xref: /openbmc/linux/net/ipv4/tcp_output.c (revision a43e61842ec55baa486d60eed2a19af67ba78b9f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_jiffies32;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_jiffies32;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	tp->lsndtime = now;
169 
170 	/* If it is a reply for ato after last received
171 	 * packet, enter pingpong mode.
172 	 */
173 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 		icsk->icsk_ack.pingpong = 1;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 	tcp_dec_quickack_mode(sk, pkts);
181 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183 
184 
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 	/* Initial receive window should be twice of TCP_INIT_CWND to
188 	 * enable proper sending of new unsent data during fast recovery
189 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 	 * limit when mss is larger than 1460.
191 	 */
192 	u32 init_rwnd = TCP_INIT_CWND * 2;
193 
194 	if (mss > 1460)
195 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 	return init_rwnd;
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (sysctl_tcp_workaround_signed_windows)
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = space;
234 
235 	(*rcv_wscale) = 0;
236 	if (wscale_ok) {
237 		/* Set window scaling on max possible window */
238 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 		space = max_t(u32, space, sysctl_rmem_max);
240 		space = min_t(u32, space, *window_clamp);
241 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 			space >>= 1;
243 			(*rcv_wscale)++;
244 		}
245 	}
246 
247 	if (mss > (1 << *rcv_wscale)) {
248 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 			init_rcv_wnd = tcp_default_init_rwnd(mss);
250 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 	}
252 
253 	/* Set the clamp no higher than max representable value */
254 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257 
258 /* Chose a new window to advertise, update state in tcp_sock for the
259  * socket, and return result with RFC1323 scaling applied.  The return
260  * value can be stuffed directly into th->window for an outgoing
261  * frame.
262  */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 	struct tcp_sock *tp = tcp_sk(sk);
266 	u32 old_win = tp->rcv_wnd;
267 	u32 cur_win = tcp_receive_window(tp);
268 	u32 new_win = __tcp_select_window(sk);
269 
270 	/* Never shrink the offered window */
271 	if (new_win < cur_win) {
272 		/* Danger Will Robinson!
273 		 * Don't update rcv_wup/rcv_wnd here or else
274 		 * we will not be able to advertise a zero
275 		 * window in time.  --DaveM
276 		 *
277 		 * Relax Will Robinson.
278 		 */
279 		if (new_win == 0)
280 			NET_INC_STATS(sock_net(sk),
281 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
282 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 	}
284 	tp->rcv_wnd = new_win;
285 	tp->rcv_wup = tp->rcv_nxt;
286 
287 	/* Make sure we do not exceed the maximum possible
288 	 * scaled window.
289 	 */
290 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 		new_win = min(new_win, MAX_TCP_WINDOW);
292 	else
293 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294 
295 	/* RFC1323 scaling applied */
296 	new_win >>= tp->rx_opt.rcv_wscale;
297 
298 	/* If we advertise zero window, disable fast path. */
299 	if (new_win == 0) {
300 		tp->pred_flags = 0;
301 		if (old_win)
302 			NET_INC_STATS(sock_net(sk),
303 				      LINUX_MIB_TCPTOZEROWINDOWADV);
304 	} else if (old_win == 0) {
305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 	}
307 
308 	return new_win;
309 }
310 
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 	const struct tcp_sock *tp = tcp_sk(sk);
315 
316 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 	if (!(tp->ecn_flags & TCP_ECN_OK))
318 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 	else if (tcp_ca_needs_ecn(sk))
320 		INET_ECN_xmit(sk);
321 }
322 
323 /* Packet ECN state for a SYN.  */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 {
326 	struct tcp_sock *tp = tcp_sk(sk);
327 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 		       tcp_ca_needs_ecn(sk);
329 
330 	if (!use_ecn) {
331 		const struct dst_entry *dst = __sk_dst_get(sk);
332 
333 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 			use_ecn = true;
335 	}
336 
337 	tp->ecn_flags = 0;
338 
339 	if (use_ecn) {
340 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 		tp->ecn_flags = TCP_ECN_OK;
342 		if (tcp_ca_needs_ecn(sk))
343 			INET_ECN_xmit(sk);
344 	}
345 }
346 
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 		/* tp->ecn_flags are cleared at a later point in time when
351 		 * SYN ACK is ultimatively being received.
352 		 */
353 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355 
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 	if (inet_rsk(req)->ecn_ok)
360 		th->ece = 1;
361 }
362 
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364  * be sent.
365  */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 			 struct tcphdr *th, int tcp_header_len)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 
371 	if (tp->ecn_flags & TCP_ECN_OK) {
372 		/* Not-retransmitted data segment: set ECT and inject CWR. */
373 		if (skb->len != tcp_header_len &&
374 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 			INET_ECN_xmit(sk);
376 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 				th->cwr = 1;
379 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 			}
381 		} else if (!tcp_ca_needs_ecn(sk)) {
382 			/* ACK or retransmitted segment: clear ECT|CE */
383 			INET_ECN_dontxmit(sk);
384 		}
385 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 			th->ece = 1;
387 	}
388 }
389 
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391  * auto increment end seqno.
392  */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 	skb->ip_summed = CHECKSUM_PARTIAL;
396 	skb->csum = 0;
397 
398 	TCP_SKB_CB(skb)->tcp_flags = flags;
399 	TCP_SKB_CB(skb)->sacked = 0;
400 
401 	tcp_skb_pcount_set(skb, 1);
402 
403 	TCP_SKB_CB(skb)->seq = seq;
404 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 		seq++;
406 	TCP_SKB_CB(skb)->end_seq = seq;
407 }
408 
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 {
411 	return tp->snd_una != tp->snd_up;
412 }
413 
414 #define OPTION_SACK_ADVERTISE	(1 << 0)
415 #define OPTION_TS		(1 << 1)
416 #define OPTION_MD5		(1 << 2)
417 #define OPTION_WSCALE		(1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
419 
420 struct tcp_out_options {
421 	u16 options;		/* bit field of OPTION_* */
422 	u16 mss;		/* 0 to disable */
423 	u8 ws;			/* window scale, 0 to disable */
424 	u8 num_sack_blocks;	/* number of SACK blocks to include */
425 	u8 hash_size;		/* bytes in hash_location */
426 	__u8 *hash_location;	/* temporary pointer, overloaded */
427 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
428 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
429 };
430 
431 /* Write previously computed TCP options to the packet.
432  *
433  * Beware: Something in the Internet is very sensitive to the ordering of
434  * TCP options, we learned this through the hard way, so be careful here.
435  * Luckily we can at least blame others for their non-compliance but from
436  * inter-operability perspective it seems that we're somewhat stuck with
437  * the ordering which we have been using if we want to keep working with
438  * those broken things (not that it currently hurts anybody as there isn't
439  * particular reason why the ordering would need to be changed).
440  *
441  * At least SACK_PERM as the first option is known to lead to a disaster
442  * (but it may well be that other scenarios fail similarly).
443  */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 			      struct tcp_out_options *opts)
446 {
447 	u16 options = opts->options;	/* mungable copy */
448 
449 	if (unlikely(OPTION_MD5 & options)) {
450 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 		/* overload cookie hash location */
453 		opts->hash_location = (__u8 *)ptr;
454 		ptr += 4;
455 	}
456 
457 	if (unlikely(opts->mss)) {
458 		*ptr++ = htonl((TCPOPT_MSS << 24) |
459 			       (TCPOLEN_MSS << 16) |
460 			       opts->mss);
461 	}
462 
463 	if (likely(OPTION_TS & options)) {
464 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 				       (TCPOLEN_SACK_PERM << 16) |
467 				       (TCPOPT_TIMESTAMP << 8) |
468 				       TCPOLEN_TIMESTAMP);
469 			options &= ~OPTION_SACK_ADVERTISE;
470 		} else {
471 			*ptr++ = htonl((TCPOPT_NOP << 24) |
472 				       (TCPOPT_NOP << 16) |
473 				       (TCPOPT_TIMESTAMP << 8) |
474 				       TCPOLEN_TIMESTAMP);
475 		}
476 		*ptr++ = htonl(opts->tsval);
477 		*ptr++ = htonl(opts->tsecr);
478 	}
479 
480 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 		*ptr++ = htonl((TCPOPT_NOP << 24) |
482 			       (TCPOPT_NOP << 16) |
483 			       (TCPOPT_SACK_PERM << 8) |
484 			       TCPOLEN_SACK_PERM);
485 	}
486 
487 	if (unlikely(OPTION_WSCALE & options)) {
488 		*ptr++ = htonl((TCPOPT_NOP << 24) |
489 			       (TCPOPT_WINDOW << 16) |
490 			       (TCPOLEN_WINDOW << 8) |
491 			       opts->ws);
492 	}
493 
494 	if (unlikely(opts->num_sack_blocks)) {
495 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 			tp->duplicate_sack : tp->selective_acks;
497 		int this_sack;
498 
499 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
500 			       (TCPOPT_NOP  << 16) |
501 			       (TCPOPT_SACK <<  8) |
502 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 						     TCPOLEN_SACK_PERBLOCK)));
504 
505 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 		     ++this_sack) {
507 			*ptr++ = htonl(sp[this_sack].start_seq);
508 			*ptr++ = htonl(sp[this_sack].end_seq);
509 		}
510 
511 		tp->rx_opt.dsack = 0;
512 	}
513 
514 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 		u8 *p = (u8 *)ptr;
517 		u32 len; /* Fast Open option length */
518 
519 		if (foc->exp) {
520 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 				     TCPOPT_FASTOPEN_MAGIC);
523 			p += TCPOLEN_EXP_FASTOPEN_BASE;
524 		} else {
525 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 			*p++ = TCPOPT_FASTOPEN;
527 			*p++ = len;
528 		}
529 
530 		memcpy(p, foc->val, foc->len);
531 		if ((len & 3) == 2) {
532 			p[foc->len] = TCPOPT_NOP;
533 			p[foc->len + 1] = TCPOPT_NOP;
534 		}
535 		ptr += (len + 3) >> 2;
536 	}
537 }
538 
539 /* Compute TCP options for SYN packets. This is not the final
540  * network wire format yet.
541  */
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 				struct tcp_out_options *opts,
544 				struct tcp_md5sig_key **md5)
545 {
546 	struct tcp_sock *tp = tcp_sk(sk);
547 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549 
550 #ifdef CONFIG_TCP_MD5SIG
551 	*md5 = tp->af_specific->md5_lookup(sk, sk);
552 	if (*md5) {
553 		opts->options |= OPTION_MD5;
554 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 	}
556 #else
557 	*md5 = NULL;
558 #endif
559 
560 	/* We always get an MSS option.  The option bytes which will be seen in
561 	 * normal data packets should timestamps be used, must be in the MSS
562 	 * advertised.  But we subtract them from tp->mss_cache so that
563 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
564 	 * fact here if necessary.  If we don't do this correctly, as a
565 	 * receiver we won't recognize data packets as being full sized when we
566 	 * should, and thus we won't abide by the delayed ACK rules correctly.
567 	 * SACKs don't matter, we never delay an ACK when we have any of those
568 	 * going out.  */
569 	opts->mss = tcp_advertise_mss(sk);
570 	remaining -= TCPOLEN_MSS_ALIGNED;
571 
572 	if (likely(sysctl_tcp_timestamps && !*md5)) {
573 		opts->options |= OPTION_TS;
574 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 		opts->tsecr = tp->rx_opt.ts_recent;
576 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 	}
578 	if (likely(sysctl_tcp_window_scaling)) {
579 		opts->ws = tp->rx_opt.rcv_wscale;
580 		opts->options |= OPTION_WSCALE;
581 		remaining -= TCPOLEN_WSCALE_ALIGNED;
582 	}
583 	if (likely(sysctl_tcp_sack)) {
584 		opts->options |= OPTION_SACK_ADVERTISE;
585 		if (unlikely(!(OPTION_TS & opts->options)))
586 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
587 	}
588 
589 	if (fastopen && fastopen->cookie.len >= 0) {
590 		u32 need = fastopen->cookie.len;
591 
592 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 					       TCPOLEN_FASTOPEN_BASE;
594 		need = (need + 3) & ~3U;  /* Align to 32 bits */
595 		if (remaining >= need) {
596 			opts->options |= OPTION_FAST_OPEN_COOKIE;
597 			opts->fastopen_cookie = &fastopen->cookie;
598 			remaining -= need;
599 			tp->syn_fastopen = 1;
600 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
601 		}
602 	}
603 
604 	return MAX_TCP_OPTION_SPACE - remaining;
605 }
606 
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 				       unsigned int mss, struct sk_buff *skb,
610 				       struct tcp_out_options *opts,
611 				       const struct tcp_md5sig_key *md5,
612 				       struct tcp_fastopen_cookie *foc)
613 {
614 	struct inet_request_sock *ireq = inet_rsk(req);
615 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
616 
617 #ifdef CONFIG_TCP_MD5SIG
618 	if (md5) {
619 		opts->options |= OPTION_MD5;
620 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
621 
622 		/* We can't fit any SACK blocks in a packet with MD5 + TS
623 		 * options. There was discussion about disabling SACK
624 		 * rather than TS in order to fit in better with old,
625 		 * buggy kernels, but that was deemed to be unnecessary.
626 		 */
627 		ireq->tstamp_ok &= !ireq->sack_ok;
628 	}
629 #endif
630 
631 	/* We always send an MSS option. */
632 	opts->mss = mss;
633 	remaining -= TCPOLEN_MSS_ALIGNED;
634 
635 	if (likely(ireq->wscale_ok)) {
636 		opts->ws = ireq->rcv_wscale;
637 		opts->options |= OPTION_WSCALE;
638 		remaining -= TCPOLEN_WSCALE_ALIGNED;
639 	}
640 	if (likely(ireq->tstamp_ok)) {
641 		opts->options |= OPTION_TS;
642 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
643 		opts->tsecr = req->ts_recent;
644 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 	}
646 	if (likely(ireq->sack_ok)) {
647 		opts->options |= OPTION_SACK_ADVERTISE;
648 		if (unlikely(!ireq->tstamp_ok))
649 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 	}
651 	if (foc != NULL && foc->len >= 0) {
652 		u32 need = foc->len;
653 
654 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 				   TCPOLEN_FASTOPEN_BASE;
656 		need = (need + 3) & ~3U;  /* Align to 32 bits */
657 		if (remaining >= need) {
658 			opts->options |= OPTION_FAST_OPEN_COOKIE;
659 			opts->fastopen_cookie = foc;
660 			remaining -= need;
661 		}
662 	}
663 
664 	return MAX_TCP_OPTION_SPACE - remaining;
665 }
666 
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668  * final wire format yet.
