1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly; 82 int sysctl_tcp_max_reordering __read_mostly = 300; 83 int sysctl_tcp_dsack __read_mostly = 1; 84 int sysctl_tcp_app_win __read_mostly = 31; 85 int sysctl_tcp_adv_win_scale __read_mostly = 1; 86 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 87 88 /* rfc5961 challenge ack rate limiting */ 89 int sysctl_tcp_challenge_ack_limit = 1000; 90 91 int sysctl_tcp_stdurg __read_mostly; 92 int sysctl_tcp_rfc1337 __read_mostly; 93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 94 int sysctl_tcp_frto __read_mostly = 2; 95 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 96 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 97 int sysctl_tcp_early_retrans __read_mostly = 3; 98 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 99 100 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 101 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 102 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 103 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 104 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 105 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 106 #define FLAG_ECE 0x40 /* ECE in this ACK */ 107 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 108 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 109 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 110 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 111 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 112 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 113 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 114 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 #define REXMIT_NONE 0 /* no loss recovery to do */ 125 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 127 128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 129 unsigned int len) 130 { 131 static bool __once __read_mostly; 132 133 if (!__once) { 134 struct net_device *dev; 135 136 __once = true; 137 138 rcu_read_lock(); 139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 140 if (!dev || len >= dev->mtu) 141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 142 dev ? dev->name : "Unknown driver"); 143 rcu_read_unlock(); 144 } 145 } 146 147 /* Adapt the MSS value used to make delayed ack decision to the 148 * real world. 149 */ 150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 151 { 152 struct inet_connection_sock *icsk = inet_csk(sk); 153 const unsigned int lss = icsk->icsk_ack.last_seg_size; 154 unsigned int len; 155 156 icsk->icsk_ack.last_seg_size = 0; 157 158 /* skb->len may jitter because of SACKs, even if peer 159 * sends good full-sized frames. 160 */ 161 len = skb_shinfo(skb)->gso_size ? : skb->len; 162 if (len >= icsk->icsk_ack.rcv_mss) { 163 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 164 tcp_sk(sk)->advmss); 165 /* Account for possibly-removed options */ 166 if (unlikely(len > icsk->icsk_ack.rcv_mss + 167 MAX_TCP_OPTION_SPACE)) 168 tcp_gro_dev_warn(sk, skb, len); 169 } else { 170 /* Otherwise, we make more careful check taking into account, 171 * that SACKs block is variable. 172 * 173 * "len" is invariant segment length, including TCP header. 174 */ 175 len += skb->data - skb_transport_header(skb); 176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 177 /* If PSH is not set, packet should be 178 * full sized, provided peer TCP is not badly broken. 179 * This observation (if it is correct 8)) allows 180 * to handle super-low mtu links fairly. 181 */ 182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 184 /* Subtract also invariant (if peer is RFC compliant), 185 * tcp header plus fixed timestamp option length. 186 * Resulting "len" is MSS free of SACK jitter. 187 */ 188 len -= tcp_sk(sk)->tcp_header_len; 189 icsk->icsk_ack.last_seg_size = len; 190 if (len == lss) { 191 icsk->icsk_ack.rcv_mss = len; 192 return; 193 } 194 } 195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 198 } 199 } 200 201 static void tcp_incr_quickack(struct sock *sk) 202 { 203 struct inet_connection_sock *icsk = inet_csk(sk); 204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 205 206 if (quickacks == 0) 207 quickacks = 2; 208 if (quickacks > icsk->icsk_ack.quick) 209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 210 } 211 212 static void tcp_enter_quickack_mode(struct sock *sk) 213 { 214 struct inet_connection_sock *icsk = inet_csk(sk); 215 tcp_incr_quickack(sk); 216 icsk->icsk_ack.pingpong = 0; 217 icsk->icsk_ack.ato = TCP_ATO_MIN; 218 } 219 220 /* Send ACKs quickly, if "quick" count is not exhausted 221 * and the session is not interactive. 222 */ 223 224 static bool tcp_in_quickack_mode(struct sock *sk) 225 { 226 const struct inet_connection_sock *icsk = inet_csk(sk); 227 const struct dst_entry *dst = __sk_dst_get(sk); 228 229 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 231 } 232 233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 234 { 235 if (tp->ecn_flags & TCP_ECN_OK) 236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 237 } 238 239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 240 { 241 if (tcp_hdr(skb)->cwr) 242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 243 } 244 245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 246 { 247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 248 } 249 250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 251 { 252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 253 case INET_ECN_NOT_ECT: 254 /* Funny extension: if ECT is not set on a segment, 255 * and we already seen ECT on a previous segment, 256 * it is probably a retransmit. 257 */ 258 if (tp->ecn_flags & TCP_ECN_SEEN) 259 tcp_enter_quickack_mode((struct sock *)tp); 260 break; 261 case INET_ECN_CE: 262 if (tcp_ca_needs_ecn((struct sock *)tp)) 263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 264 265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 266 /* Better not delay acks, sender can have a very low cwnd */ 267 tcp_enter_quickack_mode((struct sock *)tp); 268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 269 } 270 tp->ecn_flags |= TCP_ECN_SEEN; 271 break; 272 default: 273 if (tcp_ca_needs_ecn((struct sock *)tp)) 274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 275 tp->ecn_flags |= TCP_ECN_SEEN; 276 break; 277 } 278 } 279 280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 281 { 282 if (tp->ecn_flags & TCP_ECN_OK) 283 __tcp_ecn_check_ce(tp, skb); 284 } 285 286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 287 { 288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 289 tp->ecn_flags &= ~TCP_ECN_OK; 290 } 291 292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 293 { 294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 295 tp->ecn_flags &= ~TCP_ECN_OK; 296 } 297 298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 299 { 300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 301 return true; 302 return false; 303 } 304 305 /* Buffer size and advertised window tuning. 306 * 307 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 308 */ 309 310 static void tcp_sndbuf_expand(struct sock *sk) 311 { 312 const struct tcp_sock *tp = tcp_sk(sk); 313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 314 int sndmem, per_mss; 315 u32 nr_segs; 316 317 /* Worst case is non GSO/TSO : each frame consumes one skb 318 * and skb->head is kmalloced using power of two area of memory 319 */ 320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 321 MAX_TCP_HEADER + 322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 323 324 per_mss = roundup_pow_of_two(per_mss) + 325 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 326 327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 329 330 /* Fast Recovery (RFC 5681 3.2) : 331 * Cubic needs 1.7 factor, rounded to 2 to include 332 * extra cushion (application might react slowly to POLLOUT) 333 */ 334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 335 sndmem *= nr_segs * per_mss; 336 337 if (sk->sk_sndbuf < sndmem) 338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 339 } 340 341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 342 * 343 * All tcp_full_space() is split to two parts: "network" buffer, allocated 344 * forward and advertised in receiver window (tp->rcv_wnd) and 345 * "application buffer", required to isolate scheduling/application 346 * latencies from network. 347 * window_clamp is maximal advertised window. It can be less than 348 * tcp_full_space(), in this case tcp_full_space() - window_clamp 349 * is reserved for "application" buffer. The less window_clamp is 350 * the smoother our behaviour from viewpoint of network, but the lower 351 * throughput and the higher sensitivity of the connection to losses. 8) 352 * 353 * rcv_ssthresh is more strict window_clamp used at "slow start" 354 * phase to predict further behaviour of this connection. 355 * It is used for two goals: 356 * - to enforce header prediction at sender, even when application 357 * requires some significant "application buffer". It is check #1. 358 * - to prevent pruning of receive queue because of misprediction 359 * of receiver window. Check #2. 360 * 361 * The scheme does not work when sender sends good segments opening 362 * window and then starts to feed us spaghetti. But it should work 363 * in common situations. Otherwise, we have to rely on queue collapsing. 364 */ 365 366 /* Slow part of check#2. */ 367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 /* Optimize this! */ 371 int truesize = tcp_win_from_space(skb->truesize) >> 1; 372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 373 374 while (tp->rcv_ssthresh <= window) { 375 if (truesize <= skb->len) 376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 377 378 truesize >>= 1; 379 window >>= 1; 380 } 381 return 0; 382 } 383 384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 385 { 386 struct tcp_sock *tp = tcp_sk(sk); 387 388 /* Check #1 */ 389 if (tp->rcv_ssthresh < tp->window_clamp && 390 (int)tp->rcv_ssthresh < tcp_space(sk) && 391 !tcp_under_memory_pressure(sk)) { 392 int incr; 393 394 /* Check #2. Increase window, if skb with such overhead 395 * will fit to rcvbuf in future. 396 */ 397 if (tcp_win_from_space(skb->truesize) <= skb->len) 398 incr = 2 * tp->advmss; 399 else 400 incr = __tcp_grow_window(sk, skb); 401 402 if (incr) { 403 incr = max_t(int, incr, 2 * skb->len); 404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 405 tp->window_clamp); 406 inet_csk(sk)->icsk_ack.quick |= 1; 407 } 408 } 409 } 410 411 /* 3. Tuning rcvbuf, when connection enters established state. */ 412 static void tcp_fixup_rcvbuf(struct sock *sk) 413 { 414 u32 mss = tcp_sk(sk)->advmss; 415 int rcvmem; 416 417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 418 tcp_default_init_rwnd(mss); 419 420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 421 * Allow enough cushion so that sender is not limited by our window 422 */ 423 if (sysctl_tcp_moderate_rcvbuf) 424 rcvmem <<= 2; 425 426 if (sk->sk_rcvbuf < rcvmem) 427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 428 } 429 430 /* 4. Try to fixup all. It is made immediately after connection enters 431 * established state. 432 */ 433 void tcp_init_buffer_space(struct sock *sk) 434 { 435 struct tcp_sock *tp = tcp_sk(sk); 436 int maxwin; 437 438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 439 tcp_fixup_rcvbuf(sk); 440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 441 tcp_sndbuf_expand(sk); 442 443 tp->rcvq_space.space = tp->rcv_wnd; 444 tcp_mstamp_refresh(tp); 445 tp->rcvq_space.time = tp->tcp_mstamp; 446 tp->rcvq_space.seq = tp->copied_seq; 447 448 maxwin = tcp_full_space(sk); 449 450 if (tp->window_clamp >= maxwin) { 451 tp->window_clamp = maxwin; 452 453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 454 tp->window_clamp = max(maxwin - 455 (maxwin >> sysctl_tcp_app_win), 456 4 * tp->advmss); 457 } 458 459 /* Force reservation of one segment. */ 460 if (sysctl_tcp_app_win && 461 tp->window_clamp > 2 * tp->advmss && 462 tp->window_clamp + tp->advmss > maxwin) 463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 464 465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 466 tp->snd_cwnd_stamp = tcp_jiffies32; 467 } 468 469 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 470 static void tcp_clamp_window(struct sock *sk) 471 { 472 struct tcp_sock *tp = tcp_sk(sk); 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 475 icsk->icsk_ack.quick = 0; 476 477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 479 !tcp_under_memory_pressure(sk) && 480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 482 sysctl_tcp_rmem[2]); 483 } 484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 486 } 487 488 /* Initialize RCV_MSS value. 489 * RCV_MSS is an our guess about MSS used by the peer. 490 * We haven't any direct information about the MSS. 491 * It's better to underestimate the RCV_MSS rather than overestimate. 492 * Overestimations make us ACKing less frequently than needed. 493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 494 */ 495 void tcp_initialize_rcv_mss(struct sock *sk) 496 { 497 const struct tcp_sock *tp = tcp_sk(sk); 498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 499 500 hint = min(hint, tp->rcv_wnd / 2); 501 hint = min(hint, TCP_MSS_DEFAULT); 502 hint = max(hint, TCP_MIN_MSS); 503 504 inet_csk(sk)->icsk_ack.rcv_mss = hint; 505 } 506 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 507 508 /* Receiver "autotuning" code. 509 * 510 * The algorithm for RTT estimation w/o timestamps is based on 511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 512 * <http://public.lanl.gov/radiant/pubs.html#DRS> 513 * 514 * More detail on this code can be found at 515 * <http://staff.psc.edu/jheffner/>, 516 * though this reference is out of date. A new paper 517 * is pending. 518 */ 519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 520 { 521 u32 new_sample = tp->rcv_rtt_est.rtt_us; 522 long m = sample; 523 524 if (m == 0) 525 m = 1; 526 527 if (new_sample != 0) { 528 /* If we sample in larger samples in the non-timestamp 529 * case, we could grossly overestimate the RTT especially 530 * with chatty applications or bulk transfer apps which 531 * are stalled on filesystem I/O. 532 * 533 * Also, since we are only going for a minimum in the 534 * non-timestamp case, we do not smooth things out 535 * else with timestamps disabled convergence takes too 536 * long. 537 */ 538 if (!win_dep) { 539 m -= (new_sample >> 3); 540 new_sample += m; 541 } else { 542 m <<= 3; 543 if (m < new_sample) 544 new_sample = m; 545 } 546 } else { 547 /* No previous measure. */ 548 new_sample = m << 3; 549 } 550 551 tp->rcv_rtt_est.rtt_us = new_sample; 552 } 553 554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 555 { 556 u32 delta_us; 557 558 if (tp->rcv_rtt_est.time == 0) 559 goto new_measure; 560 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 561 return; 562 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 563 tcp_rcv_rtt_update(tp, delta_us, 1); 564 565 new_measure: 566 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 567 tp->rcv_rtt_est.time = tp->tcp_mstamp; 568 } 569 570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 571 const struct sk_buff *skb) 572 { 573 struct tcp_sock *tp = tcp_sk(sk); 574 575 if (tp->rx_opt.rcv_tsecr && 576 (TCP_SKB_CB(skb)->end_seq - 577 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 578 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 579 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 580 581 tcp_rcv_rtt_update(tp, delta_us, 0); 582 } 583 } 584 585 /* 586 * This function should be called every time data is copied to user space. 587 * It calculates the appropriate TCP receive buffer space. 588 */ 589 void tcp_rcv_space_adjust(struct sock *sk) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 int time; 593 int copied; 594 595 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 596 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 597 return; 598 599 /* Number of bytes copied to user in last RTT */ 600 copied = tp->copied_seq - tp->rcvq_space.seq; 601 if (copied <= tp->rcvq_space.space) 602 goto new_measure; 603 604 /* A bit of theory : 605 * copied = bytes received in previous RTT, our base window 606 * To cope with packet losses, we need a 2x factor 607 * To cope with slow start, and sender growing its cwin by 100 % 608 * every RTT, we need a 4x factor, because the ACK we are sending 609 * now is for the next RTT, not the current one : 610 * <prev RTT . ><current RTT .. ><next RTT .... > 611 */ 612 613 if (sysctl_tcp_moderate_rcvbuf && 614 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 615 int rcvwin, rcvmem, rcvbuf; 616 617 /* minimal window to cope with packet losses, assuming 618 * steady state. Add some cushion because of small variations. 619 */ 620 rcvwin = (copied << 1) + 16 * tp->advmss; 621 622 /* If rate increased by 25%, 623 * assume slow start, rcvwin = 3 * copied 624 * If rate increased by 50%, 625 * assume sender can use 2x growth, rcvwin = 4 * copied 626 */ 627 if (copied >= 628 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 629 if (copied >= 630 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 631 rcvwin <<= 1; 632 else 633 rcvwin += (rcvwin >> 1); 634 } 635 636 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 637 while (tcp_win_from_space(rcvmem) < tp->advmss) 638 rcvmem += 128; 639 640 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 641 if (rcvbuf > sk->sk_rcvbuf) { 642 sk->sk_rcvbuf = rcvbuf; 643 644 /* Make the window clamp follow along. */ 645 tp->window_clamp = rcvwin; 646 } 647 } 648 tp->rcvq_space.space = copied; 649 650 new_measure: 651 tp->rcvq_space.seq = tp->copied_seq; 652 tp->rcvq_space.time = tp->tcp_mstamp; 653 } 654 655 /* There is something which you must keep in mind when you analyze the 656 * behavior of the tp->ato delayed ack timeout interval. When a 657 * connection starts up, we want to ack as quickly as possible. The 658 * problem is that "good" TCP's do slow start at the beginning of data 659 * transmission. The means that until we send the first few ACK's the 660 * sender will sit on his end and only queue most of his data, because 661 * he can only send snd_cwnd unacked packets at any given time. For 662 * each ACK we send, he increments snd_cwnd and transmits more of his 663 * queue. -DaveM 664 */ 665 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 666 { 667 struct tcp_sock *tp = tcp_sk(sk); 668 struct inet_connection_sock *icsk = inet_csk(sk); 669 u32 now; 670 671 inet_csk_schedule_ack(sk); 672 673 tcp_measure_rcv_mss(sk, skb); 674 675 tcp_rcv_rtt_measure(tp); 676 677 now = tcp_jiffies32; 678 679 if (!icsk->icsk_ack.ato) { 680 /* The _first_ data packet received, initialize 681 * delayed ACK engine. 682 */ 683 tcp_incr_quickack(sk); 684 icsk->icsk_ack.ato = TCP_ATO_MIN; 685 } else { 686 int m = now - icsk->icsk_ack.lrcvtime; 687 688 if (m <= TCP_ATO_MIN / 2) { 689 /* The fastest case is the first. */ 690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 691 } else if (m < icsk->icsk_ack.ato) { 692 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 693 if (icsk->icsk_ack.ato > icsk->icsk_rto) 694 icsk->icsk_ack.ato = icsk->icsk_rto; 695 } else if (m > icsk->icsk_rto) { 696 /* Too long gap. Apparently sender failed to 697 * restart window, so that we send ACKs quickly. 698 */ 699 tcp_incr_quickack(sk); 700 sk_mem_reclaim(sk); 701 } 702 } 703 icsk->icsk_ack.lrcvtime = now; 704 705 tcp_ecn_check_ce(tp, skb); 706 707 if (skb->len >= 128) 708 tcp_grow_window(sk, skb); 709 } 710 711 /* Called to compute a smoothed rtt estimate. The data fed to this 712 * routine either comes from timestamps, or from segments that were 713 * known _not_ to have been retransmitted [see Karn/Partridge 714 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 715 * piece by Van Jacobson. 716 * NOTE: the next three routines used to be one big routine. 717 * To save cycles in the RFC 1323 implementation it was better to break 718 * it up into three procedures. -- erics 719 */ 720 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 721 { 722 struct tcp_sock *tp = tcp_sk(sk); 723 long m = mrtt_us; /* RTT */ 724 u32 srtt = tp->srtt_us; 725 726 /* The following amusing code comes from Jacobson's 727 * article in SIGCOMM '88. Note that rtt and mdev 728 * are scaled versions of rtt and mean deviation. 729 * This is designed to be as fast as possible 730 * m stands for "measurement". 731 * 732 * On a 1990 paper the rto value is changed to: 733 * RTO = rtt + 4 * mdev 734 * 735 * Funny. This algorithm seems to be very broken. 736 * These formulae increase RTO, when it should be decreased, increase 737 * too slowly, when it should be increased quickly, decrease too quickly 738 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 739 * does not matter how to _calculate_ it. Seems, it was trap 740 * that VJ failed to avoid. 8) 741 */ 742 if (srtt != 0) { 743 m -= (srtt >> 3); /* m is now error in rtt est */ 744 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 745 if (m < 0) { 746 m = -m; /* m is now abs(error) */ 747 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 748 /* This is similar to one of Eifel findings. 749 * Eifel blocks mdev updates when rtt decreases. 750 * This solution is a bit different: we use finer gain 751 * for mdev in this case (alpha*beta). 752 * Like Eifel it also prevents growth of rto, 753 * but also it limits too fast rto decreases, 754 * happening in pure Eifel. 755 */ 756 if (m > 0) 757 m >>= 3; 758 } else { 759 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 760 } 761 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 762 if (tp->mdev_us > tp->mdev_max_us) { 763 tp->mdev_max_us = tp->mdev_us; 764 if (tp->mdev_max_us > tp->rttvar_us) 765 tp->rttvar_us = tp->mdev_max_us; 766 } 767 if (after(tp->snd_una, tp->rtt_seq)) { 768 if (tp->mdev_max_us < tp->rttvar_us) 769 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 770 tp->rtt_seq = tp->snd_nxt; 771 tp->mdev_max_us = tcp_rto_min_us(sk); 772 } 773 } else { 774 /* no previous measure. */ 775 srtt = m << 3; /* take the measured time to be rtt */ 776 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 777 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 778 tp->mdev_max_us = tp->rttvar_us; 779 tp->rtt_seq = tp->snd_nxt; 780 } 781 tp->srtt_us = max(1U, srtt); 782 } 783 784 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 785 * Note: TCP stack does not yet implement pacing. 786 * FQ packet scheduler can be used to implement cheap but effective 787 * TCP pacing, to smooth the burst on large writes when packets 788 * in flight is significantly lower than cwnd (or rwin) 789 */ 790 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 791 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 792 793 static void tcp_update_pacing_rate(struct sock *sk) 794 { 795 const struct tcp_sock *tp = tcp_sk(sk); 796 u64 rate; 797 798 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 799 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 800 801 /* current rate is (cwnd * mss) / srtt 802 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 803 * In Congestion Avoidance phase, set it to 120 % the current rate. 804 * 805 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 806 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 807 * end of slow start and should slow down. 808 */ 809 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 810 rate *= sysctl_tcp_pacing_ss_ratio; 811 else 812 rate *= sysctl_tcp_pacing_ca_ratio; 813 814 rate *= max(tp->snd_cwnd, tp->packets_out); 815 816 if (likely(tp->srtt_us)) 817 do_div(rate, tp->srtt_us); 818 819 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 820 * without any lock. We want to make sure compiler wont store 821 * intermediate values in this location. 822 */ 823 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 824 sk->sk_max_pacing_rate); 825 } 826 827 /* Calculate rto without backoff. This is the second half of Van Jacobson's 828 * routine referred to above. 829 */ 830 static void tcp_set_rto(struct sock *sk) 831 { 832 const struct tcp_sock *tp = tcp_sk(sk); 833 /* Old crap is replaced with new one. 8) 834 * 835 * More seriously: 836 * 1. If rtt variance happened to be less 50msec, it is hallucination. 837 * It cannot be less due to utterly erratic ACK generation made 838 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 839 * to do with delayed acks, because at cwnd>2 true delack timeout 840 * is invisible. Actually, Linux-2.4 also generates erratic 841 * ACKs in some circumstances. 842 */ 843 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 844 845 /* 2. Fixups made earlier cannot be right. 