->sk_write_queue.next) 2187 return false; 2188 2189 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2190 /* It is possible TX completion already happened 2191 * before we set TSQ_THROTTLED, so we must 2192 * test again the condition. 2193 */ 2194 smp_mb__after_atomic(); 2195 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2196 return true; 2197 } 2198 return false; 2199 } 2200 2201 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2202 { 2203 const u32 now = tcp_jiffies32; 2204 2205 if (tp->chrono_type > TCP_CHRONO_UNSPEC) 2206 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start; 2207 tp->chrono_start = now; 2208 tp->chrono_type = new; 2209 } 2210 2211 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2212 { 2213 struct tcp_sock *tp = tcp_sk(sk); 2214 2215 /* If there are multiple conditions worthy of tracking in a 2216 * chronograph then the highest priority enum takes precedence 2217 * over the other conditions. So that if something "more interesting" 2218 * starts happening, stop the previous chrono and start a new one. 2219 */ 2220 if (type > tp->chrono_type) 2221 tcp_chrono_set(tp, type); 2222 } 2223 2224 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2225 { 2226 struct tcp_sock *tp = tcp_sk(sk); 2227 2228 2229 /* There are multiple conditions worthy of tracking in a 2230 * chronograph, so that the highest priority enum takes 2231 * precedence over the other conditions (see tcp_chrono_start). 2232 * If a condition stops, we only stop chrono tracking if 2233 * it's the "most interesting" or current chrono we are 2234 * tracking and starts busy chrono if we have pending data. 2235 */ 2236 if (tcp_write_queue_empty(sk)) 2237 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2238 else if (type == tp->chrono_type) 2239 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2240 } 2241 2242 /* This routine writes packets to the network. It advances the 2243 * send_head. This happens as incoming acks open up the remote 2244 * window for us. 2245 * 2246 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2247 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2248 * account rare use of URG, this is not a big flaw. 2249 * 2250 * Send at most one packet when push_one > 0. Temporarily ignore 2251 * cwnd limit to force at most one packet out when push_one == 2. 2252 2253 * Returns true, if no segments are in flight and we have queued segments, 2254 * but cannot send anything now because of SWS or another problem. 2255 */ 2256 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2257 int push_one, gfp_t gfp) 2258 { 2259 struct tcp_sock *tp = tcp_sk(sk); 2260 struct sk_buff *skb; 2261 unsigned int tso_segs, sent_pkts; 2262 int cwnd_quota; 2263 int result; 2264 bool is_cwnd_limited = false, is_rwnd_limited = false; 2265 u32 max_segs; 2266 2267 sent_pkts = 0; 2268 2269 if (!push_one) { 2270 /* Do MTU probing. */ 2271 result = tcp_mtu_probe(sk); 2272 if (!result) { 2273 return false; 2274 } else if (result > 0) { 2275 sent_pkts = 1; 2276 } 2277 } 2278 2279 max_segs = tcp_tso_segs(sk, mss_now); 2280 tcp_mstamp_refresh(tp); 2281 while ((skb = tcp_send_head(sk))) { 2282 unsigned int limit; 2283 2284 if (tcp_pacing_check(sk)) 2285 break; 2286 2287 tso_segs = tcp_init_tso_segs(skb, mss_now); 2288 BUG_ON(!tso_segs); 2289 2290 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2291 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2292 skb->skb_mstamp = tp->tcp_mstamp; 2293 goto repair; /* Skip network transmission */ 2294 } 2295 2296 cwnd_quota = tcp_cwnd_test(tp, skb); 2297 if (!cwnd_quota) { 2298 if (push_one == 2) 2299 /* Force out a loss probe pkt. */ 2300 cwnd_quota = 1; 2301 else 2302 break; 2303 } 2304 2305 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2306 is_rwnd_limited = true; 2307 break; 2308 } 2309 2310 if (tso_segs == 1) { 2311 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2312 (tcp_skb_is_last(sk, skb) ? 2313 nonagle : TCP_NAGLE_PUSH)))) 2314 break; 2315 } else { 2316 if (!push_one && 2317 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2318 max_segs)) 2319 break; 2320 } 2321 2322 limit = mss_now; 2323 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2324 limit = tcp_mss_split_point(sk, skb, mss_now, 2325 min_t(unsigned int, 2326 cwnd_quota, 2327 max_segs), 2328 nonagle); 2329 2330 if (skb->len > limit && 2331 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2332 break; 2333 2334 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2335 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2336 if (tcp_small_queue_check(sk, skb, 0)) 2337 break; 2338 2339 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2340 break; 2341 2342 repair: 2343 /* Advance the send_head. This one is sent out. 2344 * This call will increment packets_out. 2345 */ 2346 tcp_event_new_data_sent(sk, skb); 2347 2348 tcp_minshall_update(tp, mss_now, skb); 2349 sent_pkts += tcp_skb_pcount(skb); 2350 2351 if (push_one) 2352 break; 2353 } 2354 2355 if (is_rwnd_limited) 2356 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2357 else 2358 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2359 2360 if (likely(sent_pkts)) { 2361 if (tcp_in_cwnd_reduction(sk)) 2362 tp->prr_out += sent_pkts; 2363 2364 /* Send one loss probe per tail loss episode. */ 2365 if (push_one != 2) 2366 tcp_schedule_loss_probe(sk); 2367 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2368 tcp_cwnd_validate(sk, is_cwnd_limited); 2369 return false; 2370 } 2371 return !tp->packets_out && tcp_send_head(sk); 2372 } 2373 2374 bool tcp_schedule_loss_probe(struct sock *sk) 2375 { 2376 struct inet_connection_sock *icsk = inet_csk(sk); 2377 struct tcp_sock *tp = tcp_sk(sk); 2378 u32 timeout, tlp_time_stamp, rto_time_stamp; 2379 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2380 2381 /* No consecutive loss probes. */ 2382 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2383 tcp_rearm_rto(sk); 2384 return false; 2385 } 2386 /* Don't do any loss probe on a Fast Open connection before 3WHS 2387 * finishes. 