xref: /openbmc/linux/net/ipv4/tcp_minisocks.c (revision 8d59a64cbec8cebf2e1ec9977de4f67fc7341dc6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 
26 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27 {
28 	if (seq == s_win)
29 		return true;
30 	if (after(end_seq, s_win) && before(seq, e_win))
31 		return true;
32 	return seq == e_win && seq == end_seq;
33 }
34 
35 static enum tcp_tw_status
36 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 				  const struct sk_buff *skb, int mib_idx)
38 {
39 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40 
41 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 				  &tcptw->tw_last_oow_ack_time)) {
43 		/* Send ACK. Note, we do not put the bucket,
44 		 * it will be released by caller.
45 		 */
46 		return TCP_TW_ACK;
47 	}
48 
49 	/* We are rate-limiting, so just release the tw sock and drop skb. */
50 	inet_twsk_put(tw);
51 	return TCP_TW_SUCCESS;
52 }
53 
54 /*
55  * * Main purpose of TIME-WAIT state is to close connection gracefully,
56  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
57  *   (and, probably, tail of data) and one or more our ACKs are lost.
58  * * What is TIME-WAIT timeout? It is associated with maximal packet
59  *   lifetime in the internet, which results in wrong conclusion, that
60  *   it is set to catch "old duplicate segments" wandering out of their path.
61  *   It is not quite correct. This timeout is calculated so that it exceeds
62  *   maximal retransmission timeout enough to allow to lose one (or more)
63  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
64  * * When TIME-WAIT socket receives RST, it means that another end
65  *   finally closed and we are allowed to kill TIME-WAIT too.
66  * * Second purpose of TIME-WAIT is catching old duplicate segments.
67  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
68  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
69  * * If we invented some more clever way to catch duplicates
70  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
71  *
72  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
73  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
74  * from the very beginning.
75  *
76  * NOTE. With recycling (and later with fin-wait-2) TW bucket
77  * is _not_ stateless. It means, that strictly speaking we must
78  * spinlock it. I do not want! Well, probability of misbehaviour
79  * is ridiculously low and, seems, we could use some mb() tricks
80  * to avoid misread sequence numbers, states etc.  --ANK
81  *
82  * We don't need to initialize tmp_out.sack_ok as we don't use the results
83  */
84 enum tcp_tw_status
85 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
86 			   const struct tcphdr *th)
87 {
88 	struct tcp_options_received tmp_opt;
89 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
90 	bool paws_reject = false;
91 
92 	tmp_opt.saw_tstamp = 0;
93 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
94 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
95 
96 		if (tmp_opt.saw_tstamp) {
97 			if (tmp_opt.rcv_tsecr)
98 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
99 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
100 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
101 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102 		}
103 	}
104 
105 	if (tw->tw_substate == TCP_FIN_WAIT2) {
106 		/* Just repeat all the checks of tcp_rcv_state_process() */
107 
108 		/* Out of window, send ACK */
109 		if (paws_reject ||
110 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111 				   tcptw->tw_rcv_nxt,
112 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113 			return tcp_timewait_check_oow_rate_limit(
114 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115 
116 		if (th->rst)
117 			goto kill;
118 
119 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120 			return TCP_TW_RST;
121 
122 		/* Dup ACK? */
123 		if (!th->ack ||
124 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126 			inet_twsk_put(tw);
127 			return TCP_TW_SUCCESS;
128 		}
129 
130 		/* New data or FIN. If new data arrive after half-duplex close,
131 		 * reset.
132 		 */
133 		if (!th->fin ||
134 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
135 			return TCP_TW_RST;
136 
137 		/* FIN arrived, enter true time-wait state. */
138 		tw->tw_substate	  = TCP_TIME_WAIT;
139 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140 		if (tmp_opt.saw_tstamp) {
141 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
143 		}
144 
145 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
146 		return TCP_TW_ACK;
147 	}
148 
149 	/*
150 	 *	Now real TIME-WAIT state.
151 	 *
152 	 *	RFC 1122:
153 	 *	"When a connection is [...] on TIME-WAIT state [...]
