xref: /openbmc/linux/net/ipv4/tcp_output.c (revision 90bbcc608369a1b46089b0f5aa22b8ea31ffa12e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 		tcp_rearm_rto(sk);
82 	}
83 
84 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 		      tcp_skb_pcount(skb));
86 }
87 
88 /* SND.NXT, if window was not shrunk.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 		return tp->snd_nxt;
100 	else
101 		return tcp_wnd_end(tp);
102 }
103 
104 /* Calculate mss to advertise in SYN segment.
105  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106  *
107  * 1. It is independent of path mtu.
108  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110  *    attached devices, because some buggy hosts are confused by
111  *    large MSS.
112  * 4. We do not make 3, we advertise MSS, calculated from first
113  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
114  *    This may be overridden via information stored in routing table.
115  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116  *    probably even Jumbo".
117  */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 	struct tcp_sock *tp = tcp_sk(sk);
121 	const struct dst_entry *dst = __sk_dst_get(sk);
122 	int mss = tp->advmss;
123 
124 	if (dst) {
125 		unsigned int metric = dst_metric_advmss(dst);
126 
127 		if (metric < mss) {
128 			mss = metric;
129 			tp->advmss = mss;
130 		}
131 	}
132 
133 	return (__u16)mss;
134 }
135 
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137  * This is the first part of cwnd validation mechanism.
138  */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 	struct tcp_sock *tp = tcp_sk(sk);
142 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 	u32 cwnd = tp->snd_cwnd;
144 
145 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146 
147 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 	restart_cwnd = min(restart_cwnd, cwnd);
149 
150 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 		cwnd >>= 1;
152 	tp->snd_cwnd = max(cwnd, restart_cwnd);
153 	tp->snd_cwnd_stamp = tcp_time_stamp;
154 	tp->snd_cwnd_used = 0;
155 }
156 
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 				struct sock *sk)
160 {
161 	struct inet_connection_sock *icsk = inet_csk(sk);
162 	const u32 now = tcp_time_stamp;
163 
164 	if (tcp_packets_in_flight(tp) == 0)
165 		tcp_ca_event(sk, CA_EVENT_TX_START);
166 
167 	tp->lsndtime = now;
168 
169 	/* If it is a reply for ato after last received
170 	 * packet, enter pingpong mode.
171 	 */
172 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 		icsk->icsk_ack.pingpong = 1;
174 }
175 
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 	tcp_dec_quickack_mode(sk, pkts);
180 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182 
183 
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 	/* Initial receive window should be twice of TCP_INIT_CWND to
187 	 * enable proper sending of new unsent data during fast recovery
188 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 	 * limit when mss is larger than 1460.
190 	 */
191 	u32 init_rwnd = TCP_INIT_CWND * 2;
192 
193 	if (mss > 1460)
194 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 	return init_rwnd;
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (65535 << 14);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = (space / mss) * mss;
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (sysctl_tcp_workaround_signed_windows)
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = space;
233 
234 	(*rcv_wscale) = 0;
235 	if (wscale_ok) {
236 		/* Set window scaling on max possible window
237 		 * See RFC1323 for an explanation of the limit to 14
238 		 */
239 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
240 		space = min_t(u32, space, *window_clamp);
241 		while (space > 65535 && (*rcv_wscale) < 14) {
242 			space >>= 1;
243 			(*rcv_wscale)++;
244 		}
245 	}
246 
247 	if (mss > (1 << *rcv_wscale)) {
248 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 			init_rcv_wnd = tcp_default_init_rwnd(mss);
250 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 	}
252 
253 	/* Set the clamp no higher than max representable value */
254 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257 
258 /* Chose a new window to advertise, update state in tcp_sock for the
259  * socket, and return result with RFC1323 scaling applied.  The return
260  * value can be stuffed directly into th->window for an outgoing
261  * frame.
262  */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 	struct tcp_sock *tp = tcp_sk(sk);
266 	u32 old_win = tp->rcv_wnd;
267 	u32 cur_win = tcp_receive_window(tp);
268 	u32 new_win = __tcp_select_window(sk);
269 
270 	/* Never shrink the offered window */
271 	if (new_win < cur_win) {
272 		/* Danger Will Robinson!
273 		 * Don't update rcv_wup/rcv_wnd here or else
274 		 * we will not be able to advertise a zero
275 		 * window in time.  --DaveM
276 		 *
277 		 * Relax Will Robinson.
278 		 */
279 		if (new_win == 0)
280 			NET_INC_STATS(sock_net(sk),
281 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
282 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 	}
284 	tp->rcv_wnd = new_win;
285 	tp->rcv_wup = tp->rcv_nxt;
286 
287 	/* Make sure we do not exceed the maximum possible
288 	 * scaled window.
289 	 */
290 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 		new_win = min(new_win, MAX_TCP_WINDOW);
292 	else
293 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294 
295 	/* RFC1323 scaling applied */
296 	new_win >>= tp->rx_opt.rcv_wscale;
297 
298 	/* If we advertise zero window, disable fast path. */
299 	if (new_win == 0) {
300 		tp->pred_flags = 0;
301 		if (old_win)
302 			NET_INC_STATS(sock_net(sk),
303 				      LINUX_MIB_TCPTOZEROWINDOWADV);
304 	} else if (old_win == 0) {
305 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
306 	}
307 
308 	return new_win;
309 }
310 
311 /* Packet ECN state for a SYN-ACK */
312 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
313 {
314 	const struct tcp_sock *tp = tcp_sk(sk);
315 
316 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
317 	if (!(tp->ecn_flags & TCP_ECN_OK))
318 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
319 	else if (tcp_ca_needs_ecn(sk))
320 		INET_ECN_xmit(sk);
321 }
322 
323 /* Packet ECN state for a SYN.  */
324 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 {
326 	struct tcp_sock *tp = tcp_sk(sk);
327 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 		       tcp_ca_needs_ecn(sk);
329 
330 	if (!use_ecn) {
331 		const struct dst_entry *dst = __sk_dst_get(sk);
332 
333 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 			use_ecn = true;
335 	}
336 
337 	tp->ecn_flags = 0;
338 
339 	if (use_ecn) {
340 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 		tp->ecn_flags = TCP_ECN_OK;
342 		if (tcp_ca_needs_ecn(sk))
343 			INET_ECN_xmit(sk);
344 	}
345 }
346 
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 		/* tp->ecn_flags are cleared at a later point in time when
351 		 * SYN ACK is ultimatively being received.
352 		 */
353 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355 
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 	if (inet_rsk(req)->ecn_ok)
360 		th->ece = 1;
361 }
362 
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364  * be sent.
365  */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 				int tcp_header_len)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 
371 	if (tp->ecn_flags & TCP_ECN_OK) {
372 		/* Not-retransmitted data segment: set ECT and inject CWR. */
373 		if (skb->len != tcp_header_len &&
374 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 			INET_ECN_xmit(sk);
376 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 				tcp_hdr(skb)->cwr = 1;
379 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 			}
381 		} else if (!tcp_ca_needs_ecn(sk)) {
382 			/* ACK or retransmitted segment: clear ECT|CE */
383 			INET_ECN_dontxmit(sk);
384 		}
385 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 			tcp_hdr(skb)->ece = 1;
387 	}
388 }
389 
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391  * auto increment end seqno.
392  */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 	skb->ip_summed = CHECKSUM_PARTIAL;
396 	skb->csum = 0;
397 
398 	TCP_SKB_CB(skb)->tcp_flags = flags;
399 	TCP_SKB_CB(skb)->sacked = 0;
400 
401 	tcp_skb_pcount_set(skb, 1);
402 
403 	TCP_SKB_CB(skb)->seq = seq;
404 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 		seq++;
406 	TCP_SKB_CB(skb)->end_seq = seq;
407 }
408 
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 {
411 	return tp->snd_una != tp->snd_up;
412 }
413 
414 #define OPTION_SACK_ADVERTISE	(1 << 0)
415 #define OPTION_TS		(1 << 1)
416 #define OPTION_MD5		(1 << 2)
417 #define OPTION_WSCALE		(1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
419 
420 struct tcp_out_options {
421 	u16 options;		/* bit field of OPTION_* */
422 	u16 mss;		/* 0 to disable */
423 	u8 ws;			/* window scale, 0 to disable */
424 	u8 num_sack_blocks;	/* number of SACK blocks to include */
425 	u8 hash_size;		/* bytes in hash_location */
426 	__u8 *hash_location;	/* temporary pointer, overloaded */
427 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
428 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
429 };
430 
431 /* Write previously computed TCP options to the packet.
432  *
433  * Beware: Something in the Internet is very sensitive to the ordering of
434  * TCP options, we learned this through the hard way, so be careful here.
435  * Luckily we can at least blame others for their non-compliance but from
436  * inter-operability perspective it seems that we're somewhat stuck with
437  * the ordering which we have been using if we want to keep working with
438  * those broken things (not that it currently hurts anybody as there isn't
439  * particular reason why the ordering would need to be changed).
440  *
441  * At least SACK_PERM as the first option is known to lead to a disaster
442  * (but it may well be that other scenarios fail similarly).
443  */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 			      struct tcp_out_options *opts)
446 {
447 	u16 options = opts->options;	/* mungable copy */
448 
449 	if (unlikely(OPTION_MD5 & options)) {
450 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 		/* overload cookie hash location */
453 		opts->hash_location = (__u8 *)ptr;
454 		ptr += 4;
455 	}
456 
457 	if (unlikely(opts->mss)) {
458 		*ptr++ = htonl((TCPOPT_MSS << 24) |
459 			       (TCPOLEN_MSS << 16) |
460 			       opts->mss);
461 	}
462 
463 	if (likely(OPTION_TS & options)) {
464 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 				       (TCPOLEN_SACK_PERM << 16) |
467 				       (TCPOPT_TIMESTAMP << 8) |
468 				       TCPOLEN_TIMESTAMP);
469 			options &= ~OPTION_SACK_ADVERTISE;
470 		} else {
471 			*ptr++ = htonl((TCPOPT_NOP << 24) |
472 				       (TCPOPT_NOP << 16) |
473 				       (TCPOPT_TIMESTAMP << 8) |
474 				       TCPOLEN_TIMESTAMP);
475 		}
476 		*ptr++ = htonl(opts->tsval);
477 		*ptr++ = htonl(opts->tsecr);
478 	}
479 
480 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 		*ptr++ = htonl((TCPOPT_NOP << 24) |
482 			       (TCPOPT_NOP << 16) |
483 			       (TCPOPT_SACK_PERM << 8) |
484 			       TCPOLEN_SACK_PERM);
485 	}
486 
487 	if (unlikely(OPTION_WSCALE & options)) {
488 		*ptr++ = htonl((TCPOPT_NOP << 24) |
489 			       (TCPOPT_WINDOW << 16) |
490 			       (TCPOLEN_WINDOW << 8) |
491 			       opts->ws);
492 	}
493 
494 	if (unlikely(opts->num_sack_blocks)) {
495 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 			tp->duplicate_sack : tp->selective_acks;
497 		int this_sack;
498 
499 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
500 			       (TCPOPT_NOP  << 16) |
501 			       (TCPOPT_SACK <<  8) |
502 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 						     TCPOLEN_SACK_PERBLOCK)));
504 
505 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 		     ++this_sack) {
507 			*ptr++ = htonl(sp[this_sack].start_seq);
508 			*ptr++ = htonl(sp[this_sack].end_seq);
509 		}
510 
511 		tp->rx_opt.dsack = 0;
512 	}
513 
514 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 		u8 *p = (u8 *)ptr;
517 		u32 len; /* Fast Open option length */
518 
519 		if (foc->exp) {
520 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 				     TCPOPT_FASTOPEN_MAGIC);
523 			p += TCPOLEN_EXP_FASTOPEN_BASE;
524 		} else {
525 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 			*p++ = TCPOPT_FASTOPEN;
527 			*p++ = len;
528 		}
529 
530 		memcpy(p, foc->val, foc->len);
531 		if ((len & 3) == 2) {
532 			p[foc->len] = TCPOPT_NOP;
533 			p[foc->len + 1] = TCPOPT_NOP;
534 		}
535 		ptr += (len + 3) >> 2;
536 	}
537 }
538 
539 /* Compute TCP options for SYN packets. This is not the final
540  * network wire format yet.
541  */
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 				struct tcp_out_options *opts,
544 				struct tcp_md5sig_key **md5)
545 {
546 	struct tcp_sock *tp = tcp_sk(sk);
547 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549 
550 #ifdef CONFIG_TCP_MD5SIG
551 	*md5 = tp->af_specific->md5_lookup(sk, sk);
552 	if (*md5) {
553 		opts->options |= OPTION_MD5;
554 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 	}
556 #else
557 	*md5 = NULL;
558 #endif
559 
560 	/* We always get an MSS option.  The option bytes which will be seen in
561 	 * normal data packets should timestamps be used, must be in the MSS
562 	 * advertised.  But we subtract them from tp->mss_cache so that
563 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
564 	 * fact here if necessary.  If we don't do this correctly, as a
565 	 * receiver we won't recognize data packets as being full sized when we
566 	 * should, and thus we won't abide by the delayed ACK rules correctly.