846 * If we do not estimate RTO correctly without them, 847 * all the algo is pure shit and should be replaced 848 * with correct one. It is exactly, which we pretend to do. 849 */ 850 851 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 852 * guarantees that rto is higher. 853 */ 854 tcp_bound_rto(sk); 855 } 856 857 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 858 { 859 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 860 861 if (!cwnd) 862 cwnd = TCP_INIT_CWND; 863 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 864 } 865 866 /* 867 * Packet counting of FACK is based on in-order assumptions, therefore TCP 868 * disables it when reordering is detected 869 */ 870 void tcp_disable_fack(struct tcp_sock *tp) 871 { 872 /* RFC3517 uses different metric in lost marker => reset on change */ 873 if (tcp_is_fack(tp)) 874 tp->lost_skb_hint = NULL; 875 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 876 } 877 878 /* Take a notice that peer is sending D-SACKs */ 879 static void tcp_dsack_seen(struct tcp_sock *tp) 880 { 881 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 882 } 883 884 static void tcp_update_reordering(struct sock *sk, const int metric, 885 const int ts) 886 { 887 struct tcp_sock *tp = tcp_sk(sk); 888 int mib_idx; 889 890 if (WARN_ON_ONCE(metric < 0)) 891 return; 892 893 if (metric > tp->reordering) { 894 tp->reordering = min(sysctl_tcp_max_reordering, metric); 895 896 #if FASTRETRANS_DEBUG > 1 897 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 898 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 899 tp->reordering, 900 tp->fackets_out, 901 tp->sacked_out, 902 tp->undo_marker ? tp->undo_retrans : 0); 903 #endif 904 tcp_disable_fack(tp); 905 } 906 907 tp->rack.reord = 1; 908 909 /* This exciting event is worth to be remembered. 8) */ 910 if (ts) 911 mib_idx = LINUX_MIB_TCPTSREORDER; 912 else if (tcp_is_reno(tp)) 913 mib_idx = LINUX_MIB_TCPRENOREORDER; 914 else if (tcp_is_fack(tp)) 915 mib_idx = LINUX_MIB_TCPFACKREORDER; 916 else 917 mib_idx = LINUX_MIB_TCPSACKREORDER; 918 919 NET_INC_STATS(sock_net(sk), mib_idx); 920 } 921 922 /* This must be called before lost_out is incremented */ 923 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 924 { 925 if (!tp->retransmit_skb_hint || 926 before(TCP_SKB_CB(skb)->seq, 927 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 928 tp->retransmit_skb_hint = skb; 929 } 930 931 /* Sum the number of packets on the wire we have marked as lost. 932 * There are two cases we care about here: 933 * a) Packet hasn't been marked lost (nor retransmitted), 934 * and this is the first loss. 935 * b) Packet has been marked both lost and retransmitted, 936 * and this means we think it was lost again. 937 */ 938 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 939 { 940 __u8 sacked = TCP_SKB_CB(skb)->sacked; 941 942 if (!(sacked & TCPCB_LOST) || 943 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 944 tp->lost += tcp_skb_pcount(skb); 945 } 946 947 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 948 { 949 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 950 tcp_verify_retransmit_hint(tp, skb); 951 952 tp->lost_out += tcp_skb_pcount(skb); 953 tcp_sum_lost(tp, skb); 954 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 955 } 956 } 957 958 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 959 { 960 tcp_verify_retransmit_hint(tp, skb); 961 962 tcp_sum_lost(tp, skb); 963 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 964 tp->lost_out += tcp_skb_pcount(skb); 965 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 966 } 967 } 968 969 /* This procedure tags the retransmission queue when SACKs arrive. 970 * 971 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 972 * Packets in queue with these bits set are counted in variables 973 * sacked_out, retrans_out and lost_out, correspondingly. 974 * 975 * Valid combinations are: 976 * Tag InFlight Description 977 * 0 1 - orig segment is in flight. 978 * S 0 - nothing flies, orig reached receiver. 979 * L 0 - nothing flies, orig lost by net. 980 * R 2 - both orig and retransmit are in flight. 981 * L|R 1 - orig is lost, retransmit is in flight. 982 * S|R 1 - orig reached receiver, retrans is still in flight. 983 * (L|S|R is logically valid, it could occur when L|R is sacked, 984 * but it is equivalent to plain S and code short-curcuits it to S. 985 * L|S is logically invalid, it would mean -1 packet in flight 8)) 986 * 987 * These 6 states form finite state machine, controlled by the following events: 988 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 989 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 990 * 3. Loss detection event of two flavors: 991 * A. Scoreboard estimator decided the packet is lost. 992 * A'. Reno "three dupacks" marks head of queue lost. 993 * A''. Its FACK modification, head until snd.fack is lost. 994 * B. SACK arrives sacking SND.NXT at the moment, when the 995 * segment was retransmitted. 996 * 4. D-SACK added new rule: D-SACK changes any tag to S. 997 * 998 * It is pleasant to note, that state diagram turns out to be commutative, 999 * so that we are allowed not to be bothered by order of our actions, 1000 * when multiple events arrive simultaneously. (see the function below). 1001 * 1002 * Reordering detection. 1003 * -------------------- 1004 * Reordering metric is maximal distance, which a packet can be displaced 1005 * in packet stream. With SACKs we can estimate it: 1006 * 1007 * 1. SACK fills old hole and the corresponding segment was not 1008 * ever retransmitted -> reordering. Alas, we cannot use it 1009 * when segment was retransmitted. 1010 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1011 * for retransmitted and already SACKed segment -> reordering.. 1012 * Both of these heuristics are not used in Loss state, when we cannot 1013 * account for retransmits accurately. 1014 * 1015 * SACK block validation. 1016 * ---------------------- 1017 * 1018 * SACK block range validation checks that the received SACK block fits to 1019 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1020 * Note that SND.UNA is not included to the range though being valid because 1021 * it means that the receiver is rather inconsistent with itself reporting 1022 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1023 * perfectly valid, however, in light of RFC2018 which explicitly states 1024 * that "SACK block MUST reflect the newest segment. Even if the newest 1025 * segment is going to be discarded ...", not that it looks very clever 1026 * in case of head skb. Due to potentional receiver driven attacks, we 1027 * choose to avoid immediate execution of a walk in write queue due to 1028 * reneging and defer head skb's loss recovery to standard loss recovery 1029 * procedure that will eventually trigger (nothing forbids us doing this). 1030 * 1031 * Implements also blockage to start_seq wrap-around. Problem lies in the 1032 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1033 * there's no guarantee that it will be before snd_nxt (n). The problem 1034 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1035 * wrap (s_w): 1036 * 1037 * <- outs wnd -> <- wrapzone -> 1038 * u e n u_w e_w s n_w 1039 * | | | | | | | 1040 * |<------------+------+----- TCP seqno space --------------+---------->| 1041 * ...-- <2^31 ->| |<--------... 1042 * ...---- >2^31 ------>| |<--------... 1043 * 1044 * Current code wouldn't be vulnerable but it's better still to discard such 1045 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1046 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1047 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1048 * equal to the ideal case (infinite seqno space without wrap caused issues). 1049 * 1050 * With D-SACK the lower bound is extended to cover sequence space below 1051 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1052 * again, D-SACK block must not to go across snd_una (for the same reason as 1053 * for the normal SACK blocks, explained above). But there all simplicity 1054 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1055 * fully below undo_marker they do not affect behavior in anyway and can 1056 * therefore be safely ignored. In rare cases (which are more or less 1057 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1058 * fragmentation and packet reordering past skb's retransmission. To consider 1059 * them correctly, the acceptable range must be extended even more though 1060 * the exact amount is rather hard to quantify. However, tp->max_window can 1061 * be used as an exaggerated estimate. 1062 */ 1063 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1064 u32 start_seq, u32 end_seq) 1065 { 1066 /* Too far in future, or reversed (interpretation is ambiguous) */ 1067 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1068 return false; 1069 1070 /* Nasty start_seq wrap-around check (see comments above) */ 1071 if (!before(start_seq, tp->snd_nxt)) 1072 return false; 1073 1074 /* In outstanding window? ...This is valid exit for D-SACKs too. 1075 * start_seq == snd_una is non-sensical (see comments above) 1076 */ 1077 if (after(start_seq, tp->snd_una)) 1078 return true; 1079 1080 if (!is_dsack || !tp->undo_marker) 1081 return false; 1082 1083 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1084 if (after(end_seq, tp->snd_una)) 1085 return false; 1086 1087 if (!before(start_seq, tp->undo_marker)) 1088 return true; 1089 1090 /* Too old */ 1091 if (!after(end_seq, tp->undo_marker)) 1092 return false; 1093 1094 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1095 * start_seq < undo_marker and end_seq >= undo_marker. 1096 */ 1097 return !before(start_seq, end_seq - tp->max_window); 1098 } 1099 1100 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1101 struct tcp_sack_block_wire *sp, int num_sacks, 1102 u32 prior_snd_una) 1103 { 1104 struct tcp_sock *tp = tcp_sk(sk); 1105 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1106 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1107 bool dup_sack = false; 1108 1109 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1110 dup_sack = true; 1111 tcp_dsack_seen(tp); 1112 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1113 } else if (num_sacks > 1) { 1114 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1115 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1116 1117 if (!after(end_seq_0, end_seq_1) && 1118 !before(start_seq_0, start_seq_1)) { 1119 dup_sack = true; 1120 tcp_dsack_seen(tp); 1121 NET_INC_STATS(sock_net(sk), 1122 LINUX_MIB_TCPDSACKOFORECV); 1123 } 1124 } 1125 1126 /* D-SACK for already forgotten data... Do dumb counting. */ 1127 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1128 !after(end_seq_0, prior_snd_una) && 1129 after(end_seq_0, tp->undo_marker)) 1130 tp->undo_retrans--; 1131 1132 return dup_sack; 1133 } 1134 1135 struct tcp_sacktag_state { 1136 int reord; 1137 int fack_count; 1138 /* Timestamps for earliest and latest never-retransmitted segment 1139 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1140 * but congestion control should still get an accurate delay signal. 1141 */ 1142 u64 first_sackt; 1143 u64 last_sackt; 1144 struct rate_sample *rate; 1145 int flag; 1146 }; 1147 1148 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1149 * the incoming SACK may not exactly match but we can find smaller MSS 1150 * aligned portion of it that matches. Therefore we might need to fragment 1151 * which may fail and creates some hassle (caller must handle error case 1152 * returns). 1153 * 1154 * FIXME: this could be merged to shift decision code 1155 */ 1156 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1157 u32 start_seq, u32 end_seq) 1158 { 1159 int err; 1160 bool in_sack; 1161 unsigned int pkt_len; 1162 unsigned int mss; 1163 1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1165 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1166 1167 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1168 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1169 mss = tcp_skb_mss(skb); 1170 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1171 1172 if (!in_sack) { 1173 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1174 if (pkt_len < mss) 1175 pkt_len = mss; 1176 } else { 1177 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1178 if (pkt_len < mss) 1179 return -EINVAL; 1180 } 1181 1182 /* Round if necessary so that SACKs cover only full MSSes 1183 * and/or the remaining small portion (if present) 1184 */ 1185 if (pkt_len > mss) { 1186 unsigned int new_len = (pkt_len / mss) * mss; 1187 if (!in_sack && new_len < pkt_len) 1188 new_len += mss; 1189 pkt_len = new_len; 1190 } 1191 1192 if (pkt_len >= skb->len && !in_sack) 1193 return 0; 1194 1195 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1196 if (err < 0) 1197 return err; 1198 } 1199 1200 return in_sack; 1201 } 1202 1203 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1204 static u8 tcp_sacktag_one(struct sock *sk, 1205 struct tcp_sacktag_state *state, u8 sacked, 1206 u32 start_seq, u32 end_seq, 1207 int dup_sack, int pcount, 1208 u64 xmit_time) 1209 { 1210 struct tcp_sock *tp = tcp_sk(sk); 1211 int fack_count = state->fack_count; 1212 1213 /* Account D-SACK for retransmitted packet. */ 1214 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1215 if (tp->undo_marker && tp->undo_retrans > 0 && 1216 after(end_seq, tp->undo_marker)) 1217 tp->undo_retrans--; 1218 if (sacked & TCPCB_SACKED_ACKED) 1219 state->reord = min(fack_count, state->reord); 1220 } 1221 1222 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1223 if (!after(end_seq, tp->snd_una)) 1224 return sacked; 1225 1226 if (!(sacked & TCPCB_SACKED_ACKED)) { 1227 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1228 1229 if (sacked & TCPCB_SACKED_RETRANS) { 1230 /* If the segment is not tagged as lost, 1231 * we do not clear RETRANS, believing 1232 * that retransmission is still in flight. 1233 */ 1234 if (sacked & TCPCB_LOST) { 1235 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1236 tp->lost_out -= pcount; 1237 tp->retrans_out -= pcount; 1238 } 1239 } else { 1240 if (!(sacked & TCPCB_RETRANS)) { 1241 /* New sack for not retransmitted frame, 1242 * which was in hole. It is reordering. 1243 */ 1244 if (before(start_seq, 1245 tcp_highest_sack_seq(tp))) 1246 state->reord = min(fack_count, 1247 state->reord); 1248 if (!after(end_seq, tp->high_seq)) 1249 state->flag |= FLAG_ORIG_SACK_ACKED; 1250 if (state->first_sackt == 0) 1251 state->first_sackt = xmit_time; 1252 state->last_sackt = xmit_time; 1253 } 1254 1255 if (sacked & TCPCB_LOST) { 1256 sacked &= ~TCPCB_LOST; 1257 tp->lost_out -= pcount; 1258 } 1259 } 1260 1261 sacked |= TCPCB_SACKED_ACKED; 1262 state->flag |= FLAG_DATA_SACKED; 1263 tp->sacked_out += pcount; 1264 tp->delivered += pcount; /* Out-of-order packets delivered */ 1265 1266 fack_count += pcount; 1267 1268 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1269 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1270 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1271 tp->lost_cnt_hint += pcount; 1272 1273 if (fack_count > tp->fackets_out) 1274 tp->fackets_out = fack_count; 1275 } 1276 1277 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1278 * frames and clear it. undo_retrans is decreased above, L|R frames 1279 * are accounted above as well. 1280 */ 1281 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1282 sacked &= ~TCPCB_SACKED_RETRANS; 1283 tp->retrans_out -= pcount; 1284 } 1285 1286 return sacked; 1287 } 1288 1289 /* Shift newly-SACKed bytes from this skb to the immediately previous 1290 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1291 */ 1292 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1293 struct tcp_sacktag_state *state, 1294 unsigned int pcount, int shifted, int mss, 1295 bool dup_sack) 1296 { 1297 struct tcp_sock *tp = tcp_sk(sk); 1298 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1299 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1300 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1301 1302 BUG_ON(!pcount); 1303 1304 /* Adjust counters and hints for the newly sacked sequence 1305 * range but discard the return value since prev is already 1306 * marked. We must tag the range first because the seq 1307 * advancement below implicitly advances 1308 * tcp_highest_sack_seq() when skb is highest_sack. 1309 */ 1310 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1311 start_seq, end_seq, dup_sack, pcount, 1312 skb->skb_mstamp); 1313 tcp_rate_skb_delivered(sk, skb, state->rate); 1314 1315 if (skb == tp->lost_skb_hint) 1316 tp->lost_cnt_hint += pcount; 1317 1318 TCP_SKB_CB(prev)->end_seq += shifted; 1319 TCP_SKB_CB(skb)->seq += shifted; 1320 1321 tcp_skb_pcount_add(prev, pcount); 1322 BUG_ON(tcp_skb_pcount(skb) < pcount); 1323 tcp_skb_pcount_add(skb, -pcount); 1324 1325 /* When we're adding to gso_segs == 1, gso_size will be zero, 1326 * in theory this shouldn't be necessary but as long as DSACK 1327 * code can come after this skb later on it's better to keep 1328 * setting gso_size to something. 1329 */ 1330 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1331 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1332 1333 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1334 if (tcp_skb_pcount(skb) <= 1) 1335 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1336 1337 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1338 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1339 1340 if (skb->len > 0) { 1341 BUG_ON(!tcp_skb_pcount(skb)); 1342 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1343 return false; 1344 } 1345 1346 /* Whole SKB was eaten :-) */ 1347 1348 if (skb == tp->retransmit_skb_hint) 1349 tp->retransmit_skb_hint = prev; 1350 if (skb == tp->lost_skb_hint) { 1351 tp->lost_skb_hint = prev; 1352 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1353 } 1354 1355 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1356 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1357 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1358 TCP_SKB_CB(prev)->end_seq++; 1359 1360 if (skb == tcp_highest_sack(sk)) 1361 tcp_advance_highest_sack(sk, skb); 1362 1363 tcp_skb_collapse_tstamp(prev, skb); 1364 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1365 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1366 1367 tcp_unlink_write_queue(skb, sk); 1368 sk_wmem_free_skb(sk, skb); 1369 1370 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1371 1372 return true; 1373 } 1374 1375 /* I wish gso_size would have a bit more sane initialization than 1376 * something-or-zero which complicates things 1377 */ 1378 static int tcp_skb_seglen(const struct sk_buff *skb) 1379 { 1380 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1381 } 1382 1383 /* Shifting pages past head area doesn't work */ 1384 static int skb_can_shift(const struct sk_buff *skb) 1385 { 1386 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1387 } 1388 1389 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1390 * skb. 1391 */ 1392 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1393 struct tcp_sacktag_state *state, 1394 u32 start_seq, u32 end_seq, 1395 bool dup_sack) 1396 { 1397 struct tcp_sock *tp = tcp_sk(sk); 1398 struct sk_buff *prev; 1399 int mss; 1400 int pcount = 0; 1401 int len; 1402 int in_sack; 1403 1404 if (!sk_can_gso(sk)) 1405 goto fallback; 1406 1407 /* Normally R but no L won't result in plain S */ 1408 if (!dup_sack && 1409 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1410 goto fallback; 1411 if (!skb_can_shift(skb)) 1412 goto fallback; 1413 /* This frame is about to be dropped (was ACKed). */ 1414 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1415 goto fallback; 1416 1417 /* Can only happen with delayed DSACK + discard craziness */ 1418 if (unlikely(skb == tcp_write_queue_head(sk))) 1419 goto fallback; 1420 prev = tcp_write_queue_prev(sk, skb); 1421 1422 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1423 goto fallback; 1424 1425 if (!tcp_skb_can_collapse_to(prev)) 1426 goto fallback; 1427 1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1430 1431 if (in_sack) { 1432 len = skb->len; 1433 pcount = tcp_skb_pcount(skb); 1434 mss = tcp_skb_seglen(skb); 1435 1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1437 * drop this restriction as unnecessary 1438 */ 1439 if (mss != tcp_skb_seglen(prev)) 1440 goto fallback; 1441 } else { 1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1443 goto noop; 1444 /* CHECKME: This is non-MSS split case only?, this will 1445 * cause skipped skbs due to advancing loop btw, original 1446 * has that feature too 1447 */ 1448 if (tcp_skb_pcount(skb) <= 1) 1449 goto noop; 1450 1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1452 if (!in_sack) { 1453 /* TODO: head merge to next could be attempted here 1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1455 * though it might not be worth of the additional hassle 1456 * 1457 * ...we can probably just fallback to what was done 1458 * previously. We could try merging non-SACKed ones 1459 * as well but it probably isn't going to buy off 1460 * because later SACKs might again split them, and 1461 * it would make skb timestamp tracking considerably 1462 * harder problem. 1463 */ 1464 goto fallback; 1465 } 1466 1467 len = end_seq - TCP_SKB_CB(skb)->seq; 1468 BUG_ON(len < 0); 1469 BUG_ON(len > skb->len); 1470 1471 /* MSS boundaries should be honoured or else pcount will 1472 * severely break even though it makes things bit trickier. 1473 * Optimize common case to avoid most of the divides 1474 */ 1475 mss = tcp_skb_mss(skb); 1476 1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1478 * drop this restriction as unnecessary 1479 */ 1480 if (mss != tcp_skb_seglen(prev)) 1481 goto fallback; 1482 1483 if (len == mss) { 1484 pcount = 1; 1485 } else if (len < mss) { 1486 goto noop; 1487 } else { 1488 pcount = len / mss; 1489 len = pcount * mss; 1490 } 1491 } 1492 1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1495 goto fallback; 1496 1497 if (!skb_shift(prev, skb, len)) 1498 goto fallback; 1499 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1500 goto out; 1501 1502 /* Hole filled allows collapsing with the next as well, this is very 1503 * useful when hole on every nth skb pattern happens 1504 */ 1505 if (prev == tcp_write_queue_tail(sk)) 1506 goto out; 1507 skb = tcp_write_queue_next(sk, prev); 1508 1509 if (!skb_can_shift(skb) || 1510 (skb == tcp_send_head(sk)) || 1511 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1512 (mss != tcp_skb_seglen(skb))) 1513 goto out; 1514 1515 len = skb->len; 1516 if (skb_shift(prev, skb, len)) { 1517 pcount += tcp_skb_pcount(skb); 1518 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1519 } 1520 1521 out: 1522 state->fack_count += pcount; 1523 return prev; 1524 1525 noop: 1526 return skb; 1527 1528 fallback: 1529 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1530 return NULL; 1531 } 1532 1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1534 struct tcp_sack_block *next_dup, 1535 struct tcp_sacktag_state *state, 1536 u32 start_seq, u32 end_seq, 1537 bool dup_sack_in) 1538 { 1539 struct tcp_sock *tp = tcp_sk(sk); 1540 struct sk_buff *tmp; 1541 1542 tcp_for_write_queue_from(skb, sk) { 1543 int in_sack = 0; 1544 bool dup_sack = dup_sack_in; 1545 1546 if (skb == tcp_send_head(sk)) 1547 break; 1548 1549 /* queue is in-order => we can short-circuit the walk early */ 1550 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1551 break; 1552 1553 if (next_dup && 1554 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1555 in_sack = tcp_match_skb_to_sack(sk, skb, 1556 next_dup->start_seq, 1557 next_dup->end_seq); 1558 if (in_sack > 0) 1559 dup_sack = true; 1560 } 1561 1562 /* skb reference here is a bit tricky to get right, since 1563 * shifting can eat and free both this skb and the next, 1564 * so not even _safe variant of the loop is enough. 