154 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
155 	 *	reopen the connection directly, if it:
156 	 *
157 	 *	(1)  assigns its initial sequence number for the new
158 	 *	connection to be larger than the largest sequence
159 	 *	number it used on the previous connection incarnation,
160 	 *	and
161 	 *
162 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
163 	 *	to be an old duplicate".
164 	 */
165 
166 	if (!paws_reject &&
167 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169 		/* In window segment, it may be only reset or bare ack. */
170 
171 		if (th->rst) {
172 			/* This is TIME_WAIT assassination, in two flavors.
173 			 * Oh well... nobody has a sufficient solution to this
174 			 * protocol bug yet.
175 			 */
176 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177 kill:
178 				inet_twsk_deschedule_put(tw);
179 				return TCP_TW_SUCCESS;
180 			}
181 		} else {
182 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183 		}
184 
185 		if (tmp_opt.saw_tstamp) {
186 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
187 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188 		}
189 
190 		inet_twsk_put(tw);
191 		return TCP_TW_SUCCESS;
192 	}
193 
194 	/* Out of window segment.
195 
196 	   All the segments are ACKed immediately.
197 
198 	   The only exception is new SYN. We accept it, if it is
199 	   not old duplicate and we are not in danger to be killed
200 	   by delayed old duplicates. RFC check is that it has
201 	   newer sequence number works at rates <40Mbit/sec.
202 	   However, if paws works, it is reliable AND even more,
203 	   we even may relax silly seq space cutoff.
204 
205 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
206 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
207 	   we must return socket to time-wait state. It is not good,
208 	   but not fatal yet.
209 	 */
210 
211 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
212 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213 	     (tmp_opt.saw_tstamp &&
214 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216 		if (isn == 0)
217 			isn++;
218 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219 		return TCP_TW_SYN;
220 	}
221 
222 	if (paws_reject)
223 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224 
225 	if (!th->rst) {
226 		/* In this case we must reset the TIMEWAIT timer.
227 		 *
228 		 * If it is ACKless SYN it may be both old duplicate
229 		 * and new good SYN with random sequence number <rcv_nxt.
230 		 * Do not reschedule in the last case.
231 		 */
232 		if (paws_reject || th->ack)
233 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
234 
235 		return tcp_timewait_check_oow_rate_limit(
236 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
237 	}
238 	inet_twsk_put(tw);
239 	return TCP_TW_SUCCESS;
240 }
241 EXPORT_SYMBOL(tcp_timewait_state_process);
242 
243 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
244 {
245 #ifdef CONFIG_TCP_MD5SIG
246 	const struct tcp_sock *tp = tcp_sk(sk);
247 	struct tcp_md5sig_key *key;
248 
249 	/*
250 	 * The timewait bucket does not have the key DB from the
251 	 * sock structure. We just make a quick copy of the
252 	 * md5 key being used (if indeed we are using one)
253 	 * so the timewait ack generating code has the key.
254 	 */
255 	tcptw->tw_md5_key = NULL;
256 	if (!static_branch_unlikely(&tcp_md5_needed.key))
257 		return;
258 
259 	key = tp->af_specific->md5_lookup(sk, sk);
260 	if (key) {
261 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
262 		if (!tcptw->tw_md5_key)
263 			return;
264 		if (!tcp_alloc_md5sig_pool())
265 			goto out_free;
266 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
267 			goto out_free;
268 	}
269 	return;
270 out_free:
271 	WARN_ON_ONCE(1);
272 	kfree(tcptw->tw_md5_key);
273 	tcptw->tw_md5_key = NULL;
274 #endif
275 }
276 
277 /*
278  * Move a socket to time-wait or dead fin-wait-2 state.