2388 */ 2389 if (tp->fastopen_rsk) 2390 return false; 2391 2392 /* TLP is only scheduled when next timer event is RTO. */ 2393 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2394 return false; 2395 2396 /* Schedule a loss probe in 2*RTT for SACK capable connections 2397 * in Open state, that are either limited by cwnd or application. 2398 */ 2399 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) || 2400 !tp->packets_out || !tcp_is_sack(tp) || 2401 icsk->icsk_ca_state != TCP_CA_Open) 2402 return false; 2403 2404 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2405 tcp_send_head(sk)) 2406 return false; 2407 2408 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2409 * for delayed ack when there's one outstanding packet. If no RTT 2410 * sample is available then probe after TCP_TIMEOUT_INIT. 2411 */ 2412 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2413 if (tp->packets_out == 1) 2414 timeout = max_t(u32, timeout, 2415 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2416 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2417 2418 /* If RTO is shorter, just schedule TLP in its place. */ 2419 tlp_time_stamp = tcp_jiffies32 + timeout; 2420 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2421 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2422 s32 delta = rto_time_stamp - tcp_jiffies32; 2423 if (delta > 0) 2424 timeout = delta; 2425 } 2426 2427 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2428 TCP_RTO_MAX); 2429 return true; 2430 } 2431 2432 /* Thanks to skb fast clones, we can detect if a prior transmit of 2433 * a packet is still in a qdisc or driver queue. 2434 * In this case, there is very little point doing a retransmit ! 2435 */ 2436 static bool skb_still_in_host_queue(const struct sock *sk, 2437 const struct sk_buff *skb) 2438 { 2439 if (unlikely(skb_fclone_busy(sk, skb))) { 2440 NET_INC_STATS(sock_net(sk), 2441 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2442 return true; 2443 } 2444 return false; 2445 } 2446 2447 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2448 * retransmit the last segment. 2449 */ 2450 void tcp_send_loss_probe(struct sock *sk) 2451 { 2452 struct tcp_sock *tp = tcp_sk(sk); 2453 struct sk_buff *skb; 2454 int pcount; 2455 int mss = tcp_current_mss(sk); 2456 2457 skb = tcp_send_head(sk); 2458 if (skb) { 2459 if (tcp_snd_wnd_test(tp, skb, mss)) { 2460 pcount = tp->packets_out; 2461 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2462 if (tp->packets_out > pcount) 2463 goto probe_sent; 2464 goto rearm_timer; 2465 } 2466 skb = tcp_write_queue_prev(sk, skb); 2467 } else { 2468 skb = tcp_write_queue_tail(sk); 2469 } 2470 2471 /* At most one outstanding TLP retransmission. */ 2472 if (tp->tlp_high_seq) 2473 goto rearm_timer; 2474 2475 /* Retransmit last segment. */ 2476 if (WARN_ON(!skb)) 2477 goto rearm_timer; 2478 2479 if (skb_still_in_host_queue(sk, skb)) 2480 goto rearm_timer; 2481 2482 pcount = tcp_skb_pcount(skb); 2483 if (WARN_ON(!pcount)) 2484 goto rearm_timer; 2485 2486 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2487 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2488 GFP_ATOMIC))) 2489 goto rearm_timer; 2490 skb = tcp_write_queue_next(sk, skb); 2491 } 2492 2493 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2494 goto rearm_timer; 2495 2496 if (__tcp_retransmit_skb(sk, skb, 1)) 2497 goto rearm_timer; 2498 2499 /* Record snd_nxt for loss detection. */ 2500 tp->tlp_high_seq = tp->snd_nxt; 2501 2502 probe_sent: 2503 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2504 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2505 inet_csk(sk)->icsk_pending = 0; 2506 rearm_timer: 2507 tcp_rearm_rto(sk); 2508 } 2509 2510 /* Push out any pending frames which were held back due to 2511 * TCP_CORK or attempt at coalescing tiny packets. 2512 * The socket must be locked by the caller. 2513 */ 2514 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2515 int nonagle) 2516 { 2517 /* If we are closed, the bytes will have to remain here. 2518 * In time closedown will finish, we empty the write queue and 2519 * all will be happy. 2520 */ 2521 if (unlikely(sk->sk_state == TCP_CLOSE)) 2522 return; 2523 2524 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2525 sk_gfp_mask(sk, GFP_ATOMIC))) 2526 tcp_check_probe_timer(sk); 2527 } 2528 2529 /* Send _single_ skb sitting at the send head. This function requires 2530 * true push pending frames to setup probe timer etc. 2531 */ 2532 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2533 { 2534 struct sk_buff *skb = tcp_send_head(sk); 2535 2536 BUG_ON(!skb || skb->len < mss_now); 2537 2538 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2539 } 2540 2541 /* This function returns the amount that we can raise the 2542 * usable window based on the following constraints 2543 * 2544 * 1. The window can never be shrunk once it is offered (RFC 793) 2545 * 2. We limit memory per socket 2546 * 2547 * RFC 1122: 2548 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2549 * RECV.NEXT + RCV.WIN fixed until: 2550 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2551 * 2552 * i.e. don't raise the right edge of the window until you can raise 2553 * it at least MSS bytes. 2554 * 2555 * Unfortunately, the recommended algorithm breaks header prediction, 2556 * since header prediction assumes th->window stays fixed. 2557 * 2558 * Strictly speaking, keeping th->window fixed violates the receiver 2559 * side SWS prevention criteria. The problem is that under this rule 2560 * a stream of single byte packets will cause the right side of the 2561 * window to always advance by a single byte. 2562 * 2563 * Of course, if the sender implements sender side SWS prevention 2564 * then this will not be a problem. 2565 * 2566 * BSD seems to make the following compromise: 2567 * 2568 * If the free space is less than the 1/4 of the maximum 2569 * space available and the free space is less than 1/2 mss, 2570 * then set the window to 0. 2571 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2572 * Otherwise, just prevent the window from shrinking 2573 * and from being larger than the largest representable value. 