xref: /openbmc/linux/net/ipv4/tcp_input.c (revision f930103421f6579719b8252285c94c1195f6e032)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly;
82 int sysctl_tcp_max_reordering __read_mostly = 300;
83 int sysctl_tcp_dsack __read_mostly = 1;
84 int sysctl_tcp_app_win __read_mostly = 31;
85 int sysctl_tcp_adv_win_scale __read_mostly = 1;
86 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
87 
88 /* rfc5961 challenge ack rate limiting */
89 int sysctl_tcp_challenge_ack_limit = 1000;
90 
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
96 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
97 int sysctl_tcp_early_retrans __read_mostly = 3;
98 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
99 
100 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
101 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
102 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
103 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
104 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
105 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
106 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
107 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
108 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
110 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
113 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
114 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 #define REXMIT_NONE	0 /* no loss recovery to do */
125 #define REXMIT_LOST	1 /* retransmit packets marked lost */
126 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
127 
128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
129 			     unsigned int len)
130 {
131 	static bool __once __read_mostly;
132 
133 	if (!__once) {
134 		struct net_device *dev;
135 
136 		__once = true;
137 
138 		rcu_read_lock();
139 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 		if (!dev || len >= dev->mtu)
141 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 				dev ? dev->name : "Unknown driver");
143 		rcu_read_unlock();
144 	}
145 }
146 
147 /* Adapt the MSS value used to make delayed ack decision to the
148  * real world.
149  */
150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
151 {
152 	struct inet_connection_sock *icsk = inet_csk(sk);
153 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
154 	unsigned int len;
155 
156 	icsk->icsk_ack.last_seg_size = 0;
157 
158 	/* skb->len may jitter because of SACKs, even if peer
159 	 * sends good full-sized frames.
160 	 */
161 	len = skb_shinfo(skb)->gso_size ? : skb->len;
162 	if (len >= icsk->icsk_ack.rcv_mss) {
163 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
164 					       tcp_sk(sk)->advmss);
165 		/* Account for possibly-removed options */
166 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
167 				   MAX_TCP_OPTION_SPACE))
168 			tcp_gro_dev_warn(sk, skb, len);
169 	} else {
170 		/* Otherwise, we make more careful check taking into account,
171 		 * that SACKs block is variable.
172 		 *
173 		 * "len" is invariant segment length, including TCP header.
174 		 */
175 		len += skb->data - skb_transport_header(skb);
176 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
177 		    /* If PSH is not set, packet should be
178 		     * full sized, provided peer TCP is not badly broken.
179 		     * This observation (if it is correct 8)) allows
180 		     * to handle super-low mtu links fairly.
181 		     */
182 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
183 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
184 			/* Subtract also invariant (if peer is RFC compliant),
185 			 * tcp header plus fixed timestamp option length.
186 			 * Resulting "len" is MSS free of SACK jitter.
187 			 */
188 			len -= tcp_sk(sk)->tcp_header_len;
189 			icsk->icsk_ack.last_seg_size = len;
190 			if (len == lss) {
191 				icsk->icsk_ack.rcv_mss = len;
192 				return;
193 			}
194 		}
195 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
197 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
198 	}
199 }
200 
201 static void tcp_incr_quickack(struct sock *sk)
202 {
203 	struct inet_connection_sock *icsk = inet_csk(sk);
204 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
205 
206 	if (quickacks == 0)
207 		quickacks = 2;
208 	if (quickacks > icsk->icsk_ack.quick)
209 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
210 }
211 
212 static void tcp_enter_quickack_mode(struct sock *sk)
213 {
214 	struct inet_connection_sock *icsk = inet_csk(sk);
215 	tcp_incr_quickack(sk);
216 	icsk->icsk_ack.pingpong = 0;
217 	icsk->icsk_ack.ato = TCP_ATO_MIN;
218 }
219 
220 /* Send ACKs quickly, if "quick" count is not exhausted
221  * and the session is not interactive.
222  */
223 
224 static bool tcp_in_quickack_mode(struct sock *sk)
225 {
226 	const struct inet_connection_sock *icsk = inet_csk(sk);
227 	const struct dst_entry *dst = __sk_dst_get(sk);
228 
229 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
231 }
232 
233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
234 {
235 	if (tp->ecn_flags & TCP_ECN_OK)
236 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
237 }
238 
239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
240 {
241 	if (tcp_hdr(skb)->cwr)
242 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
243 }
244 
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
246 {
247 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248 }
249 
250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
251 {
252 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
253 	case INET_ECN_NOT_ECT:
254 		/* Funny extension: if ECT is not set on a segment,
255 		 * and we already seen ECT on a previous segment,
256 		 * it is probably a retransmit.
257 		 */
258 		if (tp->ecn_flags & TCP_ECN_SEEN)
259 			tcp_enter_quickack_mode((struct sock *)tp);
260 		break;
261 	case INET_ECN_CE:
262 		if (tcp_ca_needs_ecn((struct sock *)tp))
263 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
264 
265 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 			/* Better not delay acks, sender can have a very low cwnd */
267 			tcp_enter_quickack_mode((struct sock *)tp);
268 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
269 		}
270 		tp->ecn_flags |= TCP_ECN_SEEN;
271 		break;
272 	default:
273 		if (tcp_ca_needs_ecn((struct sock *)tp))
274 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
275 		tp->ecn_flags |= TCP_ECN_SEEN;
276 		break;
277 	}
278 }
279 
280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
281 {
282 	if (tp->ecn_flags & TCP_ECN_OK)
283 		__tcp_ecn_check_ce(tp, skb);
284 }
285 
286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
287 {
288 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
289 		tp->ecn_flags &= ~TCP_ECN_OK;
290 }
291 
292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
293 {
294 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
295 		tp->ecn_flags &= ~TCP_ECN_OK;
296 }
297 
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
299 {
300 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
301 		return true;
302 	return false;
303 }
304 
305 /* Buffer size and advertised window tuning.
306  *
307  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
308  */
309 
310 static void tcp_sndbuf_expand(struct sock *sk)
311 {
312 	const struct tcp_sock *tp = tcp_sk(sk);
313 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
314 	int sndmem, per_mss;
315 	u32 nr_segs;
316 
317 	/* Worst case is non GSO/TSO : each frame consumes one skb
318 	 * and skb->head is kmalloced using power of two area of memory
319 	 */
320 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
321 		  MAX_TCP_HEADER +
322 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
323 
324 	per_mss = roundup_pow_of_two(per_mss) +
325 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
326 
327 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
329 
330 	/* Fast Recovery (RFC 5681 3.2) :
331 	 * Cubic needs 1.7 factor, rounded to 2 to include
332 	 * extra cushion (application might react slowly to POLLOUT)
333 	 */
334 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 	sndmem *= nr_segs * per_mss;
336 
337 	if (sk->sk_sndbuf < sndmem)
338 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
339 }
340 
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342  *
343  * All tcp_full_space() is split to two parts: "network" buffer, allocated
344  * forward and advertised in receiver window (tp->rcv_wnd) and
345  * "application buffer", required to isolate scheduling/application
346  * latencies from network.
347  * window_clamp is maximal advertised window. It can be less than
348  * tcp_full_space(), in this case tcp_full_space() - window_clamp
349  * is reserved for "application" buffer. The less window_clamp is
350  * the smoother our behaviour from viewpoint of network, but the lower
351  * throughput and the higher sensitivity of the connection to losses. 8)
352  *
353  * rcv_ssthresh is more strict window_clamp used at "slow start"
354  * phase to predict further behaviour of this connection.
355  * It is used for two goals:
356  * - to enforce header prediction at sender, even when application
357  *   requires some significant "application buffer". It is check #1.
358  * - to prevent pruning of receive queue because of misprediction
359  *   of receiver window. Check #2.
360  *
361  * The scheme does not work when sender sends good segments opening
362  * window and then starts to feed us spaghetti. But it should work
363  * in common situations. Otherwise, we have to rely on queue collapsing.
364  */
365 
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 	/* Optimize this! */
371 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
373 
374 	while (tp->rcv_ssthresh <= window) {
375 		if (truesize <= skb->len)
376 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
377 
378 		truesize >>= 1;
379 		window >>= 1;
380 	}
381 	return 0;
382 }
383 
384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
385 {
386 	struct tcp_sock *tp = tcp_sk(sk);
387 
388 	/* Check #1 */
389 	if (tp->rcv_ssthresh < tp->window_clamp &&
390 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
391 	    !tcp_under_memory_pressure(sk)) {
392 		int incr;
393 
394 		/* Check #2. Increase window, if skb with such overhead
395 		 * will fit to rcvbuf in future.
396 		 */
397 		if (tcp_win_from_space(skb->truesize) <= skb->len)
398 			incr = 2 * tp->advmss;
399 		else
400 			incr = __tcp_grow_window(sk, skb);
401 
402 		if (incr) {
403 			incr = max_t(int, incr, 2 * skb->len);
404 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
405 					       tp->window_clamp);
406 			inet_csk(sk)->icsk_ack.quick |= 1;
407 		}
408 	}
409 }
410 
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock *sk)
413 {
414 	u32 mss = tcp_sk(sk)->advmss;
415 	int rcvmem;
416 
417 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 		 tcp_default_init_rwnd(mss);
419 
420 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 	 * Allow enough cushion so that sender is not limited by our window
422 	 */
423 	if (sysctl_tcp_moderate_rcvbuf)
424 		rcvmem <<= 2;
425 
426 	if (sk->sk_rcvbuf < rcvmem)
427 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
428 }
429 
430 /* 4. Try to fixup all. It is made immediately after connection enters
431  *    established state.
432  */
433 void tcp_init_buffer_space(struct sock *sk)
434 {
435 	struct tcp_sock *tp = tcp_sk(sk);
436 	int maxwin;
437 
438 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 		tcp_fixup_rcvbuf(sk);
440 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
441 		tcp_sndbuf_expand(sk);
442 
443 	tp->rcvq_space.space = tp->rcv_wnd;
444 	tcp_mstamp_refresh(tp);
445 	tp->rcvq_space.time = tp->tcp_mstamp;
446 	tp->rcvq_space.seq = tp->copied_seq;
447 
448 	maxwin = tcp_full_space(sk);
449 
450 	if (tp->window_clamp >= maxwin) {
451 		tp->window_clamp = maxwin;
452 
453 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 			tp->window_clamp = max(maxwin -
455 					       (maxwin >> sysctl_tcp_app_win),
456 					       4 * tp->advmss);
457 	}
458 
459 	/* Force reservation of one segment. */
460 	if (sysctl_tcp_app_win &&
461 	    tp->window_clamp > 2 * tp->advmss &&
462 	    tp->window_clamp + tp->advmss > maxwin)
463 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464 
465 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 	tp->snd_cwnd_stamp = tcp_jiffies32;
467 }
468 
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
471 {
472 	struct tcp_sock *tp = tcp_sk(sk);
473 	struct inet_connection_sock *icsk = inet_csk(sk);
474 
475 	icsk->icsk_ack.quick = 0;
476 
477 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 	    !tcp_under_memory_pressure(sk) &&
480 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 				    sysctl_tcp_rmem[2]);
483 	}
484 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487 
488 /* Initialize RCV_MSS value.
489  * RCV_MSS is an our guess about MSS used by the peer.
490  * We haven't any direct information about the MSS.
491  * It's better to underestimate the RCV_MSS rather than overestimate.
492  * Overestimations make us ACKing less frequently than needed.
493  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494  */
495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 	const struct tcp_sock *tp = tcp_sk(sk);
498 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499 
500 	hint = min(hint, tp->rcv_wnd / 2);
501 	hint = min(hint, TCP_MSS_DEFAULT);
502 	hint = max(hint, TCP_MIN_MSS);
503 
504 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507 
508 /* Receiver "autotuning" code.
509  *
510  * The algorithm for RTT estimation w/o timestamps is based on
511  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512  * <http://public.lanl.gov/radiant/pubs.html#DRS>
513  *
514  * More detail on this code can be found at
515  * <http://staff.psc.edu/jheffner/>,
516  * though this reference is out of date.  A new paper
517  * is pending.
518  */
519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
522 	long m = sample;
523 
524 	if (m == 0)
525 		m = 1;
526 
527 	if (new_sample != 0) {
528 		/* If we sample in larger samples in the non-timestamp
529 		 * case, we could grossly overestimate the RTT especially
530 		 * with chatty applications or bulk transfer apps which
531 		 * are stalled on filesystem I/O.
532 		 *
533 		 * Also, since we are only going for a minimum in the
534 		 * non-timestamp case, we do not smooth things out
535 		 * else with timestamps disabled convergence takes too
536 		 * long.
537 		 */
538 		if (!win_dep) {
539 			m -= (new_sample >> 3);
540 			new_sample += m;
541 		} else {
542 			m <<= 3;
543 			if (m < new_sample)
544 				new_sample = m;
545 		}
546 	} else {
547 		/* No previous measure. */
548 		new_sample = m << 3;
549 	}
550 
551 	tp->rcv_rtt_est.rtt_us = new_sample;
552 }
553 
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
555 {
556 	u32 delta_us;
557 
558 	if (tp->rcv_rtt_est.time == 0)
559 		goto new_measure;
560 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
561 		return;
562 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
563 	tcp_rcv_rtt_update(tp, delta_us, 1);
564 
565 new_measure:
566 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
567 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
568 }
569 
570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
571 					  const struct sk_buff *skb)
572 {
573 	struct tcp_sock *tp = tcp_sk(sk);
574 
575 	if (tp->rx_opt.rcv_tsecr &&
576 	    (TCP_SKB_CB(skb)->end_seq -
577 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
578 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
579 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
580 
581 		tcp_rcv_rtt_update(tp, delta_us, 0);
582 	}
583 }
584 
585 /*
586  * This function should be called every time data is copied to user space.
587  * It calculates the appropriate TCP receive buffer space.
588  */
589 void tcp_rcv_space_adjust(struct sock *sk)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	int time;
593 	int copied;
594 
595 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
596 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
597 		return;
598 
599 	/* Number of bytes copied to user in last RTT */
600 	copied = tp->copied_seq - tp->rcvq_space.seq;
601 	if (copied <= tp->rcvq_space.space)
602 		goto new_measure;
603 
604 	/* A bit of theory :
605 	 * copied = bytes received in previous RTT, our base window
606 	 * To cope with packet losses, we need a 2x factor
607 	 * To cope with slow start, and sender growing its cwin by 100 %
608 	 * every RTT, we need a 4x factor, because the ACK we are sending
609 	 * now is for the next RTT, not the current one :
610 	 * <prev RTT . ><current RTT .. ><next RTT .... >
611 	 */
612 
613 	if (sysctl_tcp_moderate_rcvbuf &&
614 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
615 		int rcvwin, rcvmem, rcvbuf;
616 
617 		/* minimal window to cope with packet losses, assuming
618 		 * steady state. Add some cushion because of small variations.
619 		 */
620 		rcvwin = (copied << 1) + 16 * tp->advmss;
621 
622 		/* If rate increased by 25%,
623 		 *	assume slow start, rcvwin = 3 * copied
624 		 * If rate increased by 50%,
625 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
626 		 */
627 		if (copied >=
628 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
629 			if (copied >=
630 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
631 				rcvwin <<= 1;
632 			else
633 				rcvwin += (rcvwin >> 1);
634 		}
635 
636 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
637 		while (tcp_win_from_space(rcvmem) < tp->advmss)
638 			rcvmem += 128;
639 
640 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
641 		if (rcvbuf > sk->sk_rcvbuf) {
642 			sk->sk_rcvbuf = rcvbuf;
643 
644 			/* Make the window clamp follow along.  */
645 			tp->window_clamp = rcvwin;
646 		}
647 	}
648 	tp->rcvq_space.space = copied;
649 
650 new_measure:
651 	tp->rcvq_space.seq = tp->copied_seq;
652 	tp->rcvq_space.time = tp->tcp_mstamp;
653 }
654 
655 /* There is something which you must keep in mind when you analyze the
656  * behavior of the tp->ato delayed ack timeout interval.  When a
657  * connection starts up, we want to ack as quickly as possible.  The
658  * problem is that "good" TCP's do slow start at the beginning of data
659  * transmission.  The means that until we send the first few ACK's the
660  * sender will sit on his end and only queue most of his data, because
661  * he can only send snd_cwnd unacked packets at any given time.  For
662  * each ACK we send, he increments snd_cwnd and transmits more of his
663  * queue.  -DaveM
664  */
665 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
666 {
667 	struct tcp_sock *tp = tcp_sk(sk);
668 	struct inet_connection_sock *icsk = inet_csk(sk);
669 	u32 now;
670 
671 	inet_csk_schedule_ack(sk);
672 
673 	tcp_measure_rcv_mss(sk, skb);
674 
675 	tcp_rcv_rtt_measure(tp);
676 
677 	now = tcp_jiffies32;
678 
679 	if (!icsk->icsk_ack.ato) {
680 		/* The _first_ data packet received, initialize
681 		 * delayed ACK engine.
682 		 */
683 		tcp_incr_quickack(sk);
684 		icsk->icsk_ack.ato = TCP_ATO_MIN;
685 	} else {
686 		int m = now - icsk->icsk_ack.lrcvtime;
687 
688 		if (m <= TCP_ATO_MIN / 2) {
689 			/* The fastest case is the first. */
690 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
691 		} else if (m < icsk->icsk_ack.ato) {
692 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
693 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
694 				icsk->icsk_ack.ato = icsk->icsk_rto;
695 		} else if (m > icsk->icsk_rto) {
696 			/* Too long gap. Apparently sender failed to
697 			 * restart window, so that we send ACKs quickly.
698 			 */
699 			tcp_incr_quickack(sk);
700 			sk_mem_reclaim(sk);
701 		}
702 	}
703 	icsk->icsk_ack.lrcvtime = now;
704 
705 	tcp_ecn_check_ce(tp, skb);
706 
707 	if (skb->len >= 128)
708 		tcp_grow_window(sk, skb);
709 }
710 
711 /* Called to compute a smoothed rtt estimate. The data fed to this
712  * routine either comes from timestamps, or from segments that were
713  * known _not_ to have been retransmitted [see Karn/Partridge
714  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
715  * piece by Van Jacobson.
716  * NOTE: the next three routines used to be one big routine.
717  * To save cycles in the RFC 1323 implementation it was better to break
718  * it up into three procedures. -- erics
719  */
720 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 	long m = mrtt_us; /* RTT */
724 	u32 srtt = tp->srtt_us;
725 
726 	/*	The following amusing code comes from Jacobson's
727 	 *	article in SIGCOMM '88.  Note that rtt and mdev
728 	 *	are scaled versions of rtt and mean deviation.
729 	 *	This is designed to be as fast as possible
730 	 *	m stands for "measurement".
731 	 *
732 	 *	On a 1990 paper the rto value is changed to:
733 	 *	RTO = rtt + 4 * mdev
734 	 *
735 	 * Funny. This algorithm seems to be very broken.
736 	 * These formulae increase RTO, when it should be decreased, increase
737 	 * too slowly, when it should be increased quickly, decrease too quickly
738 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
739 	 * does not matter how to _calculate_ it. Seems, it was trap
740 	 * that VJ failed to avoid. 8)
741 	 */
742 	if (srtt != 0) {
743 		m -= (srtt >> 3);	/* m is now error in rtt est */
744 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
745 		if (m < 0) {
746 			m = -m;		/* m is now abs(error) */
747 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
748 			/* This is similar to one of Eifel findings.
749 			 * Eifel blocks mdev updates when rtt decreases.
750 			 * This solution is a bit different: we use finer gain
751 			 * for mdev in this case (alpha*beta).
752 			 * Like Eifel it also prevents growth of rto,
753 			 * but also it limits too fast rto decreases,
754 			 * happening in pure Eifel.
755 			 */
756 			if (m > 0)
757 				m >>= 3;
758 		} else {
759 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
760 		}
761 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
762 		if (tp->mdev_us > tp->mdev_max_us) {
763 			tp->mdev_max_us = tp->mdev_us;
764 			if (tp->mdev_max_us > tp->rttvar_us)
765 				tp->rttvar_us = tp->mdev_max_us;
766 		}
767 		if (after(tp->snd_una, tp->rtt_seq)) {
768 			if (tp->mdev_max_us < tp->rttvar_us)
769 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
770 			tp->rtt_seq = tp->snd_nxt;
771 			tp->mdev_max_us = tcp_rto_min_us(sk);
772 		}
773 	} else {
774 		/* no previous measure. */
775 		srtt = m << 3;		/* take the measured time to be rtt */
776 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
777 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
778 		tp->mdev_max_us = tp->rttvar_us;
779 		tp->rtt_seq = tp->snd_nxt;
780 	}
781 	tp->srtt_us = max(1U, srtt);
782 }
783 
784 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
785  * Note: TCP stack does not yet implement pacing.
786  * FQ packet scheduler can be used to implement cheap but effective
787  * TCP pacing, to smooth the burst on large writes when packets
788  * in flight is significantly lower than cwnd (or rwin)
789  */
790 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
791 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
792 
793 static void tcp_update_pacing_rate(struct sock *sk)
794 {
795 	const struct tcp_sock *tp = tcp_sk(sk);
796 	u64 rate;
797 
798 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
799 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
800 
801 	/* current rate is (cwnd * mss) / srtt
802 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
803 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
804 	 *
805 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
806 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
807 	 *	 end of slow start and should slow down.
808 	 */
809 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
810 		rate *= sysctl_tcp_pacing_ss_ratio;
811 	else
812 		rate *= sysctl_tcp_pacing_ca_ratio;
813 
814 	rate *= max(tp->snd_cwnd, tp->packets_out);
815 
816 	if (likely(tp->srtt_us))
817 		do_div(rate, tp->srtt_us);
818 
819 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
820 	 * without any lock. We want to make sure compiler wont store
821 	 * intermediate values in this location.
822 	 */
823 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
824 						sk->sk_max_pacing_rate);
825 }
826 
827 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
828  * routine referred to above.
829  */
830 static void tcp_set_rto(struct sock *sk)
831 {
832 	const struct tcp_sock *tp = tcp_sk(sk);
833 	/* Old crap is replaced with new one. 8)
834 	 *
835 	 * More seriously:
836 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
837 	 *    It cannot be less due to utterly erratic ACK generation made
838 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
839 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
840 	 *    is invisible. Actually, Linux-2.4 also generates erratic
841 	 *    ACKs in some circumstances.
842 	 */
843 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
844 
845 	/* 2. Fixups made earlier cannot be right.
846 	 *    If we do not estimate RTO correctly without them,
847 	 *    all the algo is pure shit and should be replaced
848 	 *    with correct one. It is exactly, which we pretend to do.
849 	 */
850 
851 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
852 	 * guarantees that rto is higher.
853 	 */
854 	tcp_bound_rto(sk);
855 }
856 
857 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
858 {
859 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
860 
861 	if (!cwnd)
862 		cwnd = TCP_INIT_CWND;
863 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
864 }
865 
866 /*
867  * Packet counting of FACK is based on in-order assumptions, therefore TCP
868  * disables it when reordering is detected
869  */
870 void tcp_disable_fack(struct tcp_sock *tp)
871 {
872 	/* RFC3517 uses different metric in lost marker => reset on change */
873 	if (tcp_is_fack(tp))
874 		tp->lost_skb_hint = NULL;
875 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
876 }
877 
878 /* Take a notice that peer is sending D-SACKs */
879 static void tcp_dsack_seen(struct tcp_sock *tp)
880 {
881 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
882 }
883 
884 static void tcp_update_reordering(struct sock *sk, const int metric,
885 				  const int ts)
886 {
887 	struct tcp_sock *tp = tcp_sk(sk);
888 	int mib_idx;
889 
890 	if (WARN_ON_ONCE(metric < 0))
891 		return;
892 
893 	if (metric > tp->reordering) {
894 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
895 
896 #if FASTRETRANS_DEBUG > 1
897 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
898 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
899 			 tp->reordering,
900 			 tp->fackets_out,
901 			 tp->sacked_out,
902 			 tp->undo_marker ? tp->undo_retrans : 0);
903 #endif
904 		tcp_disable_fack(tp);
905 	}
906 
907 	tp->rack.reord = 1;
908 
909 	/* This exciting event is worth to be remembered. 8) */
910 	if (ts)
911 		mib_idx = LINUX_MIB_TCPTSREORDER;
912 	else if (tcp_is_reno(tp))
913 		mib_idx = LINUX_MIB_TCPRENOREORDER;
914 	else if (tcp_is_fack(tp))
915 		mib_idx = LINUX_MIB_TCPFACKREORDER;
916 	else
917 		mib_idx = LINUX_MIB_TCPSACKREORDER;
918 
919 	NET_INC_STATS(sock_net(sk), mib_idx);
920 }
921 
922 /* This must be called before lost_out is incremented */
923 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
924 {
925 	if (!tp->retransmit_skb_hint ||
926 	    before(TCP_SKB_CB(skb)->seq,
927 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
928 		tp->retransmit_skb_hint = skb;
929 }
930 
931 /* Sum the number of packets on the wire we have marked as lost.