669  */
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 					struct tcp_out_options *opts,
672 					struct tcp_md5sig_key **md5)
673 {
674 	struct tcp_sock *tp = tcp_sk(sk);
675 	unsigned int size = 0;
676 	unsigned int eff_sacks;
677 
678 	opts->options = 0;
679 
680 #ifdef CONFIG_TCP_MD5SIG
681 	*md5 = tp->af_specific->md5_lookup(sk, sk);
682 	if (unlikely(*md5)) {
683 		opts->options |= OPTION_MD5;
684 		size += TCPOLEN_MD5SIG_ALIGNED;
685 	}
686 #else
687 	*md5 = NULL;
688 #endif
689 
690 	if (likely(tp->rx_opt.tstamp_ok)) {
691 		opts->options |= OPTION_TS;
692 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 		opts->tsecr = tp->rx_opt.ts_recent;
694 		size += TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 
697 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 	if (unlikely(eff_sacks)) {
699 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 		opts->num_sack_blocks =
701 			min_t(unsigned int, eff_sacks,
702 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 			      TCPOLEN_SACK_PERBLOCK);
704 		size += TCPOLEN_SACK_BASE_ALIGNED +
705 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
706 	}
707 
708 	return size;
709 }
710 
711 
712 /* TCP SMALL QUEUES (TSQ)
713  *
714  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715  * to reduce RTT and bufferbloat.
716  * We do this using a special skb destructor (tcp_wfree).
717  *
718  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719  * needs to be reallocated in a driver.
720  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721  *
722  * Since transmit from skb destructor is forbidden, we use a tasklet
723  * to process all sockets that eventually need to send more skbs.
724  * We use one tasklet per cpu, with its own queue of sockets.
725  */
726 struct tsq_tasklet {
727 	struct tasklet_struct	tasklet;
728 	struct list_head	head; /* queue of tcp sockets */
729 };
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731 
732 static void tcp_tsq_handler(struct sock *sk)
733 {
734 	if ((1 << sk->sk_state) &
735 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
737 		struct tcp_sock *tp = tcp_sk(sk);
738 
739 		if (tp->lost_out > tp->retrans_out &&
740 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
741 			tcp_xmit_retransmit_queue(sk);
742 
743 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
744 			       0, GFP_ATOMIC);
745 	}
746 }
747 /*
748  * One tasklet per cpu tries to send more skbs.
749  * We run in tasklet context but need to disable irqs when
750  * transferring tsq->head because tcp_wfree() might
751  * interrupt us (non NAPI drivers)
752  */
753 static void tcp_tasklet_func(unsigned long data)
754 {
755 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
756 	LIST_HEAD(list);
757 	unsigned long flags;
758 	struct list_head *q, *n;
759 	struct tcp_sock *tp;
760 	struct sock *sk;
761 
762 	local_irq_save(flags);
763 	list_splice_init(&tsq->head, &list);
764 	local_irq_restore(flags);
765 
766 	list_for_each_safe(q, n, &list) {
767 		tp = list_entry(q, struct tcp_sock, tsq_node);
768 		list_del(&tp->tsq_node);
769 
770 		sk = (struct sock *)tp;
771 		smp_mb__before_atomic();
772 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
773 
774 		if (!sk->sk_lock.owned &&
775 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
776 			bh_lock_sock(sk);
777 			if (!sock_owned_by_user(sk)) {
778 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
779 				tcp_tsq_handler(sk);
780 			}
781 			bh_unlock_sock(sk);
782 		}
783 
784 		sk_free(sk);
785 	}
786 }
787 
788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
789 			  TCPF_WRITE_TIMER_DEFERRED |	\
790 			  TCPF_DELACK_TIMER_DEFERRED |	\
791 			  TCPF_MTU_REDUCED_DEFERRED)
792 /**
793  * tcp_release_cb - tcp release_sock() callback
794  * @sk: socket
795  *
796  * called from release_sock() to perform protocol dependent
797  * actions before socket release.
798  */
799 void tcp_release_cb(struct sock *sk)
800 {
801 	unsigned long flags, nflags;
802 
803 	/* perform an atomic operation only if at least one flag is set */
804 	do {
805 		flags = sk->sk_tsq_flags;
806 		if (!(flags & TCP_DEFERRED_ALL))
807 			return;
808 		nflags = flags & ~TCP_DEFERRED_ALL;
809 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
810 
811 	if (flags & TCPF_TSQ_DEFERRED)
812 		tcp_tsq_handler(sk);
813 
814 	/* Here begins the tricky part :
815 	 * We are called from release_sock() with :
816 	 * 1) BH disabled
817 	 * 2) sk_lock.slock spinlock held
818 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 	 *
820 	 * But following code is meant to be called from BH handlers,
821 	 * so we should keep BH disabled, but early release socket ownership
822 	 */
823 	sock_release_ownership(sk);
824 
825 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
826 		tcp_write_timer_handler(sk);
827 		__sock_put(sk);
828 	}
829 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
830 		tcp_delack_timer_handler(sk);
831 		__sock_put(sk);
832 	}
833 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
834 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 		__sock_put(sk);
836 	}
837 }
838 EXPORT_SYMBOL(tcp_release_cb);
839 
840 void __init tcp_tasklet_init(void)
841 {
842 	int i;
843 
844 	for_each_possible_cpu(i) {
845 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846 
847 		INIT_LIST_HEAD(&tsq->head);
848 		tasklet_init(&tsq->tasklet,
849 			     tcp_tasklet_func,
850 			     (unsigned long)tsq);
851 	}
852 }
853 
854 /*
855  * Write buffer destructor automatically called from kfree_skb.
856  * We can't xmit new skbs from this context, as we might already
857  * hold qdisc lock.
858  */
859 void tcp_wfree(struct sk_buff *skb)
860 {
861 	struct sock *sk = skb->sk;
862 	struct tcp_sock *tp = tcp_sk(sk);
863 	unsigned long flags, nval, oval;
864 	int wmem;
865 
866 	/* Keep one reference on sk_wmem_alloc.
867 	 * Will be released by sk_free() from here or tcp_tasklet_func()
868 	 */
869 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
870 
871 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
872 	 * Wait until our queues (qdisc + devices) are drained.
873 	 * This gives :
874 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
875 	 * - chance for incoming ACK (processed by another cpu maybe)
876 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
877 	 */
878 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
879 		goto out;
880 
881 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
882 		struct tsq_tasklet *tsq;
883 		bool empty;
884 
885 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
886 			goto out;
887 
888 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
889 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
890 		if (nval != oval)
891 			continue;
892 
893 		/* queue this socket to tasklet queue */
894 		local_irq_save(flags);
895 		tsq = this_cpu_ptr(&tsq_tasklet);
896 		empty = list_empty(&tsq->head);
897 		list_add(&tp->tsq_node, &tsq->head);
898 		if (empty)
899 			tasklet_schedule(&tsq->tasklet);
900 		local_irq_restore(flags);
901 		return;
902 	}
903 out:
904 	sk_free(sk);
905 }
906 
907 /* Note: Called under hard irq.
908  * We can not call TCP stack right away.
909  */
910 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
911 {
912 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
913 	struct sock *sk = (struct sock *)tp;
914 	unsigned long nval, oval;
915 
916 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
917 		struct tsq_tasklet *tsq;
918 		bool empty;
919 
920 		if (oval & TSQF_QUEUED)
921 			break;
922 
923 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
924 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
925 		if (nval != oval)
926 			continue;
927 
928 		if (!atomic_inc_not_zero(&sk->sk_wmem_alloc))
929 			break;
930 		/* queue this socket to tasklet queue */
931 		tsq = this_cpu_ptr(&tsq_tasklet);
932 		empty = list_empty(&tsq->head);
933 		list_add(&tp->tsq_node, &tsq->head);
934 		if (empty)
935 			tasklet_schedule(&tsq->tasklet);
936 		break;
937 	}
938 	return HRTIMER_NORESTART;
939 }
940 
941 /* BBR congestion control needs pacing.
942  * Same remark for SO_MAX_PACING_RATE.
943  * sch_fq packet scheduler is efficiently handling pacing,
944  * but is not always installed/used.
945  * Return true if TCP stack should pace packets itself.
946  */
947 static bool tcp_needs_internal_pacing(const struct sock *sk)
948 {
949 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
950 }
951 
952 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
953 {
954 	u64 len_ns;
955 	u32 rate;
956 
957 	if (!tcp_needs_internal_pacing(sk))
958 		return;
959 	rate = sk->sk_pacing_rate;
960 	if (!rate || rate == ~0U)
961 		return;
962 
963 	/* Should account for header sizes as sch_fq does,
964 	 * but lets make things simple.
965 	 */
966 	len_ns = (u64)skb->len * NSEC_PER_SEC;
967 	do_div(len_ns, rate);
968 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
969 		      ktime_add_ns(ktime_get(), len_ns),
970 		      HRTIMER_MODE_ABS_PINNED);
971 }
972 
973 /* This routine actually transmits TCP packets queued in by
974  * tcp_do_sendmsg().  This is used by both the initial
975  * transmission and possible later retransmissions.
976  * All SKB's seen here are completely headerless.  It is our
977  * job to build the TCP header, and pass the packet down to
978  * IP so it can do the same plus pass the packet off to the
979  * device.
980  *
981  * We are working here with either a clone of the original
982  * SKB, or a fresh unique copy made by the retransmit engine.
983  */
984 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
985 			    gfp_t gfp_mask)
986 {
987 	const struct inet_connection_sock *icsk = inet_csk(sk);
988 	struct inet_sock *inet;
989 	struct tcp_sock *tp;
990 	struct tcp_skb_cb *tcb;
991 	struct tcp_out_options opts;
992 	unsigned int tcp_options_size, tcp_header_size;
993 	struct tcp_md5sig_key *md5;
994 	struct tcphdr *th;
995 	int err;
996 
997 	BUG_ON(!skb || !tcp_skb_pcount(skb));
998 	tp = tcp_sk(sk);
999 
1000 	skb->skb_mstamp = tp->tcp_mstamp;
1001 	if (clone_it) {
1002 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1003 			- tp->snd_una;
1004 		tcp_rate_skb_sent(sk, skb);
1005 
1006 		if (unlikely(skb_cloned(skb)))
1007 			skb = pskb_copy(skb, gfp_mask);
1008 		else
1009 			skb = skb_clone(skb, gfp_mask);
1010 		if (unlikely(!skb))
1011 			return -ENOBUFS;
1012 	}
1013 
1014 	inet = inet_sk(sk);
1015 	tcb = TCP_SKB_CB(skb);
1016 	memset(&opts, 0, sizeof(opts));
1017 
1018 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1019 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1020 	else
1021 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1022 							   &md5);
1023 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1024 
1025 	/* if no packet is in qdisc/device queue, then allow XPS to select
1026 	 * another queue. We can be called from tcp_tsq_handler()
1027 	 * which holds one reference to sk_wmem_alloc.
1028 	 *
1029 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1030 	 * One way to get this would be to set skb->truesize = 2 on them.
1031 	 */
1032 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1033 
1034 	/* If we had to use memory reserve to allocate this skb,
1035 	 * this might cause drops if packet is looped back :
1036 	 * Other socket might not have SOCK_MEMALLOC.
1037 	 * Packets not looped back do not care about pfmemalloc.
1038 	 */
1039 	skb->pfmemalloc = 0;
1040 
1041 	skb_push(skb, tcp_header_size);
1042 	skb_reset_transport_header(skb);
1043 
1044 	skb_orphan(skb);
1045 	skb->sk = sk;
1046 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1047 	skb_set_hash_from_sk(skb, sk);
1048 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1049 
1050 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1051 
1052 	/* Build TCP header and checksum it. */
1053 	th = (struct tcphdr *)skb->data;
1054 	th->source		= inet->inet_sport;
1055 	th->dest		= inet->inet_dport;
1056 	th->seq			= htonl(tcb->seq);
1057 	th->ack_seq		= htonl(tp->rcv_nxt);
1058 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1059 					tcb->tcp_flags);
1060 
1061 	th->check		= 0;
1062 	th->urg_ptr		= 0;
1063 
1064 	/* The urg_mode check is necessary during a below snd_una win probe */
1065 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1066 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1067 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1068 			th->urg = 1;
1069 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1070 			th->urg_ptr = htons(0xFFFF);
1071 			th->urg = 1;
1072 		}
1073 	}
1074 
1075 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1076 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1077 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1078 		th->window      = htons(tcp_select_window(sk));
1079 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1080 	} else {
1081 		/* RFC1323: The window in SYN & SYN/ACK segments
1082 		 * is never scaled.