2574 * 2575 * This prevents incremental opening of the window in the regime 2576 * where TCP is limited by the speed of the reader side taking 2577 * data out of the TCP receive queue. It does nothing about 2578 * those cases where the window is constrained on the sender side 2579 * because the pipeline is full. 2580 * 2581 * BSD also seems to "accidentally" limit itself to windows that are a 2582 * multiple of MSS, at least until the free space gets quite small. 2583 * This would appear to be a side effect of the mbuf implementation. 2584 * Combining these two algorithms results in the observed behavior 2585 * of having a fixed window size at almost all times. 2586 * 2587 * Below we obtain similar behavior by forcing the offered window to 2588 * a multiple of the mss when it is feasible to do so. 2589 * 2590 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2591 * Regular options like TIMESTAMP are taken into account. 2592 */ 2593 u32 __tcp_select_window(struct sock *sk) 2594 { 2595 struct inet_connection_sock *icsk = inet_csk(sk); 2596 struct tcp_sock *tp = tcp_sk(sk); 2597 /* MSS for the peer's data. Previous versions used mss_clamp 2598 * here. I don't know if the value based on our guesses 2599 * of peer's MSS is better for the performance. It's more correct 2600 * but may be worse for the performance because of rcv_mss 2601 * fluctuations. --SAW 1998/11/1 2602 */ 2603 int mss = icsk->icsk_ack.rcv_mss; 2604 int free_space = tcp_space(sk); 2605 int allowed_space = tcp_full_space(sk); 2606 int full_space = min_t(int, tp->window_clamp, allowed_space); 2607 int window; 2608 2609 if (unlikely(mss > full_space)) { 2610 mss = full_space; 2611 if (mss <= 0) 2612 return 0; 2613 } 2614 if (free_space < (full_space >> 1)) { 2615 icsk->icsk_ack.quick = 0; 2616 2617 if (tcp_under_memory_pressure(sk)) 2618 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2619 4U * tp->advmss); 2620 2621 /* free_space might become our new window, make sure we don't 2622 * increase it due to wscale. 2623 */ 2624 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2625 2626 /* if free space is less than mss estimate, or is below 1/16th 2627 * of the maximum allowed, try to move to zero-window, else 2628 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2629 * new incoming data is dropped due to memory limits. 2630 * With large window, mss test triggers way too late in order 2631 * to announce zero window in time before rmem limit kicks in. 2632 */ 2633 if (free_space < (allowed_space >> 4) || free_space < mss) 2634 return 0; 2635 } 2636 2637 if (free_space > tp->rcv_ssthresh) 2638 free_space = tp->rcv_ssthresh; 2639 2640 /* Don't do rounding if we are using window scaling, since the 2641 * scaled window will not line up with the MSS boundary anyway. 2642 */ 2643 if (tp->rx_opt.rcv_wscale) { 2644 window = free_space; 2645 2646 /* Advertise enough space so that it won't get scaled away. 2647 * Import case: prevent zero window announcement if 2648 * 1<<rcv_wscale > mss. 2649 */ 2650 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2651 } else { 2652 window = tp->rcv_wnd; 2653 /* Get the largest window that is a nice multiple of mss. 2654 * Window clamp already applied above. 2655 * If our current window offering is within 1 mss of the 2656 * free space we just keep it. This prevents the divide 2657 * and multiply from happening most of the time. 2658 * We also don't do any window rounding when the free space 2659 * is too small. 2660 */ 2661 if (window <= free_space - mss || window > free_space) 2662 window = rounddown(free_space, mss); 2663 else if (mss == full_space && 2664 free_space > window + (full_space >> 1)) 2665 window = free_space; 2666 } 2667 2668 return window; 2669 } 2670 2671 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2672 const struct sk_buff *next_skb) 2673 { 2674 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2675 const struct skb_shared_info *next_shinfo = 2676 skb_shinfo(next_skb); 2677 struct skb_shared_info *shinfo = skb_shinfo(skb); 2678 2679 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2680 shinfo->tskey = next_shinfo->tskey; 2681 TCP_SKB_CB(skb)->txstamp_ack |= 2682 TCP_SKB_CB(next_skb)->txstamp_ack; 2683 } 2684 } 2685 2686 /* Collapses two adjacent SKB's during retransmission. */ 2687 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2688 { 2689 struct tcp_sock *tp = tcp_sk(sk); 2690 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2691 int skb_size, next_skb_size; 2692 2693 skb_size = skb->len; 2694 next_skb_size = next_skb->len; 2695 2696 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2697 2698 if (next_skb_size) { 2699 if (next_skb_size <= skb_availroom(skb)) 2700 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2701 next_skb_size); 2702 else if (!skb_shift(skb, next_skb, next_skb_size)) 2703 return false; 2704 } 2705 tcp_highest_sack_combine(sk, next_skb, skb); 2706 2707 tcp_unlink_write_queue(next_skb, sk); 2708 2709 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2710 skb->ip_summed = CHECKSUM_PARTIAL; 2711 2712 if (skb->ip_summed != CHECKSUM_PARTIAL) 2713 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2714 2715 /* Update sequence range on original skb. */ 2716 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2717 2718 /* Merge over control information. This moves PSH/FIN etc. over */ 2719 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2720 2721 /* All done, get rid of second SKB and account for it so 2722 * packet counting does not break. 2723 */ 2724 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2725 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2726 2727 /* changed transmit queue under us so clear hints */ 2728 tcp_clear_retrans_hints_partial(tp); 2729 if (next_skb == tp->retransmit_skb_hint) 2730 tp->retransmit_skb_hint = skb; 2731 2732 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2733 2734 tcp_skb_collapse_tstamp(skb, next_skb); 2735 2736 sk_wmem_free_skb(sk, next_skb); 2737 return true; 2738 } 2739 2740 /* Check if coalescing SKBs is legal. */ 2741 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2742 { 2743 if (tcp_skb_pcount(skb) > 1) 2744 return false; 2745 if (skb_cloned(skb)) 2746 return false; 2747 if (skb == tcp_send_head(sk)) 2748 return false; 2749 /* Some heuristics for collapsing over SACK'd could be invented */ 2750 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2751 return false; 2752 2753 return true; 2754 } 2755 2756 /* Collapse packets in the retransmit queue to make to create 2757 * less packets on the wire. This is only done on retransmission. 