xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision bb798169d1bb860b07192cf9c75937fadc8610b4)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 
64 #include <net/net_namespace.h>
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
74 
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80 
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
83 
84 int sysctl_tcp_tw_reuse __read_mostly;
85 int sysctl_tcp_low_latency __read_mostly;
86 
87 
88 #ifdef CONFIG_TCP_MD5SIG
89 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
90 						   __be32 addr);
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
92 			       __be32 daddr, __be32 saddr, struct tcphdr *th);
93 #else
94 static inline
95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
96 {
97 	return NULL;
98 }
99 #endif
100 
101 struct inet_hashinfo tcp_hashinfo;
102 
103 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
104 {
105 	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
106 					  ip_hdr(skb)->saddr,
107 					  tcp_hdr(skb)->dest,
108 					  tcp_hdr(skb)->source);
109 }
110 
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 	struct tcp_sock *tp = tcp_sk(sk);
115 
116 	/* With PAWS, it is safe from the viewpoint
117 	   of data integrity. Even without PAWS it is safe provided sequence
118 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
119 
120 	   Actually, the idea is close to VJ's one, only timestamp cache is
121 	   held not per host, but per port pair and TW bucket is used as state
122 	   holder.
123 
124 	   If TW bucket has been already destroyed we fall back to VJ's scheme
125 	   and use initial timestamp retrieved from peer table.
126 	 */
127 	if (tcptw->tw_ts_recent_stamp &&
128 	    (twp == NULL || (sysctl_tcp_tw_reuse &&
129 			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 		if (tp->write_seq == 0)
132 			tp->write_seq = 1;
133 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
134 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
135 		sock_hold(sktw);
136 		return 1;
137 	}
138 
139 	return 0;
140 }
141 
142 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
143 
144 /* This will initiate an outgoing connection. */
145 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
146 {
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct tcp_sock *tp = tcp_sk(sk);
149 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 	struct rtable *rt;
151 	__be32 daddr, nexthop;
152 	int tmp;
153 	int err;
154 
155 	if (addr_len < sizeof(struct sockaddr_in))
156 		return -EINVAL;
157 
158 	if (usin->sin_family != AF_INET)
159 		return -EAFNOSUPPORT;
160 
161 	nexthop = daddr = usin->sin_addr.s_addr;
162 	if (inet->opt && inet->opt->srr) {
163 		if (!daddr)
164 			return -EINVAL;
165 		nexthop = inet->opt->faddr;
166 	}
167 
168 	tmp = ip_route_connect(&rt, nexthop, inet->saddr,
169 			       RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
170 			       IPPROTO_TCP,
171 			       inet->sport, usin->sin_port, sk, 1);
172 	if (tmp < 0) {
173 		if (tmp == -ENETUNREACH)
174 			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
175 		return tmp;
176 	}
177 
178 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
179 		ip_rt_put(rt);
180 		return -ENETUNREACH;
181 	}
182 
183 	if (!inet->opt || !inet->opt->srr)
184 		daddr = rt->rt_dst;
185 
186 	if (!inet->saddr)
187 		inet->saddr = rt->rt_src;
188 	inet->rcv_saddr = inet->saddr;
189 
190 	if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
191 		/* Reset inherited state */
192 		tp->rx_opt.ts_recent	   = 0;
193 		tp->rx_opt.ts_recent_stamp = 0;
194 		tp->write_seq		   = 0;
195 	}
196 
197 	if (tcp_death_row.sysctl_tw_recycle &&
198 	    !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
199 		struct inet_peer *peer = rt_get_peer(rt);
200 		/*
201 		 * VJ's idea. We save last timestamp seen from
202 		 * the destination in peer table, when entering state
203 		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
204 		 * when trying new connection.
205 		 */
206 		if (peer != NULL &&
207 		    peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
208 			tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
209 			tp->rx_opt.ts_recent = peer->tcp_ts;
210 		}
211 	}
212 
213 	inet->dport = usin->sin_port;
214 	inet->daddr = daddr;
215 
216 	inet_csk(sk)->icsk_ext_hdr_len = 0;
217 	if (inet->opt)
218 		inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
219 
220 	tp->rx_opt.mss_clamp = 536;
221 
222 	/* Socket identity is still unknown (sport may be zero).
223 	 * However we set state to SYN-SENT and not releasing socket
224 	 * lock select source port, enter ourselves into the hash tables and
225 	 * complete initialization after this.
226 	 */
227 	tcp_set_state(sk, TCP_SYN_SENT);
228 	err = inet_hash_connect(&tcp_death_row, sk);
229 	if (err)
230 		goto failure;
231 
232 	err = ip_route_newports(&rt, IPPROTO_TCP,
233 				inet->sport, inet->dport, sk);
234 	if (err)
235 		goto failure;
236 
237 	/* OK, now commit destination to socket.  */
238 	sk->sk_gso_type = SKB_GSO_TCPV4;
239 	sk_setup_caps(sk, &rt->u.dst);
240 
241 	if (!tp->write_seq)
242 		tp->write_seq = secure_tcp_sequence_number(inet->saddr,
243 							   inet->daddr,
244 							   inet->sport,
245 							   usin->sin_port);
246 
247 	inet->id = tp->write_seq ^ jiffies;
248 
249 	err = tcp_connect(sk);
250 	rt = NULL;
251 	if (err)
252 		goto failure;
253 
254 	return 0;
255 
256 failure:
257 	/*
258 	 * This unhashes the socket and releases the local port,
259 	 * if necessary.
260 	 */
261 	tcp_set_state(sk, TCP_CLOSE);
262 	ip_rt_put(rt);
263 	sk->sk_route_caps = 0;
264 	inet->dport = 0;
265 	return err;
266 }
267 
268 /*
269  * This routine does path mtu discovery as defined in RFC1191.
270  */
271 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
272 {
273 	struct dst_entry *dst;
274 	struct inet_sock *inet = inet_sk(sk);
275 
276 	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
277 	 * send out by Linux are always <576bytes so they should go through
278 	 * unfragmented).
279 	 */
280 	if (sk->sk_state == TCP_LISTEN)
281 		return;
282 
283 	/* We don't check in the destentry if pmtu discovery is forbidden
284 	 * on this route. We just assume that no packet_to_big packets
285 	 * are send back when pmtu discovery is not active.
286 	 * There is a small race when the user changes this flag in the
287 	 * route, but I think that's acceptable.
288 	 */
289 	if ((dst = __sk_dst_check(sk, 0)) == NULL)
290 		return;
291 
292 	dst->ops->update_pmtu(dst, mtu);
293 
294 	/* Something is about to be wrong... Remember soft error
295 	 * for the case, if this connection will not able to recover.
296 	 */
297 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
298 		sk->sk_err_soft = EMSGSIZE;
299 
300 	mtu = dst_mtu(dst);
301 
302 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
303 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
304 		tcp_sync_mss(sk, mtu);
305 
306 		/* Resend the TCP packet because it's
307 		 * clear that the old packet has been
308 		 * dropped. This is the new "fast" path mtu
309 		 * discovery.
310 		 */
311 		tcp_simple_retransmit(sk);
312 	} /* else let the usual retransmit timer handle it */
313 }
314 
315 /*
316  * This routine is called by the ICMP module when it gets some
317  * sort of error condition.  If err < 0 then the socket should
318  * be closed and the error returned to the user.  If err > 0
319  * it's just the icmp type << 8 | icmp code.  After adjustment
320  * header points to the first 8 bytes of the tcp header.  We need
321  * to find the appropriate port.
322  *
323  * The locking strategy used here is very "optimistic". When
324  * someone else accesses the socket the ICMP is just dropped
325  * and for some paths there is no check at all.
326  * A more general error queue to queue errors for later handling
327  * is probably better.
328  *
329  */
330 
331 void tcp_v4_err(struct sk_buff *skb, u32 info)
332 {
333 	struct iphdr *iph = (struct iphdr *)skb->data;
334 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
335 	struct tcp_sock *tp;
336 	struct inet_sock *inet;
337 	const int type = icmp_hdr(skb)->type;
338 	const int code = icmp_hdr(skb)->code;
339 	struct sock *sk;
340 	__u32 seq;
341 	int err;
342 	struct net *net = dev_net(skb->dev);
343 
344 	if (skb->len < (iph->ihl << 2) + 8) {
345 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
346 		return;
347 	}
348 
349 	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
350 			iph->saddr, th->source, inet_iif(skb));
351 	if (!sk) {
352 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
353 		return;
354 	}
355 	if (sk->sk_state == TCP_TIME_WAIT) {
356 		inet_twsk_put(inet_twsk(sk));
357 		return;
358 	}
359 
360 	bh_lock_sock(sk);
361 	/* If too many ICMPs get dropped on busy
362 	 * servers this needs to be solved differently.