932  * There are two cases we care about here:
933  * a) Packet hasn't been marked lost (nor retransmitted),
934  *    and this is the first loss.
935  * b) Packet has been marked both lost and retransmitted,
936  *    and this means we think it was lost again.
937  */
938 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
939 {
940 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
941 
942 	if (!(sacked & TCPCB_LOST) ||
943 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
944 		tp->lost += tcp_skb_pcount(skb);
945 }
946 
947 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
948 {
949 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
950 		tcp_verify_retransmit_hint(tp, skb);
951 
952 		tp->lost_out += tcp_skb_pcount(skb);
953 		tcp_sum_lost(tp, skb);
954 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
955 	}
956 }
957 
958 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
959 {
960 	tcp_verify_retransmit_hint(tp, skb);
961 
962 	tcp_sum_lost(tp, skb);
963 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
964 		tp->lost_out += tcp_skb_pcount(skb);
965 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
966 	}
967 }
968 
969 /* This procedure tags the retransmission queue when SACKs arrive.
970  *
971  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
972  * Packets in queue with these bits set are counted in variables
973  * sacked_out, retrans_out and lost_out, correspondingly.
974  *
975  * Valid combinations are:
976  * Tag  InFlight	Description
977  * 0	1		- orig segment is in flight.
978  * S	0		- nothing flies, orig reached receiver.
979  * L	0		- nothing flies, orig lost by net.
980  * R	2		- both orig and retransmit are in flight.
981  * L|R	1		- orig is lost, retransmit is in flight.
982  * S|R  1		- orig reached receiver, retrans is still in flight.
983  * (L|S|R is logically valid, it could occur when L|R is sacked,
984  *  but it is equivalent to plain S and code short-curcuits it to S.
985  *  L|S is logically invalid, it would mean -1 packet in flight 8))
986  *
987  * These 6 states form finite state machine, controlled by the following events:
988  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
989  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
990  * 3. Loss detection event of two flavors:
991  *	A. Scoreboard estimator decided the packet is lost.
992  *	   A'. Reno "three dupacks" marks head of queue lost.
993  *	   A''. Its FACK modification, head until snd.fack is lost.
994  *	B. SACK arrives sacking SND.NXT at the moment, when the
995  *	   segment was retransmitted.
996  * 4. D-SACK added new rule: D-SACK changes any tag to S.
997  *
998  * It is pleasant to note, that state diagram turns out to be commutative,
999  * so that we are allowed not to be bothered by order of our actions,
1000  * when multiple events arrive simultaneously. (see the function below).
1001  *
1002  * Reordering detection.
1003  * --------------------
1004  * Reordering metric is maximal distance, which a packet can be displaced
1005  * in packet stream. With SACKs we can estimate it:
1006  *
1007  * 1. SACK fills old hole and the corresponding segment was not
1008  *    ever retransmitted -> reordering. Alas, we cannot use it
1009  *    when segment was retransmitted.
1010  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1011  *    for retransmitted and already SACKed segment -> reordering..
1012  * Both of these heuristics are not used in Loss state, when we cannot
1013  * account for retransmits accurately.
1014  *
1015  * SACK block validation.
1016  * ----------------------
1017  *
1018  * SACK block range validation checks that the received SACK block fits to
1019  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1020  * Note that SND.UNA is not included to the range though being valid because
1021  * it means that the receiver is rather inconsistent with itself reporting
1022  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1023  * perfectly valid, however, in light of RFC2018 which explicitly states
1024  * that "SACK block MUST reflect the newest segment.  Even if the newest
1025  * segment is going to be discarded ...", not that it looks very clever
1026  * in case of head skb. Due to potentional receiver driven attacks, we
1027  * choose to avoid immediate execution of a walk in write queue due to
1028  * reneging and defer head skb's loss recovery to standard loss recovery
1029  * procedure that will eventually trigger (nothing forbids us doing this).
1030  *
1031  * Implements also blockage to start_seq wrap-around. Problem lies in the
1032  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1033  * there's no guarantee that it will be before snd_nxt (n). The problem
1034  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1035  * wrap (s_w):
1036  *
1037  *         <- outs wnd ->                          <- wrapzone ->
1038  *         u     e      n                         u_w   e_w  s n_w
1039  *         |     |      |                          |     |   |  |
1040  * |<------------+------+----- TCP seqno space --------------+---------->|
1041  * ...-- <2^31 ->|                                           |<--------...
1042  * ...---- >2^31 ------>|                                    |<--------...
1043  *
1044  * Current code wouldn't be vulnerable but it's better still to discard such
1045  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1046  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1047  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1048  * equal to the ideal case (infinite seqno space without wrap caused issues).
1049  *
1050  * With D-SACK the lower bound is extended to cover sequence space below
1051  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1052  * again, D-SACK block must not to go across snd_una (for the same reason as
1053  * for the normal SACK blocks, explained above). But there all simplicity
1054  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1055  * fully below undo_marker they do not affect behavior in anyway and can
1056  * therefore be safely ignored. In rare cases (which are more or less
1057  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1058  * fragmentation and packet reordering past skb's retransmission. To consider
1059  * them correctly, the acceptable range must be extended even more though
1060  * the exact amount is rather hard to quantify. However, tp->max_window can
1061  * be used as an exaggerated estimate.
1062  */
1063 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1064 				   u32 start_seq, u32 end_seq)
1065 {
1066 	/* Too far in future, or reversed (interpretation is ambiguous) */
1067 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1068 		return false;
1069 
1070 	/* Nasty start_seq wrap-around check (see comments above) */
1071 	if (!before(start_seq, tp->snd_nxt))
1072 		return false;
1073 
1074 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1075 	 * start_seq == snd_una is non-sensical (see comments above)
1076 	 */
1077 	if (after(start_seq, tp->snd_una))
1078 		return true;
1079 
1080 	if (!is_dsack || !tp->undo_marker)
1081 		return false;
1082 
1083 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1084 	if (after(end_seq, tp->snd_una))
1085 		return false;
1086 
1087 	if (!before(start_seq, tp->undo_marker))
1088 		return true;
1089 
1090 	/* Too old */
1091 	if (!after(end_seq, tp->undo_marker))
1092 		return false;
1093 
1094 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1095 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1096 	 */
1097 	return !before(start_seq, end_seq - tp->max_window);
1098 }
1099 
1100 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1101 			    struct tcp_sack_block_wire *sp, int num_sacks,
1102 			    u32 prior_snd_una)
1103 {
1104 	struct tcp_sock *tp = tcp_sk(sk);
1105 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1106 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1107 	bool dup_sack = false;
1108 
1109 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1110 		dup_sack = true;
1111 		tcp_dsack_seen(tp);
1112 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1113 	} else if (num_sacks > 1) {
1114 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1115 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1116 
1117 		if (!after(end_seq_0, end_seq_1) &&
1118 		    !before(start_seq_0, start_seq_1)) {
1119 			dup_sack = true;
1120 			tcp_dsack_seen(tp);
1121 			NET_INC_STATS(sock_net(sk),
1122 					LINUX_MIB_TCPDSACKOFORECV);
1123 		}
1124 	}
1125 
1126 	/* D-SACK for already forgotten data... Do dumb counting. */
1127 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1128 	    !after(end_seq_0, prior_snd_una) &&
1129 	    after(end_seq_0, tp->undo_marker))
1130 		tp->undo_retrans--;
1131 
1132 	return dup_sack;
1133 }
1134 
1135 struct tcp_sacktag_state {
1136 	int	reord;
1137 	int	fack_count;
1138 	/* Timestamps for earliest and latest never-retransmitted segment
1139 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1140 	 * but congestion control should still get an accurate delay signal.
1141 	 */
1142 	u64	first_sackt;
1143 	u64	last_sackt;
1144 	struct rate_sample *rate;
1145 	int	flag;
1146 };
1147 
1148 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1149  * the incoming SACK may not exactly match but we can find smaller MSS
1150  * aligned portion of it that matches. Therefore we might need to fragment
1151  * which may fail and creates some hassle (caller must handle error case
1152  * returns).
1153  *
1154  * FIXME: this could be merged to shift decision code
1155  */
1156 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1157 				  u32 start_seq, u32 end_seq)
1158 {
1159 	int err;
1160 	bool in_sack;
1161 	unsigned int pkt_len;
1162 	unsigned int mss;
1163 
1164 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1165 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1166 
1167 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1168 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1169 		mss = tcp_skb_mss(skb);
1170 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1171 
1172 		if (!in_sack) {
1173 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1174 			if (pkt_len < mss)
1175 				pkt_len = mss;
1176 		} else {
1177 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1178 			if (pkt_len < mss)
1179 				return -EINVAL;
1180 		}
1181 
1182 		/* Round if necessary so that SACKs cover only full MSSes
1183 		 * and/or the remaining small portion (if present)
1184 		 */
1185 		if (pkt_len > mss) {
1186 			unsigned int new_len = (pkt_len / mss) * mss;
1187 			if (!in_sack && new_len < pkt_len)
1188 				new_len += mss;
1189 			pkt_len = new_len;
1190 		}
1191 
1192 		if (pkt_len >= skb->len && !in_sack)
1193 			return 0;
1194 
1195 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1196 		if (err < 0)
1197 			return err;
1198 	}
1199 
1200 	return in_sack;
1201 }
1202 
1203 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1204 static u8 tcp_sacktag_one(struct sock *sk,
1205 			  struct tcp_sacktag_state *state, u8 sacked,
1206 			  u32 start_seq, u32 end_seq,
1207 			  int dup_sack, int pcount,
1208 			  u64 xmit_time)
1209 {
1210 	struct tcp_sock *tp = tcp_sk(sk);
1211 	int fack_count = state->fack_count;
1212 
1213 	/* Account D-SACK for retransmitted packet. */
1214 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1215 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1216 		    after(end_seq, tp->undo_marker))
1217 			tp->undo_retrans--;
1218 		if (sacked & TCPCB_SACKED_ACKED)
1219 			state->reord = min(fack_count, state->reord);
1220 	}
1221 
1222 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1223 	if (!after(end_seq, tp->snd_una))
1224 		return sacked;
1225 
1226 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1227 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1228 
1229 		if (sacked & TCPCB_SACKED_RETRANS) {
1230 			/* If the segment is not tagged as lost,
1231 			 * we do not clear RETRANS, believing
1232 			 * that retransmission is still in flight.
1233 			 */
1234 			if (sacked & TCPCB_LOST) {
1235 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1236 				tp->lost_out -= pcount;
1237 				tp->retrans_out -= pcount;
1238 			}
1239 		} else {
1240 			if (!(sacked & TCPCB_RETRANS)) {
1241 				/* New sack for not retransmitted frame,
1242 				 * which was in hole. It is reordering.
1243 				 */
1244 				if (before(start_seq,
1245 					   tcp_highest_sack_seq(tp)))
1246 					state->reord = min(fack_count,
1247 							   state->reord);
1248 				if (!after(end_seq, tp->high_seq))
1249 					state->flag |= FLAG_ORIG_SACK_ACKED;
1250 				if (state->first_sackt == 0)
1251 					state->first_sackt = xmit_time;
1252 				state->last_sackt = xmit_time;
1253 			}
1254 
1255 			if (sacked & TCPCB_LOST) {
1256 				sacked &= ~TCPCB_LOST;
1257 				tp->lost_out -= pcount;
1258 			}
1259 		}
1260 
1261 		sacked |= TCPCB_SACKED_ACKED;
1262 		state->flag |= FLAG_DATA_SACKED;
1263 		tp->sacked_out += pcount;
1264 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1265 
1266 		fack_count += pcount;
1267 
1268 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1269 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1270 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1271 			tp->lost_cnt_hint += pcount;
1272 
1273 		if (fack_count > tp->fackets_out)
1274 			tp->fackets_out = fack_count;
1275 	}
1276 
1277 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1278 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1279 	 * are accounted above as well.
1280 	 */
1281 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1282 		sacked &= ~TCPCB_SACKED_RETRANS;
1283 		tp->retrans_out -= pcount;
1284 	}
1285 
1286 	return sacked;
1287 }
1288 
1289 /* Shift newly-SACKed bytes from this skb to the immediately previous
1290  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1291  */
1292 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1293 			    struct tcp_sacktag_state *state,
1294 			    unsigned int pcount, int shifted, int mss,
1295 			    bool dup_sack)
1296 {
1297 	struct tcp_sock *tp = tcp_sk(sk);
1298 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1299 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1300 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1301 
1302 	BUG_ON(!pcount);
1303 
1304 	/* Adjust counters and hints for the newly sacked sequence
1305 	 * range but discard the return value since prev is already
1306 	 * marked. We must tag the range first because the seq
1307 	 * advancement below implicitly advances
1308 	 * tcp_highest_sack_seq() when skb is highest_sack.
1309 	 */
1310 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1311 			start_seq, end_seq, dup_sack, pcount,
1312 			skb->skb_mstamp);
1313 	tcp_rate_skb_delivered(sk, skb, state->rate);
1314 
1315 	if (skb == tp->lost_skb_hint)
1316 		tp->lost_cnt_hint += pcount;
1317 
1318 	TCP_SKB_CB(prev)->end_seq += shifted;
1319 	TCP_SKB_CB(skb)->seq += shifted;
1320 
1321 	tcp_skb_pcount_add(prev, pcount);
1322 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1323 	tcp_skb_pcount_add(skb, -pcount);
1324 
1325 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1326 	 * in theory this shouldn't be necessary but as long as DSACK
1327 	 * code can come after this skb later on it's better to keep
1328 	 * setting gso_size to something.
1329 	 */
1330 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1331 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1332 
1333 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1334 	if (tcp_skb_pcount(skb) <= 1)
1335 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1336 
1337 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1338 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1339 
1340 	if (skb->len > 0) {
1341 		BUG_ON(!tcp_skb_pcount(skb));
1342 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1343 		return false;
1344 	}
1345 
1346 	/* Whole SKB was eaten :-) */
1347 
1348 	if (skb == tp->retransmit_skb_hint)
1349 		tp->retransmit_skb_hint = prev;
1350 	if (skb == tp->lost_skb_hint) {
1351 		tp->lost_skb_hint = prev;
1352 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1353 	}
1354 
1355 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1356 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1357 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1358 		TCP_SKB_CB(prev)->end_seq++;
1359 
1360 	if (skb == tcp_highest_sack(sk))
1361 		tcp_advance_highest_sack(sk, skb);
1362 
1363 	tcp_skb_collapse_tstamp(prev, skb);
1364 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1365 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1366 
1367 	tcp_unlink_write_queue(skb, sk);
1368 	sk_wmem_free_skb(sk, skb);
1369 
1370 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1371 
1372 	return true;
1373 }
1374 
1375 /* I wish gso_size would have a bit more sane initialization than
1376  * something-or-zero which complicates things
1377  */
1378 static int tcp_skb_seglen(const struct sk_buff *skb)
1379 {
1380 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1381 }
1382 
1383 /* Shifting pages past head area doesn't work */
1384 static int skb_can_shift(const struct sk_buff *skb)
1385 {
1386 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1387 }
1388 
1389 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1390  * skb.
1391  */
1392 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1393 					  struct tcp_sacktag_state *state,
1394 					  u32 start_seq, u32 end_seq,
1395 					  bool dup_sack)
1396 {
1397 	struct tcp_sock *tp = tcp_sk(sk);
1398 	struct sk_buff *prev;
1399 	int mss;
1400 	int pcount = 0;
1401 	int len;
1402 	int in_sack;
1403 
1404 	if (!sk_can_gso(sk))
1405 		goto fallback;
1406 
1407 	/* Normally R but no L won't result in plain S */
1408 	if (!dup_sack &&
1409 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1410 		goto fallback;
1411 	if (!skb_can_shift(skb))
1412 		goto fallback;
1413 	/* This frame is about to be dropped (was ACKed). */
1414 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1415 		goto fallback;
1416 
1417 	/* Can only happen with delayed DSACK + discard craziness */
1418 	if (unlikely(skb == tcp_write_queue_head(sk)))
1419 		goto fallback;
1420 	prev = tcp_write_queue_prev(sk, skb);
1421 
1422 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1423 		goto fallback;
1424 
1425 	if (!tcp_skb_can_collapse_to(prev))
1426 		goto fallback;
1427 
1428 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430 
1431 	if (in_sack) {
1432 		len = skb->len;
1433 		pcount = tcp_skb_pcount(skb);
1434 		mss = tcp_skb_seglen(skb);
1435 
1436 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1437 		 * drop this restriction as unnecessary
1438 		 */
1439 		if (mss != tcp_skb_seglen(prev))
1440 			goto fallback;
1441 	} else {
1442 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443 			goto noop;
1444 		/* CHECKME: This is non-MSS split case only?, this will
1445 		 * cause skipped skbs due to advancing loop btw, original
1446 		 * has that feature too
1447 		 */
1448 		if (tcp_skb_pcount(skb) <= 1)
1449 			goto noop;
1450 
1451 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452 		if (!in_sack) {
1453 			/* TODO: head merge to next could be attempted here
1454 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455 			 * though it might not be worth of the additional hassle
1456 			 *
1457 			 * ...we can probably just fallback to what was done
1458 			 * previously. We could try merging non-SACKed ones
1459 			 * as well but it probably isn't going to buy off
1460 			 * because later SACKs might again split them, and
1461 			 * it would make skb timestamp tracking considerably
1462 			 * harder problem.
1463 			 */
1464 			goto fallback;
1465 		}
1466 
1467 		len = end_seq - TCP_SKB_CB(skb)->seq;
1468 		BUG_ON(len < 0);
1469 		BUG_ON(len > skb->len);
1470 
1471 		/* MSS boundaries should be honoured or else pcount will
1472 		 * severely break even though it makes things bit trickier.
1473 		 * Optimize common case to avoid most of the divides
1474 		 */
1475 		mss = tcp_skb_mss(skb);
1476 
1477 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1478 		 * drop this restriction as unnecessary
1479 		 */
1480 		if (mss != tcp_skb_seglen(prev))
1481 			goto fallback;
1482 
1483 		if (len == mss) {
1484 			pcount = 1;
1485 		} else if (len < mss) {
1486 			goto noop;
1487 		} else {
1488 			pcount = len / mss;
1489 			len = pcount * mss;
1490 		}
1491 	}
1492 
1493 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495 		goto fallback;
1496 
1497 	if (!skb_shift(prev, skb, len))
1498 		goto fallback;
1499 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1500 		goto out;
1501 
1502 	/* Hole filled allows collapsing with the next as well, this is very
1503 	 * useful when hole on every nth skb pattern happens
1504 	 */
1505 	if (prev == tcp_write_queue_tail(sk))
1506 		goto out;
1507 	skb = tcp_write_queue_next(sk, prev);
1508 
1509 	if (!skb_can_shift(skb) ||
1510 	    (skb == tcp_send_head(sk)) ||
1511 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1512 	    (mss != tcp_skb_seglen(skb)))
1513 		goto out;
1514 
1515 	len = skb->len;
1516 	if (skb_shift(prev, skb, len)) {
1517 		pcount += tcp_skb_pcount(skb);
1518 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1519 	}
1520 
1521 out:
1522 	state->fack_count += pcount;
1523 	return prev;
1524 
1525 noop:
1526 	return skb;
1527 
1528 fallback:
1529 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1530 	return NULL;
1531 }
1532 
1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1534 					struct tcp_sack_block *next_dup,
1535 					struct tcp_sacktag_state *state,
1536 					u32 start_seq, u32 end_seq,
1537 					bool dup_sack_in)
1538 {
1539 	struct tcp_sock *tp = tcp_sk(sk);
1540 	struct sk_buff *tmp;
1541 
1542 	tcp_for_write_queue_from(skb, sk) {
1543 		int in_sack = 0;
1544 		bool dup_sack = dup_sack_in;
1545 
1546 		if (skb == tcp_send_head(sk))
1547 			break;
1548 
1549 		/* queue is in-order => we can short-circuit the walk early */
1550 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1551 			break;
1552 
1553 		if (next_dup  &&
1554 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1555 			in_sack = tcp_match_skb_to_sack(sk, skb,
1556 							next_dup->start_seq,
1557 							next_dup->end_seq);
1558 			if (in_sack > 0)
1559 				dup_sack = true;
1560 		}
1561 
1562 		/* skb reference here is a bit tricky to get right, since
1563 		 * shifting can eat and free both this skb and the next,
1564 		 * so not even _safe variant of the loop is enough.
1565 		 */
1566 		if (in_sack <= 0) {
1567 			tmp = tcp_shift_skb_data(sk, skb, state,
1568 						 start_seq, end_seq, dup_sack);
1569 			if (tmp) {
1570 				if (tmp != skb) {
1571 					skb = tmp;
1572 					continue;
1573 				}
1574 
1575 				in_sack = 0;
1576 			} else {
1577 				in_sack = tcp_match_skb_to_sack(sk, skb,
1578 								start_seq,
1579 								end_seq);
1580 			}
1581 		}
1582 
1583 		if (unlikely(in_sack < 0))
1584 			break;
1585 
1586 		if (in_sack) {
1587 			TCP_SKB_CB(skb)->sacked =
1588 				tcp_sacktag_one(sk,
1589 						state,
1590 						TCP_SKB_CB(skb)->sacked,
1591 						TCP_SKB_CB(skb)->seq,
1592 						TCP_SKB_CB(skb)->end_seq,
1593 						dup_sack,
1594 						tcp_skb_pcount(skb),
1595 						skb->skb_mstamp);
1596 			tcp_rate_skb_delivered(sk, skb, state->rate);
1597 
1598 			if (!before(TCP_SKB_CB(skb)->seq,
1599 				    tcp_highest_sack_seq(tp)))
1600 				tcp_advance_highest_sack(sk, skb);
1601 		}
1602 
1603 		state->fack_count += tcp_skb_pcount(skb);
1604 	}
1605 	return skb;
1606 }
1607 
1608 /* Avoid all extra work that is being done by sacktag while walking in
1609  * a normal way
1610  */
1611 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1612 					struct tcp_sacktag_state *state,
1613 					u32 skip_to_seq)
1614 {
1615 	tcp_for_write_queue_from(skb, sk) {
1616 		if (skb == tcp_send_head(sk))
1617 			break;
1618 
1619 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1620 			break;
1621 
1622 		state->fack_count += tcp_skb_pcount(skb);
1623 	}
1624 	return skb;
1625 }
1626 
1627 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1628 						struct sock *sk,
1629 						struct tcp_sack_block *next_dup,
1630 						struct tcp_sacktag_state *state,
1631 						u32 skip_to_seq)
1632 {
1633 	if (!next_dup)
1634 		return skb;
1635 
1636 	if (before(next_dup->start_seq, skip_to_seq)) {
1637 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1638 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1639 				       next_dup->start_seq, next_dup->end_seq,
1640 				       1);
1641 	}
1642 
1643 	return skb;
1644 }
1645 
1646 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1647 {
1648 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1649 }
1650 
1651 static int
1652 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1653 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1654 {
1655 	struct tcp_sock *tp = tcp_sk(sk);
1656 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1657 				    TCP_SKB_CB(ack_skb)->sacked);
1658 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1659 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1660 	struct tcp_sack_block *cache;
1661 	struct sk_buff *skb;
1662 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1663 	int used_sacks;
1664 	bool found_dup_sack = false;
1665 	int i, j;
1666 	int first_sack_index;
1667 
1668 	state->flag = 0;
1669 	state->reord = tp->packets_out;
1670 
1671 	if (!tp->sacked_out) {
1672 		if (WARN_ON(tp->fackets_out))
1673 			tp->fackets_out = 0;
1674 		tcp_highest_sack_reset(sk);
1675 	}
1676 
1677 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1678 					 num_sacks, prior_snd_una);
1679 	if (found_dup_sack) {
1680 		state->flag |= FLAG_DSACKING_ACK;
1681 		tp->delivered++; /* A spurious retransmission is delivered */
1682 	}
1683 
1684 	/* Eliminate too old ACKs, but take into
1685 	 * account more or less fresh ones, they can
1686 	 * contain valid SACK info.