1083 		 */
1084 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1085 	}
1086 #ifdef CONFIG_TCP_MD5SIG
1087 	/* Calculate the MD5 hash, as we have all we need now */
1088 	if (md5) {
1089 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1090 		tp->af_specific->calc_md5_hash(opts.hash_location,
1091 					       md5, sk, skb);
1092 	}
1093 #endif
1094 
1095 	icsk->icsk_af_ops->send_check(sk, skb);
1096 
1097 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1098 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1099 
1100 	if (skb->len != tcp_header_size) {
1101 		tcp_event_data_sent(tp, sk);
1102 		tp->data_segs_out += tcp_skb_pcount(skb);
1103 		tcp_internal_pacing(sk, skb);
1104 	}
1105 
1106 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1107 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1108 			      tcp_skb_pcount(skb));
1109 
1110 	tp->segs_out += tcp_skb_pcount(skb);
1111 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1112 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1113 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1114 
1115 	/* Our usage of tstamp should remain private */
1116 	skb->tstamp = 0;
1117 
1118 	/* Cleanup our debris for IP stacks */
1119 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1120 			       sizeof(struct inet6_skb_parm)));
1121 
1122 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1123 
1124 	if (likely(err <= 0))
1125 		return err;
1126 
1127 	tcp_enter_cwr(sk);
1128 
1129 	return net_xmit_eval(err);
1130 }
1131 
1132 /* This routine just queues the buffer for sending.
1133  *
1134  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1135  * otherwise socket can stall.
1136  */
1137 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1138 {
1139 	struct tcp_sock *tp = tcp_sk(sk);
1140 
1141 	/* Advance write_seq and place onto the write_queue. */
1142 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1143 	__skb_header_release(skb);
1144 	tcp_add_write_queue_tail(sk, skb);
1145 	sk->sk_wmem_queued += skb->truesize;
1146 	sk_mem_charge(sk, skb->truesize);
1147 }
1148 
1149 /* Initialize TSO segments for a packet. */
1150 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1151 {
1152 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1153 		/* Avoid the costly divide in the normal
1154 		 * non-TSO case.
1155 		 */
1156 		tcp_skb_pcount_set(skb, 1);
1157 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1158 	} else {
1159 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1160 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1161 	}
1162 }
1163 
1164 /* When a modification to fackets out becomes necessary, we need to check
1165  * skb is counted to fackets_out or not.
1166  */
1167 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1168 				   int decr)
1169 {
1170 	struct tcp_sock *tp = tcp_sk(sk);
1171 
1172 	if (!tp->sacked_out || tcp_is_reno(tp))
1173 		return;
1174 
1175 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1176 		tp->fackets_out -= decr;
1177 }
1178 
1179 /* Pcount in the middle of the write queue got changed, we need to do various
1180  * tweaks to fix counters
1181  */
1182 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1183 {
1184 	struct tcp_sock *tp = tcp_sk(sk);
1185 
1186 	tp->packets_out -= decr;
1187 
1188 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1189 		tp->sacked_out -= decr;
1190 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1191 		tp->retrans_out -= decr;
1192 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1193 		tp->lost_out -= decr;
1194 
1195 	/* Reno case is special. Sigh... */
1196 	if (tcp_is_reno(tp) && decr > 0)
1197 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1198 
1199 	tcp_adjust_fackets_out(sk, skb, decr);
1200 
1201 	if (tp->lost_skb_hint &&
1202 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1203 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1204 		tp->lost_cnt_hint -= decr;
1205 
1206 	tcp_verify_left_out(tp);
1207 }
1208 
1209 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1210 {
1211 	return TCP_SKB_CB(skb)->txstamp_ack ||
1212 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1213 }
1214 
1215 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1216 {
1217 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1218 
1219 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1220 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1221 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1222 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1223 
1224 		shinfo->tx_flags &= ~tsflags;
1225 		shinfo2->tx_flags |= tsflags;
1226 		swap(shinfo->tskey, shinfo2->tskey);
1227 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1228 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1229 	}
1230 }
1231 
1232 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1233 {
1234 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1235 	TCP_SKB_CB(skb)->eor = 0;
1236 }
1237 
1238 /* Function to create two new TCP segments.  Shrinks the given segment
1239  * to the specified size and appends a new segment with the rest of the
1240  * packet to the list.  This won't be called frequently, I hope.
1241  * Remember, these are still headerless SKBs at this point.
1242  */
1243 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1244 		 unsigned int mss_now, gfp_t gfp)
1245 {
1246 	struct tcp_sock *tp = tcp_sk(sk);
1247 	struct sk_buff *buff;
1248 	int nsize, old_factor;
1249 	int nlen;
1250 	u8 flags;
1251 
1252 	if (WARN_ON(len > skb->len))
1253 		return -EINVAL;
1254 
1255 	nsize = skb_headlen(skb) - len;
1256 	if (nsize < 0)
1257 		nsize = 0;
1258 
1259 	if (skb_unclone(skb, gfp))
1260 		return -ENOMEM;
1261 
1262 	/* Get a new skb... force flag on. */
1263 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1264 	if (!buff)
1265 		return -ENOMEM; /* We'll just try again later. */
1266 
1267 	sk->sk_wmem_queued += buff->truesize;
1268 	sk_mem_charge(sk, buff->truesize);
1269 	nlen = skb->len - len - nsize;
1270 	buff->truesize += nlen;
1271 	skb->truesize -= nlen;
1272 
1273 	/* Correct the sequence numbers. */
1274 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1275 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1276 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1277 
1278 	/* PSH and FIN should only be set in the second packet. */
1279 	flags = TCP_SKB_CB(skb)->tcp_flags;
1280 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1281 	TCP_SKB_CB(buff)->tcp_flags = flags;
1282 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1283 	tcp_skb_fragment_eor(skb, buff);
1284 
1285 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1286 		/* Copy and checksum data tail into the new buffer. */
1287 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1288 						       skb_put(buff, nsize),
1289 						       nsize, 0);
1290 
1291 		skb_trim(skb, len);
1292 
1293 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1294 	} else {
1295 		skb->ip_summed = CHECKSUM_PARTIAL;
1296 		skb_split(skb, buff, len);
1297 	}
1298 
1299 	buff->ip_summed = skb->ip_summed;
1300 
1301 	buff->tstamp = skb->tstamp;
1302 	tcp_fragment_tstamp(skb, buff);
1303 
1304 	old_factor = tcp_skb_pcount(skb);
1305 
1306 	/* Fix up tso_factor for both original and new SKB.  */
1307 	tcp_set_skb_tso_segs(skb, mss_now);
1308 	tcp_set_skb_tso_segs(buff, mss_now);
1309 
1310 	/* Update delivered info for the new segment */
1311 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1312 
1313 	/* If this packet has been sent out already, we must
1314 	 * adjust the various packet counters.
1315 	 */
1316 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1317 		int diff = old_factor - tcp_skb_pcount(skb) -
1318 			tcp_skb_pcount(buff);
1319 
1320 		if (diff)
1321 			tcp_adjust_pcount(sk, skb, diff);
1322 	}
1323 
1324 	/* Link BUFF into the send queue. */
1325 	__skb_header_release(buff);
1326 	tcp_insert_write_queue_after(skb, buff, sk);
1327 
1328 	return 0;
1329 }
1330 
1331 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1332  * data is not copied, but immediately discarded.
1333  */
1334 static int __pskb_trim_head(struct sk_buff *skb, int len)
1335 {
1336 	struct skb_shared_info *shinfo;
1337 	int i, k, eat;
1338 
1339 	eat = min_t(int, len, skb_headlen(skb));
1340 	if (eat) {
1341 		__skb_pull(skb, eat);
1342 		len -= eat;
1343 		if (!len)
1344 			return 0;
1345 	}
1346 	eat = len;
1347 	k = 0;
1348 	shinfo = skb_shinfo(skb);
1349 	for (i = 0; i < shinfo->nr_frags; i++) {
1350 		int size = skb_frag_size(&shinfo->frags[i]);
1351 
1352 		if (size <= eat) {
1353 			skb_frag_unref(skb, i);
1354 			eat -= size;
1355 		} else {
1356 			shinfo->frags[k] = shinfo->frags[i];
1357 			if (eat) {
1358 				shinfo->frags[k].page_offset += eat;
1359 				skb_frag_size_sub(&shinfo->frags[k], eat);
1360 				eat = 0;
1361 			}
1362 			k++;
1363 		}
1364 	}
1365 	shinfo->nr_frags = k;
1366 
1367 	skb->data_len -= len;
1368 	skb->len = skb->data_len;
1369 	return len;
1370 }
1371 
1372 /* Remove acked data from a packet in the transmit queue. */
1373 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1374 {
1375 	u32 delta_truesize;
1376 
1377 	if (skb_unclone(skb, GFP_ATOMIC))
1378 		return -ENOMEM;
1379 
1380 	delta_truesize = __pskb_trim_head(skb, len);
1381 
1382 	TCP_SKB_CB(skb)->seq += len;
1383 	skb->ip_summed = CHECKSUM_PARTIAL;
1384 
1385 	if (delta_truesize) {
1386 		skb->truesize	   -= delta_truesize;
1387 		sk->sk_wmem_queued -= delta_truesize;
1388 		sk_mem_uncharge(sk, delta_truesize);
1389 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1390 	}
1391 
1392 	/* Any change of skb->len requires recalculation of tso factor. */
1393 	if (tcp_skb_pcount(skb) > 1)
1394 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1395 
1396 	return 0;
1397 }
1398 
1399 /* Calculate MSS not accounting any TCP options.  */
1400 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1401 {
1402 	const struct tcp_sock *tp = tcp_sk(sk);
1403 	const struct inet_connection_sock *icsk = inet_csk(sk);
1404 	int mss_now;
1405 
1406 	/* Calculate base mss without TCP options:
1407 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1408 	 */
1409 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1410 
1411 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1412 	if (icsk->icsk_af_ops->net_frag_header_len) {
1413 		const struct dst_entry *dst = __sk_dst_get(sk);
1414 
1415 		if (dst && dst_allfrag(dst))
1416 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1417 	}
1418 
1419 	/* Clamp it (mss_clamp does not include tcp options) */
1420 	if (mss_now > tp->rx_opt.mss_clamp)
1421 		mss_now = tp->rx_opt.mss_clamp;
1422 
1423 	/* Now subtract optional transport overhead */
1424 	mss_now -= icsk->icsk_ext_hdr_len;
1425 
1426 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1427 	if (mss_now < 48)
1428 		mss_now = 48;
1429 	return mss_now;
1430 }
1431 
1432 /* Calculate MSS. Not accounting for SACKs here.  */
1433 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1434 {
1435 	/* Subtract TCP options size, not including SACKs */
1436 	return __tcp_mtu_to_mss(sk, pmtu) -
1437 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1438 }
1439 
1440 /* Inverse of above */
1441 int tcp_mss_to_mtu(struct sock *sk, int mss)
1442 {
1443 	const struct tcp_sock *tp = tcp_sk(sk);
1444 	const struct inet_connection_sock *icsk = inet_csk(sk);
1445 	int mtu;
1446 
1447 	mtu = mss +
1448 	      tp->tcp_header_len +
1449 	      icsk->icsk_ext_hdr_len +
1450 	      icsk->icsk_af_ops->net_header_len;
1451 
1452 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1453 	if (icsk->icsk_af_ops->net_frag_header_len) {
1454 		const struct dst_entry *dst = __sk_dst_get(sk);
1455 
1456 		if (dst && dst_allfrag(dst))
1457 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1458 	}
1459 	return mtu;
1460 }
1461 EXPORT_SYMBOL(tcp_mss_to_mtu);
1462 
1463 /* MTU probing init per socket */
1464 void tcp_mtup_init(struct sock *sk)
1465 {
1466 	struct tcp_sock *tp = tcp_sk(sk);
1467 	struct inet_connection_sock *icsk = inet_csk(sk);
1468 	struct net *net = sock_net(sk);
1469 
1470 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1471 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1472 			       icsk->icsk_af_ops->net_header_len;
1473 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1474 	icsk->icsk_mtup.probe_size = 0;
1475 	if (icsk->icsk_mtup.enabled)
1476 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1477 }
1478 EXPORT_SYMBOL(tcp_mtup_init);
1479 
1480 /* This function synchronize snd mss to current pmtu/exthdr set.
1481 
1482    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1483    for TCP options, but includes only bare TCP header.
1484 
1485    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1486    It is minimum of user_mss and mss received with SYN.
1487    It also does not include TCP options.
1488 
1489    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1490 
1491    tp->mss_cache is current effective sending mss, including
1492    all tcp options except for SACKs. It is evaluated,
1493    taking into account current pmtu, but never exceeds
1494    tp->rx_opt.mss_clamp.
1495 
1496    NOTE1. rfc1122 clearly states that advertised MSS
1497    DOES NOT include either tcp or ip options.
1498 
1499    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1500    are READ ONLY outside this function.		--ANK (980731)
1501  */
1502 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1503 {
1504 	struct tcp_sock *tp = tcp_sk(sk);
1505 	struct inet_connection_sock *icsk = inet_csk(sk);
1506 	int mss_now;
1507 
1508 	if (icsk->icsk_mtup.search_high > pmtu)
1509 		icsk->icsk_mtup.search_high = pmtu;
1510 
1511 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1512 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1513 
1514 	/* And store cached results */
1515 	icsk->icsk_pmtu_cookie = pmtu;
1516 	if (icsk->icsk_mtup.enabled)
1517 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1518 	tp->mss_cache = mss_now;
1519 
1520 	return mss_now;
1521 }
1522 EXPORT_SYMBOL(tcp_sync_mss);
1523 
1524 /* Compute the current effective MSS, taking SACKs and IP options,
1525  * and even PMTU discovery events into account.
1526  */
1527 unsigned int tcp_current_mss(struct sock *sk)
1528 {
1529 	const struct tcp_sock *tp = tcp_sk(sk);
1530 	const struct dst_entry *dst = __sk_dst_get(sk);
1531 	u32 mss_now;
1532 	unsigned int header_len;
1533 	struct tcp_out_options opts;
1534 	struct tcp_md5sig_key *md5;
1535 
1536 	mss_now = tp->mss_cache;
1537 
1538 	if (dst) {
1539 		u32 mtu = dst_mtu(dst);
1540 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1541 			mss_now = tcp_sync_mss(sk, mtu);
1542 	}
1543 
1544 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1545 		     sizeof(struct tcphdr);
1546 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1547 	 * some common options. If this is an odd packet (because we have SACK
1548 	 * blocks etc) then our calculated header_len will be different, and
1549 	 * we have to adjust mss_now correspondingly */
1550 	if (header_len != tp->tcp_header_len) {
1551 		int delta = (int) header_len - tp->tcp_header_len;
1552 		mss_now -= delta;
1553 	}
1554 
1555 	return mss_now;
1556 }
1557 
1558 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1559  * As additional protections, we do not touch cwnd in retransmission phases,
1560  * and if application hit its sndbuf limit recently.