2758 */ 2759 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2760 int space) 2761 { 2762 struct tcp_sock *tp = tcp_sk(sk); 2763 struct sk_buff *skb = to, *tmp; 2764 bool first = true; 2765 2766 if (!sysctl_tcp_retrans_collapse) 2767 return; 2768 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2769 return; 2770 2771 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2772 if (!tcp_can_collapse(sk, skb)) 2773 break; 2774 2775 if (!tcp_skb_can_collapse_to(to)) 2776 break; 2777 2778 space -= skb->len; 2779 2780 if (first) { 2781 first = false; 2782 continue; 2783 } 2784 2785 if (space < 0) 2786 break; 2787 2788 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2789 break; 2790 2791 if (!tcp_collapse_retrans(sk, to)) 2792 break; 2793 } 2794 } 2795 2796 /* This retransmits one SKB. Policy decisions and retransmit queue 2797 * state updates are done by the caller. Returns non-zero if an 2798 * error occurred which prevented the send. 2799 */ 2800 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2801 { 2802 struct inet_connection_sock *icsk = inet_csk(sk); 2803 struct tcp_sock *tp = tcp_sk(sk); 2804 unsigned int cur_mss; 2805 int diff, len, err; 2806 2807 2808 /* Inconclusive MTU probe */ 2809 if (icsk->icsk_mtup.probe_size) 2810 icsk->icsk_mtup.probe_size = 0; 2811 2812 /* Do not sent more than we queued. 1/4 is reserved for possible 2813 * copying overhead: fragmentation, tunneling, mangling etc. 2814 */ 2815 if (atomic_read(&sk->sk_wmem_alloc) > 2816 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2817 sk->sk_sndbuf)) 2818 return -EAGAIN; 2819 2820 if (skb_still_in_host_queue(sk, skb)) 2821 return -EBUSY; 2822 2823 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2824 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2825 BUG(); 2826 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2827 return -ENOMEM; 2828 } 2829 2830 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2831 return -EHOSTUNREACH; /* Routing failure or similar. */ 2832 2833 cur_mss = tcp_current_mss(sk); 2834 2835 /* If receiver has shrunk his window, and skb is out of 2836 * new window, do not retransmit it. The exception is the 2837 * case, when window is shrunk to zero. In this case 2838 * our retransmit serves as a zero window probe. 2839 */ 2840 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2841 TCP_SKB_CB(skb)->seq != tp->snd_una) 2842 return -EAGAIN; 2843 2844 len = cur_mss * segs; 2845 if (skb->len > len) { 2846 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2847 return -ENOMEM; /* We'll try again later. */ 2848 } else { 2849 if (skb_unclone(skb, GFP_ATOMIC)) 2850 return -ENOMEM; 2851 2852 diff = tcp_skb_pcount(skb); 2853 tcp_set_skb_tso_segs(skb, cur_mss); 2854 diff -= tcp_skb_pcount(skb); 2855 if (diff) 2856 tcp_adjust_pcount(sk, skb, diff); 2857 if (skb->len < cur_mss) 2858 tcp_retrans_try_collapse(sk, skb, cur_mss); 2859 } 2860 2861 /* RFC3168, section 6.1.1.1. ECN fallback */ 2862 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2863 tcp_ecn_clear_syn(sk, skb); 2864 2865 /* Update global and local TCP statistics. */ 2866 segs = tcp_skb_pcount(skb); 2867 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2868 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2869 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2870 tp->total_retrans += segs; 2871 2872 /* make sure skb->data is aligned on arches that require it 2873 * and check if ack-trimming & collapsing extended the headroom 2874 * beyond what csum_start can cover. 2875 */ 2876 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2877 skb_headroom(skb) >= 0xFFFF)) { 2878 struct sk_buff *nskb; 2879 2880 skb->skb_mstamp = tp->tcp_mstamp; 2881 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2882 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2883 -ENOBUFS; 2884 } else { 2885 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2886 } 2887 2888 if (likely(!err)) { 2889 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2890 } else if (err != -EBUSY) { 2891 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2892 } 2893 return err; 2894 } 2895 2896 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2897 { 2898 struct tcp_sock *tp = tcp_sk(sk); 2899 int err = __tcp_retransmit_skb(sk, skb, segs); 2900 2901 if (err == 0) { 2902 #if FASTRETRANS_DEBUG > 0 2903 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2904 net_dbg_ratelimited("retrans_out leaked\n"); 2905 } 2906 #endif 2907 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2908 tp->retrans_out += tcp_skb_pcount(skb); 2909 2910 /* Save stamp of the first retransmit. */ 2911 if (!tp->retrans_stamp) 2912 tp->retrans_stamp = tcp_skb_timestamp(skb); 2913 2914 } 2915 2916 if (tp->undo_retrans < 0) 2917 tp->undo_retrans = 0; 2918 tp->undo_retrans += tcp_skb_pcount(skb); 2919 return err; 2920 } 2921 2922 /* This gets called after a retransmit timeout, and the initially 2923 * retransmitted data is acknowledged. It tries to continue 2924 * resending the rest of the retransmit queue, until either 2925 * we've sent it all or the congestion window limit is reached. 2926 * If doing SACK, the first ACK which comes back for a timeout 2927 * based retransmit packet might feed us FACK information again. 2928 * If so, we use it to avoid unnecessarily retransmissions. 2929 */ 2930 void tcp_xmit_retransmit_queue(struct sock *sk) 2931 { 2932 const struct inet_connection_sock *icsk = inet_csk(sk); 2933 struct tcp_sock *tp = tcp_sk(sk); 2934 struct sk_buff *skb; 2935 struct sk_buff *hole = NULL; 2936 u32 max_segs; 2937 int mib_idx; 2938 2939 if (!tp->packets_out) 2940 return; 2941 2942 if (tp->retransmit_skb_hint) { 2943 skb = tp->retransmit_skb_hint; 2944 } else { 2945 skb = tcp_write_queue_head(sk); 2946 } 2947 2948 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2949 tcp_for_write_queue_from(skb, sk) { 2950 __u8 sacked; 2951 int segs; 2952 2953 if (skb == tcp_send_head(sk)) 2954 break; 2955 2956 if (tcp_pacing_check(sk)) 2957 break; 2958 2959 /* we could do better than to assign each time */ 2960 if (!hole) 2961 tp->retransmit_skb_hint = skb; 2962 2963 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2964 if (segs <= 0) 2965 return; 2966 sacked = TCP_SKB_CB(skb)->sacked; 2967 /* In case tcp_shift_skb_data() have aggregated large skbs, 2968 * we need to make sure not sending too bigs TSO packets 2969 */ 2970 segs = min_t(int, segs, max_segs); 2971 2972 if (tp->retrans_out >= tp->lost_out) { 2973 break; 2974 } else if (!