567 	 * SACKs don't matter, we never delay an ACK when we have any of those
568 	 * going out.  */
569 	opts->mss = tcp_advertise_mss(sk);
570 	remaining -= TCPOLEN_MSS_ALIGNED;
571 
572 	if (likely(sysctl_tcp_timestamps && !*md5)) {
573 		opts->options |= OPTION_TS;
574 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 		opts->tsecr = tp->rx_opt.ts_recent;
576 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 	}
578 	if (likely(sysctl_tcp_window_scaling)) {
579 		opts->ws = tp->rx_opt.rcv_wscale;
580 		opts->options |= OPTION_WSCALE;
581 		remaining -= TCPOLEN_WSCALE_ALIGNED;
582 	}
583 	if (likely(sysctl_tcp_sack)) {
584 		opts->options |= OPTION_SACK_ADVERTISE;
585 		if (unlikely(!(OPTION_TS & opts->options)))
586 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
587 	}
588 
589 	if (fastopen && fastopen->cookie.len >= 0) {
590 		u32 need = fastopen->cookie.len;
591 
592 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 					       TCPOLEN_FASTOPEN_BASE;
594 		need = (need + 3) & ~3U;  /* Align to 32 bits */
595 		if (remaining >= need) {
596 			opts->options |= OPTION_FAST_OPEN_COOKIE;
597 			opts->fastopen_cookie = &fastopen->cookie;
598 			remaining -= need;
599 			tp->syn_fastopen = 1;
600 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
601 		}
602 	}
603 
604 	return MAX_TCP_OPTION_SPACE - remaining;
605 }
606 
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 				       unsigned int mss, struct sk_buff *skb,
610 				       struct tcp_out_options *opts,
611 				       const struct tcp_md5sig_key *md5,
612 				       struct tcp_fastopen_cookie *foc)
613 {
614 	struct inet_request_sock *ireq = inet_rsk(req);
615 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
616 
617 #ifdef CONFIG_TCP_MD5SIG
618 	if (md5) {
619 		opts->options |= OPTION_MD5;
620 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
621 
622 		/* We can't fit any SACK blocks in a packet with MD5 + TS
623 		 * options. There was discussion about disabling SACK
624 		 * rather than TS in order to fit in better with old,
625 		 * buggy kernels, but that was deemed to be unnecessary.
626 		 */
627 		ireq->tstamp_ok &= !ireq->sack_ok;
628 	}
629 #endif
630 
631 	/* We always send an MSS option. */
632 	opts->mss = mss;
633 	remaining -= TCPOLEN_MSS_ALIGNED;
634 
635 	if (likely(ireq->wscale_ok)) {
636 		opts->ws = ireq->rcv_wscale;
637 		opts->options |= OPTION_WSCALE;
638 		remaining -= TCPOLEN_WSCALE_ALIGNED;
639 	}
640 	if (likely(ireq->tstamp_ok)) {
641 		opts->options |= OPTION_TS;
642 		opts->tsval = tcp_skb_timestamp(skb);
643 		opts->tsecr = req->ts_recent;
644 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 	}
646 	if (likely(ireq->sack_ok)) {
647 		opts->options |= OPTION_SACK_ADVERTISE;
648 		if (unlikely(!ireq->tstamp_ok))
649 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 	}
651 	if (foc != NULL && foc->len >= 0) {
652 		u32 need = foc->len;
653 
654 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 				   TCPOLEN_FASTOPEN_BASE;
656 		need = (need + 3) & ~3U;  /* Align to 32 bits */
657 		if (remaining >= need) {
658 			opts->options |= OPTION_FAST_OPEN_COOKIE;
659 			opts->fastopen_cookie = foc;
660 			remaining -= need;
661 		}
662 	}
663 
664 	return MAX_TCP_OPTION_SPACE - remaining;
665 }
666 
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668  * final wire format yet.
669  */
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 					struct tcp_out_options *opts,
672 					struct tcp_md5sig_key **md5)
673 {
674 	struct tcp_sock *tp = tcp_sk(sk);
675 	unsigned int size = 0;
676 	unsigned int eff_sacks;
677 
678 	opts->options = 0;
679 
680 #ifdef CONFIG_TCP_MD5SIG
681 	*md5 = tp->af_specific->md5_lookup(sk, sk);
682 	if (unlikely(*md5)) {
683 		opts->options |= OPTION_MD5;
684 		size += TCPOLEN_MD5SIG_ALIGNED;
685 	}
686 #else
687 	*md5 = NULL;
688 #endif
689 
690 	if (likely(tp->rx_opt.tstamp_ok)) {
691 		opts->options |= OPTION_TS;
692 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 		opts->tsecr = tp->rx_opt.ts_recent;
694 		size += TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 
697 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 	if (unlikely(eff_sacks)) {
699 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 		opts->num_sack_blocks =
701 			min_t(unsigned int, eff_sacks,
702 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 			      TCPOLEN_SACK_PERBLOCK);
704 		size += TCPOLEN_SACK_BASE_ALIGNED +
705 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
706 	}
707 
708 	return size;
709 }
710 
711 
712 /* TCP SMALL QUEUES (TSQ)
713  *
714  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715  * to reduce RTT and bufferbloat.
716  * We do this using a special skb destructor (tcp_wfree).
717  *
718  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719  * needs to be reallocated in a driver.
720  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721  *
722  * Since transmit from skb destructor is forbidden, we use a tasklet
723  * to process all sockets that eventually need to send more skbs.
724  * We use one tasklet per cpu, with its own queue of sockets.
725  */
726 struct tsq_tasklet {
727 	struct tasklet_struct	tasklet;
728 	struct list_head	head; /* queue of tcp sockets */
729 };
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731 
732 static void tcp_tsq_handler(struct sock *sk)
733 {
734 	if ((1 << sk->sk_state) &
735 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
737 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
738 			       0, GFP_ATOMIC);
739 }
740 /*
741  * One tasklet per cpu tries to send more skbs.
742  * We run in tasklet context but need to disable irqs when
743  * transferring tsq->head because tcp_wfree() might
744  * interrupt us (non NAPI drivers)
745  */
746 static void tcp_tasklet_func(unsigned long data)
747 {
748 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
749 	LIST_HEAD(list);
750 	unsigned long flags;
751 	struct list_head *q, *n;
752 	struct tcp_sock *tp;
753 	struct sock *sk;
754 
755 	local_irq_save(flags);
756 	list_splice_init(&tsq->head, &list);
757 	local_irq_restore(flags);
758 
759 	list_for_each_safe(q, n, &list) {
760 		tp = list_entry(q, struct tcp_sock, tsq_node);
761 		list_del(&tp->tsq_node);
762 
763 		sk = (struct sock *)tp;
764 		bh_lock_sock(sk);
765 
766 		if (!sock_owned_by_user(sk)) {
767 			tcp_tsq_handler(sk);
768 		} else {
769 			/* defer the work to tcp_release_cb() */
770 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
771 		}
772 		bh_unlock_sock(sk);
773 
774 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
775 		sk_free(sk);
776 	}
777 }
778 
779 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
780 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
781 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
782 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
783 /**
784  * tcp_release_cb - tcp release_sock() callback
785  * @sk: socket
786  *
787  * called from release_sock() to perform protocol dependent
788  * actions before socket release.
789  */
790 void tcp_release_cb(struct sock *sk)
791 {
792 	struct tcp_sock *tp = tcp_sk(sk);
793 	unsigned long flags, nflags;
794 
795 	/* perform an atomic operation only if at least one flag is set */
796 	do {
797 		flags = tp->tsq_flags;
798 		if (!(flags & TCP_DEFERRED_ALL))
799 			return;
800 		nflags = flags & ~TCP_DEFERRED_ALL;
801 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
802 
803 	if (flags & (1UL << TCP_TSQ_DEFERRED))
804 		tcp_tsq_handler(sk);
805 
806 	/* Here begins the tricky part :
807 	 * We are called from release_sock() with :
808 	 * 1) BH disabled
809 	 * 2) sk_lock.slock spinlock held
810 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
811 	 *
812 	 * But following code is meant to be called from BH handlers,
813 	 * so we should keep BH disabled, but early release socket ownership
814 	 */
815 	sock_release_ownership(sk);
816 
817 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
818 		tcp_write_timer_handler(sk);
819 		__sock_put(sk);
820 	}
821 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
822 		tcp_delack_timer_handler(sk);
823 		__sock_put(sk);
824 	}
825 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
826 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
827 		__sock_put(sk);
828 	}
829 }
830 EXPORT_SYMBOL(tcp_release_cb);
831 
832 void __init tcp_tasklet_init(void)
833 {
834 	int i;
835 
836 	for_each_possible_cpu(i) {
837 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
838 
839 		INIT_LIST_HEAD(&tsq->head);
840 		tasklet_init(&tsq->tasklet,
841 			     tcp_tasklet_func,
842 			     (unsigned long)tsq);
843 	}
844 }
845 
846 /*
847  * Write buffer destructor automatically called from kfree_skb.
848  * We can't xmit new skbs from this context, as we might already
849  * hold qdisc lock.
850  */
851 void tcp_wfree(struct sk_buff *skb)
852 {
853 	struct sock *sk = skb->sk;
854 	struct tcp_sock *tp = tcp_sk(sk);
855 	int wmem;
856 
857 	/* Keep one reference on sk_wmem_alloc.
858 	 * Will be released by sk_free() from here or tcp_tasklet_func()
859 	 */
860 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
861 
862 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
863 	 * Wait until our queues (qdisc + devices) are drained.
864 	 * This gives :
865 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
866 	 * - chance for incoming ACK (processed by another cpu maybe)
867 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
868 	 */
869 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
870 		goto out;
871 
872 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
873 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
874 		unsigned long flags;
875 		struct tsq_tasklet *tsq;
876 
877 		/* queue this socket to tasklet queue */
878 		local_irq_save(flags);
879 		tsq = this_cpu_ptr(&tsq_tasklet);
880 		list_add(&tp->tsq_node, &tsq->head);
881 		tasklet_schedule(&tsq->tasklet);
882 		local_irq_restore(flags);
883 		return;
884 	}
885 out:
886 	sk_free(sk);
887 }
888 
889 /* This routine actually transmits TCP packets queued in by
890  * tcp_do_sendmsg().  This is used by both the initial
891  * transmission and possible later retransmissions.
892  * All SKB's seen here are completely headerless.  It is our
893  * job to build the TCP header, and pass the packet down to
894  * IP so it can do the same plus pass the packet off to the
895  * device.
896  *
897  * We are working here with either a clone of the original
898  * SKB, or a fresh unique copy made by the retransmit engine.
899  */
900 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
901 			    gfp_t gfp_mask)
902 {
903 	const struct inet_connection_sock *icsk = inet_csk(sk);
904 	struct inet_sock *inet;
905 	struct tcp_sock *tp;
906 	struct tcp_skb_cb *tcb;
907 	struct tcp_out_options opts;
908 	unsigned int tcp_options_size, tcp_header_size;
909 	struct tcp_md5sig_key *md5;
910 	struct tcphdr *th;
911 	int err;
912 
913 	BUG_ON(!skb || !tcp_skb_pcount(skb));
914 
915 	if (clone_it) {
916 		skb_mstamp_get(&skb->skb_mstamp);
917 
918 		if (unlikely(skb_cloned(skb)))
919 			skb = pskb_copy(skb, gfp_mask);
920 		else
921 			skb = skb_clone(skb, gfp_mask);
922 		if (unlikely(!skb))
923 			return -ENOBUFS;
924 	}
925 
926 	inet = inet_sk(sk);
927 	tp = tcp_sk(sk);
928 	tcb = TCP_SKB_CB(skb);
929 	memset(&opts, 0, sizeof(opts));
930 
931 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
932 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
933 	else
934 		tcp_options_size = tcp_established_options(sk, skb, &opts,
935 							   &md5);
936 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
937 
938 	/* if no packet is in qdisc/device queue, then allow XPS to select
939 	 * another queue. We can be called from tcp_tsq_handler()
940 	 * which holds one reference to sk_wmem_alloc.
941 	 *
942 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
943 	 * One way to get this would be to set skb->truesize = 2 on them.
944 	 */
945 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
946 
947 	skb_push(skb, tcp_header_size);
948 	skb_reset_transport_header(skb);
949 
950 	skb_orphan(skb);
951 	skb->sk = sk;
952 	skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
953 	skb_set_hash_from_sk(skb, sk);
954 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
955 
956 	/* Build TCP header and checksum it. */
957 	th = tcp_hdr(skb);
958 	th->source		= inet->inet_sport;
959 	th->dest		= inet->inet_dport;
960 	th->seq			= htonl(tcb->seq);
961 	th->ack_seq		= htonl(tp->rcv_nxt);
962 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
963 					tcb->tcp_flags);
964 
965 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
966 		/* RFC1323: The window in SYN & SYN/ACK segments
967 		 * is never scaled.
968 		 */
969 		th->window	= htons(min(tp->rcv_wnd, 65535U));
970 	} else {
971 		th->window	= htons(tcp_select_window(sk));
972 	}
973 	th->check		= 0;
974 	th->urg_ptr		= 0;
975 
976 	/* The urg_mode check is necessary during a below snd_una win probe */
977 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
978 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
979 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
980 			th->urg = 1;
981 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
982 			th->urg_ptr = htons(0xFFFF);
983 			th->urg = 1;
984 		}
985 	}
986 
987 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
988 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
989 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
990 		tcp_ecn_send(sk, skb, tcp_header_size);
991 
992 #ifdef CONFIG_TCP_MD5SIG
993 	/* Calculate the MD5 hash, as we have all we need now */
994 	if (md5) {
995 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
996 		tp->af_specific->calc_md5_hash(opts.hash_location,
997 					       md5, sk, skb);
998 	}
999 #endif
1000 
1001 	icsk->icsk_af_ops->send_check(sk, skb);
1002 
1003 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1004 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1005 
1006 	if (skb->len != tcp_header_size) {
1007 		tcp_event_data_sent(tp, sk);
1008 		tp->data_segs_out += tcp_skb_pcount(skb);
1009 	}
1010 
1011 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1012 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1013 			      tcp_skb_pcount(skb));
1014 
1015 	tp->segs_out += tcp_skb_pcount(skb);
1016 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1017 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1018 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1019 
1020 	/* Our usage of tstamp should remain private */
1021 	skb->tstamp.tv64 = 0;
1022 
1023 	/* Cleanup our debris for IP stacks */
1024 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1025 			       sizeof(struct inet6_skb_parm)));
1026 
1027 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1028 
1029 	if (likely(err <= 0))
1030 		return err;
1031 
1032 	tcp_enter_cwr(sk);
1033 
1034 	return net_xmit_eval(err);
1035 }
1036 
1037 /* This routine just queues the buffer for sending.