1687 	 */
1688 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1689 		return 0;
1690 
1691 	if (!tp->packets_out)
1692 		goto out;
1693 
1694 	used_sacks = 0;
1695 	first_sack_index = 0;
1696 	for (i = 0; i < num_sacks; i++) {
1697 		bool dup_sack = !i && found_dup_sack;
1698 
1699 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1700 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1701 
1702 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1703 					    sp[used_sacks].start_seq,
1704 					    sp[used_sacks].end_seq)) {
1705 			int mib_idx;
1706 
1707 			if (dup_sack) {
1708 				if (!tp->undo_marker)
1709 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1710 				else
1711 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1712 			} else {
1713 				/* Don't count olds caused by ACK reordering */
1714 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1715 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1716 					continue;
1717 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1718 			}
1719 
1720 			NET_INC_STATS(sock_net(sk), mib_idx);
1721 			if (i == 0)
1722 				first_sack_index = -1;
1723 			continue;
1724 		}
1725 
1726 		/* Ignore very old stuff early */
1727 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1728 			continue;
1729 
1730 		used_sacks++;
1731 	}
1732 
1733 	/* order SACK blocks to allow in order walk of the retrans queue */
1734 	for (i = used_sacks - 1; i > 0; i--) {
1735 		for (j = 0; j < i; j++) {
1736 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1737 				swap(sp[j], sp[j + 1]);
1738 
1739 				/* Track where the first SACK block goes to */
1740 				if (j == first_sack_index)
1741 					first_sack_index = j + 1;
1742 			}
1743 		}
1744 	}
1745 
1746 	skb = tcp_write_queue_head(sk);
1747 	state->fack_count = 0;
1748 	i = 0;
1749 
1750 	if (!tp->sacked_out) {
1751 		/* It's already past, so skip checking against it */
1752 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1753 	} else {
1754 		cache = tp->recv_sack_cache;
1755 		/* Skip empty blocks in at head of the cache */
1756 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1757 		       !cache->end_seq)
1758 			cache++;
1759 	}
1760 
1761 	while (i < used_sacks) {
1762 		u32 start_seq = sp[i].start_seq;
1763 		u32 end_seq = sp[i].end_seq;
1764 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1765 		struct tcp_sack_block *next_dup = NULL;
1766 
1767 		if (found_dup_sack && ((i + 1) == first_sack_index))
1768 			next_dup = &sp[i + 1];
1769 
1770 		/* Skip too early cached blocks */
1771 		while (tcp_sack_cache_ok(tp, cache) &&
1772 		       !before(start_seq, cache->end_seq))
1773 			cache++;
1774 
1775 		/* Can skip some work by looking recv_sack_cache? */
1776 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1777 		    after(end_seq, cache->start_seq)) {
1778 
1779 			/* Head todo? */
1780 			if (before(start_seq, cache->start_seq)) {
1781 				skb = tcp_sacktag_skip(skb, sk, state,
1782 						       start_seq);
1783 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1784 						       state,
1785 						       start_seq,
1786 						       cache->start_seq,
1787 						       dup_sack);
1788 			}
1789 
1790 			/* Rest of the block already fully processed? */
1791 			if (!after(end_seq, cache->end_seq))
1792 				goto advance_sp;
1793 
1794 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1795 						       state,
1796 						       cache->end_seq);
1797 
1798 			/* ...tail remains todo... */
1799 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1800 				/* ...but better entrypoint exists! */
1801 				skb = tcp_highest_sack(sk);
1802 				if (!skb)
1803 					break;
1804 				state->fack_count = tp->fackets_out;
1805 				cache++;
1806 				goto walk;
1807 			}
1808 
1809 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1810 			/* Check overlap against next cached too (past this one already) */
1811 			cache++;
1812 			continue;
1813 		}
1814 
1815 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1816 			skb = tcp_highest_sack(sk);
1817 			if (!skb)
1818 				break;
1819 			state->fack_count = tp->fackets_out;
1820 		}
1821 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1822 
1823 walk:
1824 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1825 				       start_seq, end_seq, dup_sack);
1826 
1827 advance_sp:
1828 		i++;
1829 	}
1830 
1831 	/* Clear the head of the cache sack blocks so we can skip it next time */
1832 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1833 		tp->recv_sack_cache[i].start_seq = 0;
1834 		tp->recv_sack_cache[i].end_seq = 0;
1835 	}
1836 	for (j = 0; j < used_sacks; j++)
1837 		tp->recv_sack_cache[i++] = sp[j];
1838 
1839 	if ((state->reord < tp->fackets_out) &&
1840 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1841 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1842 
1843 	tcp_verify_left_out(tp);
1844 out:
1845 
1846 #if FASTRETRANS_DEBUG > 0
1847 	WARN_ON((int)tp->sacked_out < 0);
1848 	WARN_ON((int)tp->lost_out < 0);
1849 	WARN_ON((int)tp->retrans_out < 0);
1850 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1851 #endif
1852 	return state->flag;
1853 }
1854 
1855 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1856  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1857  */
1858 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1859 {
1860 	u32 holes;
1861 
1862 	holes = max(tp->lost_out, 1U);
1863 	holes = min(holes, tp->packets_out);
1864 
1865 	if ((tp->sacked_out + holes) > tp->packets_out) {
1866 		tp->sacked_out = tp->packets_out - holes;
1867 		return true;
1868 	}
1869 	return false;
1870 }
1871 
1872 /* If we receive more dupacks than we expected counting segments
1873  * in assumption of absent reordering, interpret this as reordering.
1874  * The only another reason could be bug in receiver TCP.
1875  */
1876 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1877 {
1878 	struct tcp_sock *tp = tcp_sk(sk);
1879 	if (tcp_limit_reno_sacked(tp))
1880 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1881 }
1882 
1883 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1884 
1885 static void tcp_add_reno_sack(struct sock *sk)
1886 {
1887 	struct tcp_sock *tp = tcp_sk(sk);
1888 	u32 prior_sacked = tp->sacked_out;
1889 
1890 	tp->sacked_out++;
1891 	tcp_check_reno_reordering(sk, 0);
1892 	if (tp->sacked_out > prior_sacked)
1893 		tp->delivered++; /* Some out-of-order packet is delivered */
1894 	tcp_verify_left_out(tp);
1895 }
1896 
1897 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1898 
1899 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1900 {
1901 	struct tcp_sock *tp = tcp_sk(sk);
1902 
1903 	if (acked > 0) {
1904 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1905 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1906 		if (acked - 1 >= tp->sacked_out)
1907 			tp->sacked_out = 0;
1908 		else
1909 			tp->sacked_out -= acked - 1;
1910 	}
1911 	tcp_check_reno_reordering(sk, acked);
1912 	tcp_verify_left_out(tp);
1913 }
1914 
1915 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1916 {
1917 	tp->sacked_out = 0;
1918 }
1919 
1920 void tcp_clear_retrans(struct tcp_sock *tp)
1921 {
1922 	tp->retrans_out = 0;
1923 	tp->lost_out = 0;
1924 	tp->undo_marker = 0;
1925 	tp->undo_retrans = -1;
1926 	tp->fackets_out = 0;
1927 	tp->sacked_out = 0;
1928 }
1929 
1930 static inline void tcp_init_undo(struct tcp_sock *tp)
1931 {
1932 	tp->undo_marker = tp->snd_una;
1933 	/* Retransmission still in flight may cause DSACKs later. */
1934 	tp->undo_retrans = tp->retrans_out ? : -1;
1935 }
1936 
1937 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1938  * and reset tags completely, otherwise preserve SACKs. If receiver
1939  * dropped its ofo queue, we will know this due to reneging detection.
1940  */
1941 void tcp_enter_loss(struct sock *sk)
1942 {
1943 	const struct inet_connection_sock *icsk = inet_csk(sk);
1944 	struct tcp_sock *tp = tcp_sk(sk);
1945 	struct net *net = sock_net(sk);
1946 	struct sk_buff *skb;
1947 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1948 	bool is_reneg;			/* is receiver reneging on SACKs? */
1949 	bool mark_lost;
1950 
1951 	/* Reduce ssthresh if it has not yet been made inside this window. */
1952 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1953 	    !after(tp->high_seq, tp->snd_una) ||
1954 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1955 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1956 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1957 		tcp_ca_event(sk, CA_EVENT_LOSS);
1958 		tcp_init_undo(tp);
1959 	}
1960 	tp->snd_cwnd	   = 1;
1961 	tp->snd_cwnd_cnt   = 0;
1962 	tp->snd_cwnd_stamp = tcp_jiffies32;
1963 
1964 	tp->retrans_out = 0;
1965 	tp->lost_out = 0;
1966 
1967 	if (tcp_is_reno(tp))
1968 		tcp_reset_reno_sack(tp);
1969 
1970 	skb = tcp_write_queue_head(sk);
1971 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1972 	if (is_reneg) {
1973 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1974 		tp->sacked_out = 0;
1975 		tp->fackets_out = 0;
1976 	}
1977 	tcp_clear_all_retrans_hints(tp);
1978 
1979 	tcp_for_write_queue(skb, sk) {
1980 		if (skb == tcp_send_head(sk))
1981 			break;
1982 
1983 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1984 			     is_reneg);
1985 		if (mark_lost)
1986 			tcp_sum_lost(tp, skb);
1987 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1988 		if (mark_lost) {
1989 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1990 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1991 			tp->lost_out += tcp_skb_pcount(skb);
1992 		}
1993 	}
1994 	tcp_verify_left_out(tp);
1995 
1996 	/* Timeout in disordered state after receiving substantial DUPACKs
1997 	 * suggests that the degree of reordering is over-estimated.
1998 	 */
1999 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2000 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2001 		tp->reordering = min_t(unsigned int, tp->reordering,
2002 				       net->ipv4.sysctl_tcp_reordering);
2003 	tcp_set_ca_state(sk, TCP_CA_Loss);
2004 	tp->high_seq = tp->snd_nxt;
2005 	tcp_ecn_queue_cwr(tp);
2006 
2007 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2008 	 * loss recovery is underway except recurring timeout(s) on
2009 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2010 	 *
2011 	 * In theory F-RTO can be used repeatedly during loss recovery.
2012 	 * In practice this interacts badly with broken middle-boxes that
2013 	 * falsely raise the receive window, which results in repeated
2014 	 * timeouts and stop-and-go behavior.
2015 	 */
2016 	tp->frto = sysctl_tcp_frto &&
2017 		   (new_recovery || icsk->icsk_retransmits) &&
2018 		   !inet_csk(sk)->icsk_mtup.probe_size;
2019 }
2020 
2021 /* If ACK arrived pointing to a remembered SACK, it means that our
2022  * remembered SACKs do not reflect real state of receiver i.e.
2023  * receiver _host_ is heavily congested (or buggy).
2024  *
2025  * To avoid big spurious retransmission bursts due to transient SACK
2026  * scoreboard oddities that look like reneging, we give the receiver a
2027  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2028  * restore sanity to the SACK scoreboard. If the apparent reneging
2029  * persists until this RTO then we'll clear the SACK scoreboard.
2030  */
2031 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2032 {
2033 	if (flag & FLAG_SACK_RENEGING) {
2034 		struct tcp_sock *tp = tcp_sk(sk);
2035 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2036 					  msecs_to_jiffies(10));
2037 
2038 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2039 					  delay, TCP_RTO_MAX);
2040 		return true;
2041 	}
2042 	return false;
2043 }
2044 
2045 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2046 {
2047 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2048 }
2049 
2050 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2051  * counter when SACK is enabled (without SACK, sacked_out is used for
2052  * that purpose).
2053  *
2054  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2055  * segments up to the highest received SACK block so far and holes in
2056  * between them.
2057  *
2058  * With reordering, holes may still be in flight, so RFC3517 recovery
2059  * uses pure sacked_out (total number of SACKed segments) even though
2060  * it violates the RFC that uses duplicate ACKs, often these are equal
2061  * but when e.g. out-of-window ACKs or packet duplication occurs,
2062  * they differ. Since neither occurs due to loss, TCP should really
2063  * ignore them.
2064  */
2065 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2066 {
2067 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2068 }
2069 
2070 /* Linux NewReno/SACK/FACK/ECN state machine.
2071  * --------------------------------------
2072  *
2073  * "Open"	Normal state, no dubious events, fast path.
2074  * "Disorder"   In all the respects it is "Open",
2075  *		but requires a bit more attention. It is entered when
2076  *		we see some SACKs or dupacks. It is split of "Open"
2077  *		mainly to move some processing from fast path to slow one.
2078  * "CWR"	CWND was reduced due to some Congestion Notification event.
2079  *		It can be ECN, ICMP source quench, local device congestion.
2080  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2081  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2082  *
2083  * tcp_fastretrans_alert() is entered:
2084  * - each incoming ACK, if state is not "Open"
2085  * - when arrived ACK is unusual, namely:
2086  *	* SACK
2087  *	* Duplicate ACK.
2088  *	* ECN ECE.
2089  *
2090  * Counting packets in flight is pretty simple.
2091  *
2092  *	in_flight = packets_out - left_out + retrans_out
2093  *
2094  *	packets_out is SND.NXT-SND.UNA counted in packets.
2095  *
2096  *	retrans_out is number of retransmitted segments.
2097  *
2098  *	left_out is number of segments left network, but not ACKed yet.
2099  *
2100  *		left_out = sacked_out + lost_out
2101  *
2102  *     sacked_out: Packets, which arrived to receiver out of order
2103  *		   and hence not ACKed. With SACKs this number is simply
2104  *		   amount of SACKed data. Even without SACKs
2105  *		   it is easy to give pretty reliable estimate of this number,
2106  *		   counting duplicate ACKs.
2107  *
2108  *       lost_out: Packets lost by network. TCP has no explicit
2109  *		   "loss notification" feedback from network (for now).
2110  *		   It means that this number can be only _guessed_.
2111  *		   Actually, it is the heuristics to predict lossage that
2112  *		   distinguishes different algorithms.
2113  *
2114  *	F.e. after RTO, when all the queue is considered as lost,
2115  *	lost_out = packets_out and in_flight = retrans_out.
2116  *
2117  *		Essentially, we have now a few algorithms detecting
2118  *		lost packets.
2119  *
2120  *		If the receiver supports SACK:
2121  *
2122  *		RFC6675/3517: It is the conventional algorithm. A packet is
2123  *		considered lost if the number of higher sequence packets
2124  *		SACKed is greater than or equal the DUPACK thoreshold
2125  *		(reordering). This is implemented in tcp_mark_head_lost and
2126  *		tcp_update_scoreboard.
2127  *
2128  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2129  *		(2017-) that checks timing instead of counting DUPACKs.
2130  *		Essentially a packet is considered lost if it's not S/ACKed
2131  *		after RTT + reordering_window, where both metrics are
2132  *		dynamically measured and adjusted. This is implemented in
2133  *		tcp_rack_mark_lost.
2134  *
2135  *		FACK (Disabled by default. Subsumbed by RACK):
2136  *		It is the simplest heuristics. As soon as we decided
2137  *		that something is lost, we decide that _all_ not SACKed
2138  *		packets until the most forward SACK are lost. I.e.
2139  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2140  *		It is absolutely correct estimate, if network does not reorder
2141  *		packets. And it loses any connection to reality when reordering
2142  *		takes place. We use FACK by default until reordering
2143  *		is suspected on the path to this destination.
2144  *
2145  *		If the receiver does not support SACK:
2146  *
2147  *		NewReno (RFC6582): in Recovery we assume that one segment
2148  *		is lost (classic Reno). While we are in Recovery and
2149  *		a partial ACK arrives, we assume that one more packet
2150  *		is lost (NewReno). This heuristics are the same in NewReno
2151  *		and SACK.
2152  *
2153  * Really tricky (and requiring careful tuning) part of algorithm
2154  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2155  * The first determines the moment _when_ we should reduce CWND and,
2156  * hence, slow down forward transmission. In fact, it determines the moment
2157  * when we decide that hole is caused by loss, rather than by a reorder.
2158  *
2159  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2160  * holes, caused by lost packets.
2161  *
2162  * And the most logically complicated part of algorithm is undo
2163  * heuristics. We detect false retransmits due to both too early
2164  * fast retransmit (reordering) and underestimated RTO, analyzing
2165  * timestamps and D-SACKs. When we detect that some segments were
2166  * retransmitted by mistake and CWND reduction was wrong, we undo
2167  * window reduction and abort recovery phase. This logic is hidden
2168  * inside several functions named tcp_try_undo_<something>.
2169  */
2170 
2171 /* This function decides, when we should leave Disordered state
2172  * and enter Recovery phase, reducing congestion window.
2173  *
2174  * Main question: may we further continue forward transmission
2175  * with the same cwnd?
2176  */
2177 static bool tcp_time_to_recover(struct sock *sk, int flag)
2178 {
2179 	struct tcp_sock *tp = tcp_sk(sk);
2180 
2181 	/* Trick#1: The loss is proven. */
2182 	if (tp->lost_out)
2183 		return true;
2184 
2185 	/* Not-A-Trick#2 : Classic rule... */
2186 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2187 		return true;
2188 
2189 	return false;
2190 }
2191 
2192 /* Detect loss in event "A" above by marking head of queue up as lost.
2193  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2194  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2195  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2196  * the maximum SACKed segments to pass before reaching this limit.
2197  */
2198 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2199 {
2200 	struct tcp_sock *tp = tcp_sk(sk);
2201 	struct sk_buff *skb;
2202 	int cnt, oldcnt, lost;
2203 	unsigned int mss;
2204 	/* Use SACK to deduce losses of new sequences sent during recovery */
2205 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2206 
2207 	WARN_ON(packets > tp->packets_out);
2208 	if (tp->lost_skb_hint) {
2209 		skb = tp->lost_skb_hint;
2210 		cnt = tp->lost_cnt_hint;
2211 		/* Head already handled? */
2212 		if (mark_head && skb != tcp_write_queue_head(sk))
2213 			return;
2214 	} else {
2215 		skb = tcp_write_queue_head(sk);
2216 		cnt = 0;
2217 	}
2218 
2219 	tcp_for_write_queue_from(skb, sk) {
2220 		if (skb == tcp_send_head(sk))
2221 			break;
2222 		/* TODO: do this better */
2223 		/* this is not the most efficient way to do this... */
2224 		tp->lost_skb_hint = skb;
2225 		tp->lost_cnt_hint = cnt;
2226 
2227 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2228 			break;
2229 
2230 		oldcnt = cnt;
2231 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2232 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2233 			cnt += tcp_skb_pcount(skb);
2234 
2235 		if (cnt > packets) {
2236 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2237 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2238 			    (oldcnt >= packets))
2239 				break;
2240 
2241 			mss = tcp_skb_mss(skb);
2242 			/* If needed, chop off the prefix to mark as lost. */
2243 			lost = (packets - oldcnt) * mss;
2244 			if (lost < skb->len &&
2245 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2246 				break;
2247 			cnt = packets;
2248 		}
2249 
2250 		tcp_skb_mark_lost(tp, skb);
2251 
2252 		if (mark_head)
2253 			break;
2254 	}
2255 	tcp_verify_left_out(tp);
2256 }
2257 
2258 /* Account newly detected lost packet(s) */
2259 
2260 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2261 {
2262 	struct tcp_sock *tp = tcp_sk(sk);
2263 
2264 	if (tcp_is_reno(tp)) {
2265 		tcp_mark_head_lost(sk, 1, 1);
2266 	} else if (tcp_is_fack(tp)) {
2267 		int lost = tp->fackets_out - tp->reordering;
2268 		if (lost <= 0)
2269 			lost = 1;
2270 		tcp_mark_head_lost(sk, lost, 0);
2271 	} else {
2272 		int sacked_upto = tp->sacked_out - tp->reordering;
2273 		if (sacked_upto >= 0)
2274 			tcp_mark_head_lost(sk, sacked_upto, 0);
2275 		else if (fast_rexmit)
2276 			tcp_mark_head_lost(sk, 1, 1);
2277 	}
2278 }
2279 
2280 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2281 {
2282 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2283 	       before(tp->rx_opt.rcv_tsecr, when);
2284 }
2285 
2286 /* skb is spurious retransmitted if the returned timestamp echo
2287  * reply is prior to the skb transmission time
2288  */
2289 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2290 				     const struct sk_buff *skb)
2291 {
2292 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2293 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2294 }
2295 
2296 /* Nothing was retransmitted or returned timestamp is less
2297  * than timestamp of the first retransmission.
2298  */
2299 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2300 {
2301 	return !tp->retrans_stamp ||
2302 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2303 }
2304 
2305 /* Undo procedures. */
2306 
2307 /* We can clear retrans_stamp when there are no retransmissions in the
2308  * window. It would seem that it is trivially available for us in
2309  * tp->retrans_out, however, that kind of assumptions doesn't consider
2310  * what will happen if errors occur when sending retransmission for the
2311  * second time. ...It could the that such segment has only
2312  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2313  * the head skb is enough except for some reneging corner cases that
2314  * are not worth the effort.
2315  *
2316  * Main reason for all this complexity is the fact that connection dying
2317  * time now depends on the validity of the retrans_stamp, in particular,
2318  * that successive retransmissions of a segment must not advance
2319  * retrans_stamp under any conditions.
2320  */
2321 static bool tcp_any_retrans_done(const struct sock *sk)
2322 {
2323 	const struct tcp_sock *tp = tcp_sk(sk);
2324 	struct sk_buff *skb;
2325 
2326 	if (tp->retrans_out)
2327 		return true;
2328 
2329 	skb = tcp_write_queue_head(sk);
2330 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2331 		return true;
2332 
2333 	return false;
2334 }
2335 
2336 #if FASTRETRANS_DEBUG > 1
2337 static void DBGUNDO(struct sock *sk, const char *msg)
2338 {
2339 	struct tcp_sock *tp = tcp_sk(sk);
2340 	struct inet_sock *inet = inet_sk(sk);
2341 
2342 	if (sk->sk_family == AF_INET) {
2343 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2344 			 msg,
2345 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2346 			 tp->snd_cwnd, tcp_left_out(tp),
2347 			 tp->snd_ssthresh, tp->prior_ssthresh,
2348 			 tp->packets_out);
2349 	}
2350 #if IS_ENABLED(CONFIG_IPV6)
2351 	else if (sk->sk_family == AF_INET6) {
2352 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2353 			 msg,
2354 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2355 			 tp->snd_cwnd, tcp_left_out(tp),
2356 			 tp->snd_ssthresh, tp->prior_ssthresh,
2357 			 tp->packets_out);
2358 	}
2359 #endif
2360 }
2361 #else
2362 #define DBGUNDO(x...) do { } while (0)
2363 #endif
2364 
2365 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2366 {
2367 	struct tcp_sock *tp = tcp_sk(sk);
2368 
2369 	if (unmark_loss) {
2370 		struct sk_buff *skb;
2371 
2372 		tcp_for_write_queue(skb, sk) {
2373 			if (skb == tcp_send_head(sk))
2374 				break;
2375 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2376 		}
2377 		tp->lost_out = 0;
2378 		tcp_clear_all_retrans_hints(tp);
2379 	}
2380 
2381 	if (tp->prior_ssthresh) {
2382 		const struct inet_connection_sock *icsk = inet_csk(sk);
2383 
2384 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2385 
2386 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2387 			tp->snd_ssthresh = tp->prior_ssthresh;
2388 			tcp_ecn_withdraw_cwr(tp);
2389 		}
2390 	}
2391 	tp->snd_cwnd_stamp = tcp_jiffies32;
2392 	tp->undo_marker = 0;
2393 }
2394 
2395 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2396 {
2397 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2398 }
2399 
2400 /* People celebrate: "We love our President!" */
2401 static bool tcp_try_undo_recovery(struct sock *sk)
2402 {
2403 	struct tcp_sock *tp = tcp_sk(sk);
2404 
2405 	if (tcp_may_undo(tp)) {
2406 		int mib_idx;
2407 
2408 		/* Happy end! We did not retransmit anything
2409 		 * or our original transmission succeeded.
2410 		 */
2411 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2412 		tcp_undo_cwnd_reduction(sk, false);
2413 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2414 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2415 		else
2416 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2417 
2418 		NET_INC_STATS(sock_net(sk), mib_idx);
2419 	}
2420 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2421 		/* Hold old state until something *above* high_seq
2422 		 * is ACKed. For Reno it is MUST to prevent false
2423 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2424 		if (!tcp_any_retrans_done(sk))
2425 			tp->retrans_stamp = 0;
2426 		return true;
2427 	}
2428 	tcp_set_ca_state(sk, TCP_CA_Open);
2429 	return false;
2430 }
2431 
2432 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2433 static bool tcp_try_undo_dsack(struct sock *sk)
2434 {
2435 	struct tcp_sock *tp = tcp_sk(sk);
2436 
2437 	if (tp->undo_marker && !tp->undo_retrans) {
2438 		DBGUNDO(sk, "D-SACK");
2439 		tcp_undo_cwnd_reduction(sk, false);
2440 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2441 		return true;
2442 	}
2443 	return false;
2444 }
2445 
2446 /* Undo during loss recovery after partial ACK or using F-RTO. */
2447 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2448 {
2449 	struct tcp_sock *tp = tcp_sk(sk);
2450 
2451 	if (frto_undo || tcp_may_undo(tp)) {
2452 		tcp_undo_cwnd_reduction(sk, true);
2453 
2454 		DBGUNDO(sk, "partial loss");
2455 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2456 		if (frto_undo)
2457 			NET_INC_STATS(sock_net(sk),
2458 					LINUX_MIB_TCPSPURIOUSRTOS);
2459 		inet_csk(sk)->icsk_retransmits = 0;
2460 		if (frto_undo || tcp_is_sack(tp))
2461 			tcp_set_ca_state(sk, TCP_CA_Open);
2462 		return true;
2463 	}
2464 	return false;
2465 }
2466 
2467 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2468  * It computes the number of packets to send (sndcnt) based on packets newly
2469  * delivered:
2470  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2471  *	cwnd reductions across a full RTT.