1565 */ 1566 if (in_sack <= 0) { 1567 tmp = tcp_shift_skb_data(sk, skb, state, 1568 start_seq, end_seq, dup_sack); 1569 if (tmp) { 1570 if (tmp != skb) { 1571 skb = tmp; 1572 continue; 1573 } 1574 1575 in_sack = 0; 1576 } else { 1577 in_sack = tcp_match_skb_to_sack(sk, skb, 1578 start_seq, 1579 end_seq); 1580 } 1581 } 1582 1583 if (unlikely(in_sack < 0)) 1584 break; 1585 1586 if (in_sack) { 1587 TCP_SKB_CB(skb)->sacked = 1588 tcp_sacktag_one(sk, 1589 state, 1590 TCP_SKB_CB(skb)->sacked, 1591 TCP_SKB_CB(skb)->seq, 1592 TCP_SKB_CB(skb)->end_seq, 1593 dup_sack, 1594 tcp_skb_pcount(skb), 1595 skb->skb_mstamp); 1596 tcp_rate_skb_delivered(sk, skb, state->rate); 1597 1598 if (!before(TCP_SKB_CB(skb)->seq, 1599 tcp_highest_sack_seq(tp))) 1600 tcp_advance_highest_sack(sk, skb); 1601 } 1602 1603 state->fack_count += tcp_skb_pcount(skb); 1604 } 1605 return skb; 1606 } 1607 1608 /* Avoid all extra work that is being done by sacktag while walking in 1609 * a normal way 1610 */ 1611 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1612 struct tcp_sacktag_state *state, 1613 u32 skip_to_seq) 1614 { 1615 tcp_for_write_queue_from(skb, sk) { 1616 if (skb == tcp_send_head(sk)) 1617 break; 1618 1619 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1620 break; 1621 1622 state->fack_count += tcp_skb_pcount(skb); 1623 } 1624 return skb; 1625 } 1626 1627 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1628 struct sock *sk, 1629 struct tcp_sack_block *next_dup, 1630 struct tcp_sacktag_state *state, 1631 u32 skip_to_seq) 1632 { 1633 if (!next_dup) 1634 return skb; 1635 1636 if (before(next_dup->start_seq, skip_to_seq)) { 1637 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1638 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1639 next_dup->start_seq, next_dup->end_seq, 1640 1); 1641 } 1642 1643 return skb; 1644 } 1645 1646 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1647 { 1648 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1649 } 1650 1651 static int 1652 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1653 u32 prior_snd_una, struct tcp_sacktag_state *state) 1654 { 1655 struct tcp_sock *tp = tcp_sk(sk); 1656 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1657 TCP_SKB_CB(ack_skb)->sacked); 1658 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1659 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1660 struct tcp_sack_block *cache; 1661 struct sk_buff *skb; 1662 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1663 int used_sacks; 1664 bool found_dup_sack = false; 1665 int i, j; 1666 int first_sack_index; 1667 1668 state->flag = 0; 1669 state->reord = tp->packets_out; 1670 1671 if (!tp->sacked_out) { 1672 if (WARN_ON(tp->fackets_out)) 1673 tp->fackets_out = 0; 1674 tcp_highest_sack_reset(sk); 1675 } 1676 1677 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1678 num_sacks, prior_snd_una); 1679 if (found_dup_sack) { 1680 state->flag |= FLAG_DSACKING_ACK; 1681 tp->delivered++; /* A spurious retransmission is delivered */ 1682 } 1683 1684 /* Eliminate too old ACKs, but take into 1685 * account more or less fresh ones, they can 1686 * contain valid SACK info. 1687 */ 1688 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1689 return 0; 1690 1691 if (!tp->packets_out) 1692 goto out; 1693 1694 used_sacks = 0; 1695 first_sack_index = 0; 1696 for (i = 0; i < num_sacks; i++) { 1697 bool dup_sack = !i && found_dup_sack; 1698 1699 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1700 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1701 1702 if (!tcp_is_sackblock_valid(tp, dup_sack, 1703 sp[used_sacks].start_seq, 1704 sp[used_sacks].end_seq)) { 1705 int mib_idx; 1706 1707 if (dup_sack) { 1708 if (!tp->undo_marker) 1709 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1710 else 1711 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1712 } else { 1713 /* Don't count olds caused by ACK reordering */ 1714 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1715 !after(sp[used_sacks].end_seq, tp->snd_una)) 1716 continue; 1717 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1718 } 1719 1720 NET_INC_STATS(sock_net(sk), mib_idx); 1721 if (i == 0) 1722 first_sack_index = -1; 1723 continue; 1724 } 1725 1726 /* Ignore very old stuff early */ 1727 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1728 continue; 1729 1730 used_sacks++; 1731 } 1732 1733 /* order SACK blocks to allow in order walk of the retrans queue */ 1734 for (i = used_sacks - 1; i > 0; i--) { 1735 for (j = 0; j < i; j++) { 1736 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1737 swap(sp[j], sp[j + 1]); 1738 1739 /* Track where the first SACK block goes to */ 1740 if (j == first_sack_index) 1741 first_sack_index = j + 1; 1742 } 1743 } 1744 } 1745 1746 skb = tcp_write_queue_head(sk); 1747 state->fack_count = 0; 1748 i = 0; 1749 1750 if (!tp->sacked_out) { 1751 /* It's already past, so skip checking against it */ 1752 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1753 } else { 1754 cache = tp->recv_sack_cache; 1755 /* Skip empty blocks in at head of the cache */ 1756 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1757 !cache->end_seq) 1758 cache++; 1759 } 1760 1761 while (i < used_sacks) { 1762 u32 start_seq = sp[i].start_seq; 1763 u32 end_seq = sp[i].end_seq; 1764 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1765 struct tcp_sack_block *next_dup = NULL; 1766 1767 if (found_dup_sack && ((i + 1) == first_sack_index)) 1768 next_dup = &sp[i + 1]; 1769 1770 /* Skip too early cached blocks */ 1771 while (tcp_sack_cache_ok(tp, cache) && 1772 !before(start_seq, cache->end_seq)) 1773 cache++; 1774 1775 /* Can skip some work by looking recv_sack_cache? */ 1776 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1777 after(end_seq, cache->start_seq)) { 1778 1779 /* Head todo? */ 1780 if (before(start_seq, cache->start_seq)) { 1781 skb = tcp_sacktag_skip(skb, sk, state, 1782 start_seq); 1783 skb = tcp_sacktag_walk(skb, sk, next_dup, 1784 state, 1785 start_seq, 1786 cache->start_seq, 1787 dup_sack); 1788 } 1789 1790 /* Rest of the block already fully processed? */ 1791 if (!after(end_seq, cache->end_seq)) 1792 goto advance_sp; 1793 1794 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1795 state, 1796 cache->end_seq); 1797 1798 /* ...tail remains todo... */ 1799 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1800 /* ...but better entrypoint exists! */ 1801 skb = tcp_highest_sack(sk); 1802 if (!skb) 1803 break; 1804 state->fack_count = tp->fackets_out; 1805 cache++; 1806 goto walk; 1807 } 1808 1809 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1810 /* Check overlap against next cached too (past this one already) */ 1811 cache++; 1812 continue; 1813 } 1814 1815 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1816 skb = tcp_highest_sack(sk); 1817 if (!skb) 1818 break; 1819 state->fack_count = tp->fackets_out; 1820 } 1821 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1822 1823 walk: 1824 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1825 start_seq, end_seq, dup_sack); 1826 1827 advance_sp: 1828 i++; 1829 } 1830 1831 /* Clear the head of the cache sack blocks so we can skip it next time */ 1832 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1833 tp->recv_sack_cache[i].start_seq = 0; 1834 tp->recv_sack_cache[i].end_seq = 0; 1835 } 1836 for (j = 0; j < used_sacks; j++) 1837 tp->recv_sack_cache[i++] = sp[j]; 1838 1839 if ((state->reord < tp->fackets_out) && 1840 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1841 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1842 1843 tcp_verify_left_out(tp); 1844 out: 1845 1846 #if FASTRETRANS_DEBUG > 0 1847 WARN_ON((int)tp->sacked_out < 0); 1848 WARN_ON((int)tp->lost_out < 0); 1849 WARN_ON((int)tp->retrans_out < 0); 1850 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1851 #endif 1852 return state->flag; 1853 } 1854 1855 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1856 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1857 */ 1858 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1859 { 1860 u32 holes; 1861 1862 holes = max(tp->lost_out, 1U); 1863 holes = min(holes, tp->packets_out); 1864 1865 if ((tp->sacked_out + holes) > tp->packets_out) { 1866 tp->sacked_out = tp->packets_out - holes; 1867 return true; 1868 } 1869 return false; 1870 } 1871 1872 /* If we receive more dupacks than we expected counting segments 1873 * in assumption of absent reordering, interpret this as reordering. 1874 * The only another reason could be bug in receiver TCP. 1875 */ 1876 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1877 { 1878 struct tcp_sock *tp = tcp_sk(sk); 1879 if (tcp_limit_reno_sacked(tp)) 1880 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1881 } 1882 1883 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1884 1885 static void tcp_add_reno_sack(struct sock *sk) 1886 { 1887 struct tcp_sock *tp = tcp_sk(sk); 1888 u32 prior_sacked = tp->sacked_out; 1889 1890 tp->sacked_out++; 1891 tcp_check_reno_reordering(sk, 0); 1892 if (tp->sacked_out > prior_sacked) 1893 tp->delivered++; /* Some out-of-order packet is delivered */ 1894 tcp_verify_left_out(tp); 1895 } 1896 1897 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1898 1899 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1900 { 1901 struct tcp_sock *tp = tcp_sk(sk); 1902 1903 if (acked > 0) { 1904 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1905 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1906 if (acked - 1 >= tp->sacked_out) 1907 tp->sacked_out = 0; 1908 else 1909 tp->sacked_out -= acked - 1; 1910 } 1911 tcp_check_reno_reordering(sk, acked); 1912 tcp_verify_left_out(tp); 1913 } 1914 1915 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1916 { 1917 tp->sacked_out = 0; 1918 } 1919 1920 void tcp_clear_retrans(struct tcp_sock *tp) 1921 { 1922 tp->retrans_out = 0; 1923 tp->lost_out = 0; 1924 tp->undo_marker = 0; 1925 tp->undo_retrans = -1; 1926 tp->fackets_out = 0; 1927 tp->sacked_out = 0; 1928 } 1929 1930 static inline void tcp_init_undo(struct tcp_sock *tp) 1931 { 1932 tp->undo_marker = tp->snd_una; 1933 /* Retransmission still in flight may cause DSACKs later. */ 1934 tp->undo_retrans = tp->retrans_out ? : -1; 1935 } 1936 1937 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1938 * and reset tags completely, otherwise preserve SACKs. If receiver 1939 * dropped its ofo queue, we will know this due to reneging detection. 1940 */ 1941 void tcp_enter_loss(struct sock *sk) 1942 { 1943 const struct inet_connection_sock *icsk = inet_csk(sk); 1944 struct tcp_sock *tp = tcp_sk(sk); 1945 struct net *net = sock_net(sk); 1946 struct sk_buff *skb; 1947 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1948 bool is_reneg; /* is receiver reneging on SACKs? */ 1949 bool mark_lost; 1950 1951 /* Reduce ssthresh if it has not yet been made inside this window. */ 1952 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1953 !after(tp->high_seq, tp->snd_una) || 1954 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1955 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1956 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1957 tcp_ca_event(sk, CA_EVENT_LOSS); 1958 tcp_init_undo(tp); 1959 } 1960 tp->snd_cwnd = 1; 1961 tp->snd_cwnd_cnt = 0; 1962 tp->snd_cwnd_stamp = tcp_jiffies32; 1963 1964 tp->retrans_out = 0; 1965 tp->lost_out = 0; 1966 1967 if (tcp_is_reno(tp)) 1968 tcp_reset_reno_sack(tp); 1969 1970 skb = tcp_write_queue_head(sk); 1971 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1972 if (is_reneg) { 1973 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1974 tp->sacked_out = 0; 1975 tp->fackets_out = 0; 1976 } 1977 tcp_clear_all_retrans_hints(tp); 1978 1979 tcp_for_write_queue(skb, sk) { 1980 if (skb == tcp_send_head(sk)) 1981 break; 1982 1983 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1984 is_reneg); 1985 if (mark_lost) 1986 tcp_sum_lost(tp, skb); 1987 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1988 if (mark_lost) { 1989 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1990 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1991 tp->lost_out += tcp_skb_pcount(skb); 1992 } 1993 } 1994 tcp_verify_left_out(tp); 1995 1996 /* Timeout in disordered state after receiving substantial DUPACKs 1997 * suggests that the degree of reordering is over-estimated. 1998 */ 1999 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2000 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2001 tp->reordering = min_t(unsigned int, tp->reordering, 2002 net->ipv4.sysctl_tcp_reordering); 2003 tcp_set_ca_state(sk, TCP_CA_Loss); 2004 tp->high_seq = tp->snd_nxt; 2005 tcp_ecn_queue_cwr(tp); 2006 2007 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2008 * loss recovery is underway except recurring timeout(s) on 2009 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2010 * 2011 * In theory F-RTO can be used repeatedly during loss recovery. 2012 * In practice this interacts badly with broken middle-boxes that 2013 * falsely raise the receive window, which results in repeated 2014 * timeouts and stop-and-go behavior. 2015 */ 2016 tp->frto = sysctl_tcp_frto && 2017 (new_recovery || icsk->icsk_retransmits) && 2018 !inet_csk(sk)->icsk_mtup.probe_size; 2019 } 2020 2021 /* If ACK arrived pointing to a remembered SACK, it means that our 2022 * remembered SACKs do not reflect real state of receiver i.e. 2023 * receiver _host_ is heavily congested (or buggy). 2024 * 2025 * To avoid big spurious retransmission bursts due to transient SACK 2026 * scoreboard oddities that look like reneging, we give the receiver a 2027 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2028 * restore sanity to the SACK scoreboard. If the apparent reneging 2029 * persists until this RTO then we'll clear the SACK scoreboard. 2030 */ 2031 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2032 { 2033 if (flag & FLAG_SACK_RENEGING) { 2034 struct tcp_sock *tp = tcp_sk(sk); 2035 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2036 msecs_to_jiffies(10)); 2037 2038 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2039 delay, TCP_RTO_MAX); 2040 return true; 2041 } 2042 return false; 2043 } 2044 2045 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2046 { 2047 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2048 } 2049 2050 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2051 * counter when SACK is enabled (without SACK, sacked_out is used for 2052 * that purpose). 2053 * 2054 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2055 * segments up to the highest received SACK block so far and holes in 2056 * between them. 2057 * 2058 * With reordering, holes may still be in flight, so RFC3517 recovery 2059 * uses pure sacked_out (total number of SACKed segments) even though 2060 * it violates the RFC that uses duplicate ACKs, often these are equal 2061 * but when e.g. out-of-window ACKs or packet duplication occurs, 2062 * they differ. Since neither occurs due to loss, TCP should really 2063 * ignore them. 2064 */ 2065 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2066 { 2067 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2068 } 2069 2070 /* Linux NewReno/SACK/FACK/ECN state machine. 2071 * -------------------------------------- 2072 * 2073 * "Open" Normal state, no dubious events, fast path. 2074 * "Disorder" In all the respects it is "Open", 2075 * but requires a bit more attention. It is entered when 2076 * we see some SACKs or dupacks. It is split of "Open" 2077 * mainly to move some processing from fast path to slow one. 2078 * "CWR" CWND was reduced due to some Congestion Notification event. 2079 * It can be ECN, ICMP source quench, local device congestion. 2080 * "Recovery" CWND was reduced, we are fast-retransmitting. 2081 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2082 * 2083 * tcp_fastretrans_alert() is entered: 2084 * - each incoming ACK, if state is not "Open" 2085 * - when arrived ACK is unusual, namely: 2086 * * SACK 2087 * * Duplicate ACK. 2088 * * ECN ECE. 2089 * 2090 * Counting packets in flight is pretty simple. 2091 * 2092 * in_flight = packets_out - left_out + retrans_out 2093 * 2094 * packets_out is SND.NXT-SND.UNA counted in packets. 2095 * 2096 * retrans_out is number of retransmitted segments. 2097 * 2098 * left_out is number of segments left network, but not ACKed yet. 2099 * 2100 * left_out = sacked_out + lost_out 2101 * 2102 * sacked_out: Packets, which arrived to receiver out of order 2103 * and hence not ACKed. With SACKs this number is simply 2104 * amount of SACKed data. Even without SACKs 2105 * it is easy to give pretty reliable estimate of this number, 2106 * counting duplicate ACKs. 2107 * 2108 * lost_out: Packets lost by network. TCP has no explicit 2109 * "loss notification" feedback from network (for now). 2110 * It means that this number can be only _guessed_. 2111 * Actually, it is the heuristics to predict lossage that 2112 * distinguishes different algorithms. 2113 * 2114 * F.e. after RTO, when all the queue is considered as lost, 2115 * lost_out = packets_out and in_flight = retrans_out. 2116 * 2117 * Essentially, we have now a few algorithms detecting 2118 * lost packets. 2119 * 2120 * If the receiver supports SACK: 2121 * 2122 * RFC6675/3517: It is the conventional algorithm. A packet is 2123 * considered lost if the number of higher sequence packets 2124 * SACKed is greater than or equal the DUPACK thoreshold 2125 * (reordering). This is implemented in tcp_mark_head_lost and 2126 * tcp_update_scoreboard. 2127 * 2128 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2129 * (2017-) that checks timing instead of counting DUPACKs. 2130 * Essentially a packet is considered lost if it's not S/ACKed 2131 * after RTT + reordering_window, where both metrics are 2132 * dynamically measured and adjusted. This is implemented in 2133 * tcp_rack_mark_lost. 2134 * 2135 * FACK (Disabled by default. Subsumbed by RACK): 2136 * It is the simplest heuristics. As soon as we decided 2137 * that something is lost, we decide that _all_ not SACKed 2138 * packets until the most forward SACK are lost. I.e. 2139 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2140 * It is absolutely correct estimate, if network does not reorder 2141 * packets. And it loses any connection to reality when reordering 2142 * takes place. We use FACK by default until reordering 2143 * is suspected on the path to this destination. 2144 * 2145 * If the receiver does not support SACK: 2146 * 2147 * NewReno (RFC6582): in Recovery we assume that one segment 2148 * is lost (classic Reno). While we are in Recovery and 2149 * a partial ACK arrives, we assume that one more packet 2150 * is lost (NewReno). This heuristics are the same in NewReno 2151 * and SACK. 2152 * 2153 * Really tricky (and requiring careful tuning) part of algorithm 2154 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2155 * The first determines the moment _when_ we should reduce CWND and, 2156 * hence, slow down forward transmission. In fact, it determines the moment 2157 * when we decide that hole is caused by loss, rather than by a reorder. 2158 * 2159 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2160 * holes, caused by lost packets. 2161 * 2162 * And the most logically complicated part of algorithm is undo 2163 * heuristics. We detect false retransmits due to both too early 2164 * fast retransmit (reordering) and underestimated RTO, analyzing 2165 * timestamps and D-SACKs. When we detect that some segments were 2166 * retransmitted by mistake and CWND reduction was wrong, we undo 2167 * window reduction and abort recovery phase. This logic is hidden 2168 * inside several functions named tcp_try_undo_<something>. 2169 */ 2170 2171 /* This function decides, when we should leave Disordered state 2172 * and enter Recovery phase, reducing congestion window. 2173 * 2174 * Main question: may we further continue forward transmission 2175 * with the same cwnd? 2176 */ 2177 static bool tcp_time_to_recover(struct sock *sk, int flag) 2178 { 2179 struct tcp_sock *tp = tcp_sk(sk); 2180 2181 /* Trick#1: The loss is proven. */ 2182 if (tp->lost_out) 2183 return true; 2184 2185 /* Not-A-Trick#2 : Classic rule... */ 2186 if (tcp_dupack_heuristics(tp) > tp->reordering) 2187 return true; 2188 2189 return false; 2190 } 2191 2192 /* Detect loss in event "A" above by marking head of queue up as lost. 2193 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2194 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2195 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2196 * the maximum SACKed segments to pass before reaching this limit. 2197 */ 2198 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2199 { 2200 struct tcp_sock *tp = tcp_sk(sk); 2201 struct sk_buff *skb; 2202 int cnt, oldcnt, lost; 2203 unsigned int mss; 2204 /* Use SACK to deduce losses of new sequences sent during recovery */ 2205 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2206 2207 WARN_ON(packets > tp->packets_out); 2208 if (tp->lost_skb_hint) { 2209 skb = tp->lost_skb_hint; 2210 cnt = tp->lost_cnt_hint; 2211 /* Head already handled? */ 2212 if (mark_head && skb != tcp_write_queue_head(sk)) 2213 return; 2214 } else { 2215 skb = tcp_write_queue_head(sk); 2216 cnt = 0; 2217 } 2218 2219 tcp_for_write_queue_from(skb, sk) { 2220 if (skb == tcp_send_head(sk)) 2221 break; 2222 /* TODO: do this better */ 2223 /* this is not the most efficient way to do this... */ 2224 tp->lost_skb_hint = skb; 2225 tp->lost_cnt_hint = cnt; 2226 2227 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2228 break; 2229 2230 oldcnt = cnt; 2231 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2232 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2233 cnt += tcp_skb_pcount(skb); 2234 2235 if (cnt > packets) { 2236 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2237 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2238 (oldcnt >= packets)) 2239 break; 2240 2241 mss = tcp_skb_mss(skb); 2242 /* If needed, chop off the prefix to mark as lost. */ 2243 lost = (packets - oldcnt) * mss; 2244 if (lost < skb->len && 2245 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2246 break; 2247 cnt = packets; 2248 } 2249 2250 tcp_skb_mark_lost(tp, skb); 2251 2252 if (mark_head) 2253 break; 2254 } 2255 tcp_verify_left_out(tp); 2256 } 2257 2258 /* Account newly detected lost packet(s) */ 2259 2260 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2261 { 2262 struct tcp_sock *tp = tcp_sk(sk); 2263 2264 if (tcp_is_reno(tp)) { 2265 tcp_mark_head_lost(sk, 1, 1); 2266 } else if (tcp_is_fack(tp)) { 2267 int lost = tp->fackets_out - tp->reordering; 2268 if (lost <= 0) 2269 lost = 1; 2270 tcp_mark_head_lost(sk, lost, 0); 2271 } else { 2272 int sacked_upto = tp->sacked_out - tp->reordering; 2273 if (sacked_upto >= 0) 2274 tcp_mark_head_lost(sk, sacked_upto, 0); 2275 else if (fast_rexmit) 2276 tcp_mark_head_lost(sk, 1, 1); 2277 } 2278 } 2279 2280 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2281 { 2282 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2283 before(tp->rx_opt.rcv_tsecr, when); 2284 } 2285 2286 /* skb is spurious retransmitted if the returned timestamp echo 2287 * reply is prior to the skb transmission time 2288 */ 2289 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2290 const struct sk_buff *skb) 2291 { 2292 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2293 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2294 } 2295 2296 /* Nothing was retransmitted or returned timestamp is less 2297 * than timestamp of the first retransmission. 2298 */ 2299 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2300 { 2301 return !tp->retrans_stamp || 2302 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2303 } 2304 2305 /* Undo procedures. */ 2306 2307 /* We can clear retrans_stamp when there are no retransmissions in the 2308 * window. It would seem that it is trivially available for us in 2309 * tp->retrans_out, however, that kind of assumptions doesn't consider 2310 * what will happen if errors occur when sending retransmission for the 2311 * second time. ...It could the that such segment has only 2312 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2313 * the head skb is enough except for some reneging corner cases that 2314 * are not worth the effort. 2315 * 2316 * Main reason for all this complexity is the fact that connection dying 2317 * time now depends on the validity of the retrans_stamp, in particular, 2318 * that successive retransmissions of a segment must not advance 2319 * retrans_stamp under any conditions. 2320 */ 2321 static bool tcp_any_retrans_done(const struct sock *sk) 2322 { 2323 const struct tcp_sock *tp = tcp_sk(sk); 2324 struct sk_buff *skb; 2325 2326 if (tp->retrans_out) 2327 return true; 2328 2329 skb = tcp_write_queue_head(sk); 2330 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2331 return true; 2332 2333 return false; 2334 } 2335 2336 #if FASTRETRANS_DEBUG > 1 2337 static void DBGUNDO(struct sock *sk, const char *msg) 2338 { 2339 struct tcp_sock *tp = tcp_sk(sk); 2340 struct inet_sock *inet = inet_sk(sk); 2341 2342 if (sk->sk_family == AF_INET) { 2343 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2344 msg, 2345 &inet->inet_daddr, ntohs(inet->inet_dport), 2346 tp->snd_cwnd, tcp_left_out(tp), 2347 tp->snd_ssthresh, tp->prior_ssthresh, 2348 tp->packets_out); 2349 } 2350 #if IS_ENABLED(CONFIG_IPV6) 2351 else if (sk->sk_family == AF_INET6) { 2352 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2353 msg, 2354 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2355 tp->snd_cwnd, tcp_left_out(tp), 2356 tp->snd_ssthresh, tp->prior_ssthresh, 2357 tp->packets_out); 2358 } 2359 #endif 2360 } 2361 #else 2362 #define DBGUNDO(x...) do { } while (0) 2363 #endif 2364 2365 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2366 { 2367 struct tcp_sock *tp = tcp_sk(sk); 2368 2369 if (unmark_loss) { 2370 struct sk_buff *skb; 2371 2372 tcp_for_write_queue(skb, sk) { 2373 if (skb == tcp_send_head(sk)) 2374 break; 2375 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2376 } 2377 tp->lost_out = 0; 2378 tcp_clear_all_retrans_hints(tp); 2379 } 2380 2381 if (tp->prior_ssthresh) { 2382 const struct inet_connection_sock *icsk = inet_csk(sk); 2383 2384 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2385 2386 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2387 tp->snd_ssthresh = tp->prior_ssthresh; 2388 tcp_ecn_withdraw_cwr(tp); 2389 } 2390 } 2391 tp->snd_cwnd_stamp = tcp_jiffies32; 2392 tp->undo_marker = 0; 2393 } 2394 2395 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2396 { 2397 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2398 } 2399 2400 /* People celebrate: "We love our President!" */ 2401 static bool tcp_try_undo_recovery(struct sock *sk) 2402 { 2403 struct tcp_sock *tp = tcp_sk(sk); 2404 2405 if (tcp_may_undo(tp)) { 2406 int mib_idx; 2407 2408 /* Happy end! We did not retransmit anything 2409 * or our original transmission succeeded. 