279  */
280 void tcp_time_wait(struct sock *sk, int state, int timeo)
281 {
282 	const struct inet_connection_sock *icsk = inet_csk(sk);
283 	const struct tcp_sock *tp = tcp_sk(sk);
284 	struct net *net = sock_net(sk);
285 	struct inet_timewait_sock *tw;
286 
287 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
288 
289 	if (tw) {
290 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
291 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
292 
293 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
294 		tw->tw_mark		= sk->sk_mark;
295 		tw->tw_priority		= sk->sk_priority;
296 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
297 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
298 		tcptw->tw_snd_nxt	= tp->snd_nxt;
299 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
300 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
301 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
302 		tcptw->tw_ts_offset	= tp->tsoffset;
303 		tcptw->tw_last_oow_ack_time = 0;
304 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
305 		tw->tw_txhash		= sk->sk_txhash;
306 #if IS_ENABLED(CONFIG_IPV6)
307 		if (tw->tw_family == PF_INET6) {
308 			struct ipv6_pinfo *np = inet6_sk(sk);
309 
310 			tw->tw_v6_daddr = sk->sk_v6_daddr;
311 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
312 			tw->tw_tclass = np->tclass;
313 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
314 			tw->tw_ipv6only = sk->sk_ipv6only;
315 		}
316 #endif
317 
318 		tcp_time_wait_init(sk, tcptw);
319 
320 		/* Get the TIME_WAIT timeout firing. */
321 		if (timeo < rto)
322 			timeo = rto;
323 
324 		if (state == TCP_TIME_WAIT)
325 			timeo = TCP_TIMEWAIT_LEN;
326 
327 		/* tw_timer is pinned, so we need to make sure BH are disabled
328 		 * in following section, otherwise timer handler could run before
329 		 * we complete the initialization.
330 		 */
331 		local_bh_disable();
332 		inet_twsk_schedule(tw, timeo);
333 		/* Linkage updates.
334 		 * Note that access to tw after this point is illegal.
335 		 */
336 		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
337 		local_bh_enable();
338 	} else {
339 		/* Sorry, if we're out of memory, just CLOSE this
340 		 * socket up.  We've got bigger problems than
341 		 * non-graceful socket closings.
342 		 */
343 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
344 	}
345 
346 	tcp_update_metrics(sk);
347 	tcp_done(sk);
348 }
349 EXPORT_SYMBOL(tcp_time_wait);
350 
351 void tcp_twsk_destructor(struct sock *sk)
352 {
353 #ifdef CONFIG_TCP_MD5SIG
354 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
355 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
356 
357 		if (twsk->tw_md5_key) {
358 			kfree_rcu(twsk->tw_md5_key, rcu);
359 			static_branch_slow_dec_deferred(&tcp_md5_needed);
360 		}
361 	}
362 #endif
363 }
364 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
365 
366 void tcp_twsk_purge(struct list_head *net_exit_list, int family)
367 {
368 	bool purged_once = false;
369 	struct net *net;
370 
371 	list_for_each_entry(net, net_exit_list, exit_list) {
372 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
373 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
374 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
375 		} else if (!purged_once) {
376 			inet_twsk_purge(&tcp_hashinfo, family);
377 			purged_once = true;
378 		}
379 	}
380 }
381 EXPORT_SYMBOL_GPL(tcp_twsk_purge);
382 
383 /* Warning : This function is called without sk_listener being locked.
384  * Be sure to read socket fields once, as their value could change under us.