1038  *
1039  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1040  * otherwise socket can stall.
1041  */
1042 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1043 {
1044 	struct tcp_sock *tp = tcp_sk(sk);
1045 
1046 	/* Advance write_seq and place onto the write_queue. */
1047 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1048 	__skb_header_release(skb);
1049 	tcp_add_write_queue_tail(sk, skb);
1050 	sk->sk_wmem_queued += skb->truesize;
1051 	sk_mem_charge(sk, skb->truesize);
1052 }
1053 
1054 /* Initialize TSO segments for a packet. */
1055 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1056 {
1057 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1058 		/* Avoid the costly divide in the normal
1059 		 * non-TSO case.
1060 		 */
1061 		tcp_skb_pcount_set(skb, 1);
1062 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1063 	} else {
1064 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1065 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1066 	}
1067 }
1068 
1069 /* When a modification to fackets out becomes necessary, we need to check
1070  * skb is counted to fackets_out or not.
1071  */
1072 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1073 				   int decr)
1074 {
1075 	struct tcp_sock *tp = tcp_sk(sk);
1076 
1077 	if (!tp->sacked_out || tcp_is_reno(tp))
1078 		return;
1079 
1080 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1081 		tp->fackets_out -= decr;
1082 }
1083 
1084 /* Pcount in the middle of the write queue got changed, we need to do various
1085  * tweaks to fix counters
1086  */
1087 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1088 {
1089 	struct tcp_sock *tp = tcp_sk(sk);
1090 
1091 	tp->packets_out -= decr;
1092 
1093 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1094 		tp->sacked_out -= decr;
1095 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1096 		tp->retrans_out -= decr;
1097 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1098 		tp->lost_out -= decr;
1099 
1100 	/* Reno case is special. Sigh... */
1101 	if (tcp_is_reno(tp) && decr > 0)
1102 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1103 
1104 	tcp_adjust_fackets_out(sk, skb, decr);
1105 
1106 	if (tp->lost_skb_hint &&
1107 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1108 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1109 		tp->lost_cnt_hint -= decr;
1110 
1111 	tcp_verify_left_out(tp);
1112 }
1113 
1114 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1115 {
1116 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1117 
1118 	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1119 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1120 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1121 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1122 
1123 		shinfo->tx_flags &= ~tsflags;
1124 		shinfo2->tx_flags |= tsflags;
1125 		swap(shinfo->tskey, shinfo2->tskey);
1126 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1127 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1128 	}
1129 }
1130 
1131 /* Function to create two new TCP segments.  Shrinks the given segment
1132  * to the specified size and appends a new segment with the rest of the
1133  * packet to the list.  This won't be called frequently, I hope.
1134  * Remember, these are still headerless SKBs at this point.
1135  */
1136 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1137 		 unsigned int mss_now, gfp_t gfp)
1138 {
1139 	struct tcp_sock *tp = tcp_sk(sk);
1140 	struct sk_buff *buff;
1141 	int nsize, old_factor;
1142 	int nlen;
1143 	u8 flags;
1144 
1145 	if (WARN_ON(len > skb->len))
1146 		return -EINVAL;
1147 
1148 	nsize = skb_headlen(skb) - len;
1149 	if (nsize < 0)
1150 		nsize = 0;
1151 
1152 	if (skb_unclone(skb, gfp))
1153 		return -ENOMEM;
1154 
1155 	/* Get a new skb... force flag on. */
1156 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1157 	if (!buff)
1158 		return -ENOMEM; /* We'll just try again later. */
1159 
1160 	sk->sk_wmem_queued += buff->truesize;
1161 	sk_mem_charge(sk, buff->truesize);
1162 	nlen = skb->len - len - nsize;
1163 	buff->truesize += nlen;
1164 	skb->truesize -= nlen;
1165 
1166 	/* Correct the sequence numbers. */
1167 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1168 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1169 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1170 
1171 	/* PSH and FIN should only be set in the second packet. */
1172 	flags = TCP_SKB_CB(skb)->tcp_flags;
1173 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1174 	TCP_SKB_CB(buff)->tcp_flags = flags;
1175 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1176 
1177 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1178 		/* Copy and checksum data tail into the new buffer. */
1179 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1180 						       skb_put(buff, nsize),
1181 						       nsize, 0);
1182 
1183 		skb_trim(skb, len);
1184 
1185 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1186 	} else {
1187 		skb->ip_summed = CHECKSUM_PARTIAL;
1188 		skb_split(skb, buff, len);
1189 	}
1190 
1191 	buff->ip_summed = skb->ip_summed;
1192 
1193 	buff->tstamp = skb->tstamp;
1194 	tcp_fragment_tstamp(skb, buff);
1195 
1196 	old_factor = tcp_skb_pcount(skb);
1197 
1198 	/* Fix up tso_factor for both original and new SKB.  */
1199 	tcp_set_skb_tso_segs(skb, mss_now);
1200 	tcp_set_skb_tso_segs(buff, mss_now);
1201 
1202 	/* If this packet has been sent out already, we must
1203 	 * adjust the various packet counters.
1204 	 */
1205 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1206 		int diff = old_factor - tcp_skb_pcount(skb) -
1207 			tcp_skb_pcount(buff);
1208 
1209 		if (diff)
1210 			tcp_adjust_pcount(sk, skb, diff);
1211 	}
1212 
1213 	/* Link BUFF into the send queue. */
1214 	__skb_header_release(buff);
1215 	tcp_insert_write_queue_after(skb, buff, sk);
1216 
1217 	return 0;
1218 }
1219 
1220 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1221  * eventually). The difference is that pulled data not copied, but
1222  * immediately discarded.
1223  */
1224 static void __pskb_trim_head(struct sk_buff *skb, int len)
1225 {
1226 	struct skb_shared_info *shinfo;
1227 	int i, k, eat;
1228 
1229 	eat = min_t(int, len, skb_headlen(skb));
1230 	if (eat) {
1231 		__skb_pull(skb, eat);
1232 		len -= eat;
1233 		if (!len)
1234 			return;
1235 	}
1236 	eat = len;
1237 	k = 0;
1238 	shinfo = skb_shinfo(skb);
1239 	for (i = 0; i < shinfo->nr_frags; i++) {
1240 		int size = skb_frag_size(&shinfo->frags[i]);
1241 
1242 		if (size <= eat) {
1243 			skb_frag_unref(skb, i);
1244 			eat -= size;
1245 		} else {
1246 			shinfo->frags[k] = shinfo->frags[i];
1247 			if (eat) {
1248 				shinfo->frags[k].page_offset += eat;
1249 				skb_frag_size_sub(&shinfo->frags[k], eat);
1250 				eat = 0;
1251 			}
1252 			k++;
1253 		}
1254 	}
1255 	shinfo->nr_frags = k;
1256 
1257 	skb_reset_tail_pointer(skb);
1258 	skb->data_len -= len;
1259 	skb->len = skb->data_len;
1260 }
1261 
1262 /* Remove acked data from a packet in the transmit queue. */
1263 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1264 {
1265 	if (skb_unclone(skb, GFP_ATOMIC))
1266 		return -ENOMEM;
1267 
1268 	__pskb_trim_head(skb, len);
1269 
1270 	TCP_SKB_CB(skb)->seq += len;
1271 	skb->ip_summed = CHECKSUM_PARTIAL;
1272 
1273 	skb->truesize	     -= len;
1274 	sk->sk_wmem_queued   -= len;
1275 	sk_mem_uncharge(sk, len);
1276 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1277 
1278 	/* Any change of skb->len requires recalculation of tso factor. */
1279 	if (tcp_skb_pcount(skb) > 1)
1280 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1281 
1282 	return 0;
1283 }
1284 
1285 /* Calculate MSS not accounting any TCP options.  */
1286 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1287 {
1288 	const struct tcp_sock *tp = tcp_sk(sk);
1289 	const struct inet_connection_sock *icsk = inet_csk(sk);
1290 	int mss_now;
1291 
1292 	/* Calculate base mss without TCP options:
1293 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1294 	 */
1295 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1296 
1297 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1298 	if (icsk->icsk_af_ops->net_frag_header_len) {
1299 		const struct dst_entry *dst = __sk_dst_get(sk);
1300 
1301 		if (dst && dst_allfrag(dst))
1302 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1303 	}
1304 
1305 	/* Clamp it (mss_clamp does not include tcp options) */
1306 	if (mss_now > tp->rx_opt.mss_clamp)
1307 		mss_now = tp->rx_opt.mss_clamp;
1308 
1309 	/* Now subtract optional transport overhead */
1310 	mss_now -= icsk->icsk_ext_hdr_len;
1311 
1312 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1313 	if (mss_now < 48)
1314 		mss_now = 48;
1315 	return mss_now;
1316 }
1317 
1318 /* Calculate MSS. Not accounting for SACKs here.  */
1319 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1320 {
1321 	/* Subtract TCP options size, not including SACKs */
1322 	return __tcp_mtu_to_mss(sk, pmtu) -
1323 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1324 }
1325 
1326 /* Inverse of above */
1327 int tcp_mss_to_mtu(struct sock *sk, int mss)
1328 {
1329 	const struct tcp_sock *tp = tcp_sk(sk);
1330 	const struct inet_connection_sock *icsk = inet_csk(sk);
1331 	int mtu;
1332 
1333 	mtu = mss +
1334 	      tp->tcp_header_len +
1335 	      icsk->icsk_ext_hdr_len +
1336 	      icsk->icsk_af_ops->net_header_len;
1337 
1338 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1339 	if (icsk->icsk_af_ops->net_frag_header_len) {
1340 		const struct dst_entry *dst = __sk_dst_get(sk);
1341 
1342 		if (dst && dst_allfrag(dst))
1343 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1344 	}
1345 	return mtu;
1346 }
1347 
1348 /* MTU probing init per socket */
1349 void tcp_mtup_init(struct sock *sk)
1350 {
1351 	struct tcp_sock *tp = tcp_sk(sk);
1352 	struct inet_connection_sock *icsk = inet_csk(sk);
1353 	struct net *net = sock_net(sk);
1354 
1355 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1356 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1357 			       icsk->icsk_af_ops->net_header_len;
1358 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1359 	icsk->icsk_mtup.probe_size = 0;
1360 	if (icsk->icsk_mtup.enabled)
1361 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1362 }
1363 EXPORT_SYMBOL(tcp_mtup_init);
1364 
1365 /* This function synchronize snd mss to current pmtu/exthdr set.
1366 
1367    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1368    for TCP options, but includes only bare TCP header.
1369 
1370    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1371    It is minimum of user_mss and mss received with SYN.
1372    It also does not include TCP options.
1373 
1374    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1375 
1376    tp->mss_cache is current effective sending mss, including
1377    all tcp options except for SACKs. It is evaluated,
1378    taking into account current pmtu, but never exceeds
1379    tp->rx_opt.mss_clamp.
1380 
1381    NOTE1. rfc1122 clearly states that advertised MSS
1382    DOES NOT include either tcp or ip options.
1383 
1384    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1385    are READ ONLY outside this function.		--ANK (980731)
1386  */
1387 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1388 {
1389 	struct tcp_sock *tp = tcp_sk(sk);
1390 	struct inet_connection_sock *icsk = inet_csk(sk);
1391 	int mss_now;
1392 
1393 	if (icsk->icsk_mtup.search_high > pmtu)
1394 		icsk->icsk_mtup.search_high = pmtu;
1395 
1396 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1397 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1398 
1399 	/* And store cached results */
1400 	icsk->icsk_pmtu_cookie = pmtu;
1401 	if (icsk->icsk_mtup.enabled)
1402 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1403 	tp->mss_cache = mss_now;
1404 
1405 	return mss_now;
1406 }
1407 EXPORT_SYMBOL(tcp_sync_mss);
1408 
1409 /* Compute the current effective MSS, taking SACKs and IP options,
1410  * and even PMTU discovery events into account.
1411  */
1412 unsigned int tcp_current_mss(struct sock *sk)
1413 {
1414 	const struct tcp_sock *tp = tcp_sk(sk);
1415 	const struct dst_entry *dst = __sk_dst_get(sk);
1416 	u32 mss_now;
1417 	unsigned int header_len;
1418 	struct tcp_out_options opts;
1419 	struct tcp_md5sig_key *md5;
1420 
1421 	mss_now = tp->mss_cache;
1422 
1423 	if (dst) {
1424 		u32 mtu = dst_mtu(dst);
1425 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1426 			mss_now = tcp_sync_mss(sk, mtu);
1427 	}
1428 
1429 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1430 		     sizeof(struct tcphdr);
1431 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1432 	 * some common options. If this is an odd packet (because we have SACK
1433 	 * blocks etc) then our calculated header_len will be different, and
1434 	 * we have to adjust mss_now correspondingly */
1435 	if (header_len != tp->tcp_header_len) {
1436 		int delta = (int) header_len - tp->tcp_header_len;
1437 		mss_now -= delta;
1438 	}
1439 
1440 	return mss_now;
1441 }
1442 
1443 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1444  * As additional protections, we do not touch cwnd in retransmission phases,
1445  * and if application hit its sndbuf limit recently.