363 	 */
364 	if (sock_owned_by_user(sk))
365 		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
366 
367 	if (sk->sk_state == TCP_CLOSE)
368 		goto out;
369 
370 	tp = tcp_sk(sk);
371 	seq = ntohl(th->seq);
372 	if (sk->sk_state != TCP_LISTEN &&
373 	    !between(seq, tp->snd_una, tp->snd_nxt)) {
374 		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
375 		goto out;
376 	}
377 
378 	switch (type) {
379 	case ICMP_SOURCE_QUENCH:
380 		/* Just silently ignore these. */
381 		goto out;
382 	case ICMP_PARAMETERPROB:
383 		err = EPROTO;
384 		break;
385 	case ICMP_DEST_UNREACH:
386 		if (code > NR_ICMP_UNREACH)
387 			goto out;
388 
389 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
390 			if (!sock_owned_by_user(sk))
391 				do_pmtu_discovery(sk, iph, info);
392 			goto out;
393 		}
394 
395 		err = icmp_err_convert[code].errno;
396 		break;
397 	case ICMP_TIME_EXCEEDED:
398 		err = EHOSTUNREACH;
399 		break;
400 	default:
401 		goto out;
402 	}
403 
404 	switch (sk->sk_state) {
405 		struct request_sock *req, **prev;
406 	case TCP_LISTEN:
407 		if (sock_owned_by_user(sk))
408 			goto out;
409 
410 		req = inet_csk_search_req(sk, &prev, th->dest,
411 					  iph->daddr, iph->saddr);
412 		if (!req)
413 			goto out;
414 
415 		/* ICMPs are not backlogged, hence we cannot get
416 		   an established socket here.
417 		 */
418 		WARN_ON(req->sk);
419 
420 		if (seq != tcp_rsk(req)->snt_isn) {
421 			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
422 			goto out;
423 		}
424 
425 		/*
426 		 * Still in SYN_RECV, just remove it silently.
427 		 * There is no good way to pass the error to the newly
428 		 * created socket, and POSIX does not want network
429 		 * errors returned from accept().
430 		 */
431 		inet_csk_reqsk_queue_drop(sk, req, prev);
432 		goto out;
433 
434 	case TCP_SYN_SENT:
435 	case TCP_SYN_RECV:  /* Cannot happen.
436 			       It can f.e. if SYNs crossed.
437 			     */
438 		if (!sock_owned_by_user(sk)) {
439 			sk->sk_err = err;
440 
441 			sk->sk_error_report(sk);
442 
443 			tcp_done(sk);
444 		} else {
445 			sk->sk_err_soft = err;
446 		}
447 		goto out;
448 	}
449 
450 	/* If we've already connected we will keep trying
451 	 * until we time out, or the user gives up.
452 	 *
453 	 * rfc1122 4.2.3.9 allows to consider as hard errors
454 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
455 	 * but it is obsoleted by pmtu discovery).
456 	 *
457 	 * Note, that in modern internet, where routing is unreliable
458 	 * and in each dark corner broken firewalls sit, sending random
459 	 * errors ordered by their masters even this two messages finally lose
460 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
461 	 *
462 	 * Now we are in compliance with RFCs.
463 	 *							--ANK (980905)
464 	 */
465 
466 	inet = inet_sk(sk);
467 	if (!sock_owned_by_user(sk) && inet->recverr) {
468 		sk->sk_err = err;
469 		sk->sk_error_report(sk);
470 	} else	{ /* Only an error on timeout */
471 		sk->sk_err_soft = err;
472 	}
473 
474 out:
475 	bh_unlock_sock(sk);
476 	sock_put(sk);
477 }
478 
479 /* This routine computes an IPv4 TCP checksum. */
480 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
481 {
482 	struct inet_sock *inet = inet_sk(sk);
483 	struct tcphdr *th = tcp_hdr(skb);
484 
485 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
486 		th->check = ~tcp_v4_check(len, inet->saddr,
487 					  inet->daddr, 0);
488 		skb->csum_start = skb_transport_header(skb) - skb->head;
489 		skb->csum_offset = offsetof(struct tcphdr, check);
490 	} else {
491 		th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
492 					 csum_partial(th,
493 						      th->doff << 2,
494 						      skb->csum));
495 	}
496 }
497 
498 int tcp_v4_gso_send_check(struct sk_buff *skb)
499 {
500 	const struct iphdr *iph;
501 	struct tcphdr *th;
502 
503 	if (!pskb_may_pull(skb, sizeof(*th)))
504 		return -EINVAL;
505 
506 	iph = ip_hdr(skb);
507 	th = tcp_hdr(skb);
508 
509 	th->check = 0;
510 	th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
511 	skb->csum_start = skb_transport_header(skb) - skb->head;
512 	skb->csum_offset = offsetof(struct tcphdr, check);
513 	skb->ip_summed = CHECKSUM_PARTIAL;
514 	return 0;
515 }
516 
517 /*
518  *	This routine will send an RST to the other tcp.
519  *
520  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
521  *		      for reset.
522  *	Answer: if a packet caused RST, it is not for a socket
523  *		existing in our system, if it is matched to a socket,
524  *		it is just duplicate segment or bug in other side's TCP.
525  *		So that we build reply only basing on parameters
526  *		arrived with segment.
527  *	Exception: precedence violation. We do not implement it in any case.
528  */
529 
530 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
531 {
532 	struct tcphdr *th = tcp_hdr(skb);
533 	struct {
534 		struct tcphdr th;
535 #ifdef CONFIG_TCP_MD5SIG
536 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
537 #endif
538 	} rep;
539 	struct ip_reply_arg arg;
540 #ifdef CONFIG_TCP_MD5SIG
541 	struct tcp_md5sig_key *key;
542 #endif
543 	struct net *net;
544 
545 	/* Never send a reset in response to a reset. */
546 	if (th->rst)
547 		return;
548 
549 	if (skb->rtable->rt_type != RTN_LOCAL)
550 		return;
551 
552 	/* Swap the send and the receive. */
553 	memset(&rep, 0, sizeof(rep));
554 	rep.th.dest   = th->source;
555 	rep.th.source = th->dest;
556 	rep.th.doff   = sizeof(struct tcphdr) / 4;
557 	rep.th.rst    = 1;
558 
559 	if (th->ack) {
560 		rep.th.seq = th->ack_seq;
561 	} else {
562 		rep.th.ack = 1;
563 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
564 				       skb->len - (th->doff << 2));
565 	}
566 
567 	memset(&arg, 0, sizeof(arg));
568 	arg.iov[0].iov_base = (unsigned char *)&rep;
569 	arg.iov[0].iov_len  = sizeof(rep.th);
570 
571 #ifdef CONFIG_TCP_MD5SIG
572 	key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
573 	if (key) {
574 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
575 				   (TCPOPT_NOP << 16) |
576 				   (TCPOPT_MD5SIG << 8) |
577 				   TCPOLEN_MD5SIG);
578 		/* Update length and the length the header thinks exists */
579 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
580 		rep.th.doff = arg.iov[0].iov_len / 4;
581 
582 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
583 				     key, ip_hdr(skb)->saddr,
584 				     ip_hdr(skb)->daddr, &rep.th);
585 	}
586 #endif
587 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
588 				      ip_hdr(skb)->saddr, /* XXX */
589 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
590 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
591 	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
592 
593 	net = dev_net(skb->dst->dev);
594 	ip_send_reply(net->ipv4.tcp_sock, skb,
595 		      &arg, arg.iov[0].iov_len);
596 
597 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
598 	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
599 }
600 
601 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
602    outside socket context is ugly, certainly. What can I do?
603  */
604 
605 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
606 			    u32 win, u32 ts, int oif,
607 			    struct tcp_md5sig_key *key,
608 			    int reply_flags)
609 {
610 	struct tcphdr *th = tcp_hdr(skb);
611 	struct {
612 		struct tcphdr th;
613 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
614 #ifdef CONFIG_TCP_MD5SIG
615 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
616 #endif
617 			];
618 	} rep;
619 	struct ip_reply_arg arg;
620 	struct net *net = dev_net(skb->dst->dev);
621 
622 	memset(&rep.th, 0, sizeof(struct tcphdr));
623 	memset(&arg, 0, sizeof(arg));
624 
625 	arg.iov[0].iov_base = (unsigned char *)&rep;
626 	arg.iov[0].iov_len  = sizeof(rep.th);
627 	if (ts) {
628 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
629 				   (TCPOPT_TIMESTAMP << 8) |
630 				   TCPOLEN_TIMESTAMP);
631 		rep.opt[1] = htonl(tcp_time_stamp);
632 		rep.opt[2] = htonl(ts);
633 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
634 	}
635 
636 	/* Swap the send and the receive. */
637 	rep.th.dest    = th->source;
638 	rep.th.source  = th->dest;
639 	rep.th.doff    = arg.iov[0].iov_len / 4;
640 	rep.th.seq     = htonl(seq);
641 	rep.th.ack_seq = htonl(ack);
642 	rep.th.ack     = 1;
643 	rep.th.window  = htons(win);
644 
645 #ifdef CONFIG_TCP_MD5SIG
646 	if (key) {
647 		int offset = (ts) ? 3 : 0;
648 
649 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
650 					  (TCPOPT_NOP << 16) |
651 					  (TCPOPT_MD5SIG << 8) |
652 					  TCPOLEN_MD5SIG);
653 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
654 		rep.th.doff = arg.iov[0].iov_len/4;
655 
656 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
657 				    key, ip_hdr(skb)->saddr,
658 				    ip_hdr(skb)->daddr, &rep.th);
659 	}
660 #endif
661 	arg.flags = reply_flags;
662 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
663 				      ip_hdr(skb)->saddr, /* XXX */
664 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
665 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
666 	if (oif)
667 		arg.bound_dev_if = oif;
668 
669 	ip_send_reply(net->ipv4.tcp_sock, skb,
670 		      &arg, arg.iov[0].iov_len);
671 
672 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
673 }
674 
675 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
676 {
677 	struct inet_timewait_sock *tw = inet_twsk(sk);
678 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
679 
680 	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
681 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
682 			tcptw->tw_ts_recent,
683 			tw->tw_bound_dev_if,
684 			tcp_twsk_md5_key(tcptw),
685 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
686 			);
687 
688 	inet_twsk_put(tw);
689 }
690 
691 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
692 				  struct request_sock *req)
693 {
694 	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
695 			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
696 			req->ts_recent,
697 			0,
698 			tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
699 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
700 }
701 
702 /*
703  *	Send a SYN-ACK after having received a SYN.