2410 */ 2411 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2412 tcp_undo_cwnd_reduction(sk, false); 2413 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2414 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2415 else 2416 mib_idx = LINUX_MIB_TCPFULLUNDO; 2417 2418 NET_INC_STATS(sock_net(sk), mib_idx); 2419 } 2420 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2421 /* Hold old state until something *above* high_seq 2422 * is ACKed. For Reno it is MUST to prevent false 2423 * fast retransmits (RFC2582). SACK TCP is safe. */ 2424 if (!tcp_any_retrans_done(sk)) 2425 tp->retrans_stamp = 0; 2426 return true; 2427 } 2428 tcp_set_ca_state(sk, TCP_CA_Open); 2429 return false; 2430 } 2431 2432 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2433 static bool tcp_try_undo_dsack(struct sock *sk) 2434 { 2435 struct tcp_sock *tp = tcp_sk(sk); 2436 2437 if (tp->undo_marker && !tp->undo_retrans) { 2438 DBGUNDO(sk, "D-SACK"); 2439 tcp_undo_cwnd_reduction(sk, false); 2440 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2441 return true; 2442 } 2443 return false; 2444 } 2445 2446 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2447 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2448 { 2449 struct tcp_sock *tp = tcp_sk(sk); 2450 2451 if (frto_undo || tcp_may_undo(tp)) { 2452 tcp_undo_cwnd_reduction(sk, true); 2453 2454 DBGUNDO(sk, "partial loss"); 2455 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2456 if (frto_undo) 2457 NET_INC_STATS(sock_net(sk), 2458 LINUX_MIB_TCPSPURIOUSRTOS); 2459 inet_csk(sk)->icsk_retransmits = 0; 2460 if (frto_undo || tcp_is_sack(tp)) 2461 tcp_set_ca_state(sk, TCP_CA_Open); 2462 return true; 2463 } 2464 return false; 2465 } 2466 2467 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2468 * It computes the number of packets to send (sndcnt) based on packets newly 2469 * delivered: 2470 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2471 * cwnd reductions across a full RTT. 2472 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2473 * But when the retransmits are acked without further losses, PRR 2474 * slow starts cwnd up to ssthresh to speed up the recovery. 2475 */ 2476 static void tcp_init_cwnd_reduction(struct sock *sk) 2477 { 2478 struct tcp_sock *tp = tcp_sk(sk); 2479 2480 tp->high_seq = tp->snd_nxt; 2481 tp->tlp_high_seq = 0; 2482 tp->snd_cwnd_cnt = 0; 2483 tp->prior_cwnd = tp->snd_cwnd; 2484 tp->prr_delivered = 0; 2485 tp->prr_out = 0; 2486 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2487 tcp_ecn_queue_cwr(tp); 2488 } 2489 2490 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2491 { 2492 struct tcp_sock *tp = tcp_sk(sk); 2493 int sndcnt = 0; 2494 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2495 2496 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2497 return; 2498 2499 tp->prr_delivered += newly_acked_sacked; 2500 if (delta < 0) { 2501 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2502 tp->prior_cwnd - 1; 2503 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2504 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2505 !(flag & FLAG_LOST_RETRANS)) { 2506 sndcnt = min_t(int, delta, 2507 max_t(int, tp->prr_delivered - tp->prr_out, 2508 newly_acked_sacked) + 1); 2509 } else { 2510 sndcnt = min(delta, newly_acked_sacked); 2511 } 2512 /* Force a fast retransmit upon entering fast recovery */ 2513 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2514 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2515 } 2516 2517 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2518 { 2519 struct tcp_sock *tp = tcp_sk(sk); 2520 2521 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2522 return; 2523 2524 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2525 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2526 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2527 tp->snd_cwnd = tp->snd_ssthresh; 2528 tp->snd_cwnd_stamp = tcp_jiffies32; 2529 } 2530 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2531 } 2532 2533 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2534 void tcp_enter_cwr(struct sock *sk) 2535 { 2536 struct tcp_sock *tp = tcp_sk(sk); 2537 2538 tp->prior_ssthresh = 0; 2539 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2540 tp->undo_marker = 0; 2541 tcp_init_cwnd_reduction(sk); 2542 tcp_set_ca_state(sk, TCP_CA_CWR); 2543 } 2544 } 2545 EXPORT_SYMBOL(tcp_enter_cwr); 2546 2547 static void tcp_try_keep_open(struct sock *sk) 2548 { 2549 struct tcp_sock *tp = tcp_sk(sk); 2550 int state = TCP_CA_Open; 2551 2552 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2553 state = TCP_CA_Disorder; 2554 2555 if (inet_csk(sk)->icsk_ca_state != state) { 2556 tcp_set_ca_state(sk, state); 2557 tp->high_seq = tp->snd_nxt; 2558 } 2559 } 2560 2561 static void tcp_try_to_open(struct sock *sk, int flag) 2562 { 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 2565 tcp_verify_left_out(tp); 2566 2567 if (!tcp_any_retrans_done(sk)) 2568 tp->retrans_stamp = 0; 2569 2570 if (flag & FLAG_ECE) 2571 tcp_enter_cwr(sk); 2572 2573 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2574 tcp_try_keep_open(sk); 2575 } 2576 } 2577 2578 static void tcp_mtup_probe_failed(struct sock *sk) 2579 { 2580 struct inet_connection_sock *icsk = inet_csk(sk); 2581 2582 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2583 icsk->icsk_mtup.probe_size = 0; 2584 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2585 } 2586 2587 static void tcp_mtup_probe_success(struct sock *sk) 2588 { 2589 struct tcp_sock *tp = tcp_sk(sk); 2590 struct inet_connection_sock *icsk = inet_csk(sk); 2591 2592 /* FIXME: breaks with very large cwnd */ 2593 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2594 tp->snd_cwnd = tp->snd_cwnd * 2595 tcp_mss_to_mtu(sk, tp->mss_cache) / 2596 icsk->icsk_mtup.probe_size; 2597 tp->snd_cwnd_cnt = 0; 2598 tp->snd_cwnd_stamp = tcp_jiffies32; 2599 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2600 2601 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2602 icsk->icsk_mtup.probe_size = 0; 2603 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2604 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2605 } 2606 2607 /* Do a simple retransmit without using the backoff mechanisms in 2608 * tcp_timer. This is used for path mtu discovery. 2609 * The socket is already locked here. 2610 */ 2611 void tcp_simple_retransmit(struct sock *sk) 2612 { 2613 const struct inet_connection_sock *icsk = inet_csk(sk); 2614 struct tcp_sock *tp = tcp_sk(sk); 2615 struct sk_buff *skb; 2616 unsigned int mss = tcp_current_mss(sk); 2617 u32 prior_lost = tp->lost_out; 2618 2619 tcp_for_write_queue(skb, sk) { 2620 if (skb == tcp_send_head(sk)) 2621 break; 2622 if (tcp_skb_seglen(skb) > mss && 2623 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2624 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2625 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2626 tp->retrans_out -= tcp_skb_pcount(skb); 2627 } 2628 tcp_skb_mark_lost_uncond_verify(tp, skb); 2629 } 2630 } 2631 2632 tcp_clear_retrans_hints_partial(tp); 2633 2634 if (prior_lost == tp->lost_out) 2635 return; 2636 2637 if (tcp_is_reno(tp)) 2638 tcp_limit_reno_sacked(tp); 2639 2640 tcp_verify_left_out(tp); 2641 2642 /* Don't muck with the congestion window here. 2643 * Reason is that we do not increase amount of _data_ 2644 * in network, but units changed and effective 2645 * cwnd/ssthresh really reduced now. 2646 */ 2647 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2648 tp->high_seq = tp->snd_nxt; 2649 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2650 tp->prior_ssthresh = 0; 2651 tp->undo_marker = 0; 2652 tcp_set_ca_state(sk, TCP_CA_Loss); 2653 } 2654 tcp_xmit_retransmit_queue(sk); 2655 } 2656 EXPORT_SYMBOL(tcp_simple_retransmit); 2657 2658 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2659 { 2660 struct tcp_sock *tp = tcp_sk(sk); 2661 int mib_idx; 2662 2663 if (tcp_is_reno(tp)) 2664 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2665 else 2666 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2667 2668 NET_INC_STATS(sock_net(sk), mib_idx); 2669 2670 tp->prior_ssthresh = 0; 2671 tcp_init_undo(tp); 2672 2673 if (!tcp_in_cwnd_reduction(sk)) { 2674 if (!ece_ack) 2675 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2676 tcp_init_cwnd_reduction(sk); 2677 } 2678 tcp_set_ca_state(sk, TCP_CA_Recovery); 2679 } 2680 2681 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2682 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2683 */ 2684 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2685 int *rexmit) 2686 { 2687 struct tcp_sock *tp = tcp_sk(sk); 2688 bool recovered = !before(tp->snd_una, tp->high_seq); 2689 2690 if ((flag & FLAG_SND_UNA_ADVANCED) && 2691 tcp_try_undo_loss(sk, false)) 2692 return; 2693 2694 /* The ACK (s)acks some never-retransmitted data meaning not all 2695 * the data packets before the timeout were lost. Therefore we 2696 * undo the congestion window and state. This is essentially 2697 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2698 * a retransmitted skb is permantly marked, we can apply such an 2699 * operation even if F-RTO was not used. 2700 */ 2701 if ((flag & FLAG_ORIG_SACK_ACKED) && 2702 tcp_try_undo_loss(sk, tp->undo_marker)) 2703 return; 2704 2705 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2706 if (after(tp->snd_nxt, tp->high_seq)) { 2707 if (flag & FLAG_DATA_SACKED || is_dupack) 2708 tp->frto = 0; /* Step 3.a. loss was real */ 2709 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2710 tp->high_seq = tp->snd_nxt; 2711 /* Step 2.b. Try send new data (but deferred until cwnd 2712 * is updated in tcp_ack()). Otherwise fall back to 2713 * the conventional recovery. 2714 */ 2715 if (tcp_send_head(sk) && 2716 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2717 *rexmit = REXMIT_NEW; 2718 return; 2719 } 2720 tp->frto = 0; 2721 } 2722 } 2723 2724 if (recovered) { 2725 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2726 tcp_try_undo_recovery(sk); 2727 return; 2728 } 2729 if (tcp_is_reno(tp)) { 2730 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2731 * delivered. Lower inflight to clock out (re)tranmissions. 2732 */ 2733 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2734 tcp_add_reno_sack(sk); 2735 else if (flag & FLAG_SND_UNA_ADVANCED) 2736 tcp_reset_reno_sack(tp); 2737 } 2738 *rexmit = REXMIT_LOST; 2739 } 2740 2741 /* Undo during fast recovery after partial ACK. */ 2742 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2743 { 2744 struct tcp_sock *tp = tcp_sk(sk); 2745 2746 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2747 /* Plain luck! Hole if filled with delayed 2748 * packet, rather than with a retransmit. 2749 */ 2750 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2751 2752 /* We are getting evidence that the reordering degree is higher 2753 * than we realized. If there are no retransmits out then we 2754 * can undo. Otherwise we clock out new packets but do not 2755 * mark more packets lost or retransmit more. 2756 */ 2757 if (tp->retrans_out) 2758 return true; 2759 2760 if (!tcp_any_retrans_done(sk)) 2761 tp->retrans_stamp = 0; 2762 2763 DBGUNDO(sk, "partial recovery"); 2764 tcp_undo_cwnd_reduction(sk, true); 2765 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2766 tcp_try_keep_open(sk); 2767 return true; 2768 } 2769 return false; 2770 } 2771 2772 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2773 { 2774 struct tcp_sock *tp = tcp_sk(sk); 2775 2776 /* Use RACK to detect loss */ 2777 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2778 u32 prior_retrans = tp->retrans_out; 2779 2780 tcp_rack_mark_lost(sk); 2781 if (prior_retrans > tp->retrans_out) 2782 *ack_flag |= FLAG_LOST_RETRANS; 2783 } 2784 } 2785 2786 /* Process an event, which can update packets-in-flight not trivially. 2787 * Main goal of this function is to calculate new estimate for left_out, 2788 * taking into account both packets sitting in receiver's buffer and 2789 * packets lost by network. 2790 * 2791 * Besides that it updates the congestion state when packet loss or ECN 2792 * is detected. But it does not reduce the cwnd, it is done by the 2793 * congestion control later. 2794 * 2795 * It does _not_ decide what to send, it is made in function 2796 * tcp_xmit_retransmit_queue(). 2797 */ 2798 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2799 bool is_dupack, int *ack_flag, int *rexmit) 2800 { 2801 struct inet_connection_sock *icsk = inet_csk(sk); 2802 struct tcp_sock *tp = tcp_sk(sk); 2803 int fast_rexmit = 0, flag = *ack_flag; 2804 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2805 (tcp_fackets_out(tp) > tp->reordering)); 2806 2807 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2808 tp->sacked_out = 0; 2809 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2810 tp->fackets_out = 0; 2811 2812 /* Now state machine starts. 2813 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2814 if (flag & FLAG_ECE) 2815 tp->prior_ssthresh = 0; 2816 2817 /* B. In all the states check for reneging SACKs. */ 2818 if (tcp_check_sack_reneging(sk, flag)) 2819 return; 2820 2821 /* C. Check consistency of the current state. */ 2822 tcp_verify_left_out(tp); 2823 2824 /* D. Check state exit conditions. State can be terminated 2825 * when high_seq is ACKed. */ 2826 if (icsk->icsk_ca_state == TCP_CA_Open) { 2827 WARN_ON(tp->retrans_out != 0); 2828 tp->retrans_stamp = 0; 2829 } else if (!before(tp->snd_una, tp->high_seq)) { 2830 switch (icsk->icsk_ca_state) { 2831 case TCP_CA_CWR: 2832 /* CWR is to be held something *above* high_seq 2833 * is ACKed for CWR bit to reach receiver. */ 2834 if (tp->snd_una != tp->high_seq) { 2835 tcp_end_cwnd_reduction(sk); 2836 tcp_set_ca_state(sk, TCP_CA_Open); 2837 } 2838 break; 2839 2840 case TCP_CA_Recovery: 2841 if (tcp_is_reno(tp)) 2842 tcp_reset_reno_sack(tp); 2843 if (tcp_try_undo_recovery(sk)) 2844 return; 2845 tcp_end_cwnd_reduction(sk); 2846 break; 2847 } 2848 } 2849 2850 /* E. Process state. */ 2851 switch (icsk->icsk_ca_state) { 2852 case TCP_CA_Recovery: 2853 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2854 if (tcp_is_reno(tp) && is_dupack) 2855 tcp_add_reno_sack(sk); 2856 } else { 2857 if (tcp_try_undo_partial(sk, acked)) 2858 return; 2859 /* Partial ACK arrived. Force fast retransmit. */ 2860 do_lost = tcp_is_reno(tp) || 2861 tcp_fackets_out(tp) > tp->reordering; 2862 } 2863 if (tcp_try_undo_dsack(sk)) { 2864 tcp_try_keep_open(sk); 2865 return; 2866 } 2867 tcp_rack_identify_loss(sk, ack_flag); 2868 break; 2869 case TCP_CA_Loss: 2870 tcp_process_loss(sk, flag, is_dupack, rexmit); 2871 tcp_rack_identify_loss(sk, ack_flag); 2872 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2873 (*ack_flag & FLAG_LOST_RETRANS))) 2874 return; 2875 /* Change state if cwnd is undone or retransmits are lost */ 2876 default: 2877 if (tcp_is_reno(tp)) { 2878 if (flag & FLAG_SND_UNA_ADVANCED) 2879 tcp_reset_reno_sack(tp); 2880 if (is_dupack) 2881 tcp_add_reno_sack(sk); 2882 } 2883 2884 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2885 tcp_try_undo_dsack(sk); 2886 2887 tcp_rack_identify_loss(sk, ack_flag); 2888 if (!tcp_time_to_recover(sk, flag)) { 2889 tcp_try_to_open(sk, flag); 2890 return; 2891 } 2892 2893 /* MTU probe failure: don't reduce cwnd */ 2894 if (icsk->icsk_ca_state < TCP_CA_CWR && 2895 icsk->icsk_mtup.probe_size && 2896 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2897 tcp_mtup_probe_failed(sk); 2898 /* Restores the reduction we did in tcp_mtup_probe() */ 2899 tp->snd_cwnd++; 2900 tcp_simple_retransmit(sk); 2901 return; 2902 } 2903 2904 /* Otherwise enter Recovery state */ 2905 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2906 fast_rexmit = 1; 2907 } 2908 2909 if (do_lost) 2910 tcp_update_scoreboard(sk, fast_rexmit); 2911 *rexmit = REXMIT_LOST; 2912 } 2913 2914 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2915 { 2916 struct tcp_sock *tp = tcp_sk(sk); 2917 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2918 2919 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2920 rtt_us ? : jiffies_to_usecs(1)); 2921 } 2922 2923 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2924 long seq_rtt_us, long sack_rtt_us, 2925 long ca_rtt_us, struct rate_sample *rs) 2926 { 2927 const struct tcp_sock *tp = tcp_sk(sk); 2928 2929 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2930 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2931 * Karn's algorithm forbids taking RTT if some retransmitted data 2932 * is acked (RFC6298). 2933 */ 2934 if (seq_rtt_us < 0) 2935 seq_rtt_us = sack_rtt_us; 2936 2937 /* RTTM Rule: A TSecr value received in a segment is used to 2938 * update the averaged RTT measurement only if the segment 2939 * acknowledges some new data, i.e., only if it advances the 2940 * left edge of the send window. 2941 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2942 */ 2943 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2944 flag & FLAG_ACKED) { 2945 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2946 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2947 2948 seq_rtt_us = ca_rtt_us = delta_us; 2949 } 2950 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2951 if (seq_rtt_us < 0) 2952 return false; 2953 2954 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2955 * always taken together with ACK, SACK, or TS-opts. Any negative 2956 * values will be skipped with the seq_rtt_us < 0 check above. 2957 */ 2958 tcp_update_rtt_min(sk, ca_rtt_us); 2959 tcp_rtt_estimator(sk, seq_rtt_us); 2960 tcp_set_rto(sk); 2961 2962 /* RFC6298: only reset backoff on valid RTT measurement. */ 2963 inet_csk(sk)->icsk_backoff = 0; 2964 return true; 2965 } 2966 2967 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2968 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2969 { 2970 struct rate_sample rs; 2971 long rtt_us = -1L; 2972 2973 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2974 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2975 2976 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2977 } 2978 2979 2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2981 { 2982 const struct inet_connection_sock *icsk = inet_csk(sk); 2983 2984 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2985 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2986 } 2987 2988 /* Restart timer after forward progress on connection. 2989 * RFC2988 recommends to restart timer to now+rto. 2990 */ 2991 void tcp_rearm_rto(struct sock *sk) 2992 { 2993 const struct inet_connection_sock *icsk = inet_csk(sk); 2994 struct tcp_sock *tp = tcp_sk(sk); 2995 2996 /* If the retrans timer is currently being used by Fast Open 2997 * for SYN-ACK retrans purpose, stay put. 2998 */ 2999 if (tp->fastopen_rsk) 3000 return; 3001 3002 if (!tp->packets_out) { 3003 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3004 } else { 3005 u32 rto = inet_csk(sk)->icsk_rto; 3006 /* Offset the time elapsed after installing regular RTO */ 3007 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3008 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3009 struct sk_buff *skb = tcp_write_queue_head(sk); 3010 u64 rto_time_stamp = skb->skb_mstamp + 3011 jiffies_to_usecs(rto); 3012 s64 delta_us = rto_time_stamp - tp->tcp_mstamp; 3013 /* delta_us may not be positive if the socket is locked 3014 * when the retrans timer fires and is rescheduled. 3015 */ 3016 if (delta_us > 0) 3017 rto = usecs_to_jiffies(delta_us); 3018 } 3019 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3020 TCP_RTO_MAX); 3021 } 3022 } 3023 3024 /* If we get here, the whole TSO packet has not been acked. */ 3025 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3026 { 3027 struct tcp_sock *tp = tcp_sk(sk); 3028 u32 packets_acked; 3029 3030 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3031 3032 packets_acked = tcp_skb_pcount(skb); 3033 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3034 return 0; 3035 packets_acked -= tcp_skb_pcount(skb); 3036 3037 if (packets_acked) { 3038 BUG_ON(tcp_skb_pcount(skb) == 0); 3039 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3040 } 3041 3042 return packets_acked; 3043 } 3044 3045 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3046 u32 prior_snd_una) 3047 { 3048 const struct skb_shared_info *shinfo; 3049 3050 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3051 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3052 return; 3053 3054 shinfo = skb_shinfo(skb); 3055 if (!before(shinfo->tskey, prior_snd_una) && 3056 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3057 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3058 } 3059 3060 /* Remove acknowledged frames from the retransmission queue. If our packet 3061 * is before the ack sequence we can discard it as it's confirmed to have 3062 * arrived at the other end. 3063 */ 3064 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3065 u32 prior_snd_una, int *acked, 3066 struct tcp_sacktag_state *sack) 3067 { 3068 const struct inet_connection_sock *icsk = inet_csk(sk); 3069 u64 first_ackt, last_ackt; 3070 struct tcp_sock *tp = tcp_sk(sk); 3071 u32 prior_sacked = tp->sacked_out; 3072 u32 reord = tp->packets_out; 3073 bool fully_acked = true; 3074 long sack_rtt_us = -1L; 3075 long seq_rtt_us = -1L; 3076 long ca_rtt_us = -1L; 3077 struct sk_buff *skb; 3078 u32 pkts_acked = 0; 3079 u32 last_in_flight = 0; 3080 bool rtt_update; 3081 int flag = 0; 3082 3083 first_ackt = 0; 3084 3085 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3086 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3087 u8 sacked = scb->sacked; 3088 u32 acked_pcount; 3089 3090 tcp_ack_tstamp(sk, skb, prior_snd_una); 3091 3092 /* Determine how many packets and what bytes were acked, tso and else */ 3093 if (after(scb->end_seq, tp->snd_una)) { 3094 if (tcp_skb_pcount(skb) == 1 || 3095 !after(tp->snd_una, scb->seq)) 3096 break; 3097 3098 acked_pcount = tcp_tso_acked(sk, skb); 3099 if (!acked_pcount) 3100 break; 3101 fully_acked = false; 3102 } else { 3103 /* Speedup tcp_unlink_write_queue() and next loop */ 3104 prefetchw(skb->next); 3105 acked_pcount = tcp_skb_pcount(skb); 3106 } 3107 3108 if (unlikely(sacked & TCPCB_RETRANS)) { 3109 if (sacked & TCPCB_SACKED_RETRANS) 3110 tp->retrans_out -= acked_pcount; 3111 flag |= FLAG_RETRANS_DATA_ACKED; 3112 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3113 last_ackt = skb->skb_mstamp; 3114 WARN_ON_ONCE(last_ackt == 0); 3115 if (!first_ackt) 3116 first_ackt = last_ackt; 3117 3118 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3119 reord = min(pkts_acked, reord); 3120 if (!after(scb->end_seq, tp->high_seq)) 3121 flag |= FLAG_ORIG_SACK_ACKED; 3122 } 3123 3124 if (sacked & TCPCB_SACKED_ACKED) { 3125 tp->sacked_out -= acked_pcount; 3126 } else if (tcp_is_sack(tp)) { 3127 tp->delivered += acked_pcount; 3128 if (!tcp_skb_spurious_retrans(tp, skb)) 3129 tcp_rack_advance(tp, sacked, scb->end_seq, 3130 skb->skb_mstamp); 3131 } 3132 if (sacked & TCPCB_LOST) 3133 tp->lost_out -= acked_pcount; 3134 3135 tp->packets_out -= acked_pcount; 3136 pkts_acked += acked_pcount; 3137 tcp_rate_skb_delivered(sk, skb, sack->rate); 3138 3139 /* Initial outgoing SYN's get put onto the write_queue 3140 * just like anything else we transmit. It is not 3141 * true data, and if we misinform our callers that 3142 * this ACK acks real data, we will erroneously exit 3143 * connection startup slow start one packet too 3144 * quickly. This is severely frowned upon behavior. 