2472  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2473  *      But when the retransmits are acked without further losses, PRR
2474  *      slow starts cwnd up to ssthresh to speed up the recovery.
2475  */
2476 static void tcp_init_cwnd_reduction(struct sock *sk)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 
2480 	tp->high_seq = tp->snd_nxt;
2481 	tp->tlp_high_seq = 0;
2482 	tp->snd_cwnd_cnt = 0;
2483 	tp->prior_cwnd = tp->snd_cwnd;
2484 	tp->prr_delivered = 0;
2485 	tp->prr_out = 0;
2486 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2487 	tcp_ecn_queue_cwr(tp);
2488 }
2489 
2490 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 	int sndcnt = 0;
2494 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2495 
2496 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2497 		return;
2498 
2499 	tp->prr_delivered += newly_acked_sacked;
2500 	if (delta < 0) {
2501 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2502 			       tp->prior_cwnd - 1;
2503 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2504 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2505 		   !(flag & FLAG_LOST_RETRANS)) {
2506 		sndcnt = min_t(int, delta,
2507 			       max_t(int, tp->prr_delivered - tp->prr_out,
2508 				     newly_acked_sacked) + 1);
2509 	} else {
2510 		sndcnt = min(delta, newly_acked_sacked);
2511 	}
2512 	/* Force a fast retransmit upon entering fast recovery */
2513 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2514 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2515 }
2516 
2517 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2518 {
2519 	struct tcp_sock *tp = tcp_sk(sk);
2520 
2521 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2522 		return;
2523 
2524 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2525 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2526 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2527 		tp->snd_cwnd = tp->snd_ssthresh;
2528 		tp->snd_cwnd_stamp = tcp_jiffies32;
2529 	}
2530 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2531 }
2532 
2533 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2534 void tcp_enter_cwr(struct sock *sk)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 
2538 	tp->prior_ssthresh = 0;
2539 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2540 		tp->undo_marker = 0;
2541 		tcp_init_cwnd_reduction(sk);
2542 		tcp_set_ca_state(sk, TCP_CA_CWR);
2543 	}
2544 }
2545 EXPORT_SYMBOL(tcp_enter_cwr);
2546 
2547 static void tcp_try_keep_open(struct sock *sk)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 	int state = TCP_CA_Open;
2551 
2552 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2553 		state = TCP_CA_Disorder;
2554 
2555 	if (inet_csk(sk)->icsk_ca_state != state) {
2556 		tcp_set_ca_state(sk, state);
2557 		tp->high_seq = tp->snd_nxt;
2558 	}
2559 }
2560 
2561 static void tcp_try_to_open(struct sock *sk, int flag)
2562 {
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 
2565 	tcp_verify_left_out(tp);
2566 
2567 	if (!tcp_any_retrans_done(sk))
2568 		tp->retrans_stamp = 0;
2569 
2570 	if (flag & FLAG_ECE)
2571 		tcp_enter_cwr(sk);
2572 
2573 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2574 		tcp_try_keep_open(sk);
2575 	}
2576 }
2577 
2578 static void tcp_mtup_probe_failed(struct sock *sk)
2579 {
2580 	struct inet_connection_sock *icsk = inet_csk(sk);
2581 
2582 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2583 	icsk->icsk_mtup.probe_size = 0;
2584 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2585 }
2586 
2587 static void tcp_mtup_probe_success(struct sock *sk)
2588 {
2589 	struct tcp_sock *tp = tcp_sk(sk);
2590 	struct inet_connection_sock *icsk = inet_csk(sk);
2591 
2592 	/* FIXME: breaks with very large cwnd */
2593 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2594 	tp->snd_cwnd = tp->snd_cwnd *
2595 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2596 		       icsk->icsk_mtup.probe_size;
2597 	tp->snd_cwnd_cnt = 0;
2598 	tp->snd_cwnd_stamp = tcp_jiffies32;
2599 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2600 
2601 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2602 	icsk->icsk_mtup.probe_size = 0;
2603 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2604 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2605 }
2606 
2607 /* Do a simple retransmit without using the backoff mechanisms in
2608  * tcp_timer. This is used for path mtu discovery.
2609  * The socket is already locked here.
2610  */
2611 void tcp_simple_retransmit(struct sock *sk)
2612 {
2613 	const struct inet_connection_sock *icsk = inet_csk(sk);
2614 	struct tcp_sock *tp = tcp_sk(sk);
2615 	struct sk_buff *skb;
2616 	unsigned int mss = tcp_current_mss(sk);
2617 	u32 prior_lost = tp->lost_out;
2618 
2619 	tcp_for_write_queue(skb, sk) {
2620 		if (skb == tcp_send_head(sk))
2621 			break;
2622 		if (tcp_skb_seglen(skb) > mss &&
2623 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2624 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2625 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2626 				tp->retrans_out -= tcp_skb_pcount(skb);
2627 			}
2628 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2629 		}
2630 	}
2631 
2632 	tcp_clear_retrans_hints_partial(tp);
2633 
2634 	if (prior_lost == tp->lost_out)
2635 		return;
2636 
2637 	if (tcp_is_reno(tp))
2638 		tcp_limit_reno_sacked(tp);
2639 
2640 	tcp_verify_left_out(tp);
2641 
2642 	/* Don't muck with the congestion window here.
2643 	 * Reason is that we do not increase amount of _data_
2644 	 * in network, but units changed and effective
2645 	 * cwnd/ssthresh really reduced now.
2646 	 */
2647 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2648 		tp->high_seq = tp->snd_nxt;
2649 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2650 		tp->prior_ssthresh = 0;
2651 		tp->undo_marker = 0;
2652 		tcp_set_ca_state(sk, TCP_CA_Loss);
2653 	}
2654 	tcp_xmit_retransmit_queue(sk);
2655 }
2656 EXPORT_SYMBOL(tcp_simple_retransmit);
2657 
2658 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2659 {
2660 	struct tcp_sock *tp = tcp_sk(sk);
2661 	int mib_idx;
2662 
2663 	if (tcp_is_reno(tp))
2664 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2665 	else
2666 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2667 
2668 	NET_INC_STATS(sock_net(sk), mib_idx);
2669 
2670 	tp->prior_ssthresh = 0;
2671 	tcp_init_undo(tp);
2672 
2673 	if (!tcp_in_cwnd_reduction(sk)) {
2674 		if (!ece_ack)
2675 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2676 		tcp_init_cwnd_reduction(sk);
2677 	}
2678 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2679 }
2680 
2681 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2682  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2683  */
2684 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2685 			     int *rexmit)
2686 {
2687 	struct tcp_sock *tp = tcp_sk(sk);
2688 	bool recovered = !before(tp->snd_una, tp->high_seq);
2689 
2690 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2691 	    tcp_try_undo_loss(sk, false))
2692 		return;
2693 
2694 	/* The ACK (s)acks some never-retransmitted data meaning not all
2695 	 * the data packets before the timeout were lost. Therefore we
2696 	 * undo the congestion window and state. This is essentially
2697 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2698 	 * a retransmitted skb is permantly marked, we can apply such an
2699 	 * operation even if F-RTO was not used.
2700 	 */
2701 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2702 	    tcp_try_undo_loss(sk, tp->undo_marker))
2703 		return;
2704 
2705 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2706 		if (after(tp->snd_nxt, tp->high_seq)) {
2707 			if (flag & FLAG_DATA_SACKED || is_dupack)
2708 				tp->frto = 0; /* Step 3.a. loss was real */
2709 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2710 			tp->high_seq = tp->snd_nxt;
2711 			/* Step 2.b. Try send new data (but deferred until cwnd
2712 			 * is updated in tcp_ack()). Otherwise fall back to
2713 			 * the conventional recovery.
2714 			 */
2715 			if (tcp_send_head(sk) &&
2716 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2717 				*rexmit = REXMIT_NEW;
2718 				return;
2719 			}
2720 			tp->frto = 0;
2721 		}
2722 	}
2723 
2724 	if (recovered) {
2725 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2726 		tcp_try_undo_recovery(sk);
2727 		return;
2728 	}
2729 	if (tcp_is_reno(tp)) {
2730 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2731 		 * delivered. Lower inflight to clock out (re)tranmissions.
2732 		 */
2733 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2734 			tcp_add_reno_sack(sk);
2735 		else if (flag & FLAG_SND_UNA_ADVANCED)
2736 			tcp_reset_reno_sack(tp);
2737 	}
2738 	*rexmit = REXMIT_LOST;
2739 }
2740 
2741 /* Undo during fast recovery after partial ACK. */
2742 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2743 {
2744 	struct tcp_sock *tp = tcp_sk(sk);
2745 
2746 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2747 		/* Plain luck! Hole if filled with delayed
2748 		 * packet, rather than with a retransmit.
2749 		 */
2750 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2751 
2752 		/* We are getting evidence that the reordering degree is higher
2753 		 * than we realized. If there are no retransmits out then we
2754 		 * can undo. Otherwise we clock out new packets but do not
2755 		 * mark more packets lost or retransmit more.
2756 		 */
2757 		if (tp->retrans_out)
2758 			return true;
2759 
2760 		if (!tcp_any_retrans_done(sk))
2761 			tp->retrans_stamp = 0;
2762 
2763 		DBGUNDO(sk, "partial recovery");
2764 		tcp_undo_cwnd_reduction(sk, true);
2765 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2766 		tcp_try_keep_open(sk);
2767 		return true;
2768 	}
2769 	return false;
2770 }
2771 
2772 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2773 {
2774 	struct tcp_sock *tp = tcp_sk(sk);
2775 
2776 	/* Use RACK to detect loss */
2777 	if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2778 		u32 prior_retrans = tp->retrans_out;
2779 
2780 		tcp_rack_mark_lost(sk);
2781 		if (prior_retrans > tp->retrans_out)
2782 			*ack_flag |= FLAG_LOST_RETRANS;
2783 	}
2784 }
2785 
2786 /* Process an event, which can update packets-in-flight not trivially.
2787  * Main goal of this function is to calculate new estimate for left_out,
2788  * taking into account both packets sitting in receiver's buffer and
2789  * packets lost by network.
2790  *
2791  * Besides that it updates the congestion state when packet loss or ECN
2792  * is detected. But it does not reduce the cwnd, it is done by the
2793  * congestion control later.
2794  *
2795  * It does _not_ decide what to send, it is made in function
2796  * tcp_xmit_retransmit_queue().
2797  */
2798 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2799 				  bool is_dupack, int *ack_flag, int *rexmit)
2800 {
2801 	struct inet_connection_sock *icsk = inet_csk(sk);
2802 	struct tcp_sock *tp = tcp_sk(sk);
2803 	int fast_rexmit = 0, flag = *ack_flag;
2804 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2805 				    (tcp_fackets_out(tp) > tp->reordering));
2806 
2807 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2808 		tp->sacked_out = 0;
2809 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2810 		tp->fackets_out = 0;
2811 
2812 	/* Now state machine starts.
2813 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2814 	if (flag & FLAG_ECE)
2815 		tp->prior_ssthresh = 0;
2816 
2817 	/* B. In all the states check for reneging SACKs. */
2818 	if (tcp_check_sack_reneging(sk, flag))
2819 		return;
2820 
2821 	/* C. Check consistency of the current state. */
2822 	tcp_verify_left_out(tp);
2823 
2824 	/* D. Check state exit conditions. State can be terminated
2825 	 *    when high_seq is ACKed. */
2826 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2827 		WARN_ON(tp->retrans_out != 0);
2828 		tp->retrans_stamp = 0;
2829 	} else if (!before(tp->snd_una, tp->high_seq)) {
2830 		switch (icsk->icsk_ca_state) {
2831 		case TCP_CA_CWR:
2832 			/* CWR is to be held something *above* high_seq
2833 			 * is ACKed for CWR bit to reach receiver. */
2834 			if (tp->snd_una != tp->high_seq) {
2835 				tcp_end_cwnd_reduction(sk);
2836 				tcp_set_ca_state(sk, TCP_CA_Open);
2837 			}
2838 			break;
2839 
2840 		case TCP_CA_Recovery:
2841 			if (tcp_is_reno(tp))
2842 				tcp_reset_reno_sack(tp);
2843 			if (tcp_try_undo_recovery(sk))
2844 				return;
2845 			tcp_end_cwnd_reduction(sk);
2846 			break;
2847 		}
2848 	}
2849 
2850 	/* E. Process state. */
2851 	switch (icsk->icsk_ca_state) {
2852 	case TCP_CA_Recovery:
2853 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2854 			if (tcp_is_reno(tp) && is_dupack)
2855 				tcp_add_reno_sack(sk);
2856 		} else {
2857 			if (tcp_try_undo_partial(sk, acked))
2858 				return;
2859 			/* Partial ACK arrived. Force fast retransmit. */
2860 			do_lost = tcp_is_reno(tp) ||
2861 				  tcp_fackets_out(tp) > tp->reordering;
2862 		}
2863 		if (tcp_try_undo_dsack(sk)) {
2864 			tcp_try_keep_open(sk);
2865 			return;
2866 		}
2867 		tcp_rack_identify_loss(sk, ack_flag);
2868 		break;
2869 	case TCP_CA_Loss:
2870 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2871 		tcp_rack_identify_loss(sk, ack_flag);
2872 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2873 		      (*ack_flag & FLAG_LOST_RETRANS)))
2874 			return;
2875 		/* Change state if cwnd is undone or retransmits are lost */
2876 	default:
2877 		if (tcp_is_reno(tp)) {
2878 			if (flag & FLAG_SND_UNA_ADVANCED)
2879 				tcp_reset_reno_sack(tp);
2880 			if (is_dupack)
2881 				tcp_add_reno_sack(sk);
2882 		}
2883 
2884 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2885 			tcp_try_undo_dsack(sk);
2886 
2887 		tcp_rack_identify_loss(sk, ack_flag);
2888 		if (!tcp_time_to_recover(sk, flag)) {
2889 			tcp_try_to_open(sk, flag);
2890 			return;
2891 		}
2892 
2893 		/* MTU probe failure: don't reduce cwnd */
2894 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2895 		    icsk->icsk_mtup.probe_size &&
2896 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2897 			tcp_mtup_probe_failed(sk);
2898 			/* Restores the reduction we did in tcp_mtup_probe() */
2899 			tp->snd_cwnd++;
2900 			tcp_simple_retransmit(sk);
2901 			return;
2902 		}
2903 
2904 		/* Otherwise enter Recovery state */
2905 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2906 		fast_rexmit = 1;
2907 	}
2908 
2909 	if (do_lost)
2910 		tcp_update_scoreboard(sk, fast_rexmit);
2911 	*rexmit = REXMIT_LOST;
2912 }
2913 
2914 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2915 {
2916 	struct tcp_sock *tp = tcp_sk(sk);
2917 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2918 
2919 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2920 			   rtt_us ? : jiffies_to_usecs(1));
2921 }
2922 
2923 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2924 			       long seq_rtt_us, long sack_rtt_us,
2925 			       long ca_rtt_us, struct rate_sample *rs)
2926 {
2927 	const struct tcp_sock *tp = tcp_sk(sk);
2928 
2929 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2930 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2931 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2932 	 * is acked (RFC6298).
2933 	 */
2934 	if (seq_rtt_us < 0)
2935 		seq_rtt_us = sack_rtt_us;
2936 
2937 	/* RTTM Rule: A TSecr value received in a segment is used to
2938 	 * update the averaged RTT measurement only if the segment
2939 	 * acknowledges some new data, i.e., only if it advances the
2940 	 * left edge of the send window.
2941 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2942 	 */
2943 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2944 	    flag & FLAG_ACKED) {
2945 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2946 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2947 
2948 		seq_rtt_us = ca_rtt_us = delta_us;
2949 	}
2950 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2951 	if (seq_rtt_us < 0)
2952 		return false;
2953 
2954 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2955 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2956 	 * values will be skipped with the seq_rtt_us < 0 check above.
2957 	 */
2958 	tcp_update_rtt_min(sk, ca_rtt_us);
2959 	tcp_rtt_estimator(sk, seq_rtt_us);
2960 	tcp_set_rto(sk);
2961 
2962 	/* RFC6298: only reset backoff on valid RTT measurement. */
2963 	inet_csk(sk)->icsk_backoff = 0;
2964 	return true;
2965 }
2966 
2967 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2968 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2969 {
2970 	struct rate_sample rs;
2971 	long rtt_us = -1L;
2972 
2973 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2974 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2975 
2976 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2977 }
2978 
2979 
2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2981 {
2982 	const struct inet_connection_sock *icsk = inet_csk(sk);
2983 
2984 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2985 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2986 }
2987 
2988 /* Restart timer after forward progress on connection.
2989  * RFC2988 recommends to restart timer to now+rto.
2990  */
2991 void tcp_rearm_rto(struct sock *sk)
2992 {
2993 	const struct inet_connection_sock *icsk = inet_csk(sk);
2994 	struct tcp_sock *tp = tcp_sk(sk);
2995 
2996 	/* If the retrans timer is currently being used by Fast Open
2997 	 * for SYN-ACK retrans purpose, stay put.
2998 	 */
2999 	if (tp->fastopen_rsk)
3000 		return;
3001 
3002 	if (!tp->packets_out) {
3003 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3004 	} else {
3005 		u32 rto = inet_csk(sk)->icsk_rto;
3006 		/* Offset the time elapsed after installing regular RTO */
3007 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3008 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3009 			struct sk_buff *skb = tcp_write_queue_head(sk);
3010 			u64 rto_time_stamp = skb->skb_mstamp +
3011 					     jiffies_to_usecs(rto);
3012 			s64 delta_us = rto_time_stamp - tp->tcp_mstamp;
3013 			/* delta_us may not be positive if the socket is locked
3014 			 * when the retrans timer fires and is rescheduled.
3015 			 */
3016 			if (delta_us > 0)
3017 				rto = usecs_to_jiffies(delta_us);
3018 		}
3019 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3020 					  TCP_RTO_MAX);
3021 	}
3022 }
3023 
3024 /* If we get here, the whole TSO packet has not been acked. */
3025 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3026 {
3027 	struct tcp_sock *tp = tcp_sk(sk);
3028 	u32 packets_acked;
3029 
3030 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3031 
3032 	packets_acked = tcp_skb_pcount(skb);
3033 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3034 		return 0;
3035 	packets_acked -= tcp_skb_pcount(skb);
3036 
3037 	if (packets_acked) {
3038 		BUG_ON(tcp_skb_pcount(skb) == 0);
3039 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3040 	}
3041 
3042 	return packets_acked;
3043 }
3044 
3045 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3046 			   u32 prior_snd_una)
3047 {
3048 	const struct skb_shared_info *shinfo;
3049 
3050 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3051 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3052 		return;
3053 
3054 	shinfo = skb_shinfo(skb);
3055 	if (!before(shinfo->tskey, prior_snd_una) &&
3056 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3057 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3058 }
3059 
3060 /* Remove acknowledged frames from the retransmission queue. If our packet
3061  * is before the ack sequence we can discard it as it's confirmed to have
3062  * arrived at the other end.
3063  */
3064 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3065 			       u32 prior_snd_una, int *acked,
3066 			       struct tcp_sacktag_state *sack)
3067 {
3068 	const struct inet_connection_sock *icsk = inet_csk(sk);
3069 	u64 first_ackt, last_ackt;
3070 	struct tcp_sock *tp = tcp_sk(sk);
3071 	u32 prior_sacked = tp->sacked_out;
3072 	u32 reord = tp->packets_out;
3073 	bool fully_acked = true;
3074 	long sack_rtt_us = -1L;
3075 	long seq_rtt_us = -1L;
3076 	long ca_rtt_us = -1L;
3077 	struct sk_buff *skb;
3078 	u32 pkts_acked = 0;
3079 	u32 last_in_flight = 0;
3080 	bool rtt_update;
3081 	int flag = 0;
3082 
3083 	first_ackt = 0;
3084 
3085 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3086 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3087 		u8 sacked = scb->sacked;
3088 		u32 acked_pcount;
3089 
3090 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3091 
3092 		/* Determine how many packets and what bytes were acked, tso and else */
3093 		if (after(scb->end_seq, tp->snd_una)) {
3094 			if (tcp_skb_pcount(skb) == 1 ||
3095 			    !after(tp->snd_una, scb->seq))
3096 				break;
3097 
3098 			acked_pcount = tcp_tso_acked(sk, skb);
3099 			if (!acked_pcount)
3100 				break;
3101 			fully_acked = false;
3102 		} else {
3103 			/* Speedup tcp_unlink_write_queue() and next loop */
3104 			prefetchw(skb->next);
3105 			acked_pcount = tcp_skb_pcount(skb);
3106 		}
3107 
3108 		if (unlikely(sacked & TCPCB_RETRANS)) {
3109 			if (sacked & TCPCB_SACKED_RETRANS)
3110 				tp->retrans_out -= acked_pcount;
3111 			flag |= FLAG_RETRANS_DATA_ACKED;
3112 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3113 			last_ackt = skb->skb_mstamp;
3114 			WARN_ON_ONCE(last_ackt == 0);
3115 			if (!first_ackt)
3116 				first_ackt = last_ackt;
3117 
3118 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3119 			reord = min(pkts_acked, reord);
3120 			if (!after(scb->end_seq, tp->high_seq))
3121 				flag |= FLAG_ORIG_SACK_ACKED;
3122 		}
3123 
3124 		if (sacked & TCPCB_SACKED_ACKED) {
3125 			tp->sacked_out -= acked_pcount;
3126 		} else if (tcp_is_sack(tp)) {
3127 			tp->delivered += acked_pcount;
3128 			if (!tcp_skb_spurious_retrans(tp, skb))
3129 				tcp_rack_advance(tp, sacked, scb->end_seq,
3130 						 skb->skb_mstamp);
3131 		}
3132 		if (sacked & TCPCB_LOST)
3133 			tp->lost_out -= acked_pcount;
3134 
3135 		tp->packets_out -= acked_pcount;
3136 		pkts_acked += acked_pcount;
3137 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3138 
3139 		/* Initial outgoing SYN's get put onto the write_queue
3140 		 * just like anything else we transmit.  It is not
3141 		 * true data, and if we misinform our callers that
3142 		 * this ACK acks real data, we will erroneously exit
3143 		 * connection startup slow start one packet too
3144 		 * quickly.  This is severely frowned upon behavior.
3145 		 */
3146 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3147 			flag |= FLAG_DATA_ACKED;
3148 		} else {
3149 			flag |= FLAG_SYN_ACKED;
3150 			tp->retrans_stamp = 0;
3151 		}
3152 
3153 		if (!fully_acked)
3154 			break;
3155 
3156 		tcp_unlink_write_queue(skb, sk);
3157 		sk_wmem_free_skb(sk, skb);
3158 		if (unlikely(skb == tp->retransmit_skb_hint))
3159 			tp->retransmit_skb_hint = NULL;
3160 		if (unlikely(skb == tp->lost_skb_hint))
3161 			tp->lost_skb_hint = NULL;
3162 	}
3163 
3164 	if (!skb)
3165 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3166 
3167 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3168 		tp->snd_up = tp->snd_una;
3169 
3170 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3171 		flag |= FLAG_SACK_RENEGING;
3172 
3173 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3174 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3175 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3176 	}
3177 	if (sack->first_sackt) {
3178 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3179 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3180 	}
3181 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3182 					ca_rtt_us, sack->rate);
3183 
3184 	if (flag & FLAG_ACKED) {
3185 		tcp_rearm_rto(sk);
3186 		if (unlikely(icsk->icsk_mtup.probe_size &&
3187 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3188 			tcp_mtup_probe_success(sk);
3189 		}
3190 
3191 		if (tcp_is_reno(tp)) {
3192 			tcp_remove_reno_sacks(sk, pkts_acked);
3193 		} else {
3194 			int delta;
3195 
3196 			/* Non-retransmitted hole got filled? That's reordering */
3197 			if (reord < prior_fackets && reord <= tp->fackets_out)
3198 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3199 
3200 			delta = tcp_is_fack(tp) ? pkts_acked :
3201 						  prior_sacked - tp->sacked_out;
3202 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3203 		}
3204 
3205 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3206 
3207 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3208 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3209 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3210 		 * after when the head was last (re)transmitted. Otherwise the
3211 		 * timeout may continue to extend in loss recovery.