704  *	This still operates on a request_sock only, not on a big
705  *	socket.
706  */
707 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
708 				struct dst_entry *dst)
709 {
710 	const struct inet_request_sock *ireq = inet_rsk(req);
711 	int err = -1;
712 	struct sk_buff * skb;
713 
714 	/* First, grab a route. */
715 	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
716 		return -1;
717 
718 	skb = tcp_make_synack(sk, dst, req);
719 
720 	if (skb) {
721 		struct tcphdr *th = tcp_hdr(skb);
722 
723 		th->check = tcp_v4_check(skb->len,
724 					 ireq->loc_addr,
725 					 ireq->rmt_addr,
726 					 csum_partial(th, skb->len,
727 						      skb->csum));
728 
729 		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
730 					    ireq->rmt_addr,
731 					    ireq->opt);
732 		err = net_xmit_eval(err);
733 	}
734 
735 	dst_release(dst);
736 	return err;
737 }
738 
739 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
740 {
741 	return __tcp_v4_send_synack(sk, req, NULL);
742 }
743 
744 /*
745  *	IPv4 request_sock destructor.
746  */
747 static void tcp_v4_reqsk_destructor(struct request_sock *req)
748 {
749 	kfree(inet_rsk(req)->opt);
750 }
751 
752 #ifdef CONFIG_SYN_COOKIES
753 static void syn_flood_warning(struct sk_buff *skb)
754 {
755 	static unsigned long warntime;
756 
757 	if (time_after(jiffies, (warntime + HZ * 60))) {
758 		warntime = jiffies;
759 		printk(KERN_INFO
760 		       "possible SYN flooding on port %d. Sending cookies.\n",
761 		       ntohs(tcp_hdr(skb)->dest));
762 	}
763 }
764 #endif
765 
766 /*
767  * Save and compile IPv4 options into the request_sock if needed.
768  */
769 static struct ip_options *tcp_v4_save_options(struct sock *sk,
770 					      struct sk_buff *skb)
771 {
772 	struct ip_options *opt = &(IPCB(skb)->opt);
773 	struct ip_options *dopt = NULL;
774 
775 	if (opt && opt->optlen) {
776 		int opt_size = optlength(opt);
777 		dopt = kmalloc(opt_size, GFP_ATOMIC);
778 		if (dopt) {
779 			if (ip_options_echo(dopt, skb)) {
780 				kfree(dopt);
781 				dopt = NULL;
782 			}
783 		}
784 	}
785 	return dopt;
786 }
787 
788 #ifdef CONFIG_TCP_MD5SIG
789 /*
790  * RFC2385 MD5 checksumming requires a mapping of
791  * IP address->MD5 Key.
792  * We need to maintain these in the sk structure.
793  */
794 
795 /* Find the Key structure for an address.  */
796 static struct tcp_md5sig_key *
797 			tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
798 {
799 	struct tcp_sock *tp = tcp_sk(sk);
800 	int i;
801 
802 	if (!tp->md5sig_info || !tp->md5sig_info->entries4)
803 		return NULL;
804 	for (i = 0; i < tp->md5sig_info->entries4; i++) {
805 		if (tp->md5sig_info->keys4[i].addr == addr)
806 			return &tp->md5sig_info->keys4[i].base;
807 	}
808 	return NULL;
809 }
810 
811 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
812 					 struct sock *addr_sk)
813 {
814 	return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
815 }
816 
817 EXPORT_SYMBOL(tcp_v4_md5_lookup);
818 
819 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
820 						      struct request_sock *req)
821 {
822 	return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
823 }
824 
825 /* This can be called on a newly created socket, from other files */
826 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
827 		      u8 *newkey, u8 newkeylen)
828 {
829 	/* Add Key to the list */
830 	struct tcp_md5sig_key *key;
831 	struct tcp_sock *tp = tcp_sk(sk);
832 	struct tcp4_md5sig_key *keys;
833 
834 	key = tcp_v4_md5_do_lookup(sk, addr);
835 	if (key) {
836 		/* Pre-existing entry - just update that one. */
837 		kfree(key->key);
838 		key->key = newkey;
839 		key->keylen = newkeylen;
840 	} else {
841 		struct tcp_md5sig_info *md5sig;
842 
843 		if (!tp->md5sig_info) {
844 			tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
845 						  GFP_ATOMIC);
846 			if (!tp->md5sig_info) {
847 				kfree(newkey);
848 				return -ENOMEM;
849 			}
850 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
851 		}
852 		if (tcp_alloc_md5sig_pool() == NULL) {
853 			kfree(newkey);
854 			return -ENOMEM;
855 		}
856 		md5sig = tp->md5sig_info;
857 
858 		if (md5sig->alloced4 == md5sig->entries4) {
859 			keys = kmalloc((sizeof(*keys) *
860 					(md5sig->entries4 + 1)), GFP_ATOMIC);
861 			if (!keys) {
862 				kfree(newkey);
863 				tcp_free_md5sig_pool();
864 				return -ENOMEM;
865 			}
866 
867 			if (md5sig->entries4)
868 				memcpy(keys, md5sig->keys4,
869 				       sizeof(*keys) * md5sig->entries4);
870 
871 			/* Free old key list, and reference new one */
872 			kfree(md5sig->keys4);
873 			md5sig->keys4 = keys;
874 			md5sig->alloced4++;
875 		}
876 		md5sig->entries4++;
877 		md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
878 		md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
879 		md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
880 	}
881 	return 0;
882 }
883 
884 EXPORT_SYMBOL(tcp_v4_md5_do_add);
885 
886 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
887 			       u8 *newkey, u8 newkeylen)
888 {
889 	return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
890 				 newkey, newkeylen);
891 }
892 
893 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
894 {
895 	struct tcp_sock *tp = tcp_sk(sk);
896 	int i;
897 
898 	for (i = 0; i < tp->md5sig_info->entries4; i++) {
899 		if (tp->md5sig_info->keys4[i].addr == addr) {
900 			/* Free the key */
901 			kfree(tp->md5sig_info->keys4[i].base.key);
902 			tp->md5sig_info->entries4--;
903 
904 			if (tp->md5sig_info->entries4 == 0) {
905 				kfree(tp->md5sig_info->keys4);
906 				tp->md5sig_info->keys4 = NULL;
907 				tp->md5sig_info->alloced4 = 0;
908 			} else if (tp->md5sig_info->entries4 != i) {
909 				/* Need to do some manipulation */
910 				memmove(&tp->md5sig_info->keys4[i],
911 					&tp->md5sig_info->keys4[i+1],
912 					(tp->md5sig_info->entries4 - i) *
913 					 sizeof(struct tcp4_md5sig_key));
914 			}
915 			tcp_free_md5sig_pool();
916 			return 0;
917 		}
918 	}
919 	return -ENOENT;
920 }
921 
922 EXPORT_SYMBOL(tcp_v4_md5_do_del);
923 
924 static void tcp_v4_clear_md5_list(struct sock *sk)
925 {
926 	struct tcp_sock *tp = tcp_sk(sk);
927 
928 	/* Free each key, then the set of key keys,
929 	 * the crypto element, and then decrement our
930 	 * hold on the last resort crypto.