3145 */ 3146 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3147 flag |= FLAG_DATA_ACKED; 3148 } else { 3149 flag |= FLAG_SYN_ACKED; 3150 tp->retrans_stamp = 0; 3151 } 3152 3153 if (!fully_acked) 3154 break; 3155 3156 tcp_unlink_write_queue(skb, sk); 3157 sk_wmem_free_skb(sk, skb); 3158 if (unlikely(skb == tp->retransmit_skb_hint)) 3159 tp->retransmit_skb_hint = NULL; 3160 if (unlikely(skb == tp->lost_skb_hint)) 3161 tp->lost_skb_hint = NULL; 3162 } 3163 3164 if (!skb) 3165 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3166 3167 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3168 tp->snd_up = tp->snd_una; 3169 3170 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3171 flag |= FLAG_SACK_RENEGING; 3172 3173 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3174 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3175 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3176 } 3177 if (sack->first_sackt) { 3178 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3179 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3180 } 3181 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3182 ca_rtt_us, sack->rate); 3183 3184 if (flag & FLAG_ACKED) { 3185 tcp_rearm_rto(sk); 3186 if (unlikely(icsk->icsk_mtup.probe_size && 3187 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3188 tcp_mtup_probe_success(sk); 3189 } 3190 3191 if (tcp_is_reno(tp)) { 3192 tcp_remove_reno_sacks(sk, pkts_acked); 3193 } else { 3194 int delta; 3195 3196 /* Non-retransmitted hole got filled? That's reordering */ 3197 if (reord < prior_fackets && reord <= tp->fackets_out) 3198 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3199 3200 delta = tcp_is_fack(tp) ? pkts_acked : 3201 prior_sacked - tp->sacked_out; 3202 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3203 } 3204 3205 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3206 3207 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3208 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3209 /* Do not re-arm RTO if the sack RTT is measured from data sent 3210 * after when the head was last (re)transmitted. Otherwise the 3211 * timeout may continue to extend in loss recovery. 3212 */ 3213 tcp_rearm_rto(sk); 3214 } 3215 3216 if (icsk->icsk_ca_ops->pkts_acked) { 3217 struct ack_sample sample = { .pkts_acked = pkts_acked, 3218 .rtt_us = sack->rate->rtt_us, 3219 .in_flight = last_in_flight }; 3220 3221 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3222 } 3223 3224 #if FASTRETRANS_DEBUG > 0 3225 WARN_ON((int)tp->sacked_out < 0); 3226 WARN_ON((int)tp->lost_out < 0); 3227 WARN_ON((int)tp->retrans_out < 0); 3228 if (!tp->packets_out && tcp_is_sack(tp)) { 3229 icsk = inet_csk(sk); 3230 if (tp->lost_out) { 3231 pr_debug("Leak l=%u %d\n", 3232 tp->lost_out, icsk->icsk_ca_state); 3233 tp->lost_out = 0; 3234 } 3235 if (tp->sacked_out) { 3236 pr_debug("Leak s=%u %d\n", 3237 tp->sacked_out, icsk->icsk_ca_state); 3238 tp->sacked_out = 0; 3239 } 3240 if (tp->retrans_out) { 3241 pr_debug("Leak r=%u %d\n", 3242 tp->retrans_out, icsk->icsk_ca_state); 3243 tp->retrans_out = 0; 3244 } 3245 } 3246 #endif 3247 *acked = pkts_acked; 3248 return flag; 3249 } 3250 3251 static void tcp_ack_probe(struct sock *sk) 3252 { 3253 const struct tcp_sock *tp = tcp_sk(sk); 3254 struct inet_connection_sock *icsk = inet_csk(sk); 3255 3256 /* Was it a usable window open? */ 3257 3258 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3259 icsk->icsk_backoff = 0; 3260 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3261 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3262 * This function is not for random using! 3263 */ 3264 } else { 3265 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3266 3267 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3268 when, TCP_RTO_MAX); 3269 } 3270 } 3271 3272 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3273 { 3274 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3275 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3276 } 3277 3278 /* Decide wheather to run the increase function of congestion control. */ 3279 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3280 { 3281 /* If reordering is high then always grow cwnd whenever data is 3282 * delivered regardless of its ordering. Otherwise stay conservative 3283 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3284 * new SACK or ECE mark may first advance cwnd here and later reduce 3285 * cwnd in tcp_fastretrans_alert() based on more states. 3286 */ 3287 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3288 return flag & FLAG_FORWARD_PROGRESS; 3289 3290 return flag & FLAG_DATA_ACKED; 3291 } 3292 3293 /* The "ultimate" congestion control function that aims to replace the rigid 3294 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3295 * It's called toward the end of processing an ACK with precise rate 3296 * information. All transmission or retransmission are delayed afterwards. 3297 */ 3298 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3299 int flag, const struct rate_sample *rs) 3300 { 3301 const struct inet_connection_sock *icsk = inet_csk(sk); 3302 3303 if (icsk->icsk_ca_ops->cong_control) { 3304 icsk->icsk_ca_ops->cong_control(sk, rs); 3305 return; 3306 } 3307 3308 if (tcp_in_cwnd_reduction(sk)) { 3309 /* Reduce cwnd if state mandates */ 3310 tcp_cwnd_reduction(sk, acked_sacked, flag); 3311 } else if (tcp_may_raise_cwnd(sk, flag)) { 3312 /* Advance cwnd if state allows */ 3313 tcp_cong_avoid(sk, ack, acked_sacked); 3314 } 3315 tcp_update_pacing_rate(sk); 3316 } 3317 3318 /* Check that window update is acceptable. 3319 * The function assumes that snd_una<=ack<=snd_next. 3320 */ 3321 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3322 const u32 ack, const u32 ack_seq, 3323 const u32 nwin) 3324 { 3325 return after(ack, tp->snd_una) || 3326 after(ack_seq, tp->snd_wl1) || 3327 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3328 } 3329 3330 /* If we update tp->snd_una, also update tp->bytes_acked */ 3331 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3332 { 3333 u32 delta = ack - tp->snd_una; 3334 3335 sock_owned_by_me((struct sock *)tp); 3336 tp->bytes_acked += delta; 3337 tp->snd_una = ack; 3338 } 3339 3340 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3341 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3342 { 3343 u32 delta = seq - tp->rcv_nxt; 3344 3345 sock_owned_by_me((struct sock *)tp); 3346 tp->bytes_received += delta; 3347 tp->rcv_nxt = seq; 3348 } 3349 3350 /* Update our send window. 3351 * 3352 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3353 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3354 */ 3355 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3356 u32 ack_seq) 3357 { 3358 struct tcp_sock *tp = tcp_sk(sk); 3359 int flag = 0; 3360 u32 nwin = ntohs(tcp_hdr(skb)->window); 3361 3362 if (likely(!tcp_hdr(skb)->syn)) 3363 nwin <<= tp->rx_opt.snd_wscale; 3364 3365 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3366 flag |= FLAG_WIN_UPDATE; 3367 tcp_update_wl(tp, ack_seq); 3368 3369 if (tp->snd_wnd != nwin) { 3370 tp->snd_wnd = nwin; 3371 3372 /* Note, it is the only place, where 3373 * fast path is recovered for sending TCP. 3374 */ 3375 tp->pred_flags = 0; 3376 tcp_fast_path_check(sk); 3377 3378 if (tcp_send_head(sk)) 3379 tcp_slow_start_after_idle_check(sk); 3380 3381 if (nwin > tp->max_window) { 3382 tp->max_window = nwin; 3383 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3384 } 3385 } 3386 } 3387 3388 tcp_snd_una_update(tp, ack); 3389 3390 return flag; 3391 } 3392 3393 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3394 u32 *last_oow_ack_time) 3395 { 3396 if (*last_oow_ack_time) { 3397 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3398 3399 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3400 NET_INC_STATS(net, mib_idx); 3401 return true; /* rate-limited: don't send yet! */ 3402 } 3403 } 3404 3405 *last_oow_ack_time = tcp_jiffies32; 3406 3407 return false; /* not rate-limited: go ahead, send dupack now! */ 3408 } 3409 3410 /* Return true if we're currently rate-limiting out-of-window ACKs and 3411 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3412 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3413 * attacks that send repeated SYNs or ACKs for the same connection. To 3414 * do this, we do not send a duplicate SYNACK or ACK if the remote 3415 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3416 */ 3417 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3418 int mib_idx, u32 *last_oow_ack_time) 3419 { 3420 /* Data packets without SYNs are not likely part of an ACK loop. */ 3421 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3422 !tcp_hdr(skb)->syn) 3423 return false; 3424 3425 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3426 } 3427 3428 /* RFC 5961 7 [ACK Throttling] */ 3429 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3430 { 3431 /* unprotected vars, we dont care of overwrites */ 3432 static u32 challenge_timestamp; 3433 static unsigned int challenge_count; 3434 struct tcp_sock *tp = tcp_sk(sk); 3435 u32 count, now; 3436 3437 /* First check our per-socket dupack rate limit. */ 3438 if (__tcp_oow_rate_limited(sock_net(sk), 3439 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3440 &tp->last_oow_ack_time)) 3441 return; 3442 3443 /* Then check host-wide RFC 5961 rate limit. */ 3444 now = jiffies / HZ; 3445 if (now != challenge_timestamp) { 3446 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3447 3448 challenge_timestamp = now; 3449 WRITE_ONCE(challenge_count, half + 3450 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3451 } 3452 count = READ_ONCE(challenge_count); 3453 if (count > 0) { 3454 WRITE_ONCE(challenge_count, count - 1); 3455 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3456 tcp_send_ack(sk); 3457 } 3458 } 3459 3460 static void tcp_store_ts_recent(struct tcp_sock *tp) 3461 { 3462 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3463 tp->rx_opt.ts_recent_stamp = get_seconds(); 3464 } 3465 3466 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3467 { 3468 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3469 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3470 * extra check below makes sure this can only happen 3471 * for pure ACK frames. -DaveM 3472 * 3473 * Not only, also it occurs for expired timestamps. 3474 */ 3475 3476 if (tcp_paws_check(&tp->rx_opt, 0)) 3477 tcp_store_ts_recent(tp); 3478 } 3479 } 3480 3481 /* This routine deals with acks during a TLP episode. 3482 * We mark the end of a TLP episode on receiving TLP dupack or when 3483 * ack is after tlp_high_seq. 3484 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3485 */ 3486 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3487 { 3488 struct tcp_sock *tp = tcp_sk(sk); 3489 3490 if (before(ack, tp->tlp_high_seq)) 3491 return; 3492 3493 if (flag & FLAG_DSACKING_ACK) { 3494 /* This DSACK means original and TLP probe arrived; no loss */ 3495 tp->tlp_high_seq = 0; 3496 } else if (after(ack, tp->tlp_high_seq)) { 3497 /* ACK advances: there was a loss, so reduce cwnd. Reset 3498 * tlp_high_seq in tcp_init_cwnd_reduction() 3499 */ 3500 tcp_init_cwnd_reduction(sk); 3501 tcp_set_ca_state(sk, TCP_CA_CWR); 3502 tcp_end_cwnd_reduction(sk); 3503 tcp_try_keep_open(sk); 3504 NET_INC_STATS(sock_net(sk), 3505 LINUX_MIB_TCPLOSSPROBERECOVERY); 3506 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3507 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3508 /* Pure dupack: original and TLP probe arrived; no loss */ 3509 tp->tlp_high_seq = 0; 3510 } 3511 } 3512 3513 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3514 { 3515 const struct inet_connection_sock *icsk = inet_csk(sk); 3516 3517 if (icsk->icsk_ca_ops->in_ack_event) 3518 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3519 } 3520 3521 /* Congestion control has updated the cwnd already. So if we're in 3522 * loss recovery then now we do any new sends (for FRTO) or 3523 * retransmits (for CA_Loss or CA_recovery) that make sense. 3524 */ 3525 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3526 { 3527 struct tcp_sock *tp = tcp_sk(sk); 3528 3529 if (rexmit == REXMIT_NONE) 3530 return; 3531 3532 if (unlikely(rexmit == 2)) { 3533 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3534 TCP_NAGLE_OFF); 3535 if (after(tp->snd_nxt, tp->high_seq)) 3536 return; 3537 tp->frto = 0; 3538 } 3539 tcp_xmit_retransmit_queue(sk); 3540 } 3541 3542 /* This routine deals with incoming acks, but not outgoing ones. */ 3543 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3544 { 3545 struct inet_connection_sock *icsk = inet_csk(sk); 3546 struct tcp_sock *tp = tcp_sk(sk); 3547 struct tcp_sacktag_state sack_state; 3548 struct rate_sample rs = { .prior_delivered = 0 }; 3549 u32 prior_snd_una = tp->snd_una; 3550 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3551 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3552 bool is_dupack = false; 3553 u32 prior_fackets; 3554 int prior_packets = tp->packets_out; 3555 u32 delivered = tp->delivered; 3556 u32 lost = tp->lost; 3557 int acked = 0; /* Number of packets newly acked */ 3558 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3559 3560 sack_state.first_sackt = 0; 3561 sack_state.rate = &rs; 3562 3563 /* We very likely will need to access write queue head. */ 3564 prefetchw(sk->sk_write_queue.next); 3565 3566 /* If the ack is older than previous acks 3567 * then we can probably ignore it. 3568 */ 3569 if (before(ack, prior_snd_una)) { 3570 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3571 if (before(ack, prior_snd_una - tp->max_window)) { 3572 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3573 tcp_send_challenge_ack(sk, skb); 3574 return -1; 3575 } 3576 goto old_ack; 3577 } 3578 3579 /* If the ack includes data we haven't sent yet, discard 3580 * this segment (RFC793 Section 3.9). 3581 */ 3582 if (after(ack, tp->snd_nxt)) 3583 goto invalid_ack; 3584 3585 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3586 tcp_rearm_rto(sk); 3587 3588 if (after(ack, prior_snd_una)) { 3589 flag |= FLAG_SND_UNA_ADVANCED; 3590 icsk->icsk_retransmits = 0; 3591 } 3592 3593 prior_fackets = tp->fackets_out; 3594 rs.prior_in_flight = tcp_packets_in_flight(tp); 3595 3596 /* ts_recent update must be made after we are sure that the packet 3597 * is in window. 3598 */ 3599 if (flag & FLAG_UPDATE_TS_RECENT) 3600 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3601 3602 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3603 /* Window is constant, pure forward advance. 3604 * No more checks are required. 3605 * Note, we use the fact that SND.UNA>=SND.WL2. 3606 */ 3607 tcp_update_wl(tp, ack_seq); 3608 tcp_snd_una_update(tp, ack); 3609 flag |= FLAG_WIN_UPDATE; 3610 3611 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3612 3613 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3614 } else { 3615 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3616 3617 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3618 flag |= FLAG_DATA; 3619 else 3620 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3621 3622 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3623 3624 if (TCP_SKB_CB(skb)->sacked) 3625 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3626 &sack_state); 3627 3628 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3629 flag |= FLAG_ECE; 3630 ack_ev_flags |= CA_ACK_ECE; 3631 } 3632 3633 if (flag & FLAG_WIN_UPDATE) 3634 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3635 3636 tcp_in_ack_event(sk, ack_ev_flags); 3637 } 3638 3639 /* We passed data and got it acked, remove any soft error 3640 * log. Something worked... 3641 */ 3642 sk->sk_err_soft = 0; 3643 icsk->icsk_probes_out = 0; 3644 tp->rcv_tstamp = tcp_jiffies32; 3645 if (!prior_packets) 3646 goto no_queue; 3647 3648 /* See if we can take anything off of the retransmit queue. */ 3649 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3650 &sack_state); 3651 3652 if (tcp_ack_is_dubious(sk, flag)) { 3653 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3654 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3655 } 3656 if (tp->tlp_high_seq) 3657 tcp_process_tlp_ack(sk, ack, flag); 3658 3659 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3660 sk_dst_confirm(sk); 3661 3662 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3663 tcp_schedule_loss_probe(sk); 3664 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3665 lost = tp->lost - lost; /* freshly marked lost */ 3666 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3667 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3668 tcp_xmit_recovery(sk, rexmit); 3669 return 1; 3670 3671 no_queue: 3672 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3673 if (flag & FLAG_DSACKING_ACK) 3674 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3675 /* If this ack opens up a zero window, clear backoff. It was 3676 * being used to time the probes, and is probably far higher than 3677 * it needs to be for normal retransmission. 3678 */ 3679 if (tcp_send_head(sk)) 3680 tcp_ack_probe(sk); 3681 3682 if (tp->tlp_high_seq) 3683 tcp_process_tlp_ack(sk, ack, flag); 3684 return 1; 3685 3686 invalid_ack: 3687 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3688 return -1; 3689 3690 old_ack: 3691 /* If data was SACKed, tag it and see if we should send more data. 3692 * If data was DSACKed, see if we can undo a cwnd reduction. 3693 */ 3694 if (TCP_SKB_CB(skb)->sacked) { 3695 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3696 &sack_state); 3697 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3698 tcp_xmit_recovery(sk, rexmit); 3699 } 3700 3701 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3702 return 0; 3703 } 3704 3705 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3706 bool syn, struct tcp_fastopen_cookie *foc, 3707 bool exp_opt) 3708 { 3709 /* Valid only in SYN or SYN-ACK with an even length. */ 3710 if (!foc || !syn || len < 0 || (len & 1)) 3711 return; 3712 3713 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3714 len <= TCP_FASTOPEN_COOKIE_MAX) 3715 memcpy(foc->val, cookie, len); 3716 else if (len != 0) 3717 len = -1; 3718 foc->len = len; 3719 foc->exp = exp_opt; 3720 } 3721 3722 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3723 * But, this can also be called on packets in the established flow when 3724 * the fast version below fails. 3725 */ 3726 void tcp_parse_options(const struct net *net, 3727 const struct sk_buff *skb, 3728 struct tcp_options_received *opt_rx, int estab, 3729 struct tcp_fastopen_cookie *foc) 3730 { 3731 const unsigned char *ptr; 3732 const struct tcphdr *th = tcp_hdr(skb); 3733 int length = (th->doff * 4) - sizeof(struct tcphdr); 3734 3735 ptr = (const unsigned char *)(th + 1); 3736 opt_rx->saw_tstamp = 0; 3737 3738 while (length > 0) { 3739 int opcode = *ptr++; 3740 int opsize; 3741 3742 switch (opcode) { 3743 case TCPOPT_EOL: 3744 return; 3745 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3746 length--; 3747 continue; 3748 default: 3749 opsize = *ptr++; 3750 if (opsize < 2) /* "silly options" */ 3751 return; 3752 if (opsize > length) 3753 return; /* don't parse partial options */ 3754 switch (opcode) { 3755 case TCPOPT_MSS: 3756 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3757 u16 in_mss = get_unaligned_be16(ptr); 3758 if (in_mss) { 3759 if (opt_rx->user_mss && 3760 opt_rx->user_mss < in_mss) 3761 in_mss = opt_rx->user_mss; 3762 opt_rx->mss_clamp = in_mss; 3763 } 3764 } 3765 break; 3766 case TCPOPT_WINDOW: 3767 if (opsize == TCPOLEN_WINDOW && th->syn && 3768 !estab && sysctl_tcp_window_scaling) { 3769 __u8 snd_wscale = *(__u8 *)ptr; 3770 opt_rx->wscale_ok = 1; 3771 if (snd_wscale > TCP_MAX_WSCALE) { 3772 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3773 __func__, 3774 snd_wscale, 3775 TCP_MAX_WSCALE); 3776 snd_wscale = TCP_MAX_WSCALE; 3777 } 3778 opt_rx->snd_wscale = snd_wscale; 3779 } 3780 break; 3781 case TCPOPT_TIMESTAMP: 3782 if ((opsize == TCPOLEN_TIMESTAMP) && 3783 ((estab && opt_rx->tstamp_ok) || 3784 (!estab && sysctl_tcp_timestamps))) { 3785 opt_rx->saw_tstamp = 1; 3786 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3787 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3788 } 3789 break; 3790 case TCPOPT_SACK_PERM: 3791 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3792 !estab && net->ipv4.sysctl_tcp_sack) { 3793 opt_rx->sack_ok = TCP_SACK_SEEN; 3794 tcp_sack_reset(opt_rx); 3795 } 3796 break; 3797 3798 case TCPOPT_SACK: 3799 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3800 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3801 opt_rx->sack_ok) { 3802 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3803 } 3804 break; 3805 #ifdef CONFIG_TCP_MD5SIG 3806 case TCPOPT_MD5SIG: 3807 /* 3808 * The MD5 Hash has already been 3809 * checked (see tcp_v{4,6}_do_rcv()). 3810 */ 3811 break; 3812 #endif 3813 case TCPOPT_FASTOPEN: 3814 tcp_parse_fastopen_option( 3815 opsize - TCPOLEN_FASTOPEN_BASE, 3816 ptr, th->syn, foc, false); 3817 break; 3818 3819 case TCPOPT_EXP: 3820 /* Fast Open option shares code 254 using a 3821 * 16 bits magic number. 3822 */ 3823 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3824 get_unaligned_be16(ptr) == 3825 TCPOPT_FASTOPEN_MAGIC) 3826 tcp_parse_fastopen_option(opsize - 3827 TCPOLEN_EXP_FASTOPEN_BASE, 3828 ptr + 2, th->syn, foc, true); 3829 break; 3830 3831 } 3832 ptr += opsize-2; 3833 length -= opsize; 3834 } 3835 } 3836 } 3837 EXPORT_SYMBOL(tcp_parse_options); 3838 3839 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3840 { 3841 const __be32 *ptr = (const __be32 *)(th + 1); 3842 3843 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3844 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3845 tp->rx_opt.saw_tstamp = 1; 3846 ++ptr; 3847 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3848 ++ptr; 3849 if (*ptr) 3850 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3851 else 3852 tp->rx_opt.rcv_tsecr = 0; 3853 return true; 3854 } 3855 return false; 3856 } 3857 3858 /* Fast parse options. This hopes to only see timestamps. 3859 * If it is wrong it falls back on tcp_parse_options(). 3860 */ 3861 static bool tcp_fast_parse_options(const struct net *net, 3862 const struct sk_buff *skb, 3863 const struct tcphdr *th, struct tcp_sock *tp) 3864 { 3865 /* In the spirit of fast parsing, compare doff directly to constant 3866 * values. Because equality is used, short doff can be ignored here. 3867 */ 3868 if (th->doff == (sizeof(*th) / 4)) { 3869 tp->rx_opt.saw_tstamp = 0; 3870 return false; 3871 } else if (tp->rx_opt.tstamp_ok && 3872 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3873 if (tcp_parse_aligned_timestamp(tp, th)) 3874 return true; 3875 } 3876 3877 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3878 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3879 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3880 3881 return true; 3882 } 3883 3884 #ifdef CONFIG_TCP_MD5SIG 3885 /* 3886 * Parse MD5 Signature option 3887 */ 3888 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3889 { 3890 int length = (th->doff << 2) - sizeof(*th); 3891 const u8 *ptr = (const u8 *)(th + 1); 3892 3893 /* If the TCP option is too short, we can short cut */ 3894 if (length < TCPOLEN_MD5SIG) 3895 return NULL; 3896 3897 while (length > 0) { 3898 int opcode = *ptr++; 3899 int opsize; 3900 3901 switch (opcode) { 3902 case TCPOPT_EOL: 3903 return NULL; 3904 case TCPOPT_NOP: 3905 length--; 3906 continue; 3907 default: 3908 opsize = *ptr++; 3909 if (opsize < 2 || opsize > length) 3910 return NULL; 3911 if (opcode == TCPOPT_MD5SIG) 3912 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3913 } 3914 ptr += opsize - 2; 3915 length -= opsize; 3916 } 3917 return NULL; 3918 } 3919 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3920 #endif 3921 3922 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3923 * 3924 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3925 * it can pass through stack. So, the following predicate verifies that 3926 * this segment is not used for anything but congestion avoidance or 3927 * fast retransmit. Moreover, we even are able to eliminate most of such 3928 * second order effects, if we apply some small "replay" window (~RTO) 3929 * to timestamp space. 3930 * 3931 * All these measures still do not guarantee that we reject wrapped ACKs 3932 * on networks with high bandwidth, when sequence space is recycled fastly, 3933 * but it guarantees that such events will be very rare and do not affect 3934 * connection seriously. This doesn't look nice, but alas, PAWS is really 3935 * buggy extension. 3936 * 3937 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3938 * states that events when retransmit arrives after original data are rare. 3939 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3940 * the biggest problem on large power networks even with minor reordering. 