1446  */
1447 static void tcp_cwnd_application_limited(struct sock *sk)
1448 {
1449 	struct tcp_sock *tp = tcp_sk(sk);
1450 
1451 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1452 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1453 		/* Limited by application or receiver window. */
1454 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1455 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1456 		if (win_used < tp->snd_cwnd) {
1457 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1458 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1459 		}
1460 		tp->snd_cwnd_used = 0;
1461 	}
1462 	tp->snd_cwnd_stamp = tcp_time_stamp;
1463 }
1464 
1465 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1466 {
1467 	struct tcp_sock *tp = tcp_sk(sk);
1468 
1469 	/* Track the maximum number of outstanding packets in each
1470 	 * window, and remember whether we were cwnd-limited then.
1471 	 */
1472 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1473 	    tp->packets_out > tp->max_packets_out) {
1474 		tp->max_packets_out = tp->packets_out;
1475 		tp->max_packets_seq = tp->snd_nxt;
1476 		tp->is_cwnd_limited = is_cwnd_limited;
1477 	}
1478 
1479 	if (tcp_is_cwnd_limited(sk)) {
1480 		/* Network is feed fully. */
1481 		tp->snd_cwnd_used = 0;
1482 		tp->snd_cwnd_stamp = tcp_time_stamp;
1483 	} else {
1484 		/* Network starves. */
1485 		if (tp->packets_out > tp->snd_cwnd_used)
1486 			tp->snd_cwnd_used = tp->packets_out;
1487 
1488 		if (sysctl_tcp_slow_start_after_idle &&
1489 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1490 			tcp_cwnd_application_limited(sk);
1491 	}
1492 }
1493 
1494 /* Minshall's variant of the Nagle send check. */
1495 static bool tcp_minshall_check(const struct tcp_sock *tp)
1496 {
1497 	return after(tp->snd_sml, tp->snd_una) &&
1498 		!after(tp->snd_sml, tp->snd_nxt);
1499 }
1500 
1501 /* Update snd_sml if this skb is under mss
1502  * Note that a TSO packet might end with a sub-mss segment
1503  * The test is really :
1504  * if ((skb->len % mss) != 0)
1505  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1506  * But we can avoid doing the divide again given we already have
1507  *  skb_pcount = skb->len / mss_now
1508  */
1509 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1510 				const struct sk_buff *skb)
1511 {
1512 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1513 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1514 }
1515 
1516 /* Return false, if packet can be sent now without violation Nagle's rules:
1517  * 1. It is full sized. (provided by caller in %partial bool)
1518  * 2. Or it contains FIN. (already checked by caller)
1519  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1520  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1521  *    With Minshall's modification: all sent small packets are ACKed.
1522  */
1523 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1524 			    int nonagle)
1525 {
1526 	return partial &&
1527 		((nonagle & TCP_NAGLE_CORK) ||
1528 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1529 }
1530 
1531 /* Return how many segs we'd like on a TSO packet,
1532  * to send one TSO packet per ms
1533  */
1534 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1535 {
1536 	u32 bytes, segs;
1537 
1538 	bytes = min(sk->sk_pacing_rate >> 10,
1539 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1540 
1541 	/* Goal is to send at least one packet per ms,
1542 	 * not one big TSO packet every 100 ms.
1543 	 * This preserves ACK clocking and is consistent
1544 	 * with tcp_tso_should_defer() heuristic.
1545 	 */
1546 	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1547 
1548 	return min_t(u32, segs, sk->sk_gso_max_segs);
1549 }
1550 
1551 /* Returns the portion of skb which can be sent right away */
1552 static unsigned int tcp_mss_split_point(const struct sock *sk,
1553 					const struct sk_buff *skb,
1554 					unsigned int mss_now,
1555 					unsigned int max_segs,
1556 					int nonagle)
1557 {
1558 	const struct tcp_sock *tp = tcp_sk(sk);
1559 	u32 partial, needed, window, max_len;
1560 
1561 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1562 	max_len = mss_now * max_segs;
1563 
1564 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1565 		return max_len;
1566 
1567 	needed = min(skb->len, window);
1568 
1569 	if (max_len <= needed)
1570 		return max_len;
1571 
1572 	partial = needed % mss_now;
1573 	/* If last segment is not a full MSS, check if Nagle rules allow us
1574 	 * to include this last segment in this skb.
1575 	 * Otherwise, we'll split the skb at last MSS boundary
1576 	 */
1577 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1578 		return needed - partial;
1579 
1580 	return needed;
1581 }
1582 
1583 /* Can at least one segment of SKB be sent right now, according to the
1584  * congestion window rules?  If so, return how many segments are allowed.
1585  */
1586 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1587 					 const struct sk_buff *skb)
1588 {
1589 	u32 in_flight, cwnd, halfcwnd;
1590 
1591 	/* Don't be strict about the congestion window for the final FIN.  */
1592 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1593 	    tcp_skb_pcount(skb) == 1)
1594 		return 1;
1595 
1596 	in_flight = tcp_packets_in_flight(tp);
1597 	cwnd = tp->snd_cwnd;
1598 	if (in_flight >= cwnd)
1599 		return 0;
1600 
1601 	/* For better scheduling, ensure we have at least
1602 	 * 2 GSO packets in flight.
1603 	 */
1604 	halfcwnd = max(cwnd >> 1, 1U);
1605 	return min(halfcwnd, cwnd - in_flight);
1606 }
1607 
1608 /* Initialize TSO state of a skb.
1609  * This must be invoked the first time we consider transmitting
1610  * SKB onto the wire.
1611  */
1612 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1613 {
1614 	int tso_segs = tcp_skb_pcount(skb);
1615 
1616 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1617 		tcp_set_skb_tso_segs(skb, mss_now);
1618 		tso_segs = tcp_skb_pcount(skb);
1619 	}
1620 	return tso_segs;
1621 }
1622 
1623 
1624 /* Return true if the Nagle test allows this packet to be
1625  * sent now.
1626  */
1627 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1628 				  unsigned int cur_mss, int nonagle)
1629 {
1630 	/* Nagle rule does not apply to frames, which sit in the middle of the
1631 	 * write_queue (they have no chances to get new data).
1632 	 *
1633 	 * This is implemented in the callers, where they modify the 'nonagle'
1634 	 * argument based upon the location of SKB in the send queue.
1635 	 */
1636 	if (nonagle & TCP_NAGLE_PUSH)
1637 		return true;
1638 
1639 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1640 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1641 		return true;
1642 
1643 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1644 		return true;
1645 
1646 	return false;
1647 }
1648 
1649 /* Does at least the first segment of SKB fit into the send window? */
1650 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1651 			     const struct sk_buff *skb,
1652 			     unsigned int cur_mss)
1653 {
1654 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1655 
1656 	if (skb->len > cur_mss)
1657 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1658 
1659 	return !after(end_seq, tcp_wnd_end(tp));
1660 }
1661 
1662 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1663  * should be put on the wire right now.  If so, it returns the number of
1664  * packets allowed by the congestion window.
1665  */
1666 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1667 				 unsigned int cur_mss, int nonagle)
1668 {
1669 	const struct tcp_sock *tp = tcp_sk(sk);
1670 	unsigned int cwnd_quota;
1671 
1672 	tcp_init_tso_segs(skb, cur_mss);
1673 
1674 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1675 		return 0;
1676 
1677 	cwnd_quota = tcp_cwnd_test(tp, skb);
1678 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1679 		cwnd_quota = 0;
1680 
1681 	return cwnd_quota;
1682 }
1683 
1684 /* Test if sending is allowed right now. */
1685 bool tcp_may_send_now(struct sock *sk)
1686 {
1687 	const struct tcp_sock *tp = tcp_sk(sk);
1688 	struct sk_buff *skb = tcp_send_head(sk);
1689 
1690 	return skb &&
1691 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1692 			     (tcp_skb_is_last(sk, skb) ?
1693 			      tp->nonagle : TCP_NAGLE_PUSH));
1694 }
1695 
1696 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1697  * which is put after SKB on the list.  It is very much like
1698  * tcp_fragment() except that it may make several kinds of assumptions
1699  * in order to speed up the splitting operation.  In particular, we
1700  * know that all the data is in scatter-gather pages, and that the
1701  * packet has never been sent out before (and thus is not cloned).
1702  */
1703 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1704 			unsigned int mss_now, gfp_t gfp)
1705 {
1706 	struct sk_buff *buff;
1707 	int nlen = skb->len - len;
1708 	u8 flags;
1709 
1710 	/* All of a TSO frame must be composed of paged data.  */
1711 	if (skb->len != skb->data_len)
1712 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1713 
1714 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1715 	if (unlikely(!buff))
1716 		return -ENOMEM;
1717 
1718 	sk->sk_wmem_queued += buff->truesize;
1719 	sk_mem_charge(sk, buff->truesize);
1720 	buff->truesize += nlen;
1721 	skb->truesize -= nlen;
1722 
1723 	/* Correct the sequence numbers. */
1724 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1725 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1726 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1727 
1728 	/* PSH and FIN should only be set in the second packet. */
1729 	flags = TCP_SKB_CB(skb)->tcp_flags;
1730 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1731 	TCP_SKB_CB(buff)->tcp_flags = flags;
1732 
1733 	/* This packet was never sent out yet, so no SACK bits. */
1734 	TCP_SKB_CB(buff)->sacked = 0;
1735 
1736 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1737 	skb_split(skb, buff, len);
1738 	tcp_fragment_tstamp(skb, buff);
1739 
1740 	/* Fix up tso_factor for both original and new SKB.  */
1741 	tcp_set_skb_tso_segs(skb, mss_now);
1742 	tcp_set_skb_tso_segs(buff, mss_now);
1743 
1744 	/* Link BUFF into the send queue. */
1745 	__skb_header_release(buff);
1746 	tcp_insert_write_queue_after(skb, buff, sk);
1747 
1748 	return 0;
1749 }
1750 
1751 /* Try to defer sending, if possible, in order to minimize the amount
1752  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1753  *
1754  * This algorithm is from John Heffner.
1755  */
1756 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1757 				 bool *is_cwnd_limited, u32 max_segs)
1758 {
1759 	const struct inet_connection_sock *icsk = inet_csk(sk);
1760 	u32 age, send_win, cong_win, limit, in_flight;
1761 	struct tcp_sock *tp = tcp_sk(sk);
1762 	struct skb_mstamp now;
1763 	struct sk_buff *head;
1764 	int win_divisor;
1765 
1766 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1767 		goto send_now;
1768 
1769 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1770 		goto send_now;
1771 
1772 	/* Avoid bursty behavior by allowing defer
1773 	 * only if the last write was recent.
1774 	 */
1775 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1776 		goto send_now;
1777 
1778 	in_flight = tcp_packets_in_flight(tp);
1779 
1780 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1781 
1782 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1783 
1784 	/* From in_flight test above, we know that cwnd > in_flight.  */
1785 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1786 
1787 	limit = min(send_win, cong_win);
1788 
1789 	/* If a full-sized TSO skb can be sent, do it. */
1790 	if (limit >= max_segs * tp->mss_cache)
1791 		goto send_now;
1792 
1793 	/* Middle in queue won't get any more data, full sendable already? */
1794 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1795 		goto send_now;
1796 
1797 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1798 	if (win_divisor) {
1799 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1800 
1801 		/* If at least some fraction of a window is available,
1802 		 * just use it.
1803 		 */
1804 		chunk /= win_divisor;
1805 		if (limit >= chunk)
1806 			goto send_now;
1807 	} else {
1808 		/* Different approach, try not to defer past a single
1809 		 * ACK.  Receiver should ACK every other full sized
1810 		 * frame, so if we have space for more than 3 frames
1811 		 * then send now.
1812 		 */
1813 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1814 			goto send_now;
1815 	}
1816 
1817 	head = tcp_write_queue_head(sk);
1818 	skb_mstamp_get(&now);
1819 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1820 	/* If next ACK is likely to come too late (half srtt), do not defer */
1821 	if (age < (tp->srtt_us >> 4))
1822 		goto send_now;
1823 
1824 	/* Ok, it looks like it is advisable to defer. */
1825 
1826 	if (cong_win < send_win && cong_win <= skb->len)
1827 		*is_cwnd_limited = true;
1828 
1829 	return true;
1830 
1831 send_now:
1832 	return false;
1833 }
1834 
1835 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1836 {
1837 	struct inet_connection_sock *icsk = inet_csk(sk);
1838 	struct tcp_sock *tp = tcp_sk(sk);
1839 	struct net *net = sock_net(sk);
1840 	u32 interval;
1841 	s32 delta;
1842 
1843 	interval = net->ipv4.sysctl_tcp_probe_interval;
1844 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1845 	if (unlikely(delta >= interval * HZ)) {
1846 		int mss = tcp_current_mss(sk);
1847 
1848 		/* Update current search range */
1849 		icsk->icsk_mtup.probe_size = 0;
1850 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1851 			sizeof(struct tcphdr) +
1852 			icsk->icsk_af_ops->net_header_len;
1853 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1854 
1855 		/* Update probe time stamp */
1856 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1857 	}
1858 }
1859 
1860 /* Create a new MTU probe if we are ready.
1861  * MTU probe is regularly attempting to increase the path MTU by
1862  * deliberately sending larger packets.  This discovers routing
1863  * changes resulting in larger path MTUs.