(sacked & TCPCB_LOST)) { 2975 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2976 hole = skb; 2977 continue; 2978 2979 } else { 2980 if (icsk->icsk_ca_state != TCP_CA_Loss) 2981 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2982 else 2983 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2984 } 2985 2986 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2987 continue; 2988 2989 if (tcp_small_queue_check(sk, skb, 1)) 2990 return; 2991 2992 if (tcp_retransmit_skb(sk, skb, segs)) 2993 return; 2994 2995 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2996 2997 if (tcp_in_cwnd_reduction(sk)) 2998 tp->prr_out += tcp_skb_pcount(skb); 2999 3000 if (skb == tcp_write_queue_head(sk) && 3001 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3002 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3003 inet_csk(sk)->icsk_rto, 3004 TCP_RTO_MAX); 3005 } 3006 } 3007 3008 /* We allow to exceed memory limits for FIN packets to expedite 3009 * connection tear down and (memory) recovery. 3010 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3011 * or even be forced to close flow without any FIN. 3012 * In general, we want to allow one skb per socket to avoid hangs 3013 * with edge trigger epoll() 3014 */ 3015 void sk_forced_mem_schedule(struct sock *sk, int size) 3016 { 3017 int amt; 3018 3019 if (size <= sk->sk_forward_alloc) 3020 return; 3021 amt = sk_mem_pages(size); 3022 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3023 sk_memory_allocated_add(sk, amt); 3024 3025 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3026 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3027 } 3028 3029 /* Send a FIN. The caller locks the socket for us. 3030 * We should try to send a FIN packet really hard, but eventually give up. 3031 */ 3032 void tcp_send_fin(struct sock *sk) 3033 { 3034 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3035 struct tcp_sock *tp = tcp_sk(sk); 3036 3037 /* Optimization, tack on the FIN if we have one skb in write queue and 3038 * this skb was not yet sent, or we are under memory pressure. 3039 * Note: in the latter case, FIN packet will be sent after a timeout, 3040 * as TCP stack thinks it has already been transmitted. 3041 */ 3042 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 3043 coalesce: 3044 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3045 TCP_SKB_CB(tskb)->end_seq++; 3046 tp->write_seq++; 3047 if (!tcp_send_head(sk)) { 3048 /* This means tskb was already sent. 3049 * Pretend we included the FIN on previous transmit. 3050 * We need to set tp->snd_nxt to the value it would have 3051 * if FIN had been sent. This is because retransmit path 3052 * does not change tp->snd_nxt. 3053 */ 3054 tp->snd_nxt++; 3055 return; 3056 } 3057 } else { 3058 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3059 if (unlikely(!skb)) { 3060 if (tskb) 3061 goto coalesce; 3062 return; 3063 } 3064 skb_reserve(skb, MAX_TCP_HEADER); 3065 sk_forced_mem_schedule(sk, skb->truesize); 3066 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3067 tcp_init_nondata_skb(skb, tp->write_seq, 3068 TCPHDR_ACK | TCPHDR_FIN); 3069 tcp_queue_skb(sk, skb); 3070 } 3071 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3072 } 3073 3074 /* We get here when a process closes a file descriptor (either due to 3075 * an explicit close() or as a byproduct of exit()'ing) and there 3076 * was unread data in the receive queue. This behavior is recommended 3077 * by RFC 2525, section 2.17. -DaveM 3078 */ 3079 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3080 { 3081 struct sk_buff *skb; 3082 3083 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3084 3085 /* NOTE: No TCP options attached and we never retransmit this. */ 3086 skb = alloc_skb(MAX_TCP_HEADER, priority); 3087 if (!skb) { 3088 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3089 return; 3090 } 3091 3092 /* Reserve space for headers and prepare control bits. */ 3093 skb_reserve(skb, MAX_TCP_HEADER); 3094 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3095 TCPHDR_ACK | TCPHDR_RST); 3096 tcp_mstamp_refresh(tcp_sk(sk)); 3097 /* Send it off. */ 3098 if (tcp_transmit_skb(sk, skb, 0, priority)) 3099 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3100 } 3101 3102 /* Send a crossed SYN-ACK during socket establishment. 3103 * WARNING: This routine must only be called when we have already sent 3104 * a SYN packet that crossed the incoming SYN that caused this routine 3105 * to get called. If this assumption fails then the initial rcv_wnd 3106 * and rcv_wscale values will not be correct. 3107 */ 3108 int tcp_send_synack(struct sock *sk) 3109 { 3110 struct sk_buff *skb; 3111 3112 skb = tcp_write_queue_head(sk); 3113 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3114 pr_debug("%s: wrong queue state\n", __func__); 3115 return -EFAULT; 3116 } 3117 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3118 if (skb_cloned(skb)) { 3119 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3120 if (!nskb) 3121 return -ENOMEM; 3122 tcp_unlink_write_queue(skb, sk); 3123 __skb_header_release(nskb); 3124 __tcp_add_write_queue_head(sk, nskb); 3125 sk_wmem_free_skb(sk, skb); 3126 sk->sk_wmem_queued += nskb->truesize; 3127 sk_mem_charge(sk, nskb->truesize); 3128 skb = nskb; 3129 } 3130 3131 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3132 tcp_ecn_send_synack(sk, skb); 3133 } 3134 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3135 } 3136 3137 /** 3138 * tcp_make_synack - Prepare a SYN-ACK. 3139 * sk: listener socket 3140 * dst: dst entry attached to the SYNACK 3141 * req: request_sock pointer 3142 * 3143 * Allocate one skb and build a SYNACK packet. 