385  */
386 void tcp_openreq_init_rwin(struct request_sock *req,
387 			   const struct sock *sk_listener,
388 			   const struct dst_entry *dst)
389 {
390 	struct inet_request_sock *ireq = inet_rsk(req);
391 	const struct tcp_sock *tp = tcp_sk(sk_listener);
392 	int full_space = tcp_full_space(sk_listener);
393 	u32 window_clamp;
394 	__u8 rcv_wscale;
395 	u32 rcv_wnd;
396 	int mss;
397 
398 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
399 	window_clamp = READ_ONCE(tp->window_clamp);
400 	/* Set this up on the first call only */
401 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
402 
403 	/* limit the window selection if the user enforce a smaller rx buffer */
404 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
405 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
406 		req->rsk_window_clamp = full_space;
407 
408 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
409 	if (rcv_wnd == 0)
410 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
411 	else if (full_space < rcv_wnd * mss)
412 		full_space = rcv_wnd * mss;
413 
414 	/* tcp_full_space because it is guaranteed to be the first packet */
415 	tcp_select_initial_window(sk_listener, full_space,
416 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
417 		&req->rsk_rcv_wnd,
418 		&req->rsk_window_clamp,
419 		ireq->wscale_ok,
420 		&rcv_wscale,
421 		rcv_wnd);
422 	ireq->rcv_wscale = rcv_wscale;
423 }
424 EXPORT_SYMBOL(tcp_openreq_init_rwin);
425 
426 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
427 				  const struct request_sock *req)
428 {
429 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
430 }
431 
432 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
433 {
434 	struct inet_connection_sock *icsk = inet_csk(sk);
435 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
436 	bool ca_got_dst = false;
437 
438 	if (ca_key != TCP_CA_UNSPEC) {
439 		const struct tcp_congestion_ops *ca;
440 
441 		rcu_read_lock();
442 		ca = tcp_ca_find_key(ca_key);
443 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
444 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
445 			icsk->icsk_ca_ops = ca;
446 			ca_got_dst = true;
447 		}
448 		rcu_read_unlock();
449 	}
450 
451 	/* If no valid choice made yet, assign current system default ca. */
452 	if (!ca_got_dst &&
453 	    (!icsk->icsk_ca_setsockopt ||
454 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
455 		tcp_assign_congestion_control(sk);
456 
457 	tcp_set_ca_state(sk, TCP_CA_Open);
458 }
459 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
460 
461 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
462 				    struct request_sock *req,
463 				    struct tcp_sock *newtp)
464 {
465 #if IS_ENABLED(CONFIG_SMC)
466 	struct inet_request_sock *ireq;
467 
468 	if (static_branch_unlikely(&tcp_have_smc)) {
469 		ireq = inet_rsk(req);
470 		if (oldtp->syn_smc && !ireq->smc_ok)
471 			newtp->syn_smc = 0;
472 	}
473 #endif
474 }
475 
476 /* This is not only more efficient than what we used to do, it eliminates
477  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
478  *
479  * Actually, we could lots of memory writes here. tp of listening
480  * socket contains all necessary default parameters.
481  */
482 struct sock *tcp_create_openreq_child(const struct sock *sk,
483 				      struct request_sock *req,
484 				      struct sk_buff *skb)
485 {
486 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
487 	const struct inet_request_sock *ireq = inet_rsk(req);
488 	struct tcp_request_sock *treq = tcp_rsk(req);
489 	struct inet_connection_sock *newicsk;
490 	const struct tcp_sock *oldtp;
491 	struct tcp_sock *newtp;
492 	u32 seq;
493 
494 	if (!newsk)
495 		return NULL;
496 
497 	newicsk = inet_csk(newsk);
498 	newtp = tcp_sk(newsk);
499 	oldtp = tcp_sk(sk);
500 
501 	smc_check_reset_syn_req(oldtp, req, newtp);
502 
503 	/* Now setup tcp_sock */
504 	newtp->pred_flags = 0;
505 
506 	seq = treq->rcv_isn + 1;
507 	newtp->rcv_wup = seq;
508 	WRITE_ONCE(newtp->copied_seq, seq);
509 	WRITE_ONCE(newtp->rcv_nxt, seq);
510 	newtp->segs_in = 1;
511 
512 	seq = treq->snt_isn + 1;
513 	newtp->snd_sml = newtp->snd_una = seq;
514 	WRITE_ONCE(newtp->snd_nxt, seq);
515 	newtp->snd_up = seq;
516 
517 	INIT_LIST_HEAD(&newtp->tsq_node);
518 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
519 
520 	tcp_init_wl(newtp, treq->rcv_isn);
521 
522 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
523 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
524 
525 	newtp->lsndtime = tcp_jiffies32;
526 	newsk->sk_txhash = READ_ONCE(treq->txhash);
527 	newtp->total_retrans = req->num_retrans;
528 