1561  */
1562 static void tcp_cwnd_application_limited(struct sock *sk)
1563 {
1564 	struct tcp_sock *tp = tcp_sk(sk);
1565 
1566 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1567 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1568 		/* Limited by application or receiver window. */
1569 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1570 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1571 		if (win_used < tp->snd_cwnd) {
1572 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1573 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1574 		}
1575 		tp->snd_cwnd_used = 0;
1576 	}
1577 	tp->snd_cwnd_stamp = tcp_jiffies32;
1578 }
1579 
1580 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1581 {
1582 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1583 	struct tcp_sock *tp = tcp_sk(sk);
1584 
1585 	/* Track the maximum number of outstanding packets in each
1586 	 * window, and remember whether we were cwnd-limited then.
1587 	 */
1588 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1589 	    tp->packets_out > tp->max_packets_out) {
1590 		tp->max_packets_out = tp->packets_out;
1591 		tp->max_packets_seq = tp->snd_nxt;
1592 		tp->is_cwnd_limited = is_cwnd_limited;
1593 	}
1594 
1595 	if (tcp_is_cwnd_limited(sk)) {
1596 		/* Network is feed fully. */
1597 		tp->snd_cwnd_used = 0;
1598 		tp->snd_cwnd_stamp = tcp_jiffies32;
1599 	} else {
1600 		/* Network starves. */
1601 		if (tp->packets_out > tp->snd_cwnd_used)
1602 			tp->snd_cwnd_used = tp->packets_out;
1603 
1604 		if (sysctl_tcp_slow_start_after_idle &&
1605 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1606 		    !ca_ops->cong_control)
1607 			tcp_cwnd_application_limited(sk);
1608 
1609 		/* The following conditions together indicate the starvation
1610 		 * is caused by insufficient sender buffer:
1611 		 * 1) just sent some data (see tcp_write_xmit)
1612 		 * 2) not cwnd limited (this else condition)
1613 		 * 3) no more data to send (null tcp_send_head )
1614 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1615 		 */
1616 		if (!tcp_send_head(sk) && sk->sk_socket &&
1617 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1618 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1619 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1620 	}
1621 }
1622 
1623 /* Minshall's variant of the Nagle send check. */
1624 static bool tcp_minshall_check(const struct tcp_sock *tp)
1625 {
1626 	return after(tp->snd_sml, tp->snd_una) &&
1627 		!after(tp->snd_sml, tp->snd_nxt);
1628 }
1629 
1630 /* Update snd_sml if this skb is under mss
1631  * Note that a TSO packet might end with a sub-mss segment
1632  * The test is really :
1633  * if ((skb->len % mss) != 0)
1634  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1635  * But we can avoid doing the divide again given we already have
1636  *  skb_pcount = skb->len / mss_now
1637  */
1638 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1639 				const struct sk_buff *skb)
1640 {
1641 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1642 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1643 }
1644 
1645 /* Return false, if packet can be sent now without violation Nagle's rules:
1646  * 1. It is full sized. (provided by caller in %partial bool)
1647  * 2. Or it contains FIN. (already checked by caller)
1648  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1649  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1650  *    With Minshall's modification: all sent small packets are ACKed.
1651  */
1652 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1653 			    int nonagle)
1654 {
1655 	return partial &&
1656 		((nonagle & TCP_NAGLE_CORK) ||
1657 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1658 }
1659 
1660 /* Return how many segs we'd like on a TSO packet,
1661  * to send one TSO packet per ms
1662  */
1663 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1664 		     int min_tso_segs)
1665 {
1666 	u32 bytes, segs;
1667 
1668 	bytes = min(sk->sk_pacing_rate >> 10,
1669 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1670 
1671 	/* Goal is to send at least one packet per ms,
1672 	 * not one big TSO packet every 100 ms.
1673 	 * This preserves ACK clocking and is consistent
1674 	 * with tcp_tso_should_defer() heuristic.
1675 	 */
1676 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1677 
1678 	return min_t(u32, segs, sk->sk_gso_max_segs);
1679 }
1680 EXPORT_SYMBOL(tcp_tso_autosize);
1681 
1682 /* Return the number of segments we want in the skb we are transmitting.
1683  * See if congestion control module wants to decide; otherwise, autosize.
1684  */
1685 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1686 {
1687 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1688 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1689 
1690 	return tso_segs ? :
1691 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1692 }
1693 
1694 /* Returns the portion of skb which can be sent right away */
1695 static unsigned int tcp_mss_split_point(const struct sock *sk,
1696 					const struct sk_buff *skb,
1697 					unsigned int mss_now,
1698 					unsigned int max_segs,
1699 					int nonagle)
1700 {
1701 	const struct tcp_sock *tp = tcp_sk(sk);
1702 	u32 partial, needed, window, max_len;
1703 
1704 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1705 	max_len = mss_now * max_segs;
1706 
1707 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1708 		return max_len;
1709 
1710 	needed = min(skb->len, window);
1711 
1712 	if (max_len <= needed)
1713 		return max_len;
1714 
1715 	partial = needed % mss_now;
1716 	/* If last segment is not a full MSS, check if Nagle rules allow us
1717 	 * to include this last segment in this skb.
1718 	 * Otherwise, we'll split the skb at last MSS boundary
1719 	 */
1720 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1721 		return needed - partial;
1722 
1723 	return needed;
1724 }
1725 
1726 /* Can at least one segment of SKB be sent right now, according to the
1727  * congestion window rules?  If so, return how many segments are allowed.
1728  */
1729 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1730 					 const struct sk_buff *skb)
1731 {
1732 	u32 in_flight, cwnd, halfcwnd;
1733 
1734 	/* Don't be strict about the congestion window for the final FIN.  */
1735 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1736 	    tcp_skb_pcount(skb) == 1)
1737 		return 1;
1738 
1739 	in_flight = tcp_packets_in_flight(tp);
1740 	cwnd = tp->snd_cwnd;
1741 	if (in_flight >= cwnd)
1742 		return 0;
1743 
1744 	/* For better scheduling, ensure we have at least
1745 	 * 2 GSO packets in flight.
1746 	 */
1747 	halfcwnd = max(cwnd >> 1, 1U);
1748 	return min(halfcwnd, cwnd - in_flight);
1749 }
1750 
1751 /* Initialize TSO state of a skb.
1752  * This must be invoked the first time we consider transmitting
1753  * SKB onto the wire.
1754  */
1755 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1756 {
1757 	int tso_segs = tcp_skb_pcount(skb);
1758 
1759 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1760 		tcp_set_skb_tso_segs(skb, mss_now);
1761 		tso_segs = tcp_skb_pcount(skb);
1762 	}
1763 	return tso_segs;
1764 }
1765 
1766 
1767 /* Return true if the Nagle test allows this packet to be
1768  * sent now.
1769  */
1770 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1771 				  unsigned int cur_mss, int nonagle)
1772 {
1773 	/* Nagle rule does not apply to frames, which sit in the middle of the
1774 	 * write_queue (they have no chances to get new data).
1775 	 *
1776 	 * This is implemented in the callers, where they modify the 'nonagle'
1777 	 * argument based upon the location of SKB in the send queue.
1778 	 */
1779 	if (nonagle & TCP_NAGLE_PUSH)
1780 		return true;
1781 
1782 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1783 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1784 		return true;
1785 
1786 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1787 		return true;
1788 
1789 	return false;
1790 }
1791 
1792 /* Does at least the first segment of SKB fit into the send window? */
1793 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1794 			     const struct sk_buff *skb,
1795 			     unsigned int cur_mss)
1796 {
1797 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1798 
1799 	if (skb->len > cur_mss)
1800 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1801 
1802 	return !after(end_seq, tcp_wnd_end(tp));
1803 }
1804 
1805 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1806  * should be put on the wire right now.  If so, it returns the number of
1807  * packets allowed by the congestion window.
1808  */
1809 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1810 				 unsigned int cur_mss, int nonagle)
1811 {
1812 	const struct tcp_sock *tp = tcp_sk(sk);
1813 	unsigned int cwnd_quota;
1814 
1815 	tcp_init_tso_segs(skb, cur_mss);
1816 
1817 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1818 		return 0;
1819 
1820 	cwnd_quota = tcp_cwnd_test(tp, skb);
1821 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1822 		cwnd_quota = 0;
1823 
1824 	return cwnd_quota;
1825 }
1826 
1827 /* Test if sending is allowed right now. */
1828 bool tcp_may_send_now(struct sock *sk)
1829 {
1830 	const struct tcp_sock *tp = tcp_sk(sk);
1831 	struct sk_buff *skb = tcp_send_head(sk);
1832 
1833 	return skb &&
1834 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1835 			     (tcp_skb_is_last(sk, skb) ?
1836 			      tp->nonagle : TCP_NAGLE_PUSH));
1837 }
1838 
1839 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1840  * which is put after SKB on the list.  It is very much like
1841  * tcp_fragment() except that it may make several kinds of assumptions
1842  * in order to speed up the splitting operation.  In particular, we
1843  * know that all the data is in scatter-gather pages, and that the
1844  * packet has never been sent out before (and thus is not cloned).
1845  */
1846 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1847 			unsigned int mss_now, gfp_t gfp)
1848 {
1849 	struct sk_buff *buff;
1850 	int nlen = skb->len - len;
1851 	u8 flags;
1852 
1853 	/* All of a TSO frame must be composed of paged data.  */
1854 	if (skb->len != skb->data_len)
1855 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1856 
1857 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1858 	if (unlikely(!buff))
1859 		return -ENOMEM;
1860 
1861 	sk->sk_wmem_queued += buff->truesize;
1862 	sk_mem_charge(sk, buff->truesize);
1863 	buff->truesize += nlen;
1864 	skb->truesize -= nlen;
1865 
1866 	/* Correct the sequence numbers. */
1867 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1868 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1869 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1870 
1871 	/* PSH and FIN should only be set in the second packet. */
1872 	flags = TCP_SKB_CB(skb)->tcp_flags;
1873 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1874 	TCP_SKB_CB(buff)->tcp_flags = flags;
1875 
1876 	/* This packet was never sent out yet, so no SACK bits. */
1877 	TCP_SKB_CB(buff)->sacked = 0;
1878 
1879 	tcp_skb_fragment_eor(skb, buff);
1880 
1881 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1882 	skb_split(skb, buff, len);
1883 	tcp_fragment_tstamp(skb, buff);
1884 
1885 	/* Fix up tso_factor for both original and new SKB.  */
1886 	tcp_set_skb_tso_segs(skb, mss_now);
1887 	tcp_set_skb_tso_segs(buff, mss_now);
1888 
1889 	/* Link BUFF into the send queue. */
1890 	__skb_header_release(buff);
1891 	tcp_insert_write_queue_after(skb, buff, sk);
1892 
1893 	return 0;
1894 }
1895 
1896 /* Try to defer sending, if possible, in order to minimize the amount
1897  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1898  *
1899  * This algorithm is from John Heffner.
1900  */
1901 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1902 				 bool *is_cwnd_limited, u32 max_segs)
1903 {
1904 	const struct inet_connection_sock *icsk = inet_csk(sk);
1905 	u32 age, send_win, cong_win, limit, in_flight;
1906 	struct tcp_sock *tp = tcp_sk(sk);
1907 	struct sk_buff *head;
1908 	int win_divisor;
1909 
1910 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1911 		goto send_now;
1912 
1913 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1914 		goto send_now;
1915 
1916 	/* Avoid bursty behavior by allowing defer
1917 	 * only if the last write was recent.
1918 	 */
1919 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1920 		goto send_now;
1921 
1922 	in_flight = tcp_packets_in_flight(tp);
1923 
1924 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1925 
1926 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1927 
1928 	/* From in_flight test above, we know that cwnd > in_flight.  */
1929 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1930 
1931 	limit = min(send_win, cong_win);
1932 
1933 	/* If a full-sized TSO skb can be sent, do it. */
1934 	if (limit >= max_segs * tp->mss_cache)
1935 		goto send_now;
1936 
1937 	/* Middle in queue won't get any more data, full sendable already? */
1938 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1939 		goto send_now;
1940 
1941 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1942 	if (win_divisor) {
1943 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1944 
1945 		/* If at least some fraction of a window is available,
1946 		 * just use it.
1947 		 */
1948 		chunk /= win_divisor;
1949 		if (limit >= chunk)
1950 			goto send_now;
1951 	} else {
1952 		/* Different approach, try not to defer past a single
1953 		 * ACK.  Receiver should ACK every other full sized
1954 		 * frame, so if we have space for more than 3 frames
1955 		 * then send now.
1956 		 */
1957 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1958 			goto send_now;
1959 	}
1960 
1961 	head = tcp_write_queue_head(sk);
1962 
1963 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1964 	/* If next ACK is likely to come too late (half srtt), do not defer */
1965 	if (age < (tp->srtt_us >> 4))
1966 		goto send_now;
1967 
1968 	/* Ok, it looks like it is advisable to defer. */
1969 
1970 	if (cong_win < send_win && cong_win <= skb->len)
1971 		*is_cwnd_limited = true;
1972 
1973 	return true;
1974 
1975 send_now:
1976 	return false;
1977 }
1978 
1979 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1980 {
1981 	struct inet_connection_sock *icsk = inet_csk(sk);
1982 	struct tcp_sock *tp = tcp_sk(sk);
1983 	struct net *net = sock_net(sk);
1984 	u32 interval;
1985 	s32 delta;
1986 
1987 	interval = net->ipv4.sysctl_tcp_probe_interval;
1988 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1989 	if (unlikely(delta >= interval * HZ)) {
1990 		int mss = tcp_current_mss(sk);
1991 
1992 		/* Update current search range */
1993 		icsk->icsk_mtup.probe_size = 0;
1994 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1995 			sizeof(struct tcphdr) +
1996 			icsk->icsk_af_ops->net_header_len;
1997 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1998 
1999 		/* Update probe time stamp */
2000 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2001 	}
2002 }
2003 
2004 /* Create a new MTU probe if we are ready.