931 	 */
932 	if (tp->md5sig_info->entries4) {
933 		int i;
934 		for (i = 0; i < tp->md5sig_info->entries4; i++)
935 			kfree(tp->md5sig_info->keys4[i].base.key);
936 		tp->md5sig_info->entries4 = 0;
937 		tcp_free_md5sig_pool();
938 	}
939 	if (tp->md5sig_info->keys4) {
940 		kfree(tp->md5sig_info->keys4);
941 		tp->md5sig_info->keys4 = NULL;
942 		tp->md5sig_info->alloced4  = 0;
943 	}
944 }
945 
946 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
947 				 int optlen)
948 {
949 	struct tcp_md5sig cmd;
950 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
951 	u8 *newkey;
952 
953 	if (optlen < sizeof(cmd))
954 		return -EINVAL;
955 
956 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
957 		return -EFAULT;
958 
959 	if (sin->sin_family != AF_INET)
960 		return -EINVAL;
961 
962 	if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
963 		if (!tcp_sk(sk)->md5sig_info)
964 			return -ENOENT;
965 		return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
966 	}
967 
968 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
969 		return -EINVAL;
970 
971 	if (!tcp_sk(sk)->md5sig_info) {
972 		struct tcp_sock *tp = tcp_sk(sk);
973 		struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
974 
975 		if (!p)
976 			return -EINVAL;
977 
978 		tp->md5sig_info = p;
979 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
980 	}
981 
982 	newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
983 	if (!newkey)
984 		return -ENOMEM;
985 	return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
986 				 newkey, cmd.tcpm_keylen);
987 }
988 
989 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
990 					__be32 daddr, __be32 saddr, int nbytes)
991 {
992 	struct tcp4_pseudohdr *bp;
993 	struct scatterlist sg;
994 
995 	bp = &hp->md5_blk.ip4;
996 
997 	/*
998 	 * 1. the TCP pseudo-header (in the order: source IP address,
999 	 * destination IP address, zero-padded protocol number, and
1000 	 * segment length)
1001 	 */
1002 	bp->saddr = saddr;
1003 	bp->daddr = daddr;
1004 	bp->pad = 0;
1005 	bp->protocol = IPPROTO_TCP;
1006 	bp->len = cpu_to_be16(nbytes);
1007 
1008 	sg_init_one(&sg, bp, sizeof(*bp));
1009 	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1010 }
1011 
1012 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1013 			       __be32 daddr, __be32 saddr, struct tcphdr *th)
1014 {
1015 	struct tcp_md5sig_pool *hp;
1016 	struct hash_desc *desc;
1017 
1018 	hp = tcp_get_md5sig_pool();
1019 	if (!hp)
1020 		goto clear_hash_noput;
1021 	desc = &hp->md5_desc;
1022 
1023 	if (crypto_hash_init(desc))
1024 		goto clear_hash;
1025 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1026 		goto clear_hash;
1027 	if (tcp_md5_hash_header(hp, th))
1028 		goto clear_hash;
1029 	if (tcp_md5_hash_key(hp, key))
1030 		goto clear_hash;
1031 	if (crypto_hash_final(desc, md5_hash))
1032 		goto clear_hash;
1033 
1034 	tcp_put_md5sig_pool();
1035 	return 0;
1036 
1037 clear_hash:
1038 	tcp_put_md5sig_pool();
1039 clear_hash_noput:
1040 	memset(md5_hash, 0, 16);
1041 	return 1;
1042 }
1043 
1044 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1045 			struct sock *sk, struct request_sock *req,
1046 			struct sk_buff *skb)
1047 {
1048 	struct tcp_md5sig_pool *hp;
1049 	struct hash_desc *desc;
1050 	struct tcphdr *th = tcp_hdr(skb);
1051 	__be32 saddr, daddr;
1052 
1053 	if (sk) {
1054 		saddr = inet_sk(sk)->saddr;
1055 		daddr = inet_sk(sk)->daddr;
1056 	} else if (req) {
1057 		saddr = inet_rsk(req)->loc_addr;
1058 		daddr = inet_rsk(req)->rmt_addr;
1059 	} else {
1060 		const struct iphdr *iph = ip_hdr(skb);
1061 		saddr = iph->saddr;
1062 		daddr = iph->daddr;
1063 	}
1064 
1065 	hp = tcp_get_md5sig_pool();
1066 	if (!hp)
1067 		goto clear_hash_noput;
1068 	desc = &hp->md5_desc;
1069 
1070 	if (crypto_hash_init(desc))
1071 		goto clear_hash;
1072 
1073 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1074 		goto clear_hash;
1075 	if (tcp_md5_hash_header(hp, th))
1076 		goto clear_hash;
1077 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1078 		goto clear_hash;
1079 	if (tcp_md5_hash_key(hp, key))
1080 		goto clear_hash;
1081 	if (crypto_hash_final(desc, md5_hash))
1082 		goto clear_hash;
1083 
1084 	tcp_put_md5sig_pool();
1085 	return 0;
1086 
1087 clear_hash:
1088 	tcp_put_md5sig_pool();
1089 clear_hash_noput:
1090 	memset(md5_hash, 0, 16);
1091 	return 1;
1092 }
1093 
1094 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1095 
1096 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1097 {
1098 	/*
1099 	 * This gets called for each TCP segment that arrives
1100 	 * so we want to be efficient.
1101 	 * We have 3 drop cases:
1102 	 * o No MD5 hash and one expected.
1103 	 * o MD5 hash and we're not expecting one.
1104 	 * o MD5 hash and its wrong.
1105 	 */
1106 	__u8 *hash_location = NULL;
1107 	struct tcp_md5sig_key *hash_expected;
1108 	const struct iphdr *iph = ip_hdr(skb);
1109 	struct tcphdr *th = tcp_hdr(skb);
1110 	int genhash;
1111 	unsigned char newhash[16];
1112 
1113 	hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1114 	hash_location = tcp_parse_md5sig_option(th);
1115 
1116 	/* We've parsed the options - do we have a hash? */
1117 	if (!hash_expected && !hash_location)
1118 		return 0;
1119 
1120 	if (hash_expected && !hash_location) {
1121 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1122 		return 1;
1123 	}
1124 
1125 	if (!hash_expected && hash_location) {
1126 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1127 		return 1;
1128 	}
1129 
1130 	/* Okay, so this is hash_expected and hash_location -
1131 	 * so we need to calculate the checksum.
1132 	 */
1133 	genhash = tcp_v4_md5_hash_skb(newhash,
1134 				      hash_expected,
1135 				      NULL, NULL, skb);
1136 
1137 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1138 		if (net_ratelimit()) {
1139 			printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1140 			       &iph->saddr, ntohs(th->source),
1141 			       &iph->daddr, ntohs(th->dest),
1142 			       genhash ? " tcp_v4_calc_md5_hash failed" : "");
1143 		}
1144 		return 1;
1145 	}
1146 	return 0;
1147 }
1148 
1149 #endif
1150 
1151 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1152 	.family		=	PF_INET,
1153 	.obj_size	=	sizeof(struct tcp_request_sock),
1154 	.rtx_syn_ack	=	tcp_v4_send_synack,
1155 	.send_ack	=	tcp_v4_reqsk_send_ack,
1156 	.destructor	=	tcp_v4_reqsk_destructor,
1157 	.send_reset	=	tcp_v4_send_reset,
1158 };
1159 
1160 #ifdef CONFIG_TCP_MD5SIG
1161 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1162 	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1163 };
1164 #endif
1165 
1166 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1167 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1168 	.twsk_unique	= tcp_twsk_unique,
1169 	.twsk_destructor= tcp_twsk_destructor,
1170 };
1171 
1172 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1173 {
1174 	struct inet_request_sock *ireq;
1175 	struct tcp_options_received tmp_opt;
1176 	struct request_sock *req;
1177 	__be32 saddr = ip_hdr(skb)->saddr;
1178 	__be32 daddr = ip_hdr(skb)->daddr;
1179 	__u32 isn = TCP_SKB_CB(skb)->when;
1180 	struct dst_entry *dst = NULL;
1181 #ifdef CONFIG_SYN_COOKIES
1182 	int want_cookie = 0;
1183 #else
1184 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1185 #endif
1186 
1187 	/* Never answer to SYNs send to broadcast or multicast */
1188 	if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1189 		goto drop;
1190 
1191 	/* TW buckets are converted to open requests without
1192 	 * limitations, they conserve resources and peer is
1193 	 * evidently real one.
1194 	 */
1195 	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1196 #ifdef CONFIG_SYN_COOKIES
1197 		if (sysctl_tcp_syncookies) {
1198 			want_cookie = 1;
1199 		} else
1200 #endif
1201 		goto drop;
1202 	}
1203 
1204 	/* Accept backlog is full. If we have already queued enough
1205 	 * of warm entries in syn queue, drop request. It is better than
1206 	 * clogging syn queue with openreqs with exponentially increasing
1207 	 * timeout.
1208 	 */
1209 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1210 		goto drop;
1211 
1212 	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1213 	if (!req)
1214 		goto drop;
1215 
1216 #ifdef CONFIG_TCP_MD5SIG
1217 	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1218 #endif
1219 
1220 	tcp_clear_options(&tmp_opt);
1221 	tmp_opt.mss_clamp = 536;
1222 	tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
1223 
1224 	tcp_parse_options(skb, &tmp_opt, 0);
1225 
1226 	if (want_cookie && !tmp_opt.saw_tstamp)
1227 		tcp_clear_options(&tmp_opt);
1228 
1229 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1230 
1231 	tcp_openreq_init(req, &tmp_opt, skb);
1232 
1233 	if (security_inet_conn_request(sk, skb, req))
1234 		goto drop_and_free;
1235 
1236 	ireq = inet_rsk(req);
1237 	ireq->loc_addr = daddr;
1238 	ireq->rmt_addr = saddr;
1239 	ireq->no_srccheck = inet_sk(sk)->transparent;
1240 	ireq->opt = tcp_v4_save_options(sk, skb);
1241 	if (!want_cookie)
1242 		TCP_ECN_create_request(req, tcp_hdr(skb));
1243 
1244 	if (want_cookie) {
1245 #ifdef CONFIG_SYN_COOKIES
1246 		syn_flood_warning(skb);
1247 		req->cookie_ts = tmp_opt.tstamp_ok;
1248 #endif
1249 		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1250 	} else if (!isn) {
1251 		struct inet_peer *peer = NULL;
1252 
1253 		/* VJ's idea. We save last timestamp seen
1254 		 * from the destination in peer table, when entering
1255 		 * state TIME-WAIT, and check against it before
1256 		 * accepting new connection request.
1257 		 *
1258 		 * If "isn" is not zero, this request hit alive
1259 		 * timewait bucket, so that all the necessary checks
1260 		 * are made in the function processing timewait state.
1261 		 */
1262 		if (tmp_opt.saw_tstamp &&
1263 		    tcp_death_row.sysctl_tw_recycle &&
1264 		    (dst = inet_csk_route_req(sk, req)) != NULL &&
1265 		    (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1266 		    peer->v4daddr == saddr) {
1267 			if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1268 			    (s32)(peer->tcp_ts - req->ts_recent) >
1269 							TCP_PAWS_WINDOW) {
1270 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1271 				goto drop_and_release;
1272 			}
1273 		}
1274 		/* Kill the following clause, if you dislike this way. */
1275 		else if (!sysctl_tcp_syncookies &&
1276 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1277 			  (sysctl_max_syn_backlog >> 2)) &&
1278 			 (!peer || !peer->tcp_ts_stamp) &&
1279 			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1280 			/* Without syncookies last quarter of
1281 			 * backlog is filled with destinations,
1282 			 * proven to be alive.