529 	tcp_init_xmit_timers(newsk);
530 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
531 
532 	if (sock_flag(newsk, SOCK_KEEPOPEN))
533 		inet_csk_reset_keepalive_timer(newsk,
534 					       keepalive_time_when(newtp));
535 
536 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
537 	newtp->rx_opt.sack_ok = ireq->sack_ok;
538 	newtp->window_clamp = req->rsk_window_clamp;
539 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
540 	newtp->rcv_wnd = req->rsk_rcv_wnd;
541 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
542 	if (newtp->rx_opt.wscale_ok) {
543 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
544 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
545 	} else {
546 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
547 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
548 	}
549 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
550 	newtp->max_window = newtp->snd_wnd;
551 
552 	if (newtp->rx_opt.tstamp_ok) {
553 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
554 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
555 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
556 	} else {
557 		newtp->rx_opt.ts_recent_stamp = 0;
558 		newtp->tcp_header_len = sizeof(struct tcphdr);
559 	}
560 	if (req->num_timeout) {
561 		newtp->undo_marker = treq->snt_isn;
562 		newtp->retrans_stamp = div_u64(treq->snt_synack,
563 					       USEC_PER_SEC / TCP_TS_HZ);
564 	}
565 	newtp->tsoffset = treq->ts_off;
566 #ifdef CONFIG_TCP_MD5SIG
567 	newtp->md5sig_info = NULL;	/*XXX*/
568 #endif
569 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
570 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
571 	newtp->rx_opt.mss_clamp = req->mss;
572 	tcp_ecn_openreq_child(newtp, req);
573 	newtp->fastopen_req = NULL;
574 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
575 
576 	newtp->bpf_chg_cc_inprogress = 0;
577 	tcp_bpf_clone(sk, newsk);
578 
579 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
580 
581 	return newsk;
582 }
583 EXPORT_SYMBOL(tcp_create_openreq_child);
584 
585 /*
586  * Process an incoming packet for SYN_RECV sockets represented as a
587  * request_sock. Normally sk is the listener socket but for TFO it
588  * points to the child socket.
589  *
590  * XXX (TFO) - The current impl contains a special check for ack
591  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
592  *
593  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
594  *
595  * Note: If @fastopen is true, this can be called from process context.
596  *       Otherwise, this is from BH context.
597  */
598 
599 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
600 			   struct request_sock *req,
601 			   bool fastopen, bool *req_stolen)
602 {
603 	struct tcp_options_received tmp_opt;
604 	struct sock *child;
605 	const struct tcphdr *th = tcp_hdr(skb);
606 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
607 	bool paws_reject = false;
608 	bool own_req;
609 
610 	tmp_opt.saw_tstamp = 0;
611 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
612 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
613 
614 		if (tmp_opt.saw_tstamp) {
615 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
616 			if (tmp_opt.rcv_tsecr)
617 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
618 			/* We do not store true stamp, but it is not required,
619 			 * it can be estimated (approximately)
620 			 * from another data.
621 			 */
622 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
623 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
624 		}
625 	}
626 
627 	/* Check for pure retransmitted SYN. */
628 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
629 	    flg == TCP_FLAG_SYN &&
630 	    !paws_reject) {
631 		/*
632 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
633 		 * this case on figure 6 and figure 8, but formal
634 		 * protocol description says NOTHING.
635 		 * To be more exact, it says that we should send ACK,
636 		 * because this segment (at least, if it has no data)
637 		 * is out of window.
638 		 *
639 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
640 		 *  describe SYN-RECV state. All the description
641 		 *  is wrong, we cannot believe to it and should
642 		 *  rely only on common sense and implementation
643 		 *  experience.
644 		 *
645 		 * Enforce "SYN-ACK" according to figure 8, figure 6
646 		 * of RFC793, fixed by RFC1122.
647 		 *
648 		 * Note that even if there is new data in the SYN packet
649 		 * they will be thrown away too.
650 		 *
651 		 * Reset timer after retransmitting SYNACK, similar to
652 		 * the idea of fast retransmit in recovery.