3212 		 */
3213 		tcp_rearm_rto(sk);
3214 	}
3215 
3216 	if (icsk->icsk_ca_ops->pkts_acked) {
3217 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3218 					     .rtt_us = sack->rate->rtt_us,
3219 					     .in_flight = last_in_flight };
3220 
3221 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3222 	}
3223 
3224 #if FASTRETRANS_DEBUG > 0
3225 	WARN_ON((int)tp->sacked_out < 0);
3226 	WARN_ON((int)tp->lost_out < 0);
3227 	WARN_ON((int)tp->retrans_out < 0);
3228 	if (!tp->packets_out && tcp_is_sack(tp)) {
3229 		icsk = inet_csk(sk);
3230 		if (tp->lost_out) {
3231 			pr_debug("Leak l=%u %d\n",
3232 				 tp->lost_out, icsk->icsk_ca_state);
3233 			tp->lost_out = 0;
3234 		}
3235 		if (tp->sacked_out) {
3236 			pr_debug("Leak s=%u %d\n",
3237 				 tp->sacked_out, icsk->icsk_ca_state);
3238 			tp->sacked_out = 0;
3239 		}
3240 		if (tp->retrans_out) {
3241 			pr_debug("Leak r=%u %d\n",
3242 				 tp->retrans_out, icsk->icsk_ca_state);
3243 			tp->retrans_out = 0;
3244 		}
3245 	}
3246 #endif
3247 	*acked = pkts_acked;
3248 	return flag;
3249 }
3250 
3251 static void tcp_ack_probe(struct sock *sk)
3252 {
3253 	const struct tcp_sock *tp = tcp_sk(sk);
3254 	struct inet_connection_sock *icsk = inet_csk(sk);
3255 
3256 	/* Was it a usable window open? */
3257 
3258 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3259 		icsk->icsk_backoff = 0;
3260 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3261 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3262 		 * This function is not for random using!
3263 		 */
3264 	} else {
3265 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3266 
3267 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3268 					  when, TCP_RTO_MAX);
3269 	}
3270 }
3271 
3272 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3273 {
3274 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3275 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3276 }
3277 
3278 /* Decide wheather to run the increase function of congestion control. */
3279 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3280 {
3281 	/* If reordering is high then always grow cwnd whenever data is
3282 	 * delivered regardless of its ordering. Otherwise stay conservative
3283 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3284 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3285 	 * cwnd in tcp_fastretrans_alert() based on more states.
3286 	 */
3287 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3288 		return flag & FLAG_FORWARD_PROGRESS;
3289 
3290 	return flag & FLAG_DATA_ACKED;
3291 }
3292 
3293 /* The "ultimate" congestion control function that aims to replace the rigid
3294  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3295  * It's called toward the end of processing an ACK with precise rate
3296  * information. All transmission or retransmission are delayed afterwards.
3297  */
3298 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3299 			     int flag, const struct rate_sample *rs)
3300 {
3301 	const struct inet_connection_sock *icsk = inet_csk(sk);
3302 
3303 	if (icsk->icsk_ca_ops->cong_control) {
3304 		icsk->icsk_ca_ops->cong_control(sk, rs);
3305 		return;
3306 	}
3307 
3308 	if (tcp_in_cwnd_reduction(sk)) {
3309 		/* Reduce cwnd if state mandates */
3310 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3311 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3312 		/* Advance cwnd if state allows */
3313 		tcp_cong_avoid(sk, ack, acked_sacked);
3314 	}
3315 	tcp_update_pacing_rate(sk);
3316 }
3317 
3318 /* Check that window update is acceptable.
3319  * The function assumes that snd_una<=ack<=snd_next.
3320  */
3321 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3322 					const u32 ack, const u32 ack_seq,
3323 					const u32 nwin)
3324 {
3325 	return	after(ack, tp->snd_una) ||
3326 		after(ack_seq, tp->snd_wl1) ||
3327 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3328 }
3329 
3330 /* If we update tp->snd_una, also update tp->bytes_acked */
3331 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3332 {
3333 	u32 delta = ack - tp->snd_una;
3334 
3335 	sock_owned_by_me((struct sock *)tp);
3336 	tp->bytes_acked += delta;
3337 	tp->snd_una = ack;
3338 }
3339 
3340 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3341 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3342 {
3343 	u32 delta = seq - tp->rcv_nxt;
3344 
3345 	sock_owned_by_me((struct sock *)tp);
3346 	tp->bytes_received += delta;
3347 	tp->rcv_nxt = seq;
3348 }
3349 
3350 /* Update our send window.
3351  *
3352  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3353  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3354  */
3355 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3356 				 u32 ack_seq)
3357 {
3358 	struct tcp_sock *tp = tcp_sk(sk);
3359 	int flag = 0;
3360 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3361 
3362 	if (likely(!tcp_hdr(skb)->syn))
3363 		nwin <<= tp->rx_opt.snd_wscale;
3364 
3365 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3366 		flag |= FLAG_WIN_UPDATE;
3367 		tcp_update_wl(tp, ack_seq);
3368 
3369 		if (tp->snd_wnd != nwin) {
3370 			tp->snd_wnd = nwin;
3371 
3372 			/* Note, it is the only place, where
3373 			 * fast path is recovered for sending TCP.
3374 			 */
3375 			tp->pred_flags = 0;
3376 			tcp_fast_path_check(sk);
3377 
3378 			if (tcp_send_head(sk))
3379 				tcp_slow_start_after_idle_check(sk);
3380 
3381 			if (nwin > tp->max_window) {
3382 				tp->max_window = nwin;
3383 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3384 			}
3385 		}
3386 	}
3387 
3388 	tcp_snd_una_update(tp, ack);
3389 
3390 	return flag;
3391 }
3392 
3393 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3394 				   u32 *last_oow_ack_time)
3395 {
3396 	if (*last_oow_ack_time) {
3397 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3398 
3399 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3400 			NET_INC_STATS(net, mib_idx);
3401 			return true;	/* rate-limited: don't send yet! */
3402 		}
3403 	}
3404 
3405 	*last_oow_ack_time = tcp_jiffies32;
3406 
3407 	return false;	/* not rate-limited: go ahead, send dupack now! */
3408 }
3409 
3410 /* Return true if we're currently rate-limiting out-of-window ACKs and
3411  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3412  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3413  * attacks that send repeated SYNs or ACKs for the same connection. To
3414  * do this, we do not send a duplicate SYNACK or ACK if the remote
3415  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3416  */
3417 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3418 			  int mib_idx, u32 *last_oow_ack_time)
3419 {
3420 	/* Data packets without SYNs are not likely part of an ACK loop. */
3421 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3422 	    !tcp_hdr(skb)->syn)
3423 		return false;
3424 
3425 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3426 }
3427 
3428 /* RFC 5961 7 [ACK Throttling] */
3429 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3430 {
3431 	/* unprotected vars, we dont care of overwrites */
3432 	static u32 challenge_timestamp;
3433 	static unsigned int challenge_count;
3434 	struct tcp_sock *tp = tcp_sk(sk);
3435 	u32 count, now;
3436 
3437 	/* First check our per-socket dupack rate limit. */
3438 	if (__tcp_oow_rate_limited(sock_net(sk),
3439 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3440 				   &tp->last_oow_ack_time))
3441 		return;
3442 
3443 	/* Then check host-wide RFC 5961 rate limit. */
3444 	now = jiffies / HZ;
3445 	if (now != challenge_timestamp) {
3446 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3447 
3448 		challenge_timestamp = now;
3449 		WRITE_ONCE(challenge_count, half +
3450 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3451 	}
3452 	count = READ_ONCE(challenge_count);
3453 	if (count > 0) {
3454 		WRITE_ONCE(challenge_count, count - 1);
3455 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3456 		tcp_send_ack(sk);
3457 	}
3458 }
3459 
3460 static void tcp_store_ts_recent(struct tcp_sock *tp)
3461 {
3462 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3463 	tp->rx_opt.ts_recent_stamp = get_seconds();
3464 }
3465 
3466 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3467 {
3468 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3469 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3470 		 * extra check below makes sure this can only happen
3471 		 * for pure ACK frames.  -DaveM
3472 		 *
3473 		 * Not only, also it occurs for expired timestamps.
3474 		 */
3475 
3476 		if (tcp_paws_check(&tp->rx_opt, 0))
3477 			tcp_store_ts_recent(tp);
3478 	}
3479 }
3480 
3481 /* This routine deals with acks during a TLP episode.
3482  * We mark the end of a TLP episode on receiving TLP dupack or when
3483  * ack is after tlp_high_seq.
3484  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3485  */
3486 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3487 {
3488 	struct tcp_sock *tp = tcp_sk(sk);
3489 
3490 	if (before(ack, tp->tlp_high_seq))
3491 		return;
3492 
3493 	if (flag & FLAG_DSACKING_ACK) {
3494 		/* This DSACK means original and TLP probe arrived; no loss */
3495 		tp->tlp_high_seq = 0;
3496 	} else if (after(ack, tp->tlp_high_seq)) {
3497 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3498 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3499 		 */
3500 		tcp_init_cwnd_reduction(sk);
3501 		tcp_set_ca_state(sk, TCP_CA_CWR);
3502 		tcp_end_cwnd_reduction(sk);
3503 		tcp_try_keep_open(sk);
3504 		NET_INC_STATS(sock_net(sk),
3505 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3506 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3507 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3508 		/* Pure dupack: original and TLP probe arrived; no loss */
3509 		tp->tlp_high_seq = 0;
3510 	}
3511 }
3512 
3513 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3514 {
3515 	const struct inet_connection_sock *icsk = inet_csk(sk);
3516 
3517 	if (icsk->icsk_ca_ops->in_ack_event)
3518 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3519 }
3520 
3521 /* Congestion control has updated the cwnd already. So if we're in
3522  * loss recovery then now we do any new sends (for FRTO) or
3523  * retransmits (for CA_Loss or CA_recovery) that make sense.
3524  */
3525 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3526 {
3527 	struct tcp_sock *tp = tcp_sk(sk);
3528 
3529 	if (rexmit == REXMIT_NONE)
3530 		return;
3531 
3532 	if (unlikely(rexmit == 2)) {
3533 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3534 					  TCP_NAGLE_OFF);
3535 		if (after(tp->snd_nxt, tp->high_seq))
3536 			return;
3537 		tp->frto = 0;
3538 	}
3539 	tcp_xmit_retransmit_queue(sk);
3540 }
3541 
3542 /* This routine deals with incoming acks, but not outgoing ones. */
3543 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3544 {
3545 	struct inet_connection_sock *icsk = inet_csk(sk);
3546 	struct tcp_sock *tp = tcp_sk(sk);
3547 	struct tcp_sacktag_state sack_state;
3548 	struct rate_sample rs = { .prior_delivered = 0 };
3549 	u32 prior_snd_una = tp->snd_una;
3550 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3551 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3552 	bool is_dupack = false;
3553 	u32 prior_fackets;
3554 	int prior_packets = tp->packets_out;
3555 	u32 delivered = tp->delivered;
3556 	u32 lost = tp->lost;
3557 	int acked = 0; /* Number of packets newly acked */
3558 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3559 
3560 	sack_state.first_sackt = 0;
3561 	sack_state.rate = &rs;
3562 
3563 	/* We very likely will need to access write queue head. */
3564 	prefetchw(sk->sk_write_queue.next);
3565 
3566 	/* If the ack is older than previous acks
3567 	 * then we can probably ignore it.
3568 	 */
3569 	if (before(ack, prior_snd_una)) {
3570 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3571 		if (before(ack, prior_snd_una - tp->max_window)) {
3572 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3573 				tcp_send_challenge_ack(sk, skb);
3574 			return -1;
3575 		}
3576 		goto old_ack;
3577 	}
3578 
3579 	/* If the ack includes data we haven't sent yet, discard
3580 	 * this segment (RFC793 Section 3.9).
3581 	 */
3582 	if (after(ack, tp->snd_nxt))
3583 		goto invalid_ack;
3584 
3585 	if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3586 		tcp_rearm_rto(sk);
3587 
3588 	if (after(ack, prior_snd_una)) {
3589 		flag |= FLAG_SND_UNA_ADVANCED;
3590 		icsk->icsk_retransmits = 0;
3591 	}
3592 
3593 	prior_fackets = tp->fackets_out;
3594 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3595 
3596 	/* ts_recent update must be made after we are sure that the packet
3597 	 * is in window.
3598 	 */
3599 	if (flag & FLAG_UPDATE_TS_RECENT)
3600 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3601 
3602 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3603 		/* Window is constant, pure forward advance.
3604 		 * No more checks are required.
3605 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3606 		 */
3607 		tcp_update_wl(tp, ack_seq);
3608 		tcp_snd_una_update(tp, ack);
3609 		flag |= FLAG_WIN_UPDATE;
3610 
3611 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3612 
3613 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3614 	} else {
3615 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3616 
3617 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3618 			flag |= FLAG_DATA;
3619 		else
3620 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3621 
3622 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3623 
3624 		if (TCP_SKB_CB(skb)->sacked)
3625 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3626 							&sack_state);
3627 
3628 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3629 			flag |= FLAG_ECE;
3630 			ack_ev_flags |= CA_ACK_ECE;
3631 		}
3632 
3633 		if (flag & FLAG_WIN_UPDATE)
3634 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3635 
3636 		tcp_in_ack_event(sk, ack_ev_flags);
3637 	}
3638 
3639 	/* We passed data and got it acked, remove any soft error
3640 	 * log. Something worked...
3641 	 */
3642 	sk->sk_err_soft = 0;
3643 	icsk->icsk_probes_out = 0;
3644 	tp->rcv_tstamp = tcp_jiffies32;
3645 	if (!prior_packets)
3646 		goto no_queue;
3647 
3648 	/* See if we can take anything off of the retransmit queue. */
3649 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3650 				    &sack_state);
3651 
3652 	if (tcp_ack_is_dubious(sk, flag)) {
3653 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3654 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3655 	}
3656 	if (tp->tlp_high_seq)
3657 		tcp_process_tlp_ack(sk, ack, flag);
3658 
3659 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3660 		sk_dst_confirm(sk);
3661 
3662 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3663 		tcp_schedule_loss_probe(sk);
3664 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3665 	lost = tp->lost - lost;			/* freshly marked lost */
3666 	tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3667 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3668 	tcp_xmit_recovery(sk, rexmit);
3669 	return 1;
3670 
3671 no_queue:
3672 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3673 	if (flag & FLAG_DSACKING_ACK)
3674 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3675 	/* If this ack opens up a zero window, clear backoff.  It was
3676 	 * being used to time the probes, and is probably far higher than
3677 	 * it needs to be for normal retransmission.
3678 	 */
3679 	if (tcp_send_head(sk))
3680 		tcp_ack_probe(sk);
3681 
3682 	if (tp->tlp_high_seq)
3683 		tcp_process_tlp_ack(sk, ack, flag);
3684 	return 1;
3685 
3686 invalid_ack:
3687 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3688 	return -1;
3689 
3690 old_ack:
3691 	/* If data was SACKed, tag it and see if we should send more data.
3692 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3693 	 */
3694 	if (TCP_SKB_CB(skb)->sacked) {
3695 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3696 						&sack_state);
3697 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3698 		tcp_xmit_recovery(sk, rexmit);
3699 	}
3700 
3701 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3702 	return 0;
3703 }
3704 
3705 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3706 				      bool syn, struct tcp_fastopen_cookie *foc,
3707 				      bool exp_opt)
3708 {
3709 	/* Valid only in SYN or SYN-ACK with an even length.  */
3710 	if (!foc || !syn || len < 0 || (len & 1))
3711 		return;
3712 
3713 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3714 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3715 		memcpy(foc->val, cookie, len);
3716 	else if (len != 0)
3717 		len = -1;
3718 	foc->len = len;
3719 	foc->exp = exp_opt;
3720 }
3721 
3722 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3723  * But, this can also be called on packets in the established flow when
3724  * the fast version below fails.
3725  */
3726 void tcp_parse_options(const struct net *net,
3727 		       const struct sk_buff *skb,
3728 		       struct tcp_options_received *opt_rx, int estab,
3729 		       struct tcp_fastopen_cookie *foc)
3730 {
3731 	const unsigned char *ptr;
3732 	const struct tcphdr *th = tcp_hdr(skb);
3733 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3734 
3735 	ptr = (const unsigned char *)(th + 1);
3736 	opt_rx->saw_tstamp = 0;
3737 
3738 	while (length > 0) {
3739 		int opcode = *ptr++;
3740 		int opsize;
3741 
3742 		switch (opcode) {
3743 		case TCPOPT_EOL:
3744 			return;
3745 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3746 			length--;
3747 			continue;
3748 		default:
3749 			opsize = *ptr++;
3750 			if (opsize < 2) /* "silly options" */
3751 				return;
3752 			if (opsize > length)
3753 				return;	/* don't parse partial options */
3754 			switch (opcode) {
3755 			case TCPOPT_MSS:
3756 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3757 					u16 in_mss = get_unaligned_be16(ptr);
3758 					if (in_mss) {
3759 						if (opt_rx->user_mss &&
3760 						    opt_rx->user_mss < in_mss)
3761 							in_mss = opt_rx->user_mss;
3762 						opt_rx->mss_clamp = in_mss;
3763 					}
3764 				}
3765 				break;
3766 			case TCPOPT_WINDOW:
3767 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3768 				    !estab && sysctl_tcp_window_scaling) {
3769 					__u8 snd_wscale = *(__u8 *)ptr;
3770 					opt_rx->wscale_ok = 1;
3771 					if (snd_wscale > TCP_MAX_WSCALE) {
3772 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3773 								     __func__,
3774 								     snd_wscale,
3775 								     TCP_MAX_WSCALE);
3776 						snd_wscale = TCP_MAX_WSCALE;
3777 					}
3778 					opt_rx->snd_wscale = snd_wscale;
3779 				}
3780 				break;
3781 			case TCPOPT_TIMESTAMP:
3782 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3783 				    ((estab && opt_rx->tstamp_ok) ||
3784 				     (!estab && sysctl_tcp_timestamps))) {
3785 					opt_rx->saw_tstamp = 1;
3786 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3787 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3788 				}
3789 				break;
3790 			case TCPOPT_SACK_PERM:
3791 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3792 				    !estab && net->ipv4.sysctl_tcp_sack) {
3793 					opt_rx->sack_ok = TCP_SACK_SEEN;
3794 					tcp_sack_reset(opt_rx);
3795 				}
3796 				break;
3797 
3798 			case TCPOPT_SACK:
3799 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3800 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3801 				   opt_rx->sack_ok) {
3802 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3803 				}
3804 				break;
3805 #ifdef CONFIG_TCP_MD5SIG
3806 			case TCPOPT_MD5SIG:
3807 				/*
3808 				 * The MD5 Hash has already been
3809 				 * checked (see tcp_v{4,6}_do_rcv()).
3810 				 */
3811 				break;
3812 #endif
3813 			case TCPOPT_FASTOPEN:
3814 				tcp_parse_fastopen_option(
3815 					opsize - TCPOLEN_FASTOPEN_BASE,
3816 					ptr, th->syn, foc, false);
3817 				break;
3818 
3819 			case TCPOPT_EXP:
3820 				/* Fast Open option shares code 254 using a
3821 				 * 16 bits magic number.
3822 				 */
3823 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3824 				    get_unaligned_be16(ptr) ==
3825 				    TCPOPT_FASTOPEN_MAGIC)
3826 					tcp_parse_fastopen_option(opsize -
3827 						TCPOLEN_EXP_FASTOPEN_BASE,
3828 						ptr + 2, th->syn, foc, true);
3829 				break;
3830 
3831 			}
3832 			ptr += opsize-2;
3833 			length -= opsize;
3834 		}
3835 	}
3836 }
3837 EXPORT_SYMBOL(tcp_parse_options);
3838 
3839 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3840 {
3841 	const __be32 *ptr = (const __be32 *)(th + 1);
3842 
3843 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3844 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3845 		tp->rx_opt.saw_tstamp = 1;
3846 		++ptr;
3847 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3848 		++ptr;
3849 		if (*ptr)
3850 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3851 		else
3852 			tp->rx_opt.rcv_tsecr = 0;
3853 		return true;
3854 	}
3855 	return false;
3856 }
3857 
3858 /* Fast parse options. This hopes to only see timestamps.
3859  * If it is wrong it falls back on tcp_parse_options().
3860  */
3861 static bool tcp_fast_parse_options(const struct net *net,
3862 				   const struct sk_buff *skb,
3863 				   const struct tcphdr *th, struct tcp_sock *tp)
3864 {
3865 	/* In the spirit of fast parsing, compare doff directly to constant
3866 	 * values.  Because equality is used, short doff can be ignored here.
3867 	 */
3868 	if (th->doff == (sizeof(*th) / 4)) {
3869 		tp->rx_opt.saw_tstamp = 0;
3870 		return false;
3871 	} else if (tp->rx_opt.tstamp_ok &&
3872 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3873 		if (tcp_parse_aligned_timestamp(tp, th))
3874 			return true;
3875 	}
3876 
3877 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3878 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3879 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3880 
3881 	return true;
3882 }
3883 
3884 #ifdef CONFIG_TCP_MD5SIG
3885 /*
3886  * Parse MD5 Signature option
3887  */
3888 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3889 {
3890 	int length = (th->doff << 2) - sizeof(*th);
3891 	const u8 *ptr = (const u8 *)(th + 1);
3892 
3893 	/* If the TCP option is too short, we can short cut */
3894 	if (length < TCPOLEN_MD5SIG)
3895 		return NULL;
3896 
3897 	while (length > 0) {
3898 		int opcode = *ptr++;
3899 		int opsize;
3900 
3901 		switch (opcode) {
3902 		case TCPOPT_EOL:
3903 			return NULL;
3904 		case TCPOPT_NOP:
3905 			length--;
3906 			continue;
3907 		default:
3908 			opsize = *ptr++;
3909 			if (opsize < 2 || opsize > length)
3910 				return NULL;
3911 			if (opcode == TCPOPT_MD5SIG)
3912 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3913 		}
3914 		ptr += opsize - 2;
3915 		length -= opsize;
3916 	}
3917 	return NULL;
3918 }
3919 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3920 #endif
3921 
3922 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3923  *
3924  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3925  * it can pass through stack. So, the following predicate verifies that
3926  * this segment is not used for anything but congestion avoidance or
3927  * fast retransmit. Moreover, we even are able to eliminate most of such
3928  * second order effects, if we apply some small "replay" window (~RTO)
3929  * to timestamp space.
3930  *
3931  * All these measures still do not guarantee that we reject wrapped ACKs
3932  * on networks with high bandwidth, when sequence space is recycled fastly,
3933  * but it guarantees that such events will be very rare and do not affect
3934  * connection seriously. This doesn't look nice, but alas, PAWS is really
3935  * buggy extension.
3936  *
3937  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3938  * states that events when retransmit arrives after original data are rare.
3939  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3940  * the biggest problem on large power networks even with minor reordering.
3941  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3942  * up to bandwidth of 18Gigabit/sec. 8) ]
3943  */
3944 
3945 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3946 {
3947 	const struct tcp_sock *tp = tcp_sk(sk);
3948 	const struct tcphdr *th = tcp_hdr(skb);
3949 	u32 seq = TCP_SKB_CB(skb)->seq;
3950 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3951 
3952 	return (/* 1. Pure ACK with correct sequence number. */
3953 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3954 
3955 		/* 2. ... and duplicate ACK. */
3956 		ack == tp->snd_una &&
3957 
3958 		/* 3. ... and does not update window. */
3959 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3960 
3961 		/* 4. ... and sits in replay window. */
3962 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3963 }
3964 
3965 static inline bool tcp_paws_discard(const struct sock *sk,
3966 				   const struct sk_buff *skb)
3967 {
3968 	const struct tcp_sock *tp = tcp_sk(sk);
3969 
3970 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3971 	       !tcp_disordered_ack(sk, skb);
3972 }
3973 
3974 /* Check segment sequence number for validity.
3975  *
3976  * Segment controls are considered valid, if the segment
3977  * fits to the window after truncation to the window. Acceptability
3978  * of data (and SYN, FIN, of course) is checked separately.
3979  * See tcp_data_queue(), for example.
3980  *
3981  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3982  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3983  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3984  * (borrowed from freebsd)
3985  */
3986 
3987 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3988 {
3989 	return	!before(end_seq, tp->rcv_wup) &&
3990 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3991 }
3992 
3993 /* When we get a reset we do this. */
3994 void tcp_reset(struct sock *sk)
3995 {
3996 	/* We want the right error as BSD sees it (and indeed as we do). */
3997 	switch (sk->sk_state) {
3998 	case TCP_SYN_SENT:
3999 		sk->sk_err = ECONNREFUSED;
4000 		break;
4001 	case TCP_CLOSE_WAIT:
4002 		sk->sk_err = EPIPE;
4003 		break;
4004 	case TCP_CLOSE:
4005 		return;
4006 	default:
4007 		sk->sk_err = ECONNRESET;
4008 	}
4009 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4010 	smp_wmb();
4011 
4012 	tcp_done(sk);
4013 
4014 	if (!sock_flag(sk, SOCK_DEAD))
4015 		sk->sk_error_report(sk);
4016 }
4017 
4018 /*
4019  * 	Process the FIN bit. This now behaves as it is supposed to work
4020  *	and the FIN takes effect when it is validly part of sequence
4021  *	space. Not before when we get holes.