1283 			 * It means that we continue to communicate
1284 			 * to destinations, already remembered
1285 			 * to the moment of synflood.
1286 			 */
1287 			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1288 				       &saddr, ntohs(tcp_hdr(skb)->source));
1289 			goto drop_and_release;
1290 		}
1291 
1292 		isn = tcp_v4_init_sequence(skb);
1293 	}
1294 	tcp_rsk(req)->snt_isn = isn;
1295 
1296 	if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1297 		goto drop_and_free;
1298 
1299 	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1300 	return 0;
1301 
1302 drop_and_release:
1303 	dst_release(dst);
1304 drop_and_free:
1305 	reqsk_free(req);
1306 drop:
1307 	return 0;
1308 }
1309 
1310 
1311 /*
1312  * The three way handshake has completed - we got a valid synack -
1313  * now create the new socket.
1314  */
1315 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1316 				  struct request_sock *req,
1317 				  struct dst_entry *dst)
1318 {
1319 	struct inet_request_sock *ireq;
1320 	struct inet_sock *newinet;
1321 	struct tcp_sock *newtp;
1322 	struct sock *newsk;
1323 #ifdef CONFIG_TCP_MD5SIG
1324 	struct tcp_md5sig_key *key;
1325 #endif
1326 
1327 	if (sk_acceptq_is_full(sk))
1328 		goto exit_overflow;
1329 
1330 	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1331 		goto exit;
1332 
1333 	newsk = tcp_create_openreq_child(sk, req, skb);
1334 	if (!newsk)
1335 		goto exit;
1336 
1337 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1338 	sk_setup_caps(newsk, dst);
1339 
1340 	newtp		      = tcp_sk(newsk);
1341 	newinet		      = inet_sk(newsk);
1342 	ireq		      = inet_rsk(req);
1343 	newinet->daddr	      = ireq->rmt_addr;
1344 	newinet->rcv_saddr    = ireq->loc_addr;
1345 	newinet->saddr	      = ireq->loc_addr;
1346 	newinet->opt	      = ireq->opt;
1347 	ireq->opt	      = NULL;
1348 	newinet->mc_index     = inet_iif(skb);
1349 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1350 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1351 	if (newinet->opt)
1352 		inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1353 	newinet->id = newtp->write_seq ^ jiffies;
1354 
1355 	tcp_mtup_init(newsk);
1356 	tcp_sync_mss(newsk, dst_mtu(dst));
1357 	newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1358 	if (tcp_sk(sk)->rx_opt.user_mss &&
1359 	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1360 		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1361 
1362 	tcp_initialize_rcv_mss(newsk);
1363 
1364 #ifdef CONFIG_TCP_MD5SIG
1365 	/* Copy over the MD5 key from the original socket */
1366 	if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1367 		/*
1368 		 * We're using one, so create a matching key
1369 		 * on the newsk structure. If we fail to get
1370 		 * memory, then we end up not copying the key
1371 		 * across. Shucks.
1372 		 */
1373 		char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1374 		if (newkey != NULL)
1375 			tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1376 					  newkey, key->keylen);
1377 		newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1378 	}
1379 #endif
1380 
1381 	__inet_hash_nolisten(newsk);
1382 	__inet_inherit_port(sk, newsk);
1383 
1384 	return newsk;
1385 
1386 exit_overflow:
1387 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1388 exit:
1389 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1390 	dst_release(dst);
1391 	return NULL;
1392 }
1393 
1394 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1395 {
1396 	struct tcphdr *th = tcp_hdr(skb);
1397 	const struct iphdr *iph = ip_hdr(skb);
1398 	struct sock *nsk;
1399 	struct request_sock **prev;
1400 	/* Find possible connection requests. */
1401 	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1402 						       iph->saddr, iph->daddr);
1403 	if (req)
1404 		return tcp_check_req(sk, skb, req, prev);
1405 
1406 	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1407 			th->source, iph->daddr, th->dest, inet_iif(skb));
1408 
1409 	if (nsk) {
1410 		if (nsk->sk_state != TCP_TIME_WAIT) {
1411 			bh_lock_sock(nsk);
1412 			return nsk;
1413 		}
1414 		inet_twsk_put(inet_twsk(nsk));
1415 		return NULL;
1416 	}
1417 
1418 #ifdef CONFIG_SYN_COOKIES
1419 	if (!th->rst && !th->syn && th->ack)
1420 		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1421 #endif
1422 	return sk;
1423 }
1424 
1425 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1426 {
1427 	const struct iphdr *iph = ip_hdr(skb);
1428 
1429 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1430 		if (!tcp_v4_check(skb->len, iph->saddr,
1431 				  iph->daddr, skb->csum)) {
1432 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1433 			return 0;
1434 		}
1435 	}
1436 
1437 	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1438 				       skb->len, IPPROTO_TCP, 0);
1439 
1440 	if (skb->len <= 76) {
1441 		return __skb_checksum_complete(skb);
1442 	}
1443 	return 0;
1444 }
1445 
1446 
1447 /* The socket must have it's spinlock held when we get
1448  * here.
1449  *
1450  * We have a potential double-lock case here, so even when
1451  * doing backlog processing we use the BH locking scheme.
1452  * This is because we cannot sleep with the original spinlock
1453  * held.
1454  */
1455 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1456 {
1457 	struct sock *rsk;
1458 #ifdef CONFIG_TCP_MD5SIG
1459 	/*
1460 	 * We really want to reject the packet as early as possible
1461 	 * if:
1462 	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1463 	 *  o There is an MD5 option and we're not expecting one
1464 	 */
1465 	if (tcp_v4_inbound_md5_hash(sk, skb))
1466 		goto discard;
1467 #endif
1468 
1469 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1470 		TCP_CHECK_TIMER(sk);
1471 		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1472 			rsk = sk;
1473 			goto reset;
1474 		}
1475 		TCP_CHECK_TIMER(sk);
1476 		return 0;
1477 	}
1478 
1479 	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1480 		goto csum_err;
1481 
1482 	if (sk->sk_state == TCP_LISTEN) {
1483 		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1484 		if (!nsk)
1485 			goto discard;
1486 
1487 		if (nsk != sk) {
1488 			if (tcp_child_process(sk, nsk, skb)) {
1489 				rsk = nsk;
1490 				goto reset;
1491 			}
1492 			return 0;
1493 		}
1494 	}
1495 
1496 	TCP_CHECK_TIMER(sk);
1497 	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1498 		rsk = sk;
1499 		goto reset;
1500 	}
1501 	TCP_CHECK_TIMER(sk);
1502 	return 0;
1503 
1504 reset:
1505 	tcp_v4_send_reset(rsk, skb);
1506 discard:
1507 	kfree_skb(skb);
1508 	/* Be careful here. If this function gets more complicated and
1509 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1510 	 * might be destroyed here. This current version compiles correctly,
1511 	 * but you have been warned.
1512 	 */
1513 	return 0;
1514 
1515 csum_err:
1516 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1517 	goto discard;
1518 }
1519 
1520 /*
1521  *	From tcp_input.c
1522  */
1523 
1524 int tcp_v4_rcv(struct sk_buff *skb)
1525 {
1526 	const struct iphdr *iph;
1527 	struct tcphdr *th;
1528 	struct sock *sk;
1529 	int ret;
1530 	struct net *net = dev_net(skb->dev);
1531 
1532 	if (skb->pkt_type != PACKET_HOST)
1533 		goto discard_it;
1534 
1535 	/* Count it even if it's bad */
1536 	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1537 
1538 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1539 		goto discard_it;
1540 
1541 	th = tcp_hdr(skb);
1542 
1543 	if (th->doff < sizeof(struct tcphdr) / 4)
1544 		goto bad_packet;
1545 	if (!pskb_may_pull(skb, th->doff * 4))
1546 		goto discard_it;
1547 
1548 	/* An explanation is required here, I think.
1549 	 * Packet length and doff are validated by header prediction,
1550 	 * provided case of th->doff==0 is eliminated.