3144 * @dst is consumed : Caller should not use it again. 3145 */ 3146 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3147 struct request_sock *req, 3148 struct tcp_fastopen_cookie *foc, 3149 enum tcp_synack_type synack_type) 3150 { 3151 struct inet_request_sock *ireq = inet_rsk(req); 3152 const struct tcp_sock *tp = tcp_sk(sk); 3153 struct tcp_md5sig_key *md5 = NULL; 3154 struct tcp_out_options opts; 3155 struct sk_buff *skb; 3156 int tcp_header_size; 3157 struct tcphdr *th; 3158 int mss; 3159 3160 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3161 if (unlikely(!skb)) { 3162 dst_release(dst); 3163 return NULL; 3164 } 3165 /* Reserve space for headers. */ 3166 skb_reserve(skb, MAX_TCP_HEADER); 3167 3168 switch (synack_type) { 3169 case TCP_SYNACK_NORMAL: 3170 skb_set_owner_w(skb, req_to_sk(req)); 3171 break; 3172 case TCP_SYNACK_COOKIE: 3173 /* Under synflood, we do not attach skb to a socket, 3174 * to avoid false sharing. 3175 */ 3176 break; 3177 case TCP_SYNACK_FASTOPEN: 3178 /* sk is a const pointer, because we want to express multiple 3179 * cpu might call us concurrently. 3180 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3181 */ 3182 skb_set_owner_w(skb, (struct sock *)sk); 3183 break; 3184 } 3185 skb_dst_set(skb, dst); 3186 3187 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3188 3189 memset(&opts, 0, sizeof(opts)); 3190 #ifdef CONFIG_SYN_COOKIES 3191 if (unlikely(req->cookie_ts)) 3192 skb->skb_mstamp = cookie_init_timestamp(req); 3193 else 3194 #endif 3195 skb->skb_mstamp = tcp_clock_us(); 3196 3197 #ifdef CONFIG_TCP_MD5SIG 3198 rcu_read_lock(); 3199 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3200 #endif 3201 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3202 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3203 sizeof(*th); 3204 3205 skb_push(skb, tcp_header_size); 3206 skb_reset_transport_header(skb); 3207 3208 th = (struct tcphdr *)skb->data; 3209 memset(th, 0, sizeof(struct tcphdr)); 3210 th->syn = 1; 3211 th->ack = 1; 3212 tcp_ecn_make_synack(req, th); 3213 th->source = htons(ireq->ir_num); 3214 th->dest = ireq->ir_rmt_port; 3215 /* Setting of flags are superfluous here for callers (and ECE is 3216 * not even correctly set) 3217 */ 3218 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3219 TCPHDR_SYN | TCPHDR_ACK); 3220 3221 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3222 /* XXX data is queued and acked as is. No buffer/window check */ 3223 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3224 3225 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3226 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3227 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3228 th->doff = (tcp_header_size >> 2); 3229 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3230 3231 #ifdef CONFIG_TCP_MD5SIG 3232 /* Okay, we have all we need - do the md5 hash if needed */ 3233 if (md5) 3234 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3235 md5, req_to_sk(req), skb); 3236 rcu_read_unlock(); 3237 #endif 3238 3239 /* Do not fool tcpdump (if any), clean our debris */ 3240 skb->tstamp = 0; 3241 return skb; 3242 } 3243 EXPORT_SYMBOL(tcp_make_synack); 3244 3245 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3246 { 3247 struct inet_connection_sock *icsk = inet_csk(sk); 3248 const struct tcp_congestion_ops *ca; 3249 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3250 3251 if (ca_key == TCP_CA_UNSPEC) 3252 return; 3253 3254 rcu_read_lock(); 3255 ca = tcp_ca_find_key(ca_key); 3256 if (likely(ca && try_module_get(ca->owner))) { 3257 module_put(icsk->icsk_ca_ops->owner); 3258 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3259 icsk->icsk_ca_ops = ca; 3260 } 3261 rcu_read_unlock(); 3262 } 3263 3264 /* Do all connect socket setups that can be done AF independent. */ 3265 static void tcp_connect_init(struct sock *sk) 3266 { 3267 const struct dst_entry *dst = __sk_dst_get(sk); 3268 struct tcp_sock *tp = tcp_sk(sk); 3269 __u8 rcv_wscale; 3270 3271 /* We'll fix this up when we get a response from the other end. 3272 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3273 */ 3274 tp->tcp_header_len = sizeof(struct tcphdr) + 3275 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3276 3277 #ifdef CONFIG_TCP_MD5SIG 3278 if (tp->af_specific->md5_lookup(sk, sk)) 3279 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3280 #endif 3281 3282 /* If user gave his TCP_MAXSEG, record it to clamp */ 3283 if (tp->rx_opt.user_mss) 3284 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3285 tp->max_window = 0; 3286 tcp_mtup_init(sk); 3287 tcp_sync_mss(sk, dst_mtu(dst)); 3288 3289 tcp_ca_dst_init(sk, dst); 3290 3291 if (!tp->window_clamp) 3292 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3293 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3294 3295 tcp_initialize_rcv_mss(sk); 3296 3297 /* limit the window selection if the user enforce a smaller rx buffer */ 3298 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3299 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3300 tp->window_clamp = tcp_full_space(sk); 3301 3302 tcp_select_initial_window(tcp_full_space(sk), 3303 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3304 &tp->rcv_wnd, 3305 &tp->window_clamp, 3306 sysctl_tcp_window_scaling, 3307 &rcv_wscale, 3308 dst_metric(dst, RTAX_INITRWND)); 3309 3310 tp->rx_opt.rcv_wscale = rcv_wscale; 3311 tp->rcv_ssthresh = tp->rcv_wnd; 3312 3313 sk->sk_err = 0; 3314 sock_reset_flag(sk, SOCK_DONE); 3315 tp->snd_wnd = 0; 3316 tcp_init_wl(tp, 0); 3317 tp->snd_una = tp->write_seq; 3318 tp->snd_sml = tp->write_seq; 3319 tp->snd_up = tp->write_seq; 3320 tp->snd_nxt = tp->write_seq; 3321 3322 if (likely(!tp->repair)) 3323 tp->rcv_nxt = 0; 3324 else 3325 tp->rcv_tstamp = tcp_jiffies32; 3326 tp->rcv_wup = tp->rcv_nxt; 3327 tp->copied_seq = tp->rcv_nxt; 3328 3329 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3330 inet_csk(sk)->icsk_retransmits = 0; 3331 tcp_clear_retrans(tp); 3332 } 3333 3334 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3335 { 3336 struct tcp_sock *tp = tcp_sk(sk); 3337 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3338 3339 tcb->end_seq += skb->len; 3340 __skb_header_release(skb); 3341 __tcp_add_write_queue_tail(sk, skb); 3342 sk->sk_wmem_queued += skb->truesize; 3343 sk_mem_charge(sk, skb->truesize); 3344 tp->write_seq = tcb->end_seq; 3345 tp->packets_out += tcp_skb_pcount(skb); 3346 } 3347 3348 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3349 * queue a data-only packet after the regular SYN, such that regular SYNs 3350 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3351 * only the SYN sequence, the data are retransmitted in the first ACK. 3352 * If cookie is not cached or other error occurs, falls back to send a 3353 * regular SYN with Fast Open cookie request option. 