4022  *
4023  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4024  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4025  *	TIME-WAIT)
4026  *
4027  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4028  *	close and we go into CLOSING (and later onto TIME-WAIT)
4029  *
4030  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4031  */
4032 void tcp_fin(struct sock *sk)
4033 {
4034 	struct tcp_sock *tp = tcp_sk(sk);
4035 
4036 	inet_csk_schedule_ack(sk);
4037 
4038 	sk->sk_shutdown |= RCV_SHUTDOWN;
4039 	sock_set_flag(sk, SOCK_DONE);
4040 
4041 	switch (sk->sk_state) {
4042 	case TCP_SYN_RECV:
4043 	case TCP_ESTABLISHED:
4044 		/* Move to CLOSE_WAIT */
4045 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4046 		inet_csk(sk)->icsk_ack.pingpong = 1;
4047 		break;
4048 
4049 	case TCP_CLOSE_WAIT:
4050 	case TCP_CLOSING:
4051 		/* Received a retransmission of the FIN, do
4052 		 * nothing.
4053 		 */
4054 		break;
4055 	case TCP_LAST_ACK:
4056 		/* RFC793: Remain in the LAST-ACK state. */
4057 		break;
4058 
4059 	case TCP_FIN_WAIT1:
4060 		/* This case occurs when a simultaneous close
4061 		 * happens, we must ack the received FIN and
4062 		 * enter the CLOSING state.
4063 		 */
4064 		tcp_send_ack(sk);
4065 		tcp_set_state(sk, TCP_CLOSING);
4066 		break;
4067 	case TCP_FIN_WAIT2:
4068 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4069 		tcp_send_ack(sk);
4070 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4071 		break;
4072 	default:
4073 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4074 		 * cases we should never reach this piece of code.
4075 		 */
4076 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4077 		       __func__, sk->sk_state);
4078 		break;
4079 	}
4080 
4081 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4082 	 * Probably, we should reset in this case. For now drop them.
4083 	 */
4084 	skb_rbtree_purge(&tp->out_of_order_queue);
4085 	if (tcp_is_sack(tp))
4086 		tcp_sack_reset(&tp->rx_opt);
4087 	sk_mem_reclaim(sk);
4088 
4089 	if (!sock_flag(sk, SOCK_DEAD)) {
4090 		sk->sk_state_change(sk);
4091 
4092 		/* Do not send POLL_HUP for half duplex close. */
4093 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4094 		    sk->sk_state == TCP_CLOSE)
4095 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4096 		else
4097 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4098 	}
4099 }
4100 
4101 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4102 				  u32 end_seq)
4103 {
4104 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4105 		if (before(seq, sp->start_seq))
4106 			sp->start_seq = seq;
4107 		if (after(end_seq, sp->end_seq))
4108 			sp->end_seq = end_seq;
4109 		return true;
4110 	}
4111 	return false;
4112 }
4113 
4114 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4115 {
4116 	struct tcp_sock *tp = tcp_sk(sk);
4117 
4118 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4119 		int mib_idx;
4120 
4121 		if (before(seq, tp->rcv_nxt))
4122 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4123 		else
4124 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4125 
4126 		NET_INC_STATS(sock_net(sk), mib_idx);
4127 
4128 		tp->rx_opt.dsack = 1;
4129 		tp->duplicate_sack[0].start_seq = seq;
4130 		tp->duplicate_sack[0].end_seq = end_seq;
4131 	}
4132 }
4133 
4134 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4135 {
4136 	struct tcp_sock *tp = tcp_sk(sk);
4137 
4138 	if (!tp->rx_opt.dsack)
4139 		tcp_dsack_set(sk, seq, end_seq);
4140 	else
4141 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4142 }
4143 
4144 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4145 {
4146 	struct tcp_sock *tp = tcp_sk(sk);
4147 
4148 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4149 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4150 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4151 		tcp_enter_quickack_mode(sk);
4152 
4153 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4154 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4155 
4156 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4157 				end_seq = tp->rcv_nxt;
4158 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4159 		}
4160 	}
4161 
4162 	tcp_send_ack(sk);
4163 }
4164 
4165 /* These routines update the SACK block as out-of-order packets arrive or
4166  * in-order packets close up the sequence space.
4167  */
4168 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4169 {
4170 	int this_sack;
4171 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4172 	struct tcp_sack_block *swalk = sp + 1;
4173 
4174 	/* See if the recent change to the first SACK eats into
4175 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4176 	 */
4177 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4178 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4179 			int i;
4180 
4181 			/* Zap SWALK, by moving every further SACK up by one slot.
4182 			 * Decrease num_sacks.
4183 			 */
4184 			tp->rx_opt.num_sacks--;
4185 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4186 				sp[i] = sp[i + 1];
4187 			continue;
4188 		}
4189 		this_sack++, swalk++;
4190 	}
4191 }
4192 
4193 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4194 {
4195 	struct tcp_sock *tp = tcp_sk(sk);
4196 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4197 	int cur_sacks = tp->rx_opt.num_sacks;
4198 	int this_sack;
4199 
4200 	if (!cur_sacks)
4201 		goto new_sack;
4202 
4203 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4204 		if (tcp_sack_extend(sp, seq, end_seq)) {
4205 			/* Rotate this_sack to the first one. */
4206 			for (; this_sack > 0; this_sack--, sp--)
4207 				swap(*sp, *(sp - 1));
4208 			if (cur_sacks > 1)
4209 				tcp_sack_maybe_coalesce(tp);
4210 			return;
4211 		}
4212 	}
4213 
4214 	/* Could not find an adjacent existing SACK, build a new one,
4215 	 * put it at the front, and shift everyone else down.  We
4216 	 * always know there is at least one SACK present already here.
4217 	 *
4218 	 * If the sack array is full, forget about the last one.
4219 	 */
4220 	if (this_sack >= TCP_NUM_SACKS) {
4221 		this_sack--;
4222 		tp->rx_opt.num_sacks--;
4223 		sp--;
4224 	}
4225 	for (; this_sack > 0; this_sack--, sp--)
4226 		*sp = *(sp - 1);
4227 
4228 new_sack:
4229 	/* Build the new head SACK, and we're done. */
4230 	sp->start_seq = seq;
4231 	sp->end_seq = end_seq;
4232 	tp->rx_opt.num_sacks++;
4233 }
4234 
4235 /* RCV.NXT advances, some SACKs should be eaten. */
4236 
4237 static void tcp_sack_remove(struct tcp_sock *tp)
4238 {
4239 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4240 	int num_sacks = tp->rx_opt.num_sacks;
4241 	int this_sack;
4242 
4243 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4244 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4245 		tp->rx_opt.num_sacks = 0;
4246 		return;
4247 	}
4248 
4249 	for (this_sack = 0; this_sack < num_sacks;) {
4250 		/* Check if the start of the sack is covered by RCV.NXT. */
4251 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4252 			int i;
4253 
4254 			/* RCV.NXT must cover all the block! */
4255 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4256 
4257 			/* Zap this SACK, by moving forward any other SACKS. */
4258 			for (i = this_sack+1; i < num_sacks; i++)
4259 				tp->selective_acks[i-1] = tp->selective_acks[i];
4260 			num_sacks--;
4261 			continue;
4262 		}
4263 		this_sack++;
4264 		sp++;
4265 	}
4266 	tp->rx_opt.num_sacks = num_sacks;
4267 }
4268 
4269 /**
4270  * tcp_try_coalesce - try to merge skb to prior one
4271  * @sk: socket
4272  * @to: prior buffer
4273  * @from: buffer to add in queue
4274  * @fragstolen: pointer to boolean
4275  *
4276  * Before queueing skb @from after @to, try to merge them
4277  * to reduce overall memory use and queue lengths, if cost is small.
4278  * Packets in ofo or receive queues can stay a long time.
4279  * Better try to coalesce them right now to avoid future collapses.
4280  * Returns true if caller should free @from instead of queueing it
4281  */
4282 static bool tcp_try_coalesce(struct sock *sk,
4283 			     struct sk_buff *to,
4284 			     struct sk_buff *from,
4285 			     bool *fragstolen)
4286 {
4287 	int delta;
4288 
4289 	*fragstolen = false;
4290 
4291 	/* Its possible this segment overlaps with prior segment in queue */
4292 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4293 		return false;
4294 
4295 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4296 		return false;
4297 
4298 	atomic_add(delta, &sk->sk_rmem_alloc);
4299 	sk_mem_charge(sk, delta);
4300 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4301 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4302 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4303 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4304 	return true;
4305 }
4306 
4307 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4308 {
4309 	sk_drops_add(sk, skb);
4310 	__kfree_skb(skb);
4311 }
4312 
4313 /* This one checks to see if we can put data from the
4314  * out_of_order queue into the receive_queue.
4315  */
4316 static void tcp_ofo_queue(struct sock *sk)
4317 {
4318 	struct tcp_sock *tp = tcp_sk(sk);
4319 	__u32 dsack_high = tp->rcv_nxt;
4320 	bool fin, fragstolen, eaten;
4321 	struct sk_buff *skb, *tail;
4322 	struct rb_node *p;
4323 
4324 	p = rb_first(&tp->out_of_order_queue);
4325 	while (p) {
4326 		skb = rb_entry(p, struct sk_buff, rbnode);
4327 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4328 			break;
4329 
4330 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4331 			__u32 dsack = dsack_high;
4332 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4333 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4334 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4335 		}
4336 		p = rb_next(p);
4337 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4338 
4339 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4340 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4341 			tcp_drop(sk, skb);
4342 			continue;
4343 		}
4344 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4345 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4346 			   TCP_SKB_CB(skb)->end_seq);
4347 
4348 		tail = skb_peek_tail(&sk->sk_receive_queue);
4349 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4350 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4351 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4352 		if (!eaten)
4353 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4354 		else
4355 			kfree_skb_partial(skb, fragstolen);
4356 
4357 		if (unlikely(fin)) {
4358 			tcp_fin(sk);
4359 			/* tcp_fin() purges tp->out_of_order_queue,
4360 			 * so we must end this loop right now.
4361 			 */
4362 			break;
4363 		}
4364 	}
4365 }
4366 
4367 static bool tcp_prune_ofo_queue(struct sock *sk);
4368 static int tcp_prune_queue(struct sock *sk);
4369 
4370 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4371 				 unsigned int size)
4372 {
4373 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4374 	    !sk_rmem_schedule(sk, skb, size)) {
4375 
4376 		if (tcp_prune_queue(sk) < 0)
4377 			return -1;
4378 
4379 		while (!sk_rmem_schedule(sk, skb, size)) {
4380 			if (!tcp_prune_ofo_queue(sk))
4381 				return -1;
4382 		}
4383 	}
4384 	return 0;
4385 }
4386 
4387 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4388 {
4389 	struct tcp_sock *tp = tcp_sk(sk);
4390 	struct rb_node **p, *q, *parent;
4391 	struct sk_buff *skb1;
4392 	u32 seq, end_seq;
4393 	bool fragstolen;
4394 
4395 	tcp_ecn_check_ce(tp, skb);
4396 
4397 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4398 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4399 		tcp_drop(sk, skb);
4400 		return;
4401 	}
4402 
4403 	/* Disable header prediction. */
4404 	tp->pred_flags = 0;
4405 	inet_csk_schedule_ack(sk);
4406 
4407 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4408 	seq = TCP_SKB_CB(skb)->seq;
4409 	end_seq = TCP_SKB_CB(skb)->end_seq;
4410 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4411 		   tp->rcv_nxt, seq, end_seq);
4412 
4413 	p = &tp->out_of_order_queue.rb_node;
4414 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4415 		/* Initial out of order segment, build 1 SACK. */
4416 		if (tcp_is_sack(tp)) {
4417 			tp->rx_opt.num_sacks = 1;
4418 			tp->selective_acks[0].start_seq = seq;
4419 			tp->selective_acks[0].end_seq = end_seq;
4420 		}
4421 		rb_link_node(&skb->rbnode, NULL, p);
4422 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4423 		tp->ooo_last_skb = skb;
4424 		goto end;
4425 	}
4426 
4427 	/* In the typical case, we are adding an skb to the end of the list.
4428 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4429 	 */
4430 	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4431 coalesce_done:
4432 		tcp_grow_window(sk, skb);
4433 		kfree_skb_partial(skb, fragstolen);
4434 		skb = NULL;
4435 		goto add_sack;
4436 	}
4437 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4438 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4439 		parent = &tp->ooo_last_skb->rbnode;
4440 		p = &parent->rb_right;
4441 		goto insert;
4442 	}
4443 
4444 	/* Find place to insert this segment. Handle overlaps on the way. */
4445 	parent = NULL;
4446 	while (*p) {
4447 		parent = *p;
4448 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4449 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4450 			p = &parent->rb_left;
4451 			continue;
4452 		}
4453 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4454 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4455 				/* All the bits are present. Drop. */
4456 				NET_INC_STATS(sock_net(sk),
4457 					      LINUX_MIB_TCPOFOMERGE);
4458 				__kfree_skb(skb);
4459 				skb = NULL;
4460 				tcp_dsack_set(sk, seq, end_seq);
4461 				goto add_sack;
4462 			}
4463 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4464 				/* Partial overlap. */
4465 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4466 			} else {
4467 				/* skb's seq == skb1's seq and skb covers skb1.
4468 				 * Replace skb1 with skb.
4469 				 */
4470 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4471 						&tp->out_of_order_queue);
4472 				tcp_dsack_extend(sk,
4473 						 TCP_SKB_CB(skb1)->seq,
4474 						 TCP_SKB_CB(skb1)->end_seq);
4475 				NET_INC_STATS(sock_net(sk),
4476 					      LINUX_MIB_TCPOFOMERGE);
4477 				__kfree_skb(skb1);
4478 				goto merge_right;
4479 			}
4480 		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4481 			goto coalesce_done;
4482 		}
4483 		p = &parent->rb_right;
4484 	}
4485 insert:
4486 	/* Insert segment into RB tree. */
4487 	rb_link_node(&skb->rbnode, parent, p);
4488 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4489 
4490 merge_right:
4491 	/* Remove other segments covered by skb. */
4492 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4493 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4494 
4495 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4496 			break;
4497 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4498 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4499 					 end_seq);
4500 			break;
4501 		}
4502 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4503 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4504 				 TCP_SKB_CB(skb1)->end_seq);
4505 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4506 		tcp_drop(sk, skb1);
4507 	}
4508 	/* If there is no skb after us, we are the last_skb ! */
4509 	if (!q)
4510 		tp->ooo_last_skb = skb;
4511 
4512 add_sack:
4513 	if (tcp_is_sack(tp))
4514 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4515 end:
4516 	if (skb) {
4517 		tcp_grow_window(sk, skb);
4518 		skb_condense(skb);
4519 		skb_set_owner_r(skb, sk);
4520 	}
4521 }
4522 
4523 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4524 		  bool *fragstolen)
4525 {
4526 	int eaten;
4527 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4528 
4529 	__skb_pull(skb, hdrlen);
4530 	eaten = (tail &&
4531 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4532 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4533 	if (!eaten) {
4534 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4535 		skb_set_owner_r(skb, sk);
4536 	}
4537 	return eaten;
4538 }
4539 
4540 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4541 {
4542 	struct sk_buff *skb;
4543 	int err = -ENOMEM;
4544 	int data_len = 0;
4545 	bool fragstolen;
4546 
4547 	if (size == 0)
4548 		return 0;
4549 
4550 	if (size > PAGE_SIZE) {
4551 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4552 
4553 		data_len = npages << PAGE_SHIFT;
4554 		size = data_len + (size & ~PAGE_MASK);
4555 	}
4556 	skb = alloc_skb_with_frags(size - data_len, data_len,
4557 				   PAGE_ALLOC_COSTLY_ORDER,
4558 				   &err, sk->sk_allocation);
4559 	if (!skb)
4560 		goto err;
4561 
4562 	skb_put(skb, size - data_len);
4563 	skb->data_len = data_len;
4564 	skb->len = size;
4565 
4566 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4567 		goto err_free;
4568 
4569 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4570 	if (err)
4571 		goto err_free;
4572 
4573 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4574 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4575 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4576 
4577 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4578 		WARN_ON_ONCE(fragstolen); /* should not happen */
4579 		__kfree_skb(skb);
4580 	}
4581 	return size;
4582 
4583 err_free:
4584 	kfree_skb(skb);
4585 err:
4586 	return err;
4587 
4588 }
4589 
4590 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4591 {
4592 	struct tcp_sock *tp = tcp_sk(sk);
4593 	bool fragstolen = false;
4594 	int eaten = -1;
4595 
4596 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4597 		__kfree_skb(skb);
4598 		return;
4599 	}
4600 	skb_dst_drop(skb);
4601 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4602 
4603 	tcp_ecn_accept_cwr(tp, skb);
4604 
4605 	tp->rx_opt.dsack = 0;
4606 
4607 	/*  Queue data for delivery to the user.
4608 	 *  Packets in sequence go to the receive queue.
4609 	 *  Out of sequence packets to the out_of_order_queue.
4610 	 */
4611 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4612 		if (tcp_receive_window(tp) == 0)
4613 			goto out_of_window;
4614 
4615 		/* Ok. In sequence. In window. */
4616 		if (tp->ucopy.task == current &&
4617 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4618 		    sock_owned_by_user(sk) && !tp->urg_data) {
4619 			int chunk = min_t(unsigned int, skb->len,
4620 					  tp->ucopy.len);
4621 
4622 			__set_current_state(TASK_RUNNING);
4623 
4624 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4625 				tp->ucopy.len -= chunk;
4626 				tp->copied_seq += chunk;
4627 				eaten = (chunk == skb->len);
4628 				tcp_rcv_space_adjust(sk);
4629 			}
4630 		}
4631 
4632 		if (eaten <= 0) {
4633 queue_and_out:
4634 			if (eaten < 0) {
4635 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4636 					sk_forced_mem_schedule(sk, skb->truesize);
4637 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4638 					goto drop;
4639 			}
4640 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4641 		}
4642 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4643 		if (skb->len)
4644 			tcp_event_data_recv(sk, skb);
4645 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4646 			tcp_fin(sk);
4647 
4648 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4649 			tcp_ofo_queue(sk);
4650 
4651 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4652 			 * gap in queue is filled.
4653 			 */
4654 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4655 				inet_csk(sk)->icsk_ack.pingpong = 0;
4656 		}
4657 
4658 		if (tp->rx_opt.num_sacks)
4659 			tcp_sack_remove(tp);
4660 
4661 		tcp_fast_path_check(sk);
4662 
4663 		if (eaten > 0)
4664 			kfree_skb_partial(skb, fragstolen);
4665 		if (!sock_flag(sk, SOCK_DEAD))
4666 			sk->sk_data_ready(sk);
4667 		return;
4668 	}
4669 
4670 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4671 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4672 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4673 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4674 
4675 out_of_window:
4676 		tcp_enter_quickack_mode(sk);
4677 		inet_csk_schedule_ack(sk);
4678 drop:
4679 		tcp_drop(sk, skb);
4680 		return;
4681 	}
4682 
4683 	/* Out of window. F.e. zero window probe. */
4684 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4685 		goto out_of_window;
4686 
4687 	tcp_enter_quickack_mode(sk);
4688 
4689 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4690 		/* Partial packet, seq < rcv_next < end_seq */
4691 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4692 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4693 			   TCP_SKB_CB(skb)->end_seq);
4694 
4695 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4696 
4697 		/* If window is closed, drop tail of packet. But after
4698 		 * remembering D-SACK for its head made in previous line.
4699 		 */
4700 		if (!tcp_receive_window(tp))
4701 			goto out_of_window;
4702 		goto queue_and_out;
4703 	}
4704 
4705 	tcp_data_queue_ofo(sk, skb);
4706 }
4707 
4708 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4709 {
4710 	if (list)
4711 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4712 
4713 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4714 }
4715 
4716 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4717 					struct sk_buff_head *list,
4718 					struct rb_root *root)
4719 {
4720 	struct sk_buff *next = tcp_skb_next(skb, list);
4721 
4722 	if (list)
4723 		__skb_unlink(skb, list);
4724 	else
4725 		rb_erase(&skb->rbnode, root);
4726 
4727 	__kfree_skb(skb);
4728 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4729 
4730 	return next;
4731 }
4732 
4733 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4734 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4735 {
4736 	struct rb_node **p = &root->rb_node;
4737 	struct rb_node *parent = NULL;
4738 	struct sk_buff *skb1;
4739 
4740 	while (*p) {
4741 		parent = *p;
4742 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4743 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4744 			p = &parent->rb_left;
4745 		else
4746 			p = &parent->rb_right;
4747 	}
4748 	rb_link_node(&skb->rbnode, parent, p);
4749 	rb_insert_color(&skb->rbnode, root);
4750 }
4751 
4752 /* Collapse contiguous sequence of skbs head..tail with
4753  * sequence numbers start..end.
4754  *
4755  * If tail is NULL, this means until the end of the queue.
4756  *
4757  * Segments with FIN/SYN are not collapsed (only because this
4758  * simplifies code)
4759  */
4760 static void
4761 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4762 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4763 {
4764 	struct sk_buff *skb = head, *n;
4765 	struct sk_buff_head tmp;
4766 	bool end_of_skbs;
4767 
4768 	/* First, check that queue is collapsible and find
4769 	 * the point where collapsing can be useful.
4770 	 */
4771 restart:
4772 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4773 		n = tcp_skb_next(skb, list);
4774 
4775 		/* No new bits? It is possible on ofo queue. */
4776 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4777 			skb = tcp_collapse_one(sk, skb, list, root);
4778 			if (!skb)
4779 				break;
4780 			goto restart;
4781 		}
4782 
4783 		/* The first skb to collapse is:
4784 		 * - not SYN/FIN and
4785 		 * - bloated or contains data before "start" or
4786 		 *   overlaps to the next one.
4787 		 */
4788 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4789 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4790 		     before(TCP_SKB_CB(skb)->seq, start))) {
4791 			end_of_skbs = false;
4792 			break;
4793 		}
4794 
4795 		if (n && n != tail &&
4796 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4797 			end_of_skbs = false;
4798 			break;
4799 		}
4800 
4801 		/* Decided to skip this, advance start seq. */
4802 		start = TCP_SKB_CB(skb)->end_seq;
4803 	}
4804 	if (end_of_skbs ||
4805 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4806 		return;
4807 
4808 	__skb_queue_head_init(&tmp);
4809 
4810 	while (before(start, end)) {
4811 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4812 		struct sk_buff *nskb;
4813 
4814 		nskb = alloc_skb(copy, GFP_ATOMIC);
4815 		if (!nskb)
4816 			break;
4817 
4818 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4819 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4820 		if (list)
4821 			__skb_queue_before(list, skb, nskb);
4822 		else
4823 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4824 		skb_set_owner_r(nskb, sk);
4825 
4826 		/* Copy data, releasing collapsed skbs. */
4827 		while (copy > 0) {
4828 			int offset = start - TCP_SKB_CB(skb)->seq;
4829 			int size = TCP_SKB_CB(skb)->end_seq - start;
4830 
4831 			BUG_ON(offset < 0);
4832 			if (size > 0) {
4833 				size = min(copy, size);
4834 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4835 					BUG();
4836 				TCP_SKB_CB(nskb)->end_seq += size;
4837 				copy -= size;
4838 				start += size;
4839 			}
4840 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4841 				skb = tcp_collapse_one(sk, skb, list, root);
4842 				if (!skb ||
4843 				    skb == tail ||
4844 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4845 					goto end;
4846 			}
4847 		}
4848 	}
4849 end:
4850 	skb_queue_walk_safe(&tmp, skb, n)
4851 		tcp_rbtree_insert(root, skb);
4852 }
4853 
4854 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4855  * and tcp_collapse() them until all the queue is collapsed.
4856  */
4857 static void tcp_collapse_ofo_queue(struct sock *sk)
4858 {
4859 	struct tcp_sock *tp = tcp_sk(sk);
4860 	struct sk_buff *skb, *head;
4861 	struct rb_node *p;
4862 	u32 start, end;
4863 
4864 	p = rb_first(&tp->out_of_order_queue);
4865 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4866 new_range:
4867 	if (!skb) {
4868 		p = rb_last(&tp->out_of_order_queue);
4869 		/* Note: This is possible p is NULL here. We do not
4870 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4871 		 * if rbtree is not empty.
4872 		 */
4873 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4874 		return;
4875 	}
4876 	start = TCP_SKB_CB(skb)->seq;
4877 	end = TCP_SKB_CB(skb)->end_seq;
4878 
4879 	for (head = skb;;) {
4880 		skb = tcp_skb_next(skb, NULL);
4881 
4882 		/* Range is terminated when we see a gap or when
4883 		 * we are at the queue end.