1551 	 * So, we defer the checks. */
1552 	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1553 		goto bad_packet;
1554 
1555 	th = tcp_hdr(skb);
1556 	iph = ip_hdr(skb);
1557 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1558 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1559 				    skb->len - th->doff * 4);
1560 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1561 	TCP_SKB_CB(skb)->when	 = 0;
1562 	TCP_SKB_CB(skb)->flags	 = iph->tos;
1563 	TCP_SKB_CB(skb)->sacked	 = 0;
1564 
1565 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1566 	if (!sk)
1567 		goto no_tcp_socket;
1568 
1569 process:
1570 	if (sk->sk_state == TCP_TIME_WAIT)
1571 		goto do_time_wait;
1572 
1573 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1574 		goto discard_and_relse;
1575 	nf_reset(skb);
1576 
1577 	if (sk_filter(sk, skb))
1578 		goto discard_and_relse;
1579 
1580 	skb->dev = NULL;
1581 
1582 	bh_lock_sock_nested(sk);
1583 	ret = 0;
1584 	if (!sock_owned_by_user(sk)) {
1585 #ifdef CONFIG_NET_DMA
1586 		struct tcp_sock *tp = tcp_sk(sk);
1587 		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1588 			tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1589 		if (tp->ucopy.dma_chan)
1590 			ret = tcp_v4_do_rcv(sk, skb);
1591 		else
1592 #endif
1593 		{
1594 			if (!tcp_prequeue(sk, skb))
1595 			ret = tcp_v4_do_rcv(sk, skb);
1596 		}
1597 	} else
1598 		sk_add_backlog(sk, skb);
1599 	bh_unlock_sock(sk);
1600 
1601 	sock_put(sk);
1602 
1603 	return ret;
1604 
1605 no_tcp_socket:
1606 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1607 		goto discard_it;
1608 
1609 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1610 bad_packet:
1611 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1612 	} else {
1613 		tcp_v4_send_reset(NULL, skb);
1614 	}
1615 
1616 discard_it:
1617 	/* Discard frame. */
1618 	kfree_skb(skb);
1619 	return 0;
1620 
1621 discard_and_relse:
1622 	sock_put(sk);
1623 	goto discard_it;
1624 
1625 do_time_wait:
1626 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1627 		inet_twsk_put(inet_twsk(sk));
1628 		goto discard_it;
1629 	}
1630 
1631 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1632 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1633 		inet_twsk_put(inet_twsk(sk));
1634 		goto discard_it;
1635 	}
1636 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1637 	case TCP_TW_SYN: {
1638 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1639 							&tcp_hashinfo,
1640 							iph->daddr, th->dest,
1641 							inet_iif(skb));
1642 		if (sk2) {
1643 			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1644 			inet_twsk_put(inet_twsk(sk));
1645 			sk = sk2;
1646 			goto process;
1647 		}
1648 		/* Fall through to ACK */
1649 	}
1650 	case TCP_TW_ACK:
1651 		tcp_v4_timewait_ack(sk, skb);
1652 		break;
1653 	case TCP_TW_RST:
1654 		goto no_tcp_socket;
1655 	case TCP_TW_SUCCESS:;
1656 	}
1657 	goto discard_it;
1658 }
1659 
1660 /* VJ's idea. Save last timestamp seen from this destination
1661  * and hold it at least for normal timewait interval to use for duplicate
1662  * segment detection in subsequent connections, before they enter synchronized
1663  * state.
1664  */
1665 
1666 int tcp_v4_remember_stamp(struct sock *sk)
1667 {
1668 	struct inet_sock *inet = inet_sk(sk);
1669 	struct tcp_sock *tp = tcp_sk(sk);
1670 	struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1671 	struct inet_peer *peer = NULL;
1672 	int release_it = 0;
1673 
1674 	if (!rt || rt->rt_dst != inet->daddr) {
1675 		peer = inet_getpeer(inet->daddr, 1);
1676 		release_it = 1;
1677 	} else {
1678 		if (!rt->peer)
1679 			rt_bind_peer(rt, 1);
1680 		peer = rt->peer;
1681 	}
1682 
1683 	if (peer) {
1684 		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1685 		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1686 		     peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1687 			peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1688 			peer->tcp_ts = tp->rx_opt.ts_recent;
1689 		}
1690 		if (release_it)
1691 			inet_putpeer(peer);
1692 		return 1;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1699 {
1700 	struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1701 
1702 	if (peer) {
1703 		const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1704 
1705 		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1706 		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1707 		     peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1708 			peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1709 			peer->tcp_ts	   = tcptw->tw_ts_recent;
1710 		}
1711 		inet_putpeer(peer);
1712 		return 1;
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 struct inet_connection_sock_af_ops ipv4_specific = {
1719 	.queue_xmit	   = ip_queue_xmit,
1720 	.send_check	   = tcp_v4_send_check,
1721 	.rebuild_header	   = inet_sk_rebuild_header,
1722 	.conn_request	   = tcp_v4_conn_request,
1723 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1724 	.remember_stamp	   = tcp_v4_remember_stamp,
1725 	.net_header_len	   = sizeof(struct iphdr),
1726 	.setsockopt	   = ip_setsockopt,
1727 	.getsockopt	   = ip_getsockopt,
1728 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1729 	.sockaddr_len	   = sizeof(struct sockaddr_in),
1730 	.bind_conflict	   = inet_csk_bind_conflict,
1731 #ifdef CONFIG_COMPAT
1732 	.compat_setsockopt = compat_ip_setsockopt,
1733 	.compat_getsockopt = compat_ip_getsockopt,
1734 #endif
1735 };
1736 
1737 #ifdef CONFIG_TCP_MD5SIG
1738 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1739 	.md5_lookup		= tcp_v4_md5_lookup,
1740 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1741 	.md5_add		= tcp_v4_md5_add_func,
1742 	.md5_parse		= tcp_v4_parse_md5_keys,
1743 };
1744 #endif
1745 
1746 /* NOTE: A lot of things set to zero explicitly by call to
1747  *       sk_alloc() so need not be done here.
1748  */
1749 static int tcp_v4_init_sock(struct sock *sk)
1750 {
1751 	struct inet_connection_sock *icsk = inet_csk(sk);
1752 	struct tcp_sock *tp = tcp_sk(sk);
1753 
1754 	skb_queue_head_init(&tp->out_of_order_queue);
1755 	tcp_init_xmit_timers(sk);
1756 	tcp_prequeue_init(tp);
1757 
1758 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1759 	tp->mdev = TCP_TIMEOUT_INIT;
1760 
1761 	/* So many TCP implementations out there (incorrectly) count the
1762 	 * initial SYN frame in their delayed-ACK and congestion control
1763 	 * algorithms that we must have the following bandaid to talk
1764 	 * efficiently to them.  -DaveM
1765 	 */
1766 	tp->snd_cwnd = 2;
1767 
1768 	/* See draft-stevens-tcpca-spec-01 for discussion of the
1769 	 * initialization of these values.
1770 	 */
1771 	tp->snd_ssthresh = 0x7fffffff;	/* Infinity */
1772 	tp->snd_cwnd_clamp = ~0;
1773 	tp->mss_cache = 536;
1774 
1775 	tp->reordering = sysctl_tcp_reordering;
1776 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1777 
1778 	sk->sk_state = TCP_CLOSE;
1779 
1780 	sk->sk_write_space = sk_stream_write_space;
1781 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1782 
1783 	icsk->icsk_af_ops = &ipv4_specific;
1784 	icsk->icsk_sync_mss = tcp_sync_mss;
1785 #ifdef CONFIG_TCP_MD5SIG
1786 	tp->af_specific = &tcp_sock_ipv4_specific;
1787 #endif
1788 
1789 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1790 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1791 
1792 	local_bh_disable();
1793 	percpu_counter_inc(&tcp_sockets_allocated);
1794 	local_bh_enable();
1795 
1796 	return 0;
1797 }
1798 
1799 void tcp_v4_destroy_sock(struct sock *sk)
1800 {
1801 	struct tcp_sock *tp = tcp_sk(sk);
1802 
1803 	tcp_clear_xmit_timers(sk);
1804 
1805 	tcp_cleanup_congestion_control(sk);
1806 
1807 	/* Cleanup up the write buffer. */
1808 	tcp_write_queue_purge(sk);
1809 
1810 	/* Cleans up our, hopefully empty, out_of_order_queue. */
1811 	__skb_queue_purge(&tp->out_of_order_queue);
1812 
1813 #ifdef CONFIG_TCP_MD5SIG
1814 	/* Clean up the MD5 key list, if any */
1815 	if (tp->md5sig_info) {
1816 		tcp_v4_clear_md5_list(sk);
1817 		kfree(tp->md5sig_info);
1818 		tp->md5sig_info = NULL;
1819 	}
1820 #endif
1821 
1822 #ifdef CONFIG_NET_DMA
1823 	/* Cleans up our sk_async_wait_queue */
1824 	__skb_queue_purge(&sk->sk_async_wait_queue);
1825 #endif
1826 
1827 	/* Clean prequeue, it must be empty really */
1828 	__skb_queue_purge(&tp->ucopy.prequeue);
1829 
1830 	/* Clean up a referenced TCP bind bucket. */
1831 	if (inet_csk(sk)->icsk_bind_hash)
1832 		inet_put_port(sk);
1833 
1834 	/*
1835 	 * If sendmsg cached page exists, toss it.
1836 	 */
1837 	if (sk->sk_sndmsg_page) {
1838 		__free_page(sk->sk_sndmsg_page);
1839 		sk->sk_sndmsg_page = NULL;
1840 	}
1841 
1842 	percpu_counter_dec(&tcp_sockets_allocated);
1843 }
1844 
1845 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1846 
1847 #ifdef CONFIG_PROC_FS
1848 /* Proc filesystem TCP sock list dumping. */
1849 
1850 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1851 {
1852 	return hlist_nulls_empty(head) ? NULL :
1853 		list_entry(head->first, struct inet_timewait_sock, tw_node);
1854 }
1855 
1856 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1857 {
1858 	return !is_a_nulls(tw->tw_node.next) ?