653 		 */
654 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
655 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
656 					  &tcp_rsk(req)->last_oow_ack_time) &&
657 
658 		    !inet_rtx_syn_ack(sk, req)) {
659 			unsigned long expires = jiffies;
660 
661 			expires += reqsk_timeout(req, TCP_RTO_MAX);
662 			if (!fastopen)
663 				mod_timer_pending(&req->rsk_timer, expires);
664 			else
665 				req->rsk_timer.expires = expires;
666 		}
667 		return NULL;
668 	}
669 
670 	/* Further reproduces section "SEGMENT ARRIVES"
671 	   for state SYN-RECEIVED of RFC793.
672 	   It is broken, however, it does not work only
673 	   when SYNs are crossed.
674 
675 	   You would think that SYN crossing is impossible here, since
676 	   we should have a SYN_SENT socket (from connect()) on our end,
677 	   but this is not true if the crossed SYNs were sent to both
678 	   ends by a malicious third party.  We must defend against this,
679 	   and to do that we first verify the ACK (as per RFC793, page
680 	   36) and reset if it is invalid.  Is this a true full defense?
681 	   To convince ourselves, let us consider a way in which the ACK
682 	   test can still pass in this 'malicious crossed SYNs' case.
683 	   Malicious sender sends identical SYNs (and thus identical sequence
684 	   numbers) to both A and B:
685 
686 		A: gets SYN, seq=7
687 		B: gets SYN, seq=7
688 
689 	   By our good fortune, both A and B select the same initial
690 	   send sequence number of seven :-)
691 
692 		A: sends SYN|ACK, seq=7, ack_seq=8
693 		B: sends SYN|ACK, seq=7, ack_seq=8
694 
695 	   So we are now A eating this SYN|ACK, ACK test passes.  So
696 	   does sequence test, SYN is truncated, and thus we consider
697 	   it a bare ACK.
698 
699 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
700 	   bare ACK.  Otherwise, we create an established connection.  Both
701 	   ends (listening sockets) accept the new incoming connection and try
702 	   to talk to each other. 8-)
703 
704 	   Note: This case is both harmless, and rare.  Possibility is about the
705 	   same as us discovering intelligent life on another plant tomorrow.
706 
707 	   But generally, we should (RFC lies!) to accept ACK
708 	   from SYNACK both here and in tcp_rcv_state_process().
709 	   tcp_rcv_state_process() does not, hence, we do not too.
710 
711 	   Note that the case is absolutely generic:
712 	   we cannot optimize anything here without
713 	   violating protocol. All the checks must be made
714 	   before attempt to create socket.
715 	 */
716 
717 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
718 	 *                  and the incoming segment acknowledges something not yet
719 	 *                  sent (the segment carries an unacceptable ACK) ...
720 	 *                  a reset is sent."
721 	 *
722 	 * Invalid ACK: reset will be sent by listening socket.
723 	 * Note that the ACK validity check for a Fast Open socket is done
724 	 * elsewhere and is checked directly against the child socket rather
725 	 * than req because user data may have been sent out.
726 	 */
727 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
728 	    (TCP_SKB_CB(skb)->ack_seq !=
729 	     tcp_rsk(req)->snt_isn + 1))
730 		return sk;
731 
732 	/* Also, it would be not so bad idea to check rcv_tsecr, which
733 	 * is essentially ACK extension and too early or too late values
734 	 * should cause reset in unsynchronized states.
735 	 */
736 
737 	/* RFC793: "first check sequence number". */
738 
739 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
740 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
741 		/* Out of window: send ACK and drop. */
742 		if (!(flg & TCP_FLAG_RST) &&
743 		    !tcp_oow_rate_limited(sock_net(sk), skb,
744 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
745 					  &tcp_rsk(req)->last_oow_ack_time))
746 			req->rsk_ops->send_ack(sk, skb, req);
747 		if (paws_reject)
748 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
749 		return NULL;
750 	}
751 
752 	/* In sequence, PAWS is OK. */
753 
754 	/* TODO: We probably should defer ts_recent change once
755 	 * we take ownership of @req.