1864  *
1865  * Returns 0 if we should wait to probe (no cwnd available),
1866  *         1 if a probe was sent,
1867  *         -1 otherwise
1868  */
1869 static int tcp_mtu_probe(struct sock *sk)
1870 {
1871 	struct tcp_sock *tp = tcp_sk(sk);
1872 	struct inet_connection_sock *icsk = inet_csk(sk);
1873 	struct sk_buff *skb, *nskb, *next;
1874 	struct net *net = sock_net(sk);
1875 	int len;
1876 	int probe_size;
1877 	int size_needed;
1878 	int copy;
1879 	int mss_now;
1880 	int interval;
1881 
1882 	/* Not currently probing/verifying,
1883 	 * not in recovery,
1884 	 * have enough cwnd, and
1885 	 * not SACKing (the variable headers throw things off) */
1886 	if (!icsk->icsk_mtup.enabled ||
1887 	    icsk->icsk_mtup.probe_size ||
1888 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1889 	    tp->snd_cwnd < 11 ||
1890 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1891 		return -1;
1892 
1893 	/* Use binary search for probe_size between tcp_mss_base,
1894 	 * and current mss_clamp. if (search_high - search_low)
1895 	 * smaller than a threshold, backoff from probing.
1896 	 */
1897 	mss_now = tcp_current_mss(sk);
1898 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1899 				    icsk->icsk_mtup.search_low) >> 1);
1900 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1901 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1902 	/* When misfortune happens, we are reprobing actively,
1903 	 * and then reprobe timer has expired. We stick with current
1904 	 * probing process by not resetting search range to its orignal.
1905 	 */
1906 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1907 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1908 		/* Check whether enough time has elaplased for
1909 		 * another round of probing.
1910 		 */
1911 		tcp_mtu_check_reprobe(sk);
1912 		return -1;
1913 	}
1914 
1915 	/* Have enough data in the send queue to probe? */
1916 	if (tp->write_seq - tp->snd_nxt < size_needed)
1917 		return -1;
1918 
1919 	if (tp->snd_wnd < size_needed)
1920 		return -1;
1921 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1922 		return 0;
1923 
1924 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1925 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1926 		if (!tcp_packets_in_flight(tp))
1927 			return -1;
1928 		else
1929 			return 0;
1930 	}
1931 
1932 	/* We're allowed to probe.  Build it now. */
1933 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1934 	if (!nskb)
1935 		return -1;
1936 	sk->sk_wmem_queued += nskb->truesize;
1937 	sk_mem_charge(sk, nskb->truesize);
1938 
1939 	skb = tcp_send_head(sk);
1940 
1941 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1942 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1943 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1944 	TCP_SKB_CB(nskb)->sacked = 0;
1945 	nskb->csum = 0;
1946 	nskb->ip_summed = skb->ip_summed;
1947 
1948 	tcp_insert_write_queue_before(nskb, skb, sk);
1949 
1950 	len = 0;
1951 	tcp_for_write_queue_from_safe(skb, next, sk) {
1952 		copy = min_t(int, skb->len, probe_size - len);
1953 		if (nskb->ip_summed)
1954 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1955 		else
1956 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1957 							    skb_put(nskb, copy),
1958 							    copy, nskb->csum);
1959 
1960 		if (skb->len <= copy) {
1961 			/* We've eaten all the data from this skb.
1962 			 * Throw it away. */
1963 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1964 			tcp_unlink_write_queue(skb, sk);
1965 			sk_wmem_free_skb(sk, skb);
1966 		} else {
1967 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1968 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1969 			if (!skb_shinfo(skb)->nr_frags) {
1970 				skb_pull(skb, copy);
1971 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1972 					skb->csum = csum_partial(skb->data,
1973 								 skb->len, 0);
1974 			} else {
1975 				__pskb_trim_head(skb, copy);
1976 				tcp_set_skb_tso_segs(skb, mss_now);
1977 			}
1978 			TCP_SKB_CB(skb)->seq += copy;
1979 		}
1980 
1981 		len += copy;
1982 
1983 		if (len >= probe_size)
1984 			break;
1985 	}
1986 	tcp_init_tso_segs(nskb, nskb->len);
1987 
1988 	/* We're ready to send.  If this fails, the probe will
1989 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
1990 	 */
1991 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1992 		/* Decrement cwnd here because we are sending
1993 		 * effectively two packets. */
1994 		tp->snd_cwnd--;
1995 		tcp_event_new_data_sent(sk, nskb);
1996 
1997 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1998 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1999 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2000 
2001 		return 1;
2002 	}
2003 
2004 	return -1;
2005 }
2006 
2007 /* This routine writes packets to the network.  It advances the
2008  * send_head.  This happens as incoming acks open up the remote
2009  * window for us.
2010  *
2011  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2012  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2013  * account rare use of URG, this is not a big flaw.
2014  *
2015  * Send at most one packet when push_one > 0. Temporarily ignore
2016  * cwnd limit to force at most one packet out when push_one == 2.
2017 
2018  * Returns true, if no segments are in flight and we have queued segments,
2019  * but cannot send anything now because of SWS or another problem.
2020  */
2021 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2022 			   int push_one, gfp_t gfp)
2023 {
2024 	struct tcp_sock *tp = tcp_sk(sk);
2025 	struct sk_buff *skb;
2026 	unsigned int tso_segs, sent_pkts;
2027 	int cwnd_quota;
2028 	int result;
2029 	bool is_cwnd_limited = false;
2030 	u32 max_segs;
2031 
2032 	sent_pkts = 0;
2033 
2034 	if (!push_one) {
2035 		/* Do MTU probing. */
2036 		result = tcp_mtu_probe(sk);
2037 		if (!result) {
2038 			return false;
2039 		} else if (result > 0) {
2040 			sent_pkts = 1;
2041 		}
2042 	}
2043 
2044 	max_segs = tcp_tso_autosize(sk, mss_now);
2045 	while ((skb = tcp_send_head(sk))) {
2046 		unsigned int limit;
2047 
2048 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2049 		BUG_ON(!tso_segs);
2050 
2051 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2052 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2053 			skb_mstamp_get(&skb->skb_mstamp);
2054 			goto repair; /* Skip network transmission */
2055 		}
2056 
2057 		cwnd_quota = tcp_cwnd_test(tp, skb);
2058 		if (!cwnd_quota) {
2059 			if (push_one == 2)
2060 				/* Force out a loss probe pkt. */
2061 				cwnd_quota = 1;
2062 			else
2063 				break;
2064 		}
2065 
2066 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2067 			break;
2068 
2069 		if (tso_segs == 1) {
2070 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2071 						     (tcp_skb_is_last(sk, skb) ?
2072 						      nonagle : TCP_NAGLE_PUSH))))
2073 				break;
2074 		} else {
2075 			if (!push_one &&
2076 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2077 						 max_segs))
2078 				break;
2079 		}
2080 
2081 		limit = mss_now;
2082 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2083 			limit = tcp_mss_split_point(sk, skb, mss_now,
2084 						    min_t(unsigned int,
2085 							  cwnd_quota,
2086 							  max_segs),
2087 						    nonagle);
2088 
2089 		if (skb->len > limit &&
2090 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2091 			break;
2092 
2093 		/* TCP Small Queues :
2094 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2095 		 * This allows for :
2096 		 *  - better RTT estimation and ACK scheduling
2097 		 *  - faster recovery
2098 		 *  - high rates
2099 		 * Alas, some drivers / subsystems require a fair amount
2100 		 * of queued bytes to ensure line rate.
2101 		 * One example is wifi aggregation (802.11 AMPDU)
2102 		 */
2103 		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2104 		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2105 
2106 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2107 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2108 			/* It is possible TX completion already happened
2109 			 * before we set TSQ_THROTTLED, so we must
2110 			 * test again the condition.
2111 			 */
2112 			smp_mb__after_atomic();
2113 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2114 				break;
2115 		}
2116 
2117 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2118 			break;
2119 
2120 repair:
2121 		/* Advance the send_head.  This one is sent out.
2122 		 * This call will increment packets_out.
2123 		 */
2124 		tcp_event_new_data_sent(sk, skb);
2125 
2126 		tcp_minshall_update(tp, mss_now, skb);
2127 		sent_pkts += tcp_skb_pcount(skb);
2128 
2129 		if (push_one)
2130 			break;
2131 	}
2132 
2133 	if (likely(sent_pkts)) {
2134 		if (tcp_in_cwnd_reduction(sk))
2135 			tp->prr_out += sent_pkts;
2136 
2137 		/* Send one loss probe per tail loss episode. */
2138 		if (push_one != 2)
2139 			tcp_schedule_loss_probe(sk);
2140 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2141 		tcp_cwnd_validate(sk, is_cwnd_limited);
2142 		return false;
2143 	}
2144 	return !tp->packets_out && tcp_send_head(sk);
2145 }
2146 
2147 bool tcp_schedule_loss_probe(struct sock *sk)
2148 {
2149 	struct inet_connection_sock *icsk = inet_csk(sk);
2150 	struct tcp_sock *tp = tcp_sk(sk);
2151 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2152 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2153 
2154 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2155 		return false;
2156 	/* No consecutive loss probes. */
2157 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2158 		tcp_rearm_rto(sk);
2159 		return false;
2160 	}
2161 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2162 	 * finishes.
2163 	 */
2164 	if (tp->fastopen_rsk)
2165 		return false;
2166 
2167 	/* TLP is only scheduled when next timer event is RTO. */
2168 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2169 		return false;
2170 
2171 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2172 	 * in Open state, that are either limited by cwnd or application.
2173 	 */
2174 	if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2175 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2176 		return false;
2177 
2178 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2179 	     tcp_send_head(sk))
2180 		return false;
2181 
2182 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2183 	 * for delayed ack when there's one outstanding packet. If no RTT
2184 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2185 	 */
2186 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2187 	if (tp->packets_out == 1)
2188 		timeout = max_t(u32, timeout,
2189 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2190 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2191 
2192 	/* If RTO is shorter, just schedule TLP in its place. */
2193 	tlp_time_stamp = tcp_time_stamp + timeout;
2194 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2195 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2196 		s32 delta = rto_time_stamp - tcp_time_stamp;
2197 		if (delta > 0)
2198 			timeout = delta;
2199 	}
2200 
2201 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2202 				  TCP_RTO_MAX);
2203 	return true;
2204 }
2205 
2206 /* Thanks to skb fast clones, we can detect if a prior transmit of
2207  * a packet is still in a qdisc or driver queue.
2208  * In this case, there is very little point doing a retransmit !
2209  * Note: This is called from BH context only.
2210  */
2211 static bool skb_still_in_host_queue(const struct sock *sk,
2212 				    const struct sk_buff *skb)
2213 {
2214 	if (unlikely(skb_fclone_busy(sk, skb))) {
2215 		NET_INC_STATS_BH(sock_net(sk),
2216 				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2217 		return true;
2218 	}
2219 	return false;
2220 }
2221 
2222 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2223  * retransmit the last segment.
2224  */
2225 void tcp_send_loss_probe(struct sock *sk)
2226 {
2227 	struct tcp_sock *tp = tcp_sk(sk);
2228 	struct sk_buff *skb;
2229 	int pcount;
2230 	int mss = tcp_current_mss(sk);
2231 
2232 	skb = tcp_send_head(sk);
2233 	if (skb) {
2234 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2235 			pcount = tp->packets_out;
2236 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2237 			if (tp->packets_out > pcount)
2238 				goto probe_sent;
2239 			goto rearm_timer;
2240 		}
2241 		skb = tcp_write_queue_prev(sk, skb);
2242 	} else {
2243 		skb = tcp_write_queue_tail(sk);
2244 	}
2245 
2246 	/* At most one outstanding TLP retransmission. */
2247 	if (tp->tlp_high_seq)
2248 		goto rearm_timer;
2249 
2250 	/* Retransmit last segment. */
2251 	if (WARN_ON(!skb))
2252 		goto rearm_timer;
2253 
2254 	if (skb_still_in_host_queue(sk, skb))
2255 		goto rearm_timer;
2256 
2257 	pcount = tcp_skb_pcount(skb);
2258 	if (WARN_ON(!pcount))
2259 		goto rearm_timer;
2260 
2261 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2262 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2263 					  GFP_ATOMIC)))
2264 			goto rearm_timer;
2265 		skb = tcp_write_queue_next(sk, skb);
2266 	}
2267 
2268 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2269 		goto rearm_timer;
2270 
2271 	if (__tcp_retransmit_skb(sk, skb, 1))
2272 		goto rearm_timer;
2273 
2274 	/* Record snd_nxt for loss detection. */
2275 	tp->tlp_high_seq = tp->snd_nxt;
2276 
2277 probe_sent:
2278 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2279 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2280 	inet_csk(sk)->icsk_pending = 0;
2281 rearm_timer:
2282 	tcp_rearm_rto(sk);
2283 }
2284 
2285 /* Push out any pending frames which were held back due to
2286  * TCP_CORK or attempt at coalescing tiny packets.
2287  * The socket must be locked by the caller.
2288  */
2289 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2290 			       int nonagle)
2291 {
2292 	/* If we are closed, the bytes will have to remain here.
2293 	 * In time closedown will finish, we empty the write queue and
2294 	 * all will be happy.
2295 	 */
2296 	if (unlikely(sk->sk_state == TCP_CLOSE))
2297 		return;
2298 
2299 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2300 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2301 		tcp_check_probe_timer(sk);
2302 }
2303 
2304 /* Send _single_ skb sitting at the send head. This function requires
2305  * true push pending frames to setup probe timer etc.