3941 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3942 * up to bandwidth of 18Gigabit/sec. 8) ] 3943 */ 3944 3945 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3946 { 3947 const struct tcp_sock *tp = tcp_sk(sk); 3948 const struct tcphdr *th = tcp_hdr(skb); 3949 u32 seq = TCP_SKB_CB(skb)->seq; 3950 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3951 3952 return (/* 1. Pure ACK with correct sequence number. */ 3953 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3954 3955 /* 2. ... and duplicate ACK. */ 3956 ack == tp->snd_una && 3957 3958 /* 3. ... and does not update window. */ 3959 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3960 3961 /* 4. ... and sits in replay window. */ 3962 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3963 } 3964 3965 static inline bool tcp_paws_discard(const struct sock *sk, 3966 const struct sk_buff *skb) 3967 { 3968 const struct tcp_sock *tp = tcp_sk(sk); 3969 3970 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3971 !tcp_disordered_ack(sk, skb); 3972 } 3973 3974 /* Check segment sequence number for validity. 3975 * 3976 * Segment controls are considered valid, if the segment 3977 * fits to the window after truncation to the window. Acceptability 3978 * of data (and SYN, FIN, of course) is checked separately. 3979 * See tcp_data_queue(), for example. 3980 * 3981 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3982 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3983 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3984 * (borrowed from freebsd) 3985 */ 3986 3987 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3988 { 3989 return !before(end_seq, tp->rcv_wup) && 3990 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3991 } 3992 3993 /* When we get a reset we do this. */ 3994 void tcp_reset(struct sock *sk) 3995 { 3996 /* We want the right error as BSD sees it (and indeed as we do). */ 3997 switch (sk->sk_state) { 3998 case TCP_SYN_SENT: 3999 sk->sk_err = ECONNREFUSED; 4000 break; 4001 case TCP_CLOSE_WAIT: 4002 sk->sk_err = EPIPE; 4003 break; 4004 case TCP_CLOSE: 4005 return; 4006 default: 4007 sk->sk_err = ECONNRESET; 4008 } 4009 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4010 smp_wmb(); 4011 4012 tcp_done(sk); 4013 4014 if (!sock_flag(sk, SOCK_DEAD)) 4015 sk->sk_error_report(sk); 4016 } 4017 4018 /* 4019 * Process the FIN bit. This now behaves as it is supposed to work 4020 * and the FIN takes effect when it is validly part of sequence 4021 * space. Not before when we get holes. 4022 * 4023 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4024 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4025 * TIME-WAIT) 4026 * 4027 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4028 * close and we go into CLOSING (and later onto TIME-WAIT) 4029 * 4030 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4031 */ 4032 void tcp_fin(struct sock *sk) 4033 { 4034 struct tcp_sock *tp = tcp_sk(sk); 4035 4036 inet_csk_schedule_ack(sk); 4037 4038 sk->sk_shutdown |= RCV_SHUTDOWN; 4039 sock_set_flag(sk, SOCK_DONE); 4040 4041 switch (sk->sk_state) { 4042 case TCP_SYN_RECV: 4043 case TCP_ESTABLISHED: 4044 /* Move to CLOSE_WAIT */ 4045 tcp_set_state(sk, TCP_CLOSE_WAIT); 4046 inet_csk(sk)->icsk_ack.pingpong = 1; 4047 break; 4048 4049 case TCP_CLOSE_WAIT: 4050 case TCP_CLOSING: 4051 /* Received a retransmission of the FIN, do 4052 * nothing. 4053 */ 4054 break; 4055 case TCP_LAST_ACK: 4056 /* RFC793: Remain in the LAST-ACK state. */ 4057 break; 4058 4059 case TCP_FIN_WAIT1: 4060 /* This case occurs when a simultaneous close 4061 * happens, we must ack the received FIN and 4062 * enter the CLOSING state. 4063 */ 4064 tcp_send_ack(sk); 4065 tcp_set_state(sk, TCP_CLOSING); 4066 break; 4067 case TCP_FIN_WAIT2: 4068 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4069 tcp_send_ack(sk); 4070 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4071 break; 4072 default: 4073 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4074 * cases we should never reach this piece of code. 4075 */ 4076 pr_err("%s: Impossible, sk->sk_state=%d\n", 4077 __func__, sk->sk_state); 4078 break; 4079 } 4080 4081 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4082 * Probably, we should reset in this case. For now drop them. 4083 */ 4084 skb_rbtree_purge(&tp->out_of_order_queue); 4085 if (tcp_is_sack(tp)) 4086 tcp_sack_reset(&tp->rx_opt); 4087 sk_mem_reclaim(sk); 4088 4089 if (!sock_flag(sk, SOCK_DEAD)) { 4090 sk->sk_state_change(sk); 4091 4092 /* Do not send POLL_HUP for half duplex close. */ 4093 if (sk->sk_shutdown == SHUTDOWN_MASK || 4094 sk->sk_state == TCP_CLOSE) 4095 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4096 else 4097 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4098 } 4099 } 4100 4101 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4102 u32 end_seq) 4103 { 4104 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4105 if (before(seq, sp->start_seq)) 4106 sp->start_seq = seq; 4107 if (after(end_seq, sp->end_seq)) 4108 sp->end_seq = end_seq; 4109 return true; 4110 } 4111 return false; 4112 } 4113 4114 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4115 { 4116 struct tcp_sock *tp = tcp_sk(sk); 4117 4118 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4119 int mib_idx; 4120 4121 if (before(seq, tp->rcv_nxt)) 4122 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4123 else 4124 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4125 4126 NET_INC_STATS(sock_net(sk), mib_idx); 4127 4128 tp->rx_opt.dsack = 1; 4129 tp->duplicate_sack[0].start_seq = seq; 4130 tp->duplicate_sack[0].end_seq = end_seq; 4131 } 4132 } 4133 4134 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4135 { 4136 struct tcp_sock *tp = tcp_sk(sk); 4137 4138 if (!tp->rx_opt.dsack) 4139 tcp_dsack_set(sk, seq, end_seq); 4140 else 4141 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4142 } 4143 4144 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4145 { 4146 struct tcp_sock *tp = tcp_sk(sk); 4147 4148 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4149 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4150 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4151 tcp_enter_quickack_mode(sk); 4152 4153 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4154 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4155 4156 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4157 end_seq = tp->rcv_nxt; 4158 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4159 } 4160 } 4161 4162 tcp_send_ack(sk); 4163 } 4164 4165 /* These routines update the SACK block as out-of-order packets arrive or 4166 * in-order packets close up the sequence space. 4167 */ 4168 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4169 { 4170 int this_sack; 4171 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4172 struct tcp_sack_block *swalk = sp + 1; 4173 4174 /* See if the recent change to the first SACK eats into 4175 * or hits the sequence space of other SACK blocks, if so coalesce. 4176 */ 4177 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4178 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4179 int i; 4180 4181 /* Zap SWALK, by moving every further SACK up by one slot. 4182 * Decrease num_sacks. 4183 */ 4184 tp->rx_opt.num_sacks--; 4185 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4186 sp[i] = sp[i + 1]; 4187 continue; 4188 } 4189 this_sack++, swalk++; 4190 } 4191 } 4192 4193 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4194 { 4195 struct tcp_sock *tp = tcp_sk(sk); 4196 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4197 int cur_sacks = tp->rx_opt.num_sacks; 4198 int this_sack; 4199 4200 if (!cur_sacks) 4201 goto new_sack; 4202 4203 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4204 if (tcp_sack_extend(sp, seq, end_seq)) { 4205 /* Rotate this_sack to the first one. */ 4206 for (; this_sack > 0; this_sack--, sp--) 4207 swap(*sp, *(sp - 1)); 4208 if (cur_sacks > 1) 4209 tcp_sack_maybe_coalesce(tp); 4210 return; 4211 } 4212 } 4213 4214 /* Could not find an adjacent existing SACK, build a new one, 4215 * put it at the front, and shift everyone else down. We 4216 * always know there is at least one SACK present already here. 4217 * 4218 * If the sack array is full, forget about the last one. 4219 */ 4220 if (this_sack >= TCP_NUM_SACKS) { 4221 this_sack--; 4222 tp->rx_opt.num_sacks--; 4223 sp--; 4224 } 4225 for (; this_sack > 0; this_sack--, sp--) 4226 *sp = *(sp - 1); 4227 4228 new_sack: 4229 /* Build the new head SACK, and we're done. */ 4230 sp->start_seq = seq; 4231 sp->end_seq = end_seq; 4232 tp->rx_opt.num_sacks++; 4233 } 4234 4235 /* RCV.NXT advances, some SACKs should be eaten. */ 4236 4237 static void tcp_sack_remove(struct tcp_sock *tp) 4238 { 4239 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4240 int num_sacks = tp->rx_opt.num_sacks; 4241 int this_sack; 4242 4243 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4244 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4245 tp->rx_opt.num_sacks = 0; 4246 return; 4247 } 4248 4249 for (this_sack = 0; this_sack < num_sacks;) { 4250 /* Check if the start of the sack is covered by RCV.NXT. */ 4251 if (!before(tp->rcv_nxt, sp->start_seq)) { 4252 int i; 4253 4254 /* RCV.NXT must cover all the block! */ 4255 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4256 4257 /* Zap this SACK, by moving forward any other SACKS. */ 4258 for (i = this_sack+1; i < num_sacks; i++) 4259 tp->selective_acks[i-1] = tp->selective_acks[i]; 4260 num_sacks--; 4261 continue; 4262 } 4263 this_sack++; 4264 sp++; 4265 } 4266 tp->rx_opt.num_sacks = num_sacks; 4267 } 4268 4269 /** 4270 * tcp_try_coalesce - try to merge skb to prior one 4271 * @sk: socket 4272 * @to: prior buffer 4273 * @from: buffer to add in queue 4274 * @fragstolen: pointer to boolean 4275 * 4276 * Before queueing skb @from after @to, try to merge them 4277 * to reduce overall memory use and queue lengths, if cost is small. 4278 * Packets in ofo or receive queues can stay a long time. 4279 * Better try to coalesce them right now to avoid future collapses. 4280 * Returns true if caller should free @from instead of queueing it 4281 */ 4282 static bool tcp_try_coalesce(struct sock *sk, 4283 struct sk_buff *to, 4284 struct sk_buff *from, 4285 bool *fragstolen) 4286 { 4287 int delta; 4288 4289 *fragstolen = false; 4290 4291 /* Its possible this segment overlaps with prior segment in queue */ 4292 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4293 return false; 4294 4295 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4296 return false; 4297 4298 atomic_add(delta, &sk->sk_rmem_alloc); 4299 sk_mem_charge(sk, delta); 4300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4301 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4302 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4303 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4304 return true; 4305 } 4306 4307 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4308 { 4309 sk_drops_add(sk, skb); 4310 __kfree_skb(skb); 4311 } 4312 4313 /* This one checks to see if we can put data from the 4314 * out_of_order queue into the receive_queue. 4315 */ 4316 static void tcp_ofo_queue(struct sock *sk) 4317 { 4318 struct tcp_sock *tp = tcp_sk(sk); 4319 __u32 dsack_high = tp->rcv_nxt; 4320 bool fin, fragstolen, eaten; 4321 struct sk_buff *skb, *tail; 4322 struct rb_node *p; 4323 4324 p = rb_first(&tp->out_of_order_queue); 4325 while (p) { 4326 skb = rb_entry(p, struct sk_buff, rbnode); 4327 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4328 break; 4329 4330 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4331 __u32 dsack = dsack_high; 4332 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4333 dsack_high = TCP_SKB_CB(skb)->end_seq; 4334 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4335 } 4336 p = rb_next(p); 4337 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4338 4339 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4340 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4341 tcp_drop(sk, skb); 4342 continue; 4343 } 4344 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4345 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4346 TCP_SKB_CB(skb)->end_seq); 4347 4348 tail = skb_peek_tail(&sk->sk_receive_queue); 4349 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4350 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4351 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4352 if (!eaten) 4353 __skb_queue_tail(&sk->sk_receive_queue, skb); 4354 else 4355 kfree_skb_partial(skb, fragstolen); 4356 4357 if (unlikely(fin)) { 4358 tcp_fin(sk); 4359 /* tcp_fin() purges tp->out_of_order_queue, 4360 * so we must end this loop right now. 4361 */ 4362 break; 4363 } 4364 } 4365 } 4366 4367 static bool tcp_prune_ofo_queue(struct sock *sk); 4368 static int tcp_prune_queue(struct sock *sk); 4369 4370 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4371 unsigned int size) 4372 { 4373 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4374 !sk_rmem_schedule(sk, skb, size)) { 4375 4376 if (tcp_prune_queue(sk) < 0) 4377 return -1; 4378 4379 while (!sk_rmem_schedule(sk, skb, size)) { 4380 if (!tcp_prune_ofo_queue(sk)) 4381 return -1; 4382 } 4383 } 4384 return 0; 4385 } 4386 4387 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4388 { 4389 struct tcp_sock *tp = tcp_sk(sk); 4390 struct rb_node **p, *q, *parent; 4391 struct sk_buff *skb1; 4392 u32 seq, end_seq; 4393 bool fragstolen; 4394 4395 tcp_ecn_check_ce(tp, skb); 4396 4397 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4399 tcp_drop(sk, skb); 4400 return; 4401 } 4402 4403 /* Disable header prediction. */ 4404 tp->pred_flags = 0; 4405 inet_csk_schedule_ack(sk); 4406 4407 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4408 seq = TCP_SKB_CB(skb)->seq; 4409 end_seq = TCP_SKB_CB(skb)->end_seq; 4410 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4411 tp->rcv_nxt, seq, end_seq); 4412 4413 p = &tp->out_of_order_queue.rb_node; 4414 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4415 /* Initial out of order segment, build 1 SACK. */ 4416 if (tcp_is_sack(tp)) { 4417 tp->rx_opt.num_sacks = 1; 4418 tp->selective_acks[0].start_seq = seq; 4419 tp->selective_acks[0].end_seq = end_seq; 4420 } 4421 rb_link_node(&skb->rbnode, NULL, p); 4422 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4423 tp->ooo_last_skb = skb; 4424 goto end; 4425 } 4426 4427 /* In the typical case, we are adding an skb to the end of the list. 4428 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4429 */ 4430 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4431 coalesce_done: 4432 tcp_grow_window(sk, skb); 4433 kfree_skb_partial(skb, fragstolen); 4434 skb = NULL; 4435 goto add_sack; 4436 } 4437 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4438 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4439 parent = &tp->ooo_last_skb->rbnode; 4440 p = &parent->rb_right; 4441 goto insert; 4442 } 4443 4444 /* Find place to insert this segment. Handle overlaps on the way. */ 4445 parent = NULL; 4446 while (*p) { 4447 parent = *p; 4448 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4449 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4450 p = &parent->rb_left; 4451 continue; 4452 } 4453 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4454 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4455 /* All the bits are present. Drop. */ 4456 NET_INC_STATS(sock_net(sk), 4457 LINUX_MIB_TCPOFOMERGE); 4458 __kfree_skb(skb); 4459 skb = NULL; 4460 tcp_dsack_set(sk, seq, end_seq); 4461 goto add_sack; 4462 } 4463 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4464 /* Partial overlap. */ 4465 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4466 } else { 4467 /* skb's seq == skb1's seq and skb covers skb1. 4468 * Replace skb1 with skb. 4469 */ 4470 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4471 &tp->out_of_order_queue); 4472 tcp_dsack_extend(sk, 4473 TCP_SKB_CB(skb1)->seq, 4474 TCP_SKB_CB(skb1)->end_seq); 4475 NET_INC_STATS(sock_net(sk), 4476 LINUX_MIB_TCPOFOMERGE); 4477 __kfree_skb(skb1); 4478 goto merge_right; 4479 } 4480 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4481 goto coalesce_done; 4482 } 4483 p = &parent->rb_right; 4484 } 4485 insert: 4486 /* Insert segment into RB tree. */ 4487 rb_link_node(&skb->rbnode, parent, p); 4488 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4489 4490 merge_right: 4491 /* Remove other segments covered by skb. */ 4492 while ((q = rb_next(&skb->rbnode)) != NULL) { 4493 skb1 = rb_entry(q, struct sk_buff, rbnode); 4494 4495 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4496 break; 4497 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4498 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4499 end_seq); 4500 break; 4501 } 4502 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4503 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4504 TCP_SKB_CB(skb1)->end_seq); 4505 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4506 tcp_drop(sk, skb1); 4507 } 4508 /* If there is no skb after us, we are the last_skb ! */ 4509 if (!q) 4510 tp->ooo_last_skb = skb; 4511 4512 add_sack: 4513 if (tcp_is_sack(tp)) 4514 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4515 end: 4516 if (skb) { 4517 tcp_grow_window(sk, skb); 4518 skb_condense(skb); 4519 skb_set_owner_r(skb, sk); 4520 } 4521 } 4522 4523 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4524 bool *fragstolen) 4525 { 4526 int eaten; 4527 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4528 4529 __skb_pull(skb, hdrlen); 4530 eaten = (tail && 4531 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4532 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4533 if (!eaten) { 4534 __skb_queue_tail(&sk->sk_receive_queue, skb); 4535 skb_set_owner_r(skb, sk); 4536 } 4537 return eaten; 4538 } 4539 4540 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4541 { 4542 struct sk_buff *skb; 4543 int err = -ENOMEM; 4544 int data_len = 0; 4545 bool fragstolen; 4546 4547 if (size == 0) 4548 return 0; 4549 4550 if (size > PAGE_SIZE) { 4551 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4552 4553 data_len = npages << PAGE_SHIFT; 4554 size = data_len + (size & ~PAGE_MASK); 4555 } 4556 skb = alloc_skb_with_frags(size - data_len, data_len, 4557 PAGE_ALLOC_COSTLY_ORDER, 4558 &err, sk->sk_allocation); 4559 if (!skb) 4560 goto err; 4561 4562 skb_put(skb, size - data_len); 4563 skb->data_len = data_len; 4564 skb->len = size; 4565 4566 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4567 goto err_free; 4568 4569 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4570 if (err) 4571 goto err_free; 4572 4573 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4574 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4575 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4576 4577 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4578 WARN_ON_ONCE(fragstolen); /* should not happen */ 4579 __kfree_skb(skb); 4580 } 4581 return size; 4582 4583 err_free: 4584 kfree_skb(skb); 4585 err: 4586 return err; 4587 4588 } 4589 4590 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4591 { 4592 struct tcp_sock *tp = tcp_sk(sk); 4593 bool fragstolen = false; 4594 int eaten = -1; 4595 4596 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4597 __kfree_skb(skb); 4598 return; 4599 } 4600 skb_dst_drop(skb); 4601 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4602 4603 tcp_ecn_accept_cwr(tp, skb); 4604 4605 tp->rx_opt.dsack = 0; 4606 4607 /* Queue data for delivery to the user. 4608 * Packets in sequence go to the receive queue. 4609 * Out of sequence packets to the out_of_order_queue. 4610 */ 4611 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4612 if (tcp_receive_window(tp) == 0) 4613 goto out_of_window; 4614 4615 /* Ok. In sequence. In window. */ 4616 if (tp->ucopy.task == current && 4617 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4618 sock_owned_by_user(sk) && !tp->urg_data) { 4619 int chunk = min_t(unsigned int, skb->len, 4620 tp->ucopy.len); 4621 4622 __set_current_state(TASK_RUNNING); 4623 4624 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4625 tp->ucopy.len -= chunk; 4626 tp->copied_seq += chunk; 4627 eaten = (chunk == skb->len); 4628 tcp_rcv_space_adjust(sk); 4629 } 4630 } 4631 4632 if (eaten <= 0) { 4633 queue_and_out: 4634 if (eaten < 0) { 4635 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4636 sk_forced_mem_schedule(sk, skb->truesize); 4637 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4638 goto drop; 4639 } 4640 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4641 } 4642 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4643 if (skb->len) 4644 tcp_event_data_recv(sk, skb); 4645 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4646 tcp_fin(sk); 4647 4648 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4649 tcp_ofo_queue(sk); 4650 4651 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4652 * gap in queue is filled. 4653 */ 4654 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4655 inet_csk(sk)->icsk_ack.pingpong = 0; 4656 } 4657 4658 if (tp->rx_opt.num_sacks) 4659 tcp_sack_remove(tp); 4660 4661 tcp_fast_path_check(sk); 4662 4663 if (eaten > 0) 4664 kfree_skb_partial(skb, fragstolen); 4665 if (!sock_flag(sk, SOCK_DEAD)) 4666 sk->sk_data_ready(sk); 4667 return; 4668 } 4669 4670 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4671 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4672 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4673 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4674 4675 out_of_window: 4676 tcp_enter_quickack_mode(sk); 4677 inet_csk_schedule_ack(sk); 4678 drop: 4679 tcp_drop(sk, skb); 4680 return; 4681 } 4682 4683 /* Out of window. F.e. zero window probe. */ 4684 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4685 goto out_of_window; 4686 4687 tcp_enter_quickack_mode(sk); 4688 4689 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4690 /* Partial packet, seq < rcv_next < end_seq */ 4691 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4692 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4693 TCP_SKB_CB(skb)->end_seq); 4694 4695 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4696 4697 /* If window is closed, drop tail of packet. But after 4698 * remembering D-SACK for its head made in previous line. 4699 */ 4700 if (!tcp_receive_window(tp)) 4701 goto out_of_window; 4702 goto queue_and_out; 4703 } 4704 4705 tcp_data_queue_ofo(sk, skb); 4706 } 4707 4708 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4709 { 4710 if (list) 4711 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4712 4713 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4714 } 4715 4716 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4717 struct sk_buff_head *list, 4718 struct rb_root *root) 4719 { 4720 struct sk_buff *next = tcp_skb_next(skb, list); 4721 4722 if (list) 4723 __skb_unlink(skb, list); 4724 else 4725 rb_erase(&skb->rbnode, root); 4726 4727 __kfree_skb(skb); 4728 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4729 4730 return next; 4731 } 4732 4733 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4734 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4735 { 4736 struct rb_node **p = &root->rb_node; 4737 struct rb_node *parent = NULL; 4738 struct sk_buff *skb1; 4739 4740 while (*p) { 4741 parent = *p; 4742 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4743 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4744 p = &parent->rb_left; 4745 else 4746 p = &parent->rb_right; 4747 } 4748 rb_link_node(&skb->rbnode, parent, p); 4749 rb_insert_color(&skb->rbnode, root); 4750 } 4751 4752 /* Collapse contiguous sequence of skbs head..tail with 4753 * sequence numbers start..end. 4754 * 4755 * If tail is NULL, this means until the end of the queue. 4756 * 4757 * Segments with FIN/SYN are not collapsed (only because this 4758 * simplifies code) 4759 */ 4760 static void 4761 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4762 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4763 { 4764 struct sk_buff *skb = head, *n; 4765 struct sk_buff_head tmp; 4766 bool end_of_skbs; 4767 4768 /* First, check that queue is collapsible and find 4769 * the point where collapsing can be useful. 