1859 		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1860 }
1861 
1862 static void *listening_get_next(struct seq_file *seq, void *cur)
1863 {
1864 	struct inet_connection_sock *icsk;
1865 	struct hlist_nulls_node *node;
1866 	struct sock *sk = cur;
1867 	struct inet_listen_hashbucket *ilb;
1868 	struct tcp_iter_state *st = seq->private;
1869 	struct net *net = seq_file_net(seq);
1870 
1871 	if (!sk) {
1872 		st->bucket = 0;
1873 		ilb = &tcp_hashinfo.listening_hash[0];
1874 		spin_lock_bh(&ilb->lock);
1875 		sk = sk_nulls_head(&ilb->head);
1876 		goto get_sk;
1877 	}
1878 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1879 	++st->num;
1880 
1881 	if (st->state == TCP_SEQ_STATE_OPENREQ) {
1882 		struct request_sock *req = cur;
1883 
1884 		icsk = inet_csk(st->syn_wait_sk);
1885 		req = req->dl_next;
1886 		while (1) {
1887 			while (req) {
1888 				if (req->rsk_ops->family == st->family) {
1889 					cur = req;
1890 					goto out;
1891 				}
1892 				req = req->dl_next;
1893 			}
1894 			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1895 				break;
1896 get_req:
1897 			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1898 		}
1899 		sk	  = sk_next(st->syn_wait_sk);
1900 		st->state = TCP_SEQ_STATE_LISTENING;
1901 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1902 	} else {
1903 		icsk = inet_csk(sk);
1904 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1905 		if (reqsk_queue_len(&icsk->icsk_accept_queue))
1906 			goto start_req;
1907 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1908 		sk = sk_next(sk);
1909 	}
1910 get_sk:
1911 	sk_nulls_for_each_from(sk, node) {
1912 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1913 			cur = sk;
1914 			goto out;
1915 		}
1916 		icsk = inet_csk(sk);
1917 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1918 		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1919 start_req:
1920 			st->uid		= sock_i_uid(sk);
1921 			st->syn_wait_sk = sk;
1922 			st->state	= TCP_SEQ_STATE_OPENREQ;
1923 			st->sbucket	= 0;
1924 			goto get_req;
1925 		}
1926 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1927 	}
1928 	spin_unlock_bh(&ilb->lock);
1929 	if (++st->bucket < INET_LHTABLE_SIZE) {
1930 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1931 		spin_lock_bh(&ilb->lock);
1932 		sk = sk_nulls_head(&ilb->head);
1933 		goto get_sk;
1934 	}
1935 	cur = NULL;
1936 out:
1937 	return cur;
1938 }
1939 
1940 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1941 {
1942 	void *rc = listening_get_next(seq, NULL);
1943 
1944 	while (rc && *pos) {
1945 		rc = listening_get_next(seq, rc);
1946 		--*pos;
1947 	}
1948 	return rc;
1949 }
1950 
1951 static inline int empty_bucket(struct tcp_iter_state *st)
1952 {
1953 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
1954 		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
1955 }
1956 
1957 static void *established_get_first(struct seq_file *seq)
1958 {
1959 	struct tcp_iter_state *st = seq->private;
1960 	struct net *net = seq_file_net(seq);
1961 	void *rc = NULL;
1962 
1963 	for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1964 		struct sock *sk;
1965 		struct hlist_nulls_node *node;
1966 		struct inet_timewait_sock *tw;
1967 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1968 
1969 		/* Lockless fast path for the common case of empty buckets */
1970 		if (empty_bucket(st))
1971 			continue;
1972 
1973 		spin_lock_bh(lock);
1974 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1975 			if (sk->sk_family != st->family ||
1976 			    !net_eq(sock_net(sk), net)) {
1977 				continue;
1978 			}
1979 			rc = sk;
1980 			goto out;
1981 		}
1982 		st->state = TCP_SEQ_STATE_TIME_WAIT;
1983 		inet_twsk_for_each(tw, node,
1984 				   &tcp_hashinfo.ehash[st->bucket].twchain) {
1985 			if (tw->tw_family != st->family ||
1986 			    !net_eq(twsk_net(tw), net)) {
1987 				continue;
1988 			}
1989 			rc = tw;
1990 			goto out;
1991 		}
1992 		spin_unlock_bh(lock);
1993 		st->state = TCP_SEQ_STATE_ESTABLISHED;
1994 	}
1995 out:
1996 	return rc;
1997 }
1998 
1999 static void *established_get_next(struct seq_file *seq, void *cur)
2000 {
2001 	struct sock *sk = cur;
2002 	struct inet_timewait_sock *tw;
2003 	struct hlist_nulls_node *node;
2004 	struct tcp_iter_state *st = seq->private;
2005 	struct net *net = seq_file_net(seq);
2006 
2007 	++st->num;
2008 
2009 	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2010 		tw = cur;
2011 		tw = tw_next(tw);
2012 get_tw:
2013 		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2014 			tw = tw_next(tw);
2015 		}
2016 		if (tw) {
2017 			cur = tw;
2018 			goto out;
2019 		}
2020 		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2021 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2022 
2023 		/* Look for next non empty bucket */
2024 		while (++st->bucket < tcp_hashinfo.ehash_size &&
2025 				empty_bucket(st))
2026 			;
2027 		if (st->bucket >= tcp_hashinfo.ehash_size)
2028 			return NULL;
2029 
2030 		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2031 		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2032 	} else
2033 		sk = sk_nulls_next(sk);
2034 
2035 	sk_nulls_for_each_from(sk, node) {
2036 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2037 			goto found;
2038 	}
2039 
2040 	st->state = TCP_SEQ_STATE_TIME_WAIT;
2041 	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2042 	goto get_tw;
2043 found:
2044 	cur = sk;
2045 out:
2046 	return cur;
2047 }
2048 
2049 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2050 {
2051 	void *rc = established_get_first(seq);
2052 
2053 	while (rc && pos) {
2054 		rc = established_get_next(seq, rc);
2055 		--pos;
2056 	}
2057 	return rc;
2058 }
2059 
2060 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2061 {
2062 	void *rc;
2063 	struct tcp_iter_state *st = seq->private;
2064 
2065 	st->state = TCP_SEQ_STATE_LISTENING;
2066 	rc	  = listening_get_idx(seq, &pos);
2067 
2068 	if (!rc) {
2069 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2070 		rc	  = established_get_idx(seq, pos);
2071 	}
2072 
2073 	return rc;
2074 }
2075 
2076 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2077 {
2078 	struct tcp_iter_state *st = seq->private;
2079 	st->state = TCP_SEQ_STATE_LISTENING;
2080 	st->num = 0;
2081 	return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2082 }
2083 
2084 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2085 {
2086 	void *rc = NULL;
2087 	struct tcp_iter_state *st;
2088 
2089 	if (v == SEQ_START_TOKEN) {
2090 		rc = tcp_get_idx(seq, 0);
2091 		goto out;
2092 	}
2093 	st = seq->private;
2094 
2095 	switch (st->state) {
2096 	case TCP_SEQ_STATE_OPENREQ:
2097 	case TCP_SEQ_STATE_LISTENING:
2098 		rc = listening_get_next(seq, v);
2099 		if (!rc) {
2100 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2101 			rc	  = established_get_first(seq);
2102 		}
2103 		break;
2104 	case TCP_SEQ_STATE_ESTABLISHED:
2105 	case TCP_SEQ_STATE_TIME_WAIT:
2106 		rc = established_get_next(seq, v);
2107 		break;
2108 	}
2109 out:
2110 	++*pos;
2111 	return rc;
2112 }
2113 
2114 static void tcp_seq_stop(struct seq_file *seq, void *v)
2115 {
2116 	struct tcp_iter_state *st = seq->private;
2117 
2118 	switch (st->state) {
2119 	case TCP_SEQ_STATE_OPENREQ:
2120 		if (v) {
2121 			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2122 			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2123 		}
2124 	case TCP_SEQ_STATE_LISTENING:
2125 		if (v != SEQ_START_TOKEN)
2126 			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2127 		break;
2128 	case TCP_SEQ_STATE_TIME_WAIT:
2129 	case TCP_SEQ_STATE_ESTABLISHED:
2130 		if (v)
2131 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2132 		break;
2133 	}
2134 }
2135 
2136 static int tcp_seq_open(struct inode *inode, struct file *file)
2137 {
2138 	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2139 	struct tcp_iter_state *s;
2140 	int err;
2141 
2142 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2143 			  sizeof(struct tcp_iter_state));
2144 	if (err < 0)
2145 		return err;
2146 
2147 	s = ((struct seq_file *)file->private_data)->private;
2148 	s->family		= afinfo->family;
2149 	return 0;
2150 }
2151 
2152 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2153 {
2154 	int rc = 0;
2155 	struct proc_dir_entry *p;
2156 
2157 	afinfo->seq_fops.open		= tcp_seq_open;
2158 	afinfo->seq_fops.read		= seq_read;
2159 	afinfo->seq_fops.llseek		= seq_lseek;
2160 	afinfo->seq_fops.release	= seq_release_net;
2161 
2162 	afinfo->seq_ops.start		= tcp_seq_start;
2163 	afinfo->seq_ops.next		= tcp_seq_next;
2164 	afinfo->seq_ops.stop		= tcp_seq_stop;
2165 
2166 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2167 			     &afinfo->seq_fops, afinfo);
2168 	if (!p)
2169 		rc = -ENOMEM;