2306  */
2307 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2308 {
2309 	struct sk_buff *skb = tcp_send_head(sk);
2310 
2311 	BUG_ON(!skb || skb->len < mss_now);
2312 
2313 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2314 }
2315 
2316 /* This function returns the amount that we can raise the
2317  * usable window based on the following constraints
2318  *
2319  * 1. The window can never be shrunk once it is offered (RFC 793)
2320  * 2. We limit memory per socket
2321  *
2322  * RFC 1122:
2323  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2324  *  RECV.NEXT + RCV.WIN fixed until:
2325  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2326  *
2327  * i.e. don't raise the right edge of the window until you can raise
2328  * it at least MSS bytes.
2329  *
2330  * Unfortunately, the recommended algorithm breaks header prediction,
2331  * since header prediction assumes th->window stays fixed.
2332  *
2333  * Strictly speaking, keeping th->window fixed violates the receiver
2334  * side SWS prevention criteria. The problem is that under this rule
2335  * a stream of single byte packets will cause the right side of the
2336  * window to always advance by a single byte.
2337  *
2338  * Of course, if the sender implements sender side SWS prevention
2339  * then this will not be a problem.
2340  *
2341  * BSD seems to make the following compromise:
2342  *
2343  *	If the free space is less than the 1/4 of the maximum
2344  *	space available and the free space is less than 1/2 mss,
2345  *	then set the window to 0.
2346  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2347  *	Otherwise, just prevent the window from shrinking
2348  *	and from being larger than the largest representable value.
2349  *
2350  * This prevents incremental opening of the window in the regime
2351  * where TCP is limited by the speed of the reader side taking
2352  * data out of the TCP receive queue. It does nothing about
2353  * those cases where the window is constrained on the sender side
2354  * because the pipeline is full.
2355  *
2356  * BSD also seems to "accidentally" limit itself to windows that are a
2357  * multiple of MSS, at least until the free space gets quite small.
2358  * This would appear to be a side effect of the mbuf implementation.
2359  * Combining these two algorithms results in the observed behavior
2360  * of having a fixed window size at almost all times.
2361  *
2362  * Below we obtain similar behavior by forcing the offered window to
2363  * a multiple of the mss when it is feasible to do so.
2364  *
2365  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2366  * Regular options like TIMESTAMP are taken into account.
2367  */
2368 u32 __tcp_select_window(struct sock *sk)
2369 {
2370 	struct inet_connection_sock *icsk = inet_csk(sk);
2371 	struct tcp_sock *tp = tcp_sk(sk);
2372 	/* MSS for the peer's data.  Previous versions used mss_clamp
2373 	 * here.  I don't know if the value based on our guesses
2374 	 * of peer's MSS is better for the performance.  It's more correct
2375 	 * but may be worse for the performance because of rcv_mss
2376 	 * fluctuations.  --SAW  1998/11/1
2377 	 */
2378 	int mss = icsk->icsk_ack.rcv_mss;
2379 	int free_space = tcp_space(sk);
2380 	int allowed_space = tcp_full_space(sk);
2381 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2382 	int window;
2383 
2384 	if (mss > full_space)
2385 		mss = full_space;
2386 
2387 	if (free_space < (full_space >> 1)) {
2388 		icsk->icsk_ack.quick = 0;
2389 
2390 		if (tcp_under_memory_pressure(sk))
2391 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2392 					       4U * tp->advmss);
2393 
2394 		/* free_space might become our new window, make sure we don't
2395 		 * increase it due to wscale.
2396 		 */
2397 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2398 
2399 		/* if free space is less than mss estimate, or is below 1/16th
2400 		 * of the maximum allowed, try to move to zero-window, else
2401 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2402 		 * new incoming data is dropped due to memory limits.
2403 		 * With large window, mss test triggers way too late in order
2404 		 * to announce zero window in time before rmem limit kicks in.
2405 		 */
2406 		if (free_space < (allowed_space >> 4) || free_space < mss)
2407 			return 0;
2408 	}
2409 
2410 	if (free_space > tp->rcv_ssthresh)
2411 		free_space = tp->rcv_ssthresh;
2412 
2413 	/* Don't do rounding if we are using window scaling, since the
2414 	 * scaled window will not line up with the MSS boundary anyway.
2415 	 */
2416 	window = tp->rcv_wnd;
2417 	if (tp->rx_opt.rcv_wscale) {
2418 		window = free_space;
2419 
2420 		/* Advertise enough space so that it won't get scaled away.
2421 		 * Import case: prevent zero window announcement if
2422 		 * 1<<rcv_wscale > mss.
2423 		 */
2424 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2425 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2426 				  << tp->rx_opt.rcv_wscale);
2427 	} else {
2428 		/* Get the largest window that is a nice multiple of mss.
2429 		 * Window clamp already applied above.
2430 		 * If our current window offering is within 1 mss of the
2431 		 * free space we just keep it. This prevents the divide
2432 		 * and multiply from happening most of the time.
2433 		 * We also don't do any window rounding when the free space
2434 		 * is too small.
2435 		 */
2436 		if (window <= free_space - mss || window > free_space)
2437 			window = (free_space / mss) * mss;
2438 		else if (mss == full_space &&
2439 			 free_space > window + (full_space >> 1))
2440 			window = free_space;
2441 	}
2442 
2443 	return window;
2444 }
2445 
2446 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2447 			     const struct sk_buff *next_skb)
2448 {
2449 	const struct skb_shared_info *next_shinfo = skb_shinfo(next_skb);
2450 	u8 tsflags = next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2451 
2452 	if (unlikely(tsflags)) {
2453 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2454 
2455 		shinfo->tx_flags |= tsflags;
2456 		shinfo->tskey = next_shinfo->tskey;
2457 		TCP_SKB_CB(skb)->txstamp_ack |=
2458 			TCP_SKB_CB(next_skb)->txstamp_ack;
2459 	}
2460 }
2461 
2462 /* Collapses two adjacent SKB's during retransmission. */
2463 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2464 {
2465 	struct tcp_sock *tp = tcp_sk(sk);
2466 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2467 	int skb_size, next_skb_size;
2468 
2469 	skb_size = skb->len;
2470 	next_skb_size = next_skb->len;
2471 
2472 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2473 
2474 	tcp_highest_sack_combine(sk, next_skb, skb);
2475 
2476 	tcp_unlink_write_queue(next_skb, sk);
2477 
2478 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2479 				  next_skb_size);
2480 
2481 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2482 		skb->ip_summed = CHECKSUM_PARTIAL;
2483 
2484 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2485 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2486 
2487 	/* Update sequence range on original skb. */
2488 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2489 
2490 	/* Merge over control information. This moves PSH/FIN etc. over */
2491 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2492 
2493 	/* All done, get rid of second SKB and account for it so
2494 	 * packet counting does not break.
2495 	 */
2496 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2497 
2498 	/* changed transmit queue under us so clear hints */
2499 	tcp_clear_retrans_hints_partial(tp);
2500 	if (next_skb == tp->retransmit_skb_hint)
2501 		tp->retransmit_skb_hint = skb;
2502 
2503 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2504 
2505 	tcp_skb_collapse_tstamp(skb, next_skb);
2506 
2507 	sk_wmem_free_skb(sk, next_skb);
2508 }
2509 
2510 /* Check if coalescing SKBs is legal. */
2511 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2512 {
2513 	if (tcp_skb_pcount(skb) > 1)
2514 		return false;
2515 	/* TODO: SACK collapsing could be used to remove this condition */
2516 	if (skb_shinfo(skb)->nr_frags != 0)
2517 		return false;
2518 	if (skb_cloned(skb))
2519 		return false;
2520 	if (skb == tcp_send_head(sk))
2521 		return false;
2522 	/* Some heurestics for collapsing over SACK'd could be invented */
2523 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2524 		return false;
2525 
2526 	return true;
2527 }
2528 
2529 /* Collapse packets in the retransmit queue to make to create
2530  * less packets on the wire. This is only done on retransmission.
2531  */
2532 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2533 				     int space)
2534 {
2535 	struct tcp_sock *tp = tcp_sk(sk);
2536 	struct sk_buff *skb = to, *tmp;
2537 	bool first = true;
2538 
2539 	if (!sysctl_tcp_retrans_collapse)
2540 		return;
2541 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2542 		return;
2543 
2544 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2545 		if (!tcp_can_collapse(sk, skb))
2546 			break;
2547 
2548 		space -= skb->len;
2549 
2550 		if (first) {
2551 			first = false;
2552 			continue;
2553 		}
2554 
2555 		if (space < 0)
2556 			break;
2557 		/* Punt if not enough space exists in the first SKB for
2558 		 * the data in the second
2559 		 */
2560 		if (skb->len > skb_availroom(to))
2561 			break;
2562 
2563 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2564 			break;
2565 
2566 		tcp_collapse_retrans(sk, to);
2567 	}
2568 }
2569 
2570 /* This retransmits one SKB.  Policy decisions and retransmit queue
2571  * state updates are done by the caller.  Returns non-zero if an
2572  * error occurred which prevented the send.
2573  */
2574 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2575 {
2576 	struct inet_connection_sock *icsk = inet_csk(sk);
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 	unsigned int cur_mss;
2579 	int diff, len, err;
2580 
2581 
2582 	/* Inconclusive MTU probe */
2583 	if (icsk->icsk_mtup.probe_size)
2584 		icsk->icsk_mtup.probe_size = 0;
2585 
2586 	/* Do not sent more than we queued. 1/4 is reserved for possible
2587 	 * copying overhead: fragmentation, tunneling, mangling etc.
2588 	 */
2589 	if (atomic_read(&sk->sk_wmem_alloc) >
2590 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2591 		return -EAGAIN;
2592 
2593 	if (skb_still_in_host_queue(sk, skb))
2594 		return -EBUSY;
2595 
2596 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2597 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2598 			BUG();
2599 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2600 			return -ENOMEM;
2601 	}
2602 
2603 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2604 		return -EHOSTUNREACH; /* Routing failure or similar. */
2605 
2606 	cur_mss = tcp_current_mss(sk);
2607 
2608 	/* If receiver has shrunk his window, and skb is out of
2609 	 * new window, do not retransmit it. The exception is the
2610 	 * case, when window is shrunk to zero. In this case
2611 	 * our retransmit serves as a zero window probe.
2612 	 */
2613 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2614 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2615 		return -EAGAIN;
2616 
2617 	len = cur_mss * segs;
2618 	if (skb->len > len) {
2619 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2620 			return -ENOMEM; /* We'll try again later. */
2621 	} else {
2622 		if (skb_unclone(skb, GFP_ATOMIC))
2623 			return -ENOMEM;
2624 
2625 		diff = tcp_skb_pcount(skb);
2626 		tcp_set_skb_tso_segs(skb, cur_mss);
2627 		diff -= tcp_skb_pcount(skb);
2628 		if (diff)
2629 			tcp_adjust_pcount(sk, skb, diff);
2630 		if (skb->len < cur_mss)
2631 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2632 	}
2633 
2634 	/* RFC3168, section 6.1.1.1. ECN fallback */
2635 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2636 		tcp_ecn_clear_syn(sk, skb);
2637 
2638 	/* make sure skb->data is aligned on arches that require it
2639 	 * and check if ack-trimming & collapsing extended the headroom
2640 	 * beyond what csum_start can cover.
2641 	 */
2642 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2643 		     skb_headroom(skb) >= 0xFFFF)) {
2644 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2645 						   GFP_ATOMIC);
2646 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2647 			     -ENOBUFS;
2648 	} else {
2649 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2650 	}
2651 
2652 	if (likely(!err)) {
2653 		segs = tcp_skb_pcount(skb);
2654 
2655 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2656 		/* Update global TCP statistics. */
2657 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2658 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2659 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2660 		tp->total_retrans += segs;
2661 	}
2662 	return err;
2663 }
2664 
2665 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2666 {
2667 	struct tcp_sock *tp = tcp_sk(sk);
2668 	int err = __tcp_retransmit_skb(sk, skb, segs);
2669 
2670 	if (err == 0) {
2671 #if FASTRETRANS_DEBUG > 0
2672 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2673 			net_dbg_ratelimited("retrans_out leaked\n");
2674 		}
2675 #endif
2676 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2677 		tp->retrans_out += tcp_skb_pcount(skb);
2678 
2679 		/* Save stamp of the first retransmit. */
2680 		if (!tp->retrans_stamp)
2681 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2682 
2683 	} else if (err != -EBUSY) {
2684 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2685 	}
2686 
2687 	if (tp->undo_retrans < 0)
2688 		tp->undo_retrans = 0;
2689 	tp->undo_retrans += tcp_skb_pcount(skb);
2690 	return err;
2691 }
2692 
2693 /* Check if we forward retransmits are possible in the current
2694  * window/congestion state.
2695  */
2696 static bool tcp_can_forward_retransmit(struct sock *sk)
2697 {
2698 	const struct inet_connection_sock *icsk = inet_csk(sk);
2699 	const struct tcp_sock *tp = tcp_sk(sk);
2700 
2701 	/* Forward retransmissions are possible only during Recovery. */
2702 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2703 		return false;
2704 
2705 	/* No forward retransmissions in Reno are possible. */
2706 	if (tcp_is_reno(tp))
2707 		return false;
2708 
2709 	/* Yeah, we have to make difficult choice between forward transmission
2710 	 * and retransmission... Both ways have their merits...
2711 	 *
2712 	 * For now we do not retransmit anything, while we have some new
2713 	 * segments to send. In the other cases, follow rule 3 for
2714 	 * NextSeg() specified in RFC3517.
2715 	 */
2716 
2717 	if (tcp_may_send_now(sk))
2718 		return false;
2719 
2720 	return true;
2721 }
2722 
2723 /* This gets called after a retransmit timeout, and the initially
2724  * retransmitted data is acknowledged.  It tries to continue
2725  * resending the rest of the retransmit queue, until either
2726  * we've sent it all or the congestion window limit is reached.