3354 */ 3355 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3356 { 3357 struct tcp_sock *tp = tcp_sk(sk); 3358 struct tcp_fastopen_request *fo = tp->fastopen_req; 3359 int space, err = 0; 3360 struct sk_buff *syn_data; 3361 3362 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3363 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3364 goto fallback; 3365 3366 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3367 * user-MSS. Reserve maximum option space for middleboxes that add 3368 * private TCP options. The cost is reduced data space in SYN :( 3369 */ 3370 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3371 3372 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3373 MAX_TCP_OPTION_SPACE; 3374 3375 space = min_t(size_t, space, fo->size); 3376 3377 /* limit to order-0 allocations */ 3378 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3379 3380 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3381 if (!syn_data) 3382 goto fallback; 3383 syn_data->ip_summed = CHECKSUM_PARTIAL; 3384 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3385 if (space) { 3386 int copied = copy_from_iter(skb_put(syn_data, space), space, 3387 &fo->data->msg_iter); 3388 if (unlikely(!copied)) { 3389 kfree_skb(syn_data); 3390 goto fallback; 3391 } 3392 if (copied != space) { 3393 skb_trim(syn_data, copied); 3394 space = copied; 3395 } 3396 } 3397 /* No more data pending in inet_wait_for_connect() */ 3398 if (space == fo->size) 3399 fo->data = NULL; 3400 fo->copied = space; 3401 3402 tcp_connect_queue_skb(sk, syn_data); 3403 if (syn_data->len) 3404 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3405 3406 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3407 3408 syn->skb_mstamp = syn_data->skb_mstamp; 3409 3410 /* Now full SYN+DATA was cloned and sent (or not), 3411 * remove the SYN from the original skb (syn_data) 3412 * we keep in write queue in case of a retransmit, as we 3413 * also have the SYN packet (with no data) in the same queue. 3414 */ 3415 TCP_SKB_CB(syn_data)->seq++; 3416 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3417 if (!err) { 3418 tp->syn_data = (fo->copied > 0); 3419 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3420 goto done; 3421 } 3422 3423 fallback: 3424 /* Send a regular SYN with Fast Open cookie request option */ 3425 if (fo->cookie.len > 0) 3426 fo->cookie.len = 0; 3427 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3428 if (err) 3429 tp->syn_fastopen = 0; 3430 done: 3431 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3432 return err; 3433 } 3434 3435 /* Build a SYN and send it off. */ 3436 int tcp_connect(struct sock *sk) 3437 { 3438 struct tcp_sock *tp = tcp_sk(sk); 3439 struct sk_buff *buff; 3440 int err; 3441 3442 tcp_connect_init(sk); 3443 3444 if (unlikely(tp->repair)) { 3445 tcp_finish_connect(sk, NULL); 3446 return 0; 3447 } 3448 3449 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3450 if (unlikely(!buff)) 3451 return -ENOBUFS; 3452 3453 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3454 tcp_mstamp_refresh(tp); 3455 tp->retrans_stamp = tcp_time_stamp(tp); 3456 tcp_connect_queue_skb(sk, buff); 3457 tcp_ecn_send_syn(sk, buff); 3458 3459 /* Send off SYN; include data in Fast Open. */ 3460 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3461 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3462 if (err == -ECONNREFUSED) 3463 return err; 3464 3465 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3466 * in order to make this packet get counted in tcpOutSegs. 3467 */ 3468 tp->snd_nxt = tp->write_seq; 3469 tp->pushed_seq = tp->write_seq; 3470 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3471 3472 /* Timer for repeating the SYN until an answer. */ 3473 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3474 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3475 return 0; 3476 } 3477 EXPORT_SYMBOL(tcp_connect); 3478 3479 /* Send out a delayed ack, the caller does the policy checking 3480 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3481 * for details. 3482 */ 3483 void tcp_send_delayed_ack(struct sock *sk) 3484 { 3485 struct inet_connection_sock *icsk = inet_csk(sk); 3486 int ato = icsk->icsk_ack.ato; 3487 unsigned long timeout; 3488 3489 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3490 3491 if (ato > TCP_DELACK_MIN) { 3492 const struct tcp_sock *tp = tcp_sk(sk); 3493 int max_ato = HZ / 2; 3494 3495 if (icsk->icsk_ack.pingpong || 3496 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3497 max_ato = TCP_DELACK_MAX; 3498 3499 /* Slow path, intersegment interval is "high". */ 3500 3501 /* If some rtt estimate is known, use it to bound delayed ack. 3502 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3503 * directly. 