2005  * MTU probe is regularly attempting to increase the path MTU by
2006  * deliberately sending larger packets.  This discovers routing
2007  * changes resulting in larger path MTUs.
2008  *
2009  * Returns 0 if we should wait to probe (no cwnd available),
2010  *         1 if a probe was sent,
2011  *         -1 otherwise
2012  */
2013 static int tcp_mtu_probe(struct sock *sk)
2014 {
2015 	struct inet_connection_sock *icsk = inet_csk(sk);
2016 	struct tcp_sock *tp = tcp_sk(sk);
2017 	struct sk_buff *skb, *nskb, *next;
2018 	struct net *net = sock_net(sk);
2019 	int probe_size;
2020 	int size_needed;
2021 	int copy, len;
2022 	int mss_now;
2023 	int interval;
2024 
2025 	/* Not currently probing/verifying,
2026 	 * not in recovery,
2027 	 * have enough cwnd, and
2028 	 * not SACKing (the variable headers throw things off)
2029 	 */
2030 	if (likely(!icsk->icsk_mtup.enabled ||
2031 		   icsk->icsk_mtup.probe_size ||
2032 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2033 		   tp->snd_cwnd < 11 ||
2034 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2035 		return -1;
2036 
2037 	/* Use binary search for probe_size between tcp_mss_base,
2038 	 * and current mss_clamp. if (search_high - search_low)
2039 	 * smaller than a threshold, backoff from probing.
2040 	 */
2041 	mss_now = tcp_current_mss(sk);
2042 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2043 				    icsk->icsk_mtup.search_low) >> 1);
2044 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2045 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2046 	/* When misfortune happens, we are reprobing actively,
2047 	 * and then reprobe timer has expired. We stick with current
2048 	 * probing process by not resetting search range to its orignal.
2049 	 */
2050 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2051 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2052 		/* Check whether enough time has elaplased for
2053 		 * another round of probing.
2054 		 */
2055 		tcp_mtu_check_reprobe(sk);
2056 		return -1;
2057 	}
2058 
2059 	/* Have enough data in the send queue to probe? */
2060 	if (tp->write_seq - tp->snd_nxt < size_needed)
2061 		return -1;
2062 
2063 	if (tp->snd_wnd < size_needed)
2064 		return -1;
2065 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2066 		return 0;
2067 
2068 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2069 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2070 		if (!tcp_packets_in_flight(tp))
2071 			return -1;
2072 		else
2073 			return 0;
2074 	}
2075 
2076 	/* We're allowed to probe.  Build it now. */
2077 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2078 	if (!nskb)
2079 		return -1;
2080 	sk->sk_wmem_queued += nskb->truesize;
2081 	sk_mem_charge(sk, nskb->truesize);
2082 
2083 	skb = tcp_send_head(sk);
2084 
2085 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2086 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2087 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2088 	TCP_SKB_CB(nskb)->sacked = 0;
2089 	nskb->csum = 0;
2090 	nskb->ip_summed = skb->ip_summed;
2091 
2092 	tcp_insert_write_queue_before(nskb, skb, sk);
2093 
2094 	len = 0;
2095 	tcp_for_write_queue_from_safe(skb, next, sk) {
2096 		copy = min_t(int, skb->len, probe_size - len);
2097 		if (nskb->ip_summed) {
2098 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2099 		} else {
2100 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2101 							     skb_put(nskb, copy),
2102 							     copy, 0);
2103 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2104 		}
2105 
2106 		if (skb->len <= copy) {
2107 			/* We've eaten all the data from this skb.
2108 			 * Throw it away. */
2109 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2110 			tcp_unlink_write_queue(skb, sk);
2111 			sk_wmem_free_skb(sk, skb);
2112 		} else {
2113 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2114 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2115 			if (!skb_shinfo(skb)->nr_frags) {
2116 				skb_pull(skb, copy);
2117 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2118 					skb->csum = csum_partial(skb->data,
2119 								 skb->len, 0);
2120 			} else {
2121 				__pskb_trim_head(skb, copy);
2122 				tcp_set_skb_tso_segs(skb, mss_now);
2123 			}
2124 			TCP_SKB_CB(skb)->seq += copy;
2125 		}
2126 
2127 		len += copy;
2128 
2129 		if (len >= probe_size)
2130 			break;
2131 	}
2132 	tcp_init_tso_segs(nskb, nskb->len);
2133 
2134 	/* We're ready to send.  If this fails, the probe will
2135 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2136 	 */
2137 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2138 		/* Decrement cwnd here because we are sending
2139 		 * effectively two packets. */
2140 		tp->snd_cwnd--;
2141 		tcp_event_new_data_sent(sk, nskb);
2142 
2143 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2144 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2145 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2146 
2147 		return 1;
2148 	}
2149 
2150 	return -1;
2151 }
2152 
2153 static bool tcp_pacing_check(const struct sock *sk)
2154 {
2155 	return tcp_needs_internal_pacing(sk) &&
2156 	       hrtimer_active(&tcp_sk(sk)->pacing_timer);
2157 }
2158 
2159 /* TCP Small Queues :
2160  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2161  * (These limits are doubled for retransmits)
2162  * This allows for :
2163  *  - better RTT estimation and ACK scheduling
2164  *  - faster recovery
2165  *  - high rates
2166  * Alas, some drivers / subsystems require a fair amount
2167  * of queued bytes to ensure line rate.
2168  * One example is wifi aggregation (802.11 AMPDU)
2169  */
2170 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2171 				  unsigned int factor)
2172 {
2173 	unsigned int limit;
2174 
2175 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2176 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2177 	limit <<= factor;
2178 
2179 	if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2180 		/* Always send the 1st or 2nd skb in write queue.
2181 		 * No need to wait for TX completion to call us back,
2182 		 * after softirq/tasklet schedule.
2183 		 * This helps when TX completions are delayed too much.
2184 		 */
2185 		if (skb == sk->sk_write_queue.next ||
2186 		    skb->prev == sk->sk_write_queue.next)
2187 			return false;
2188 
2189 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2190 		/* It is possible TX completion already happened
2191 		 * before we set TSQ_THROTTLED, so we must
2192 		 * test again the condition.
2193 		 */
2194 		smp_mb__after_atomic();
2195 		if (atomic_read(&sk->sk_wmem_alloc) > limit)
2196 			return true;
2197 	}
2198 	return false;
2199 }
2200 
2201 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2202 {
2203 	const u32 now = tcp_jiffies32;
2204 
2205 	if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2206 		tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2207 	tp->chrono_start = now;
2208 	tp->chrono_type = new;
2209 }
2210 
2211 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2212 {
2213 	struct tcp_sock *tp = tcp_sk(sk);
2214 
2215 	/* If there are multiple conditions worthy of tracking in a
2216 	 * chronograph then the highest priority enum takes precedence
2217 	 * over the other conditions. So that if something "more interesting"
2218 	 * starts happening, stop the previous chrono and start a new one.
2219 	 */
2220 	if (type > tp->chrono_type)
2221 		tcp_chrono_set(tp, type);
2222 }
2223 
2224 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2225 {
2226 	struct tcp_sock *tp = tcp_sk(sk);
2227 
2228 
2229 	/* There are multiple conditions worthy of tracking in a
2230 	 * chronograph, so that the highest priority enum takes
2231 	 * precedence over the other conditions (see tcp_chrono_start).
2232 	 * If a condition stops, we only stop chrono tracking if
2233 	 * it's the "most interesting" or current chrono we are
2234 	 * tracking and starts busy chrono if we have pending data.
2235 	 */
2236 	if (tcp_write_queue_empty(sk))
2237 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2238 	else if (type == tp->chrono_type)
2239 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2240 }
2241 
2242 /* This routine writes packets to the network.  It advances the
2243  * send_head.  This happens as incoming acks open up the remote
2244  * window for us.
2245  *
2246  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2247  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2248  * account rare use of URG, this is not a big flaw.
2249  *
2250  * Send at most one packet when push_one > 0. Temporarily ignore
2251  * cwnd limit to force at most one packet out when push_one == 2.
2252 
2253  * Returns true, if no segments are in flight and we have queued segments,
2254  * but cannot send anything now because of SWS or another problem.
2255  */
2256 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2257 			   int push_one, gfp_t gfp)
2258 {
2259 	struct tcp_sock *tp = tcp_sk(sk);
2260 	struct sk_buff *skb;
2261 	unsigned int tso_segs, sent_pkts;
2262 	int cwnd_quota;
2263 	int result;
2264 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2265 	u32 max_segs;
2266 
2267 	sent_pkts = 0;
2268 
2269 	if (!push_one) {
2270 		/* Do MTU probing. */
2271 		result = tcp_mtu_probe(sk);
2272 		if (!result) {
2273 			return false;
2274 		} else if (result > 0) {
2275 			sent_pkts = 1;
2276 		}
2277 	}
2278 
2279 	max_segs = tcp_tso_segs(sk, mss_now);
2280 	tcp_mstamp_refresh(tp);
2281 	while ((skb = tcp_send_head(sk))) {
2282 		unsigned int limit;
2283 
2284 		if (tcp_pacing_check(sk))
2285 			break;
2286 
2287 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2288 		BUG_ON(!tso_segs);
2289 
2290 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2291 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2292 			skb->skb_mstamp = tp->tcp_mstamp;
2293 			goto repair; /* Skip network transmission */
2294 		}
2295 
2296 		cwnd_quota = tcp_cwnd_test(tp, skb);
2297 		if (!cwnd_quota) {
2298 			if (push_one == 2)
2299 				/* Force out a loss probe pkt. */
2300 				cwnd_quota = 1;
2301 			else
2302 				break;
2303 		}
2304 
2305 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2306 			is_rwnd_limited = true;
2307 			break;
2308 		}
2309 
2310 		if (tso_segs == 1) {
2311 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2312 						     (tcp_skb_is_last(sk, skb) ?
2313 						      nonagle : TCP_NAGLE_PUSH))))
2314 				break;
2315 		} else {
2316 			if (!push_one &&
2317 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2318 						 max_segs))
2319 				break;
2320 		}
2321 
2322 		limit = mss_now;
2323 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2324 			limit = tcp_mss_split_point(sk, skb, mss_now,
2325 						    min_t(unsigned int,
2326 							  cwnd_quota,
2327 							  max_segs),
2328 						    nonagle);
2329 
2330 		if (skb->len > limit &&
2331 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2332 			break;
2333 
2334 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2335 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2336 		if (tcp_small_queue_check(sk, skb, 0))
2337 			break;
2338 
2339 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2340 			break;
2341 
2342 repair:
2343 		/* Advance the send_head.  This one is sent out.
2344 		 * This call will increment packets_out.
2345 		 */
2346 		tcp_event_new_data_sent(sk, skb);
2347 
2348 		tcp_minshall_update(tp, mss_now, skb);
2349 		sent_pkts += tcp_skb_pcount(skb);
2350 
2351 		if (push_one)
2352 			break;
2353 	}
2354 
2355 	if (is_rwnd_limited)
2356 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2357 	else
2358 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2359 
2360 	if (likely(sent_pkts)) {
2361 		if (tcp_in_cwnd_reduction(sk))
2362 			tp->prr_out += sent_pkts;
2363 
2364 		/* Send one loss probe per tail loss episode. */
2365 		if (push_one != 2)
2366 			tcp_schedule_loss_probe(sk);
2367 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2368 		tcp_cwnd_validate(sk, is_cwnd_limited);
2369 		return false;
2370 	}
2371 	return !tp->packets_out && tcp_send_head(sk);
2372 }
2373 
2374 bool tcp_schedule_loss_probe(struct sock *sk)
2375 {
2376 	struct inet_connection_sock *icsk = inet_csk(sk);
2377 	struct tcp_sock *tp = tcp_sk(sk);
2378 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2379 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2380 
2381 	/* No consecutive loss probes. */
2382 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2383 		tcp_rearm_rto(sk);
2384 		return false;
2385 	}
2386 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2387 	 * finishes.
2388 	 */
2389 	if (tp->fastopen_rsk)
2390 		return false;
2391 
2392 	/* TLP is only scheduled when next timer event is RTO. */
2393 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2394 		return false;
2395 
2396 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2397 	 * in Open state, that are either limited by cwnd or application.
2398 	 */
2399 	if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2400 	    !tp->packets_out || !tcp_is_sack(tp) ||
2401 	    icsk->icsk_ca_state != TCP_CA_Open)
2402 		return false;
2403 
2404 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2405 	     tcp_send_head(sk))
2406 		return false;
2407 
2408 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2409 	 * for delayed ack when there's one outstanding packet. If no RTT
2410 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2411 	 */
2412 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2413 	if (tp->packets_out == 1)
2414 		timeout = max_t(u32, timeout,
2415 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2416 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2417 
2418 	/* If RTO is shorter, just schedule TLP in its place. */
2419 	tlp_time_stamp = tcp_jiffies32 + timeout;
2420 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2421 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2422 		s32 delta = rto_time_stamp - tcp_jiffies32;
2423 		if (delta > 0)
2424 			timeout = delta;
2425 	}
2426 
2427 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2428 				  TCP_RTO_MAX);
2429 	return true;
2430 }
2431 
2432 /* Thanks to skb fast clones, we can detect if a prior transmit of
2433  * a packet is still in a qdisc or driver queue.
2434  * In this case, there is very little point doing a retransmit !