4884 		 */
4885 		if (!skb ||
4886 		    after(TCP_SKB_CB(skb)->seq, end) ||
4887 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4888 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4889 				     head, skb, start, end);
4890 			goto new_range;
4891 		}
4892 
4893 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4894 			start = TCP_SKB_CB(skb)->seq;
4895 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4896 			end = TCP_SKB_CB(skb)->end_seq;
4897 	}
4898 }
4899 
4900 /*
4901  * Clean the out-of-order queue to make room.
4902  * We drop high sequences packets to :
4903  * 1) Let a chance for holes to be filled.
4904  * 2) not add too big latencies if thousands of packets sit there.
4905  *    (But if application shrinks SO_RCVBUF, we could still end up
4906  *     freeing whole queue here)
4907  *
4908  * Return true if queue has shrunk.
4909  */
4910 static bool tcp_prune_ofo_queue(struct sock *sk)
4911 {
4912 	struct tcp_sock *tp = tcp_sk(sk);
4913 	struct rb_node *node, *prev;
4914 
4915 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4916 		return false;
4917 
4918 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4919 	node = &tp->ooo_last_skb->rbnode;
4920 	do {
4921 		prev = rb_prev(node);
4922 		rb_erase(node, &tp->out_of_order_queue);
4923 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4924 		sk_mem_reclaim(sk);
4925 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4926 		    !tcp_under_memory_pressure(sk))
4927 			break;
4928 		node = prev;
4929 	} while (node);
4930 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4931 
4932 	/* Reset SACK state.  A conforming SACK implementation will
4933 	 * do the same at a timeout based retransmit.  When a connection
4934 	 * is in a sad state like this, we care only about integrity
4935 	 * of the connection not performance.
4936 	 */
4937 	if (tp->rx_opt.sack_ok)
4938 		tcp_sack_reset(&tp->rx_opt);
4939 	return true;
4940 }
4941 
4942 /* Reduce allocated memory if we can, trying to get
4943  * the socket within its memory limits again.
4944  *
4945  * Return less than zero if we should start dropping frames
4946  * until the socket owning process reads some of the data
4947  * to stabilize the situation.
4948  */
4949 static int tcp_prune_queue(struct sock *sk)
4950 {
4951 	struct tcp_sock *tp = tcp_sk(sk);
4952 
4953 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4954 
4955 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4956 
4957 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4958 		tcp_clamp_window(sk);
4959 	else if (tcp_under_memory_pressure(sk))
4960 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4961 
4962 	tcp_collapse_ofo_queue(sk);
4963 	if (!skb_queue_empty(&sk->sk_receive_queue))
4964 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4965 			     skb_peek(&sk->sk_receive_queue),
4966 			     NULL,
4967 			     tp->copied_seq, tp->rcv_nxt);
4968 	sk_mem_reclaim(sk);
4969 
4970 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4971 		return 0;
4972 
4973 	/* Collapsing did not help, destructive actions follow.
4974 	 * This must not ever occur. */
4975 
4976 	tcp_prune_ofo_queue(sk);
4977 
4978 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4979 		return 0;
4980 
4981 	/* If we are really being abused, tell the caller to silently
4982 	 * drop receive data on the floor.  It will get retransmitted
4983 	 * and hopefully then we'll have sufficient space.
4984 	 */
4985 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4986 
4987 	/* Massive buffer overcommit. */
4988 	tp->pred_flags = 0;
4989 	return -1;
4990 }
4991 
4992 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4993 {
4994 	const struct tcp_sock *tp = tcp_sk(sk);
4995 
4996 	/* If the user specified a specific send buffer setting, do
4997 	 * not modify it.
4998 	 */
4999 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5000 		return false;
5001 
5002 	/* If we are under global TCP memory pressure, do not expand.  */
5003 	if (tcp_under_memory_pressure(sk))
5004 		return false;
5005 
5006 	/* If we are under soft global TCP memory pressure, do not expand.  */
5007 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5008 		return false;
5009 
5010 	/* If we filled the congestion window, do not expand.  */
5011 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5012 		return false;
5013 
5014 	return true;
5015 }
5016 
5017 /* When incoming ACK allowed to free some skb from write_queue,
5018  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5019  * on the exit from tcp input handler.
5020  *
5021  * PROBLEM: sndbuf expansion does not work well with largesend.
5022  */
5023 static void tcp_new_space(struct sock *sk)
5024 {
5025 	struct tcp_sock *tp = tcp_sk(sk);
5026 
5027 	if (tcp_should_expand_sndbuf(sk)) {
5028 		tcp_sndbuf_expand(sk);
5029 		tp->snd_cwnd_stamp = tcp_jiffies32;
5030 	}
5031 
5032 	sk->sk_write_space(sk);
5033 }
5034 
5035 static void tcp_check_space(struct sock *sk)
5036 {
5037 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5038 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5039 		/* pairs with tcp_poll() */
5040 		smp_mb();
5041 		if (sk->sk_socket &&
5042 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5043 			tcp_new_space(sk);
5044 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5045 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5046 		}
5047 	}
5048 }
5049 
5050 static inline void tcp_data_snd_check(struct sock *sk)
5051 {
5052 	tcp_push_pending_frames(sk);
5053 	tcp_check_space(sk);
5054 }
5055 
5056 /*
5057  * Check if sending an ack is needed.
5058  */
5059 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5060 {
5061 	struct tcp_sock *tp = tcp_sk(sk);
5062 
5063 	    /* More than one full frame received... */
5064 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5065 	     /* ... and right edge of window advances far enough.
5066 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5067 	      */
5068 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5069 	    /* We ACK each frame or... */
5070 	    tcp_in_quickack_mode(sk) ||
5071 	    /* We have out of order data. */
5072 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5073 		/* Then ack it now */
5074 		tcp_send_ack(sk);
5075 	} else {
5076 		/* Else, send delayed ack. */
5077 		tcp_send_delayed_ack(sk);
5078 	}
5079 }
5080 
5081 static inline void tcp_ack_snd_check(struct sock *sk)
5082 {
5083 	if (!inet_csk_ack_scheduled(sk)) {
5084 		/* We sent a data segment already. */
5085 		return;
5086 	}
5087 	__tcp_ack_snd_check(sk, 1);
5088 }
5089 
5090 /*
5091  *	This routine is only called when we have urgent data
5092  *	signaled. Its the 'slow' part of tcp_urg. It could be
5093  *	moved inline now as tcp_urg is only called from one
5094  *	place. We handle URGent data wrong. We have to - as
5095  *	BSD still doesn't use the correction from RFC961.
5096  *	For 1003.1g we should support a new option TCP_STDURG to permit
5097  *	either form (or just set the sysctl tcp_stdurg).
5098  */
5099 
5100 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5101 {
5102 	struct tcp_sock *tp = tcp_sk(sk);
5103 	u32 ptr = ntohs(th->urg_ptr);
5104 
5105 	if (ptr && !sysctl_tcp_stdurg)
5106 		ptr--;
5107 	ptr += ntohl(th->seq);
5108 
5109 	/* Ignore urgent data that we've already seen and read. */
5110 	if (after(tp->copied_seq, ptr))
5111 		return;
5112 
5113 	/* Do not replay urg ptr.
5114 	 *
5115 	 * NOTE: interesting situation not covered by specs.
5116 	 * Misbehaving sender may send urg ptr, pointing to segment,
5117 	 * which we already have in ofo queue. We are not able to fetch
5118 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5119 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5120 	 * situations. But it is worth to think about possibility of some
5121 	 * DoSes using some hypothetical application level deadlock.
5122 	 */
5123 	if (before(ptr, tp->rcv_nxt))
5124 		return;
5125 
5126 	/* Do we already have a newer (or duplicate) urgent pointer? */
5127 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5128 		return;
5129 
5130 	/* Tell the world about our new urgent pointer. */
5131 	sk_send_sigurg(sk);
5132 
5133 	/* We may be adding urgent data when the last byte read was
5134 	 * urgent. To do this requires some care. We cannot just ignore
5135 	 * tp->copied_seq since we would read the last urgent byte again
5136 	 * as data, nor can we alter copied_seq until this data arrives
5137 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5138 	 *
5139 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5140 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5141 	 * and expect that both A and B disappear from stream. This is _wrong_.
5142 	 * Though this happens in BSD with high probability, this is occasional.
5143 	 * Any application relying on this is buggy. Note also, that fix "works"
5144 	 * only in this artificial test. Insert some normal data between A and B and we will
5145 	 * decline of BSD again. Verdict: it is better to remove to trap
5146 	 * buggy users.
5147 	 */
5148 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5149 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5150 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5151 		tp->copied_seq++;
5152 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5153 			__skb_unlink(skb, &sk->sk_receive_queue);
5154 			__kfree_skb(skb);
5155 		}
5156 	}
5157 
5158 	tp->urg_data = TCP_URG_NOTYET;
5159 	tp->urg_seq = ptr;
5160 
5161 	/* Disable header prediction. */
5162 	tp->pred_flags = 0;
5163 }
5164 
5165 /* This is the 'fast' part of urgent handling. */
5166 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5167 {
5168 	struct tcp_sock *tp = tcp_sk(sk);
5169 
5170 	/* Check if we get a new urgent pointer - normally not. */
5171 	if (th->urg)
5172 		tcp_check_urg(sk, th);
5173 
5174 	/* Do we wait for any urgent data? - normally not... */
5175 	if (tp->urg_data == TCP_URG_NOTYET) {
5176 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5177 			  th->syn;
5178 
5179 		/* Is the urgent pointer pointing into this packet? */
5180 		if (ptr < skb->len) {
5181 			u8 tmp;
5182 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5183 				BUG();
5184 			tp->urg_data = TCP_URG_VALID | tmp;
5185 			if (!sock_flag(sk, SOCK_DEAD))
5186 				sk->sk_data_ready(sk);
5187 		}
5188 	}
5189 }
5190 
5191 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5192 {
5193 	struct tcp_sock *tp = tcp_sk(sk);
5194 	int chunk = skb->len - hlen;
5195 	int err;
5196 
5197 	if (skb_csum_unnecessary(skb))
5198 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5199 	else
5200 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5201 
5202 	if (!err) {
5203 		tp->ucopy.len -= chunk;
5204 		tp->copied_seq += chunk;
5205 		tcp_rcv_space_adjust(sk);
5206 	}
5207 
5208 	return err;
5209 }
5210 
5211 /* Accept RST for rcv_nxt - 1 after a FIN.
5212  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5213  * FIN is sent followed by a RST packet. The RST is sent with the same
5214  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5215  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5216  * ACKs on the closed socket. In addition middleboxes can drop either the
5217  * challenge ACK or a subsequent RST.
5218  */
5219 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5220 {
5221 	struct tcp_sock *tp = tcp_sk(sk);
5222 
5223 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5224 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5225 					       TCPF_CLOSING));
5226 }
5227 
5228 /* Does PAWS and seqno based validation of an incoming segment, flags will
5229  * play significant role here.
5230  */
5231 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5232 				  const struct tcphdr *th, int syn_inerr)
5233 {
5234 	struct tcp_sock *tp = tcp_sk(sk);
5235 	bool rst_seq_match = false;
5236 
5237 	/* RFC1323: H1. Apply PAWS check first. */
5238 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5239 	    tp->rx_opt.saw_tstamp &&
5240 	    tcp_paws_discard(sk, skb)) {
5241 		if (!th->rst) {
5242 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5243 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5244 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5245 						  &tp->last_oow_ack_time))
5246 				tcp_send_dupack(sk, skb);
5247 			goto discard;
5248 		}
5249 		/* Reset is accepted even if it did not pass PAWS. */
5250 	}
5251 
5252 	/* Step 1: check sequence number */
5253 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5254 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5255 		 * (RST) segments are validated by checking their SEQ-fields."
5256 		 * And page 69: "If an incoming segment is not acceptable,
5257 		 * an acknowledgment should be sent in reply (unless the RST
5258 		 * bit is set, if so drop the segment and return)".
5259 		 */
5260 		if (!th->rst) {
5261 			if (th->syn)
5262 				goto syn_challenge;
5263 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5264 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5265 						  &tp->last_oow_ack_time))
5266 				tcp_send_dupack(sk, skb);
5267 		} else if (tcp_reset_check(sk, skb)) {
5268 			tcp_reset(sk);
5269 		}
5270 		goto discard;
5271 	}
5272 
5273 	/* Step 2: check RST bit */
5274 	if (th->rst) {
5275 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5276 		 * FIN and SACK too if available):
5277 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5278 		 * the right-most SACK block,
5279 		 * then
5280 		 *     RESET the connection
5281 		 * else
5282 		 *     Send a challenge ACK
5283 		 */
5284 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5285 		    tcp_reset_check(sk, skb)) {
5286 			rst_seq_match = true;
5287 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5288 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5289 			int max_sack = sp[0].end_seq;
5290 			int this_sack;
5291 
5292 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5293 			     ++this_sack) {
5294 				max_sack = after(sp[this_sack].end_seq,
5295 						 max_sack) ?
5296 					sp[this_sack].end_seq : max_sack;
5297 			}
5298 
5299 			if (TCP_SKB_CB(skb)->seq == max_sack)
5300 				rst_seq_match = true;
5301 		}
5302 
5303 		if (rst_seq_match)
5304 			tcp_reset(sk);
5305 		else {
5306 			/* Disable TFO if RST is out-of-order
5307 			 * and no data has been received
5308 			 * for current active TFO socket
5309 			 */
5310 			if (tp->syn_fastopen && !tp->data_segs_in &&
5311 			    sk->sk_state == TCP_ESTABLISHED)
5312 				tcp_fastopen_active_disable(sk);
5313 			tcp_send_challenge_ack(sk, skb);
5314 		}
5315 		goto discard;
5316 	}
5317 
5318 	/* step 3: check security and precedence [ignored] */
5319 
5320 	/* step 4: Check for a SYN
5321 	 * RFC 5961 4.2 : Send a challenge ack
5322 	 */
5323 	if (th->syn) {
5324 syn_challenge:
5325 		if (syn_inerr)
5326 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5327 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5328 		tcp_send_challenge_ack(sk, skb);
5329 		goto discard;
5330 	}
5331 
5332 	return true;
5333 
5334 discard:
5335 	tcp_drop(sk, skb);
5336 	return false;
5337 }
5338 
5339 /*
5340  *	TCP receive function for the ESTABLISHED state.
5341  *
5342  *	It is split into a fast path and a slow path. The fast path is
5343  * 	disabled when:
5344  *	- A zero window was announced from us - zero window probing
5345  *        is only handled properly in the slow path.
5346  *	- Out of order segments arrived.
5347  *	- Urgent data is expected.
5348  *	- There is no buffer space left
5349  *	- Unexpected TCP flags/window values/header lengths are received
5350  *	  (detected by checking the TCP header against pred_flags)
5351  *	- Data is sent in both directions. Fast path only supports pure senders
5352  *	  or pure receivers (this means either the sequence number or the ack
5353  *	  value must stay constant)
5354  *	- Unexpected TCP option.
5355  *
5356  *	When these conditions are not satisfied it drops into a standard
5357  *	receive procedure patterned after RFC793 to handle all cases.
5358  *	The first three cases are guaranteed by proper pred_flags setting,
5359  *	the rest is checked inline. Fast processing is turned on in
5360  *	tcp_data_queue when everything is OK.
5361  */
5362 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5363 			 const struct tcphdr *th, unsigned int len)
5364 {
5365 	struct tcp_sock *tp = tcp_sk(sk);
5366 
5367 	tcp_mstamp_refresh(tp);
5368 	if (unlikely(!sk->sk_rx_dst))
5369 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5370 	/*
5371 	 *	Header prediction.
5372 	 *	The code loosely follows the one in the famous
5373 	 *	"30 instruction TCP receive" Van Jacobson mail.
5374 	 *
5375 	 *	Van's trick is to deposit buffers into socket queue
5376 	 *	on a device interrupt, to call tcp_recv function
5377 	 *	on the receive process context and checksum and copy
5378 	 *	the buffer to user space. smart...
5379 	 *
5380 	 *	Our current scheme is not silly either but we take the
5381 	 *	extra cost of the net_bh soft interrupt processing...
5382 	 *	We do checksum and copy also but from device to kernel.
5383 	 */
5384 
5385 	tp->rx_opt.saw_tstamp = 0;
5386 
5387 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5388 	 *	if header_prediction is to be made
5389 	 *	'S' will always be tp->tcp_header_len >> 2
5390 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5391 	 *  turn it off	(when there are holes in the receive
5392 	 *	 space for instance)
5393 	 *	PSH flag is ignored.
5394 	 */
5395 
5396 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5397 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5398 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5399 		int tcp_header_len = tp->tcp_header_len;
5400 
5401 		/* Timestamp header prediction: tcp_header_len
5402 		 * is automatically equal to th->doff*4 due to pred_flags
5403 		 * match.
5404 		 */
5405 
5406 		/* Check timestamp */
5407 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5408 			/* No? Slow path! */
5409 			if (!tcp_parse_aligned_timestamp(tp, th))
5410 				goto slow_path;
5411 
5412 			/* If PAWS failed, check it more carefully in slow path */
5413 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5414 				goto slow_path;
5415 
5416 			/* DO NOT update ts_recent here, if checksum fails
5417 			 * and timestamp was corrupted part, it will result
5418 			 * in a hung connection since we will drop all
5419 			 * future packets due to the PAWS test.
5420 			 */
5421 		}
5422 
5423 		if (len <= tcp_header_len) {
5424 			/* Bulk data transfer: sender */
5425 			if (len == tcp_header_len) {
5426 				/* Predicted packet is in window by definition.
5427 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5428 				 * Hence, check seq<=rcv_wup reduces to:
5429 				 */
5430 				if (tcp_header_len ==
5431 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5432 				    tp->rcv_nxt == tp->rcv_wup)
5433 					tcp_store_ts_recent(tp);
5434 
5435 				/* We know that such packets are checksummed
5436 				 * on entry.
5437 				 */
5438 				tcp_ack(sk, skb, 0);
5439 				__kfree_skb(skb);
5440 				tcp_data_snd_check(sk);
5441 				return;
5442 			} else { /* Header too small */
5443 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5444 				goto discard;
5445 			}
5446 		} else {
5447 			int eaten = 0;
5448 			bool fragstolen = false;
5449 
5450 			if (tp->ucopy.task == current &&
5451 			    tp->copied_seq == tp->rcv_nxt &&
5452 			    len - tcp_header_len <= tp->ucopy.len &&
5453 			    sock_owned_by_user(sk)) {
5454 				__set_current_state(TASK_RUNNING);
5455 
5456 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5457 					/* Predicted packet is in window by definition.
5458 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5459 					 * Hence, check seq<=rcv_wup reduces to:
5460 					 */
5461 					if (tcp_header_len ==
5462 					    (sizeof(struct tcphdr) +
5463 					     TCPOLEN_TSTAMP_ALIGNED) &&
5464 					    tp->rcv_nxt == tp->rcv_wup)
5465 						tcp_store_ts_recent(tp);
5466 
5467 					tcp_rcv_rtt_measure_ts(sk, skb);
5468 
5469 					__skb_pull(skb, tcp_header_len);
5470 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5471 					NET_INC_STATS(sock_net(sk),
5472 							LINUX_MIB_TCPHPHITSTOUSER);
5473 					eaten = 1;
5474 				}
5475 			}
5476 			if (!eaten) {
5477 				if (tcp_checksum_complete(skb))
5478 					goto csum_error;
5479 
5480 				if ((int)skb->truesize > sk->sk_forward_alloc)
5481 					goto step5;
5482 
5483 				/* Predicted packet is in window by definition.
5484 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5485 				 * Hence, check seq<=rcv_wup reduces to:
5486 				 */
5487 				if (tcp_header_len ==
5488 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5489 				    tp->rcv_nxt == tp->rcv_wup)
5490 					tcp_store_ts_recent(tp);
5491 
5492 				tcp_rcv_rtt_measure_ts(sk, skb);
5493 
5494 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5495 
5496 				/* Bulk data transfer: receiver */
5497 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5498 						      &fragstolen);
5499 			}
5500 
5501 			tcp_event_data_recv(sk, skb);
5502 
5503 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5504 				/* Well, only one small jumplet in fast path... */
5505 				tcp_ack(sk, skb, FLAG_DATA);
5506 				tcp_data_snd_check(sk);
5507 				if (!inet_csk_ack_scheduled(sk))
5508 					goto no_ack;
5509 			}
5510 
5511 			__tcp_ack_snd_check(sk, 0);
5512 no_ack:
5513 			if (eaten)
5514 				kfree_skb_partial(skb, fragstolen);
5515 			sk->sk_data_ready(sk);
5516 			return;
5517 		}
5518 	}
5519 
5520 slow_path:
5521 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5522 		goto csum_error;
5523 
5524 	if (!th->ack && !th->rst && !th->syn)
5525 		goto discard;
5526 
5527 	/*
5528 	 *	Standard slow path.
5529 	 */
5530 
5531 	if (!tcp_validate_incoming(sk, skb, th, 1))
5532 		return;
5533 
5534 step5:
5535 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5536 		goto discard;
5537 
5538 	tcp_rcv_rtt_measure_ts(sk, skb);
5539 
5540 	/* Process urgent data. */
5541 	tcp_urg(sk, skb, th);
5542 
5543 	/* step 7: process the segment text */
5544 	tcp_data_queue(sk, skb);
5545 
5546 	tcp_data_snd_check(sk);
5547 	tcp_ack_snd_check(sk);
5548 	return;
5549 
5550 csum_error:
5551 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5552 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5553 
5554 discard:
5555 	tcp_drop(sk, skb);
5556 }
5557 EXPORT_SYMBOL(tcp_rcv_established);
5558 
5559 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5560 {
5561 	struct tcp_sock *tp = tcp_sk(sk);
5562 	struct inet_connection_sock *icsk = inet_csk(sk);
5563 
5564 	tcp_set_state(sk, TCP_ESTABLISHED);
5565 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5566 
5567 	if (skb) {
5568 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5569 		security_inet_conn_established(sk, skb);
5570 	}
5571 
5572 	/* Make sure socket is routed, for correct metrics.  */
5573 	icsk->icsk_af_ops->rebuild_header(sk);
5574 
5575 	tcp_init_metrics(sk);
5576 
5577 	tcp_init_congestion_control(sk);
5578 
5579 	/* Prevent spurious tcp_cwnd_restart() on first data
5580 	 * packet.
5581 	 */
5582 	tp->lsndtime = tcp_jiffies32;
5583 
5584 	tcp_init_buffer_space(sk);
5585 
5586 	if (sock_flag(sk, SOCK_KEEPOPEN))
5587 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5588 
5589 	if (!tp->rx_opt.snd_wscale)
5590 		__tcp_fast_path_on(tp, tp->snd_wnd);
5591 	else
5592 		tp->pred_flags = 0;
5593 
5594 }
5595 
5596 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5597 				    struct tcp_fastopen_cookie *cookie)
5598 {
5599 	struct tcp_sock *tp = tcp_sk(sk);
5600 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5601 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5602 	bool syn_drop = false;
5603 
5604 	if (mss == tp->rx_opt.user_mss) {
5605 		struct tcp_options_received opt;
5606 
5607 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5608 		tcp_clear_options(&opt);
5609 		opt.user_mss = opt.mss_clamp = 0;
5610 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5611 		mss = opt.mss_clamp;
5612 	}
5613 
5614 	if (!tp->syn_fastopen) {
5615 		/* Ignore an unsolicited cookie */
5616 		cookie->len = -1;
5617 	} else if (tp->total_retrans) {
5618 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5619 		 * acknowledges data. Presumably the remote received only
5620 		 * the retransmitted (regular) SYNs: either the original
5621 		 * SYN-data or the corresponding SYN-ACK was dropped.
5622 		 */
5623 		syn_drop = (cookie->len < 0 && data);
5624 	} else if (cookie->len < 0 && !tp->syn_data) {
5625 		/* We requested a cookie but didn't get it. If we did not use
5626 		 * the (old) exp opt format then try so next time (try_exp=1).