2727  * If doing SACK, the first ACK which comes back for a timeout
2728  * based retransmit packet might feed us FACK information again.
2729  * If so, we use it to avoid unnecessarily retransmissions.
2730  */
2731 void tcp_xmit_retransmit_queue(struct sock *sk)
2732 {
2733 	const struct inet_connection_sock *icsk = inet_csk(sk);
2734 	struct tcp_sock *tp = tcp_sk(sk);
2735 	struct sk_buff *skb;
2736 	struct sk_buff *hole = NULL;
2737 	u32 last_lost;
2738 	int mib_idx;
2739 	int fwd_rexmitting = 0;
2740 
2741 	if (!tp->packets_out)
2742 		return;
2743 
2744 	if (!tp->lost_out)
2745 		tp->retransmit_high = tp->snd_una;
2746 
2747 	if (tp->retransmit_skb_hint) {
2748 		skb = tp->retransmit_skb_hint;
2749 		last_lost = TCP_SKB_CB(skb)->end_seq;
2750 		if (after(last_lost, tp->retransmit_high))
2751 			last_lost = tp->retransmit_high;
2752 	} else {
2753 		skb = tcp_write_queue_head(sk);
2754 		last_lost = tp->snd_una;
2755 	}
2756 
2757 	tcp_for_write_queue_from(skb, sk) {
2758 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2759 		int segs;
2760 
2761 		if (skb == tcp_send_head(sk))
2762 			break;
2763 		/* we could do better than to assign each time */
2764 		if (!hole)
2765 			tp->retransmit_skb_hint = skb;
2766 
2767 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2768 		if (segs <= 0)
2769 			return;
2770 
2771 		if (fwd_rexmitting) {
2772 begin_fwd:
2773 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2774 				break;
2775 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2776 
2777 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2778 			tp->retransmit_high = last_lost;
2779 			if (!tcp_can_forward_retransmit(sk))
2780 				break;
2781 			/* Backtrack if necessary to non-L'ed skb */
2782 			if (hole) {
2783 				skb = hole;
2784 				hole = NULL;
2785 			}
2786 			fwd_rexmitting = 1;
2787 			goto begin_fwd;
2788 
2789 		} else if (!(sacked & TCPCB_LOST)) {
2790 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2791 				hole = skb;
2792 			continue;
2793 
2794 		} else {
2795 			last_lost = TCP_SKB_CB(skb)->end_seq;
2796 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2797 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2798 			else
2799 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2800 		}
2801 
2802 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2803 			continue;
2804 
2805 		if (tcp_retransmit_skb(sk, skb, segs))
2806 			return;
2807 
2808 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2809 
2810 		if (tcp_in_cwnd_reduction(sk))
2811 			tp->prr_out += tcp_skb_pcount(skb);
2812 
2813 		if (skb == tcp_write_queue_head(sk))
2814 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2815 						  inet_csk(sk)->icsk_rto,
2816 						  TCP_RTO_MAX);
2817 	}
2818 }
2819 
2820 /* We allow to exceed memory limits for FIN packets to expedite
2821  * connection tear down and (memory) recovery.
2822  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2823  * or even be forced to close flow without any FIN.
2824  * In general, we want to allow one skb per socket to avoid hangs
2825  * with edge trigger epoll()
2826  */
2827 void sk_forced_mem_schedule(struct sock *sk, int size)
2828 {
2829 	int amt;
2830 
2831 	if (size <= sk->sk_forward_alloc)
2832 		return;
2833 	amt = sk_mem_pages(size);
2834 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2835 	sk_memory_allocated_add(sk, amt);
2836 
2837 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2838 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2839 }
2840 
2841 /* Send a FIN. The caller locks the socket for us.
2842  * We should try to send a FIN packet really hard, but eventually give up.
2843  */
2844 void tcp_send_fin(struct sock *sk)
2845 {
2846 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2847 	struct tcp_sock *tp = tcp_sk(sk);
2848 
2849 	/* Optimization, tack on the FIN if we have one skb in write queue and
2850 	 * this skb was not yet sent, or we are under memory pressure.
2851 	 * Note: in the latter case, FIN packet will be sent after a timeout,
2852 	 * as TCP stack thinks it has already been transmitted.
2853 	 */
2854 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2855 coalesce:
2856 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2857 		TCP_SKB_CB(tskb)->end_seq++;
2858 		tp->write_seq++;
2859 		if (!tcp_send_head(sk)) {
2860 			/* This means tskb was already sent.
2861 			 * Pretend we included the FIN on previous transmit.
2862 			 * We need to set tp->snd_nxt to the value it would have
2863 			 * if FIN had been sent. This is because retransmit path
2864 			 * does not change tp->snd_nxt.
2865 			 */
2866 			tp->snd_nxt++;
2867 			return;
2868 		}
2869 	} else {
2870 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2871 		if (unlikely(!skb)) {
2872 			if (tskb)
2873 				goto coalesce;
2874 			return;
2875 		}
2876 		skb_reserve(skb, MAX_TCP_HEADER);
2877 		sk_forced_mem_schedule(sk, skb->truesize);
2878 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2879 		tcp_init_nondata_skb(skb, tp->write_seq,
2880 				     TCPHDR_ACK | TCPHDR_FIN);
2881 		tcp_queue_skb(sk, skb);
2882 	}
2883 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2884 }
2885 
2886 /* We get here when a process closes a file descriptor (either due to
2887  * an explicit close() or as a byproduct of exit()'ing) and there
2888  * was unread data in the receive queue.  This behavior is recommended
2889  * by RFC 2525, section 2.17.  -DaveM
2890  */
2891 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2892 {
2893 	struct sk_buff *skb;
2894 
2895 	/* NOTE: No TCP options attached and we never retransmit this. */
2896 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2897 	if (!skb) {
2898 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2899 		return;
2900 	}
2901 
2902 	/* Reserve space for headers and prepare control bits. */
2903 	skb_reserve(skb, MAX_TCP_HEADER);
2904 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2905 			     TCPHDR_ACK | TCPHDR_RST);
2906 	skb_mstamp_get(&skb->skb_mstamp);
2907 	/* Send it off. */
2908 	if (tcp_transmit_skb(sk, skb, 0, priority))
2909 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2910 
2911 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2912 }
2913 
2914 /* Send a crossed SYN-ACK during socket establishment.
2915  * WARNING: This routine must only be called when we have already sent
2916  * a SYN packet that crossed the incoming SYN that caused this routine
2917  * to get called. If this assumption fails then the initial rcv_wnd
2918  * and rcv_wscale values will not be correct.
2919  */
2920 int tcp_send_synack(struct sock *sk)
2921 {
2922 	struct sk_buff *skb;
2923 
2924 	skb = tcp_write_queue_head(sk);
2925 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2926 		pr_debug("%s: wrong queue state\n", __func__);
2927 		return -EFAULT;
2928 	}
2929 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2930 		if (skb_cloned(skb)) {
2931 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2932 			if (!nskb)
2933 				return -ENOMEM;
2934 			tcp_unlink_write_queue(skb, sk);
2935 			__skb_header_release(nskb);
2936 			__tcp_add_write_queue_head(sk, nskb);
2937 			sk_wmem_free_skb(sk, skb);
2938 			sk->sk_wmem_queued += nskb->truesize;
2939 			sk_mem_charge(sk, nskb->truesize);
2940 			skb = nskb;
2941 		}
2942 
2943 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2944 		tcp_ecn_send_synack(sk, skb);
2945 	}
2946 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2947 }
2948 
2949 /**
2950  * tcp_make_synack - Prepare a SYN-ACK.
2951  * sk: listener socket
2952  * dst: dst entry attached to the SYNACK
2953  * req: request_sock pointer
2954  *
2955  * Allocate one skb and build a SYNACK packet.
2956  * @dst is consumed : Caller should not use it again.
2957  */
2958 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2959 				struct request_sock *req,
2960 				struct tcp_fastopen_cookie *foc,
2961 				enum tcp_synack_type synack_type)
2962 {
2963 	struct inet_request_sock *ireq = inet_rsk(req);
2964 	const struct tcp_sock *tp = tcp_sk(sk);
2965 	struct tcp_md5sig_key *md5 = NULL;
2966 	struct tcp_out_options opts;
2967 	struct sk_buff *skb;
2968 	int tcp_header_size;
2969 	struct tcphdr *th;
2970 	u16 user_mss;
2971 	int mss;
2972 
2973 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2974 	if (unlikely(!skb)) {
2975 		dst_release(dst);
2976 		return NULL;
2977 	}
2978 	/* Reserve space for headers. */
2979 	skb_reserve(skb, MAX_TCP_HEADER);
2980 
2981 	switch (synack_type) {
2982 	case TCP_SYNACK_NORMAL:
2983 		skb_set_owner_w(skb, req_to_sk(req));
2984 		break;
2985 	case TCP_SYNACK_COOKIE:
2986 		/* Under synflood, we do not attach skb to a socket,
2987 		 * to avoid false sharing.
2988 		 */
2989 		break;
2990 	case TCP_SYNACK_FASTOPEN:
2991 		/* sk is a const pointer, because we want to express multiple
2992 		 * cpu might call us concurrently.
2993 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2994 		 */
2995 		skb_set_owner_w(skb, (struct sock *)sk);
2996 		break;
2997 	}
2998 	skb_dst_set(skb, dst);
2999 
3000 	mss = dst_metric_advmss(dst);
3001 	user_mss = READ_ONCE(tp->rx_opt.user_mss);
3002 	if (user_mss && user_mss < mss)
3003 		mss = user_mss;
3004 
3005 	memset(&opts, 0, sizeof(opts));
3006 #ifdef CONFIG_SYN_COOKIES
3007 	if (unlikely(req->cookie_ts))
3008 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3009 	else
3010 #endif
3011 	skb_mstamp_get(&skb->skb_mstamp);
3012 
3013 #ifdef CONFIG_TCP_MD5SIG
3014 	rcu_read_lock();
3015 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3016 #endif
3017 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3018 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3019 			  sizeof(*th);
3020 
3021 	skb_push(skb, tcp_header_size);
3022 	skb_reset_transport_header(skb);
3023 
3024 	th = tcp_hdr(skb);
3025 	memset(th, 0, sizeof(struct tcphdr));
3026 	th->syn = 1;
3027 	th->ack = 1;
3028 	tcp_ecn_make_synack(req, th);
3029 	th->source = htons(ireq->ir_num);
3030 	th->dest = ireq->ir_rmt_port;
3031 	/* Setting of flags are superfluous here for callers (and ECE is
3032 	 * not even correctly set)
3033 	 */
3034 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3035 			     TCPHDR_SYN | TCPHDR_ACK);
3036 
3037 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3038 	/* XXX data is queued and acked as is. No buffer/window check */
3039 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3040 
3041 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3042 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3043 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3044 	th->doff = (tcp_header_size >> 2);
3045 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3046 
3047 #ifdef CONFIG_TCP_MD5SIG
3048 	/* Okay, we have all we need - do the md5 hash if needed */
3049 	if (md5)
3050 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3051 					       md5, req_to_sk(req), skb);
3052 	rcu_read_unlock();
3053 #endif
3054 
3055 	/* Do not fool tcpdump (if any), clean our debris */
3056 	skb->tstamp.tv64 = 0;
3057 	return skb;
3058 }
3059 EXPORT_SYMBOL(tcp_make_synack);
3060 
3061 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3062 {
3063 	struct inet_connection_sock *icsk = inet_csk(sk);
3064 	const struct tcp_congestion_ops *ca;
3065 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3066 
3067 	if (ca_key == TCP_CA_UNSPEC)
3068 		return;
3069 
3070 	rcu_read_lock();
3071 	ca = tcp_ca_find_key(ca_key);
3072 	if (likely(ca && try_module_get(ca->owner))) {
3073 		module_put(icsk->icsk_ca_ops->owner);
3074 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3075 		icsk->icsk_ca_ops = ca;
3076 	}
3077 	rcu_read_unlock();
3078 }
3079 
3080 /* Do all connect socket setups that can be done AF independent. */
3081 static void tcp_connect_init(struct sock *sk)
3082 {
3083 	const struct dst_entry *dst = __sk_dst_get(sk);
3084 	struct tcp_sock *tp = tcp_sk(sk);
3085 	__u8 rcv_wscale;
3086 
3087 	/* We'll fix this up when we get a response from the other end.