3504 */ 3505 if (tp->srtt_us) { 3506 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3507 TCP_DELACK_MIN); 3508 3509 if (rtt < max_ato) 3510 max_ato = rtt; 3511 } 3512 3513 ato = min(ato, max_ato); 3514 } 3515 3516 /* Stay within the limit we were given */ 3517 timeout = jiffies + ato; 3518 3519 /* Use new timeout only if there wasn't a older one earlier. */ 3520 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3521 /* If delack timer was blocked or is about to expire, 3522 * send ACK now. 3523 */ 3524 if (icsk->icsk_ack.blocked || 3525 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3526 tcp_send_ack(sk); 3527 return; 3528 } 3529 3530 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3531 timeout = icsk->icsk_ack.timeout; 3532 } 3533 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3534 icsk->icsk_ack.timeout = timeout; 3535 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3536 } 3537 3538 /* This routine sends an ack and also updates the window. */ 3539 void tcp_send_ack(struct sock *sk) 3540 { 3541 struct sk_buff *buff; 3542 3543 /* If we have been reset, we may not send again. */ 3544 if (sk->sk_state == TCP_CLOSE) 3545 return; 3546 3547 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3548 3549 /* We are not putting this on the write queue, so 3550 * tcp_transmit_skb() will set the ownership to this 3551 * sock. 3552 */ 3553 buff = alloc_skb(MAX_TCP_HEADER, 3554 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3555 if (unlikely(!buff)) { 3556 inet_csk_schedule_ack(sk); 3557 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3558 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3559 TCP_DELACK_MAX, TCP_RTO_MAX); 3560 return; 3561 } 3562 3563 /* Reserve space for headers and prepare control bits. */ 3564 skb_reserve(buff, MAX_TCP_HEADER); 3565 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3566 3567 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3568 * too much. 3569 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3570 */ 3571 skb_set_tcp_pure_ack(buff); 3572 3573 /* Send it off, this clears delayed acks for us. */ 3574 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3575 } 3576 EXPORT_SYMBOL_GPL(tcp_send_ack); 3577 3578 /* This routine sends a packet with an out of date sequence 3579 * number. It assumes the other end will try to ack it. 3580 * 3581 * Question: what should we make while urgent mode? 3582 * 4.4BSD forces sending single byte of data. We cannot send 3583 * out of window data, because we have SND.NXT==SND.MAX... 3584 * 3585 * Current solution: to send TWO zero-length segments in urgent mode: 3586 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3587 * out-of-date with SND.UNA-1 to probe window. 3588 */ 3589 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3590 { 3591 struct tcp_sock *tp = tcp_sk(sk); 3592 struct sk_buff *skb; 3593 3594 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3595 skb = alloc_skb(MAX_TCP_HEADER, 3596 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3597 if (!skb) 3598 return -1; 3599 3600 /* Reserve space for headers and set control bits. */ 3601 skb_reserve(skb, MAX_TCP_HEADER); 3602 /* Use a previous sequence. This should cause the other 3603 * end to send an ack. Don't queue or clone SKB, just 3604 * send it. 3605 */ 3606 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3607 NET_INC_STATS(sock_net(sk), mib); 3608 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3609 } 3610 3611 /* Called from setsockopt( ... TCP_REPAIR ) */ 3612 void tcp_send_window_probe(struct sock *sk) 3613 { 3614 if (sk->sk_state == TCP_ESTABLISHED) { 3615 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3616 tcp_mstamp_refresh(tcp_sk(sk)); 3617 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3618 } 3619 } 3620 3621 /* Initiate keepalive or window probe from timer. */ 3622 int tcp_write_wakeup(struct sock *sk, int mib) 3623 { 3624 struct tcp_sock *tp = tcp_sk(sk); 3625 struct sk_buff *skb; 3626 3627 if (sk->sk_state == TCP_CLOSE) 3628 return -1; 3629 3630 skb = tcp_send_head(sk); 3631 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3632 int err; 3633 unsigned int mss = tcp_current_mss(sk); 3634 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3635 3636 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3637 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3638 3639 /* We are probing the opening of a window 3640 * but the window size is != 0 3641 * must have been a result SWS avoidance ( sender ) 3642 */ 3643 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3644 skb->len > mss) { 3645 seg_size = min(seg_size, mss); 3646 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3647 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3648 return -1; 3649 } else if (!tcp_skb_pcount(skb)) 3650 tcp_set_skb_tso_segs(skb, mss); 3651 3652 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3653 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3654 if (!err) 3655 tcp_event_new_data_sent(sk, skb); 3656 return err; 3657 } else { 3658 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3659 tcp_xmit_probe_skb(sk, 1, mib); 3660 return tcp_xmit_probe_skb(sk, 0, mib); 3661 } 3662 } 3663 3664 /* A window probe timeout has occurred. If window is not closed send 3665 * a partial packet else a zero probe. 3666 */ 3667 void tcp_send_probe0(struct sock *sk) 3668 { 3669 struct inet_connection_sock *icsk = inet_csk(sk); 3670 struct tcp_sock *tp = tcp_sk(sk); 3671 struct net *net = sock_net(sk); 3672 unsigned long probe_max; 3673 int err; 3674 3675 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3676 3677 if (tp->packets_out || !tcp_send_head(sk)) { 3678 /* Cancel probe timer, if it is not required. */ 3679 icsk->icsk_probes_out = 0; 3680 icsk->icsk_backoff = 0; 3681 return; 3682 } 3683 3684 if (err <= 0) { 3685 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3686 icsk->icsk_backoff++; 3687 icsk->icsk_probes_out++; 3688 probe_max = TCP_RTO_MAX; 3689 } else { 3690 /* If packet was not sent due to local congestion, 3691 * do not backoff and do not remember icsk_probes_out. 3692 * Let local senders to fight for local resources. 3693 * 3694 * Use accumulated backoff yet. 3695 */ 3696 if (!icsk->icsk_probes_out) 3697 icsk->icsk_probes_out = 1; 3698 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3699 } 3700 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3701 tcp_probe0_when(sk, probe_max), 3702 TCP_RTO_MAX); 3703 } 3704 3705 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3706 { 3707 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3708 struct flowi fl; 3709 int res; 3710 3711 tcp_rsk(req)->txhash = net_tx_rndhash(); 3712 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3713 if (!res) { 3714 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3715 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3716 if (unlikely(tcp_passive_fastopen(sk))) 3717 tcp_sk(sk)->total_retrans++; 3718 } 3719 return res; 3720 } 3721 EXPORT_SYMBOL(tcp_rtx_synack); 3722