2435  */
2436 static bool skb_still_in_host_queue(const struct sock *sk,
2437 				    const struct sk_buff *skb)
2438 {
2439 	if (unlikely(skb_fclone_busy(sk, skb))) {
2440 		NET_INC_STATS(sock_net(sk),
2441 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2442 		return true;
2443 	}
2444 	return false;
2445 }
2446 
2447 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2448  * retransmit the last segment.
2449  */
2450 void tcp_send_loss_probe(struct sock *sk)
2451 {
2452 	struct tcp_sock *tp = tcp_sk(sk);
2453 	struct sk_buff *skb;
2454 	int pcount;
2455 	int mss = tcp_current_mss(sk);
2456 
2457 	skb = tcp_send_head(sk);
2458 	if (skb) {
2459 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2460 			pcount = tp->packets_out;
2461 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2462 			if (tp->packets_out > pcount)
2463 				goto probe_sent;
2464 			goto rearm_timer;
2465 		}
2466 		skb = tcp_write_queue_prev(sk, skb);
2467 	} else {
2468 		skb = tcp_write_queue_tail(sk);
2469 	}
2470 
2471 	/* At most one outstanding TLP retransmission. */
2472 	if (tp->tlp_high_seq)
2473 		goto rearm_timer;
2474 
2475 	/* Retransmit last segment. */
2476 	if (WARN_ON(!skb))
2477 		goto rearm_timer;
2478 
2479 	if (skb_still_in_host_queue(sk, skb))
2480 		goto rearm_timer;
2481 
2482 	pcount = tcp_skb_pcount(skb);
2483 	if (WARN_ON(!pcount))
2484 		goto rearm_timer;
2485 
2486 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2487 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2488 					  GFP_ATOMIC)))
2489 			goto rearm_timer;
2490 		skb = tcp_write_queue_next(sk, skb);
2491 	}
2492 
2493 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2494 		goto rearm_timer;
2495 
2496 	if (__tcp_retransmit_skb(sk, skb, 1))
2497 		goto rearm_timer;
2498 
2499 	/* Record snd_nxt for loss detection. */
2500 	tp->tlp_high_seq = tp->snd_nxt;
2501 
2502 probe_sent:
2503 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2504 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2505 	inet_csk(sk)->icsk_pending = 0;
2506 rearm_timer:
2507 	tcp_rearm_rto(sk);
2508 }
2509 
2510 /* Push out any pending frames which were held back due to
2511  * TCP_CORK or attempt at coalescing tiny packets.
2512  * The socket must be locked by the caller.
2513  */
2514 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2515 			       int nonagle)
2516 {
2517 	/* If we are closed, the bytes will have to remain here.
2518 	 * In time closedown will finish, we empty the write queue and
2519 	 * all will be happy.
2520 	 */
2521 	if (unlikely(sk->sk_state == TCP_CLOSE))
2522 		return;
2523 
2524 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2525 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2526 		tcp_check_probe_timer(sk);
2527 }
2528 
2529 /* Send _single_ skb sitting at the send head. This function requires
2530  * true push pending frames to setup probe timer etc.
2531  */
2532 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2533 {
2534 	struct sk_buff *skb = tcp_send_head(sk);
2535 
2536 	BUG_ON(!skb || skb->len < mss_now);
2537 
2538 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2539 }
2540 
2541 /* This function returns the amount that we can raise the
2542  * usable window based on the following constraints
2543  *
2544  * 1. The window can never be shrunk once it is offered (RFC 793)
2545  * 2. We limit memory per socket
2546  *
2547  * RFC 1122:
2548  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2549  *  RECV.NEXT + RCV.WIN fixed until:
2550  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2551  *
2552  * i.e. don't raise the right edge of the window until you can raise
2553  * it at least MSS bytes.
2554  *
2555  * Unfortunately, the recommended algorithm breaks header prediction,
2556  * since header prediction assumes th->window stays fixed.
2557  *
2558  * Strictly speaking, keeping th->window fixed violates the receiver
2559  * side SWS prevention criteria. The problem is that under this rule
2560  * a stream of single byte packets will cause the right side of the
2561  * window to always advance by a single byte.
2562  *
2563  * Of course, if the sender implements sender side SWS prevention
2564  * then this will not be a problem.
2565  *
2566  * BSD seems to make the following compromise:
2567  *
2568  *	If the free space is less than the 1/4 of the maximum
2569  *	space available and the free space is less than 1/2 mss,
2570  *	then set the window to 0.
2571  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2572  *	Otherwise, just prevent the window from shrinking
2573  *	and from being larger than the largest representable value.
2574  *
2575  * This prevents incremental opening of the window in the regime
2576  * where TCP is limited by the speed of the reader side taking
2577  * data out of the TCP receive queue. It does nothing about
2578  * those cases where the window is constrained on the sender side
2579  * because the pipeline is full.
2580  *
2581  * BSD also seems to "accidentally" limit itself to windows that are a
2582  * multiple of MSS, at least until the free space gets quite small.
2583  * This would appear to be a side effect of the mbuf implementation.
2584  * Combining these two algorithms results in the observed behavior
2585  * of having a fixed window size at almost all times.
2586  *
2587  * Below we obtain similar behavior by forcing the offered window to
2588  * a multiple of the mss when it is feasible to do so.
2589  *
2590  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2591  * Regular options like TIMESTAMP are taken into account.
2592  */
2593 u32 __tcp_select_window(struct sock *sk)
2594 {
2595 	struct inet_connection_sock *icsk = inet_csk(sk);
2596 	struct tcp_sock *tp = tcp_sk(sk);
2597 	/* MSS for the peer's data.  Previous versions used mss_clamp
2598 	 * here.  I don't know if the value based on our guesses
2599 	 * of peer's MSS is better for the performance.  It's more correct
2600 	 * but may be worse for the performance because of rcv_mss
2601 	 * fluctuations.  --SAW  1998/11/1
2602 	 */
2603 	int mss = icsk->icsk_ack.rcv_mss;
2604 	int free_space = tcp_space(sk);
2605 	int allowed_space = tcp_full_space(sk);
2606 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2607 	int window;
2608 
2609 	if (unlikely(mss > full_space)) {
2610 		mss = full_space;
2611 		if (mss <= 0)
2612 			return 0;
2613 	}
2614 	if (free_space < (full_space >> 1)) {
2615 		icsk->icsk_ack.quick = 0;
2616 
2617 		if (tcp_under_memory_pressure(sk))
2618 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2619 					       4U * tp->advmss);
2620 
2621 		/* free_space might become our new window, make sure we don't
2622 		 * increase it due to wscale.
2623 		 */
2624 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2625 
2626 		/* if free space is less than mss estimate, or is below 1/16th
2627 		 * of the maximum allowed, try to move to zero-window, else
2628 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2629 		 * new incoming data is dropped due to memory limits.
2630 		 * With large window, mss test triggers way too late in order
2631 		 * to announce zero window in time before rmem limit kicks in.
2632 		 */
2633 		if (free_space < (allowed_space >> 4) || free_space < mss)
2634 			return 0;
2635 	}
2636 
2637 	if (free_space > tp->rcv_ssthresh)
2638 		free_space = tp->rcv_ssthresh;
2639 
2640 	/* Don't do rounding if we are using window scaling, since the
2641 	 * scaled window will not line up with the MSS boundary anyway.
2642 	 */
2643 	if (tp->rx_opt.rcv_wscale) {
2644 		window = free_space;
2645 
2646 		/* Advertise enough space so that it won't get scaled away.
2647 		 * Import case: prevent zero window announcement if
2648 		 * 1<<rcv_wscale > mss.
2649 		 */
2650 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2651 	} else {
2652 		window = tp->rcv_wnd;
2653 		/* Get the largest window that is a nice multiple of mss.
2654 		 * Window clamp already applied above.
2655 		 * If our current window offering is within 1 mss of the
2656 		 * free space we just keep it. This prevents the divide
2657 		 * and multiply from happening most of the time.
2658 		 * We also don't do any window rounding when the free space
2659 		 * is too small.
2660 		 */
2661 		if (window <= free_space - mss || window > free_space)
2662 			window = rounddown(free_space, mss);
2663 		else if (mss == full_space &&
2664 			 free_space > window + (full_space >> 1))
2665 			window = free_space;
2666 	}
2667 
2668 	return window;
2669 }
2670 
2671 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2672 			     const struct sk_buff *next_skb)
2673 {
2674 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2675 		const struct skb_shared_info *next_shinfo =
2676 			skb_shinfo(next_skb);
2677 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2678 
2679 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2680 		shinfo->tskey = next_shinfo->tskey;
2681 		TCP_SKB_CB(skb)->txstamp_ack |=
2682 			TCP_SKB_CB(next_skb)->txstamp_ack;
2683 	}
2684 }
2685 
2686 /* Collapses two adjacent SKB's during retransmission. */
2687 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2688 {
2689 	struct tcp_sock *tp = tcp_sk(sk);
2690 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2691 	int skb_size, next_skb_size;
2692 
2693 	skb_size = skb->len;
2694 	next_skb_size = next_skb->len;
2695 
2696 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2697 
2698 	if (next_skb_size) {
2699 		if (next_skb_size <= skb_availroom(skb))
2700 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2701 				      next_skb_size);
2702 		else if (!skb_shift(skb, next_skb, next_skb_size))
2703 			return false;
2704 	}
2705 	tcp_highest_sack_combine(sk, next_skb, skb);
2706 
2707 	tcp_unlink_write_queue(next_skb, sk);
2708 
2709 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2710 		skb->ip_summed = CHECKSUM_PARTIAL;
2711 
2712 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2713 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2714 
2715 	/* Update sequence range on original skb. */
2716 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2717 
2718 	/* Merge over control information. This moves PSH/FIN etc. over */
2719 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2720 
2721 	/* All done, get rid of second SKB and account for it so
2722 	 * packet counting does not break.
2723 	 */
2724 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2725 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2726 
2727 	/* changed transmit queue under us so clear hints */
2728 	tcp_clear_retrans_hints_partial(tp);
2729 	if (next_skb == tp->retransmit_skb_hint)
2730 		tp->retransmit_skb_hint = skb;
2731 
2732 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2733 
2734 	tcp_skb_collapse_tstamp(skb, next_skb);
2735 
2736 	sk_wmem_free_skb(sk, next_skb);
2737 	return true;
2738 }
2739 
2740 /* Check if coalescing SKBs is legal. */
2741 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2742 {
2743 	if (tcp_skb_pcount(skb) > 1)
2744 		return false;
2745 	if (skb_cloned(skb))
2746 		return false;
2747 	if (skb == tcp_send_head(sk))
2748 		return false;
2749 	/* Some heuristics for collapsing over SACK'd could be invented */
2750 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2751 		return false;
2752 
2753 	return true;
2754 }
2755 
2756 /* Collapse packets in the retransmit queue to make to create
2757  * less packets on the wire. This is only done on retransmission.
2758  */
2759 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2760 				     int space)
2761 {
2762 	struct tcp_sock *tp = tcp_sk(sk);
2763 	struct sk_buff *skb = to, *tmp;
2764 	bool first = true;
2765 
2766 	if (!sysctl_tcp_retrans_collapse)
2767 		return;
2768 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2769 		return;
2770 
2771 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2772 		if (!tcp_can_collapse(sk, skb))
2773 			break;
2774 
2775 		if (!tcp_skb_can_collapse_to(to))
2776 			break;
2777 
2778 		space -= skb->len;
2779 
2780 		if (first) {
2781 			first = false;
2782 			continue;
2783 		}
2784 
2785 		if (space < 0)
2786 			break;
2787 
2788 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2789 			break;
2790 
2791 		if (!tcp_collapse_retrans(sk, to))
2792 			break;
2793 	}
2794 }
2795 
2796 /* This retransmits one SKB.  Policy decisions and retransmit queue
2797  * state updates are done by the caller.  Returns non-zero if an
2798  * error occurred which prevented the send.
2799  */
2800 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2801 {
2802 	struct inet_connection_sock *icsk = inet_csk(sk);
2803 	struct tcp_sock *tp = tcp_sk(sk);
2804 	unsigned int cur_mss;
2805 	int diff, len, err;
2806 
2807 
2808 	/* Inconclusive MTU probe */
2809 	if (icsk->icsk_mtup.probe_size)
2810 		icsk->icsk_mtup.probe_size = 0;
2811 
2812 	/* Do not sent more than we queued. 1/4 is reserved for possible
2813 	 * copying overhead: fragmentation, tunneling, mangling etc.
2814 	 */
2815 	if (atomic_read(&sk->sk_wmem_alloc) >
2816 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2817 		  sk->sk_sndbuf))
2818 		return -EAGAIN;
2819 
2820 	if (skb_still_in_host_queue(sk, skb))
2821 		return -EBUSY;
2822 
2823 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2824 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2825 			BUG();
2826 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2827 			return -ENOMEM;
2828 	}
2829 
2830 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2831 		return -EHOSTUNREACH; /* Routing failure or similar. */
2832 
2833 	cur_mss = tcp_current_mss(sk);
2834 
2835 	/* If receiver has shrunk his window, and skb is out of
2836 	 * new window, do not retransmit it. The exception is the
2837 	 * case, when window is shrunk to zero. In this case
2838 	 * our retransmit serves as a zero window probe.
2839 	 */
2840 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2841 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2842 		return -EAGAIN;
2843 
2844 	len = cur_mss * segs;
2845 	if (skb->len > len) {
2846 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2847 			return -ENOMEM; /* We'll try again later. */
2848 	} else {
2849 		if (skb_unclone(skb, GFP_ATOMIC))
2850 			return -ENOMEM;
2851 
2852 		diff = tcp_skb_pcount(skb);
2853 		tcp_set_skb_tso_segs(skb, cur_mss);
2854 		diff -= tcp_skb_pcount(skb);
2855 		if (diff)
2856 			tcp_adjust_pcount(sk, skb, diff);
2857 		if (skb->len < cur_mss)
2858 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2859 	}
2860 
2861 	/* RFC3168, section 6.1.1.1. ECN fallback */
2862 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2863 		tcp_ecn_clear_syn(sk, skb);
2864 
2865 	/* Update global and local TCP statistics. */
2866 	segs = tcp_skb_pcount(skb);
2867 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2868 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2869 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2870 	tp->total_retrans += segs;
2871 
2872 	/* make sure skb->data is aligned on arches that require it
2873 	 * and check if ack-trimming & collapsing extended the headroom
2874 	 * beyond what csum_start can cover.