4770 */ 4771 restart: 4772 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4773 n = tcp_skb_next(skb, list); 4774 4775 /* No new bits? It is possible on ofo queue. */ 4776 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4777 skb = tcp_collapse_one(sk, skb, list, root); 4778 if (!skb) 4779 break; 4780 goto restart; 4781 } 4782 4783 /* The first skb to collapse is: 4784 * - not SYN/FIN and 4785 * - bloated or contains data before "start" or 4786 * overlaps to the next one. 4787 */ 4788 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4789 (tcp_win_from_space(skb->truesize) > skb->len || 4790 before(TCP_SKB_CB(skb)->seq, start))) { 4791 end_of_skbs = false; 4792 break; 4793 } 4794 4795 if (n && n != tail && 4796 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4797 end_of_skbs = false; 4798 break; 4799 } 4800 4801 /* Decided to skip this, advance start seq. */ 4802 start = TCP_SKB_CB(skb)->end_seq; 4803 } 4804 if (end_of_skbs || 4805 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4806 return; 4807 4808 __skb_queue_head_init(&tmp); 4809 4810 while (before(start, end)) { 4811 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4812 struct sk_buff *nskb; 4813 4814 nskb = alloc_skb(copy, GFP_ATOMIC); 4815 if (!nskb) 4816 break; 4817 4818 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4819 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4820 if (list) 4821 __skb_queue_before(list, skb, nskb); 4822 else 4823 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4824 skb_set_owner_r(nskb, sk); 4825 4826 /* Copy data, releasing collapsed skbs. */ 4827 while (copy > 0) { 4828 int offset = start - TCP_SKB_CB(skb)->seq; 4829 int size = TCP_SKB_CB(skb)->end_seq - start; 4830 4831 BUG_ON(offset < 0); 4832 if (size > 0) { 4833 size = min(copy, size); 4834 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4835 BUG(); 4836 TCP_SKB_CB(nskb)->end_seq += size; 4837 copy -= size; 4838 start += size; 4839 } 4840 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4841 skb = tcp_collapse_one(sk, skb, list, root); 4842 if (!skb || 4843 skb == tail || 4844 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4845 goto end; 4846 } 4847 } 4848 } 4849 end: 4850 skb_queue_walk_safe(&tmp, skb, n) 4851 tcp_rbtree_insert(root, skb); 4852 } 4853 4854 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4855 * and tcp_collapse() them until all the queue is collapsed. 4856 */ 4857 static void tcp_collapse_ofo_queue(struct sock *sk) 4858 { 4859 struct tcp_sock *tp = tcp_sk(sk); 4860 struct sk_buff *skb, *head; 4861 struct rb_node *p; 4862 u32 start, end; 4863 4864 p = rb_first(&tp->out_of_order_queue); 4865 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4866 new_range: 4867 if (!skb) { 4868 p = rb_last(&tp->out_of_order_queue); 4869 /* Note: This is possible p is NULL here. We do not 4870 * use rb_entry_safe(), as ooo_last_skb is valid only 4871 * if rbtree is not empty. 4872 */ 4873 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4874 return; 4875 } 4876 start = TCP_SKB_CB(skb)->seq; 4877 end = TCP_SKB_CB(skb)->end_seq; 4878 4879 for (head = skb;;) { 4880 skb = tcp_skb_next(skb, NULL); 4881 4882 /* Range is terminated when we see a gap or when 4883 * we are at the queue end. 4884 */ 4885 if (!skb || 4886 after(TCP_SKB_CB(skb)->seq, end) || 4887 before(TCP_SKB_CB(skb)->end_seq, start)) { 4888 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4889 head, skb, start, end); 4890 goto new_range; 4891 } 4892 4893 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4894 start = TCP_SKB_CB(skb)->seq; 4895 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4896 end = TCP_SKB_CB(skb)->end_seq; 4897 } 4898 } 4899 4900 /* 4901 * Clean the out-of-order queue to make room. 4902 * We drop high sequences packets to : 4903 * 1) Let a chance for holes to be filled. 4904 * 2) not add too big latencies if thousands of packets sit there. 4905 * (But if application shrinks SO_RCVBUF, we could still end up 4906 * freeing whole queue here) 4907 * 4908 * Return true if queue has shrunk. 4909 */ 4910 static bool tcp_prune_ofo_queue(struct sock *sk) 4911 { 4912 struct tcp_sock *tp = tcp_sk(sk); 4913 struct rb_node *node, *prev; 4914 4915 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4916 return false; 4917 4918 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4919 node = &tp->ooo_last_skb->rbnode; 4920 do { 4921 prev = rb_prev(node); 4922 rb_erase(node, &tp->out_of_order_queue); 4923 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4924 sk_mem_reclaim(sk); 4925 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4926 !tcp_under_memory_pressure(sk)) 4927 break; 4928 node = prev; 4929 } while (node); 4930 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4931 4932 /* Reset SACK state. A conforming SACK implementation will 4933 * do the same at a timeout based retransmit. When a connection 4934 * is in a sad state like this, we care only about integrity 4935 * of the connection not performance. 4936 */ 4937 if (tp->rx_opt.sack_ok) 4938 tcp_sack_reset(&tp->rx_opt); 4939 return true; 4940 } 4941 4942 /* Reduce allocated memory if we can, trying to get 4943 * the socket within its memory limits again. 4944 * 4945 * Return less than zero if we should start dropping frames 4946 * until the socket owning process reads some of the data 4947 * to stabilize the situation. 4948 */ 4949 static int tcp_prune_queue(struct sock *sk) 4950 { 4951 struct tcp_sock *tp = tcp_sk(sk); 4952 4953 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4954 4955 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4956 4957 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4958 tcp_clamp_window(sk); 4959 else if (tcp_under_memory_pressure(sk)) 4960 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4961 4962 tcp_collapse_ofo_queue(sk); 4963 if (!skb_queue_empty(&sk->sk_receive_queue)) 4964 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4965 skb_peek(&sk->sk_receive_queue), 4966 NULL, 4967 tp->copied_seq, tp->rcv_nxt); 4968 sk_mem_reclaim(sk); 4969 4970 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4971 return 0; 4972 4973 /* Collapsing did not help, destructive actions follow. 4974 * This must not ever occur. */ 4975 4976 tcp_prune_ofo_queue(sk); 4977 4978 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4979 return 0; 4980 4981 /* If we are really being abused, tell the caller to silently 4982 * drop receive data on the floor. It will get retransmitted 4983 * and hopefully then we'll have sufficient space. 4984 */ 4985 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4986 4987 /* Massive buffer overcommit. */ 4988 tp->pred_flags = 0; 4989 return -1; 4990 } 4991 4992 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4993 { 4994 const struct tcp_sock *tp = tcp_sk(sk); 4995 4996 /* If the user specified a specific send buffer setting, do 4997 * not modify it. 4998 */ 4999 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5000 return false; 5001 5002 /* If we are under global TCP memory pressure, do not expand. */ 5003 if (tcp_under_memory_pressure(sk)) 5004 return false; 5005 5006 /* If we are under soft global TCP memory pressure, do not expand. */ 5007 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5008 return false; 5009 5010 /* If we filled the congestion window, do not expand. */ 5011 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5012 return false; 5013 5014 return true; 5015 } 5016 5017 /* When incoming ACK allowed to free some skb from write_queue, 5018 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5019 * on the exit from tcp input handler. 5020 * 5021 * PROBLEM: sndbuf expansion does not work well with largesend. 5022 */ 5023 static void tcp_new_space(struct sock *sk) 5024 { 5025 struct tcp_sock *tp = tcp_sk(sk); 5026 5027 if (tcp_should_expand_sndbuf(sk)) { 5028 tcp_sndbuf_expand(sk); 5029 tp->snd_cwnd_stamp = tcp_jiffies32; 5030 } 5031 5032 sk->sk_write_space(sk); 5033 } 5034 5035 static void tcp_check_space(struct sock *sk) 5036 { 5037 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5038 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5039 /* pairs with tcp_poll() */ 5040 smp_mb(); 5041 if (sk->sk_socket && 5042 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5043 tcp_new_space(sk); 5044 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5045 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5046 } 5047 } 5048 } 5049 5050 static inline void tcp_data_snd_check(struct sock *sk) 5051 { 5052 tcp_push_pending_frames(sk); 5053 tcp_check_space(sk); 5054 } 5055 5056 /* 5057 * Check if sending an ack is needed. 5058 */ 5059 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5060 { 5061 struct tcp_sock *tp = tcp_sk(sk); 5062 5063 /* More than one full frame received... */ 5064 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5065 /* ... and right edge of window advances far enough. 5066 * (tcp_recvmsg() will send ACK otherwise). Or... 5067 */ 5068 __tcp_select_window(sk) >= tp->rcv_wnd) || 5069 /* We ACK each frame or... */ 5070 tcp_in_quickack_mode(sk) || 5071 /* We have out of order data. */ 5072 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5073 /* Then ack it now */ 5074 tcp_send_ack(sk); 5075 } else { 5076 /* Else, send delayed ack. */ 5077 tcp_send_delayed_ack(sk); 5078 } 5079 } 5080 5081 static inline void tcp_ack_snd_check(struct sock *sk) 5082 { 5083 if (!inet_csk_ack_scheduled(sk)) { 5084 /* We sent a data segment already. */ 5085 return; 5086 } 5087 __tcp_ack_snd_check(sk, 1); 5088 } 5089 5090 /* 5091 * This routine is only called when we have urgent data 5092 * signaled. Its the 'slow' part of tcp_urg. It could be 5093 * moved inline now as tcp_urg is only called from one 5094 * place. We handle URGent data wrong. We have to - as 5095 * BSD still doesn't use the correction from RFC961. 5096 * For 1003.1g we should support a new option TCP_STDURG to permit 5097 * either form (or just set the sysctl tcp_stdurg). 5098 */ 5099 5100 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5101 { 5102 struct tcp_sock *tp = tcp_sk(sk); 5103 u32 ptr = ntohs(th->urg_ptr); 5104 5105 if (ptr && !sysctl_tcp_stdurg) 5106 ptr--; 5107 ptr += ntohl(th->seq); 5108 5109 /* Ignore urgent data that we've already seen and read. */ 5110 if (after(tp->copied_seq, ptr)) 5111 return; 5112 5113 /* Do not replay urg ptr. 5114 * 5115 * NOTE: interesting situation not covered by specs. 5116 * Misbehaving sender may send urg ptr, pointing to segment, 5117 * which we already have in ofo queue. We are not able to fetch 5118 * such data and will stay in TCP_URG_NOTYET until will be eaten 5119 * by recvmsg(). Seems, we are not obliged to handle such wicked 5120 * situations. But it is worth to think about possibility of some 5121 * DoSes using some hypothetical application level deadlock. 5122 */ 5123 if (before(ptr, tp->rcv_nxt)) 5124 return; 5125 5126 /* Do we already have a newer (or duplicate) urgent pointer? */ 5127 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5128 return; 5129 5130 /* Tell the world about our new urgent pointer. */ 5131 sk_send_sigurg(sk); 5132 5133 /* We may be adding urgent data when the last byte read was 5134 * urgent. To do this requires some care. We cannot just ignore 5135 * tp->copied_seq since we would read the last urgent byte again 5136 * as data, nor can we alter copied_seq until this data arrives 5137 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5138 * 5139 * NOTE. Double Dutch. Rendering to plain English: author of comment 5140 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5141 * and expect that both A and B disappear from stream. This is _wrong_. 5142 * Though this happens in BSD with high probability, this is occasional. 5143 * Any application relying on this is buggy. Note also, that fix "works" 5144 * only in this artificial test. Insert some normal data between A and B and we will 5145 * decline of BSD again. Verdict: it is better to remove to trap 5146 * buggy users. 5147 */ 5148 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5149 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5150 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5151 tp->copied_seq++; 5152 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5153 __skb_unlink(skb, &sk->sk_receive_queue); 5154 __kfree_skb(skb); 5155 } 5156 } 5157 5158 tp->urg_data = TCP_URG_NOTYET; 5159 tp->urg_seq = ptr; 5160 5161 /* Disable header prediction. */ 5162 tp->pred_flags = 0; 5163 } 5164 5165 /* This is the 'fast' part of urgent handling. */ 5166 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5167 { 5168 struct tcp_sock *tp = tcp_sk(sk); 5169 5170 /* Check if we get a new urgent pointer - normally not. */ 5171 if (th->urg) 5172 tcp_check_urg(sk, th); 5173 5174 /* Do we wait for any urgent data? - normally not... */ 5175 if (tp->urg_data == TCP_URG_NOTYET) { 5176 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5177 th->syn; 5178 5179 /* Is the urgent pointer pointing into this packet? */ 5180 if (ptr < skb->len) { 5181 u8 tmp; 5182 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5183 BUG(); 5184 tp->urg_data = TCP_URG_VALID | tmp; 5185 if (!sock_flag(sk, SOCK_DEAD)) 5186 sk->sk_data_ready(sk); 5187 } 5188 } 5189 } 5190 5191 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5192 { 5193 struct tcp_sock *tp = tcp_sk(sk); 5194 int chunk = skb->len - hlen; 5195 int err; 5196 5197 if (skb_csum_unnecessary(skb)) 5198 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5199 else 5200 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5201 5202 if (!err) { 5203 tp->ucopy.len -= chunk; 5204 tp->copied_seq += chunk; 5205 tcp_rcv_space_adjust(sk); 5206 } 5207 5208 return err; 5209 } 5210 5211 /* Accept RST for rcv_nxt - 1 after a FIN. 5212 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5213 * FIN is sent followed by a RST packet. The RST is sent with the same 5214 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5215 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5216 * ACKs on the closed socket. In addition middleboxes can drop either the 5217 * challenge ACK or a subsequent RST. 5218 */ 5219 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5220 { 5221 struct tcp_sock *tp = tcp_sk(sk); 5222 5223 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5224 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5225 TCPF_CLOSING)); 5226 } 5227 5228 /* Does PAWS and seqno based validation of an incoming segment, flags will 5229 * play significant role here. 5230 */ 5231 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5232 const struct tcphdr *th, int syn_inerr) 5233 { 5234 struct tcp_sock *tp = tcp_sk(sk); 5235 bool rst_seq_match = false; 5236 5237 /* RFC1323: H1. Apply PAWS check first. */ 5238 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5239 tp->rx_opt.saw_tstamp && 5240 tcp_paws_discard(sk, skb)) { 5241 if (!th->rst) { 5242 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5243 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5244 LINUX_MIB_TCPACKSKIPPEDPAWS, 5245 &tp->last_oow_ack_time)) 5246 tcp_send_dupack(sk, skb); 5247 goto discard; 5248 } 5249 /* Reset is accepted even if it did not pass PAWS. */ 5250 } 5251 5252 /* Step 1: check sequence number */ 5253 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5254 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5255 * (RST) segments are validated by checking their SEQ-fields." 5256 * And page 69: "If an incoming segment is not acceptable, 5257 * an acknowledgment should be sent in reply (unless the RST 5258 * bit is set, if so drop the segment and return)". 5259 */ 5260 if (!th->rst) { 5261 if (th->syn) 5262 goto syn_challenge; 5263 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5264 LINUX_MIB_TCPACKSKIPPEDSEQ, 5265 &tp->last_oow_ack_time)) 5266 tcp_send_dupack(sk, skb); 5267 } else if (tcp_reset_check(sk, skb)) { 5268 tcp_reset(sk); 5269 } 5270 goto discard; 5271 } 5272 5273 /* Step 2: check RST bit */ 5274 if (th->rst) { 5275 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5276 * FIN and SACK too if available): 5277 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5278 * the right-most SACK block, 5279 * then 5280 * RESET the connection 5281 * else 5282 * Send a challenge ACK 5283 */ 5284 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5285 tcp_reset_check(sk, skb)) { 5286 rst_seq_match = true; 5287 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5288 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5289 int max_sack = sp[0].end_seq; 5290 int this_sack; 5291 5292 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5293 ++this_sack) { 5294 max_sack = after(sp[this_sack].end_seq, 5295 max_sack) ? 5296 sp[this_sack].end_seq : max_sack; 5297 } 5298 5299 if (TCP_SKB_CB(skb)->seq == max_sack) 5300 rst_seq_match = true; 5301 } 5302 5303 if (rst_seq_match) 5304 tcp_reset(sk); 5305 else { 5306 /* Disable TFO if RST is out-of-order 5307 * and no data has been received 5308 * for current active TFO socket 5309 */ 5310 if (tp->syn_fastopen && !tp->data_segs_in && 5311 sk->sk_state == TCP_ESTABLISHED) 5312 tcp_fastopen_active_disable(sk); 5313 tcp_send_challenge_ack(sk, skb); 5314 } 5315 goto discard; 5316 } 5317 5318 /* step 3: check security and precedence [ignored] */ 5319 5320 /* step 4: Check for a SYN 5321 * RFC 5961 4.2 : Send a challenge ack 5322 */ 5323 if (th->syn) { 5324 syn_challenge: 5325 if (syn_inerr) 5326 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5328 tcp_send_challenge_ack(sk, skb); 5329 goto discard; 5330 } 5331 5332 return true; 5333 5334 discard: 5335 tcp_drop(sk, skb); 5336 return false; 5337 } 5338 5339 /* 5340 * TCP receive function for the ESTABLISHED state. 5341 * 5342 * It is split into a fast path and a slow path. The fast path is 5343 * disabled when: 5344 * - A zero window was announced from us - zero window probing 5345 * is only handled properly in the slow path. 5346 * - Out of order segments arrived. 5347 * - Urgent data is expected. 5348 * - There is no buffer space left 5349 * - Unexpected TCP flags/window values/header lengths are received 5350 * (detected by checking the TCP header against pred_flags) 5351 * - Data is sent in both directions. Fast path only supports pure senders 5352 * or pure receivers (this means either the sequence number or the ack 5353 * value must stay constant) 5354 * - Unexpected TCP option. 5355 * 5356 * When these conditions are not satisfied it drops into a standard 5357 * receive procedure patterned after RFC793 to handle all cases. 5358 * The first three cases are guaranteed by proper pred_flags setting, 5359 * the rest is checked inline. Fast processing is turned on in 5360 * tcp_data_queue when everything is OK. 5361 */ 5362 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5363 const struct tcphdr *th, unsigned int len) 5364 { 5365 struct tcp_sock *tp = tcp_sk(sk); 5366 5367 tcp_mstamp_refresh(tp); 5368 if (unlikely(!sk->sk_rx_dst)) 5369 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5370 /* 5371 * Header prediction. 5372 * The code loosely follows the one in the famous 5373 * "30 instruction TCP receive" Van Jacobson mail. 5374 * 5375 * Van's trick is to deposit buffers into socket queue 5376 * on a device interrupt, to call tcp_recv function 5377 * on the receive process context and checksum and copy 5378 * the buffer to user space. smart... 5379 * 5380 * Our current scheme is not silly either but we take the 5381 * extra cost of the net_bh soft interrupt processing... 5382 * We do checksum and copy also but from device to kernel. 5383 */ 5384 5385 tp->rx_opt.saw_tstamp = 0; 5386 5387 /* pred_flags is 0xS?10 << 16 + snd_wnd 5388 * if header_prediction is to be made 5389 * 'S' will always be tp->tcp_header_len >> 2 5390 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5391 * turn it off (when there are holes in the receive 5392 * space for instance) 5393 * PSH flag is ignored. 5394 */ 5395 5396 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5397 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5398 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5399 int tcp_header_len = tp->tcp_header_len; 5400 5401 /* Timestamp header prediction: tcp_header_len 5402 * is automatically equal to th->doff*4 due to pred_flags 5403 * match. 5404 */ 5405 5406 /* Check timestamp */ 5407 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5408 /* No? Slow path! */ 5409 if (!tcp_parse_aligned_timestamp(tp, th)) 5410 goto slow_path; 5411 5412 /* If PAWS failed, check it more carefully in slow path */ 5413 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5414 goto slow_path; 5415 5416 /* DO NOT update ts_recent here, if checksum fails 5417 * and timestamp was corrupted part, it will result 5418 * in a hung connection since we will drop all 5419 * future packets due to the PAWS test. 5420 */ 5421 } 5422 5423 if (len <= tcp_header_len) { 5424 /* Bulk data transfer: sender */ 5425 if (len == tcp_header_len) { 5426 /* Predicted packet is in window by definition. 5427 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5428 * Hence, check seq<=rcv_wup reduces to: 5429 */ 5430 if (tcp_header_len == 5431 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5432 tp->rcv_nxt == tp->rcv_wup) 5433 tcp_store_ts_recent(tp); 5434 5435 /* We know that such packets are checksummed 5436 * on entry. 5437 */ 5438 tcp_ack(sk, skb, 0); 5439 __kfree_skb(skb); 5440 tcp_data_snd_check(sk); 5441 return; 5442 } else { /* Header too small */ 5443 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5444 goto discard; 5445 } 5446 } else { 5447 int eaten = 0; 5448 bool fragstolen = false; 5449 5450 if (tp->ucopy.task == current && 5451 tp->copied_seq == tp->rcv_nxt && 5452 len - tcp_header_len <= tp->ucopy.len && 5453 sock_owned_by_user(sk)) { 5454 __set_current_state(TASK_RUNNING); 5455 5456 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5457 /* Predicted packet is in window by definition. 5458 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5459 * Hence, check seq<=rcv_wup reduces to: 5460 */ 5461 if (tcp_header_len == 5462 (sizeof(struct tcphdr) + 5463 TCPOLEN_TSTAMP_ALIGNED) && 5464 tp->rcv_nxt == tp->rcv_wup) 5465 tcp_store_ts_recent(tp); 5466 5467 tcp_rcv_rtt_measure_ts(sk, skb); 5468 5469 __skb_pull(skb, tcp_header_len); 5470 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5471 NET_INC_STATS(sock_net(sk), 5472 LINUX_MIB_TCPHPHITSTOUSER); 5473 eaten = 1; 5474 } 5475 } 5476 if (!eaten) { 5477 if (tcp_checksum_complete(skb)) 5478 goto csum_error; 5479 5480 if ((int)skb->truesize > sk->sk_forward_alloc) 5481 goto step5; 5482 5483 /* Predicted packet is in window by definition. 5484 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5485 * Hence, check seq<=rcv_wup reduces to: 5486 */ 5487 if (tcp_header_len == 5488 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5489 tp->rcv_nxt == tp->rcv_wup) 5490 tcp_store_ts_recent(tp); 5491 5492 tcp_rcv_rtt_measure_ts(sk, skb); 5493 5494 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5495 5496 /* Bulk data transfer: receiver */ 5497 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5498 &fragstolen); 5499 } 5500 5501 tcp_event_data_recv(sk, skb); 5502 5503 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5504 /* Well, only one small jumplet in fast path... */ 5505 tcp_ack(sk, skb, FLAG_DATA); 5506 tcp_data_snd_check(sk); 5507 if (!inet_csk_ack_scheduled(sk)) 5508 goto no_ack; 5509 } 5510 5511 __tcp_ack_snd_check(sk, 0); 5512 no_ack: 5513 if (eaten) 5514 kfree_skb_partial(skb, fragstolen); 5515 sk->sk_data_ready(sk); 5516 return; 5517 } 5518 } 5519 5520 slow_path: 5521 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5522 goto csum_error; 5523 5524 if (!th->ack && !th->rst && !th->syn) 5525 goto discard; 5526 5527 /* 5528 * Standard slow path. 5529 */ 5530 5531 if (!tcp_validate_incoming(sk, skb, th, 1)) 5532 return; 5533 5534 step5: 5535 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5536 goto discard; 5537 5538 tcp_rcv_rtt_measure_ts(sk, skb); 5539 5540 /* Process urgent data. */ 5541 tcp_urg(sk, skb, th); 5542 5543 /* step 7: process the segment text */ 5544 tcp_data_queue(sk, skb); 5545 5546 tcp_data_snd_check(sk); 5547 tcp_ack_snd_check(sk); 5548 return; 5549 5550 csum_error: 5551 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5552 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5553 5554 discard: 5555 tcp_drop(sk, skb); 5556 } 5557 EXPORT_SYMBOL(tcp_rcv_established); 5558 5559 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5560 { 5561 struct tcp_sock *tp = tcp_sk(sk); 5562 struct inet_connection_sock *icsk = inet_csk(sk); 5563 5564 tcp_set_state(sk, TCP_ESTABLISHED); 5565 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5566 5567 if (skb) { 5568 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5569 security_inet_conn_established(sk, skb); 5570 } 5571 5572 /* Make sure socket is routed, for correct metrics. */ 5573 icsk->icsk_af_ops->rebuild_header(sk); 5574 5575 tcp_init_metrics(sk); 5576 5577 tcp_init_congestion_control(sk); 5578 5579 /* Prevent spurious tcp_cwnd_restart() on first data 5580 * packet. 