2170 	return rc;
2171 }
2172 
2173 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2174 {
2175 	proc_net_remove(net, afinfo->name);
2176 }
2177 
2178 static void get_openreq4(struct sock *sk, struct request_sock *req,
2179 			 struct seq_file *f, int i, int uid, int *len)
2180 {
2181 	const struct inet_request_sock *ireq = inet_rsk(req);
2182 	int ttd = req->expires - jiffies;
2183 
2184 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2185 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2186 		i,
2187 		ireq->loc_addr,
2188 		ntohs(inet_sk(sk)->sport),
2189 		ireq->rmt_addr,
2190 		ntohs(ireq->rmt_port),
2191 		TCP_SYN_RECV,
2192 		0, 0, /* could print option size, but that is af dependent. */
2193 		1,    /* timers active (only the expire timer) */
2194 		jiffies_to_clock_t(ttd),
2195 		req->retrans,
2196 		uid,
2197 		0,  /* non standard timer */
2198 		0, /* open_requests have no inode */
2199 		atomic_read(&sk->sk_refcnt),
2200 		req,
2201 		len);
2202 }
2203 
2204 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2205 {
2206 	int timer_active;
2207 	unsigned long timer_expires;
2208 	struct tcp_sock *tp = tcp_sk(sk);
2209 	const struct inet_connection_sock *icsk = inet_csk(sk);
2210 	struct inet_sock *inet = inet_sk(sk);
2211 	__be32 dest = inet->daddr;
2212 	__be32 src = inet->rcv_saddr;
2213 	__u16 destp = ntohs(inet->dport);
2214 	__u16 srcp = ntohs(inet->sport);
2215 
2216 	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2217 		timer_active	= 1;
2218 		timer_expires	= icsk->icsk_timeout;
2219 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2220 		timer_active	= 4;
2221 		timer_expires	= icsk->icsk_timeout;
2222 	} else if (timer_pending(&sk->sk_timer)) {
2223 		timer_active	= 2;
2224 		timer_expires	= sk->sk_timer.expires;
2225 	} else {
2226 		timer_active	= 0;
2227 		timer_expires = jiffies;
2228 	}
2229 
2230 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2231 			"%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2232 		i, src, srcp, dest, destp, sk->sk_state,
2233 		tp->write_seq - tp->snd_una,
2234 		sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2235 					     (tp->rcv_nxt - tp->copied_seq),
2236 		timer_active,
2237 		jiffies_to_clock_t(timer_expires - jiffies),
2238 		icsk->icsk_retransmits,
2239 		sock_i_uid(sk),
2240 		icsk->icsk_probes_out,
2241 		sock_i_ino(sk),
2242 		atomic_read(&sk->sk_refcnt), sk,
2243 		jiffies_to_clock_t(icsk->icsk_rto),
2244 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2245 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2246 		tp->snd_cwnd,
2247 		tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2248 		len);
2249 }
2250 
2251 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2252 			       struct seq_file *f, int i, int *len)
2253 {
2254 	__be32 dest, src;
2255 	__u16 destp, srcp;
2256 	int ttd = tw->tw_ttd - jiffies;
2257 
2258 	if (ttd < 0)
2259 		ttd = 0;
2260 
2261 	dest  = tw->tw_daddr;
2262 	src   = tw->tw_rcv_saddr;
2263 	destp = ntohs(tw->tw_dport);
2264 	srcp  = ntohs(tw->tw_sport);
2265 
2266 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2267 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2268 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2269 		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2270 		atomic_read(&tw->tw_refcnt), tw, len);
2271 }
2272 
2273 #define TMPSZ 150
2274 
2275 static int tcp4_seq_show(struct seq_file *seq, void *v)
2276 {
2277 	struct tcp_iter_state *st;
2278 	int len;
2279 
2280 	if (v == SEQ_START_TOKEN) {
2281 		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2282 			   "  sl  local_address rem_address   st tx_queue "
2283 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2284 			   "inode");
2285 		goto out;
2286 	}
2287 	st = seq->private;
2288 
2289 	switch (st->state) {
2290 	case TCP_SEQ_STATE_LISTENING:
2291 	case TCP_SEQ_STATE_ESTABLISHED:
2292 		get_tcp4_sock(v, seq, st->num, &len);
2293 		break;
2294 	case TCP_SEQ_STATE_OPENREQ:
2295 		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2296 		break;
2297 	case TCP_SEQ_STATE_TIME_WAIT:
2298 		get_timewait4_sock(v, seq, st->num, &len);
2299 		break;
2300 	}
2301 	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2302 out:
2303 	return 0;
2304 }
2305 
2306 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2307 	.name		= "tcp",
2308 	.family		= AF_INET,
2309 	.seq_fops	= {
2310 		.owner		= THIS_MODULE,
2311 	},
2312 	.seq_ops	= {
2313 		.show		= tcp4_seq_show,
2314 	},
2315 };
2316 
2317 static int tcp4_proc_init_net(struct net *net)
2318 {
2319 	return tcp_proc_register(net, &tcp4_seq_afinfo);
2320 }
2321 
2322 static void tcp4_proc_exit_net(struct net *net)
2323 {
2324 	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2325 }
2326 
2327 static struct pernet_operations tcp4_net_ops = {
2328 	.init = tcp4_proc_init_net,
2329 	.exit = tcp4_proc_exit_net,
2330 };
2331 
2332 int __init tcp4_proc_init(void)
2333 {
2334 	return register_pernet_subsys(&tcp4_net_ops);
2335 }
2336 
2337 void tcp4_proc_exit(void)
2338 {
2339 	unregister_pernet_subsys(&tcp4_net_ops);
2340 }
2341 #endif /* CONFIG_PROC_FS */
2342 
2343 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2344 {
2345 	struct iphdr *iph = ip_hdr(skb);
2346 
2347 	switch (skb->ip_summed) {
2348 	case CHECKSUM_COMPLETE:
2349 		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2350 				  skb->csum)) {
2351 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2352 			break;
2353 		}
2354 
2355 		/* fall through */
2356 	case CHECKSUM_NONE:
2357 		NAPI_GRO_CB(skb)->flush = 1;
2358 		return NULL;
2359 	}
2360 
2361 	return tcp_gro_receive(head, skb);
2362 }
2363 EXPORT_SYMBOL(tcp4_gro_receive);
2364 
2365 int tcp4_gro_complete(struct sk_buff *skb)
2366 {
2367 	struct iphdr *iph = ip_hdr(skb);
2368 	struct tcphdr *th = tcp_hdr(skb);
2369 
2370 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2371 				  iph->saddr, iph->daddr, 0);
2372 	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2373 
2374 	return tcp_gro_complete(skb);
2375 }
2376 EXPORT_SYMBOL(tcp4_gro_complete);
2377 
2378 struct proto tcp_prot = {
2379 	.name			= "TCP",
2380 	.owner			= THIS_MODULE,
2381 	.close			= tcp_close,
2382 	.connect		= tcp_v4_connect,
2383 	.disconnect		= tcp_disconnect,
2384 	.accept			= inet_csk_accept,
2385 	.ioctl			= tcp_ioctl,
2386 	.init			= tcp_v4_init_sock,
2387 	.destroy		= tcp_v4_destroy_sock,
2388 	.shutdown		= tcp_shutdown,
2389 	.setsockopt		= tcp_setsockopt,
2390 	.getsockopt		= tcp_getsockopt,
2391 	.recvmsg		= tcp_recvmsg,
2392 	.backlog_rcv		= tcp_v4_do_rcv,
2393 	.hash			= inet_hash,
2394 	.unhash			= inet_unhash,
2395 	.get_port		= inet_csk_get_port,
2396 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2397 	.sockets_allocated	= &tcp_sockets_allocated,
2398 	.orphan_count		= &tcp_orphan_count,
2399 	.memory_allocated	= &tcp_memory_allocated,
2400 	.memory_pressure	= &tcp_memory_pressure,
2401 	.sysctl_mem		= sysctl_tcp_mem,
2402 	.sysctl_wmem		= sysctl_tcp_wmem,
2403 	.sysctl_rmem		= sysctl_tcp_rmem,
2404 	.max_header		= MAX_TCP_HEADER,
2405 	.obj_size		= sizeof(struct tcp_sock),
2406 	.slab_flags		= SLAB_DESTROY_BY_RCU,
2407 	.twsk_prot		= &tcp_timewait_sock_ops,
2408 	.rsk_prot		= &tcp_request_sock_ops,
2409 	.h.hashinfo		= &tcp_hashinfo,
2410 #ifdef CONFIG_COMPAT
2411 	.compat_setsockopt	= compat_tcp_setsockopt,
2412 	.compat_getsockopt	= compat_tcp_getsockopt,
2413 #endif
2414 };
2415 
2416 
2417 static int __net_init tcp_sk_init(struct net *net)
2418 {
2419 	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2420 				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2421 }
2422 
2423 static void __net_exit tcp_sk_exit(struct net *net)
2424 {
2425 	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2426 	inet_twsk_purge(net, &tcp_hashinfo, &tcp_death_row, AF_INET);
2427 }
2428 
2429 static struct pernet_operations __net_initdata tcp_sk_ops = {
2430        .init = tcp_sk_init,
2431        .exit = tcp_sk_exit,
2432 };
2433 
2434 void __init tcp_v4_init(void)
2435 {
2436 	inet_hashinfo_init(&tcp_hashinfo);
2437 	if (register_pernet_subsys(&tcp_sk_ops))
2438 		panic("Failed to create the TCP control socket.\n");
2439 }
2440 
2441 EXPORT_SYMBOL(ipv4_specific);
2442 EXPORT_SYMBOL(tcp_hashinfo);
2443 EXPORT_SYMBOL(tcp_prot);
2444 EXPORT_SYMBOL(tcp_v4_conn_request);
2445 EXPORT_SYMBOL(tcp_v4_connect);
2446 EXPORT_SYMBOL(tcp_v4_do_rcv);
2447 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2448 EXPORT_SYMBOL(tcp_v4_send_check);
2449 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2450 
2451 #ifdef CONFIG_PROC_FS
2452 EXPORT_SYMBOL(tcp_proc_register);
2453 EXPORT_SYMBOL(tcp_proc_unregister);
2454 #endif
2455 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2456 
2457