2875 	 */
2876 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2877 		     skb_headroom(skb) >= 0xFFFF)) {
2878 		struct sk_buff *nskb;
2879 
2880 		skb->skb_mstamp = tp->tcp_mstamp;
2881 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2882 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2883 			     -ENOBUFS;
2884 	} else {
2885 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2886 	}
2887 
2888 	if (likely(!err)) {
2889 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2890 	} else if (err != -EBUSY) {
2891 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2892 	}
2893 	return err;
2894 }
2895 
2896 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2897 {
2898 	struct tcp_sock *tp = tcp_sk(sk);
2899 	int err = __tcp_retransmit_skb(sk, skb, segs);
2900 
2901 	if (err == 0) {
2902 #if FASTRETRANS_DEBUG > 0
2903 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2904 			net_dbg_ratelimited("retrans_out leaked\n");
2905 		}
2906 #endif
2907 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2908 		tp->retrans_out += tcp_skb_pcount(skb);
2909 
2910 		/* Save stamp of the first retransmit. */
2911 		if (!tp->retrans_stamp)
2912 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2913 
2914 	}
2915 
2916 	if (tp->undo_retrans < 0)
2917 		tp->undo_retrans = 0;
2918 	tp->undo_retrans += tcp_skb_pcount(skb);
2919 	return err;
2920 }
2921 
2922 /* This gets called after a retransmit timeout, and the initially
2923  * retransmitted data is acknowledged.  It tries to continue
2924  * resending the rest of the retransmit queue, until either
2925  * we've sent it all or the congestion window limit is reached.
2926  * If doing SACK, the first ACK which comes back for a timeout
2927  * based retransmit packet might feed us FACK information again.
2928  * If so, we use it to avoid unnecessarily retransmissions.
2929  */
2930 void tcp_xmit_retransmit_queue(struct sock *sk)
2931 {
2932 	const struct inet_connection_sock *icsk = inet_csk(sk);
2933 	struct tcp_sock *tp = tcp_sk(sk);
2934 	struct sk_buff *skb;
2935 	struct sk_buff *hole = NULL;
2936 	u32 max_segs;
2937 	int mib_idx;
2938 
2939 	if (!tp->packets_out)
2940 		return;
2941 
2942 	if (tp->retransmit_skb_hint) {
2943 		skb = tp->retransmit_skb_hint;
2944 	} else {
2945 		skb = tcp_write_queue_head(sk);
2946 	}
2947 
2948 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2949 	tcp_for_write_queue_from(skb, sk) {
2950 		__u8 sacked;
2951 		int segs;
2952 
2953 		if (skb == tcp_send_head(sk))
2954 			break;
2955 
2956 		if (tcp_pacing_check(sk))
2957 			break;
2958 
2959 		/* we could do better than to assign each time */
2960 		if (!hole)
2961 			tp->retransmit_skb_hint = skb;
2962 
2963 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2964 		if (segs <= 0)
2965 			return;
2966 		sacked = TCP_SKB_CB(skb)->sacked;
2967 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2968 		 * we need to make sure not sending too bigs TSO packets
2969 		 */
2970 		segs = min_t(int, segs, max_segs);
2971 
2972 		if (tp->retrans_out >= tp->lost_out) {
2973 			break;
2974 		} else if (!(sacked & TCPCB_LOST)) {
2975 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2976 				hole = skb;
2977 			continue;
2978 
2979 		} else {
2980 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2981 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2982 			else
2983 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2984 		}
2985 
2986 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2987 			continue;
2988 
2989 		if (tcp_small_queue_check(sk, skb, 1))
2990 			return;
2991 
2992 		if (tcp_retransmit_skb(sk, skb, segs))
2993 			return;
2994 
2995 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2996 
2997 		if (tcp_in_cwnd_reduction(sk))
2998 			tp->prr_out += tcp_skb_pcount(skb);
2999 
3000 		if (skb == tcp_write_queue_head(sk) &&
3001 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3002 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3003 						  inet_csk(sk)->icsk_rto,
3004 						  TCP_RTO_MAX);
3005 	}
3006 }
3007 
3008 /* We allow to exceed memory limits for FIN packets to expedite
3009  * connection tear down and (memory) recovery.
3010  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3011  * or even be forced to close flow without any FIN.
3012  * In general, we want to allow one skb per socket to avoid hangs
3013  * with edge trigger epoll()
3014  */
3015 void sk_forced_mem_schedule(struct sock *sk, int size)
3016 {
3017 	int amt;
3018 
3019 	if (size <= sk->sk_forward_alloc)
3020 		return;
3021 	amt = sk_mem_pages(size);
3022 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3023 	sk_memory_allocated_add(sk, amt);
3024 
3025 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3026 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3027 }
3028 
3029 /* Send a FIN. The caller locks the socket for us.
3030  * We should try to send a FIN packet really hard, but eventually give up.
3031  */
3032 void tcp_send_fin(struct sock *sk)
3033 {
3034 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3035 	struct tcp_sock *tp = tcp_sk(sk);
3036 
3037 	/* Optimization, tack on the FIN if we have one skb in write queue and
3038 	 * this skb was not yet sent, or we are under memory pressure.
3039 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3040 	 * as TCP stack thinks it has already been transmitted.
3041 	 */
3042 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3043 coalesce:
3044 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3045 		TCP_SKB_CB(tskb)->end_seq++;
3046 		tp->write_seq++;
3047 		if (!tcp_send_head(sk)) {
3048 			/* This means tskb was already sent.
3049 			 * Pretend we included the FIN on previous transmit.
3050 			 * We need to set tp->snd_nxt to the value it would have
3051 			 * if FIN had been sent. This is because retransmit path
3052 			 * does not change tp->snd_nxt.
3053 			 */
3054 			tp->snd_nxt++;
3055 			return;
3056 		}
3057 	} else {
3058 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3059 		if (unlikely(!skb)) {
3060 			if (tskb)
3061 				goto coalesce;
3062 			return;
3063 		}
3064 		skb_reserve(skb, MAX_TCP_HEADER);
3065 		sk_forced_mem_schedule(sk, skb->truesize);
3066 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3067 		tcp_init_nondata_skb(skb, tp->write_seq,
3068 				     TCPHDR_ACK | TCPHDR_FIN);
3069 		tcp_queue_skb(sk, skb);
3070 	}
3071 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3072 }
3073 
3074 /* We get here when a process closes a file descriptor (either due to
3075  * an explicit close() or as a byproduct of exit()'ing) and there
3076  * was unread data in the receive queue.  This behavior is recommended
3077  * by RFC 2525, section 2.17.  -DaveM
3078  */
3079 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3080 {
3081 	struct sk_buff *skb;
3082 
3083 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3084 
3085 	/* NOTE: No TCP options attached and we never retransmit this. */
3086 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3087 	if (!skb) {
3088 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3089 		return;
3090 	}
3091 
3092 	/* Reserve space for headers and prepare control bits. */
3093 	skb_reserve(skb, MAX_TCP_HEADER);
3094 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3095 			     TCPHDR_ACK | TCPHDR_RST);
3096 	tcp_mstamp_refresh(tcp_sk(sk));
3097 	/* Send it off. */
3098 	if (tcp_transmit_skb(sk, skb, 0, priority))
3099 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3100 }
3101 
3102 /* Send a crossed SYN-ACK during socket establishment.
3103  * WARNING: This routine must only be called when we have already sent
3104  * a SYN packet that crossed the incoming SYN that caused this routine
3105  * to get called. If this assumption fails then the initial rcv_wnd
3106  * and rcv_wscale values will not be correct.
3107  */
3108 int tcp_send_synack(struct sock *sk)
3109 {
3110 	struct sk_buff *skb;
3111 
3112 	skb = tcp_write_queue_head(sk);
3113 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3114 		pr_debug("%s: wrong queue state\n", __func__);
3115 		return -EFAULT;
3116 	}
3117 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3118 		if (skb_cloned(skb)) {
3119 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3120 			if (!nskb)
3121 				return -ENOMEM;
3122 			tcp_unlink_write_queue(skb, sk);
3123 			__skb_header_release(nskb);
3124 			__tcp_add_write_queue_head(sk, nskb);
3125 			sk_wmem_free_skb(sk, skb);
3126 			sk->sk_wmem_queued += nskb->truesize;
3127 			sk_mem_charge(sk, nskb->truesize);
3128 			skb = nskb;
3129 		}
3130 
3131 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3132 		tcp_ecn_send_synack(sk, skb);
3133 	}
3134 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3135 }
3136 
3137 /**
3138  * tcp_make_synack - Prepare a SYN-ACK.
3139  * sk: listener socket
3140  * dst: dst entry attached to the SYNACK
3141  * req: request_sock pointer
3142  *
3143  * Allocate one skb and build a SYNACK packet.
3144  * @dst is consumed : Caller should not use it again.
3145  */
3146 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3147 				struct request_sock *req,
3148 				struct tcp_fastopen_cookie *foc,
3149 				enum tcp_synack_type synack_type)
3150 {
3151 	struct inet_request_sock *ireq = inet_rsk(req);
3152 	const struct tcp_sock *tp = tcp_sk(sk);
3153 	struct tcp_md5sig_key *md5 = NULL;
3154 	struct tcp_out_options opts;
3155 	struct sk_buff *skb;
3156 	int tcp_header_size;
3157 	struct tcphdr *th;
3158 	int mss;
3159 
3160 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3161 	if (unlikely(!skb)) {
3162 		dst_release(dst);
3163 		return NULL;
3164 	}
3165 	/* Reserve space for headers. */
3166 	skb_reserve(skb, MAX_TCP_HEADER);
3167 
3168 	switch (synack_type) {
3169 	case TCP_SYNACK_NORMAL:
3170 		skb_set_owner_w(skb, req_to_sk(req));
3171 		break;
3172 	case TCP_SYNACK_COOKIE:
3173 		/* Under synflood, we do not attach skb to a socket,
3174 		 * to avoid false sharing.
3175 		 */
3176 		break;
3177 	case TCP_SYNACK_FASTOPEN:
3178 		/* sk is a const pointer, because we want to express multiple
3179 		 * cpu might call us concurrently.
3180 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3181 		 */
3182 		skb_set_owner_w(skb, (struct sock *)sk);
3183 		break;
3184 	}
3185 	skb_dst_set(skb, dst);
3186 
3187 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3188 
3189 	memset(&opts, 0, sizeof(opts));
3190 #ifdef CONFIG_SYN_COOKIES
3191 	if (unlikely(req->cookie_ts))
3192 		skb->skb_mstamp = cookie_init_timestamp(req);
3193 	else
3194 #endif
3195 		skb->skb_mstamp = tcp_clock_us();
3196 
3197 #ifdef CONFIG_TCP_MD5SIG
3198 	rcu_read_lock();
3199 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3200 #endif
3201 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3202 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3203 			  sizeof(*th);
3204 
3205 	skb_push(skb, tcp_header_size);
3206 	skb_reset_transport_header(skb);
3207 
3208 	th = (struct tcphdr *)skb->data;
3209 	memset(th, 0, sizeof(struct tcphdr));
3210 	th->syn = 1;
3211 	th->ack = 1;
3212 	tcp_ecn_make_synack(req, th);
3213 	th->source = htons(ireq->ir_num);
3214 	th->dest = ireq->ir_rmt_port;
3215 	/* Setting of flags are superfluous here for callers (and ECE is
3216 	 * not even correctly set)
3217 	 */
3218 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3219 			     TCPHDR_SYN | TCPHDR_ACK);
3220 
3221 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3222 	/* XXX data is queued and acked as is. No buffer/window check */
3223 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3224 
3225 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3226 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3227 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3228 	th->doff = (tcp_header_size >> 2);
3229 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3230 
3231 #ifdef CONFIG_TCP_MD5SIG
3232 	/* Okay, we have all we need - do the md5 hash if needed */
3233 	if (md5)
3234 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3235 					       md5, req_to_sk(req), skb);
3236 	rcu_read_unlock();
3237 #endif
3238 
3239 	/* Do not fool tcpdump (if any), clean our debris */
3240 	skb->tstamp = 0;
3241 	return skb;
3242 }
3243 EXPORT_SYMBOL(tcp_make_synack);
3244 
3245 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3246 {
3247 	struct inet_connection_sock *icsk = inet_csk(sk);
3248 	const struct tcp_congestion_ops *ca;
3249 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3250 
3251 	if (ca_key == TCP_CA_UNSPEC)
3252 		return;
3253 
3254 	rcu_read_lock();
3255 	ca = tcp_ca_find_key(ca_key);
3256 	if (likely(ca && try_module_get(ca->owner))) {
3257 		module_put(icsk->icsk_ca_ops->owner);
3258 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3259 		icsk->icsk_ca_ops = ca;
3260 	}
3261 	rcu_read_unlock();
3262 }
3263 
3264 /* Do all connect socket setups that can be done AF independent. */
3265 static void tcp_connect_init(struct sock *sk)
3266 {
3267 	const struct dst_entry *dst = __sk_dst_get(sk);
3268 	struct tcp_sock *tp = tcp_sk(sk);
3269 	__u8 rcv_wscale;
3270 
3271 	/* We'll fix this up when we get a response from the other end.