5581 */ 5582 tp->lsndtime = tcp_jiffies32; 5583 5584 tcp_init_buffer_space(sk); 5585 5586 if (sock_flag(sk, SOCK_KEEPOPEN)) 5587 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5588 5589 if (!tp->rx_opt.snd_wscale) 5590 __tcp_fast_path_on(tp, tp->snd_wnd); 5591 else 5592 tp->pred_flags = 0; 5593 5594 } 5595 5596 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5597 struct tcp_fastopen_cookie *cookie) 5598 { 5599 struct tcp_sock *tp = tcp_sk(sk); 5600 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5601 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5602 bool syn_drop = false; 5603 5604 if (mss == tp->rx_opt.user_mss) { 5605 struct tcp_options_received opt; 5606 5607 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5608 tcp_clear_options(&opt); 5609 opt.user_mss = opt.mss_clamp = 0; 5610 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5611 mss = opt.mss_clamp; 5612 } 5613 5614 if (!tp->syn_fastopen) { 5615 /* Ignore an unsolicited cookie */ 5616 cookie->len = -1; 5617 } else if (tp->total_retrans) { 5618 /* SYN timed out and the SYN-ACK neither has a cookie nor 5619 * acknowledges data. Presumably the remote received only 5620 * the retransmitted (regular) SYNs: either the original 5621 * SYN-data or the corresponding SYN-ACK was dropped. 5622 */ 5623 syn_drop = (cookie->len < 0 && data); 5624 } else if (cookie->len < 0 && !tp->syn_data) { 5625 /* We requested a cookie but didn't get it. If we did not use 5626 * the (old) exp opt format then try so next time (try_exp=1). 5627 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5628 */ 5629 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5630 } 5631 5632 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5633 5634 if (data) { /* Retransmit unacked data in SYN */ 5635 tcp_for_write_queue_from(data, sk) { 5636 if (data == tcp_send_head(sk) || 5637 __tcp_retransmit_skb(sk, data, 1)) 5638 break; 5639 } 5640 tcp_rearm_rto(sk); 5641 NET_INC_STATS(sock_net(sk), 5642 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5643 return true; 5644 } 5645 tp->syn_data_acked = tp->syn_data; 5646 if (tp->syn_data_acked) 5647 NET_INC_STATS(sock_net(sk), 5648 LINUX_MIB_TCPFASTOPENACTIVE); 5649 5650 tcp_fastopen_add_skb(sk, synack); 5651 5652 return false; 5653 } 5654 5655 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5656 const struct tcphdr *th) 5657 { 5658 struct inet_connection_sock *icsk = inet_csk(sk); 5659 struct tcp_sock *tp = tcp_sk(sk); 5660 struct tcp_fastopen_cookie foc = { .len = -1 }; 5661 int saved_clamp = tp->rx_opt.mss_clamp; 5662 bool fastopen_fail; 5663 5664 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5665 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5666 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5667 5668 if (th->ack) { 5669 /* rfc793: 5670 * "If the state is SYN-SENT then 5671 * first check the ACK bit 5672 * If the ACK bit is set 5673 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5674 * a reset (unless the RST bit is set, if so drop 5675 * the segment and return)" 5676 */ 5677 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5678 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5679 goto reset_and_undo; 5680 5681 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5682 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5683 tcp_time_stamp(tp))) { 5684 NET_INC_STATS(sock_net(sk), 5685 LINUX_MIB_PAWSACTIVEREJECTED); 5686 goto reset_and_undo; 5687 } 5688 5689 /* Now ACK is acceptable. 5690 * 5691 * "If the RST bit is set 5692 * If the ACK was acceptable then signal the user "error: 5693 * connection reset", drop the segment, enter CLOSED state, 5694 * delete TCB, and return." 5695 */ 5696 5697 if (th->rst) { 5698 tcp_reset(sk); 5699 goto discard; 5700 } 5701 5702 /* rfc793: 5703 * "fifth, if neither of the SYN or RST bits is set then 5704 * drop the segment and return." 5705 * 5706 * See note below! 5707 * --ANK(990513) 5708 */ 5709 if (!th->syn) 5710 goto discard_and_undo; 5711 5712 /* rfc793: 5713 * "If the SYN bit is on ... 5714 * are acceptable then ... 5715 * (our SYN has been ACKed), change the connection 5716 * state to ESTABLISHED..." 5717 */ 5718 5719 tcp_ecn_rcv_synack(tp, th); 5720 5721 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5722 tcp_ack(sk, skb, FLAG_SLOWPATH); 5723 5724 /* Ok.. it's good. Set up sequence numbers and 5725 * move to established. 5726 */ 5727 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5728 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5729 5730 /* RFC1323: The window in SYN & SYN/ACK segments is 5731 * never scaled. 5732 */ 5733 tp->snd_wnd = ntohs(th->window); 5734 5735 if (!tp->rx_opt.wscale_ok) { 5736 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5737 tp->window_clamp = min(tp->window_clamp, 65535U); 5738 } 5739 5740 if (tp->rx_opt.saw_tstamp) { 5741 tp->rx_opt.tstamp_ok = 1; 5742 tp->tcp_header_len = 5743 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5744 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5745 tcp_store_ts_recent(tp); 5746 } else { 5747 tp->tcp_header_len = sizeof(struct tcphdr); 5748 } 5749 5750 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5751 tcp_enable_fack(tp); 5752 5753 tcp_mtup_init(sk); 5754 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5755 tcp_initialize_rcv_mss(sk); 5756 5757 /* Remember, tcp_poll() does not lock socket! 5758 * Change state from SYN-SENT only after copied_seq 5759 * is initialized. */ 5760 tp->copied_seq = tp->rcv_nxt; 5761 5762 smp_mb(); 5763 5764 tcp_finish_connect(sk, skb); 5765 5766 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5767 tcp_rcv_fastopen_synack(sk, skb, &foc); 5768 5769 if (!sock_flag(sk, SOCK_DEAD)) { 5770 sk->sk_state_change(sk); 5771 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5772 } 5773 if (fastopen_fail) 5774 return -1; 5775 if (sk->sk_write_pending || 5776 icsk->icsk_accept_queue.rskq_defer_accept || 5777 icsk->icsk_ack.pingpong) { 5778 /* Save one ACK. Data will be ready after 5779 * several ticks, if write_pending is set. 5780 * 5781 * It may be deleted, but with this feature tcpdumps 5782 * look so _wonderfully_ clever, that I was not able 5783 * to stand against the temptation 8) --ANK 5784 */ 5785 inet_csk_schedule_ack(sk); 5786 tcp_enter_quickack_mode(sk); 5787 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5788 TCP_DELACK_MAX, TCP_RTO_MAX); 5789 5790 discard: 5791 tcp_drop(sk, skb); 5792 return 0; 5793 } else { 5794 tcp_send_ack(sk); 5795 } 5796 return -1; 5797 } 5798 5799 /* No ACK in the segment */ 5800 5801 if (th->rst) { 5802 /* rfc793: 5803 * "If the RST bit is set 5804 * 5805 * Otherwise (no ACK) drop the segment and return." 5806 */ 5807 5808 goto discard_and_undo; 5809 } 5810 5811 /* PAWS check. */ 5812 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5813 tcp_paws_reject(&tp->rx_opt, 0)) 5814 goto discard_and_undo; 5815 5816 if (th->syn) { 5817 /* We see SYN without ACK. It is attempt of 5818 * simultaneous connect with crossed SYNs. 5819 * Particularly, it can be connect to self. 5820 */ 5821 tcp_set_state(sk, TCP_SYN_RECV); 5822 5823 if (tp->rx_opt.saw_tstamp) { 5824 tp->rx_opt.tstamp_ok = 1; 5825 tcp_store_ts_recent(tp); 5826 tp->tcp_header_len = 5827 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5828 } else { 5829 tp->tcp_header_len = sizeof(struct tcphdr); 5830 } 5831 5832 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5833 tp->copied_seq = tp->rcv_nxt; 5834 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5835 5836 /* RFC1323: The window in SYN & SYN/ACK segments is 5837 * never scaled. 5838 */ 5839 tp->snd_wnd = ntohs(th->window); 5840 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5841 tp->max_window = tp->snd_wnd; 5842 5843 tcp_ecn_rcv_syn(tp, th); 5844 5845 tcp_mtup_init(sk); 5846 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5847 tcp_initialize_rcv_mss(sk); 5848 5849 tcp_send_synack(sk); 5850 #if 0 5851 /* Note, we could accept data and URG from this segment. 5852 * There are no obstacles to make this (except that we must 5853 * either change tcp_recvmsg() to prevent it from returning data 5854 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5855 * 5856 * However, if we ignore data in ACKless segments sometimes, 5857 * we have no reasons to accept it sometimes. 5858 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5859 * is not flawless. So, discard packet for sanity. 5860 * Uncomment this return to process the data. 5861 */ 5862 return -1; 5863 #else 5864 goto discard; 5865 #endif 5866 } 5867 /* "fifth, if neither of the SYN or RST bits is set then 5868 * drop the segment and return." 5869 */ 5870 5871 discard_and_undo: 5872 tcp_clear_options(&tp->rx_opt); 5873 tp->rx_opt.mss_clamp = saved_clamp; 5874 goto discard; 5875 5876 reset_and_undo: 5877 tcp_clear_options(&tp->rx_opt); 5878 tp->rx_opt.mss_clamp = saved_clamp; 5879 return 1; 5880 } 5881 5882 /* 5883 * This function implements the receiving procedure of RFC 793 for 5884 * all states except ESTABLISHED and TIME_WAIT. 5885 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5886 * address independent. 5887 */ 5888 5889 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5890 { 5891 struct tcp_sock *tp = tcp_sk(sk); 5892 struct inet_connection_sock *icsk = inet_csk(sk); 5893 const struct tcphdr *th = tcp_hdr(skb); 5894 struct request_sock *req; 5895 int queued = 0; 5896 bool acceptable; 5897 5898 switch (sk->sk_state) { 5899 case TCP_CLOSE: 5900 goto discard; 5901 5902 case TCP_LISTEN: 5903 if (th->ack) 5904 return 1; 5905 5906 if (th->rst) 5907 goto discard; 5908 5909 if (th->syn) { 5910 if (th->fin) 5911 goto discard; 5912 /* It is possible that we process SYN packets from backlog, 5913 * so we need to make sure to disable BH right there. 5914 */ 5915 local_bh_disable(); 5916 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5917 local_bh_enable(); 5918 5919 if (!acceptable) 5920 return 1; 5921 consume_skb(skb); 5922 return 0; 5923 } 5924 goto discard; 5925 5926 case TCP_SYN_SENT: 5927 tp->rx_opt.saw_tstamp = 0; 5928 tcp_mstamp_refresh(tp); 5929 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5930 if (queued >= 0) 5931 return queued; 5932 5933 /* Do step6 onward by hand. */ 5934 tcp_urg(sk, skb, th); 5935 __kfree_skb(skb); 5936 tcp_data_snd_check(sk); 5937 return 0; 5938 } 5939 5940 tcp_mstamp_refresh(tp); 5941 tp->rx_opt.saw_tstamp = 0; 5942 req = tp->fastopen_rsk; 5943 if (req) { 5944 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5945 sk->sk_state != TCP_FIN_WAIT1); 5946 5947 if (!tcp_check_req(sk, skb, req, true)) 5948 goto discard; 5949 } 5950 5951 if (!th->ack && !th->rst && !th->syn) 5952 goto discard; 5953 5954 if (!tcp_validate_incoming(sk, skb, th, 0)) 5955 return 0; 5956 5957 /* step 5: check the ACK field */ 5958 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5959 FLAG_UPDATE_TS_RECENT | 5960 FLAG_NO_CHALLENGE_ACK) > 0; 5961 5962 if (!acceptable) { 5963 if (sk->sk_state == TCP_SYN_RECV) 5964 return 1; /* send one RST */ 5965 tcp_send_challenge_ack(sk, skb); 5966 goto discard; 5967 } 5968 switch (sk->sk_state) { 5969 case TCP_SYN_RECV: 5970 if (!tp->srtt_us) 5971 tcp_synack_rtt_meas(sk, req); 5972 5973 /* Once we leave TCP_SYN_RECV, we no longer need req 5974 * so release it. 5975 */ 5976 if (req) { 5977 inet_csk(sk)->icsk_retransmits = 0; 5978 reqsk_fastopen_remove(sk, req, false); 5979 } else { 5980 /* Make sure socket is routed, for correct metrics. */ 5981 icsk->icsk_af_ops->rebuild_header(sk); 5982 tcp_init_congestion_control(sk); 5983 5984 tcp_mtup_init(sk); 5985 tp->copied_seq = tp->rcv_nxt; 5986 tcp_init_buffer_space(sk); 5987 } 5988 smp_mb(); 5989 tcp_set_state(sk, TCP_ESTABLISHED); 5990 sk->sk_state_change(sk); 5991 5992 /* Note, that this wakeup is only for marginal crossed SYN case. 5993 * Passively open sockets are not waked up, because 5994 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5995 */ 5996 if (sk->sk_socket) 5997 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5998 5999 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6000 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6001 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6002 6003 if (tp->rx_opt.tstamp_ok) 6004 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6005 6006 if (req) { 6007 /* Re-arm the timer because data may have been sent out. 6008 * This is similar to the regular data transmission case 6009 * when new data has just been ack'ed. 6010 * 6011 * (TFO) - we could try to be more aggressive and 6012 * retransmitting any data sooner based on when they 6013 * are sent out. 6014 */ 6015 tcp_rearm_rto(sk); 6016 } else 6017 tcp_init_metrics(sk); 6018 6019 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6020 tcp_update_pacing_rate(sk); 6021 6022 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6023 tp->lsndtime = tcp_jiffies32; 6024 6025 tcp_initialize_rcv_mss(sk); 6026 tcp_fast_path_on(tp); 6027 break; 6028 6029 case TCP_FIN_WAIT1: { 6030 int tmo; 6031 6032 /* If we enter the TCP_FIN_WAIT1 state and we are a 6033 * Fast Open socket and this is the first acceptable 6034 * ACK we have received, this would have acknowledged 6035 * our SYNACK so stop the SYNACK timer. 6036 */ 6037 if (req) { 6038 /* We no longer need the request sock. */ 6039 reqsk_fastopen_remove(sk, req, false); 6040 tcp_rearm_rto(sk); 6041 } 6042 if (tp->snd_una != tp->write_seq) 6043 break; 6044 6045 tcp_set_state(sk, TCP_FIN_WAIT2); 6046 sk->sk_shutdown |= SEND_SHUTDOWN; 6047 6048 sk_dst_confirm(sk); 6049 6050 if (!sock_flag(sk, SOCK_DEAD)) { 6051 /* Wake up lingering close() */ 6052 sk->sk_state_change(sk); 6053 break; 6054 } 6055 6056 if (tp->linger2 < 0) { 6057 tcp_done(sk); 6058 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6059 return 1; 6060 } 6061 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6062 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6063 /* Receive out of order FIN after close() */ 6064 if (tp->syn_fastopen && th->fin) 6065 tcp_fastopen_active_disable(sk); 6066 tcp_done(sk); 6067 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6068 return 1; 6069 } 6070 6071 tmo = tcp_fin_time(sk); 6072 if (tmo > TCP_TIMEWAIT_LEN) { 6073 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6074 } else if (th->fin || sock_owned_by_user(sk)) { 6075 /* Bad case. We could lose such FIN otherwise. 6076 * It is not a big problem, but it looks confusing 6077 * and not so rare event. We still can lose it now, 6078 * if it spins in bh_lock_sock(), but it is really 6079 * marginal case. 6080 */ 6081 inet_csk_reset_keepalive_timer(sk, tmo); 6082 } else { 6083 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6084 goto discard; 6085 } 6086 break; 6087 } 6088 6089 case TCP_CLOSING: 6090 if (tp->snd_una == tp->write_seq) { 6091 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6092 goto discard; 6093 } 6094 break; 6095 6096 case TCP_LAST_ACK: 6097 if (tp->snd_una == tp->write_seq) { 6098 tcp_update_metrics(sk); 6099 tcp_done(sk); 6100 goto discard; 6101 } 6102 break; 6103 } 6104 6105 /* step 6: check the URG bit */ 6106 tcp_urg(sk, skb, th); 6107 6108 /* step 7: process the segment text */ 6109 switch (sk->sk_state) { 6110 case TCP_CLOSE_WAIT: 6111 case TCP_CLOSING: 6112 case TCP_LAST_ACK: 6113 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6114 break; 6115 case TCP_FIN_WAIT1: 6116 case TCP_FIN_WAIT2: 6117 /* RFC 793 says to queue data in these states, 6118 * RFC 1122 says we MUST send a reset. 6119 * BSD 4.4 also does reset. 6120 */ 6121 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6122 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6123 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6124 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6125 tcp_reset(sk); 6126 return 1; 6127 } 6128 } 6129 /* Fall through */ 6130 case TCP_ESTABLISHED: 6131 tcp_data_queue(sk, skb); 6132 queued = 1; 6133 break; 6134 } 6135 6136 /* tcp_data could move socket to TIME-WAIT */ 6137 if (sk->sk_state != TCP_CLOSE) { 6138 tcp_data_snd_check(sk); 6139 tcp_ack_snd_check(sk); 6140 } 6141 6142 if (!queued) { 6143 discard: 6144 tcp_drop(sk, skb); 6145 } 6146 return 0; 6147 } 6148 EXPORT_SYMBOL(tcp_rcv_state_process); 6149 6150 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6151 { 6152 struct inet_request_sock *ireq = inet_rsk(req); 6153 6154 if (family == AF_INET) 6155 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6156 &ireq->ir_rmt_addr, port); 6157 #if IS_ENABLED(CONFIG_IPV6) 6158 else if (family == AF_INET6) 6159 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6160 &ireq->ir_v6_rmt_addr, port); 6161 #endif 6162 } 6163 6164 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6165 * 6166 * If we receive a SYN packet with these bits set, it means a 6167 * network is playing bad games with TOS bits. In order to 6168 * avoid possible false congestion notifications, we disable 6169 * TCP ECN negotiation. 6170 * 6171 * Exception: tcp_ca wants ECN. This is required for DCTCP 6172 * congestion control: Linux DCTCP asserts ECT on all packets, 6173 * including SYN, which is most optimal solution; however, 6174 * others, such as FreeBSD do not. 6175 */ 6176 static void tcp_ecn_create_request(struct request_sock *req, 6177 const struct sk_buff *skb, 6178 const struct sock *listen_sk, 6179 const struct dst_entry *dst) 6180 { 6181 const struct tcphdr *th = tcp_hdr(skb); 6182 const struct net *net = sock_net(listen_sk); 6183 bool th_ecn = th->ece && th->cwr; 6184 bool ect, ecn_ok; 6185 u32 ecn_ok_dst; 6186 6187 if (!th_ecn) 6188 return; 6189 6190 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6191 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6192 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6193 6194 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6195 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6196 inet_rsk(req)->ecn_ok = 1; 6197 } 6198 6199 static void tcp_openreq_init(struct request_sock *req, 6200 const struct tcp_options_received *rx_opt, 6201 struct sk_buff *skb, const struct sock *sk) 6202 { 6203 struct inet_request_sock *ireq = inet_rsk(req); 6204 6205 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6206 req->cookie_ts = 0; 6207 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6208 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6209 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6210 tcp_rsk(req)->last_oow_ack_time = 0; 6211 req->mss = rx_opt->mss_clamp; 6212 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6213 ireq->tstamp_ok = rx_opt->tstamp_ok; 6214 ireq->sack_ok = rx_opt->sack_ok; 6215 ireq->snd_wscale = rx_opt->snd_wscale; 6216 ireq->wscale_ok = rx_opt->wscale_ok; 6217 ireq->acked = 0; 6218 ireq->ecn_ok = 0; 6219 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6220 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6221 ireq->ir_mark = inet_request_mark(sk, skb); 6222 } 6223 6224 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6225 struct sock *sk_listener, 6226 bool attach_listener) 6227 { 6228 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6229 attach_listener); 6230 6231 if (req) { 6232 struct inet_request_sock *ireq = inet_rsk(req); 6233 6234 kmemcheck_annotate_bitfield(ireq, flags); 6235 ireq->opt = NULL; 6236 #if IS_ENABLED(CONFIG_IPV6) 6237 ireq->pktopts = NULL; 6238 #endif 6239 atomic64_set(&ireq->ir_cookie, 0); 6240 ireq->ireq_state = TCP_NEW_SYN_RECV; 6241 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6242 ireq->ireq_family = sk_listener->sk_family; 6243 } 6244 6245 return req; 6246 } 6247 EXPORT_SYMBOL(inet_reqsk_alloc); 6248 6249 /* 6250 * Return true if a syncookie should be sent 6251 */ 6252 static bool tcp_syn_flood_action(const struct sock *sk, 6253 const struct sk_buff *skb, 6254 const char *proto) 6255 { 6256 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6257 const char *msg = "Dropping request"; 6258 bool want_cookie = false; 6259 struct net *net = sock_net(sk); 6260 6261 #ifdef CONFIG_SYN_COOKIES 6262 if (net->ipv4.sysctl_tcp_syncookies) { 6263 msg = "Sending cookies"; 6264 want_cookie = true; 6265 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6266 } else 6267 #endif 6268 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6269 6270 if (!queue->synflood_warned && 6271 net->ipv4.sysctl_tcp_syncookies != 2 && 6272 xchg(&queue->synflood_warned, 1) == 0) 6273 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6274 proto, ntohs(tcp_hdr(skb)->dest), msg); 6275 6276 return want_cookie; 6277 } 6278 6279 static void tcp_reqsk_record_syn(const struct sock *sk, 6280 struct request_sock *req, 6281 const struct sk_buff *skb) 6282 { 6283 if (tcp_sk(sk)->save_syn) { 6284 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6285 u32 *copy; 6286 6287 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6288 if (copy) { 6289 copy[0] = len; 6290 memcpy(©[1], skb_network_header(skb), len); 6291 req->saved_syn = copy; 6292 } 6293 } 6294 } 6295 6296 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6297 const struct tcp_request_sock_ops *af_ops, 6298 struct sock *sk, struct sk_buff *skb) 6299 { 6300 struct tcp_fastopen_cookie foc = { .len = -1 }; 6301 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6302 struct tcp_options_received tmp_opt; 6303 struct tcp_sock *tp = tcp_sk(sk); 6304 struct net *net = sock_net(sk); 6305 struct sock *fastopen_sk = NULL; 6306 struct dst_entry *dst = NULL; 6307 struct request_sock *req; 6308 bool want_cookie = false; 6309 struct flowi fl; 6310 6311 /* TW buckets are converted to open requests without 6312 * limitations, they conserve resources and peer is 6313 * evidently real one. 6314 */ 6315 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6316 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6317 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6318 if (!want_cookie) 6319 goto drop; 6320 } 6321 6322 if (sk_acceptq_is_full(sk)) { 6323 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6324 goto drop; 6325 } 6326 6327 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6328 if (!req) 6329 goto drop; 6330 6331 tcp_rsk(req)->af_specific = af_ops; 6332 tcp_rsk(req)->ts_off = 0; 6333 6334 tcp_clear_options(&tmp_opt); 6335 tmp_opt.mss_clamp = af_ops->mss_clamp; 6336 tmp_opt.user_mss = tp->rx_opt.user_mss; 6337 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6338 want_cookie ? NULL : &foc); 6339 6340 if (want_cookie && !tmp_opt.saw_tstamp) 6341 tcp_clear_options(&tmp_opt); 6342 6343 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6344 tcp_openreq_init(req, &tmp_opt, skb, sk); 6345 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6346 6347 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6348 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6349 6350 af_ops->init_req(req, sk, skb); 6351 6352 if (security_inet_conn_request(sk, skb, req)) 6353 goto drop_and_free; 6354 6355 if (tmp_opt.tstamp_ok) 6356 tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb); 6357 6358 if (!want_cookie && !isn) { 6359 /* Kill the following clause, if you dislike this way. */ 6360 if (!net->ipv4.sysctl_tcp_syncookies && 6361 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6362 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6363 !tcp_peer_is_proven(req, dst)) { 6364 /* Without syncookies last quarter of 6365 * backlog is filled with destinations, 6366 * proven to be alive. 6367 * It means that we continue to communicate 6368 * to destinations, already remembered 6369 * to the moment of synflood. 6370 */ 6371 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6372 rsk_ops->family); 6373 goto drop_and_release; 6374 } 6375 6376 isn = af_ops->init_seq(skb); 6377 } 6378 if (!dst) { 6379 dst = af_ops->route_req(sk, &fl, req); 6380 if (!dst) 6381 goto drop_and_free; 6382 } 6383 6384 tcp_ecn_create_request(req, skb, sk, dst); 6385 6386 if (want_cookie) { 6387 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6388 req->cookie_ts = tmp_opt.tstamp_ok; 6389 if (!tmp_opt.tstamp_ok) 6390 inet_rsk(req)->ecn_ok = 0; 6391 } 6392 6393 tcp_rsk(req)->snt_isn = isn; 6394 tcp_rsk(req)->txhash = net_tx_rndhash(); 6395 tcp_openreq_init_rwin(req, sk, dst); 6396 if (!want_cookie) { 6397 tcp_reqsk_record_syn(sk, req, skb); 6398 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6399 } 6400 if (fastopen_sk) { 6401 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6402 &foc, TCP_SYNACK_FASTOPEN); 6403 /* Add the child socket directly into the accept queue */ 6404 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6405 sk->sk_data_ready(sk); 6406 bh_unlock_sock(fastopen_sk); 6407 sock_put(fastopen_sk); 6408 } else { 6409 tcp_rsk(req)->tfo_listener = false; 6410 if (!want_cookie) 6411 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6412 af_ops->send_synack(sk, dst, &fl, req, &foc, 6413 !want_cookie ? TCP_SYNACK_NORMAL : 6414 TCP_SYNACK_COOKIE); 6415 if (want_cookie) { 6416 reqsk_free(req); 6417 return 0; 6418 } 6419 } 6420 reqsk_put(req); 6421 return 0; 6422 6423 drop_and_release: 6424 dst_release(dst); 6425 drop_and_free: 6426 reqsk_free(req); 6427 drop: 6428 tcp_listendrop(sk); 6429 return 0; 6430 } 6431 EXPORT_SYMBOL(tcp_conn_request); 6432