756 	 */
757 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
758 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
759 
760 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
761 		/* Truncate SYN, it is out of window starting
762 		   at tcp_rsk(req)->rcv_isn + 1. */
763 		flg &= ~TCP_FLAG_SYN;
764 	}
765 
766 	/* RFC793: "second check the RST bit" and
767 	 *	   "fourth, check the SYN bit"
768 	 */
769 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
770 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
771 		goto embryonic_reset;
772 	}
773 
774 	/* ACK sequence verified above, just make sure ACK is
775 	 * set.  If ACK not set, just silently drop the packet.
776 	 *
777 	 * XXX (TFO) - if we ever allow "data after SYN", the
778 	 * following check needs to be removed.
779 	 */
780 	if (!(flg & TCP_FLAG_ACK))
781 		return NULL;
782 
783 	/* For Fast Open no more processing is needed (sk is the
784 	 * child socket).
785 	 */
786 	if (fastopen)
787 		return sk;
788 
789 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
790 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
791 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
792 		inet_rsk(req)->acked = 1;
793 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
794 		return NULL;
795 	}
796 
797 	/* OK, ACK is valid, create big socket and
798 	 * feed this segment to it. It will repeat all
799 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
800 	 * ESTABLISHED STATE. If it will be dropped after
801 	 * socket is created, wait for troubles.
802 	 */
803 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
804 							 req, &own_req);
805 	if (!child)
806 		goto listen_overflow;
807 
808 	if (own_req && rsk_drop_req(req)) {
809 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
810 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
811 		return child;
812 	}
813 
814 	sock_rps_save_rxhash(child, skb);
815 	tcp_synack_rtt_meas(child, req);
816 	*req_stolen = !own_req;
817 	return inet_csk_complete_hashdance(sk, child, req, own_req);
818 
819 listen_overflow:
820 	if (sk != req->rsk_listener)
821 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
822 
823 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
824 		inet_rsk(req)->acked = 1;
825 		return NULL;
826 	}
827 
828 embryonic_reset:
829 	if (!(flg & TCP_FLAG_RST)) {
830 		/* Received a bad SYN pkt - for TFO We try not to reset
831 		 * the local connection unless it's really necessary to
832 		 * avoid becoming vulnerable to outside attack aiming at
833 		 * resetting legit local connections.
834 		 */
835 		req->rsk_ops->send_reset(sk, skb);
836 	} else if (fastopen) { /* received a valid RST pkt */
837 		reqsk_fastopen_remove(sk, req, true);
838 		tcp_reset(sk, skb);
839 	}
840 	if (!fastopen) {
841 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
842 
843 		if (unlinked)
844 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
845 		*req_stolen = !unlinked;
846 	}
847 	return NULL;
848 }
849 EXPORT_SYMBOL(tcp_check_req);
850 
851 /*
852  * Queue segment on the new socket if the new socket is active,
853  * otherwise we just shortcircuit this and continue with
854  * the new socket.
855  *
856  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
857  * when entering. But other states are possible due to a race condition
858  * where after __inet_lookup_established() fails but before the listener
859  * locked is obtained, other packets cause the same connection to
860  * be created.
861  */
862 
863 int tcp_child_process(struct sock *parent, struct sock *child,
864 		      struct sk_buff *skb)
865 	__releases(&((child)->sk_lock.slock))
866 {
867 	int ret = 0;
868 	int state = child->sk_state;
869 
870 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
871 	sk_mark_napi_id_set(child, skb);
872 
873 	tcp_segs_in(tcp_sk(child), skb);
874 	if (!sock_owned_by_user(child)) {
875 		ret = tcp_rcv_state_process(child, skb);
876 		/* Wakeup parent, send SIGIO */
877 		if (state == TCP_SYN_RECV && child->sk_state != state)
878 			parent->sk_data_ready(parent);
879 	} else {
880 		/* Alas, it is possible again, because we do lookup
881 		 * in main socket hash table and lock on listening
882 		 * socket does not protect us more.
883 		 */
884 		__sk_add_backlog(child, skb);
885 	}
886 
887 	bh_unlock_sock(child);
888 	sock_put(child);
889 	return ret;
890 }
891 EXPORT_SYMBOL(tcp_child_process);
892