3272 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3273 	 */
3274 	tp->tcp_header_len = sizeof(struct tcphdr) +
3275 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3276 
3277 #ifdef CONFIG_TCP_MD5SIG
3278 	if (tp->af_specific->md5_lookup(sk, sk))
3279 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3280 #endif
3281 
3282 	/* If user gave his TCP_MAXSEG, record it to clamp */
3283 	if (tp->rx_opt.user_mss)
3284 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3285 	tp->max_window = 0;
3286 	tcp_mtup_init(sk);
3287 	tcp_sync_mss(sk, dst_mtu(dst));
3288 
3289 	tcp_ca_dst_init(sk, dst);
3290 
3291 	if (!tp->window_clamp)
3292 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3293 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3294 
3295 	tcp_initialize_rcv_mss(sk);
3296 
3297 	/* limit the window selection if the user enforce a smaller rx buffer */
3298 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3299 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3300 		tp->window_clamp = tcp_full_space(sk);
3301 
3302 	tcp_select_initial_window(tcp_full_space(sk),
3303 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3304 				  &tp->rcv_wnd,
3305 				  &tp->window_clamp,
3306 				  sysctl_tcp_window_scaling,
3307 				  &rcv_wscale,
3308 				  dst_metric(dst, RTAX_INITRWND));
3309 
3310 	tp->rx_opt.rcv_wscale = rcv_wscale;
3311 	tp->rcv_ssthresh = tp->rcv_wnd;
3312 
3313 	sk->sk_err = 0;
3314 	sock_reset_flag(sk, SOCK_DONE);
3315 	tp->snd_wnd = 0;
3316 	tcp_init_wl(tp, 0);
3317 	tp->snd_una = tp->write_seq;
3318 	tp->snd_sml = tp->write_seq;
3319 	tp->snd_up = tp->write_seq;
3320 	tp->snd_nxt = tp->write_seq;
3321 
3322 	if (likely(!tp->repair))
3323 		tp->rcv_nxt = 0;
3324 	else
3325 		tp->rcv_tstamp = tcp_jiffies32;
3326 	tp->rcv_wup = tp->rcv_nxt;
3327 	tp->copied_seq = tp->rcv_nxt;
3328 
3329 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3330 	inet_csk(sk)->icsk_retransmits = 0;
3331 	tcp_clear_retrans(tp);
3332 }
3333 
3334 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3335 {
3336 	struct tcp_sock *tp = tcp_sk(sk);
3337 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3338 
3339 	tcb->end_seq += skb->len;
3340 	__skb_header_release(skb);
3341 	__tcp_add_write_queue_tail(sk, skb);
3342 	sk->sk_wmem_queued += skb->truesize;
3343 	sk_mem_charge(sk, skb->truesize);
3344 	tp->write_seq = tcb->end_seq;
3345 	tp->packets_out += tcp_skb_pcount(skb);
3346 }
3347 
3348 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3349  * queue a data-only packet after the regular SYN, such that regular SYNs
3350  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3351  * only the SYN sequence, the data are retransmitted in the first ACK.
3352  * If cookie is not cached or other error occurs, falls back to send a
3353  * regular SYN with Fast Open cookie request option.
3354  */
3355 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3356 {
3357 	struct tcp_sock *tp = tcp_sk(sk);
3358 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3359 	int space, err = 0;
3360 	struct sk_buff *syn_data;
3361 
3362 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3363 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3364 		goto fallback;
3365 
3366 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3367 	 * user-MSS. Reserve maximum option space for middleboxes that add
3368 	 * private TCP options. The cost is reduced data space in SYN :(
3369 	 */
3370 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3371 
3372 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3373 		MAX_TCP_OPTION_SPACE;
3374 
3375 	space = min_t(size_t, space, fo->size);
3376 
3377 	/* limit to order-0 allocations */
3378 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3379 
3380 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3381 	if (!syn_data)
3382 		goto fallback;
3383 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3384 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3385 	if (space) {
3386 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3387 					    &fo->data->msg_iter);
3388 		if (unlikely(!copied)) {
3389 			kfree_skb(syn_data);
3390 			goto fallback;
3391 		}
3392 		if (copied != space) {
3393 			skb_trim(syn_data, copied);
3394 			space = copied;
3395 		}
3396 	}
3397 	/* No more data pending in inet_wait_for_connect() */
3398 	if (space == fo->size)
3399 		fo->data = NULL;
3400 	fo->copied = space;
3401 
3402 	tcp_connect_queue_skb(sk, syn_data);
3403 	if (syn_data->len)
3404 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3405 
3406 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3407 
3408 	syn->skb_mstamp = syn_data->skb_mstamp;
3409 
3410 	/* Now full SYN+DATA was cloned and sent (or not),
3411 	 * remove the SYN from the original skb (syn_data)
3412 	 * we keep in write queue in case of a retransmit, as we
3413 	 * also have the SYN packet (with no data) in the same queue.
3414 	 */
3415 	TCP_SKB_CB(syn_data)->seq++;
3416 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3417 	if (!err) {
3418 		tp->syn_data = (fo->copied > 0);
3419 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3420 		goto done;
3421 	}
3422 
3423 fallback:
3424 	/* Send a regular SYN with Fast Open cookie request option */
3425 	if (fo->cookie.len > 0)
3426 		fo->cookie.len = 0;
3427 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3428 	if (err)
3429 		tp->syn_fastopen = 0;
3430 done:
3431 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3432 	return err;
3433 }
3434 
3435 /* Build a SYN and send it off. */
3436 int tcp_connect(struct sock *sk)
3437 {
3438 	struct tcp_sock *tp = tcp_sk(sk);
3439 	struct sk_buff *buff;
3440 	int err;
3441 
3442 	tcp_connect_init(sk);
3443 
3444 	if (unlikely(tp->repair)) {
3445 		tcp_finish_connect(sk, NULL);
3446 		return 0;
3447 	}
3448 
3449 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3450 	if (unlikely(!buff))
3451 		return -ENOBUFS;
3452 
3453 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3454 	tcp_mstamp_refresh(tp);
3455 	tp->retrans_stamp = tcp_time_stamp(tp);
3456 	tcp_connect_queue_skb(sk, buff);
3457 	tcp_ecn_send_syn(sk, buff);
3458 
3459 	/* Send off SYN; include data in Fast Open. */
3460 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3461 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3462 	if (err == -ECONNREFUSED)
3463 		return err;
3464 
3465 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3466 	 * in order to make this packet get counted in tcpOutSegs.
3467 	 */
3468 	tp->snd_nxt = tp->write_seq;
3469 	tp->pushed_seq = tp->write_seq;
3470 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3471 
3472 	/* Timer for repeating the SYN until an answer. */
3473 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3474 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3475 	return 0;
3476 }
3477 EXPORT_SYMBOL(tcp_connect);
3478 
3479 /* Send out a delayed ack, the caller does the policy checking
3480  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3481  * for details.
3482  */
3483 void tcp_send_delayed_ack(struct sock *sk)
3484 {
3485 	struct inet_connection_sock *icsk = inet_csk(sk);
3486 	int ato = icsk->icsk_ack.ato;
3487 	unsigned long timeout;
3488 
3489 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3490 
3491 	if (ato > TCP_DELACK_MIN) {
3492 		const struct tcp_sock *tp = tcp_sk(sk);
3493 		int max_ato = HZ / 2;
3494 
3495 		if (icsk->icsk_ack.pingpong ||
3496 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3497 			max_ato = TCP_DELACK_MAX;
3498 
3499 		/* Slow path, intersegment interval is "high". */
3500 
3501 		/* If some rtt estimate is known, use it to bound delayed ack.
3502 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3503 		 * directly.
3504 		 */
3505 		if (tp->srtt_us) {
3506 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3507 					TCP_DELACK_MIN);
3508 
3509 			if (rtt < max_ato)
3510 				max_ato = rtt;
3511 		}
3512 
3513 		ato = min(ato, max_ato);
3514 	}
3515 
3516 	/* Stay within the limit we were given */
3517 	timeout = jiffies + ato;
3518 
3519 	/* Use new timeout only if there wasn't a older one earlier. */
3520 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3521 		/* If delack timer was blocked or is about to expire,
3522 		 * send ACK now.
3523 		 */
3524 		if (icsk->icsk_ack.blocked ||
3525 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3526 			tcp_send_ack(sk);
3527 			return;
3528 		}
3529 
3530 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3531 			timeout = icsk->icsk_ack.timeout;
3532 	}
3533 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3534 	icsk->icsk_ack.timeout = timeout;
3535 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3536 }
3537 
3538 /* This routine sends an ack and also updates the window. */
3539 void tcp_send_ack(struct sock *sk)
3540 {
3541 	struct sk_buff *buff;
3542 
3543 	/* If we have been reset, we may not send again. */
3544 	if (sk->sk_state == TCP_CLOSE)
3545 		return;
3546 
3547 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3548 
3549 	/* We are not putting this on the write queue, so
3550 	 * tcp_transmit_skb() will set the ownership to this
3551 	 * sock.
3552 	 */
3553 	buff = alloc_skb(MAX_TCP_HEADER,
3554 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3555 	if (unlikely(!buff)) {
3556 		inet_csk_schedule_ack(sk);
3557 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3558 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3559 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3560 		return;
3561 	}
3562 
3563 	/* Reserve space for headers and prepare control bits. */
3564 	skb_reserve(buff, MAX_TCP_HEADER);
3565 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3566 
3567 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3568 	 * too much.
3569 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3570 	 */
3571 	skb_set_tcp_pure_ack(buff);
3572 
3573 	/* Send it off, this clears delayed acks for us. */
3574 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3575 }
3576 EXPORT_SYMBOL_GPL(tcp_send_ack);
3577 
3578 /* This routine sends a packet with an out of date sequence
3579  * number. It assumes the other end will try to ack it.
3580  *
3581  * Question: what should we make while urgent mode?
3582  * 4.4BSD forces sending single byte of data. We cannot send
3583  * out of window data, because we have SND.NXT==SND.MAX...
3584  *
3585  * Current solution: to send TWO zero-length segments in urgent mode:
3586  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3587  * out-of-date with SND.UNA-1 to probe window.
3588  */
3589 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3590 {
3591 	struct tcp_sock *tp = tcp_sk(sk);
3592 	struct sk_buff *skb;
3593 
3594 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3595 	skb = alloc_skb(MAX_TCP_HEADER,
3596 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3597 	if (!skb)
3598 		return -1;
3599 
3600 	/* Reserve space for headers and set control bits. */
3601 	skb_reserve(skb, MAX_TCP_HEADER);
3602 	/* Use a previous sequence.  This should cause the other
3603 	 * end to send an ack.  Don't queue or clone SKB, just
3604 	 * send it.
3605 	 */
3606 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3607 	NET_INC_STATS(sock_net(sk), mib);
3608 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3609 }
3610 
3611 /* Called from setsockopt( ... TCP_REPAIR ) */
3612 void tcp_send_window_probe(struct sock *sk)
3613 {
3614 	if (sk->sk_state == TCP_ESTABLISHED) {
3615 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3616 		tcp_mstamp_refresh(tcp_sk(sk));
3617 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3618 	}
3619 }
3620 
3621 /* Initiate keepalive or window probe from timer. */
3622 int tcp_write_wakeup(struct sock *sk, int mib)
3623 {
3624 	struct tcp_sock *tp = tcp_sk(sk);
3625 	struct sk_buff *skb;
3626 
3627 	if (sk->sk_state == TCP_CLOSE)
3628 		return -1;
3629 
3630 	skb = tcp_send_head(sk);
3631 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3632 		int err;
3633 		unsigned int mss = tcp_current_mss(sk);
3634 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3635 
3636 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3637 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3638 
3639 		/* We are probing the opening of a window
3640 		 * but the window size is != 0
3641 		 * must have been a result SWS avoidance ( sender )
3642 		 */
3643 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3644 		    skb->len > mss) {
3645 			seg_size = min(seg_size, mss);
3646 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3647 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3648 				return -1;
3649 		} else if (!tcp_skb_pcount(skb))
3650 			tcp_set_skb_tso_segs(skb, mss);
3651 
3652 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3653 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3654 		if (!err)
3655 			tcp_event_new_data_sent(sk, skb);
3656 		return err;
3657 	} else {
3658 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3659 			tcp_xmit_probe_skb(sk, 1, mib);
3660 		return tcp_xmit_probe_skb(sk, 0, mib);
3661 	}
3662 }
3663 
3664 /* A window probe timeout has occurred.  If window is not closed send
3665  * a partial packet else a zero probe.
3666  */
3667 void tcp_send_probe0(struct sock *sk)
3668 {
3669 	struct inet_connection_sock *icsk = inet_csk(sk);
3670 	struct tcp_sock *tp = tcp_sk(sk);
3671 	struct net *net = sock_net(sk);
3672 	unsigned long probe_max;
3673 	int err;
3674 
3675 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3676 
3677 	if (tp->packets_out || !tcp_send_head(sk)) {
3678 		/* Cancel probe timer, if it is not required. */
3679 		icsk->icsk_probes_out = 0;
3680 		icsk->icsk_backoff = 0;
3681 		return;
3682 	}
3683 
3684 	if (err <= 0) {
3685 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3686 			icsk->icsk_backoff++;
3687 		icsk->icsk_probes_out++;
3688 		probe_max = TCP_RTO_MAX;
3689 	} else {
3690 		/* If packet was not sent due to local congestion,
3691 		 * do not backoff and do not remember icsk_probes_out.
3692 		 * Let local senders to fight for local resources.
3693 		 *
3694 		 * Use accumulated backoff yet.
3695 		 */
3696 		if (!icsk->icsk_probes_out)
3697 			icsk->icsk_probes_out = 1;
3698 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3699 	}
3700 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3701 				  tcp_probe0_when(sk, probe_max),
3702 				  TCP_RTO_MAX);
3703 }
3704 
3705 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3706 {
3707 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3708 	struct flowi fl;
3709 	int res;
3710 
3711 	tcp_rsk(req)->txhash = net_tx_rndhash();
3712 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3713 	if (!res) {
3714 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3715 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3716 		if (unlikely(tcp_passive_fastopen(sk)))
3717 			tcp_sk(sk)->total_retrans++;
3718 	}
3719 	return res;
3720 }
3721 EXPORT_SYMBOL(tcp_rtx_synack);
3722