3088 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3089 	 */
3090 	tp->tcp_header_len = sizeof(struct tcphdr) +
3091 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3092 
3093 #ifdef CONFIG_TCP_MD5SIG
3094 	if (tp->af_specific->md5_lookup(sk, sk))
3095 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3096 #endif
3097 
3098 	/* If user gave his TCP_MAXSEG, record it to clamp */
3099 	if (tp->rx_opt.user_mss)
3100 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3101 	tp->max_window = 0;
3102 	tcp_mtup_init(sk);
3103 	tcp_sync_mss(sk, dst_mtu(dst));
3104 
3105 	tcp_ca_dst_init(sk, dst);
3106 
3107 	if (!tp->window_clamp)
3108 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3109 	tp->advmss = dst_metric_advmss(dst);
3110 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3111 		tp->advmss = tp->rx_opt.user_mss;
3112 
3113 	tcp_initialize_rcv_mss(sk);
3114 
3115 	/* limit the window selection if the user enforce a smaller rx buffer */
3116 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3117 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3118 		tp->window_clamp = tcp_full_space(sk);
3119 
3120 	tcp_select_initial_window(tcp_full_space(sk),
3121 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3122 				  &tp->rcv_wnd,
3123 				  &tp->window_clamp,
3124 				  sysctl_tcp_window_scaling,
3125 				  &rcv_wscale,
3126 				  dst_metric(dst, RTAX_INITRWND));
3127 
3128 	tp->rx_opt.rcv_wscale = rcv_wscale;
3129 	tp->rcv_ssthresh = tp->rcv_wnd;
3130 
3131 	sk->sk_err = 0;
3132 	sock_reset_flag(sk, SOCK_DONE);
3133 	tp->snd_wnd = 0;
3134 	tcp_init_wl(tp, 0);
3135 	tp->snd_una = tp->write_seq;
3136 	tp->snd_sml = tp->write_seq;
3137 	tp->snd_up = tp->write_seq;
3138 	tp->snd_nxt = tp->write_seq;
3139 
3140 	if (likely(!tp->repair))
3141 		tp->rcv_nxt = 0;
3142 	else
3143 		tp->rcv_tstamp = tcp_time_stamp;
3144 	tp->rcv_wup = tp->rcv_nxt;
3145 	tp->copied_seq = tp->rcv_nxt;
3146 
3147 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3148 	inet_csk(sk)->icsk_retransmits = 0;
3149 	tcp_clear_retrans(tp);
3150 }
3151 
3152 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3153 {
3154 	struct tcp_sock *tp = tcp_sk(sk);
3155 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3156 
3157 	tcb->end_seq += skb->len;
3158 	__skb_header_release(skb);
3159 	__tcp_add_write_queue_tail(sk, skb);
3160 	sk->sk_wmem_queued += skb->truesize;
3161 	sk_mem_charge(sk, skb->truesize);
3162 	tp->write_seq = tcb->end_seq;
3163 	tp->packets_out += tcp_skb_pcount(skb);
3164 }
3165 
3166 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3167  * queue a data-only packet after the regular SYN, such that regular SYNs
3168  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3169  * only the SYN sequence, the data are retransmitted in the first ACK.
3170  * If cookie is not cached or other error occurs, falls back to send a
3171  * regular SYN with Fast Open cookie request option.
3172  */
3173 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3174 {
3175 	struct tcp_sock *tp = tcp_sk(sk);
3176 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3177 	int syn_loss = 0, space, err = 0;
3178 	unsigned long last_syn_loss = 0;
3179 	struct sk_buff *syn_data;
3180 
3181 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3182 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3183 			       &syn_loss, &last_syn_loss);
3184 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3185 	if (syn_loss > 1 &&
3186 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3187 		fo->cookie.len = -1;
3188 		goto fallback;
3189 	}
3190 
3191 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3192 		fo->cookie.len = -1;
3193 	else if (fo->cookie.len <= 0)
3194 		goto fallback;
3195 
3196 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3197 	 * user-MSS. Reserve maximum option space for middleboxes that add
3198 	 * private TCP options. The cost is reduced data space in SYN :(
3199 	 */
3200 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3201 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3202 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3203 		MAX_TCP_OPTION_SPACE;
3204 
3205 	space = min_t(size_t, space, fo->size);
3206 
3207 	/* limit to order-0 allocations */
3208 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3209 
3210 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3211 	if (!syn_data)
3212 		goto fallback;
3213 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3214 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3215 	if (space) {
3216 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3217 					    &fo->data->msg_iter);
3218 		if (unlikely(!copied)) {
3219 			kfree_skb(syn_data);
3220 			goto fallback;
3221 		}
3222 		if (copied != space) {
3223 			skb_trim(syn_data, copied);
3224 			space = copied;
3225 		}
3226 	}
3227 	/* No more data pending in inet_wait_for_connect() */
3228 	if (space == fo->size)
3229 		fo->data = NULL;
3230 	fo->copied = space;
3231 
3232 	tcp_connect_queue_skb(sk, syn_data);
3233 
3234 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3235 
3236 	syn->skb_mstamp = syn_data->skb_mstamp;
3237 
3238 	/* Now full SYN+DATA was cloned and sent (or not),
3239 	 * remove the SYN from the original skb (syn_data)
3240 	 * we keep in write queue in case of a retransmit, as we
3241 	 * also have the SYN packet (with no data) in the same queue.
3242 	 */
3243 	TCP_SKB_CB(syn_data)->seq++;
3244 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3245 	if (!err) {
3246 		tp->syn_data = (fo->copied > 0);
3247 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3248 		goto done;
3249 	}
3250 
3251 fallback:
3252 	/* Send a regular SYN with Fast Open cookie request option */
3253 	if (fo->cookie.len > 0)
3254 		fo->cookie.len = 0;
3255 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3256 	if (err)
3257 		tp->syn_fastopen = 0;
3258 done:
3259 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3260 	return err;
3261 }
3262 
3263 /* Build a SYN and send it off. */
3264 int tcp_connect(struct sock *sk)
3265 {
3266 	struct tcp_sock *tp = tcp_sk(sk);
3267 	struct sk_buff *buff;
3268 	int err;
3269 
3270 	tcp_connect_init(sk);
3271 
3272 	if (unlikely(tp->repair)) {
3273 		tcp_finish_connect(sk, NULL);
3274 		return 0;
3275 	}
3276 
3277 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3278 	if (unlikely(!buff))
3279 		return -ENOBUFS;
3280 
3281 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3282 	tp->retrans_stamp = tcp_time_stamp;
3283 	tcp_connect_queue_skb(sk, buff);
3284 	tcp_ecn_send_syn(sk, buff);
3285 
3286 	/* Send off SYN; include data in Fast Open. */
3287 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3288 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3289 	if (err == -ECONNREFUSED)
3290 		return err;
3291 
3292 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3293 	 * in order to make this packet get counted in tcpOutSegs.
3294 	 */
3295 	tp->snd_nxt = tp->write_seq;
3296 	tp->pushed_seq = tp->write_seq;
3297 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3298 
3299 	/* Timer for repeating the SYN until an answer. */
3300 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3301 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3302 	return 0;
3303 }
3304 EXPORT_SYMBOL(tcp_connect);
3305 
3306 /* Send out a delayed ack, the caller does the policy checking
3307  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3308  * for details.
3309  */
3310 void tcp_send_delayed_ack(struct sock *sk)
3311 {
3312 	struct inet_connection_sock *icsk = inet_csk(sk);
3313 	int ato = icsk->icsk_ack.ato;
3314 	unsigned long timeout;
3315 
3316 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3317 
3318 	if (ato > TCP_DELACK_MIN) {
3319 		const struct tcp_sock *tp = tcp_sk(sk);
3320 		int max_ato = HZ / 2;
3321 
3322 		if (icsk->icsk_ack.pingpong ||
3323 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3324 			max_ato = TCP_DELACK_MAX;
3325 
3326 		/* Slow path, intersegment interval is "high". */
3327 
3328 		/* If some rtt estimate is known, use it to bound delayed ack.
3329 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3330 		 * directly.
3331 		 */
3332 		if (tp->srtt_us) {
3333 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3334 					TCP_DELACK_MIN);
3335 
3336 			if (rtt < max_ato)
3337 				max_ato = rtt;
3338 		}
3339 
3340 		ato = min(ato, max_ato);
3341 	}
3342 
3343 	/* Stay within the limit we were given */
3344 	timeout = jiffies + ato;
3345 
3346 	/* Use new timeout only if there wasn't a older one earlier. */
3347 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3348 		/* If delack timer was blocked or is about to expire,
3349 		 * send ACK now.
3350 		 */
3351 		if (icsk->icsk_ack.blocked ||
3352 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3353 			tcp_send_ack(sk);
3354 			return;
3355 		}
3356 
3357 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3358 			timeout = icsk->icsk_ack.timeout;
3359 	}
3360 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3361 	icsk->icsk_ack.timeout = timeout;
3362 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3363 }
3364 
3365 /* This routine sends an ack and also updates the window. */
3366 void tcp_send_ack(struct sock *sk)
3367 {
3368 	struct sk_buff *buff;
3369 
3370 	/* If we have been reset, we may not send again. */
3371 	if (sk->sk_state == TCP_CLOSE)
3372 		return;
3373 
3374 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3375 
3376 	/* We are not putting this on the write queue, so
3377 	 * tcp_transmit_skb() will set the ownership to this
3378 	 * sock.
3379 	 */
3380 	buff = alloc_skb(MAX_TCP_HEADER,
3381 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3382 	if (unlikely(!buff)) {
3383 		inet_csk_schedule_ack(sk);
3384 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3385 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3386 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3387 		return;
3388 	}
3389 
3390 	/* Reserve space for headers and prepare control bits. */
3391 	skb_reserve(buff, MAX_TCP_HEADER);
3392 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3393 
3394 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3395 	 * too much.
3396 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3397 	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3398 	 * tp->tsq_flags) by using regular sock_wfree()
3399 	 */
3400 	skb_set_tcp_pure_ack(buff);
3401 
3402 	/* Send it off, this clears delayed acks for us. */
3403 	skb_mstamp_get(&buff->skb_mstamp);
3404 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3405 }
3406 EXPORT_SYMBOL_GPL(tcp_send_ack);
3407 
3408 /* This routine sends a packet with an out of date sequence
3409  * number. It assumes the other end will try to ack it.
3410  *
3411  * Question: what should we make while urgent mode?
3412  * 4.4BSD forces sending single byte of data. We cannot send
3413  * out of window data, because we have SND.NXT==SND.MAX...
3414  *
3415  * Current solution: to send TWO zero-length segments in urgent mode:
3416  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3417  * out-of-date with SND.UNA-1 to probe window.
3418  */
3419 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3420 {
3421 	struct tcp_sock *tp = tcp_sk(sk);
3422 	struct sk_buff *skb;
3423 
3424 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3425 	skb = alloc_skb(MAX_TCP_HEADER,
3426 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3427 	if (!skb)
3428 		return -1;
3429 
3430 	/* Reserve space for headers and set control bits. */
3431 	skb_reserve(skb, MAX_TCP_HEADER);
3432 	/* Use a previous sequence.  This should cause the other
3433 	 * end to send an ack.  Don't queue or clone SKB, just
3434 	 * send it.
3435 	 */
3436 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3437 	skb_mstamp_get(&skb->skb_mstamp);
3438 	NET_INC_STATS(sock_net(sk), mib);
3439 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3440 }
3441 
3442 void tcp_send_window_probe(struct sock *sk)
3443 {
3444 	if (sk->sk_state == TCP_ESTABLISHED) {
3445 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3446 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3447 	}
3448 }
3449 
3450 /* Initiate keepalive or window probe from timer. */
3451 int tcp_write_wakeup(struct sock *sk, int mib)
3452 {
3453 	struct tcp_sock *tp = tcp_sk(sk);
3454 	struct sk_buff *skb;
3455 
3456 	if (sk->sk_state == TCP_CLOSE)
3457 		return -1;
3458 
3459 	skb = tcp_send_head(sk);
3460 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3461 		int err;
3462 		unsigned int mss = tcp_current_mss(sk);
3463 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3464 
3465 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3466 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3467 
3468 		/* We are probing the opening of a window
3469 		 * but the window size is != 0
3470 		 * must have been a result SWS avoidance ( sender )
3471 		 */
3472 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3473 		    skb->len > mss) {
3474 			seg_size = min(seg_size, mss);
3475 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3476 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3477 				return -1;
3478 		} else if (!tcp_skb_pcount(skb))
3479 			tcp_set_skb_tso_segs(skb, mss);
3480 
3481 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3482 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3483 		if (!err)
3484 			tcp_event_new_data_sent(sk, skb);
3485 		return err;
3486 	} else {
3487 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3488 			tcp_xmit_probe_skb(sk, 1, mib);
3489 		return tcp_xmit_probe_skb(sk, 0, mib);
3490 	}
3491 }
3492 
3493 /* A window probe timeout has occurred.  If window is not closed send
3494  * a partial packet else a zero probe.
3495  */
3496 void tcp_send_probe0(struct sock *sk)
3497 {
3498 	struct inet_connection_sock *icsk = inet_csk(sk);
3499 	struct tcp_sock *tp = tcp_sk(sk);
3500 	struct net *net = sock_net(sk);
3501 	unsigned long probe_max;
3502 	int err;
3503 
3504 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3505 
3506 	if (tp->packets_out || !tcp_send_head(sk)) {
3507 		/* Cancel probe timer, if it is not required. */
3508 		icsk->icsk_probes_out = 0;
3509 		icsk->icsk_backoff = 0;
3510 		return;
3511 	}
3512 
3513 	if (err <= 0) {
3514 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3515 			icsk->icsk_backoff++;
3516 		icsk->icsk_probes_out++;
3517 		probe_max = TCP_RTO_MAX;
3518 	} else {
3519 		/* If packet was not sent due to local congestion,
3520 		 * do not backoff and do not remember icsk_probes_out.
3521 		 * Let local senders to fight for local resources.
3522 		 *
3523 		 * Use accumulated backoff yet.
3524 		 */
3525 		if (!icsk->icsk_probes_out)
3526 			icsk->icsk_probes_out = 1;
3527 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3528 	}
3529 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3530 				  tcp_probe0_when(sk, probe_max),
3531 				  TCP_RTO_MAX);
3532 }
3533 
3534 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3535 {
3536 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3537 	struct flowi fl;
3538 	int res;
3539 
3540 	tcp_rsk(req)->txhash = net_tx_rndhash();
3541 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3542 	if (!res) {
3543 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3544 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3545 	}
3546 	return res;
3547 }
3548 EXPORT_SYMBOL(tcp_rtx_synack);
3549