5627 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5628 		 */
5629 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5630 	}
5631 
5632 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5633 
5634 	if (data) { /* Retransmit unacked data in SYN */
5635 		tcp_for_write_queue_from(data, sk) {
5636 			if (data == tcp_send_head(sk) ||
5637 			    __tcp_retransmit_skb(sk, data, 1))
5638 				break;
5639 		}
5640 		tcp_rearm_rto(sk);
5641 		NET_INC_STATS(sock_net(sk),
5642 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5643 		return true;
5644 	}
5645 	tp->syn_data_acked = tp->syn_data;
5646 	if (tp->syn_data_acked)
5647 		NET_INC_STATS(sock_net(sk),
5648 				LINUX_MIB_TCPFASTOPENACTIVE);
5649 
5650 	tcp_fastopen_add_skb(sk, synack);
5651 
5652 	return false;
5653 }
5654 
5655 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5656 					 const struct tcphdr *th)
5657 {
5658 	struct inet_connection_sock *icsk = inet_csk(sk);
5659 	struct tcp_sock *tp = tcp_sk(sk);
5660 	struct tcp_fastopen_cookie foc = { .len = -1 };
5661 	int saved_clamp = tp->rx_opt.mss_clamp;
5662 	bool fastopen_fail;
5663 
5664 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5665 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5666 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5667 
5668 	if (th->ack) {
5669 		/* rfc793:
5670 		 * "If the state is SYN-SENT then
5671 		 *    first check the ACK bit
5672 		 *      If the ACK bit is set
5673 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5674 		 *        a reset (unless the RST bit is set, if so drop
5675 		 *        the segment and return)"
5676 		 */
5677 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5678 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5679 			goto reset_and_undo;
5680 
5681 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5682 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5683 			     tcp_time_stamp(tp))) {
5684 			NET_INC_STATS(sock_net(sk),
5685 					LINUX_MIB_PAWSACTIVEREJECTED);
5686 			goto reset_and_undo;
5687 		}
5688 
5689 		/* Now ACK is acceptable.
5690 		 *
5691 		 * "If the RST bit is set
5692 		 *    If the ACK was acceptable then signal the user "error:
5693 		 *    connection reset", drop the segment, enter CLOSED state,
5694 		 *    delete TCB, and return."
5695 		 */
5696 
5697 		if (th->rst) {
5698 			tcp_reset(sk);
5699 			goto discard;
5700 		}
5701 
5702 		/* rfc793:
5703 		 *   "fifth, if neither of the SYN or RST bits is set then
5704 		 *    drop the segment and return."
5705 		 *
5706 		 *    See note below!
5707 		 *                                        --ANK(990513)
5708 		 */
5709 		if (!th->syn)
5710 			goto discard_and_undo;
5711 
5712 		/* rfc793:
5713 		 *   "If the SYN bit is on ...
5714 		 *    are acceptable then ...
5715 		 *    (our SYN has been ACKed), change the connection
5716 		 *    state to ESTABLISHED..."
5717 		 */
5718 
5719 		tcp_ecn_rcv_synack(tp, th);
5720 
5721 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5722 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5723 
5724 		/* Ok.. it's good. Set up sequence numbers and
5725 		 * move to established.
5726 		 */
5727 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5728 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5729 
5730 		/* RFC1323: The window in SYN & SYN/ACK segments is
5731 		 * never scaled.
5732 		 */
5733 		tp->snd_wnd = ntohs(th->window);
5734 
5735 		if (!tp->rx_opt.wscale_ok) {
5736 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5737 			tp->window_clamp = min(tp->window_clamp, 65535U);
5738 		}
5739 
5740 		if (tp->rx_opt.saw_tstamp) {
5741 			tp->rx_opt.tstamp_ok	   = 1;
5742 			tp->tcp_header_len =
5743 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5744 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5745 			tcp_store_ts_recent(tp);
5746 		} else {
5747 			tp->tcp_header_len = sizeof(struct tcphdr);
5748 		}
5749 
5750 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5751 			tcp_enable_fack(tp);
5752 
5753 		tcp_mtup_init(sk);
5754 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5755 		tcp_initialize_rcv_mss(sk);
5756 
5757 		/* Remember, tcp_poll() does not lock socket!
5758 		 * Change state from SYN-SENT only after copied_seq
5759 		 * is initialized. */
5760 		tp->copied_seq = tp->rcv_nxt;
5761 
5762 		smp_mb();
5763 
5764 		tcp_finish_connect(sk, skb);
5765 
5766 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5767 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5768 
5769 		if (!sock_flag(sk, SOCK_DEAD)) {
5770 			sk->sk_state_change(sk);
5771 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5772 		}
5773 		if (fastopen_fail)
5774 			return -1;
5775 		if (sk->sk_write_pending ||
5776 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5777 		    icsk->icsk_ack.pingpong) {
5778 			/* Save one ACK. Data will be ready after
5779 			 * several ticks, if write_pending is set.
5780 			 *
5781 			 * It may be deleted, but with this feature tcpdumps
5782 			 * look so _wonderfully_ clever, that I was not able
5783 			 * to stand against the temptation 8)     --ANK
5784 			 */
5785 			inet_csk_schedule_ack(sk);
5786 			tcp_enter_quickack_mode(sk);
5787 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5788 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5789 
5790 discard:
5791 			tcp_drop(sk, skb);
5792 			return 0;
5793 		} else {
5794 			tcp_send_ack(sk);
5795 		}
5796 		return -1;
5797 	}
5798 
5799 	/* No ACK in the segment */
5800 
5801 	if (th->rst) {
5802 		/* rfc793:
5803 		 * "If the RST bit is set
5804 		 *
5805 		 *      Otherwise (no ACK) drop the segment and return."
5806 		 */
5807 
5808 		goto discard_and_undo;
5809 	}
5810 
5811 	/* PAWS check. */
5812 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5813 	    tcp_paws_reject(&tp->rx_opt, 0))
5814 		goto discard_and_undo;
5815 
5816 	if (th->syn) {
5817 		/* We see SYN without ACK. It is attempt of
5818 		 * simultaneous connect with crossed SYNs.
5819 		 * Particularly, it can be connect to self.
5820 		 */
5821 		tcp_set_state(sk, TCP_SYN_RECV);
5822 
5823 		if (tp->rx_opt.saw_tstamp) {
5824 			tp->rx_opt.tstamp_ok = 1;
5825 			tcp_store_ts_recent(tp);
5826 			tp->tcp_header_len =
5827 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5828 		} else {
5829 			tp->tcp_header_len = sizeof(struct tcphdr);
5830 		}
5831 
5832 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5833 		tp->copied_seq = tp->rcv_nxt;
5834 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5835 
5836 		/* RFC1323: The window in SYN & SYN/ACK segments is
5837 		 * never scaled.
5838 		 */
5839 		tp->snd_wnd    = ntohs(th->window);
5840 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5841 		tp->max_window = tp->snd_wnd;
5842 
5843 		tcp_ecn_rcv_syn(tp, th);
5844 
5845 		tcp_mtup_init(sk);
5846 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5847 		tcp_initialize_rcv_mss(sk);
5848 
5849 		tcp_send_synack(sk);
5850 #if 0
5851 		/* Note, we could accept data and URG from this segment.
5852 		 * There are no obstacles to make this (except that we must
5853 		 * either change tcp_recvmsg() to prevent it from returning data
5854 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5855 		 *
5856 		 * However, if we ignore data in ACKless segments sometimes,
5857 		 * we have no reasons to accept it sometimes.
5858 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5859 		 * is not flawless. So, discard packet for sanity.
5860 		 * Uncomment this return to process the data.
5861 		 */
5862 		return -1;
5863 #else
5864 		goto discard;
5865 #endif
5866 	}
5867 	/* "fifth, if neither of the SYN or RST bits is set then
5868 	 * drop the segment and return."
5869 	 */
5870 
5871 discard_and_undo:
5872 	tcp_clear_options(&tp->rx_opt);
5873 	tp->rx_opt.mss_clamp = saved_clamp;
5874 	goto discard;
5875 
5876 reset_and_undo:
5877 	tcp_clear_options(&tp->rx_opt);
5878 	tp->rx_opt.mss_clamp = saved_clamp;
5879 	return 1;
5880 }
5881 
5882 /*
5883  *	This function implements the receiving procedure of RFC 793 for
5884  *	all states except ESTABLISHED and TIME_WAIT.
5885  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5886  *	address independent.
5887  */
5888 
5889 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5890 {
5891 	struct tcp_sock *tp = tcp_sk(sk);
5892 	struct inet_connection_sock *icsk = inet_csk(sk);
5893 	const struct tcphdr *th = tcp_hdr(skb);
5894 	struct request_sock *req;
5895 	int queued = 0;
5896 	bool acceptable;
5897 
5898 	switch (sk->sk_state) {
5899 	case TCP_CLOSE:
5900 		goto discard;
5901 
5902 	case TCP_LISTEN:
5903 		if (th->ack)
5904 			return 1;
5905 
5906 		if (th->rst)
5907 			goto discard;
5908 
5909 		if (th->syn) {
5910 			if (th->fin)
5911 				goto discard;
5912 			/* It is possible that we process SYN packets from backlog,
5913 			 * so we need to make sure to disable BH right there.
5914 			 */
5915 			local_bh_disable();
5916 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5917 			local_bh_enable();
5918 
5919 			if (!acceptable)
5920 				return 1;
5921 			consume_skb(skb);
5922 			return 0;
5923 		}
5924 		goto discard;
5925 
5926 	case TCP_SYN_SENT:
5927 		tp->rx_opt.saw_tstamp = 0;
5928 		tcp_mstamp_refresh(tp);
5929 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5930 		if (queued >= 0)
5931 			return queued;
5932 
5933 		/* Do step6 onward by hand. */
5934 		tcp_urg(sk, skb, th);
5935 		__kfree_skb(skb);
5936 		tcp_data_snd_check(sk);
5937 		return 0;
5938 	}
5939 
5940 	tcp_mstamp_refresh(tp);
5941 	tp->rx_opt.saw_tstamp = 0;
5942 	req = tp->fastopen_rsk;
5943 	if (req) {
5944 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5945 		    sk->sk_state != TCP_FIN_WAIT1);
5946 
5947 		if (!tcp_check_req(sk, skb, req, true))
5948 			goto discard;
5949 	}
5950 
5951 	if (!th->ack && !th->rst && !th->syn)
5952 		goto discard;
5953 
5954 	if (!tcp_validate_incoming(sk, skb, th, 0))
5955 		return 0;
5956 
5957 	/* step 5: check the ACK field */
5958 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5959 				      FLAG_UPDATE_TS_RECENT |
5960 				      FLAG_NO_CHALLENGE_ACK) > 0;
5961 
5962 	if (!acceptable) {
5963 		if (sk->sk_state == TCP_SYN_RECV)
5964 			return 1;	/* send one RST */
5965 		tcp_send_challenge_ack(sk, skb);
5966 		goto discard;
5967 	}
5968 	switch (sk->sk_state) {
5969 	case TCP_SYN_RECV:
5970 		if (!tp->srtt_us)
5971 			tcp_synack_rtt_meas(sk, req);
5972 
5973 		/* Once we leave TCP_SYN_RECV, we no longer need req
5974 		 * so release it.
5975 		 */
5976 		if (req) {
5977 			inet_csk(sk)->icsk_retransmits = 0;
5978 			reqsk_fastopen_remove(sk, req, false);
5979 		} else {
5980 			/* Make sure socket is routed, for correct metrics. */
5981 			icsk->icsk_af_ops->rebuild_header(sk);
5982 			tcp_init_congestion_control(sk);
5983 
5984 			tcp_mtup_init(sk);
5985 			tp->copied_seq = tp->rcv_nxt;
5986 			tcp_init_buffer_space(sk);
5987 		}
5988 		smp_mb();
5989 		tcp_set_state(sk, TCP_ESTABLISHED);
5990 		sk->sk_state_change(sk);
5991 
5992 		/* Note, that this wakeup is only for marginal crossed SYN case.
5993 		 * Passively open sockets are not waked up, because
5994 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5995 		 */
5996 		if (sk->sk_socket)
5997 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5998 
5999 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6000 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6001 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6002 
6003 		if (tp->rx_opt.tstamp_ok)
6004 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6005 
6006 		if (req) {
6007 			/* Re-arm the timer because data may have been sent out.
6008 			 * This is similar to the regular data transmission case
6009 			 * when new data has just been ack'ed.
6010 			 *
6011 			 * (TFO) - we could try to be more aggressive and
6012 			 * retransmitting any data sooner based on when they
6013 			 * are sent out.
6014 			 */
6015 			tcp_rearm_rto(sk);
6016 		} else
6017 			tcp_init_metrics(sk);
6018 
6019 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6020 			tcp_update_pacing_rate(sk);
6021 
6022 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6023 		tp->lsndtime = tcp_jiffies32;
6024 
6025 		tcp_initialize_rcv_mss(sk);
6026 		tcp_fast_path_on(tp);
6027 		break;
6028 
6029 	case TCP_FIN_WAIT1: {
6030 		int tmo;
6031 
6032 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6033 		 * Fast Open socket and this is the first acceptable
6034 		 * ACK we have received, this would have acknowledged
6035 		 * our SYNACK so stop the SYNACK timer.
6036 		 */
6037 		if (req) {
6038 			/* We no longer need the request sock. */
6039 			reqsk_fastopen_remove(sk, req, false);
6040 			tcp_rearm_rto(sk);
6041 		}
6042 		if (tp->snd_una != tp->write_seq)
6043 			break;
6044 
6045 		tcp_set_state(sk, TCP_FIN_WAIT2);
6046 		sk->sk_shutdown |= SEND_SHUTDOWN;
6047 
6048 		sk_dst_confirm(sk);
6049 
6050 		if (!sock_flag(sk, SOCK_DEAD)) {
6051 			/* Wake up lingering close() */
6052 			sk->sk_state_change(sk);
6053 			break;
6054 		}
6055 
6056 		if (tp->linger2 < 0) {
6057 			tcp_done(sk);
6058 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6059 			return 1;
6060 		}
6061 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6062 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6063 			/* Receive out of order FIN after close() */
6064 			if (tp->syn_fastopen && th->fin)
6065 				tcp_fastopen_active_disable(sk);
6066 			tcp_done(sk);
6067 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6068 			return 1;
6069 		}
6070 
6071 		tmo = tcp_fin_time(sk);
6072 		if (tmo > TCP_TIMEWAIT_LEN) {
6073 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6074 		} else if (th->fin || sock_owned_by_user(sk)) {
6075 			/* Bad case. We could lose such FIN otherwise.
6076 			 * It is not a big problem, but it looks confusing
6077 			 * and not so rare event. We still can lose it now,
6078 			 * if it spins in bh_lock_sock(), but it is really
6079 			 * marginal case.
6080 			 */
6081 			inet_csk_reset_keepalive_timer(sk, tmo);
6082 		} else {
6083 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6084 			goto discard;
6085 		}
6086 		break;
6087 	}
6088 
6089 	case TCP_CLOSING:
6090 		if (tp->snd_una == tp->write_seq) {
6091 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6092 			goto discard;
6093 		}
6094 		break;
6095 
6096 	case TCP_LAST_ACK:
6097 		if (tp->snd_una == tp->write_seq) {
6098 			tcp_update_metrics(sk);
6099 			tcp_done(sk);
6100 			goto discard;
6101 		}
6102 		break;
6103 	}
6104 
6105 	/* step 6: check the URG bit */
6106 	tcp_urg(sk, skb, th);
6107 
6108 	/* step 7: process the segment text */
6109 	switch (sk->sk_state) {
6110 	case TCP_CLOSE_WAIT:
6111 	case TCP_CLOSING:
6112 	case TCP_LAST_ACK:
6113 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6114 			break;
6115 	case TCP_FIN_WAIT1:
6116 	case TCP_FIN_WAIT2:
6117 		/* RFC 793 says to queue data in these states,
6118 		 * RFC 1122 says we MUST send a reset.
6119 		 * BSD 4.4 also does reset.
6120 		 */
6121 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6122 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6123 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6124 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6125 				tcp_reset(sk);
6126 				return 1;
6127 			}
6128 		}
6129 		/* Fall through */
6130 	case TCP_ESTABLISHED:
6131 		tcp_data_queue(sk, skb);
6132 		queued = 1;
6133 		break;
6134 	}
6135 
6136 	/* tcp_data could move socket to TIME-WAIT */
6137 	if (sk->sk_state != TCP_CLOSE) {
6138 		tcp_data_snd_check(sk);
6139 		tcp_ack_snd_check(sk);
6140 	}
6141 
6142 	if (!queued) {
6143 discard:
6144 		tcp_drop(sk, skb);
6145 	}
6146 	return 0;
6147 }
6148 EXPORT_SYMBOL(tcp_rcv_state_process);
6149 
6150 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6151 {
6152 	struct inet_request_sock *ireq = inet_rsk(req);
6153 
6154 	if (family == AF_INET)
6155 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6156 				    &ireq->ir_rmt_addr, port);
6157 #if IS_ENABLED(CONFIG_IPV6)
6158 	else if (family == AF_INET6)
6159 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6160 				    &ireq->ir_v6_rmt_addr, port);
6161 #endif
6162 }
6163 
6164 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6165  *
6166  * If we receive a SYN packet with these bits set, it means a
6167  * network is playing bad games with TOS bits. In order to
6168  * avoid possible false congestion notifications, we disable
6169  * TCP ECN negotiation.
6170  *
6171  * Exception: tcp_ca wants ECN. This is required for DCTCP
6172  * congestion control: Linux DCTCP asserts ECT on all packets,
6173  * including SYN, which is most optimal solution; however,
6174  * others, such as FreeBSD do not.
6175  */
6176 static void tcp_ecn_create_request(struct request_sock *req,
6177 				   const struct sk_buff *skb,
6178 				   const struct sock *listen_sk,
6179 				   const struct dst_entry *dst)
6180 {
6181 	const struct tcphdr *th = tcp_hdr(skb);
6182 	const struct net *net = sock_net(listen_sk);
6183 	bool th_ecn = th->ece && th->cwr;
6184 	bool ect, ecn_ok;
6185 	u32 ecn_ok_dst;
6186 
6187 	if (!th_ecn)
6188 		return;
6189 
6190 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6191 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6192 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6193 
6194 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6195 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6196 		inet_rsk(req)->ecn_ok = 1;
6197 }
6198 
6199 static void tcp_openreq_init(struct request_sock *req,
6200 			     const struct tcp_options_received *rx_opt,
6201 			     struct sk_buff *skb, const struct sock *sk)
6202 {
6203 	struct inet_request_sock *ireq = inet_rsk(req);
6204 
6205 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6206 	req->cookie_ts = 0;
6207 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6208 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6209 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6210 	tcp_rsk(req)->last_oow_ack_time = 0;
6211 	req->mss = rx_opt->mss_clamp;
6212 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6213 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6214 	ireq->sack_ok = rx_opt->sack_ok;
6215 	ireq->snd_wscale = rx_opt->snd_wscale;
6216 	ireq->wscale_ok = rx_opt->wscale_ok;
6217 	ireq->acked = 0;
6218 	ireq->ecn_ok = 0;
6219 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6220 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6221 	ireq->ir_mark = inet_request_mark(sk, skb);
6222 }
6223 
6224 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6225 				      struct sock *sk_listener,
6226 				      bool attach_listener)
6227 {
6228 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6229 					       attach_listener);
6230 
6231 	if (req) {
6232 		struct inet_request_sock *ireq = inet_rsk(req);
6233 
6234 		kmemcheck_annotate_bitfield(ireq, flags);
6235 		ireq->opt = NULL;
6236 #if IS_ENABLED(CONFIG_IPV6)
6237 		ireq->pktopts = NULL;
6238 #endif
6239 		atomic64_set(&ireq->ir_cookie, 0);
6240 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6241 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6242 		ireq->ireq_family = sk_listener->sk_family;
6243 	}
6244 
6245 	return req;
6246 }
6247 EXPORT_SYMBOL(inet_reqsk_alloc);
6248 
6249 /*
6250  * Return true if a syncookie should be sent
6251  */
6252 static bool tcp_syn_flood_action(const struct sock *sk,
6253 				 const struct sk_buff *skb,
6254 				 const char *proto)
6255 {
6256 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6257 	const char *msg = "Dropping request";
6258 	bool want_cookie = false;
6259 	struct net *net = sock_net(sk);
6260 
6261 #ifdef CONFIG_SYN_COOKIES
6262 	if (net->ipv4.sysctl_tcp_syncookies) {
6263 		msg = "Sending cookies";
6264 		want_cookie = true;
6265 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6266 	} else
6267 #endif
6268 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6269 
6270 	if (!queue->synflood_warned &&
6271 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6272 	    xchg(&queue->synflood_warned, 1) == 0)
6273 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6274 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6275 
6276 	return want_cookie;
6277 }
6278 
6279 static void tcp_reqsk_record_syn(const struct sock *sk,
6280 				 struct request_sock *req,
6281 				 const struct sk_buff *skb)
6282 {
6283 	if (tcp_sk(sk)->save_syn) {
6284 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6285 		u32 *copy;
6286 
6287 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6288 		if (copy) {
6289 			copy[0] = len;
6290 			memcpy(&copy[1], skb_network_header(skb), len);
6291 			req->saved_syn = copy;
6292 		}
6293 	}
6294 }
6295 
6296 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6297 		     const struct tcp_request_sock_ops *af_ops,
6298 		     struct sock *sk, struct sk_buff *skb)
6299 {
6300 	struct tcp_fastopen_cookie foc = { .len = -1 };
6301 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6302 	struct tcp_options_received tmp_opt;
6303 	struct tcp_sock *tp = tcp_sk(sk);
6304 	struct net *net = sock_net(sk);
6305 	struct sock *fastopen_sk = NULL;
6306 	struct dst_entry *dst = NULL;
6307 	struct request_sock *req;
6308 	bool want_cookie = false;
6309 	struct flowi fl;
6310 
6311 	/* TW buckets are converted to open requests without
6312 	 * limitations, they conserve resources and peer is
6313 	 * evidently real one.
6314 	 */
6315 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6316 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6317 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6318 		if (!want_cookie)
6319 			goto drop;
6320 	}
6321 
6322 	if (sk_acceptq_is_full(sk)) {
6323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6324 		goto drop;
6325 	}
6326 
6327 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6328 	if (!req)
6329 		goto drop;
6330 
6331 	tcp_rsk(req)->af_specific = af_ops;
6332 	tcp_rsk(req)->ts_off = 0;
6333 
6334 	tcp_clear_options(&tmp_opt);
6335 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6336 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6337 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6338 			  want_cookie ? NULL : &foc);
6339 
6340 	if (want_cookie && !tmp_opt.saw_tstamp)
6341 		tcp_clear_options(&tmp_opt);
6342 
6343 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6344 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6345 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6346 
6347 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6348 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6349 
6350 	af_ops->init_req(req, sk, skb);
6351 
6352 	if (security_inet_conn_request(sk, skb, req))
6353 		goto drop_and_free;
6354 
6355 	if (tmp_opt.tstamp_ok)
6356 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb);
6357 
6358 	if (!want_cookie && !isn) {
6359 		/* Kill the following clause, if you dislike this way. */
6360 		if (!net->ipv4.sysctl_tcp_syncookies &&
6361 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6362 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6363 		    !tcp_peer_is_proven(req, dst)) {
6364 			/* Without syncookies last quarter of
6365 			 * backlog is filled with destinations,
6366 			 * proven to be alive.
6367 			 * It means that we continue to communicate
6368 			 * to destinations, already remembered
6369 			 * to the moment of synflood.
6370 			 */
6371 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6372 				    rsk_ops->family);
6373 			goto drop_and_release;
6374 		}
6375 
6376 		isn = af_ops->init_seq(skb);
6377 	}
6378 	if (!dst) {
6379 		dst = af_ops->route_req(sk, &fl, req);
6380 		if (!dst)
6381 			goto drop_and_free;
6382 	}
6383 
6384 	tcp_ecn_create_request(req, skb, sk, dst);
6385 
6386 	if (want_cookie) {
6387 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6388 		req->cookie_ts = tmp_opt.tstamp_ok;
6389 		if (!tmp_opt.tstamp_ok)
6390 			inet_rsk(req)->ecn_ok = 0;
6391 	}
6392 
6393 	tcp_rsk(req)->snt_isn = isn;
6394 	tcp_rsk(req)->txhash = net_tx_rndhash();
6395 	tcp_openreq_init_rwin(req, sk, dst);
6396 	if (!want_cookie) {
6397 		tcp_reqsk_record_syn(sk, req, skb);
6398 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6399 	}
6400 	if (fastopen_sk) {
6401 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6402 				    &foc, TCP_SYNACK_FASTOPEN);
6403 		/* Add the child socket directly into the accept queue */
6404 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6405 		sk->sk_data_ready(sk);
6406 		bh_unlock_sock(fastopen_sk);
6407 		sock_put(fastopen_sk);
6408 	} else {
6409 		tcp_rsk(req)->tfo_listener = false;
6410 		if (!want_cookie)
6411 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6412 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6413 				    !want_cookie ? TCP_SYNACK_NORMAL :
6414 						   TCP_SYNACK_COOKIE);
6415 		if (want_cookie) {
6416 			reqsk_free(req);
6417 			return 0;
6418 		}
6419 	}
6420 	reqsk_put(req);
6421 	return 0;
6422 
6423 drop_and_release:
6424 	dst_release(dst);
6425 drop_and_free:
6426 	reqsk_free(req);
6427 drop:
6428 	tcp_listendrop(sk);
6429 	return 0;
6430 }
6431 EXPORT_SYMBOL(tcp_conn_request);
6432